DRAFT NEWELL HIGHWAY CORRIDOR STRATEGY

APRIL 2014

Newell Highway Corridor Strategy

April 2014

ISBN: 978-1-922030-35-1 © State of New South Wales through

Transport for NSW, 2014.

Transport for NSW

18 Lee St, Chippendale NSW 2008.

Disclaimer

While every reasonable effort has been made to ensure that this document is correct at the time of printing, the State of NSW, its agents and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

CONTENTS

LIST OF FIGURES	2
GLOSSARY OF TERMS	4
1 A QUICK OVERVIEW	8
 2 INTRODUCTION 2.1 Why a corridor strategy? 2.2 An integrated, customer-focused transport network 2.3 A vision for the future 2.4 Corridor objectives 2.5 Key corridor challenges 2.6 Taking action 	16 16 19 26 27 29 30
 TRANSPORT DEMANDS AND ROLES The Newell Highway and the National Land Transport Network Current population and employment in the corridor Industry and economic development Current traffic volumes and heavy vehicles Public transport in the corridor Walking and cycling in the corridor 	32 32 35 42 45 46 49
4 CURRENT CORRIDOR PERFORMANCE 4.1 Road safety 4.2 Traffic 4.3 Heavy vehicles on the Newell Highway 4.4 Road design and geometry 4.5 Road pavement condition 4.6 Environment	51 56 68 83 97 124 139
 FUTURE CORRIDOR CHANGES 5.1 Population and demographics 5.2 Land use changes 5.3 Traffic growth 5.4 Future freight task and heavy vehicle volumes 5.5 Future public transport 5.6 Climate change 5.7 Road corridor changes 	142 145 146 147 151 151
6 CORRIDOR CHALLENGES	154
 7 TAKING ACTION 7.1 Short-term investment priorities 7.2 Medium-term investment priorities 7.3 Long-term investment priorities 	158 158 160 161
REFERENCES	162
APPENDIX A - AUSTROADS VEHICLE CLASSIFICATION SYSTEM	164

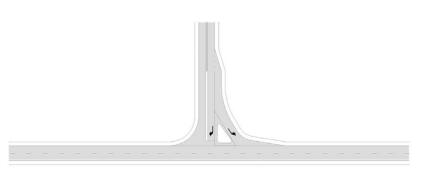
LIST OF FIGURES

Figure 1.1	Newell Highway corridor	8
Figure 1.2	Melbourne-Brisbane corridor part of the National Land Transport Network	9
Figure 1.3	Zones within the Newell Highway corridor	10
Figure 2.1	Corridor planning process	16
Figure 2.2	Road Train and B-double access along the Newell Highway	18
Figure 2.3	Transport for NSW result areas in the Corporate Framework	20
Figure 2.4	NSW Long Term Master Plan regional boundaries	21
Figure 2.5	Planning framework	22
Figure 2.6	Relationship with Regional Transport Plans	24
Figure 2.7	Putting the customer at the centre: NSW Long Term Transport Master Plan objectives	26
Figure 3.1	Locality map of the Newell Highway corridor	32
Figure 3.2	Primary employment sections by LGAs, regional NSW	40
Figure 3.3	Selected commodity movement in NSW	41
Figure 3.4	Freight flows within the corridor, excluding coal (tonnes)	42
Figure 3.5	Cotton export commodity flows through NSW in 2010-2011 in kilotonnes	43
Figure 3.6	Coal exports commodity flows through NSW in 2010-2011 in kilotonnes	43
Figure 3.7	NSW rail network	46
Figure 3.8	Regional airports with commercial flights and intermodal terminals along the Newell Highway	47
Figure 4.1	Road transport system planning levels	49
Figure 4.2	Newell Highway planning sections	51
Figure 4.3	Newell Highway speed zones	55
Figure 4.4	Location and severity of crashes from 2007 to 2011	56
Figure 4.5	Casualty and non-casualty crashes from 2007 to 2011	58
Figure 4.6	Crash types from 2007 to 2011	63
Figure 4.7	Contributing factors in crashes between 2007 and 2011	65
Figure 4.8	Average Daily Traffic (ADT) volumes in 2011 (rural sections)	66
Figure 4.9	Newell Highway peak hour traffic volumes in 2011	69
Figure 4.10	Existing northbound overtaking lanes	72
Figure 4.11	Existing southbound overtaking lanes	73

Figure 4.12	Sections of the Newell Highway that exceed the network planning target for the provision of overtaking lanes	76
Figure 4.13	Double road train maximum dimensions	82
Figure 4.14	Safe-T-Cam sites	87
Figure 4.15	Newell Highway major heavy vehicle rest areas	89
Figure 4.16	Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 1)	97
Figure 4.17	Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 2)	98
Figure 4.18	Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 3)	99
Figure 4.19	Locations where lane widths are less than 3.25 metres	102
Figure 4.20	Wide centre line treatment road marking scheme details	107
Figure 4.21	Locations of bridges with poor Bridge Health Index (BHI)	115
Figure 4.22	Rail level crossing locations	118
Figure 4.23	Pavement remaining life	120
Figure 4.24	Pavement deflection	133
Figure 4.25	Curvature criteria	134
Figure 4.26	National parks, State forests and other protected areas	137
Figure 5.1	Regional NSW population growth from 2011 to 2031	139
Figure 5.2	Forecast NSW population growth from 2011 to 2031	139
Figure 5.3	Journey to work trips in regional NSW in 2006	140
Figure 5.4	Potential Melbourne and Brisbane route of the inland railway	146

GLOSSARY OF TERMS

TERM	DEFINITION
AADT	The Annual Average Daily Traffic is the total yearly two-way traffic volume divided by 365, expressed as vehicles per day, in this document.
abutment	An end support of a bridge or similar structure.
ADT	The average daily traffic is the total two way traffic volume during a stated period, divided by the number of days in that period, normally over a seven day week and expressed as vehicles per day.
auxiliary lane	A portion of the carriageway adjoining through traffic lanes, used for speed change or for other purposes supplementary to through traffic movement.
AUR & AUL	Auxiliary intersection treatment Right and Left.
	Auxillary Right Turn (AUR) on the Major Road (Two-lane, Two-way Road) This turn type not as safe as a channelised
	treatment at unsignalised intersections
	
	Auxiliary Left Turn (AUL) Auxillary Left Turn (AUL) on the Major Road
	CHL treatment is preferred at unsignalised intersections to ensure a clear line of sight for vehicles turning from the minor road.
axle	An axle is a central shaft for a rotating wheel or gear. It refers to the pairs of wheels of the vehicle.
axle group	A set of closely spaced axles acting as a unit.
BAR & BAL	Basic intersection treatment Right and Left.
	Pagia Dight Turn (PAD)
	Basic Right Turn (BAR) on the Major Road (Two-lane, Two-way Road)
	Basic Left Turn (BAL) on the Major Road


blast furnace slag	A non-metallic product, consisting essentially of silicates and aluminosilicates of lime, developed simultaneously with iron in a blast furnace.
carriageway	That portion of a road or bridge devoted particularly to the use of vehicles, that is between guide posts, kerbs, or barriers where these are provided, inclusive of shoulders and auxiliary lanes.
CHR & CHL	Channelised intersection treatment Right and Left.

Channelised Right Turn (CHR) on the Major Road

Channelised Left Turn (CHL) on the Major Road

Channelised Left Turn (CHL) on the Minor Road

CHR(s)	Short Channelised intersection treatment, the channelised portion of the intersection is shorter than a CHR.
converter dolly	A trailer with one axle group or single axle and a fifth wheel coupling designed to convert a semi-trailer into a dog trailer.
coupling	Mechanical assembly that provides a connection between the drawbar of the trailer and the towbar of the drawing vehicle.

culvert	One or more adjacent pipes or enclosed channels for conveying water, a watercourse or stream below under the surface of a road. Culverts minimise flooding by minimising water building up alongside the road and overtopping the road surface (causing flooding) to escape.
deflection	The vertical movement of a pavement due to the application of a load.
DESA	Design Equivalent Standard Axles.
dog trailer	One axle group or single axle at the rear.
dolly	See converter dolly.
fifth wheel coupling	See coupling.
formation level	The general level of the surface of the ground proposed or obtained on completion of earthworks.
General access vehicle	A vehicle that has unlimited access to the road network, limits being 2.5 metres wide, 4.3 metres high, 12.5 metres long for rigid vehicles and 19 metres long for single combinations and conforming axle groups.
headstock	A beam at the top of a pier or abutment to provide support for the bridge superstructure.
HML vehicle	Higher Mass Limits is a nationally agreed scheme that permits approved heavy vehicles to operate with additional mass on certain types of axle groups, on a restricted road network and subject to specified conditions. Details are specific to each vehicle type, see http://www.ntc.gov.au.
HPV	Higher Productivity Vehicles are vehicles approved to carry loads above standard mass limits. These vehicles have restricted access to the network and can operate under a Performance Base Standards system, or a Restricted Vehicle Access System.
NAASRA	National Association of Australian State Road Authorities. NAASRA is now known as Austroads.
NLTN	The National Land Transport Network is a single integrated network of land transport linkages of strategic national importance.
PBS	Performance Based Standards are a national system for the regulation of heavy vehicles based on the performance, safe operation, manoeuvrability and characteristics of the vehicle on the road rather than the vehicle type.
	The Performance-Based Standards scheme is a key element of the Council of Australian Government's national reform agenda for transport. The scheme offers the heavy vehicle industry the potential to achieve higher productivity and safety through innovative truck and bus design.
	PBS vehicles are designed to perform their tasks as productively, safely and as sustainably as possible. These trucks and buses are tested against 16 stringent safety standards and four infrastructure standards to ensure that they can stop, turn and travel safely. Vehicles are certified as able to operate on PBS Access Level routes 1, 2, 3 or 4.
pier	An intermediate support in a bridge having more than one span.
platoon	A closely spaced group of vehicles on a carriageway, moving, or stopped and ready to move, with relatively large spaces ahead and behind.

RAV	Restricted access vehicle is a vehicle that is longer than 19 metres, 4.3 metres high or 42.5 tonnes gross mass and is not given as-of-right access to the road network. Includes B-doubles, road trains and larger truck-trailer combinations.
road smoothness	A surface condition in which the aggregate is worn and the texture depth is minimal.
roadloc chainage	The name given to the Linear Referencing System used by the Roads and Maritime Services.
roughness	The consequence of irregularities in the longitudinal profile of a road with respect to the intended profile.
rutting	The longitudinal vertical deformation of a pavement surface in a wheel path, measured relative to a straightedge placed at right angles to the traffic flow and across the wheel path.
shoulder	The portion of a carriageway beyond the traffic lanes and contiguous and flush with the surface of the pavement.
substructure	In a bridge, the piers and abutments that support the superstructure.
superstructure	In a bridge, that part of the structure that is supported by the piers and abutments.
through lane	A lane provided for the use of vehicles proceeding straight ahead.
trailer	Vehicle without motive power constructed to be drawn behind a motor vehicle.
TRARR	Traffic on Rural Roads is a micro-simulation model of traffic flow on two- lane roads used to investigate overtaking lane projects in particular.
verge	The section of the road formation that joins the shoulder with the batter.

1 A QUICK OVERVIEW

The Newell Highway is the longest highway in NSW, running south to north through the State and providing an essential road connection for central western NSW. This corridor strategy sets out how the NSW Government will manage road transport along the Newell Highway (A39) in the long-term – from Tocumwal on the Victorian border to Goondiwindi on the Queensland border.

The corridor strategy plans to be delivered over a 20 year timeframe, in line with the NSW Long Term Transport Master Plan, Regional Transport Plans and other relevant national and State planning frameworks. From road safety and transport efficiency to asset maintenance issues, this strategy sets the direction for managing the Newell Highway into the future.

As the major rural highway west of the Great Dividing Range, the Newell Highway services western NSW's north-south corridor (Figure 1.1), connecting many major routes, including:

- Riverina Highway
- Kidman Way
- Sturt Highway
- Burley Griffin Way
- Mid Western Highway
- Goldfields Way
- Lachlan Valley Way
- Henry Parkes Way

- Mitchell Highway
- Golden Highway
- Castlereagh Highway
- Mendooran Road
- Oxley Highway
- Kamilaroi Highway
- Gwydir Highway
- Carnarvon Highway
- Bruxner Highway

For the purposes of this strategy, the Newell Highway has been divided into three roughly equal zones (Figure 1.3), together with 19 sections (see Chapter 4 for the details).

The three zones are:

- Zone 1 Tocumwal to Marsden (337.6 kilometres)
- Zone 2 Marsden to Coonabarabran (379.7 kilometres)
- Zone 3 Coonabarabran to Goondiwindi (342.1 kilometres).

The Newell Highway spans 1058 kilometres and passes through 15 local government areas in three NSW Long Term Transport Master Plan

Major roads

regions - Murray-Murrumbidgee, Central West and New England. It is part of the National Land Transport Network, and more broadly an element of the Melbourne-Brisbane corridor (Figure 1.2). The Newell Highway contributes to the competitiveness of Australia's agricultural and mining sectors, opening up access to essential freight networks in NSW, Queensland and Victoria.

The Newell Highway provides:

 A major interstate transport connection between Victoria, New South Wales and Queensland for freight and passengers, including tourists.

Launceston

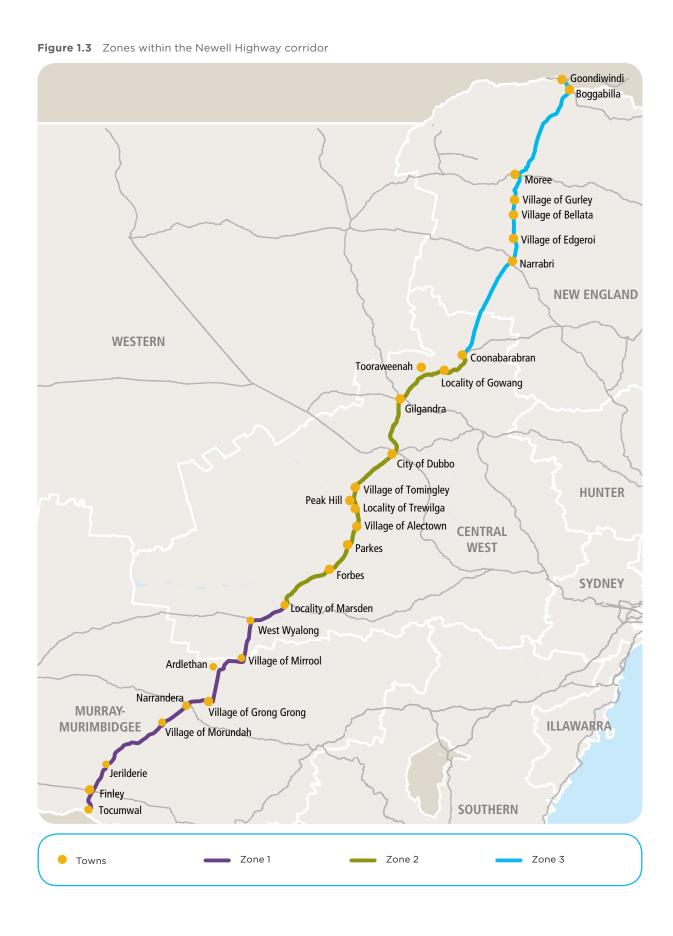

Melbourne to Brisbane Corridor

Figure 1.2 Melbourne-Brisbane corridor part of the National Land Transport Network¹

Newell Highway

Commonwealth of Australia 2007, Melbourne-Brisbane Corridor Strategy: Building our National Transport Future, Commonwealth of Australia, Barton

- A significant regional traffic route serving and linking a range of towns and major centres.
- A link to domestic and export markets for agricultural products.

The Newell Highway differs markedly from one end of the corridor to the other. The highway is generally flat, with long, straight sections joined by the occasional curved section. However, passing through the Warrumbungle Ranges, near Coonabarabran, there are steeper grades and tighter curves than on the rest of the highway.

Traffic volumes along the Newell Highway vary significantly from around 1,200 to 4,000 vehicles per day in rural areas². In the urban centres such as Dubbo, average daily traffic volumes are in the order of 20,000 vehicles a day. A large number of heavy vehicles use the Newell Highway - on average, between 26 per cent and 52 per cent of all traffic on the route³. As a key freight route between Victoria and Queensland, the highway sees around 650 heavy vehicles per day north and south of the Sturt Highway intersection up to around 1,500 heavy vehicles per day near the Queensland border⁴. Freight along the Newell Highway is expected to grow over the next 20 years, with daily truck movements and annual tonnage forecast to grow by approximately 67 to 103 per cent from 2009 to 2031⁵. Freight volumes on the highway near Queensland border are forecast to grow by 82 per cent from 2011 to 20316.

Currently, restricted access vehicles (including 25 and 26 metre B-doubles) can access the Newell Highway along its full length, except through the urban commercial centre of West Wyalong where a combination of the Newell Highway and the restricted access vehicle bypass are used by all B-doubles and higher mass limit vehicles travelling through the town. The Newell Highway is open to double road trains from Tocumwal to Narrandera, Lachlan Valley Way south of Forbes to Back Yamma Road at Daroobalgie, in the village of Tomingley, Dubbo to Gilgandra and from Coonabarabran to Goondiwindi. Higher productivity vehicles including B-triples and AB-triples are allowed to travel along the Newell Highway from Tocumwal to Morundah, from Dubbo to Gilgandra, and from Narrabri to Goondiwindi.

Both the NSW Long Term Transport Master Plan and the NSW Freight and Ports Strategy⁷ identify the need to develop a corridor strategy for the Newell Highway to support greater use of high productivity vehicles, and to prioritise the necessary road upgrades to enable HPV access on the entire length of the highway. This corridor strategy sets out how the Newell Highway on its full length can accommodate HPVs.

This corridor strategy sets out the objectives, current performance, current and future challenges and the NSW Government's strategic response to managing the Newell Highway corridor over the long term. While investment will continue along the entire length of the corridor to enable access for higher productivity vehicles, the focus will be on the northern end of the corridor where there is a strong and growing freight demand.

- 2 Cardno 2011, Traffic Counts on the Newell Highway
- 3 ibid.
- 4 ibid.
- 5 Hyder Consulting for Transport for NSW 2011, NSW Freight Supply Chain Study Hunter, Northern, Western Regions
- 6 Transport for NSW 2013, NSW Freight and Ports Strategy, TfNSW, Sydney, p. 180
- 7 Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 296 and Transport for NSW 2013, NSW Freight and Ports Strategy, TfNSW, Sydney, p.38

Recent major achievements on the Newell Highway

Overtaking lanes

The NSW Government is providing overtaking lanes to ensure more frequent overtaking opportunities along the Newell Highway.

Overtaking lanes improve travel time and level of service for our road customers; they also reduce driver frustration and unsafe behaviour.

To date eleven overtaking lanes out of the original 57 identified in the Newell Highway Potential Overtaking Lane Study 2011 have been constructed or are programmed for completion by the end of 2014/2015 financial year.

At the time of publication of this strategy, five overtaking lanes have been completed; four to be completed in 2013/2014 financial year and two are in a development stage to be completed in the 2014/15 financial year. This includes:

First tranche of overtaking lanes: \$10 million 2011 election commitment

2011/2012 - one overtaking lane constructed between Narrabri and Moree

Southbound overtaking lane at Bellata completed in May 2012

2012/2013 - two overtaking lane constructed between Narrabri and Moree

Southbound overtaking lane at Gurley completed in September 2012

Northbound overtaking lane at Gurley completed in December 2012

2013/2014 – one overtaking lane constructed between Coonabarabran and Narrabri.

2013/2014 – two overtaking lanes between West Wyalong and Forbes and expected to be completed in the 2013/14 financial year.

Overtaking lane at Pilliga completed in February 2014

In addition, the NSW Government has delivered turning lanes on the Newell Highway at the Oxford Street intersection in Forbes. The turning lanes allow vehicles to safely enter Oxford Street and avoid other traffic continuing along the highway.

The NSW Government delivered the road works in December 2012, before schedule and under budget.

Oxford Street intersection in Forbes

Second tranche of overtaking lanes: Additional \$10 million commitment announced in May 2013 (State and Federal Government contribution)

2013/2014 - two overtaking lanes between Moree and Boggabilla - currently under construction and expected to be completed by end of 2013/14 financial year

Southbound overtaking lanes at Girrahween will commence construction in March 2014.

Northbound overtaking lane at Girrahween is expected to be open to traffic in March 2014

2013/2014 – one overtaking lane between Jerilderie and Narrandera – expected to be completed 2013/14 financial year.

2014/2015 - one overtaking lane between Jerilderie and Narrandera - expected to be completed by 2014/15 financial year.

2014/2015 - one overtaking lane between Parkes and Peak Hill - expected to be completed by 2014/15 financial year.

Potential future overtaking lanes (medium to higher priorities)

Additional overtaking lanes on the Newell Highway will be provided as funding becomes available in a prioritised way, as set out in the *Newell Highway Overtaking Lanes Strategy*.

- Two overtaking lanes between Gowang and Coonabarabran
- Two overtaking lanes between Peak Hill and Tomingley
- Two overtaking lanes between Moree and Boggabilla
- Two overtaking lanes between Narrabri and Moree
- Six overtaking lanes between West Wyalong and Forbes
- Two overtaking lanes between Gilgandra and Gowang

Speed limits

The current speed limit along the Newell Highway is generally 110 km/h in rural areas. There are limits of 50 km/h to 80km/h through towns and urban areas and 40 km/h in school zones.

One of the commitments made by the current NSW Government prior to its election was to raise the speed limit on the Newell Highway back to 110 km/h, where applicable.

On 31 July 2011, the open road speed limit for light vehicles along most of the Newell Highway changed to 110 km/h, with the exception of short lengths south of Peak Hill through Trewilga, south of Forbes and north of Tocumwal, which have remained at 100 km/h due to the road alignment. The length of road from Tooraweenah to north of Coonabarabran, and north of Boggabilla was unaffected by the increased speed limit and remains speed zoned 100 km/h.

Fixing country roads

In December 2013, the NSW Government announced funding to start the Fixing Country Roads program targeted at local road works to improve road freight productivity and connectivity in regional NSW.

Fixing Country Roads is about working with local councils and industry to identify the important infrastructure upgrades needed on their local roads, allowing better connection to the State Road Network.

The first \$1.5 million of the Fixing Country Roads program will be provided to Forbes Shire Council to improve double road train / Higher Productivity Vehicle access to the GrainCorp Red Bend silos from the Newell Highway. It will be supported by \$400,000 in contributions from the Forbes Shire Council and will complement \$800,000 of future works within the silo facility by GrainCorp.

The Red Bend silos are a major intermodal terminal for grain, processing on average 60,000 tonnes of grain each year from surrounding farms across the Central West. Currently, only smaller combinations of heavy vehicles can access the site from the Newell Highway, leading to inefficiencies through increased trips and running costs.

Another \$850,000 will be provided to Narromine Shire Council to enable upgrade of local intersections, an investment allowing Higher Productivity Vehicles to travel more safely and seamlessly through the Central West, helping boost economic growth in the region.

2 INTRODUCTION

2.1 Why a corridor strategy?

Transport for NSW and Roads and Maritime Services are preparing corridor strategies for every State road in NSW to create consistency in how the State Road Network is managed and planned.

In addition, corridor strategies make planning and investment decisions transparent to the community, councils and other government agencies.

Drawing together a variety of elements, as shown in Figure 2.1, corridor strategies identify:

- Corridor-specific objectives that support the *NSW Long Term Transport Master Plan and Regional Transport Plans* (and other State and national plans).
- Current and future challenges in meeting these corridor-specific objectives.
- The performance of transport infrastructure in meeting the corridor-specific objectives.
- Key transport demands likely to be placed on the corridor over the next 20 years.
- Short, medium and long term priorities and actions to manage the corridor.

Corridor strategies include priorities for future road maintenance, operation, safety, traffic and development. They set a 20 year framework, which brings together road safety, traffic efficiency and asset management activities, together with policy in relation to freight access.

Figure 2.1 Corridor planning process Define the corridor Establish corridor objectives to support the LTTMP and the Regional **Transport Plan objectives** Describe the current transport demands and roles of the corridor Assess the performance of the corridor against network wide and rural planning targets Identify future land use changes and impacts on the corridor Identify corridor challenges in view of current performance and future changes Identify short, medium and long term investment priorities that contribute to the objectives and address the challenges

Why Newell Highway?

The Newell Highway is a vital transport corridor between the second and third largest Australian cities – where freight productivity is expected to nearly double over the next 20 years⁸.

Both the NSW Long Term Transport Master Plan and the NSW Freight and Ports Strategy⁹ identify the need to develop a corridor strategy for the Newell Highway to support greater use of high productivity vehicles, and to prioritise the necessary road upgrades to enable HPV access on the entire length of the highway.

The freight transport sector's performance influences the nation's productivity and efficiency: "Improvements in freight productivity and efficiency reduce the cost of moving freight, adding directly to national economic output." 10 Freight productivity, in turn, depends on the type of vehicles allowed on the road, their level of access and associated regulatory, safety and asset management costs.

Informal truck parking area north of Parkes

These issues are particularly relevant to the Newell Highway. Currently, restricted access vehicles such as 26 metre B-doubles are allowed along its entire length (with the exception of West Wyalong), however, access for B-triples, double road trains and AB-triples (36.5 metres) is restricted to certain sections. Figure 2.2 shows B-double and road train routes.

Some sections of the Newell Highway have significant pavement condition issues and structural deficiencies. These issues, coupled with strong freight demand, affect travel reliability and journey times for freight between Victoria and Queensland, increase maintenance costs and reduce road safety.

This corridor strategy identifies improvements needed to ensure continual access for Performance Based Standard (PBS) Class 3(a) vehicles (less or equal to 36.5 metres) along its entire length, while progressively phasing out double road trains. It also identifies road safety, maintenance and traffic challenges at local, regional and interstate levels.

- 8 Hyder Consulting for Transport for NSW 2011, NSW Freight Supply Chain Study Hunter, Northern, Western Regions
- 9 Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 296 and Transport for NSW 2013, NSW Freight and Ports Strategy, TfNSW, Sydney, p.38
- 10 <u>Bureau</u> of Infrastructure, Transport and Regional Economics 2011, *Truck Productivity: Sources, Trends and Future Prospects*, BITRE, Canberra, p. xiii

Figure 2.2 Road Train and B-double access along the Newell Highway

Note: Road Safety Audits and road train assessments are currently being carried out for the remaining parts of the Newell Highway. Initial findings between Gilgandra and Coonabarabran have not identified any deficiencies to prevent future road train use.

Process and methodology

This corridor strategy has been prepared by a multidisciplinary project team from Transport for NSW and Roads and Maritime Services with expertise in road safety, traffic, asset management, land use, environment, planning and development.

It draws on assessments of the Newell Highway's road conditions, traffic and safety carried out by both agencies. The corridor has been identified by describing its location and geography, key demand drivers and the transport role it fulfils. Transport for NSW and Roads and Maritime Services asset, traffic and safety data has been analysed to determine current levels of performance.

The corridor has been considered within the broader strategic planning context provided by key national, state and local government planning documents. Current population and employment data, together with future landuse plans for the corridor, have been sourced from the NSW Department of Planning and Infrastructure, along with relevant local council documents and 2011 Australian Bureau of Statistics (ABS) Census data.

Newell Highway near Trewilga

2.2 An integrated, customerfocused transport network

Transport for NSW was established by the NSW Government on 1 November 2011 as an important step in achieving NSW's vision for a truly integrated transport system. Transport for NSW is responsible for managing and shaping the future of the transport system in NSW. Its purpose is to make NSW a better place to live, do business and visit, by managing and shaping the future of the whole transport system.

Customer focus

Improving the customer experience is an important aspect of the NSW Government's commitment to putting the customer at the centre of transport planning and service delivery.

This corridor strategy has been developed within the Transport for NSW customer focused Corporate Framework, which outlines the result areas important in meeting customer needs (Figure 2.3).

The NSW Long Term Transport Master Plan, released in December 2012, sets out how NSW will meet the future needs of its transport customers. The development of the Master Plan involved a wide range of consultation with customers directly affected by the transport network. The 12 month, state-wide consultation process to develop the Master Plan was widespread in its reach and involved:

- Over 1,000 people attending 14 regional forums across the State
- Over 130,000 hits to the website www.transportmasterplan.nsw.gov.au
- More than 1,200 submissions to the Discussion Paper
- Over 480 comments on the draft master plan

Figure 2.3 Transport for NSW result areas in the Corporate Framework

- 270 stakeholders at the launch and industry briefing
- 55 representatives on four advisory groups that engaged customers, the community, industry, transport specialists and local government.

Feedback raised through the consultation process varied greatly across each region. The Newell Highway corridor is within the New England, Central West and Murray-Murrumbidgee regions (Figure 2.4).

New England customers saw regional growth and the expansion of the mining and agriculture industries as challenges for the area. As the region relies on export related industries, customers said they wanted better transport links from the region to Sydney, Newcastle and Brisbane and in particular, with air services to Sydney Airport retained. Road safety issues customers identified in this region were related to road freight, railway level crossings and poor quality roads. Some of the most frequently mentioned initiatives were rest areas for the Newell Highway and completion of the bypass at Moree.

Feedback from customers in the **Central West** focused on improving regional connectivity to Sydney and other key centres. Customers said options to address safety included heavy vehicle bypasses, additional overtaking lanes and shifting more freight onto rail to reduce trucks on the road. Some of the most frequently mentioned initiatives were upgrading the Newell Highway at Trewilga and Tallimba Road intersection at West Wyalong and creating town bypasses for heavy vehicles.

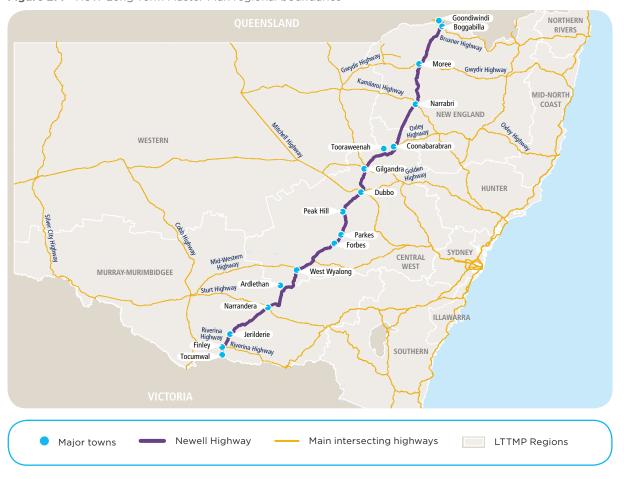


Figure 2.4 NSW Long Term Master Plan regional boundaries

A lack of transport options and services across the regions was seen as an issue in the **Murray-Murrumbidgee**. Customers said better connectivity between regional towns was important to facilitating access to key services and reducing travel time. Customers said maintaining and upgrading road and rail infrastructure was important to ensure reliable and safe services. Customers said cross-border connections to Victoria, and in particular links to Melbourne, Sydney and Canberra, were critical.

Regional Transport Plans have been developed to address specific transport challenges and solutions for these regions.

They include actions and projects that will deliver better transport services; ensure effective regulation; and improve transport infrastructure over the short (0-5 years), medium (5-10 years) and long (10-20 years) term.

Some of the key initiatives in the New England, Central West and Murray-Murrumbidgee Transport Plan are:

- Improve cross-border connectivity by continuing to work with Queensland and Victorian governments to align state regulation and cooperation
- Improve road safety by progressing the actions of the NSW Road Safety Strategy 2012-2021 to support the NSW 2021 target of reducing fatalities to 4.3 per 100,000 population by 2016.
- Invest in the road network by continuing to upgrade the Newell Highway and address pinch points on the road network by improving bus services and walking and cycling networks.
- Invest in walking and cycling infrastructure through the Walking Communities Program, Connecting Centres Program and the Cycling towns Program, and by working together with local government.
- Improve tourism related transport services during the peak holiday periods and community transport services by working with local transport operators.
- Improve regional bus services and transport services in towns by introducing a more robust contractual framework and working with operators to improve routes and timetables online public transport services information.
- Develop annual festival servicing plans for major events to encourage public transport use.

Planning frameworks

The NSW Government has made fundamental changes to infrastructure planning and investment. These changes ensure funding is allocated towards initiatives that deliver the best value, based on compelling evidence. Following this approach, a number of new 20 year plans have been developed to guide the State's future, including the NSW Long Term Transport Master Plan. Each of these plans contributes to achieving the goals of NSW 2021 – to ensure a coordinated and community-driven approach to planning.

NSW Long Term Transport Master Plan

The Master Plan outlines a clear framework to address transport challenges in NSW over the next 20 years. For the first time, it integrates planning for roads, freight and all other modes of transport and sets out initiatives, solutions and actions to meet NSW transport challenges. It specifically identifies the development of the Newell Highway Corridor Strategy as an action to support greater use of high productivity vehicles.

A key aim of the Master Plan is to **provide essential access for regional NSW**. The Newell Highway Corridor Strategy advances this objective by supporting efficient and safe connections along the highway to meet travel demand and provide access to increasingly important interstate freight networks.

The Master Plan also sets as a priority the need to support an **efficient and productive freight industry**. This corridor strategy includes actions to increase productivity along the Newell Highway by opening access along its full length to Higher Productivity Vehicles.

Figure 2.6 shows how the Master Plan integrates with other NSW plans to ensure a coherent, whole-of-government approach is taken to transport planning.

NSW 2021

The *NSW 2021* Plan is NSW Government's 10 year plan to rebuild the State's economy, provide quality services, renovate infrastructure, restore Government accountability and strengthen local environment and communities.

The Newell Highway Corridor Strategy contributes to achieving the following *NSW 2021* priorities and goals:

Goal 3: Drive economic growth in regional NSW.

Corridor strategy: Contributes to the competitiveness of Australia's agricultural and mining sectors through providing access to essential and increasingly important freight networks in NSW, Queensland and Victoria.

Goal 7: Reduce travel times.

Corridor strategy: Improving the geometry of the road, pavement conditions and providing overtaking opportunities.

Goal 10: Improve road safety.

Corridor strategy: Providing safety improvements such as realignments, wider clear zones, wider sealed shoulders and lanes, overtaking lanes and rest areas to improve road safety outcomes for the community.

Goal 19: Invest in critical infrastructure.

Corridor strategy: Continually investing in the corridor's upgrade by providing heavy duty pavement, overtaking lanes, bypasses, wider clear zones and shoulders.

Goal 28: Ensure NSW is ready to deal with major emergencies and natural disasters.

Corridor strategy: Providing emergency access in the event of natural disasters such as flooding and incidents such as vehicle crashes.

Goal 29: Restore confidence and integrity in the planning system.

Corridor strategy: Delivers a clear and transparent planning framework for the Newell Highway corridor, to ensure community needs inform the planning process and infrastructure supports customers, travel demands, and land-use.

Regional Action Plans

NSW Regional Action Plans relevant to the Newell Highway corridor include those for New England North West, Orana, Central West, Riverina and Murray Lower Darling. Each Regional Action Plan identifies immediate actions the NSW Government will prioritise in each of these areas.

The most relevant regional priorities and actions for regions include investing and improving regional and local infrastructure.

The NSW Government will achieve this through providing transport infrastructure, including road upgrades and improved transport corridors to support industry expansion.

The two year Regional Action Plans will complement long term strategies, such as Regional Transport Plans.

Regional Land Use Plans

The NSW Long Term Transport Master Plan will be complemented by the NSW Department of Planning and Infrastructure's regional NSW strategies, which will manage long term growth and land use changes across NSW.

State Infrastructure Strategy

The NSW Government's 20-year State Infrastructure Strategy, as adopted after consideration of Infrastructure NSW's recommendations, sets out infrastructure projects and initiatives the Government will prioritise for the short, medium and longer term.

The NSW Government's strategic priorities for regional and interstate transport that are relevant to the Newell Highway Corridor Strategy are:

 Undertaking major improvements on the road network linking Sydney with regional NSW and interstate. The Newell Highway connects Sydney with Brisbane and Melbourne.

- Upgrading regional road and rail networks.
 Improvements to regional road and rail pinch points will improve the productivity of the existing networks by addressing constraints, and will facilitate the bypass of heavy freight traffic for regional communities where appropriate.
- Recognising the needs of coal community towns.
- Identifying and reserving regional transport corridors. This includes identifying and planning for road and rail corridors to meet future demand in the long term, with corridors in place to cater for infrastructure when it is needed.

NSW Freight and Ports Strategy

The NSW Freight and Ports Strategy aims to create a transport network where goods move efficiently to their markets.

The corridor strategy contributes to the following freight-specific objectives and reflects the importance of the freight transport network in creating a competitive and productive NSW economy.

- Delivery of a freight network that efficiently supports the projected growth of the NSW economy. The corridor strategy identifies inefficiencies on the road network through assessing traffic, safety and asset data performance and supports an increase in access for Higher Productivity Vehicles on the Newell Highway.
- Balancing of freight needs with those of the broader community and the environment.

The corridor strategy supports north-south freight movement between the communities of the Central West, along with interstate movements between Victoria, New South Wales and Queensland. It also contributes to reducing impacts along regional town centres with bypasses.

NSW Road Safety Strategy

The NSW Road Safety Strategy 2012-2021 sets the direction of road safety in NSW for the next 10 years. NSW is committed to reducing fatalities to at least 4.3 per 100,000 population by 2016 together with at least a 30 per cent reduction in fatalities and serious injuries by 2021.

The Road Safety Strategy is underpinned by the Safe System approach to improving road safety. This takes a holistic view of the road transport system and interactions among the key components of that system - the road user, the roads and roadsides, the vehicle and travel speeds. It recognises that all these components have a role to play in helping to keep road users safe.

The Newell Highway Corridor Strategy contributes to implementing the Safe Systems approach through assessing the corridor's current performance in terms of casualty crash rates, crash types and contributing factors. The corridor strategy supports road safety infrastructure improvements, such as progressively implementing the wide centre line treatment, maintaining clear zones and providing the highest level of control at rail crossings to reduce the number and severity of crashes along the corridor.

Regional Transport Plans

Regional Transport Plans are built on the strategic direction, initiatives and state-wide context set by the Master Plan.

The objectives for Regional Transport Planning are:

- 1. Improving accessibility
- 2. Intra and inter regional connectivity
- 3. Enabling growth and opportunity for industry and employment
- 4. Recognising the growing freight task and its impact
- 5. Importance of air travel
- 6. Cross border connectivity

The New England, Central West and Murray-Murrumbidgee Regional Transport Plans identify specific challenges the regions' transport networks face and prioritise actions to address these challenges. The broad actions are under three themes: better transport services, ensuring effective regulation and improving transport infrastructure. The plans will provide a detailed analysis of local transport needs and priorities and respond to issues raised during regional consultation to develop the Master Plan.

Figure 2.6 Relationship with Regional Transport Plans

Figure 2.6 shows how the **Regional Transport Plans** are linked to specific **mode plans**and **Road Corridor Strategies** to improve
regional connections.

Role in supporting national strategic infrastructure priorities

The Newell Highway Corridor Strategy supports NSW's role in increasing Australia's productivity, developing cities and regions and improving social equity and quality of life for people across the country.

The Australian Government's Melbourne to Brisbane Corridor Strategy¹¹ describes the Newell Highway as a major interstate transport route and a key component of the National Land Transport Network (NLTN). The Australian Government provides major infrastructure and maintenance funding for the Newell Highway, due to its significance in terms of facilitating freight movement, transporting produce and providing access between key regional primary industries and their export markets in northern Victoria, central NSW and southern Queensland.

Road improvements such as upgrades to intersections, overtaking lanes, bypasses and provision of rest areas along the corridor aim to increase travel efficiency and freight productivity on the Newell Highway. These corridor improvements will support employment growth in the central west by increasing accessibility to the region. The Newell Highway will contribute to the competitiveness of Australia's agricultural and mining sectors providing access to essential and increasingly important freight networks in NSW, Queensland and Victoria.

2.3 A vision for the future

The vision is for a Newell Highway that:

- Boosts NSW productivity, through allowing modern Higher Productivity Vehicles along its full length and phasing out double road trains.
- Is recognised and funded as a key link between Australia's second and third largest cities.
- Features a sustainable maintenance program, with new, heavy duty pavement between Narrabri and Queensland border.
- Is not susceptible to nuisance flooding and includes a flood-free route across the Macquarie River at Dubbo.
- Is easily accessible by emergency vehicles during major flooding events.
- Enhances safety for all road users, with wide centre line, sufficient overtaking opportunities, high levels of control at railway crossings, good road alignment, and quality rest facilities and commercial service centres.
- Improves amenity for local communities through town bypasses.
- Increases opportunities to cycle, walk or catch public transport with better facilities and infrastructure in regional towns.

¹¹ Commonwealth of Australia 2007, *Melbourne-Brisbane Corridor Strategy: Building our National Transport Future*, Commonwealth of Australia, Barton

2.4 Corridor objectives

The NSW Long Term Transport Master Plan sets key objectives to achieve the directions within the NSW Government's 10 year plan – NSW 2021: A plan to make NSW number one.

The following objectives guide the Master Plan's delivery:

- Improve quality of service by putting the customer at the centre of transport planning and service delivery, improving the quality of travel experiences, offering more travel choices and providing integrated services that directly meet travel requirements.
- Improve liveability by improving connectivity, customer service and ease of movement in our major cities and activity centres.
- Support economic growth and productivity by providing a transport system that responds directly to customer needs, is more efficient, increases freight efficiency and improves the connectivity and accessibility of people to other people, opportunities, goods and services.
- Support regional development by improving accessibility to jobs, services and people, improving freight connections to markets and providing better links between clusters of business activity.

- Improve safety and security by placing a high priority on addressing the causes and risks of transport accidents and security incidents.
- Reduce social disadvantage by reducing transport disadvantage through improved access to goods, services and employment and education opportunities for people across all parts of the State.
- Improve sustainability by optimising the use
 of the transport network, easing congestion,
 growing the proportion of travel by sustainable
 modes such as public transport, walking and
 cycling and becoming more energy efficient.
- Strengthen transport planning processes

 by making improvement to integrated transport planning processes and identifying areas where evidence should be collated for future decision making and continually improving governance and administration of the transport system.

The Newell Highway Corridor Strategy's specific objectives – which will guide the corridor's long term management – are mapped against these Master Plan objectives in Table 2.1.

Figure 2.7 Putting the customer at the centre: NSW Long Term Transport Master Plan objectives

 Table 2.1
 Meeting the Master Plan's objectives: the Newell Highway Corridor

NSW Long Term		Newell Highway Corridor objectives
Transport Master		
Plan objectives		
Improve liveability Reduce social disadvantage		 Improve travel efficiency for local and regional road users through catering for the corridor's mix of heavy vehicles, light vehicles and tourist traffic. Address the active transport needs of cyclists, pedestrians and
		public transport users in major towns and regional centres.
Economic growth / productivity		 Improve freight productivity by extending the areas accessible to high productivity vehicles; and supporting industry to progressively adopt modern vehicles.
		 Maintain and improve asset condition through progressively upgrading the highway to heavy duty pavement to ensure the corridor can accommodate high productivity vehicles while optimising safety, efficiency and reliability.
Regional development / accessibility		 Improve access to and from major regional facilities, as well as between existing and developing residential and commercial areas.
	1ER	 Support key freight movements along the corridor servicing mining, agriculture and emerging industries.
	CUSTOMER	 Minimise disruption to road users resulting from planned and unplanned road closures, recognising in particular the needs of isolated communities and those sections of the route which have no alternative access.
		 Maintain adequate access for emergency services during major flooding events and natural disasters particularly on the flood plains south of Narrandera, north of Narrabri; and support local Emergency Management Plans.
Improve sustainability		 Improve the amenity of towns and regional centres by removing through-traffic from major town centre main streets, particularly in Moree (Stage 2), Parkes, Coonabarabran and West Wyalong.
Safety and security		 Enhance road safety for all road users over the length of the corridor by implementing the safe systems approach to the road's design and management; progressively implement the wide centreline treatment.
		 Address safety and congestion at urban and rural rail level crossings.
Improve transport integration process		 Manage cross-border transport issues with Queensland and Victorian State Governments.

2.5 Key corridor challenges

The Master Plan's objectives respond to key transport challenges identified across the State. Addressing these major challenges is critical to improve essential access for regional NSW.

 Table 2.2
 Objectives and challenges in the NSW Long Term Transport Master Plan

	NSW LONG TERM TRANSPORT MASTER PLAN		
	OBJECTIVES	CHALLENGES	
CUSTOMER	Improve liveability	Delivering better transport links	
	Reduce social disadvantage	Facilitating access to vital services for an ageing regional NSW population and people with disabilities.	
	Economic growth / productivity	Making sure our state roads in the regions support the needs of customers, communities and regional industries through improved road maintenance and safety.	
	Regional development / accessibility	Improving accessibility through a better mix of transport options across regional NSW.	
	Improve sustainability	Finding workable transport solutions that will preserve the vitality, amenity and character of small and medium-sized country towns.	
	Safety and security	Providing convenient, reliable and safe travel by getting the best use out of our transport networks and providing better road and public transport connections within and between regional centres.	
	Improve transport integration process	Identifying and preserving key transport corridors.	

Challenges relevant to the Newell Highway corridor are explained in Chapter 6 of this document - reflecting the NSW Long Term Transport Master Plan.

The Newell Highway corridor challenges are either already evident or are expected to emerge as results of future changes. A summary of the corridor challenges is below:

- The lack of overtaking lanes along the corridor impacts travel times and increases safety risks.
- Poor road geometry along some stretches of the highway results in reduced travel speeds, increases in travel time and increases road safety risks.
- Road renewal to current standards, including appropriate shoulder widths, is difficult to achieve in some sections of the corridor due to the surrounding road terrain.
- The urban amenity of towns along the corridor is diminished by the through-movements of significant number of heavy vehicles.

- Higher Productivity Vehicle access to some sections of the corridor is limited by current intersection configurations, by narrow pavements and existing pavement strength and thickness.
 - Road closures for bushfires and flooding along the corridor.
 - There are high value vegetation conservation communities along the corridor requiring protection.
 - Providing infrastructure and services to help manage driver fatigue and facilitate breaks for heavy vehicle operators.
 - Rail level crossings are a safety risk on the rural network for all road and rail users.
 - The length of the corridor means that there are many local government, local communities and other stakeholders needs to be considered and addressed.

These challenges cover existing and anticipated issues that need to be overcome to maintain and improve the Newell Highway's roles and services for the community.

The following challenges identified in the Master Plan are also relevant to the Newell Highway:

- Delivering better transport links to and within the growing regional cities.
 They will need faster and more efficient transport links and better public transport connections.
- Improving accessibility through a better mix of transport options across regional NSW. The uneven population and jobs growth in regional NSW will require a careful balance and mix of options to improve transport access connecting people to the centres they need to travel to.
- Providing convenient, reliable and safe travel by getting the best use out of our transport networks and providing better road connections, rail passenger services and public transport within and between regional centres
- Making sure our state roads in the regions support the needs of customers, communities and regional industries through improved road maintenance and safety. They must support growing regional industries, as well as contributing to lower business costs and higher productivity.

- Finding workable transport solutions
 that will preserve the vitality, amenity
 and character of small and medium-sized
 country towns. We need to minimise heavy
 vehicle traffic through regional town centres,
 make walking and cycling easier and safer
 and give customers choice when travelling
 within their towns.
- Facilitating access to vital services for an ageing regional NSW population and people with disabilities. The regional population is ageing faster than in Sydney; our transport system must facilitate access to healthcare and other vital services for our older citizens. Accessible transport services and roadside infrastructure are addressed in relation to the Disability Action Plan 2012-17.
- Identifying and preserving key transport corridors. This will enable the cost efficient long term development of effective connections within regional NSW.

2.6 Taking action

These transport challenges for the Newell Highway corridor will be progressively addressed through strategically managing the corridor over the short, medium and long term, in line with the Regional Transport Plans and the Long Term Transport Master Plan. The Newell Highway priorities for responding to these challenges are explained in Chapter 7.

SPECIFIC ACTIONS RELEVANT TO THE NEWELL HIGHWAY CORRIDOR IN THE NSW LONG TERM TRANSPORT MASTER PLAN AND THE REGIONAL ACTION PLANS

Short term

- Additional overtaking lanes on the Newell Highway to improve overtaking opportunities and safety.
- Heavy-duty pavement construction on the Newell Highway between Narrabri and the Queensland border.
- Additional rest areas, as well as upgrade to some rest areas to a better standard on the Newell Highway to accommodate High Productivity Vehicles.
- Newell Highway upgrade including the Trewilga realignment near Peak Hill and realign of the Newell Highway at Grong Grong.

Medium to longer term

 Provide road upgrade works including additional overtaking lanes on the Newell highway as required to account for the impact of road freight which is set to grow over the next 20 years.

Newell Highway north of Parkes

3 TRANSPORT DEMANDS AND ROLES

3.1 The Newell Highway and the National Land Transport Network

The National Land Transport Network (NLTN) is a single integrated network of land transport links of strategic national importance, funded by Federal, State and Territory Governments. The Newell Highway is a part of the NLTN – linking Australia's second and third largest cities, Melbourne and Brisbane. The Newell Highway also contributes to Australia's competitiveness in the agricultural and mining sectors, providing access to essential and increasingly important freight networks in NSW, Queensland and Victoria.

The Newell Highway's transport roles reflect the mix of urban and rural communities and agricultural and pastoral land it passes through – along with the interstate freight connection it provides between Melbourne and Brisbane¹².

The Newell Highway intersects with a series of road and rail links. These are summarised in Table 3.1.

The highway starts in Tocumwal joining the Goulburn Valley Highway at the NSW and Victorian border. The Goulburn Valley Highway connects the Hume Highway at Seymour with the Newell Highway at Tocumwal. The Newell Highway becomes the Gore Highway in Queensland and goes to Brisbane via Toowoomba.

The Newell Highway passes directly through or next to the following towns,localities and villages from south to north (Figure 3.1):

- Tocumwal* and Finley* within Berrigan Shire
- Jerilderie* and Bundure within Jerilderie Shire
- Morundah within Urana Shire
- Corobimilla, Narrandera* and Grong Grong within Narrandera Shire
- Ardlethan, Beckom and Mirrool within Coolamon Shire
- Alleena, West Wyalong* and Back Creek within Bland Shire
- · Marsden within Weddin Shire
- Forbes* within Forbes Shire

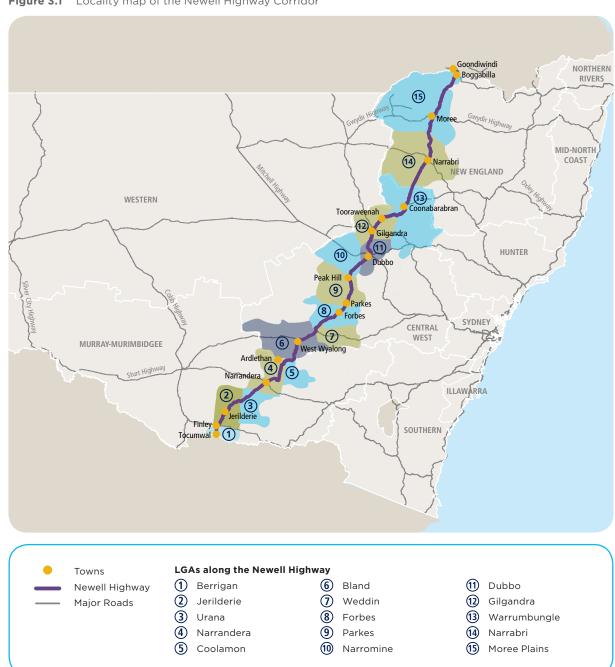

Moree bypass stage one

 Table 3.1
 Corridor connections

Network connection (South-North)	Transport connection
Riverina Highway	Connecting Albury to Deniliquin intersecting the Newell Highway at Finley
Kidman Way	Connecting the Newell Highway near Jerilderie to Bourke
Sturt Highway	Connecting the Hume Highway east of Wagga Wagga to South Australia and intersecting the Newell Highway at Narrandera (National Land Transport Network)
Burley Griffin Way	Connecting the Hume Highway near Yass to Griffith sharing the Newell Highway carriageway between Mirrool and Ardlethan
Mid Western Highway	Connecting Bathurst to Hay sharing the Newell Highway carriageway between Marsden and West Wyalong
West Wyalong HV Bypass	Runs from the intersection of Showground Road and the Newell Highway to the intersection of Copeland Street and the Newell Highway at West Wyalong
Goldfields Way	Connecting Old Junee to Nyngan intersecting the Newell Highway near West Wyalong
Lachlan Valley Way	Connecting the Hume Highway near Yass to Boorowa and Forbes intersecting the Newell Highway at Forbes
Henry Parkes Way	Connecting the Escort Way near Orange to Condobolin intersecting the Newell Highway at Parkes
Mitchell Highway	Connecting Bathurst to Augathella in Central Queensland intersecting the Newell Highway at Dubbo (National Land Transport Network from Bathurst to Dubbo)
Golden Highway	Connecting the New England Highway near Belford to the Newell Highway at Dubbo
Castlereagh Highway	Connecting Marrangaroo near Lithgow to St George in South West Queensland intersecting the Newell Highway at Gilgandra
Mendooran Road	Connecting Mendooran to the Newell Highway near Coonabarabran
Oxley Highway	Connecting Port Macquarie to Nevertire intersecting the Newell Highway at Coonabarabran and Gilgandra
Kamilaroi Highway	Connecting Willow Tree to Bourke intersecting the Newell Highway at Narrabri
Gwydir Highway	Gwydir Highway: Connecting Grafton to Walgett intersecting the Newell Highway at Moree
Carnarvon Highway	Carnarvon Highway: Connecting the Gwydir Highway adjacent to the Newell Highway at Moree to Rolleston in Central Queensland
Bruxner Way	Bruxner Way / Highway: Connecting Ballina to the Newell Highway at Boggabilla

- Parkes*, Alectown and Peak Hill within Parkes Shire
- Tomingley within Narromine Shire
- The City of Dubbo*
- Brocklehurst within the City of Dubbo
- Gilgandra* within Gilgandra Shire
- Coonabarabran* within Warrumbungle Shire
- Narrabri* and Edgeroi within Narrabri Shire
- Bellata, Gurley, Moree* and Boggabilla within Moree Plains Shire
- Goondiwindi within Goondiwindi Regional Council, Queensland.
- * Major towns discussed in following sections and Table 3.2

Figure 3.1 Locality map of the Newell Highway Corridor

3.2 Current population and employment in the corridor

An estimated 124,206 people live along the Newell Highway corridor, with about 63 per cent of this number in major regional towns and centres.

Population and employment figures for each town within the corridor vary depending on the demographic and community characteristics of each local government area. All current population and demographic data in this section is derived from ABS 2011 census data unless specified.

Key demographic data for each of the major towns is summarised in Table 3.2. Towns along the Newell Highway have a higher proportion of older people, compared to the NSW State average.

 Table 3.2
 Population LGA and urban centre demographics

LGA	2011 LGA Population	Urban Centres	2011 Urban Population	% Aged over 65 years	% Aged 0-14 years	Median age	% Labour force employed full time	Main employment by industry in the LGAs
		Tocumwal	2,154	32.2%	14.3%	54	54.6%	Agriculture,
Berrigan	8,066	Finley	1,921	27.1%	16.8%	49	55%	health care, retail, manufacturing, accommodation
Jerilderie	1,496	Jerilderie	755	27.6%	17.2%	49	55.6%	Agriculture, health care
Narrandera	5,902	Narrandera	3,871	21.7%	21%	42	56.7%	Agriculture, health care, manufacturing
Bland	5,865	West Wyalong	2,643	24%	20.2%	42	61.2%	Agriculture, mining, education, retail
Forbes	9,170	Forbes	6,806	20.1%	21.3%	40	59%	Agriculture, health care, education, retail
Parkes	14,592	Parkes	10,026	18.3%	22.5%	38	60.5%	Agriculture, retail, healthcare, mining
Dubbo	38,805	Dubbo	32,327	14.5%	22.6%	35	62.4%	Retail, health care, education, public administration, construction and manufacturing
Gilgandra	4,368	Gilgandra	2,664	23.3%	20%	43	53.9%	Agriculture, health care
Warrumbungle	9,588	Coonabarabran	2,576	25.1%	18.7%	45	52.4%	Agriculture, education, retail
Narrabri	12,925	Narrabri	5,890	16.9%	21.9%	37	61.1%	Agriculture, retail, health care
Moree Plains	13,429	Moree	7,720	14.4%	21.9%	35	63.4%	Agriculture, retail, education, health care, and construction
Total	124,206		79,373					
NSW State avera	age			14.7%	19.2%	38	60.2%	

Tocumwal

Tocumwal is part of Berrigan Shire and is on the Victorian border. It has an ageing population, with 32 per cent of residents aged 65 years and over. There are fewer children (0-14 years) in Tocumwal compared to other urban centres and the NSW average. The median age of people in Tocumwal is 54 – the oldest in urban centres along the Newell Highway and much higher than the State average of 38.

About 54 per cent of the total labour force in Tocumwal is employed full time. Of these employees, 5.7 per cent work in sheep, beef cattle and grain farming. Other major employment industries include supermarket and grocery stores at 5 per cent, dairy product manufacturing at 4.7 per cent, school education at 4.6 per cent and accommodation at 4.4 per cent.

Finley

Finley is the largest town in Berrigan
Shire, located about 21 kilometres north of
Tocumwal. The Newell Highway and Riverina
Highway junction is located at Finley –
providing an east-west connection between
Deniliquin and Albury.

New residential development in Finley is taking place predominantly on residual residential land and vacant lots. In contrast to Tocumwal, Finley has a higher proportion of younger families and a lower proportion of people aged over 65. However, the median age of people in Finley is 49 – also one of the highest in urban centres along the Newell Highway – and is much higher than the State average of 38.

Around 55 per cent of the labour force in Finley is employed full time. Of these employees, 8.1 per cent work in school education, with other major employment industries including residential care services at 6.6 per cent, road freight transport at 4.9 per cent, sheep, beef, cattle and grain farming at 4.8 per cent and supermarket and grocery stores at 4 per cent.

Jerilderie

Jerilderie, part of the Jerilderie Shire, has eastwest connections with the towns of Oaklands and Conargo. Jerilderie Shire's population declined by more than 10 per cent in the period 2001 to 2009 – the largest proportional decline in the Central Murray Region¹³.

Jerilderie has an ageing population, with a high proportion of residents over 65 and a median age of 49 years, one of the highest in urban centres along the Newell Highway and much higher than the State average of 38.

About 56 per cent of Jerilderie's labour force is employed full time. Of these employees, 12.3 per cent work in sheep, beef cattle and grain farming. Other major employment industries include local government administration at 10.6 per cent, fuel retailing at 4.1 per cent, road freight transport at 4.1 per cent and school education at 3.8 per cent.

Narrandera

Narrandera, part of the Narrandera Shire, is located at the junction of the Newell Highway and the Sturt Highway, which connects Narrandera with Hay to the west and with Wagga Wagga to the east.

A significant proportion of Narrandera's population is aged 65 years and over, however young families with children (0-14 years) are also well represented. The median age of people in Narrandera is 42, which is higher than the State average of 38.

About 57 per cent of Narrandera's labour force is employed full time. Of these employees, 6.5 per cent work in school education, with other major employment industries including residential care services at 4.5 per cent, cafes, restaurants and takeaway food services at 4.4 per cent, supermarket and grocery stores at 4.2 per cent and meat and meat product manufacturing at 4.2 per cent.

West Wyalong

West Wyalong is the main urban centre in Bland Shire and is located at the junction of the Newell Highway and the Mid-Western Highway. From West Wyalong, the Mid-Western Highway provides an east-west link to Hay where it connects with the Sturt Highway and Cobb Highway and Cowra, Blayney and Bathurst, where it connects with the Mitchell Highway and Great Western Highway.

Almost a quarter of the residents of West Wyalong are aged over 65 years. The median age is 42, compared to the NSW average of 38. By 2031, the median age of people living in Bland Shire is expected to rise to 50 years¹⁴.

About 61 per cent of the West Wyalong labour force is employed full time. Of these employees, 12.2 per cent work in metal ore mining, with other major employment industries including local government administration at 7.5 per cent, school education at 6.8 per cent, sheep, beef, cattle and grain farming at 4.8 per cent and supermarket and grocery stores at 3.7 per cent.

Forbes

Forbes is the main urban centre in Forbes Shire, located 104 kilometres north of West Wyalong. Almost a quarter of the Forbes population are children (0-14 years), with older people aged 65 years and over representing around 20 per cent of the population. The median age of people in Forbes is 40, just higher than the State average of 38.

About 59 per cent of the Forbes labour force is employed full time. Of these employees, 8.5 per cent work in school education, with other major employment industries including supermarket and grocery stores at 4.2 per cent, sheep, beef, cattle and grain farming at 4.2 per cent, cafes, restaurants and takeaway food services at 4 per cent and residential care services at 3.3 per cent.

Parkes

Parkes is the main centre in Parkes Shire and is located 33 kilometres north of Forbes at the junction of the Newell Highway and the Henry Parkes Way. Almost a quarter of Parkes residents are children (0-14 years), while people aged over 65 years represent 18 per cent of the population – a significantly lower proportion than other towns in the Newell Highway corridor. The median age of people in Parkes is 38 – the same as the State average.

More than half of the Parkes workforce is employed full time. Of these employees, 6.6 per cent work in metal ore mining, with other major employment industries including school education at 5.8 per cent, cafes, restaurants and takeaway food services at 4 per cent, supermarket and grocery stores at 3.7 per cent and residential care services at 3.4 per cent.

Parkes has a National Logistics Hub, specifically designed for the 24 hour, 7 days per week operation of a multi-modal transport facility. Parkes is also the home of the CSIRO radio telescope.

Dubbo

Dubbo is the only city along the Newell Highway corridor and is located at the junction of the Newell Highway, Mitchell Highway and Golden Highway. From Dubbo, the Golden Highway provides an east-west link to the Hunter Valley.

Children (0-14 years) make up almost a quarter of Dubbo's population; while people aged over 65 represent 14.5 per cent – lower than in other towns along the Newell Highway. The median age of people in Dubbo is 35, which is lower than the State average of 38.

About 62 per cent of the total labour force in Dubbo is employed full time. Of these employees, 6.2 per cent work in school education, with other major employment industries including hospitals at 4.4 per cent, cafes, restaurants and takeaway food services at 4.4 per cent, supermarket and grocery stores at 2.8 per cent and residential care services at 2.8 per cent.

Dubbo is home to major tourist attractions, such as the Taronga Western Plains Zoo.

Gilgandra

Gilgandra, the main centre in Gilgandra Shire, is located at the junction of the Newell, Oxley and Castlereagh Highways. Around 20 per cent of Gilgandra residents are children (0-14 years); while people aged over 65 years represent almost a quarter of the population. The median age of people in Gilgandra is 43, which is higher than the State average of 38.

About 54 per cent of the labour force in Gilgandra is employed full time. Of these employees, 8.2 per cent work in local government administration, while other major employment industries include school education at 6.9 per cent, sheep, beef, cattle and grain farming at 4.9 per cent, supermarket and grocery stores at 4.4 per cent and residential care services at 3.7 per cent.

Coonabarabran

Coonabarabran is part of the Warrumbungle Shire and is located at the junction of the Newell and Oxley Highways. The Oxley Highway provides an east-west connection from the Newell Highway to the Pacific Highway and Kamilaroi Highway.

Less than a quarter of the Coonabarabran population are children (O-14 years) and just over a quarter of the population is aged 65 years and over. The median age of people in Coonabarabran is 45, which is higher than the State average of 38.

About half of the labour force in Coonabarabran is employed full time. Of these employees, 9 per cent work in school education, with other major employment industries including supermarket and grocery stores at 6 per cent, local government administration at 6 per cent, residential care services at 5 per cent and cafes, restaurants and takeaway food services at 4.7 per cent.

Narrabri

Narrabri, the main centre within Narrabri Shire, is located at the junction of the Newell and Kamilaroi Highways. The Kamilaroi Highway provides a connection between Narrabri and Wee Waa, the Castlereagh Highway and Gwydir Highway at Walgett and the Oxley Highway at Gunnedah.

Around 22 per cent of the Narrabri population are children (0-14 years) and around 17 per cent of the population are aged 65 years and over. The median age of people in Narrabri is 37, which is just lower than the State average of 38.

About 61 per cent of the labour force in Narrabri is employed full time. Of these employees, 4.9 per cent work in school education, with other major employment industries including cafes, restaurants and takeaway food services at 4.4 per cent, supermarket and grocery stores at 4 per cent, local government administration at 3.1 per cent and accommodation at 3 per cent.

Moree

Moree, the main centre within Moree Plains Shire, is located at the northern end of the corridor, about 125 kilometres south of the Queensland border. Moree is located at the junction of the Newell and Gwydir Highways. The Gwydir Highway provides an east-west connection from the Newell Highway at Moree to the Pacific Highway at Grafton, the New England Highway at Glen Innes and the Castlereagh Highway and Kamilaroi Highway at Walgett.

The age of people within Moree is similar to that of Narrabri, where about a quarter of the population are children (0-14 years) and about 15 per cent are people aged 65 years and over. The median age of people in Moree is 35, which is much lower than the State average of 38.

About 63 per cent of the labour force in Moree is employed full time. Of these employees in Moree, 7.1 per cent work in school education, with other major employment industries including local government administration at 4.2 per cent, cafes, restaurants and takeaway food services at 3.8 per cent, sheep, beef, cattle and grain farming at 3.6 per cent and supermarket and grocery stores at 3.3 per cent.

The artesian spas, national parks and the Gwydir Wetlands attract tourists to Moree, especially during the summer months¹⁵.

¹⁵ Moree Plains Shire Council 2010, State of the Environment Report

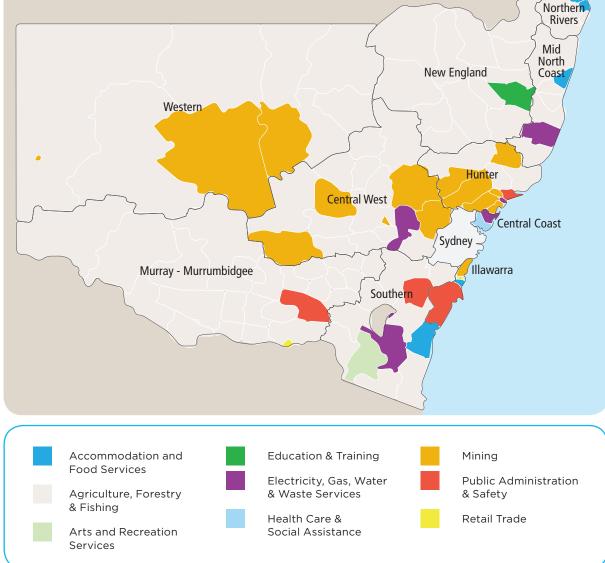

3.3 Industry and economic development

Figure 3.2 Primary employment sections by LGAs, regional NSW¹⁶

Transport moves goods produced in the regions to domestic and international markets, in turn contributing to the NSW economy. The regional road and rail freight network supports agricultural, manufacturing and mining industries, along with the local businesses associated with these sectors. Regional ports and airports also support freight movement to export markets.

The NSW road network is supporting a large proportion of total truck traffic and national freight productivity. Our road network joins Melbourne to Brisbane, and Canberra, Adelaide and Perth. Around 50 per cent of all intra and interstate truck freight across Australia uses the NSW road network for at least some part of its journey. Looking solely at interstate truck freight across Australia, some 75 per cent uses the NSW road network for part of its journey.

The Newell Highway facilities freight, the transportation of produce and provides access between key regional primary industries and export markets. It services major primary industry regions in northern Victoria, central NSW and southern Queensland.

Industry in the region

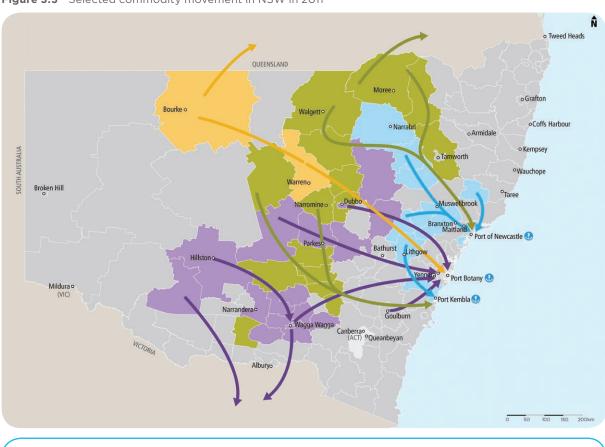
The regions that surround the Newell Highway require a diverse freight task, with a range of industry supply chains – from agriculture to mining.

In regional NSW, a large area is dominated by agriculture. Agricultural land in the Newell Highway Corridor varies across different sectors, but generally includes:

- Dairy and beef production
- Wool production
- Wheat, cereal and cotton production.
- Irrigation crops

Coal

Large demand for freight transport from these agricultural industries is impacted by seasonal fluctuations and crop sizes.


Mining activity is centred in the Hunter Valley, Central West and Western Regions, with tourism and port-related activity along the coast. The primary employment sectors in regional NSW are shown in Figure 3.2.

Current freight task and movements

Freight enables goods to be exchanged within the economy and distributes the benefits of this economic activity across the nation.

The total freight task in the Melbourne to Brisbane corridor was estimated to be 4.5 million tonnes per year in 2007. This estimate is limited to end-to-end freight and does not include freight movements within the corridor. In 2007, 61 per cent of this 4.5 million tonnes of annual freight was moved between Melbourne to Brisbane by road.

The 2011 movement of different goods across NSW is shown in Figure 3.3.

Grain

Wool

Figure 3.3 Selected commodity movement in NSW in 2011¹⁷

Cotton

The majority of freight travelling on the Melbourne to Brisbane corridor is not end-to-end, but rather from one part of the corridor to another – at least 17.3 million tonnes compared to 4.5 million tonnes end-to-end (Figure 3.4).

The major exports carried on the corridor are:

- Dairy and fruit from the Goulburn Valley and Riverina districts.
- Horticultural products, mainly vegetables and forage, from the irrigation area of Queensland's Lockyer Valley and the Darling Downs, destined for regional and southern markets.
- Cereals, including wheat, from along the length of the corridor. Grain exports are predominately rail-based with bulk grain exports from Port Kembla and Port of Newcastle. There is also a small amount

- of containerised grain exports from Port Botany.
- Rice crop grown in the Murray Darling Basin, which travels by road and rail to domestic and export markets.
- Cotton-growing regions located along the corridor and transported by both road and rail in forty-foot containers for export from Botany and Brisbane (Figure 3.5).
- Beef and sheep comprise around half of the meat products exported. Live animals are predominantly moved in trucks along the corridor, while processed meat is moved in refrigerated containers on both road and rail.
- Coal, particularly from the Gunnedah Basin and Narrabri, it taken to export facilities at the Port of Newcastle (Figure 3.6).

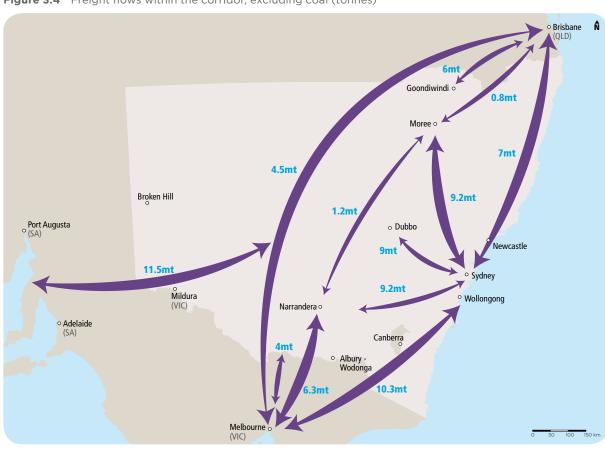
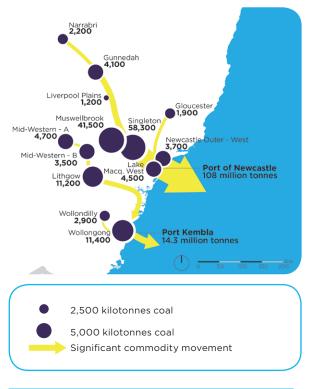


Figure 3.4 Freight flows within the corridor, excluding coal (tonnes)¹⁸

10.3mt Freight volumes (million tonnes)


Freight Flows

¹⁸ Commonwealth of Australia 2007, *Melbourne-Brisbane Corridor Strategy: Building our National Transport Future*, Commonwealth of Australia, Barton

Figure 3.5 Cotton export commodity flows through NSW in 2010-2011 in kilotonnes¹⁹

Figure 3.6 Coal exports commodity flows through NSW in 2010-2011 in kilotonnes²⁰

19 Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney

20 ibid.

21 Cardno 2011, *Traffic Counts on the Newell Highway*

3.4 Current traffic volumes and heavy vehicles

Average daily traffic (ADT) volumes along the Newell Highway vary in the rural sections from around 1,200 vehicles per day to over 4000 vehicles per day²¹. In the urban centres such as Dubbo, average daily traffic volumes are in the order of 20,000 vehicles a day. Average daily traffic volumes between towns on the Newell Highway vary considerably along its length. In the south of the State, volumes are lower, ranging from around 1200 vehicles per day to around 2900 vehicles per day at the Victorian border. Between Forbes and Gilgandra the ADT is between around 2500 and 3700 vehicles. North of Gilgandra, the volumes drop back to about 1800 vehicles per day, increasing closer to the Queensland border where the short section between Boggabilla and Goondiwindi reaches over 4000 vehicles per day. Traffic volumes along the Newell Highway increase substantially within urban areas such as Parkes, Dubbo, Narrabri and Moree.

The Newell Highway is the third most significant heavy vehicle route in NSW in terms of mass and number of vehicles, including high productivity freight vehicles. Traffic volumes vary from 650 heavy vehicles per day at the intersection with the Sturt Highway, to around 1500 heavy vehicles per day at the Queensland border. Traffic also peaks through major centres such as Dubbo.

B-double north of Forbes

Twenty-six metre B-doubles are currently permitted along the entire length of the Newell Highway, except through the West Wyalong urban commercial centre, where vehicles use a combination of the Newell Highway and the restricted access vehicle bypass. This bypass is also the approved route for all B-doubles and Higher Mass Limit (HML) vehicles travelling through the town.

Double road trains, B-triples and AB-triples are currently allowed along the following sections of the Newell Highway:

Double road trains (all the double road train routes can also be accessed by modular B-triples but they need to operate under the Intelligent Access Program):

- Tocumwal to Narrandera
- Lachlan Valley Way at Forbes to Back Yamma Road at Daroobalgie
- In the village of Tomingley
- Dubbo to Gilgandra
- · Coonabarabran to Goondiwindi
- Small sction at West Wyalong.

B-triples and AB-triples:

- Tocumwal to Morundah
- Dubbo to Gilgandra
- Narrabri to Goondiwindi.

Large combination vehicles – longer than 26 metres and higher than 4.3 metres – have been restricted on the network east of the Newell Highway. These restrictions relate to a combination of factors including nearby communities, pavement structure, geometry and topography, including:

- Steep grades
- Narrow pavement and substandard curvature especially on eastwest connections across the Great Dividing Range
- Pavement types, narrow bridges and bridges where load limits apply.

Other factors that restrict these higher productivity vehicles include lack of overtaking lanes and rest areas.

3.5 Public transport in the corridor

Public bus services

Public transport in the corridor is generally restricted to urban areas. Very few of the towns located along the Newell Highway have local bus services due to small populations. The bus services that do operate along the Newell Highway are identified below.

Dubbo

Dubbo's local bus network, Dubbo Buslines, operates two routes that use the Newell Highway as it passes through the town. Route 572 operates 14 daily services Monday to Friday – seven in the morning and seven in the afternoon. There are also five services on Saturdays. Route 573 operates three daily services Monday to Friday.

Northbound traffic on the Newell Highway at Dubbo

Narrabri

Narrabri's local bus network, operated by Lowder & Sons, operates two routes that use the Newell Highway as it passes through the town. Route 1 Narrabri West – Town via Village and Hospital operates two services on weekdays and one on Saturday on the Newell Highway between Ugoa Street and Cameron Street. Route 2 Narrabri – Gunnedah operates two services a day on part of the Newell Highway between Gibbons Street and Ugoa Street.

Moree

Moree's local bus network, operated by Taylor's Coaches, operates one route that uses the Newell Highway as it passes through the town. Route 463 operates three services a day on the Newell Highway between the Gwydir Highway and Amaroo Drive.

Parkes

Parkes has a local bus network called Western Roadliners. Route 552 travels down the Newell Highway.

School bus routes

School bus routes are provided in each of the major towns and centres in the Newell Highway corridor. These bus routes provide a service for students who live within the towns and in the agricultural areas between the towns.

Moree local school bus

School zone on Newell Highway at Peak Hill

Coaches

The Newell Highway is used by a number of daily, long-distance coach services that provide connections to and between towns in central NSW – from major capital cities and larger regional centres. Services are provided by operators including NSW TrainLink.

Rail services

There is currently no direct, continuous inland rail link between Melbourne and Brisbane. End-to-end rail freight moves via Sydney along the Sydney-Melbourne and Sydney-Brisbane rail corridors. However, the Newell Highway is served by several sections of rail line that contribute separately to the freight task within the corridor (Figure 3.7).

Standard gauge rail lines link the central NSW regions surrounding Dubbo and Parkes, via Cootamundra, to either Melbourne via Albury or to Sydney. Further north, the cotton-growing regions surrounding Moree and Narrabri are linked by standard gauge rail to Maitland where it joins the Sydney-Brisbane rail line. Within Queensland, an unconnected narrow gauge rail links Goondiwindi to Brisbane via Warwick, Toowoomba and Ipswich. The broad gauge rail line from Tocumwal to Melbourne serves the Goulburn Valley, the Murray Valley and the southern Riverina. There is also a rail line between Parkes to Broken Hill/Adelaide/Perth that allows containers on the train to be double stacked the entire route.

The Regional Transport Plans identify actions to improve public transport services in the town centres along the corridor.

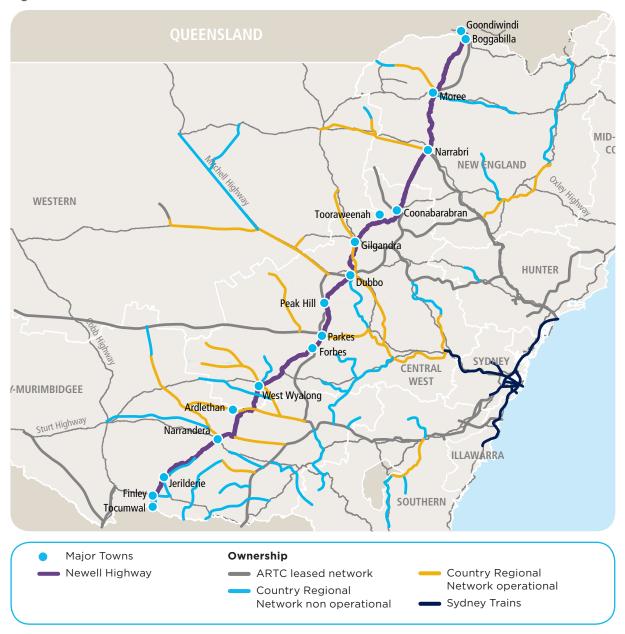


Figure 3.7 NSW rail network

Air services

Figure 3.8 shows regional airports along the corridor that provide commercial scheduled flights are located in Narrandera, Parkes, Dubbo, Narrabri and Moree.

Intermodal terminals

Intermodal freight hubs are located in Tocumwal, Parkes, Dubbo, Narrabri, Forbes and Moree (Figure 3.8) showing the importance of good road and rail connection, to facilitate the efficient transfer of containers across modes for aggregation and distribution.

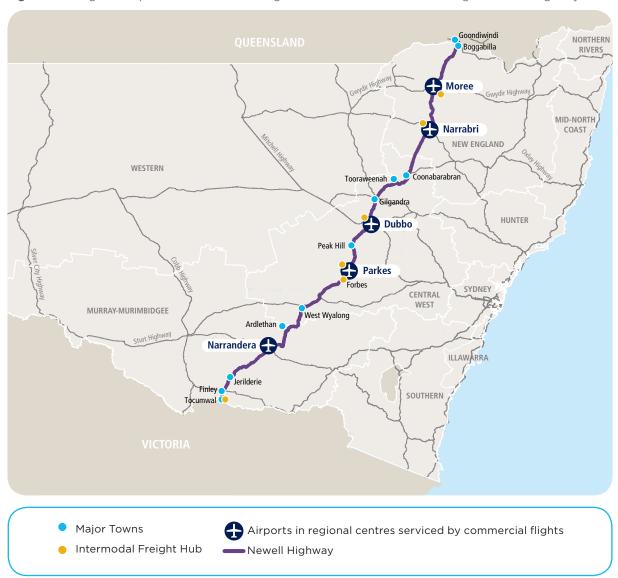


Figure 3.8 Regional airports with commercial flights and intermodal terminals along the Newell Highway

Note: Moree and Narrabri have received services in the past from Brindabella Airlines and are expected to receive further services from another carrier in the future.

3.6 Walking and cycling in the corridor

As with bus services, dedicated infrastructure for walking and cycling is also generally restricted to urban centres.

Between towns, a sealed road shoulder provides a minimum standard facility for bicycle travel. AUSTROADS (2010) recommends a two to three metre shoulder width where a speed limit is up to 100 km/h²².

About 70 per cent of the Newell Highway has sealed shoulders less than the recommended minimum sealed shoulder width.

The **Regional Transport Plans** identify actions to improve opportunities for cycling and walking in urban sections of the corridor.

Some shared pedestrian/cyclist facilities exist on the sections of the Newell Highway that pass through town centres.

Shared walkway/cycleway path adjacent to Newell Highway in Dubbo

Jerilderie

Jerilderie Shire's has a bike plan that was adopted in 2003, which aims to minimise cycling on the Newell Highway as it passes through Jerilderie through creating shared off-road pedestrian/bicycle paths and safe crossing points.

West Wyalong

The 2004 West Wyalong Bike Plan recommended a regional route along the Newell Highway between West Wyalong and Wyalong.

Forbes

Forbes Shire's current bike plan was adopted in 2009. A shared path is proposed for a section of the Newell Highway in Forbes north of the rail line from Jones Street to Landrace Road. This is still to be implemented.

Parkes

Parkes Shire's current bike plan, adopted in 2008, proposes on-road cycle lanes for a short section of the Newell Highway south of the rail line from Medlyn Street to Baker Street and Station Street to Hartigan Street across the rail crossing. This is still to be implemented.

Dubbo

Dubbo currently provides some off-road cycleways on a section of the Newell Highway that passes through the town. A bike trail also runs adjacent to part of the Newell Highway along the Macquarie River.

Gilgandra

Gilgandra does not have a bike plan, but is currently building a shared path along the Newell Highway from the Cooee Heritage Centre into the town's CBD, travelling under the Newell Highway at the Jack Renshaw Bridge.

Coonabarabran

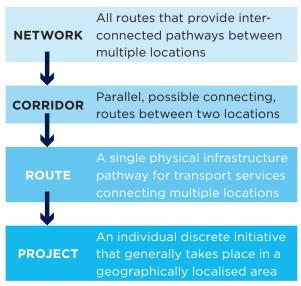
Coonabarabran has an existing network of shared paths along the Newell Highway north of the CBD that crosses the highway in a number of locations.

Narrabri

Narrabri is currently completing its first bike plan. It has previously proposed a number of off-road paths along sections of the Newell Highway, including at the bridge over Namoi River and Narrabri Creek to connect south Narrabri to the CBD in the north.

Moree

The Roads and Maritime Services strategic bicycle network for the Western Region does not identify any on or off-road cycle facilities for the town of Moree. Moree has a bicycle network which includes paths along the river and the local road network. Moree has a Bike Plan adopted in 2010 which details future expansion of their network. Roads and Maritime Services built a shared path that follows the Newell Highway and Mehi River in Moree, as part of the first stage of the Moree bypass project. As part of stage two of the Moree bypass project, Roads and Maritime Services will provide safe crossing points and access for cyclists and pedestrians travelling to and from the town centre.


4 CURRENT CORRIDOR PERFORMANCE

Transport for NSW has adopted the *National Guidelines for Transport System Management in Australia*²³ to guide its high quality advice to the NSW Government on the future of the road network.

Decision making in transport is complex. A robust planning framework is needed to break down this complex process into progressive phases.

The framework starts at the high level of network and corridor planning, progressing through to specific route and project levels, as shown in Figure 4.1.

Figure 4.1 Road transport system planning levels²⁴

Road network management hierarchy

The Road Network Management Hierarchy organises the network into logical groupings to ensure roads can be managed according to their relative importance.

For strategic planning purposes, Transport for NSW classifies all existing roads across the network into distinct road classes. This means roads with the same classification can be compared in terms of average safety, traffic and asset performance.

23 Australian Transport Council 2006, *National Guidelines for Transport System Management in Australia*, ATC, Canberra

24 ibid., p. 9 & 15

Transport for NSW measures the actual performance of the State roads network against network planning targets and average class performance, spanning road safety, traffic efficiency and asset condition. To undertake this comparative analysis, the State roads network is categorised into six distinct classes of roads. The classifications range from Class 6 urban (6U) and Class 6 rural (6R) standard roads to lower order Class 1 urban (1U) and Class 1 rural roads (1R).

Newell Highway near Tomingley

The Network Performance Measures and Network Planning Targets²⁵ indicate that the **Newell Highway has been classified as a Class 4 rural road (4R) along its entire length**.

The Network and Corridor Planning Practice Notes²⁶ state:

"Class 4R roads are important rural State Roads and contribute to the AusLink National Network. They are typified by moderately high traffic volumes including freight, commercial vehicle and public transport travel. They provide a good standard of travel and serve some interstate, inter-regional and intra-regional functions with direct access to abutting

- 25 Roads and Maritime Services 2010, Network Performance Measures and Network Planning Targets, Roads and Maritime Services, Sydney, p. 19
- 26 Roads and Maritime Services 2008, Network and Corridor Planning Practice Notes, Roads and Maritime Services, Sydney, p. 20

land controlled. Typically they have undivided carriageways with 2 lanes with overtaking lanes."

Class 4R roads typically experience:

- Average annual daily traffic volumes exceeding 10,000 vehicles per day
- Average heavy vehicle volumes exceeding 1000 vehicles per day
- Speed limits ranging from 80 km/h to 110 km/h.

Corridor planning sections

In addition to road classification, road segmentation is needed so planning targets can be tailored to particular areas on a road to respond to changes in nearby land use, terrain and property access arrangements. Planning sections are manageable lengths of road that are uniform in nature and condition.

For the purpose of this analysis, the Newell Highway corridor has been divided into three zones – with a total of 19 corridor planning sections. These are shown Table 4.1 (refer to Figure 4.2).

Table 4.1 Highway sections

Highway			nage (km)*	Length
planning section	Description	From	То	(km)
	Zone 1: Tocumwal to Marsden			
Section 1	Tocumwal to Finley	0	21	21
Section 2	Finley to Jerilderie	21	56	35
Section 3	Jerilderie to Morundah	56	134	78
Section 4	Morundah to Narrandera	134	165	31
Section 5	Narrandera to Grong Grong	165	187	22
Section 6	Grong Grong to Ardlethan	187	227	40
Section 7	Ardlethan to Mirrool	227	251	24
Section 8	Mirrool to West Wyalong	251	301	50
Section 9a	West Wyalong to Marsden	301	338	37
Sub-Total Zo	ne 1	0	338	338
Zone 2: Marso	den to Coonabarabran			
Section 9b	Marsden to Forbes	338	405	67
Section 10	Forbes to Parkes	405	438	33
Section 11	Parkes to Tomingley	438	505	67
Section 12	Tomingley to Dubbo	505	556	51
Section 13	Dubbo to Gilgandra	556	622	66
Section 14	Gilgandra to Gowang	622	678	56
Section 15	Gowang to Coonabarabran	678	716	38
Sub-Total Zo	ne 2	338	716	378
Zone 3: Coon	abarabran to Goondiwindi			
Section 16	Coonabarabran to Narrabri	716	835	119
Section 17	Narrabri to Moree	835	935	100
Section 18	Moree to Boggabilla	935	1050	115
Section 19	Boggabilla to Goondiwindi	1050	1058	7
Sub-Total Zo	ne 3	716	1058	342
Total corrido	r	0	1058	1058

^{*} Based on Roadloc chainage

Figure 4.2 Newell Highway planning sections

Performance measures and targets

The NSW Long Term Transport Master Plan sets out the NSW Government's 20 year vision for delivering a world-class public transport, roads and freight network across the State.

Meeting community expectations of safe, efficient and well-maintained roads requires a clear set of performance measures that align with these expectations and needs. To achieve this, Transport for NSW and Roads and Maritime Services measure and monitor roads performance against network performance measures and targets.

A measure is a unit or dimension that enables current and future performance to be assessed. Network measures can be used to identify priorities across the network and guide funding over the long term. Network measures are a way of comparing performance both spatially and over time, and can form the basis for developing strategies to move towards improved performance levels.

Network planning targets set out in this document are either:

- Network wide targets cumulative condition targets that apply to the entire network, unless otherwise specified.
- Rural planning targets that apply to regional NSW, not including Wollongong, Newcastle and Sydney.

To assess the Newell Highway's current corridor performance, the following sources have been used:

- Network Performance Measures and Network Planning Targets²⁷
- Network and Corridor Planning Practice Notes²⁸
- 27 Roads and Maritime Services 2010, Network Performance Measures and Network Planning Targets, Roads and Maritime Services, Sydney
- 28 Roads and Maritime Services 2008, Network and Corridor Planning Practice Notes, Roads and Maritime Services, Sydney

The rural network measures relating to the network objectives are outlined in Table 4.2.

 Table 4.2
 NSW Long Term Transport Master Plan - Performance Measures

Master Plan Objectives	Improve liveability and reduce social disadvantage	Economic gro	owth and	Regional development and accessibility	Improved sustainability	Safety and security	Improved transport planning processes
Rural network measures	Bypass of urban commercial centres	Level of service measured using TRARR (% time following)	Pavement roughness (NAASRA – counts/km)	Higher Mass Limits access along the corridor	Reduce CO ₂ emissions	Casualty crashes per kilometre per year (averaged over 5-years)	Regional Transport Plans underway
Network Class 4 Average	YES for Class 4 roads and above	LOS C^ (Stable traffic conditions)	85% should have less than or equal to 90 counts/km	HML compliant route	-	0.21	YES
Newell Highway Corridor	Bypasses have been identified	LOS A to C (Free flow to stable flow)	89.8% of the corridor is less than or equal to 90 counts/km	HML compliant along the full length	PBS 3(a) vehicles produce 30% fewer CO ₂ emissions per tonne freight than B-double vehicles*	0.04 to 0.29	Regional Transport Plans have been prepared

[^] See Table 4.11 for Level of Service Definitions

Typical alignment between Dubbo and Gilgandra

^{*} Based on NTC average fuel efficiency figures per 100km travelled

Road characteristics

Network planning targets have been developed to complement the *AUSTROADS* Guides, not to replace them. They ensure consistency between identified user requirements on a road and the design solutions available through *AUSTROADS* Guides.

There are two types of road characteristics. The first type is the road's geometric or physical layout, which does not usually change significantly over time. Examples of these characteristics include lane width, alignment and shoulder width.

The second type is related to a characteristic of the road that may vary significantly over time due to wear, loading or physical degradation. The term 'condition' is often associated with these types of characteristics. The changing nature of road conditions means management needs to be carried out through setting cumulative network targets. These targets relate to the range of conditions across a network or sub-network of roads. The minimum acceptable condition is based on risk analysis (below a certain point the increasing cracking or roughness can make driving the road unsafe) and the upper end of performance is determined based on the level of available investment.

This document groups the Newell Highway's current corridor performance into the following sections:

- Section 4.1 Road safety
- **Section 4.2 and 4.3** Road traffic heavy vehicles and general access vehicles
- Section 4.4 Road design and geometry
- **Section 4.5** Road pavement condition
- Section 4.6 Environment.

Road characteristics data sources

Information on the road characteristics and performance for each planning section is stored in various Roads and Maritime Services databases.

For this study, data has been drawn from the following sources:

- Road Asset Management System (RAMS) database.
- NSW Centre for Road Safety's crash database (CRASHLink).
- Road Slope Management System (RSMS) database.
- Global-Inertial Positioning Systems Image Capture for Asset Management (GIPSICAM).

Straight alignment north of Moree

4.1 Road safety

This section of the strategy updates and expands on the Newell Highway Road Safety Review²⁹ through incorporating more recent crash data collected over the five years from 2007 to end of 2011.

Speed zones

Speed zones are determined according to the Roads and Maritime Services Speed Zoning Guidelines and are posted to provide motorists safe passage along roads, in relation to the geometry and environment³⁰.

The Speed Zoning Guidelines are used to determine appropriate speed limits on all roads, applied in conjunction with enforcement measures, engineering treatments and education to reduce speeding. Roads and Maritime Services regularly reviews speed limits in NSW, taking into account factors such as road geometry, surrounding conditions, road usage, nearby development, vehicle types and volumes, crash record and access points along the route.

The speed limit along the Newell Highway is generally 110 km/h in rural areas; however there are limits of 50 km/h to 80km/h through towns and urban areas and 40 km/h in school zones. The location of speed zones along the Newell Highway are shown in Figure 4.3. 100 km/h speed zones are generally located as follows:

- Nineteen kilometre section just north of Tocumwal
- Three and a half kilometre section about three kilometres south of Forbes
- Eleven kilometre section around 40 kilometres north of Parkes (through Trewilga). This is due to poor horizontal and vertical geometry and inconsistencies with the adjacent rural road conditions.

- Fifty-two kilometre section from the locality of Tooraweenah to just south of Coonabarabran
- Four and a half kilometre section around six kilometres north of Coonabarabran
- Five and a half kilometre section between Boggabilla and Goondiwindi.

Bridge over Mehi River on Moree Bypass

Typical speed zoning sign on the Newell Highway

²⁹ NSW Centre for Road Safety 2009, Newell Highway: Safety Review, Roads and Maritime Services, Sydney

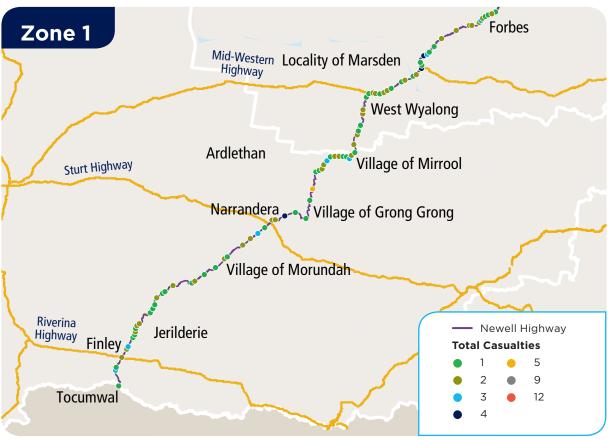
³⁰ NSW Centre for Road Safety 2011, NSW Speed Zoning Guidelines, Roads and Maritime Services, Sydney

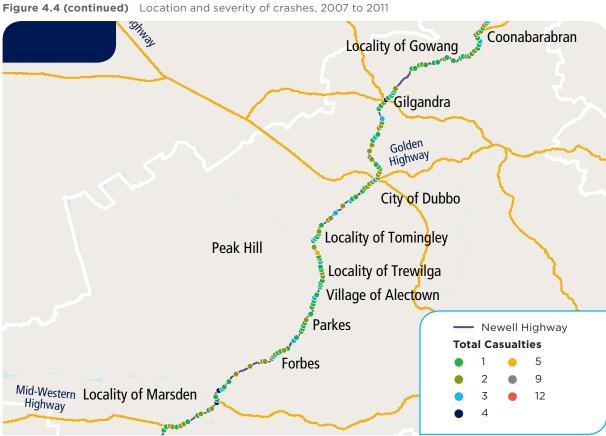
Goondiwindi Boggabilla Gwydir Highway Moree Moree _{Gwydir Highway} Village of Gurley Village of Bellata Village of Edgeroi Narrabri Coonabarabran Tooraweenah Locality of Gowang Gilgandra Dubbo Village of Tomingley Locality of Trewilga Peak Hill Village of Alectown **Parkes** Forbes Locality of Marsden West Wyalong Ardlethan Village of Mirrool Sturt Highway Narrandera Village of Grong Grong Village of Morundah Jerilderie Finley Tocumwal **Speed Limits –** 100km/h ■ 110km/h

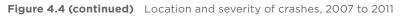
Figure 4.3 Newell Highway speed zones

Note: Speed limits throughout towns and urban areas marked in grey along the highway range from 50km/h to 80km/h

Fixed speed cameras


There are no fixed speed cameras located along the Newell Highway corridor.


Criteria for fixed speed camera locations are based on crashes, injuries and travelling speeds ensure cameras are installed on lengths of road with a high crash rate – and a known speeding problem.


Number of crashes

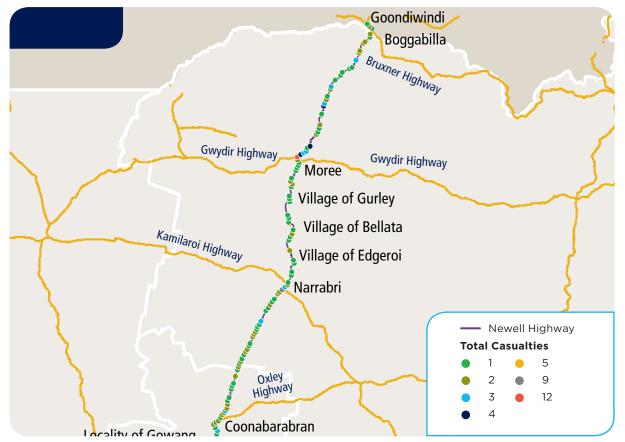

Of the 828 crashes reported between 2007 and 2011 along the Newell Highway, 463 were 'casualty crashes', which caused either an injury or fatality to one or more of the people involved. Of the 463 casualty crashes, 36 were fatal and 427 resulted in an injury (Figure 4.4 and Figure 4.5).

Figure 4.4 Location and severity of crashes, 2007 to 2011

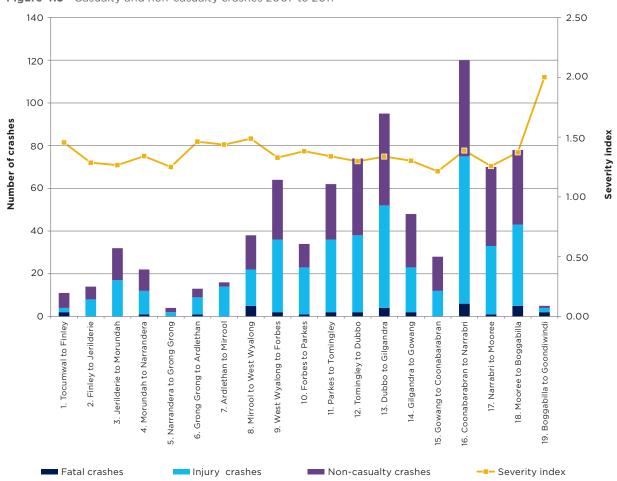


Figure 4.5 Casualty and non-casualty crashes 2007 to 2011

In addition to measuring the number and severity of crashes, a range of other measures have been developed to compare road safety criteria across different roads.

This corridor strategy examines three of these measures over the five year period:

- 1. Annual casualty crashes per kilometre.
- 2. Annual crash rate per 100 million vehicle kilometres travelled (100 MVKT).
- 3. Severity index.

Casualty crash rates

Table 4.3 sets out the class averages for the casualty crash rates on the rural network. Table 4.4 compares annual casualty crash rates per kilometre on the Newell Highway with class averages in NSW.

Table 4.3 Network class average performance for the rural road network 31

Rural hierarchy class	Casualty crash rate per kilometre (2007–2011)
4	0.21

The annual average casualty crash rate per kilometre for the Newell Highway ranges from 0.04 to 0.29. In comparison, the NSW statewide average annual casualty crash rate per kilometre for Class 4 rural roads is 0.21. This means all planning sections along the Newell Highway, excluding the Tomingley to Gilgandra section, performed better than the rural statewide average.

³¹ Roads and Maritime Services 2010, Network Performance Measures and Network Planning Targets, Roads and Maritime Services, Sydney, p.22

 Table 4.4
 Annual average casualty crash rates per kilometre

Corridor planning section	Newell Highway Corridor (2007 – 2011)	NSW class average (2007 - 2011)
1. Tocumwal to Finley	0.11	0.21
2. Finley to Jerilderie	0.08	0.21
3. Jerilderie to Morundah	0.08	0.21
4. Morundah to Narrandera	0.14	0.21
5. Narrandera to Grong Grong	0.04	0.21
6. Grong Grong to Ardlethan	0.07	0.21
7. Ardlethan to Mirrool	0.13	0.21
8. Mirrool to West Wyalong	0.15	0.21
9. West Wyalong to Forbes	0.12	0.21
10. Forbes to Parkes	0.21	0.21
11. Parkes to Tomingley	0.19	0.21
12. Tomingley to Dubbo	0.29	0.21
13. Dubbo to Gilgandra	0.29	0.21
14. Gilgandra to Gowang	0.10	0.21
15. Gowang to Coonabarabran	0.15	0.21
16. Coonabarabran to Narrabri	0.20	0.21
17. Narrabri to Moree	0.14	0.21
18. Moree to Boggabilla	0.14	0.21
19. Boggabilla to Goondiwindi	0.14	0.21

However, the annual casualty crash rate per kilometre does not take into account the potential for significant variations in traffic volumes along routes. This means it may understate relatively high crash rates on particular lengths of the road that operate with significantly lower traffic volumes. For this reason, a second measure of crashes per 100 million vehicle kilometres travelled is also used. This is particularly useful to compare crash rates on roads that carry higher than average and lower than average traffic volumes.

The crash rate per 100 million vehicle kilometres travelled is calculated as follows:

Crash rate=
$$\frac{\text{(No.of crashes} \times 10^8)}{\text{(L.A.365.M)}}$$

Where:

L = length in kilometres

A = ADT

M = number of years of crash data

The crash rate on rural sections of the Newell Highway for the five years to December 2011 ranged from zero to 25.5 crashes per 100 million vehicle kilometres travelled (Table 4.5). For urban areas the crash rate reached 70 crashes per 100 million vehicle kilometres travelled (Table 4.6).

 Table 4.5
 Crashes per 100 MVKT (rural areas)

Coi	ridor planning sections (rural areas)	Crash rates per 100 MVKT	Typical crash rate for rural undivided road ³²
1.	Tocumwal to Finley	8.20	35.00
2.	Finley to Jerilderie	9.99	35.00
3.	Jerilderie to Morundah	15.92	35.00
4.	Morundah to Narrandera	18.89	35.00
5.	Narrandera to Grong Grong	0.00*	35.00
6.	Grong Grong to Ardlethan	14.49	35.00
7.	Ardlethan to Mirrool	15.89	35.00
8.	Mirrool to West Wyalong	19.54	35.00
9.	(a) West Wyalong to Marsden(b) Marsden to Forbes	9.87	35.00
10.	Forbes to Parkes	8.95	35.00
11.	(a) Parkes to Peak Hill (b) Peak Hill to Tomingley	9.73	35.00
12.	Tomingley to Dubbo	13.18	35.00
13.	Dubbo to Gilgandra	12.92	35.00
14.	Gilgandra to Gowang	13.92	35.00
15.	Gowang to Coonabarabran	25.53	35.00
16.	Coonabarabran to Narrabri	23.37	35.00
17.	Narrabri to Moree	11.02	35.00
18.	Moree to Boggabilla	13.61	35.00
19.	Boggabilla to Goondiwindi	11.11	35.00

^{*} No crashes occurred within this section in rural areas

Newell Highway south of Peak Hill

32 NSW Centre for Road Safety 2009, NSW Speed Zoning Guidelines, Roads and Maritime Services, Sydney, p. 20

Table 4.6 Crashes per 100 MVKT (urban areas)

Urban areas	Crash rates per 100 MVKT
Tocumwal	36.03
Finley	12.24
Jerilderie	18.31
Morundah	-
Narrandera	32.90
Grong Grong	-
Ardlethan	-
Mirrool	-
West Wyalong	70.03
Marsden	-
Forbes	19.35
Parkes	38.93
Peak Hill	-
Tomingley	-
Dubbo	33.72
Gilgandra	38.21
Coonabarabran	25.57
Narrabri	24.12
Moree	12.42

Severity index

To enable a comparison of the impacts of crashes from a wider community perspective, a third measure, the 'severity index' has been developed. The severity index considers the total number of crashes on a road and assigns a weighting to fatal and casualty crashes which aims to reflect their relative impact on the community.

The severity index is calculated on any given length of road as follows:

Severity index=
$$\underbrace{(3x+1.5y+z)}_{t}$$

Where:

x = number of fatal crashes

y = number of injury crashes

z = number of non-casualty crashes

t = total number of crashes

Table 4.7 shows the severity index for the Newell Highway for the five year period to December 2011. The upper limit of the severity index is three, while the lowest possible is one (provided there has been a crash on the length of the road being considered).

The severity index for the Newell Highway is higher than the average for undivided rural roads in NSW (1.25) in all but one section. This suggests that when crashes do occur on the Newell Highway, they tend to be more severe than those occurring on similar classes of roads. This can be attributed to a number of factors, including the high speeds and higher per centage of heavy vehicles along the highway. The short Boggabilla to Goondiwindi section has the highest severity index.

Table 4.7 Crash types and severity

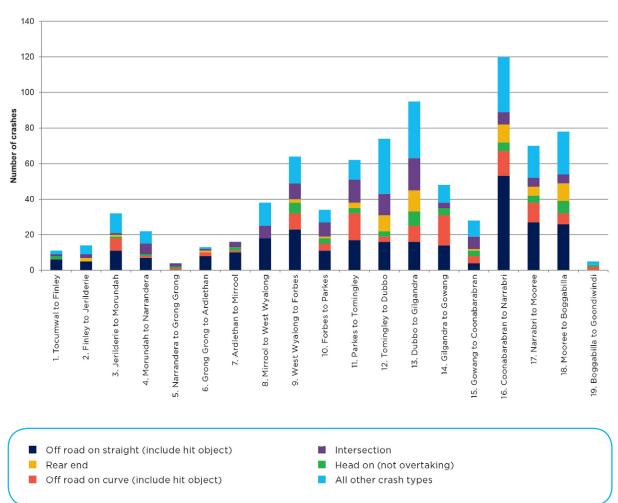
Corridor planning section	Total non- casualty crashes	Injury crashes	Fatal crashes	Severity Index
1. Tocumwal to Finley	7	2	2	1.45
2. Finley to Jerilderie	6	8	-	1.29
3. Jerilderie to Morundah	15	17	-	1.27
4. Morundah to Narrandera	10	11	1	1.34
5. Narrandera to Grong Grong	2	2	-	1.25
6. Grong Grong to Ardlethan	4	8	1	1.46
7. Ardlethan to Mirrool	2	14	-	1.44
8. Mirrool to West Wyalong	16	17	5	1.49
9. West Wyalong to Forbes	28	34	2	1.33
10. Forbes to Parkes	11	22	1	1.38
11. Parkes to Tomingley	26	34	2	1.34
12. Tomingley to Dubbo	36	36	2	1.30
13. Dubbo to Gilgandra	43	48	4	1.34
14. Gilgandra to Gowang	25	21	2	1.30
15. Gowang to Coonabarabran	16	12	-	1.21
16. Coonabarabran to Narrabri	45	69	6	1.39
17. Narrabri to Moree	37	32	1	1.26
18. Moree to Boggabilla	35	38	5	1.37
19. Boggabilla to Goondiwindi	1	2	2	2.00
Total for corridor	365	427	36	1.34

Crash types

Table 4.8 and Figure 4.6 detail the most prevalent crash types recorded on the Newell Highway during the five year period to December 2011.

Table 4.8 Crash types within the corridor*

Crash Types	Number of crashes	Per cent of crashes
Off road on straight (include hit object)	272	33%
Off road on curve (include hit object)	106	13%
Head on (not overtaking)	54	7%
Rear end	57	7%
Intersection	110	13%
All other crash types	229	28%


^{*} Some of the crash types have been grouped together

About 46 per cent of all reported crashes on the Newell Highway during this period involved vehicles running off the road either on a straight or a curved section. More specifically, vehicles running off the road on a straight section accounted for 33 per cent of all recorded crashes. Further analysis indicates that in about half of those crashes, the vehicle hit an object. Thirteen per cent of crashes recorded occurred at intersections.

Newell Highway between West Wyalong and Mirrool

Figure 4.6 Crash types: 2007 to 2011

Contributing factors

In analysing road safety information, it is important to draw on as much information as possible about the nature of each crash to determine the potential contributing factors. This information allows Roads and Maritime Services to understand crash patterns that may be developing on particular roads, and in turn, help to formulate responses to prevent these crashes through engineering, maintenance or behavioural strategies.

Table 4.9 and Figure 4.7 summarise the contributing factors recorded for all reported crashes within the five year period to December 2011.

In addition to time of day, road surface, environmental conditions and driver behaviour are key contributing factors to crashes along the Newell Highway. Of the 828 reported crashes on the Newell Highway during the five-year period, 35 per cent had speed, fatigue or alcohol recorded as a contributing factor to the crash.

Of these three contributing factors, speed and fatigue were identified as a contributing factor in 15 per cent and 16 per cent of all the crashes along the Newell Highway respectively. In considering these statistics, it is important to note that 'speeding' does not always indicate non-compliance with the posted speed limit, but simply that the speed of a vehicle was not appropriate for the condition of the road at the time, for example, during wet weather.

Table 4.9 Contributing factors in crashes on Newell Highway, 2007 to 2011

Crash factor*	Number of crashes	Per cent of crashes
Heavy vehicle involvement		
Heavy truck crashes (excluding crashes involving a small rigid vehicle)	165	20%
Heavy truck as key vehicle	165	20%
Road surface conditions		
Wet	125	15%
Dry	703	85%
Natural lighting		
Dawn	42	5%
Daylight	555	67%
Dusk	26	3%
Darkness	205	25%
Weather		
Fine	651	79%
Rain	73	9%
Overcast	89	11%
Fog or mist	8	1%
Behavioural factors		
Speeding	122	15%
Fatigue	130	16%
Alcohol	33	4%

^{*} these categories are not mutually exclusive

In addition, due to the isolated location of many casualty crashes, it is difficult to identify the involvement of speed in all instances. In turn, the number of crashes identifying speed as a factor should be considered a minimum number. Crashes involving fatigue are likely the result of long distances between the origins and destinations on the Newell Highway.

Heavy vehicles were involved in about 20 per cent of all crashes on the corridor. This is generally an under representation of the percentage of heavy vehicles that use the road In summary, the road safety performance of the Newell Highway as measured by the casualty crash rate is below the class average for the entire length of the road.

Nearly 46 per cent of crashes were off road crash types and 20 per cent of crashes involved either fatigue or alcohol. Heavy vehicles were represented in 20 per cent of accidents. Road safety interventions will continue to focus on managing road, vehicle and behaviour risk factors.

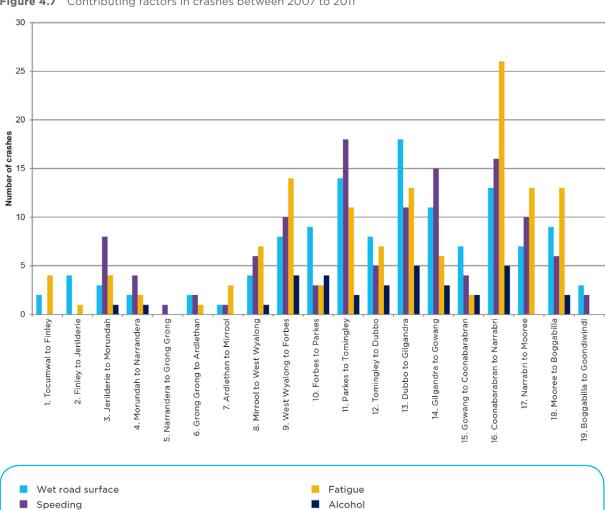


Figure 4.7 Contributing factors in crashes between 2007 to 2011

4.2 Traffic

Traffic volumes

Average Daily Traffic (ADT) volumes along the Newell Highway vary from around 1200 vehicles per day to over 4000 vehicles per day on rural sections (Table 4.10). In the urban centres such as Dubbo, average daily traffic volumes are in the order of 20,000 vehicles a day.

Average daily traffic volumes between towns on the Newell Highway vary considerably. To the south, volumes are lower, ranging from around 1200 vehicles per day (ADT) to around 2900 vehicles per day (ADT) at the Victorian border. Between Forbes and Gilgandra, the ADT is between around 2500 and 3700 vehicles per day. North of Gilgandra the volumes drop back to about 1800 vehicles per day, then increase closer to the Queensland border with the short section between Boggabilla and Goondiwindi reaching over 4000 vehicles per day (Figure 4.8).

Traffic volumes along the Newell Highway increase substantially within urban areas such as Parkes, Dubbo, Narrabri and Moree.

A large number of heavy vehicles use the Newell Highway as it is a key freight route between Victoria and Queensland. The vast majority of B-doubles and semi-trailers are from interstate, while the majority of rigid trucks are from local areas.

Heavy vehicles represent between 26 per cent and 52 per cent of daily traffic volumes on the Newell Highway (Table 4.10). The highest percentage of heavy vehicles is in the northern sections between Narrabri and Boggabilla, and in the rural sections around Narrandera.

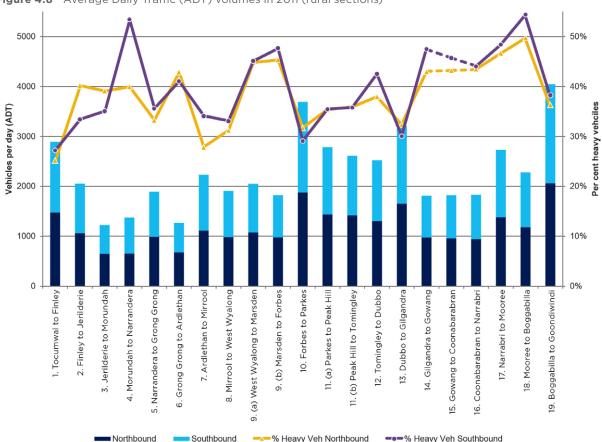


Figure 4.8 Average Daily Traffic (ADT) volumes in 2011 (rural sections)

^{*} NB dotted line indicates interpolated date as no actual data available

The highway carries a seasonally high proportion of caravan and tourist traffic travelling between Victoria and Queensland. There is a general northbound increase in caravans at the beginning of winter and the reverse towards the end of that season. There are between 50 and 100 caravans per day during this time, which are primarily registered in other states.

Table 4.10 Average Daily Traffic (ADT) volumes in 2011 (rural sections)

Highway planning section (rural)	ADT (vehicles per day)	Average heavy vehicle ADT	per cent heavy vehicles
1. Tocumwal to Finley	2891	756	26%
2. Finley to Jerilderie	2053	758	37%
3. Jerilderie to Morundah	1225	456	37%
4. Morundah to Narrandera	1375	647	47%
5. Narrandera to Grong Grong	1893	650	34%
6. Grong Grong to Ardlethan	1270	534	42%
7. Ardlethan to Mirrool	2231	690	31%
8. Mirrool to West Wyalong	1907	512	32%
9. West Wyalong to Forbes	2050	922	45%
10. Forbes to Parkes	3690	1122	30%
11. Parkes to Tomingley	2785	986	35%
12. Tomingley to Dubbo	2522	1012	40%
13. Dubbo to Gilgandra	3214	1003	31%
14. Gilgandra to Gowang	1809	815	45%
15. Gowang to Coonabarabran	<u>1821</u>	808	44%
16. Coonabarabran to Narrabri	1833	802	44%
17. Narrabri to Moree	2730	1297	48%
18. Moree to Boggabilla	2280	1185	52%
19. Boggabilla to Goondiwindi	4048	1508	37%

^{*} NB underlined figures indicate interpolated data as no actual data available

Heavy vehicles on the Newell Highway at Bellata south of Moree

Number of lanes and level of service

The 'level of service' a road provides is a measure of how easily traffic flows on the road. It assesses the operating condition of a road based on various factors, including traffic volumes, proportion of heavy vehicles, terrain and frequency of intersections. Levels of service range from 'A' to 'F' (Table 4.12), with 'A' representing free-flowing traffic and 'F' representing severe congestion.

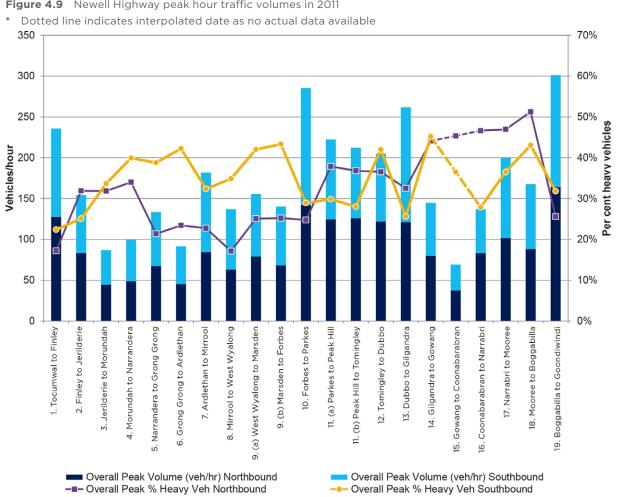
Level of service is also related to the number of lanes in each direction on a road and the number of overtaking lanes. An Overtaking Lane Study undertaken in 2011³³ identified potential locations for additional overtaking lanes along the Newell Highway, determined by measuring the current level of service along the corridor. In that study, the performance of the highway was modelled for 19 sections between urban centres.

Urban level of service was not measured because it was not considered that there were any urban sections with unstable flow conditions. Urban level of service has been estimated at level of service C.

33 Cardno for Roads and Maritime Services 2011, Newell Highway: Potential Overtaking Lanes Study, Roads and Maritime Services, Sydney

Rural - Level of service

Under peak hour traffic conditions, northbound traffic on the Newell Highway generally operates at level of service of 'B' south of Parkes and level of service 'C' north of Parkes (Figure 4.9). Southbound traffic on the Newell Highway north of Parkes generally operates at a level of service 'C'. South of Parkes, the level of service experienced by southbound traffic is 'A', apart from the section between West Wyalong and Forbes. Details of the level of service analysis are presented in Table 4.12 and Table 4.13.


Urban - Level of service

The level of service along urban sections is estimated to vary from 'B' in small centres to 'C' in larger centres. Dubbo has an estimated level of service 'C' at the northern end of the town that has potential to deteriorate to Level 'D' sometime in the future. These results suggest the current two lane highway, with overtaking opportunities, provides sufficient capacity to accommodate both current traffic volumes and projected short to medium term increases.

Table 4.11 Level of service definitions

Level of service	% time following	Description				
A	Less than 40	Free flow conditions. Drivers are virtually unaffected by others in the traffic stream. Ease of selection of desired speed and manoeuvrability. General level of comfort and convenience is excellent.				
В	40-55%	Stable flow conditions. Reasonable ease of selection of desired speed and manoeuvrability. General level of comfort and convenience is a little less than for LOS A.				
С	55-70%	Stable flow conditions. Restricted selection of desired speed and manoeuvrability. General level of comfort and convenience declines noticeably at this level.				
D	70-85%	Approaching unstable flow conditions. Severely restricted selection of desired speed and manoeuvrability. General level of comfort and convenience is poor. Small increases in traffic will generally cause operational problems.				
E	Greater than 85	Unstable flow conditions, with traffic volumes at or close to capacity. Virtually unable to select desired speed and manoeuvre. Minor disturbances will cause breakdown.				
F	Volume greater than capacity	Forced flow conditions, with traffic volumes exceeding capacity. Flow breakdown resulting in queuing and delays.				

Figure 4.9 Newell Highway peak hour traffic volumes in 2011

Table 4.12 2010 highway performance - northbound³⁴

northbound ³⁴		
Highway planning	Maximum	Level of
section	%	Service
	following	
1. Tocumwal to Finley	39.4	Α
2. Finley to Jerilderie	48.7	В
3. Jerilderie to		В
Morundah	46.9	
4. Morundah to		Α
Narrandera	39.1	
5. Narrandera to		В
Grong Grong	46.3	
6. Grong Grong to		В
Ardlethan	40.1	
7. Ardlethan to Mirrool	42.8	В
8. Mirrool to West		В
Wyalong	49.6	
9. (a) West Wyalong to		С
Marsden		
(b) Marsden to	CF 1	
Forbes	65.1	
10. Forbes to Parkes	53.8	В
11. (a) Parkes to Peak		С
Hill		
(b) Peak Hill to	58.1	
Tomingley	30.1	
12. Tomingley to Dubbo	47.5	В
13. Dubbo to Gilgandra	49.6	В
	49.0	
14. Gilgandra to	57.7	С
Gowang	37.7	С
15. Gowang to Coonabarabran	65.4	C
16. Coonabarabran to	05.4	С
Narrabri	61.6	C
17. Narrabri to Moree		
	65.5	C
18. Moree to	64.3	C
Boggabilla	04.3	
19. Boggabilla to Goondiwindi	54.5	В
- COUNTRIVING	5 7.5	

Table 4.13 2010 highway performance - southbound³⁵

Highway planning section	Maximum % following	Level of Service
1. Tocumwal to Finley	38.5	А
2. Finley to Jerilderie	41.4	В
3. Jerilderie to Morundah	45.1	В
4. Morundah to Narrandera	39.8	А
5. Narrandera to Grong Grong	38.5	А
6. Grong Grong to Ardlethan	35.1	А
7. Ardlethan to Mirrool	46.4	В
8. Mirrool to West Wyalong	37.2	А
9. (a) West Wyalong to Marsden (b) Marsden to Forbes	73.3	D
10. Forbes to Parkes	59.0	С
11. (a) Parkes to Peak Hill (b) Peak Hill to Tomingley	61.6	С
12. Tomingley to Dubbo	37.0	А
13. Dubbo to Gilgandra	51.1	В
14. Gilgandra to Gowang	57.0	С
15. Gowang to Coonabarabran	46.2	В
16. Coonabarabran to Narrabri	47.0	В
17. Narrabri to Moree	62.9	С
18. Moree to Boggabilla	56.9	С
19. Boggabilla to Goondiwindi	56.3	С

³⁴ ibid., p. 30

³⁵ ibid., p. 31

Overtaking opportunities and Level of service

Providing overtaking lanes and other opportunities to pass slower vehicles improves travel time and level of service. In addition, overtaking opportunities reduce driver frustration and unsafe behaviour, also reducing the risk of road trauma.

The decision to construct an overtaking lane depends on the level of service of the road, the traffic volumes, percentage of slow vehicles, including light trucks and cars towing a load and the availability of overtaking opportunities on adjoining sections.

There are currently 46 overtaking lanes spanning 58.8 kilometres along the length of the Newell Highway, comprising 23 northbound lanes (33.3 kilometres) (Figure 4.10) and 23 southbound lanes (25.5 kilometres) (Figure 4.11).

The Newell Highway includes one kilometre of northbound overtaking lane per 32 kilometres of highway. At the time of investigation the average spacing between northbound overtaking lanes was 34.2 kilometres, however, the spacing varied from 1.9 kilometres to 240.2 kilometres.

There is one kilometre of southbound overtaking lane per 42 kilometres of highway. The average spacing between southbound overtaking lanes was 39 kilometres, however, the spacing varied from 3.6 kilometres to 201.4 kilometres.

Overtaking on the opposite side of the road is permitted in NSW on undivided roads where there is a broken centre line, adjacent to the direction of travel.

Overall, 79 per cent of the Newell Highway provides overtaking opportunities (refer to Table 4.14). The percentage of overtaking opportunities varies from 45 per cent to 95 per cent across each planning section.

Roads and Maritime Services Network
Performance Measures and Network Planning
Targets³⁶ recommend an overtaking lane
should be provided at locations where 65 per
cent of time is spent following other vehicles
or the level of service is 'C' or lower. Where the
annual average proportion of heavy vehicles
on a road is 50 per cent or more, the time
spent following other vehicles is reduced to
just 50 per cent. There are some locations
along the Newell where the proportion of
heavy vehicles is 50 per cent or more.

B-double overtaking Road Train

36 Roads and Maritime Services 2010, *Network Performance Measures and Network Planning Targets*, Roads and Maritime Services, Sydney, p. 42



Figure 4.10 Existing northbound overtaking lanes

Goondiwindi Boggabilla Gwydir Highway Moree Narrabri **NEW ENGLAND WESTERN** Coonabarabran Tooraweenah Gilgandra **HUNTER** Dubbo Peak Hill Parkes Forbes **SYDNEY** CENTRAL WEST MURIMBIDGEE West Wyalong Ardlethan Sturt Highway Narrandera ILLAWARRA Jerilderie Finley SOUTHERN Tocumwal Existing SB auxiliary lane (23) Newell Highway LTTMP Regions

Figure 4.11 Existing southbound overtaking lanes

Table 4.14 Overtaking opportunities

Table 4.14 Overtaking opportunities						
Hig	ghway planning section	% of section with overtaking opportunities				
1.	Tocumwal to Finley	92.5%				
2.	Finley to Jerilderie	95%				
3.	Jerilderie to Morundah	95.5%				
4.	Morundah to Narrandera	77.5%				
5.	Narrandera to Grong Grong	83%				
6.	Grong Grong to Ardlethan	81%				
7.	Ardlethan to Mirrool	65%				
8.	Mirrool to West Wyalong	76%				
9.	(a) West Wyalong toMarsden(b) Marsden to Forbes	92.5%				
10.	Forbes to Parkes	53.5%				
11.	(a) Parkes to Peak Hill (b) Peak Hill to Tomingley	71%				
12.	Tomingley to Dubbo	56%				
13.	Dubbo to Gilgandra	70.5%				
14.	Gilgandra to Gowang	61%				
15.	Gowang to Coonabarabran	45%				
16.	Coonabarabran to Narrabri	79%				
17.	Narrabri to Moree	86.5%				
18.	Moree to Boggabilla	91.5%				
19.	Boggabilla to Goondiwindi	62%				
Ove	ertaking allowed (by length)	79%				

The Newell Highway analysis was undertaken using traffic modelling software, Traffic on Rural Roads (TRARR). Traffic on Rural Roads (TRARR) analyses traffic flow on interrupted two lane rural road segments. Each vehicle's progress is measured at one second intervals. The TRARR model can be used to simulate platooning and the percentage of vehicles following due to slower freight vehicles, for example, on steeper grades where there are no overtaking opportunities.

The simulated maximum per cent of vehicles following in each section of the highway ranged from 39 per cent to 66 per cent in the northbound direction (Table 4.12), and 35 per cent to 73 per cent in the southbound direction (Table 4.13). Average travel speeds for each section of the highway were estimated to vary from 82 km/h to 94 km/h in the northbound direction, and 81 km/h to 93 km/h in the southbound direction.

The results of this analysis are set out in the Newell Highway Potential Overtaking Lanes Study (2011)³⁷. The highway's current performance was modelled for 19 sections between urban centres.

Typical agricultural vehicle on the Newell Highway

37 <u>Cardno for Roads and Maritime Services 2011, Newell Highway: Potential Overtaking Lanes Study, Roads and Maritime Services, Sydney</u>

The study identified five sites within four sections along the Newell Highway that do not meet the rural network planning targets. The sections that did not meet the target are set out in Figure 4.15. Three northbound sections and one southbound section of the Newell Highway have a modelled performance greater than 65 per cent of vehicles following. One additional northbound section had more than 50 per cent of heavy vehicles and more than 50 per cent of vehicles following (Table 4.15).

Table 4.15 Sections that do not meet the network planning target for overtaking lanes

Location	Maximum % following	Proportion of heavy vehicles (ADT)
Northbound between West Wyalong and Forbes	65.1	42%
Northbound between Gowang and Coonabarabran	65.4	35%
Northbound between Narrabri and Moree	65.5	43%
Northbound between Moree and Boggabilla	64.3	51%
Southbound between West Wyalong and Forbes	73.3	41%

A number of other sections are approaching these figures and are not expected to meet them in the medium term, due to continued traffic growth. In addition the Study found that the highway was:

"a two-lane rural road with infrequent overtaking lanes. Local residents have suggested that additional overtaking lanes are required along the highway to improve operating performance and safety."³⁸

38 ibid., p. 4 39 ibid., p. 40

40 ibid., p. 59

The main criteria of the Newell Highway Potential Overtaking Lane Study for the selection of overtaking lane locations were as follows³⁹:

- Per cent following locations that would address a high per cent following (generally assumed to be 40 per cent)
- Spacing long distances between existing overtaking lanes
- Geometry consideration for horizontal and vertical curvature (sight distance)

A first pass assessment of each individual highway section was undertaken, overtaking lanes were added if the per cent following within the section was generally above 40 per cent.

A second pass added overtaking lanes to lengths with a large spacing between existing and/or potential overtaking lanes. This process was continued until there were a total of 100 existing and/or potential overtaking lanes, resulting in an average spacing of approximately 10 kilometres between overtaking lanes in either direction along the length of the highway. The study found an additional 57 overtaking lanes should be provided, 28 northbound and 29 southbound.

Potential locations were grouped by priority, based on key performance measures.

There were⁴⁰:

- 16 high priority locations
- 18 medium priority locations
- 23 lower priority locations.

Providing these lanes will provide more frequent overtaking opportunities along the route.

Figure 4.12 Sections of the Newell Highway that do not meet the network planning target for the provision of overtaking lanes

Platoon of heavy vehicles south of Coonabarabran

Pavement widening road works at Yarrabah

Recently constructed overtaking lane north of Narrabri

Intersection with Newell Highway at Grong Grong

Heavy vehicle turning at intersection of Bruxner Way and Newell Highway near Boggabilla

Incident management

Traffic incident management refers to the delivery of planning and operational tasks by the responsible road authority in response to an unplanned incident. This is achieved through collaboration with emergency services and other key stakeholders to facilitate effective management of incidents for road users, the road network and infrastructure.

Incident Response Plans (IRPs) have been developed for the Newell Highway to minimise the impact of any road closures and to reduce the risk of secondary incidents. The incident's location determines which IRP is implemented at the time. IRPs can be used to deal with extended disruptions as a result of a motor vehicle accident, bushfire or flooding, such as recent events at Narrandera and Moree.

Developed in consultation with councils, NSW Police and Roads and Maritime Services, there are 31 IRPs for the Newell Highway. Specifically, 26 IRPs cover the area from Tocumwal to Marsden and five IRPs cover the area from Marsden to the Queensland Border.

IRPs are designed to support a total closure of the highway as needed. They define the agreed diversion route and the roles and responsibilities of the agencies involved. The IRPs also incorporate a unique signposting approach that guides motorists along the diversion route until they reach permanent signs to their destination.

To ensure motorists are well informed of incidents and detour routes, Roads and Maritime Services uses static signposting and portable Variable Message Signs (VMS), in strategic locations to minimise travel time delays. The regional VMS strategy has identified a need for more signs to improve incident management.

The Newell Highway is the primary diversion route in the event of an incident requiring closure of the following State roads:

- Riverina Highway
- Kidman Way
- Sturt Highway
- Burley Griffin Way
- Goldfields Way
- West Wyalong Bypass Road
- Mid Western Highway
- Lachlan Valley Way
- The Escort Way
- Henry Parkes Way
- Mitchell Highway
- Golden Highway
- Castlereagh Highway
- Oxley Highway
- Kamilaroi Highway
- Gwydir Highway.

The length of detours within these IRPs ranges from one kilometre to 492 kilometres, with average detour lengths of between 20 and 285 kilometres, depending on the section of the corridor (Table 4.16).

 Table 4.16
 Incident management detour lengths

Detour	Average length	Shortest detour	Longest detour
Tocumwal to Finley	20 km	4 km	69 km
Finley to Jerilderie	65 km	1.5 km	142 km
Jerilderie to Narrandera	56 km	1 km	138 km
Narrandera to West Wyalong	53 km	1 km	106 km
West Wyalong to Parkes	65 km	30 km	109 km
Parkes to Dubbo	81 km	23 km	146 km
Dubbo to Gilgandra	90 km	60 km	115 km
Gilgandra to Moree	187 km	28 km	455 km
Moree to Goondiwindi	285 km	117 km	492 km

Regional centres and town bypasses

The Newell Highway corridor has developed as a series of links between towns and centres, enabling both inter-regional travel and access for local trips. Over time, as town centres have developed along the Newell Highway, local traffic volumes have increased and its increasing interaction with inter-regional traffic has started to impact on the road's efficiency and safety. The growing number of vehicles within towns, including freight vehicles, increases localised congestion and traffic delays.

Town bypasses can be a solution to this problem and can improve travel within towns, reduce delay for freight vehicles and improve road safety, by reducing conflict points between local and through traffic and between vehicles and pedestrians

The NSW Long Term Transport Master Plan⁴¹ prioritises a program of town bypasses to improve travel within towns, reduce delays caused to freight traffic and increase safety. Assessing town bypass proposals involves considering⁴²:

 The road's hierarchy classification. Higherorder roads carry higher levels of throughtraffic and generate greater benefits than other areas where volumes are much lower.
 For example, the Hume Highway (M31) and Pacific Highway (M1) have the highest classification, and roads such as the Silver City Highway (B79) and Kings Highway (B52) have the lowest road hierarchy classification.

- Proportion of through-traffic for both light and heavy vehicles.
- Travel time benefits
- Town or regional centre size. Large towns tend to experience many local trips, which can impact through-traffic and create localised congestion.
- Difficult terrain, major rivers and urban development. These factors impact project cost and influence the decision to prioritise a particular bypass.
- Dispersed urban development. This limits town bypass options, as does the nature of development next to the corridor. A bypass is more likely to be provided on higher order roads next to commercial development, such as shops and businesses.

The type of bypass to be provided is also an important consideration. Typical bypass options include:

Full bypass. This is where the road corridor
has controlled access to the town. This can
mean it is separate to the town itself or
run alongside - or parallel to - a corridor
through the centre of town. Typically, full
bypasses are required where there are
high volumes of through-traffic combined

⁴⁴ Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 242

- with a high proportion of local traffic, including pedestrians. This type of bypass is the most expensive. Stage 1 of Moree Bypass is an example of a full bypass on the Newell Highway.
- Inner bypass. This is where the existing road corridor is shifted away from the main street and an adjacent local road is upgraded to accommodate a new flow of traffic. This option is typically considered when volumes of through and local traffic are lower. This option is less expensive than a full bypass. Inner bypasses can be seen on the Newell Highway through Parkes and through Dubbo.
- Heavy vehicle bypass. This is where heavy vehicle traffic is directed away from the main street, however, all other local and through-traffic can continue to use the existing road. A heavy vehicle bypass can be less expensive than a full or inner bypass and can accommodate the interests of local businesses who benefit from both improved amenity and continuing passing trade.

Table 4.17 identifies the Newell Highway corridor's town bypass priorities over the next 20 years.

 Table 4.17
 Priorities for town bypasses

Town	Short term
Moree	Construct Stage 2 of Moree Bypass to bypass main street of the town centre
West Wyalong	Re-build pavement to appropriate standard for Heavy Vehicle Bypass removing through-traffic from main street of the town centre
Town	Longer term
Parkes	Parkes Shire Council has undertaken preliminary investigations into a Western Ring Road, which could be a Newell Highway bypass of Parkes. The bypass would avoid two level rail crossings and three intersections, which currently prevent HPVs from using this section of the Newell Highway. Commence planning of preferred bypass option, including detailed design.
Coonabarabran	A preferred corridor has been identified, however further investigation of this corridor is required. Commence planning of preferred bypass option, including detailed design.
Dubbo	A bypass of Dubbo may need to be considered in the longer term as option to address flood impacts of the Macquarie River.

4.3 Heavy vehicles on the Newell Highway

In a recent report on truck productivity, the Bureau of Infrastructure, Transport and Regional Economics emphasised the influence the freight transport sector has on national productivity and efficiency:

"Improvements in freight productivity and efficiency reduce the cost of moving freight, adding directly to national economic output."43

Freight productivity is affected by the type of vehicles allowed on a road, the access they are provided and the regulatory, safety and asset management costs of that access. Consequently, Transport for NSW and the Roads and Maritime Services manage all these aspects of heavy vehicle productivity, providing dedicated resources to:

- Assess access requests for restricted vehicles on the network
- Meet heavy vehicle driver needs
- Improve safety
- Enforce heavy vehicle road regulations.

Following commencement of the National Heavy Vehicle Law, which creates a nationally consistent law for Australia's heavy vehicle industry, the National Heavy Vehicle Regulator (NHVR) has been established as a new national one stop shop for access applications. The NHVR will consider requests for access and liaise with road managers, both RMS and Local Councils, to grant access.

Heavy vehicles are particularly important to consider along the Newell Highway corridor. This is both because of its role as a vital transport link between Australia's second and third largest cities, and that freight productivity is expected to nearly double

over the next 20 years⁴⁴. This aspect of future challenges for the next 20 years is discussed in more detail in Chapter 5.

Types of heavy vehicles

Heavy vehicles are generally classified by their length, mass and axle configuration. Typically, they are grouped by axle configuration as rigid, articulated or multi-articulated (see AUSTROADS vehicle classification system in Appendix A).

Between 1971 and 2007, increases in road freight vehicle size and capacity have enabled more freight to be carried by proportionately fewer trucks, and larger trucks have captured a larger share of the road freight task. The share of the road freight carried by articulated trucks has increased from around 55 per cent in 1971 to around 78 per cent in 2007⁴⁵.

Restricted access vehicles

Any vehicle which exceeds 19 metres in length and/or 4.3 metres in height and/or 2.5 metres in width is classified as a Restricted Access Vehicle (RAV). These vehicles are only permitted to operate on suitably assessed and approved routes.

These vehicles are also referred to as Higher Productivity Vehicles (HPVs). B-triples, which have 12 plus axles with five axle groups and AB-triples which have 14 plus axles with six axle groups are part of the RMS Road Train Modernisation Program, which aims to provide a newer and safer group of vehicles to supplement and eventually replace double road trains.

Nineteen metre long B-doubles not greater than 4.3 metres high (including its load) and carrying less than 50 tonnes are allowed on all roads in NSW, including the Newell Highway.

Any vehicle which exceeds these overall dimensions, as defined in the *Road Transport* (*Registration*) *Regulation 2007*, are subject to special operating conditions.

- 44 Hyder Consulting for Transport for NSW 2011, NSW Freight Supply Chain Study Hunter, Northern, Western Regions
- 45 Bureau of Infrastructure, Transport and Regional Economics 2011, Truck Productivity: Sources, Trends and Future Prospects, BITRE, Canberra, p.xiii

⁴³ Bureau of Infrastructure, Transport and Regional Economics 2011, *Truck Productivity: Sources, Trends and Future Prospects*, BITRE, Canberra, p.iii

For example, throughout NSW, road trains can only travel along approved routes. These approved routes cater for different sized road trains (refer to Figure 4.13), specifically:

- Double road trains must not exceed 36.5 metres in length
- A road train must not exceed 4.3 metres high, unless it complies with conditions set out in the 4.6 Metre High Vehicle Route Notice 2008. In that instance, a road train may then be loaded up to 4.6 metres high.

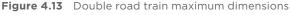
Sections of the Newell Highway pass through geographic areas where RAVs have unrestricted access to roads, unless a particular road has further restrictions or exemptions. The following RAVs are only allowed on certain parts of the Newell Highway.

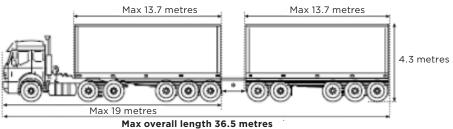
Twenty-six metre B-doubles are currently allowed along on the entire length of the Newell Highway, except through the urban commercial centre of West Wyalong, where B-doubles and Higher Mass Limit (HML) vehicles travel around the town on a Heavy Vehicle Bypass. Double road trains, B-triples and AB-triples are allowed along the following lengths of the Newell Highway:

- Double road trains (not PBS vehicles)⁴⁶:
 - Tocumwal to Narrandera
 - Lachlan Valley Way at Forbes to Back Yamma Road at Daroobalgie
 - In the Village of Tomingley

- Dubbo to Gilgandra
 - Coonabarabran to Goondiwindi.

All the double road train routes can also be accessed by modular B-triples but they need to operate under the Intelligent Access Program.


- B-triples and AB-triples (modern PBS vehicles):
 - Tocumwal to Morundah
 - Dubbo to Gilgandra
 - Narrabri to Goondiwindi.


Triple road trains are not allowed on any parts of the Newell Highway.

In the longer term, the vision for the Newell Highway is to provide access for Performance Based Standard (PBS) class 3(a) vehicles (up to 36.5m long) along the entire length, while progressively phasing out the use of double road trains.

Higher Productivity Vehicles intersection access

The dimensions of restricted access vehicles can at times mean they are unable to negotiate the road network at specific intersections. Therefore, in expanding the freight vehicle network, the ability of an intersection to accommodate turning vehicles must be assessed.

For converter dolly distance must be more than 3 metres, but not more than 5 metres

⁴⁶ A double road train route was gazetted in 2007 for around 1 km section south from the intersection of the Newell Highway with the Tomingley Narromine Road

Roads and Maritime Services assessed the geometry of intersections along Newell Highway where turning was required to stay on the highway. The purpose was to assess the ability of HPVs to manoeuvre through these intersections. The assessment was based on a 'swept path' analysis for a range of typical vehicle dimensions.

Twenty-eight intersections were assessed and Table 4.18 outlines the degree to which each heavy vehicle class can turn through an intersection, while still maintaining minimum clearances. The assessment found:

- Seven out of 28 intersections could not accommodate a B-Triple (36.5 metres) in either direction
- Three out of 28 intersections could not accommodate an AB-Triple (36.5 metres) or double road train (36.2 metres) in either direction
- Four out of 28 intersections could not accommodate a double road train (36.2 metres) in either direction
- Two out of 28 intersections could not accommodate a double road train (32.84 metres with tri-axle dollys) in either direction.

Potential intersection improvements required for adequate HPV access

Intersection with the Bruxner Way: The intersection with the Bruxner Way at Boggabilla is currently approved for B-triple, AB-triple and double road train use. This intersection was assessed under previous criteria and with low heavy vehicle volumes. As volumes increase, further works are required to bring this intersection up to current standards.

Alice Street at Moree: This intersection will be eliminated once the Moree Bypass is completed. The Moree Bypass will be suitable for all PBS class 3(a) vehicles up to 36.5m in length.

Killarney Street and Tibbereena Street at Narrabri: This intersection is currently approved for double road train use, however

requires further widening to accommodate b-triples and to provide a higher standard for other HPVs.

Various roundabouts: A number of roundabouts have been assessed as being able to cater for the swept path of HPV, generally without any clearance and requiring the heavy vehicle to mount the central island of the roundabout. Further work including replacement of the roundabout may be required to be carried out in the longer term to improve the standard of these intersections particularly at the intersection of Barwan Street & Killarney Street at Narrabri and Dalgarno Street at Coonabarabran.

Oxley Highway priority: The Oxley Highway intersects with the Newell Highway north of Coonabarabran and has priority at the intersection. This means heavy vehicles travelling south along the Newell must give way to Oxley Highway traffic. From a network efficiency perspective this is not ideal, as there are larger volumes of through -traffic on the Newell than the Oxley. The prioritisation of the Oxley Highway over the Newell Highway at this intersection should be considered and the intersection improved.

Intersections at Parkes: The Newell Highway through Parkes features bypasses that make use of the existing local road network. The highway currently crosses the main western rail line at the southern end of the town, which creates a short, dog leg intersection presenting challenges for some vehicles in both northbound and southbound directions. In addition, the current alignment causes delays for traffic travelling east-west across Parkes when traffic banks north-south while a train uses the rail level crossing. Options for realigning the highway, together with intersection improvements at Bogan Street, Mitchell Street and Hartigan Avenue, will be necessary to improve access for 36.5m long vehicles. Further planning work and detailed assessment is required to provide a suitable route, including a potential option to bypass these intersections.

Table 4.18 Heavy vehicle review of intersections and roundabouts along the Newell Highway

		B-Tr (36.			Triple .5m)	road	uble d train 5.2m)		ad train (with lly) (32.84m)
	Туре	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound
Bruxner Way, Boggabilla	Intersection								
Alice St (Moree Bypass), Moree	Signalised		•	•	•	•	O	•	•
Forme St & Alice St, Moree	Roundabout								
Barwan St & Killarney St, Narrabri	Roundabout	<u></u>	O	•	O	•		•	•
Killarney St & Tibbereena St, Narrabri	Intersection		•	•	•	•		•	•
Tibbereena St & Dangar St, Narrabri	Intersection		•	•	•	•		•	•
Newell Hwy & Old Turrawan Rd, Narrabri	Roundabout		O	•	•	•		•	•
Newell & Kamilaroi Hwys, Narrabri	Roundabout		•	•	<u></u>	•		•	•
Oxley Hwy, Coonabarabran	Intersection		•	•	•	•		•	•
Dalgarno St, Coonabarabran	Roundabout		O	•	<u> </u>	•		•	•
Oxley Hwy, Gilgandra	Intersection				O			•	•
Bourke St & Erskine St, Dubbo	Signalised		•	•	•	•			•
Darling St, Dubbo	Roundabout				O			•	
Victoria St, Dubbo	Roundabout		•		O			•	
Clarinda St & Mitchell St, Parkes	Intersection		•	•	•			•	•
Bogan St & Mitchell St, Parkes	Intersection		•	•	<u> </u>			•	•
Bogan St & Hartigan Ave, Parkes	Intersection		•	•	•				•
Hartigan Ave & Forbes St, Parkes	Intersection & Rail Level Crossing			•	•	•			•
Sherriff St & Dowling St, Forbes	Signalised		<u></u>	•	•	•	O	•	•
West Wyalong Bypass (State hwy)	Rail Level Crossing		•	•	•	O		•	•

		B-Tri (36.			Triple .5m)	roa	ouble d train 5.2m)		oad train (with olly) (32.84m)
	Туре	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound
Showground Rd, West Wyalong	Intersection		•	•	•	•	•	•	•
Tallimba Rd, West Wyalong	Intersection	Cur	rently	being	upgra	ded k	y Road	s and Mariti	ime Services
Newell Hwy & Berrembed St, Grong Grong	Intersection		<u></u>						
Cadell St near Whitton St, Narrandera	Intersection		<u></u>		•		•	•	•
Sturt Hwy (east), Narrandera	Intersection		<u></u>		•		•	•	•
Sturt Hwy (west), Narrandera	Intersection		•		•		•		•
Conargo Rd, Jerilderie	Intersection					•			•
Newell Hwy & Deniliquin Rd, Tocumwal	Roundabout		•	•	•		•	•	•

Key to Table:

- Meets intersection design standards for heavy vehicle type
- Heavy vehicle can manoeuvre through intersection without meeting clearance requirements
- Heavy vehicle cannot manoeuvre through intersection

West Wyalong: The Heavy Vehicle Bypass in West Wyalong avoids the main street of the town. The bypass is being progressively upgraded to accommodate the number and type of heavy vehicles that currently use the corridor. It is accessible to B-doubles at HML. In addition to pavement strengthening, there are two intersections along the bypass that require upgrading and the rail level crossing also requires a significant upgrade.

Grong Grong: An upgrade of the Grong Grong intersection is required to eliminate a 90 degree bend at Grong Grong. This intersection upgrade would significantly improve the highway's alignment and allow heavy vehicles to travel more smoothly and safely.

Narrandera intersections: These intersections can be accessed by PBS class 3(a) vehicles and road trains, however minor improvements could be considered to improve access.

Point-to-point speed enforcement

Point-to-point enforcement was introduced to enforce heavy vehicle speeds in NSW. Point-to-point technology can enforce speed limits over long stretches of road. It is on these longer stretches that heavy vehicle speeding is of greatest concern. Heavy vehicles make up only three per cent of vehicle registrations, and seven per cent of kilometres travelled by NSW vehicles however heavy vehicles are 25 to 50 percent of vehicles travelling on the Newell and are involved in almost 20 per cent of road fatalities along the corridor.

There are two point-to-point enforcement areas on the Newell Highway:

- Newell Highway between Eumungerie (north of Dubbo) and Gilgandra for 27 kilometres.
- Newell Highway between Peak Hill and Tomingley for 17 kilometres.

Safe-T-Cam network

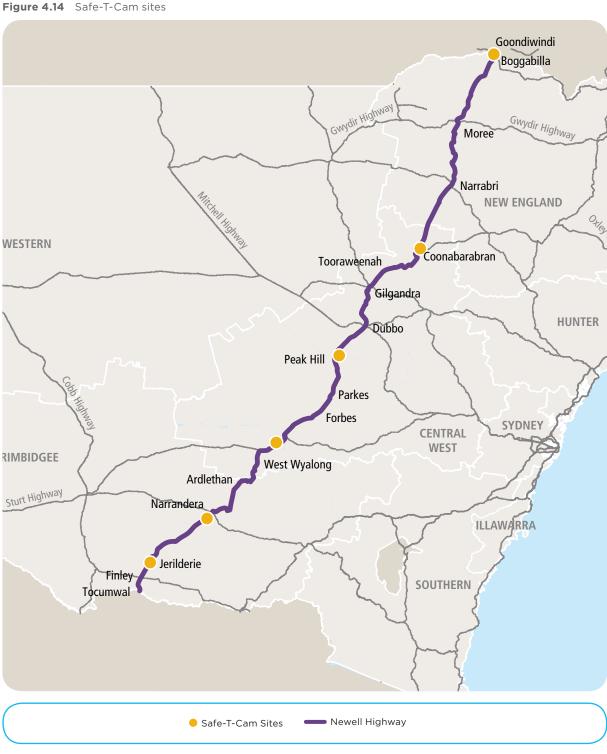
The Safe-T-Cam program is an initiative that aims to reduce the risk associated with heavy vehicle driver fatigue in an effort to prevent heavy vehicle accidents. The Safe-T-Cam system is an automated monitoring system that uses digital camera technology to read heavy vehicles' number plates to enable Roads and Maritime Services to monitor heavy vehicle movements.

Safe-T-Cam detects and provides data on heavy vehicle incidents relating to:

- · Driver fatigue
- Registration
- Failure to enter Heavy Vehicle Checking Station.

The broad objectives of the Safe-T-Cam program are to:

- Improve road safety by reducing the incidence of heavy vehicle crashes and changing driver and operator behaviour in relation to travel time (driver fatigue)
- Promote compliance with enforcement systems by detecting incidents of heavy vehicle avoidance behaviours
- Identify unregistered heavy vehicles operating on NSW roads and enforce vehicle registration regulations
- Improve the efficiency of Roads and Maritime Services enforcement strategies by establishing improved intelligence of vehicle movements
- Improve traffic management by generating accurate information on heavy vehicle movements throughout NSW.


The Safe-T-Cam network consists of 24 sites located on major routes throughout NSW, clearly marked with roadside signage. There are six sites along the Newell Highway corridor at (Figure 4.14): Jerilderie, Narrandera, Marsden, Tomingley, Coonabarabran, and Boggabilla.

Heavy vehicle enforcement sites

Heavy vehicle fixed on road enforcement sites are part of the Roads and Maritime Services heavy vehicle enforcement program, which includes Roads and Maritime Services mobile enforcement and the Safe-T-Cam network across New South Wales. Roads and Maritime Services uses heavy vehicle fixed on road enforcement sites to intercept and inspect heavy vehicles which may be operating illegally or in an unsafe manner on NSW roads and which therefore pose significant risk to road users, the road infrastructure and the environment.

Currently there are six northbound and six southbound heavy vehicle fixed on road enforcement sites along the Newell Highway at the following locations:

- Grong Grong northbound only
- East of West Wyalong both northbound and southbound
- Daroobalgie 8.7 km north of Forbes, both northbound and southbound
- Brocklehurst 8.5 km north of Dubbo, both northbound and southbound
- Dog Trap Gully 4.6 km north of Coonabarabran, both northbound and southbound
- 7.3 km's north of Moree, both northbound and southbound
- Boggabilla 121 km north of Moree, southbound only

Heavy vehicle rest areas

In moving freight by road, heavy vehicle operators are often required to drive for extended periods of time with fatigue a recognised workplace safety issue for many truck drivers. Heavy vehicle driver fatigue has been identified as a contributor to road crashes and presents a safety risk to all road users.

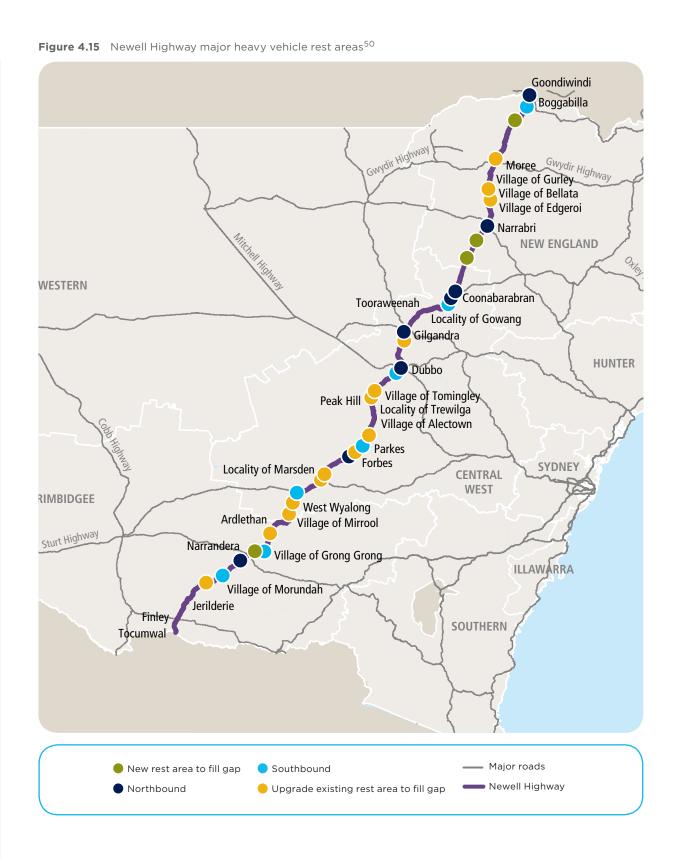
Rest areas enable heavy vehicle operators to meet their legislated rest breaks under fatigue legislation, which states that, "A person must not drive a regulated heavy vehicle on a road or road related area while he or she is impaired by fatigue" 47.

Better trip planning can help avoid driver fatigue. Rest areas and stopping bays need to be strategically located and signposted.

Major rest area

In 2005, the National Transport Commission released the National Guidelines for the Provision of Rest Area Facilities with guidelines for three categories of rest areas, including major rest areas:

"Major rest areas – designed for long rest breaks, offering a range of facilities and separate parking areas for heavy and light vehicles where possible"⁴⁸


In 2010, Roads and Maritime Services published a strategy for Major Heavy Vehicle Rest Areas on Key Rural Freight Routes in NSW⁴⁹, which outlines requirements major rest areas must meet, in response to NSW fatigue management legislation.

As a minimum, major heavy vehicle rest areas should:

- Be generally located at 100 kilometre intervals. While geographical and other physical constraints may require the interval range to be between 80 and 120 kilometres, the maximum limit should be 120 kilometres.
- Provide sites on both sides of the road on parts of the network with high levels of demand.
- Be well signposted for heavy vehicle drivers and have suitable access for ingress and egress.
- Provide designated hard stand parking for heavy vehicles and an appropriate number of parking spaces in line with demand.
- Meet the basic needs of heavy vehicle drivers, including provision of sealed pavements particularly for ingress and egress lanes and ramps, at least one toilet on each site, shaded areas, rubbish bins and tables and chairs.

Roads and Maritime Services has identified 21 northbound and 18 southbound sites that qualify as major heavy vehicle rest areas on the Newell Highway. Northbound, a total of eight rest areas have been identified for upgrade to major heavy vehicle rest areas, including four sites identified to be new rest areas. Southbound, 10 rest areas have been identified for upgrade to meet major heavy vehicle rest area standards (Figure 4.15).

- 47 Road Transport (General) Regulation: under *Road Transports (General) Act 2005*, clause 45 (NSW)
- 48 National Transport Commission 2005, *National Guidelines for the Provision of Rest Area Facilities*, NTC, Melbourne, pg. 26
- 49 Roads and Maritime Services 2010, Roads and Maritime Services Strategy for Major Heavy Vehicle Rest Areas on Key Rural Freight Routes in NSW, Roads and Maritime Services, Sydney

The Heavy Vehicle Safety and Productivity Program (HVSPP) is part of the Australian Government Nation Building Program and provides funding support to improve the safety and productivity of heavy vehicle operations across Australia. Its objectives are to:

- Reduce the proportion of road crashes involving heavy vehicles by targeting heavy vehicle driver fatigue
- Increase productivity by enhancing the capacity of existing roads.

The first two rounds of the HVSPP provided \$70 million in the period 2008-09 to 2011-12. NSW received 25 per cent of this total. Already, the majority of identified major rest area enhancements have been delivered through HVSPP funding in rounds one and two, assisting both the road freight industry and broader logistics chain to achieve compliance with fatigue legislation.

On the Newell Highway the following projects have had funding approval (Table 4.19):

- Round one: Combination of three new rest areas, 10 rest area upgrades, nine blue reflector light upgrades and planning for the construction of three rest areas.
- Round two: One new rest area and upgrade of one existing rest area.

Table 4.19 Funded projects under round one and two of HVSPP

Roui	Round 1						
1	Yarraman, Newell Highway, 70.6km north of Coonabarabran	Construction of a new heavy vehicle rest area					
2	Bohena Creek, Newell Highway, 102.7km north of Coonabarabran						
3	Mungle Creek, Newell Highway, 80km north of Moree	_					
4	Marthaguy Creek, Newell Highway, 12.5km south of Gilgandra	Upgrade of an existing heavy vehicle rest area					
5	South Tomingley, Newell Highway, 60km north of Parkes	_					
6	Tookey Creek, Newell Highway, 52.9km north of Narrabri						
7	Woolabrar, Newell Highway, 49km north of Narrabri						
8	North Star, Newell Highway, 84.3km north of Moree	_					
9	Bundure, Newell Highway, 69km south of Narrandera	_					
10	Sandside, Newell Highway, 51km south of Narrandera						
11	Ardlethan, Newell Highway, 81km south West Wyalong						
12	Mahda, Newell Highway, 34km south of West Wyalong						
13	Marsden, Newell Highway, 36km north of West Wyalong						

Round 1 14 Newell Highway, 35km north of Parkes 15 Newell Highway, 14km north of Gilgandra 16 Newell Highway, 38km north of Gilgandra 17 Newell Highway, 68km north of Moree 18 Newell Highway, 83.9km north of Gilgandra (southbound) 19 Newell Highway, 12.2km north of Gilgandra (southbound) 20 Newell Highway, 38.1km north of Parkes (northbound) 21 Newell Highway, 37km north of Coonabarabran	^F an existing Green arking bay
15 Newell Highway, 14km north of Gilgandra 16 Newell Highway, 38km north of Gilgandra 17 Newell Highway, 68km north of Moree 18 Newell Highway, 83.9km north of Gilgandra (southbound) 19 Newell Highway, 12.2km north of Gilgandra (southbound) 20 Newell Highway, 38.1km north of Parkes (northbound)	_
16 Newell Highway, 38km north of Gilgandra 17 Newell Highway, 68km north of Moree 18 Newell Highway, 83.9km north of Gilgandra (southbound) 19 Newell Highway, 12.2km north of Gilgandra (southbound) 20 Newell Highway, 38.1km north of Parkes (northbound)	arking bay
Newell Highway, 68km north of Moree Newell Highway, 83.9km north of Gilgandra (southbound) Newell Highway, 12.2km north of Gilgandra (southbound) Newell Highway, 38.1km north of Parkes (northbound)	
18 Newell Highway, 83.9km north of Gilgandra (southbound) 19 Newell Highway, 12.2km north of Gilgandra (southbound) 20 Newell Highway, 38.1km north of Parkes (northbound)	
 Newell Highway, 12.2km north of Gilgandra (southbound) Newell Highway, 38.1km north of Parkes (northbound) 	
Newell Highway, 38.1km north of Parkes (northbound)	
21 Newell Highway, 37km north of Coonabarabran	
(southbound)	
Newell Highway, 82.5km north of Parkes (southbound)	
23 Newell Highway, 14km east of Narrandera Planning fo	r the construction
24 Gillenbah, Newell Highway, 1km south of Narrandera of a new he	eavy vehicle rest
25 Charcoal Tank, Newell Highway, 9km south of area	
West Wyalong	
Round 2	
1 Firetail rest area on the Newell Highway, 5km north of Construction	on of a new heavy
Grong Grong vehicle rest	area
	an existing heavy
vehicle rest	area

In the latest round of funding NSW and the Australian Government was able to approve works on the Newell Highway for two rest areas upgrades and a signage strategy to be implemented over 2012-13 and 2013-14, as set out in Table 4.20.

 Table 4.20
 Funded projects under round three of HVSPP

Round 3						
1	Newell Highway – Bohena rest area	Upgrade of an existing heavy vehicle rest area with an acceleration lane				
2	Newell Highway – Route Signage Strategy	Consistent signage to show distance to the next heavy vehicle rest stop at all major rest areas along the route from Marsden to Goondiwindi				
3	Newell Highway - Gillenbah rest area	Upgrade of an existing heavy vehicle rest area				
4	Smart Rest Area – Cooperative Intelligent Transport System (C-ITS) trial Narrabri to Gilgandra	Explore the use of C-ITS for heavy vehicle drivers to locate rest areas and to explore the potential integration with existing systems such as electronic work diaries				

An analysis of rest areas along the Newell Highway confirms that the following work has not been completed and needs more consideration:

 Upgrade/relocate Charcoal Tank rest area (127km north of Narrandera and 9km south of West Wyalong) to provide a combined rest area including parking for 8 trucks, a toilet, improved access, signage, shade, shelter, landscaping, tables/chairs

All the other major rest areas identified by Roads and Maritime Services for enhancement in 2010 have been now funded and will be completed over 2013-14.

Other rest areas

The rest areas along the Newell Highway are split into three categories, with each offering different levels of facilities and functions (Table 4.21).

Table 4.21 Rest areas along the highway

Types of rest area	Target frequency along the corridor	Compliance with the target?
Major heavy vehicle rest areas	100 km	Yes
Minor rest areas	50 km*	Further investigation is required
Informal truck parking bays or Green reflector sites	30 km*	Further investigation is required

^{*} National Transport Commission, 2005, National Guidelines for the Provision of Rest Area Facilities, Melbourne, pg. 27

In addition to major heavy vehicle rest areas, there are 109 minor rest areas – or 'hard stand' opportunities – for all drivers, including local traffic, light vehicles and caravans. These are provided through truck parking bays and informal heavy vehicle stopping areas including green reflector sites.

"Minor Rest Areas: These areas are designed for shorter rest breaks, and at a minimum should provide sufficient parking space for both heavy and light vehicles. While it is not anticipated that these stops will be used for long rest breaks/sleep opportunities, separate parking areas for heavy and light vehicles may be required at some locations."

"Truck Parking Bays: These areas are primarily designed to allow drivers of heavy vehicles to conduct short, purpose-based stops including load checks, completing logbooks and addressing associated operational needs." ⁵¹

⁵¹ National Transport Commission 2005, *National Guidelines for the Provision of Rest Area Facilities*, NTC, Melbourne, p. 26

The adequacy of the major heavy vehicle rest areas meeting driver needs will continue to be monitored and improved where necessary. The frequency of minor rest areas and informal parking areas will be further investigated to meet the above targets.

Major heavy vehicle rest area along Newell Highway at Tomingley

Minor rest area at Mountain Creek south of Dubbo

Informal parking area

Truck rest area near Tomingley

4.4 Road design and geometry

Horizontal curves

Curves are needed to allow motorists to negotiate the road at a gradual rate. The curve radius is dependent on the design speed, super elevation and friction of the roadway. One important consideration in assessing curve radii is the sight distance provided relative to the design speed. Motorists need to be able to navigate through curves efficiently while at the same time assessing any potential danger on the roadway in enough time to avoid an accident.

Roads and Maritime Services Network
Performance Measures and Planning Targets
recommends a target operating speed of
110 km/h for all rural sections of the Newell
Highway, as it is a class 4R asset⁵². To
allow for an operating speed of 110 km/h,
the *AUSTROADS* Guide to Road Design
recommends providing a minimum horizontal
curve of 600 metres⁵³.

About four per cent of the Newell Highway comprises curves with radii of less than 600 metres, compared with the NSW average for rural roads of 13 per cent⁵⁴.

There are more tight curves between Gilgandra and Coonabarabran and between Boggabilla and Goondiwindi than on other rural sections of the Newell Highway.

Wire rope on curve near Trewilga

- 52 Roads and Maritime Services 2010, Network Performance Measures and Network Planning Targets, Roads and Maritime Services, Sydney, p.38
- 53 Austroads 2010, *Guide to Road Design: Part 3: Geometric Design*, Austroads, Sydney
- 54 Levett, S 2010, Curves, clear zones, shoulder widths on rural roads, Centre for Road Safety internal presentation, Roads and Maritime Services, Sydney

Grades

Travel efficiency and road safety can be directly influenced by the grade of a road. Sections of road with steep uphill grades over long distances often experience 'platoons' of traffic and in turn perform less efficiently than roads without grade constraints. This is particularly relevant for roads with higher traffic volumes and with a high proportion of heavy vehicles.

In addition, roads with steep grades offer limited opportunities for overtaking, which may increase the incidence of crashes due to driver frustration. Steeper grades are particularly significant on roads where there are many heavy vehicles, because freight costs increase with fuel consumption and slower speeds. From an environmental perspective, steeper grades result in high vehicle emissions. Steeper grades may also impede motorists' ability to see any hazards ahead on the road.

As a guide, Roads and Maritime Services Network Performance Measures and Planning Targets recommend maximum grades of six per cent for rural Class 4 roads on flat or rolling terrain⁵⁵. Less than one per cent of the total road length of the Newell Highway has grades steeper than the performance target (Table 4.22).

While the lengths of road on the Newell Highway that do exceed this nominated grade are generally less than 100 metres long and are of only minor concern, there are, however, several longer sections of road with grades exceeding six per cent:

- Three short lengths between Uargon Creek and Wandillialbah Creek (170 metres, 140 metres and 300 metres).
- 1.3 kilometre section between Blackburns Creek and Belar Creek.
- 240 metre section between Merryula Creek and Binnaway Hill.

Overall, grade is not a significant issue along the entire length of the Highway.

55 Roads and Maritime Services 2010, Network Performance Measures and Network Planning Targets, Roads and Maritime Services, Sydney, p.40

 Table 4.22
 Vertical grades

Highway planning section	≤ 6% grade	> 6% grade
5. Narrandera to Grong Grong	99.7%	0.3%
11. Parkes to Tomingley	99.9%	0.1%
12. Tomingley to Dubbo	99.8%	0.2%
14. Gilgandra to Gowang	98.4%	1.6%
15. Gowang to Coonabarabran	96.4%	3.6%
Sub-total Zone 1: Tocumwal to Marsden	100.0%	-
Sub-total Zone 2: Marsden to Coonabarabran	99.4%	0.6%
Sub-total Zone 3: Coonabarabran to Goondiwindi	100.0%	-
Total (by length)	99.8%	0.2%

Steep grades on curves

Steep grades and tight road curves can combine to increase the risk to motorists travelling on the road. This combination can obstruct how far motorists can see ahead – reducing their capability to assess potential conflict.

Most of the highway's excessive vertical grades occur where horizontal curves are in excess of 600 metres. There are, however, rural segments with steep grades on tighter curves, in particular between Gilgandra and Coonabarabran.

Substantial lengths of the Newell Highway are relatively old and may not have been designed to account for increased heavy vehicle traffic. While alignments in these locations have been designed to meet appropriate standards at the time they were built construction, they may no longer be suitable for current traffic and could present road safety challenges in the future.

Warrumbungle Ranges between Tooraweenah and Coonabarabran

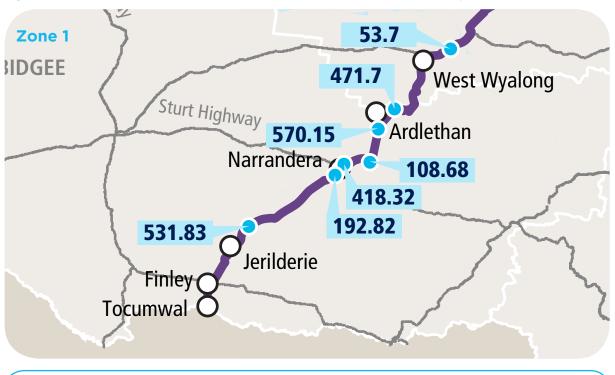
Speed on curves

Run off road on curve crashes are overrepresented in NSW crash statistics. To improve road safety, a road with a 110 km/h speed zone should have a minimum horizontal curve radius of 600 metres.

Most curves on the Newell Highway meet this standard. However, curves on the Newell Highway fall below 600 metres on around three per cent of lengths in 110 km/h speed zones – equal to about 20 kilometres of the highway. These tight curves are shown in Figure 4.16, Figure 4.17 and Figure 4.18.

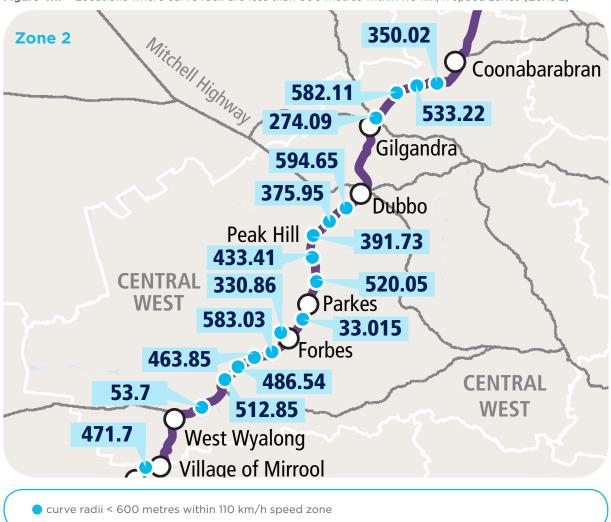
As there are a number of tight curves through the Warrumbungle ranges, the Newell Highway's speed zone has been reduced from 110 km/h to 100 km/h from Tooraweenah to just south of Coonabarabran. A longer term priority may be to improve the alignment to a 110km/h standard. In the shorter to medium term, some formation widening may be necessary to accommodate PBS class 3(a) and road train vehicles.

In addition, an 11 km section 40 km north of Parkes, through Trewilga, has been identified as having poor horizontal and vertical alignment, resulting in reduced travel speeds. The section at Trewilga has an elevated crash rate compared to the class average.


Advisory speed sign near Trewilga

Wire rope safety barrier on road curve near Trewilga

Figure 4.16 Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 1)



curve radii < 600 metres within 110 km/h speed zone

Figure 4.17 Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 2)

Typical alignment between Coonabarabran and Narrabri near the Pilliga

Figure 4.18 Locations where curve radii are less than 600 metres within 110 km/h speed zones (Zone 3)

Lane widths

Lane widths influence road capacity, comfort and safety. The desirable lane width on rural roads is 3.5 metres, which allows large vehicles to pass or overtake without needing to move sideways towards the lane's outer edge. Wider lane widths also increase clearance between opposing vehicles and therefore have potential to reduce the incidence of head-on and 'run off road' crashes. Where lane widths are restricted, the ability of heavy vehicles to access a route can also be affected.

Roads and Maritime Services Network
Performance Measures and Planning Targets
guideline recommends a minimum lane width
of 3.5 metres should be maintained for all
sections of the Newell Highway, as it is a Class
4R asset.

A review of lane widths for non-urban sections of the Newell Highway (Table 4.24) indicates that lane widths meet the required standards across 84.1 per cent of the corridor. The remaining 15.9 per cent of the road way does not meet this minimum standard for lane width.

Coonabarabran to Narrabri is the worst performing section with around 60 per cent compliance with the 3.5 metre lane width.

Generally, sub-standard locations are scattered throughout each planning section; however there are six notable underperforming sections of road. These are:

- 33 kilometres half way between Coonabarabran and Narrabri
- 14 kilometres about 40 kilometres north of Narrabri
- 15 kilometres about 15 kilometres north of Dubbo
- 12 kilometres about 31 kilometres north of Parkes
- 11 kilometres about 74 kilometres north of Moree
- 10 kilometres about seven kilometres south of Gilgandra.

While lane widths less than 3.5 metres do not meet performance targets, particular attention should be focused on road sections which have lane widths significantly below the performance target – that is, less than or equal to 3.25 metre road widths. There are two significant road sections along the northern end of the Newell Highway below this level:

- A 33 kilometre section about half way between Coonabarabran and Narrabri.
- An eight kilometre section leading into and out of Boggabilla, towards the northern end of the Newell Highway.

Specifically, the 33 kilometre section between Coonabarabran and Narrabri has narrow shoulders and narrow lanes.

There are other shorter sections of the highway with road widths less than 3.25 metres. However, it should be noted that while these narrower pavements do not meet the current criteria, they are likely a remnant of historical design standards.

The locations where the lane width is less than 3.25 metres are detailed in Figure 4.23. These areas should be addressed and pavements widened so that they are closer to current design.

Oversize vehicle south of Coonabarabran

Table 4.23 Lane widths

Highway planning section	Performance target	< 3.0 m	3.0-<3.25 m	3.25-<3.5 m	Nominal Lane Width ≥ 3.5 m
1. Tocumwal to Finley	> 3.5 m	-	-	6.8%	93.2%
2. Finley to Jerilderie	> 3.5 m	-	-	4.5%	95.5%
3. Jerilderie to Morundah*	> 3.5 m	-	-	4.7%	95.3%
4. Morundah to Narrandera*	> 3.5 m	-	5.9%	4.6%	89.5%
5. Narrandera to Grong Grong*	> 3.5 m	-	-	24.5%	75.5%
6. Grong Grong to Ardlethan	> 3.5 m	-	10.6%	8.6%	80.8%
7. Ardlethan to Mirrool*	> 3.5 m	-	-	-	100.0%
8. Mirrool to West Wyalong	> 3.5 m	-	-	9.1%	90.9%
9. West Wyalong to Forbes	> 3.5 m	-	1.2%	10.0%	88.8%
10. Forbes to Parkes	> 3.5 m	-	-	2.3%	97.7%
11. Parkes to Tomingley	> 3.5 m	-	-	17.5%	82.5%
12. Tomingley to Dubbo	> 3.5 m	-	-	2.1%	97.9%
13. Dubbo to Gilgandra	> 3.5 m	-	4.4%	14.0%	81.7%
14. Gilgandra to Gowang	> 3.5 m	-	4.3%	12.0%	83.7%
15. Gowang to Coonabarabran*	> 3.5 m	1.8%	0.5%	16.4%	81.3%
16. Coonabarabran to Narrabri*	> 3.5 m	-	17.1%	22.4%	60.5%
17. Narrabri to Moree*	> 3.5 m	-	3.0%	19.0%	78.1%
18. Moree to Boggabilla	> 3.5 m	-	6.4%	8.4%	85.2%
19. Boggabilla to Goondiwindi*	> 3.5 m	-	6.3%	-	93.7%
Sub-total Zone 1: Tocumwal to Marsden	> 3.5 m	-	2.2%	6.6%	91.2%
Sub-total Zone 2: Marsden to Coonabarabran	> 3.5 m	0.2%	1.5%	12.0%	86.4%
Sub-total Zone 3: Coonabarabran to Goondiwindi	> 3.5 m	-	9.1%	16.2%	74.7%
Total (by length)	> 3.5 m	0.1%	4.2%	11.6%	84.1%

^{*} See Table 4.25 for details of narrow bridges and culverts within section

Figure 4.19 Locations where lane widths are less than 3.25 metres

Bridge widths are also a significant factor, because they are generally the narrowest point along any route. The *Performance Based Standards Scheme Network Classification Guidelines* recommends a minimum width of 8.4 m for bridges when the AADT is greater than 500 vehicles. Along the Newell Highway there are 11 bridges that are less than 8.4 m wide (Table 4.24). There is also an additional series of 5 culverts between 61.4 and 67 kilometres north of Narrandera that are less than 8.4 m.

The PBS Guidelines recommend that:

"A visual inspection and risk assessment should be undertaken for bridges not providing the minimum recommended widths considering:

- Bridge approach sight distance
- Ability of drivers on a bridge approach to see vehicles on the opposing approach
- Willingness of drivers to adjust trajectory or entry onto a bridge to accommodate the width needs of large vehicles." 56

Appropriate bridge widths need to be increased on curved approaches. These assessments will guide access provided to PBS Class 3(a) vehicles. Where access cannot be provided narrow bridges may need to be widened.

Table 4.24 Narrow bridges and culverts less than 8.4 m wide

Bridge Number	Description	Width
5523	Bridge over railway - 6.43 km S of Morundah	7.3 m
5529	Culvert over Poison Waterholes Creek – 4.4 km S of Narrandera	7.9 m
5530	Culvert over Gillenbah Creek - 0.5 km S of Sturt Highway	8.1 m
5545	Bridge No. 2 Mirrool Creek - 1.1 km NE of Ardlethan	7.3 m
3532	Bridge over Jack Hall's Creek - 4.56 km SW of Coonabarabran	7.4 m
3551	Bridge over Bohena Creek - 17.58 km S of Narrabri	7.4 m
3552	Bridge over Spring Creek - 12.41 km S of Narrabri	7.4 m
3856	Bridge over Doctors Creek - Narrabri	7.4 m
2888	Bridge over Little Bumble Creek - 34.84 km S of Moree	7.4 m
2898	4 Cell Culvert - 8.21 km S of Moree	7.3 m
2914	Bridge over Whalan Creek - 27.16 km SSW of Goondiwindi	7.4 m

⁵⁶ National Transport Commission 2007, Performance Based Standards Scheme Network Classification Guidelines, NTC, p. 8

Sealed shoulder widths

Sealed shoulder widths are the portion of the road that extend beyond the marked traffic lanes. Pavements with shoulder treatments last longer than road sections without it. Sealed shoulder treatments improve the pavement structure and reduce moisture levels. Sealed shoulders also provide road safety benefits, providing room which can allow a driver to correct an errant vehicle. A sealed shoulder can assist in reducing the potential likelihood and severity of a crash.

As a guide, the network planning targets recommend a minimum sealed shoulder width of two metres for rural Class 4 roads⁵⁷. Extra shoulder width is required on the outside of curves. The Network and Corridor Planning Practice Notes indicate that, on average, 15 per cent of Class 4 roads in NSW have sealed shoulder widths less than the desirable minimum⁵⁸.

As illustrated in Table 4.25, 30 per cent of the Newell Highway has sealed shoulders at least two metres wide in both directions. The remaining 70 per cent of the highway has sealed shoulders less than the recommended minimum sealed shoulder width.

Although more sealed shoulder widths are being provided where possible, a number of constraints, including the location of road cuttings, the width of the road corridor, environmental issues and general constructability issues makes achieving the recommended minimum sealed shoulder widths a significant challenge.

Highway planning sections with greater than 10 per cent of shoulder widths less than one metre include Morundah to Narrandera, Mirrool to West Wyalong, Forbes to Parkes, Dubbo to Gilgandra and Gowang to Boggabilla. While the shoulder widths of these roads need to be progressively upgraded to meet the requirements of the Roads and Maritime Services Network Performance Measures and Network Planning Targets, in addition shoulder widths are being sacrificed to accommodate the wide centre line treatment (see discussion below).

Typical alignment between Forbes and Parkes

- 57 Roads and Maritime Services 2010, *Network Performance Measures and Network Planning Targets*, Roads and Maritime Services, Sydney, p. 45
- 58 Roads and Maritime Services 2008, *Network and Corridor Planning Practice Notes*, Roads and Maritime Services, Sydney, p. 29

 Table 4.25
 Sealed shoulder width

Highway planning section	Target minimum	Shou	ulder widths (me	tres)
nighway planning section	width	<1 m	≥1 & <2 m	≥2.0 m
1. Tocumwal to Finley	2.0 m	2.2%	56.6%	41.2%
2. Finley to Jerilderie	2.0 m	-	73.2%	26.8%
3. Jerilderie to Morundah	2.0 m	9.1%	49.1%	41.8%
4. Morundah to Narrandera	2.0 m	18.0%	43.2%	38.8%
5. Narrandera to Grong Grong	2.0 m	8.9%	59.6%	31.4%
6. Grong Grong to Ardlethan	2.0 m	-	47.6%	52.4%
7. Ardlethan to Mirrool	2.0 m	8.6%	48.2%	43.2%
8. Mirrool to West Wyalong	2.0 m	22.2%	17.1%	60.7%
9. West Wyalong to Forbes	2.0 m	5.1%	66.6%	28.3%
10. Forbes to Parkes	2.0 m	19.6%	75.4%	5.0%
11. Parkes to Tomingley	2.0 m	7.2%	55.4%	37.4%
12. Tomingley to Dubbo	2.0 m	3.1%	55.5%	41.4%
13. Dubbo to Gilgandra	2.0 m	18.2%	67.9%	13.8%
14. Gilgandra to Gowang	2.0 m	2.5%	85.2%	12.3%
15. Gowang to Coonabarabran	2.0 m	16.4%	55.6%	28.0%
16. Coonabarabran to Narrabri	2.0 m	11.6%	74.4%	14.0%
17. Narrabri to Moree	2.0 m	11.9%	51.0%	37.1%
18. Moree to Boggabilla	2.0 m	33.2%	39.9%	27.0%
19. Boggabilla to Goondiwindi	2.0 m	-	-	-
Sub-total Zone 1: Tocumwal to Marsden		8.5%	44.5%	47.1%
Sub-total Zone 2: Marsden to Coonabarabran		10.4%	69.5%	20.1%
Sub-total Zone 3: Coonabarabran to Goondiwindi		17.3%	57.2%	25.5%
Total (by length)		11.8%	57.6%	30.6%

Wide Centre Line Treatment

The Wide Centre Line Treatment (WCT) is a marked gap in the road 1.2 metres wide. Unlike median strips, the WCT allows vehicles to overtake where it is safe to do so. Ideally, the line marking will have audio-tactile properties along both the centre line and edge line to alert drivers if they are drifting outside their lane. The space between the through lanes provides room for errant vehicles to correct and avoid conflict. The wide centre line treatment caters for most overtaking manoeuvres, but may also restrict overtaking if a wide barrier line is used.

The photo below shows a 100 mm wide, solid line abutted by a 100 mm wide audio-tactile line, an 800 mm gap to another 100 mm wide audio-tactile line abutted by a 100 mm wide solid line. In total, this resulted in a 1.2 m gap (800 mm + 200 mm + 200 mm) between opposing directions of travel (see Figure 4.21). The current Network Planning Target total formation width for the Newell Highway is 11 metres, two 3.5 metres and two metres sealed shoulders. The Newell Highway Safety Review (2009) suggested a wide centre line treatment improves road safety along the route by helping to reduce head-on and off road to the right crashes.

The Centre for Road Safety carried out a trial of the wide centre line treatment along the Newell Highway near West Wyalong and Parkes during 2011-12⁵⁹.

The Centre for Road Safety found that where the wide centre line treatment had been implemented, drivers would generally:

- Sit more towards the centre of their lane
- Drive at a more appropriate speed
- Cross the edge line and onto the shoulder less often
- · Cross the centre line less often.

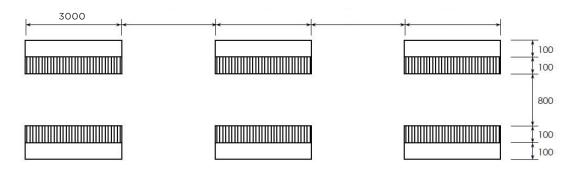
The analysis of results from trialling the wide centre line treatment showed a reduced the risk of interaction between opposing streams of traffic, improved lane discipline and a general reduction in speed at trial locations.

The trial results suggest it is appropriate to progressively implement the wide centre line treatment along the entire length of the Newell Highway. The implementation of the treatment will accommodate bridges, barriers, overtaking lanes and intersections. As with all good road design, specific conditions at each location will influence how the treatment is applied. It is likely a minimum length of approximately one to two kilometres of WCT will be implemented in any location.

Specifically the treatment will be implemented in the following ways⁶⁰:

- For sections with an 11 metre wide pavement formation in good condition, the WCT will be applied as per the trial
- For sections of the highway where the formation is less than 11 metres, an alternative treatment to the WCT may be implemented with an audio tactile centre line marking treatment.
- For sections of the highway being progressively rebuilt with heavy duty pavement, the WCT will be implemented in accordance with the trial.

Wide centreline treatment north of Parkes



59 NSW Centre for Road Safety 2011, Newell Highway Wide Centre Line Trial Final Report

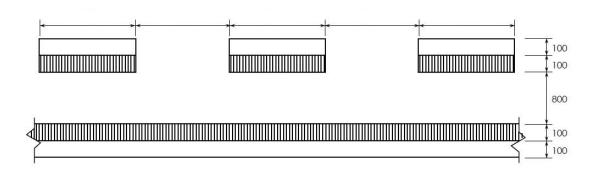
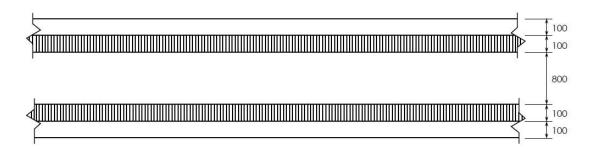

60 Specific technical details relating to the wide centre line marking is contained in separate technical directions

Figure 4.20 Wide centre line treatment road marking scheme details


Overtaking permitted in both directions

Overtaking permitted in one direction

Overtaking not permitted

Clear zones and safety barriers

A clear zone is a width of roadside without any obstructions available for drivers to take corrective action in an emergency. The minimum desirable width of a clear zone depends on traffic volumes, traffic speeds and road geometry.

Roads and Maritime Services Network Performance Measures and Network Planning Targets state that for Class 4R roads the width of the clear zone varies depending on the speed limit⁶¹:

- Three metres for speeds less than 60 km/h.
- Four metres for speeds between 60-80 km/h.
- Five metres for speeds between 80-110 km/h.

Where these clear zone widths cannot be achieved, the need for a barrier should be assessed. A roadside safety barrier is a longitudinal system that prevents vehicle access to a particular area. Barriers must meet specific requirements related to the segment of the road within the immediate area⁶².

The Newell Highway Safety Review saw clear zone works carried out along the full length of the highway. Under this program, a clear zone of six metres on straights and 10 metres on the outside of curves with a radius less than 1000 metres was achieved. Where appropriate, safety barriers were erected at locations where these clear zone widths could not be achieved.

Ideally, clear zones should be designed in accordance with the AUSTROADS Guide to Road Design. However, there are many existing roads, including the Newell Highway, that were developed prior to implementing minimum requirements for clear zones. AUSTROADS guidelines would see clear zones along both sides of the Newell Highway along its full length – including sections with challenging topography such as cut and fill batter constraints, for example in the Pilliga.

Any increase in the width of the corridor's clear zones would improve safety compared to the existing situation, even if it falls short of the AUSTROADS guidelines.

This would, however, involve trade-offs with environmental objectives, high expenditure and potentially stringent environmental mitigation works.

Typical tree replanting to replace trees lost when implementing clear zones

The long term target is to provide roadside safety barriers where needed in all instances where vegetation and clear zone targets cannot be met.

Guard rail on Moree bypass

⁶¹ Roads and Maritime Services 2010, *Network*Performance Measures and Network Planning

Targets, Roads and Maritime Services, Sydney, p. 51

Edge lines

Edge lines provide a continuous, visual guide for drivers by delineating the edge of the roadway. They are designed to make driving safer and more comfortable, particularly at night. Edge lines provide important markings for motorists and in areas with high rates of run off-road crashes, audio tactile edge lines can be effective.

Network planning targets recommend roadways across all types of terrain should have edge lines on a Class 4R Road, provided there is sufficient pavement to accommodate a minimum three metre wide lane between the edge line and centre line⁶³.

The Newell Highway completely meets this guideline with 100 per cent of the corridor treated with edge lines.

However, it should be noted that:

- Edge lines need to be replaced on parts of the highway that have been resealed or patched up
- Edge lines are not practical to implement in some parts of urban towns where the road is generally adjacent to multiple lanes and parking areas.

Edge line treatments are not of concern along the Newell Highway.

Intersections

The network planning targets identify required intersection treatments based on volumes of through-traffic and turning traffic. Minimum intersection treatments relevant to the Newell Highway include⁶⁴:

- BAR and BAL: 'basic treatment right' and 'basic treatment left'
- CHR(s): 'short channelised treatment',
- CHR and CHL: 'channelised treatment right' and 'channelised treatment left'.

The Newell Highway includes 294 rural intersections. Of these, 262 are T-junctions, 19 are four-way crossings and 13 are staggered four-way junctions.

An assessment of all rural intersections along the Newell Highway was carried out in February 2008. The study found:

- 46 intersections had vegetation maintenance issues, resulting in reduced sight distance for drivers
- 21 intersections had significant loose or oversized granular materials on or near the road surface
- 11 intersections had maintenance issues relating to drainage
- There were about 60 observations of poor pavement conditions at an intersection
- 28 intersections included poorly located, missing, damaged or faded signage.
- 42 intersections had defective or missing guideposts and/or pavement markings.

The study identified a number of intersections requiring treatments to improve road safety and traffic.

Since the 2008 study, all identified major intersections and 29 high priority minor intersections have been upgraded.

Flooding

The Newell Highway crosses a large number of floodplains as well as waterways subject to flooding.

Flooding can result in highway closures at multiple locations for hours and, at times, for several days.

The impacts of flooding on the Newell Highway can be measured in terms of:

- Flood volume This contributes to flood duration and level.
- Speed the water moves Faster flowing water causes a greater risk to human life, erosion and infrastructure damage.

- Flood duration Flood events can isolate people and communities, increase travel times and reduce productivity for industry and other road users.
- Extent of flooding Flooding that affects a larger area often causes greater impact.

There are a range of flood types. These include:

- Nuisance flooding Causes public inconvenience, but little or no property damage. Water is typically not deep, is stagnant and generally localised. Nuisance flooding events may last several hours and may slow or prevent access along the highway.
- Flooding caused by rising water ways –
 This type of flooding restricts access. To
 manage it, water is either directed under
 the road through culverts and pipes, or over
 the road through causeways and floodways,
 or in the case of defined water ways, road
 structures such as bridges, are specifically
 built over the water way. During flooding,
 approaches to these bridges can be cut off
 even though the bridge is still above water.
 Flooding may also be localised, but the scale
 and volume of water may cause damage to
 property and infrastructure.
- Sheet flooding where landscape is flat

 In places such as western NSW, sheet
 flooding can occur when large volumes
 of water travel across the landscape
 gradually, causing significant damage
 to embankments, culverts and other
 infrastructure. This damage can occur even
 if the water is not particularly deep.

While the overall reliability of the Newell Highway corridor is considered adequate in terms of journey times, low flood immunity at a number of locations reduces reliability.

Key locations subject to flooding include:

 Tocumwal: Located on the banks of the Murray River, Tocumwal is subject to flooding during large local events or from river levels rising due to an event upstream, however this is usually on the Victorian side.

- Sheet flooding is experienced across the broad flat floodplains from the Victorian border to Narrandera. In addition, flooding caused by river water levels rising occurs at Narrandera from the Murrumbidgee River.
- Narrandera: This area experiences flooding particularly on the section between Narrandera and West Wyalong. This stretch of road is prone to flooding about every five years.
- Marsden: The Bland Creek system at
 Marsden between West Wyalong and Forbes
 is a series of causeways and is usually the
 first part of the Newell highway cut during
 large widespread events. The Bland Creek
 system flows into the Lachlan River System.
- Forbes: The township of Forbes is subject
 to flooding from the Lachlan River. There
 are floodplains both to the north and south
 of Forbes where water covers large areas,
 however, the road is elevated at these locations.
- Tichborne: The Coobang Creek system at Tichborne between Forbes and Parkes is a series of causeways where water crosses the highway for about 2-3 days during large events. The Coobang Creek system flows into the Lachlan River System.
- The City of Dubbo: When the Newell Highway bridge over the Macquarie River is flooded, traffic is diverted along the Mitchell Highway, around town and across a rail level crossing.
- Dubbo to Coonabarabran: There is frequent, generally nuisance, localised flooding between these locations. This will be progressively addressed as the pavement is renewed.
- North of Narrabri: Between 10 and 100 kilometres north of Narrabri, there are five locations where the road is prone to flooding about every five years, and one location where flooding occurs every 10 years.
- North of Moree: Between 10 and 90 kilometres north of Moree, there are 10 locations prone to flooding on average every five to 10 years. These locations will also be addressed as the pavement is renewed.

 South of Narrabri to the Queensland border: This section of the Newell Highway is subject to sheet flooding.

The Newell Highway crosses a number of other major waterways where flooding is generally not a major issue:

- The Newell Highway crosses the Talbragar River north of Dubbo
- The Newell Highway crosses the Castlereagh River at Gilgandra and again at Coonabarabran
- The Newell Highway crosses the Namoi River at Narrabri
- The Newell Highway crosses the Mehi River at Moree

- The Newell Highway crosses the Gwydir River north of Moree
- The Newell Highway crosses the McIntyre River at the Queensland border.

The current flood immunity of the bridges at Tocumwal, Forbes, and Narrandera is one in 100 years and is considered adequate.

However, the flood immunity of the bridge across the Macquarie River on the Newell Highway at Dubbo is less than one in 10 years and is therefore less than ideal. Further long term assessment and analysis of solutions to address this is required.

Flooding in Forbes

B-doubles crossing Emile Serisier bridge in Dubbo at the start of a flood before the bridge is closed (Source: Dubbo Daily Liberal)

Newell Highway at Dubbo in typical large flood event

Sheet flow from Lachlan River system at Caragatel flood channel south of Forbes

Flood damage to the Newell Highway at Moree (February 2012)

Floods in Moree (February 2012)

Flood damage on the Newell Highway north of Moree (February 2012)

Road slope risk rating

Earth embankments and cuttings are constructed to provide for a gradual rise or fall in the terrain around roads. These embankments are designed and built in accordance with design standards.

Part of managing these embankments involves assessing measures necessary to mitigate against possible risk of slips.

A road slope risk rating systematically analyses risks associated with potential slope instability on roads across the State.

Slope stability next to State roads is measured and assessed using Roads and Maritime Services Road Slope Management System (RSMS) database. The risk posed by a slope is measured in terms of an Assessed Risk Level (ARL). Slopes considered to have the highest risk of slippage are rated ARL 1, while slopes with the lowest perceived risk are rated ARL 5. Generally, the target rating for all slopes in a corridor should be ARL 3, 4 or 5.

There are two locations along the Newell Highway corridor where slopes have been assessed in terms of their risk. The first is in the section leading into Forbes and the second is between Coonabarabran and Narrabri. Both have been assessed as an ARL 4, which is considered low risk.

Therefore, from the data available, no action needs to be taken along the Newell Highway, as at this stage slopes have been rated as ARL 3 or above.

ARL 4 slope with rock bolting, shot-crete and rock fall fencing near Coonabarabran.

Road culvert risk rating

There are 1559 culverts along the Newell Highway. These include 835 concrete pipe culverts, 721 concrete box culverts and three steel pipe culverts.

Culverts on the Newell Highway have not been formally, assessed in terms of their condition and risk.

A road culvert risk rating is a systematic analysis of the risks associated with culvert condition on the State road network. This is part of the culvert management framework policy which details the process of monitoring road culverts, including reference to the culvert inventory collection guideline and the culvert risk assessment guideline. If a culvert fails, under extreme conditions, the road surface above the culverts may collapse or be washed away.

All culverts under active management are assessed for risk by calculating the culvert's Assessed Risk Level (ARL). Culverts rated as 'High Risk' are those with a rating ARL 1 or 2. Culverts rated a 'Low Risk' are those with rating ARL 3, 4 or 5.

In June 2010, Roads and Maritime Services started the process by conducting a survey of culverts on the Newell Highway - the first stage of a full risk assessment. The survey located each culvert, recorded inventory data such as its type and size and then conducted a visual assessment of each culvert's condition. This survey has set the foundation for a more detailed condition assessment and risk rating in Stage Two.

Once a full risk assessment of the condition of the culverts has been completed, Roads and Maritime Services will target higher priority culverts to be treated as part of maintaining and upgrading the Newell Highway. The aim from that point will be to progressively upgrade culvert drainage along the Newell Highway. Culverts convey water from one side of a road to another, through a channel or pipe under the road. Flooding is minimised by allowing water to escape, minimising build up and preventing overtopping. This will also ensure the road is accessible during flooding events up to a one in 20 year flood recurrence interval.

Typical Box Culvert north of Moree

225 cell box culvert north of Moree

The overall number of culverts is provided in Table 4.28 below.

Table 4.26 Culvert conditions

Culvert type	Low priority	High priority	Total
Pipe	266	56	835
Box	304	19	721
Composite	-	-	3
Total	570	75	1559

Roads and Maritime Services will assess the risk of culverts failing along the length of the Newell Highway and develop and implement management plans for culverts with a risk rating less than 3.

Bridge load performance

The network planning target for Bridge load performance states that all bridges on State and regional roads should be able to carry Higher Mass Limits loads⁶⁵.

Higher Mass Limits (HML) is a nationally agreed scheme that permits approved heavy vehicles to operate with additional mass on certain types of axle groups, on a restricted road network and subject to specified conditions.

The Australian Government has approved the following axle mass limit increases for vehicles fitted with road friendly suspensions:

- 0.5 tonne increase on tandem axle groups to 17 tonnes
- 2.5 tonne increase on tri-axle groups to 22.5 tonnes
- 1 tonne increase on single drive axles on buses to 10 tonnes
- 1 tonne increase on six-tyred tandem axles to 14 tonnes
- 0.7 tonne increase on steering axles of long combination vehicle prime movers - such as road trains - fitted with wide single tyres, regardless of suspension type.

The Newell Highway is currently an HML route along its entire length. See section 4.3 for details on which vehicles can access particular sections of the corridor.

Bridge structural health

Bridge health is measured using the Roads and Maritime Services Bridge Health Index (BHI). The BHI measures a bridge's condition in terms of 'poor', 'fair', 'good' or 'as built'.

The network planning target for the rural road network is that less than 2.5 per cent of all bridges across the route should have a BHI rating of 'poor'⁶⁶.

There are a total of 208 bridges along the Newell Highway that have been assessed. Of these, three bridges are in 'poor' condition (Figure 4.22) Locations of bridges with poor Bridge Health Index (BHI) as measured by the BHI.

The three bridges with a 'poor' BHI are:

- The bridge over Lake Forbes about 450
 metres southwest of the township. Although
 the bridge is generally in good condition, it
 has a 'poor' BHI because there is greater than
 10 per cent cracking in the pavement surface.
- The bridge over Wallon Creek, located about 30 kilometres north of Moree, is generally in good condition, but has a 'poor' BHI because the roughness of the pavement is considered 'very poor' and has 'minor' levels of rutting.
- The bridge over Nee Nee Creek, located about 46 kilometres north of Moree, is generally in fair condition but has a 'poor' BHI because Abutment A has significant damage and the headstocks of the original section built in 1968 show significant cracking.

Generally, bridges along the Newell Highway meet requirements.

However, the two bridges with poor pavement surface should be considered for resurfacing as part of annual re-sheeting program. The Bridge at Nee Nee Creek will be monitored.

Figure 4.21 Locations of bridges with poor Bridge Health Index (BHI)

Rail crossings

Rail crossings can be either a level crossing – the intersection of a road or walkway and a railway line at the same grade – or a grade separated crossing, where the road and rail line are either under or over one another.

There are currently four grade separated rail crossings on the Newell Highway. These over bridges crossings are in good condition, except the Morundah road over rail bridge (Table 4.27).

There are nine rail level crossings on the Newell highway (Figure 4.22) at the following locations:

- Mirrool 47 kilometres south of West Wyalong town centre
- West Wyalong one kilometre west of West Wyalong town centre
- Forbes 0.75 kilometres north of Forbes town centre
- Tichborne 11.5 kilometres south of Parkes town centre
- Welcome 4.1 kilometres south of Parkes town centre
- Parkes 0.5 kilometres south of Parkes town centre
- Gilgandra 2.1 kilometres south of Gilgandra town centre
- Narrabri three kilometres south of Narrabri town centre
- Camurra 11.5 kilometres north of Moree.

Individual rail and road agencies are responsible for managing safety of their level crossings. Roads and Maritime Services manages rail crossings to improve safety for road and rail users, maintain the State road network's efficiency, and comply with legislative requirements. Improvements to level crossing safety in NSW are prioritised using the Australian Level Crossing Assessment Model (ALCAM).

ALCAM captures detailed survey information to create an inventory of rail crossings. It also assesses risk and allows each rail crossing to be ranked. This, in turn, helps inform decisions about which level crossings require further treatment and what would be the most effective way to upgrade the crossing.

Safety reviews have been undertaken for all railway crossings along the Newell Highway (Table 4.28).

All railway crossings are managed in accordance with their respective safety management plans. The target for the Newell Highway is to:

- Upgrade rail crossings in high speed environments
- Separate the rail crossings from vehicles where practicable as level crossings may act as a barrier to free flow of traffic and result in delays, particularly in urban areas
- If separation is not possible, apply the most appropriate form of control to reduce safety risks

CASE STUDY - PARKES

The rail level crossing in Parkes causes delays to Newell Highway traffic for up to 15 minutes, primarily due to shunting operations on the rail network. Traffic backs up the Newell Highway in both directions and prevents north - south traffic flow along the Newell Highway and east - west across Henry Parkes Way and other local roads. These delays result in localised congestion which is further complicated by an adjacent 90 degree bend in the Newell Highway and the intersecting Henry Parkes Way (Hartigan Avenue). This level crossing does not adequately accommodate PBS 3(a) vehicles.

In the short term examination of the rail crossing and adjacent intersection to determine ways to improve vehicle movements is required. In the longer term, a solution to these issues may be to realign the Newell Highway to bypass the rail level crossing. This could also provide a grade separated crossing of the main western rail line and as such avoid lengthy delays at the current level crossing.

 Table 4.27
 Road over rail bridges

Location	Description of bridge	Additional Comments
Morundah	The Morundah road over rail bridge is narrow and has	The current bridge is too
(3km south	no shoulders. In addition the pavement approaches	narrow to accommodate
of Morundah)	are in poor condition and require remediation.	PBS Class 3(a) vehicles.

Camurra level crossing north of Moree

Rail level crossing in Parkes

Figure 4.22 Rail level crossing locations

 Table 4.28
 Rail crossing locations

Location of rail level crossing	Rural or urban	ACLAM rating and safety management plan prepared?	Flashing Lights	Boom Gates	Additional comments
Mirrool - 47.0 kilometres south of West Wyalong town centre	Rural	Yes	Yes	No	
West Wyalong – one kilometre west of West Wyalong town centre	Urban	Yes	Yes	No	The current alignment of the crossing does not allow HPV access see Table 4.19
Forbes - 0.75 kilometres north of Forbes town centre.	Urban	Yes	Yes	Yes	
Tichborne – 11.5 kilometres south of Parkes town centre	Rural	Yes	Yes	No	This site has been identified for further safety improvements during 2013/14
Welcome - 4.1 kilometres south of Parkes town centre	Rural	Yes	Yes	No	
Parkes – 0.5 kilometres south of Parkes town centre	Urban	Yes	Yes	Yes	The current alignment of the crossing does not allow HPV access see Table 4.18
Gilgandra – 2.1 kilometres south of Gilgandra town centre	Urban	Yes	Yes	Yes	Railway level crossing improvements on the Newell Highway in Gilgandra install boom gates completed in 2012/13
Narrabri – three kilometres south of Narrabri town centre	Urban	Yes	Yes	No	Concept design for further safety improvement was developed in 2011 by the rail infrastructure manager.
Camurra – 11.5 kilometres north of Moree	Rural	Yes	Yes	No	

4.5 Road pavement condition

Road pavement is a layer of crushed rock which sits above the ground the road is built on. This rock can be either in a natural state or modified into materials such as concrete or asphalt.

The surface of a road experiences very high stress under the tyres of passing vehicles, especially heavy vehicles. The natural earth material is too weak to withstand these tyre loadings and therefore a pavement material is overlayed that is strong enough. The pavement material is also stiff and thus spreads the concentrated tyre load over a wider area and passes the load through to the natural earth. Upon reaching the earth the load, now over a wider area, is at a lower stress level and is within the strength capabilities of the natural earth material.

Effectively managing the Newell Highway's pavement condition for the long term is a key task that involves estimating the pavements remaining service life to ensure adequate rates of pavement replacement.

Without adequate rates of replacement the network will deteriorate until eventually the road is compromised. Alternatively, if the pavement replacement rate is too high, resources are spent unnecessarily and inefficiently.

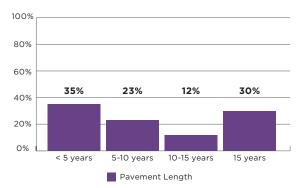
Measuring the remaining structural life of the pavement is therefore a critical role of asset maintenance.

To understand how pavement is performing and to forecast future pavement condition, a number of measures are considered. These include:

- Road pavement structural remaining life
- Intensity of pavement rebuilding
- Pavement types and seals
- Pavement age
- Road surface cracking
- Roughness (rural)
- Road smoothness
- Rutting
- Deflection

Pavement structural remaining life

Structural remaining life is used to estimate the remaining capacity of the pavement – that is, the time remaining until the pavement displays widespread failure and reaches an unserviceable condition. Pavement with zero structural remaining life can no longer have guaranteed ability to accommodate traffic without unpredictable deterioration, in turn, affecting productivity and safety.


Inadequate structural capacity increases the need for lower speed limits, due to road deterioration, particularly after long, rainy periods.

Roads and Maritime Services has developed a risk-based approach to assessing structural remaining life. The strength of existing pavement segments are assessed using a falling weight deflectometer along the entire length of the highway. These values are then analysed using established and accepted methodologies to calculate the structural remaining life.

Based on this analysis, more than a third of the Newell Highway has a structural remaining life of less than five years and over half the pavement has a structural remaining life of less than 10 years (Figure 4.23).

If the current approach to routine maintenance continues – and no major pavement reconstruction is implemented – the pavement will deteriorate in strength and emergency repairs will be a necessity, creating continuous traffic delays.

Figure 4.23 Pavement remaining life

Intensity of pavement rebuilding

The intensity of pavement rebuilding means how much of a road's pavement structure is rebuilt each year (known as the annual pavement replacement rate) compared to long-term sustainable targets⁶⁷.

The remaining life of pavement across the network is a primary factor in determining the rate of replacement.

Roads and Maritime Services is currently developing a pavement replacement strategy for the Newell Highway that provides reasonable service levels and appropriately manages risk.

Pavement failures north of Forbes

Pavement age

Road pavement is designed to provide satisfactory service over a specified period, typically 20 to 40 years for flexible pavements and 40 years for rigid pavements. The age of the pavement is a further indicator of its remaining life. (While pavement can continue to operate beyond its design life, it will experience increasing failures and require emergency repairs. Eventually the pavement will require full reconstruction to continue to support traffic).

Roads and Maritime Services faces considerable challenges in maintaining and renewing its infrastructure to ensure it is serviceable and sustainable now and in the future. Increasing freight traffic, population growth, economic prosperity and environmental sustainability all influence the need for continuing maintenance and rehabilitation of the Newell Highway.

Table 4.29 summarises the age of pavements along Newell Highway. Pavement age on parts of the Newell Highway has exceeded its design life and the current pavement replacement rate is lower than the replacement rate required. Despite this, the majority of pavements are currently displaying ongoing structural serviceability and acceptable roughness, although this is the result of significant and costly localised repairs and traffic disruption

Along the Newell Highway, there is a larger proportion of pavement with pavement age greater than 40 years than sections with less than 20 years. Some sections of the Newell Highway include more than 50 per cent of pavement aged beyond its design life. These areas are located between:

- Finley to Morundah
- Grong Grong to West Wyalong
- Dubbo to Gowang
- Coonabarabran to Narrabri.

Particular note should be made of the two sections Coonabarabran to Narrabri and Ardlethan to West Wyalong where respectively 87 and 85 per cent of the pavement age exceeds 40 years.

Pavement deterioration south of Dubbo

Typical pavement cracking

Table 4.29 Pavement age*

Highway planning section	< 20 years	20-40 years	> 40 years
1. Tocumwal to Finley	50.7%	28.3%	21.0%
2. Finley to Jerilderie	25.1%	8.6%	66.3%
3. Jerilderie to Morundah	38.5%	7.1%	54.4%
4. Morundah to Narrandera	46.0%	9.8%	44.3%
5. Narrandera to Grong Grong	32.6%	21.0%	46.4%
6. Grong Grong to Ardlethan	33.8%	15.5%	50.8%
7. Ardlethan to Mirrool	15.4%	-	84.6%
8. Mirrool to West Wyalong	4.1%	9.9%	86.0%
9. West Wyalong to Forbes	65.7%	16.1%	18.2%
10. Forbes to Parkes	21.8%	64.5%	13.7%
11. Parkes to Tomingley	35.2%	28.1%	36.7%
12. Tomingley to Dubbo	56.5%	4.9%	38.7%
13. Dubbo to Gilgandra	31.5%	11.9%	56.6%
14. Gilgandra to Gowang	23.5%	9.9%	66.6%
15. Gowang to Coonabarabran	29.4%	24.8%	45.8%
16. Coonabarabran to Narrabri	6.7%	6.2%	87.1%
17. Narrabri to Moree	51.8%	0.3%	47.9%
18. Moree to Boggabilla	46.1%	33.1%	20.8%
19. Boggabilla to Goondiwindi	-	91.2%	8.8%
Sub-total Zone 1: Tocumwal to Marsden	36.4%	10.0%	53.7%
Sub-total Zone 2: Marsden to Coonabarabran	37.2%	21.4%	41.4%
Sub-total Zone 3: Coonabarabran to Goondiwindi	32.9%	15.8%	51.3%
Total (by length)	35.6%	16.0%	48.5%

^{*} Where ages is given as age since pavement was last reconstructed, ignoring resurfacings of the pavement

Road works on Newell Highway north of Jerilderie

Pavement types and seals

Pavements provide structural support for vehicles travelling along a route. Weaker or older pavements may become uneven, rutted or rough, leading to inferior travel conditions.

Road pavements are classified as either flexible or rigid. Flexible pavements generally consist of a number of layers of gravel, unbound granular materials, with a bitumen surface. Some flexible pavements incorporate cement-bound or asphalt layers, referred to as composite pavements.

Rigid pavements are Portland-cement concrete pavements. They may or may not be surfaced with asphalt over the concrete base.

The factors that are considered in selecting a pavement type include:

- Anticipated traffic loadings, including likely heavy vehicle use
- Environmental and construction constraints
- Material availability and cost
- The need to optimise lifecycle costs.

The Newell Highway is generally a flexible pavement type. From Narrabri to Goondiwindi the highway is typically constructed on black soil (heavy clay) subgrades and built with rounded river gravels. Black soil subgrades have a low strength and high swell characteristics, which can lead to loss of shape, roughness and rutting in pavement layers. River gravels have a lower strength than other granular materials as they are rounded. This reduces its mechanical stability, leading to shoving and rutting under heavy vehicle loads.

High quality granular materials are not readily available in the vicinity of the Newell Highway corridor. The cost of transporting material from suppliers in regional centres such as Tamworth is high.

Pavement design aims to maximise whole-oflife benefits by selecting the most economical thickness and composition to provide a satisfactory level of service for anticipated traffic. Different pavement configurations are used in NSW, depending on how heavy the traffic is along particular routes. Thicker, stronger and more expensive pavements are used on heavy traffic routes.

Heavy duty pavements should be used on roads with a design traffic loading of one x10⁷ Design Equivalent Standard Axles (DESA) or greater for the first 20 years of service⁶⁸.

Typical forms of heavy duty pavements include:

- Rigid:
 - Plain concrete
 - Joint reinforced concrete
 - Continually reinforced concrete
- Flexible:
 - Full depth asphalt
 - Thick asphalt over cemented sub-base
 - Asphalt over blast furnace slag
 - Thick asphalt over lean mix concrete.

Traffic loadings on the Newell Highway are in excess of one x10⁷ DESA (for a 20 year design life), and in some locations, for example from Narrabri to Goondiwindi, they are equal to or greater than two to three x10⁷ Design Equivalent Standard Axles (DESA). This section of the Newell Highway comprises of 40 per cent to 55 per cent heavy vehicles, which through increasing tyre pressures are subjecting the pavement base to increasing point loadings stresses. Pavement has been reconstructed using conventional, flexible pavements with crushed rock materials. Heavy duty pavements have not been adopted due to the high initial cost.

Recent rehabilitation and reconstruction works north of Narrabri have not provided a satisfactory level of service and were heavy patched within five to 10 years due to severe pavement stress. This heavy patching is ongoing, resulting in high ongoing maintenance costs. This suggests the granular pavement used was not appropriate to withstand traffic loadings along the route.

⁶⁸ Austroads 2012, *Guide to Pavement Technology:* Part 2: Pavement Structural Design, Austroads, Sydney

Table 4.30 summarises the pavement types along the Newell Highway. The vast majority, over 97 per cent, of the Newell Highway is comprised of flexible pavement with a thin bituminous sealed surface. The exception is the segment from Forbes to Parkes, which has a significantly higher proportion of bound granular pavement with asphalt surface.

To minimise the need for costly and reactive pavement treatment, other pavement types with higher shear strength could be used. For example, a heavy duty pavement type would be able to withstand the high traffic of the Newell Highway and would involve much lower maintenance costs. While the initial cost of transitioning to heavy duty pavement would be high, reduced ongoing maintenance costs

would lead to an overall saving in the medium to longer term. A transition to a heavy duty pavement type should be considered for the Newell Highway for whole of life economic benefits. A heavy duty pavement would also offer other benefits, including fewer disruptions to traffic due to reduced failures and patching road works, reduced roughness and lower vehicle operating costs.

Heavy duty pavement replacement work will need to be prioritised so that the sections in the worst condition are addressed first. In the first instance priority will be given to pavement replacement for the northern end of the corridor (north of Narrabri to the Queensland border), because of the contribution the northern section make towards HVP productivity.

Table 4.30 Pavement types

		Flexible		Composit	е			
High	nway planning section	Granular sealed	Granular with asphalt	Bound granular with asphalt	ular with Asphalt over lean		Rigid (concrete)	Bridge
1.	Tocumwal to Finley	100.0%	-	-	-	-	-	-
2.	Finley to Jerilderie	98.1%	1.9%	-	-	-	-	-
3.	Jerilderie to Morundah	97.9%	-	2.1%	-	-	-	-
4.	Morundah to Narrandera	100.0%	-	-	-	-	-	-
5.	Narrandera to Grong Grong	100.0%	-	-	-	-	-	-
6.	Grong Grong to Ardlethan	99.1%	-	0.9%	-	-	-	-
7.	Ardlethan to Mirrool	100.0%	-	-	-	-	-	-
8.	Mirrool to West Wyalong	100.0%	-	-	-	-	-	-
9.	West Wyalong to Forbes	91.0%	-	1.0%	6.1%	0.5%	1.1%	0.2%
10.	Forbes to Parkes	87.6%	2.7%	9.1%	-	0.6%	-	-
11.	Parkes to Tomingley	90.6%	-	3.7%	-	5.7%	-	-
12.	Tomingley to Dubbo	98.9%	-	1.1%	-	-	-	-
13.	Dubbo to Gilgandra	93.2%	-	6.4%	-	-	0.2%	0.2%
14.	Gilgandra to Gowang	98.9%	-	0.7%	-	-	-	0.4%
15.	Gowang to Coonabarabran	99.7%	-	-	-	-	-	0.3%
16.	Coonabarabran to Narrabri	99.7%	-	0.1%	-	0.1%	-	0.1%
17.	Narrabri to Moree	99.2%	-	-	0.6%	-	-	0.2%
18.	Moree to Boggabilla	98.7%	-	0.6%	-	-	-	0.7%
19.	Boggabilla to Goondiwindi	100.0%	-	-	-	-	-	-
	-total Zone 1: Tocumwal to sden	97.0%	0.2%	0.9%	1.9%	-	-	-
	-total Zone 2: Marsden to nabarabran	95.3%	0.2%	2.8%	-	1.2%	0.3%	0.2%
	-total Zone 3: nabarabran to Goondiwindi	99.2%	-	0.2%	0.2%	-	-	0.3%
Tota	al (by length)	97.1%	0.1%	1.4%	0.7%	0.4%	0.1%	0.2%

Road surface cracking

Road surface cracking results primarily from water erosion and is wearing of the surface that protects the pavement's structure

The prevalence of cracking in a road surface is a key performance measure determining the rate of pavement deterioration. Although an increase in untreated cracking of the surface material does not affect traffic efficiency or road safety, it can lead to deterioration of the underlying pavement in the longer term, thereby increasing asset maintenance and bringing forward the need for pavement replacement.

As a guide, the network planning targets for class 4R roads indicate that⁶⁹:

- For asphalt roads, on average, at least 67 per cent of road lengths should exhibit cracking of less than five per cent, and no more than 2.6 per cent of these road lengths should exhibit cracking of more than 30 per cent
- For spray seal surface roads, on average, at least 80.2 per cent of road lengths should exhibit cracking of less than one per cent, and no more than 4.3 per cent of these road lengths should exhibit cracking of more than 10 per cent.

Table 4.31 and Table 4.32 summarises pavement cracking along asphalt concrete and spray sealed pavements on the Newell Highway.

Pavement cracking should continue to be monitored as it can be a precursor to more severe distress.

Large pavement cracking

 Table 4.31
 Pavement cracking (asphaltic concrete)

	per cent of corridor planning section within cracking category			
	< 5%	5-30%	> 30%	
Total Highway performance (by length)	81.5%	18.5%	-	

⁶⁹ Roads and Maritime Services 2010, *Network Performance Measures and Network Planning Targets*, Roads and Maritime Services, Sydney, p. 29

 Table 4.32
 Pavement cracking (spray sealed)

Highway planning section		of corridor p nin cracking (
	≤ 1%	1-10%	> 10%
2. Finley to Jerilderie	63.2%	24.7%	12.0%
4. Morundah to Narrandera	76.2%	23.8%	-
9. West Wyalong to Forbes	69.1%	30.9%	-
10. Forbes to Parkes	64.6%	35.4%	-
13. Dubbo to Gilgandra	59.5%	40.5%	-
14. Gilgandra to Gowang	75.0%	25.0%	-
15. Gowang to Coonabarabran	62.3%	37.4%	-
17. Narrabri to Moree	44.4%	55.2%	-
18. Moree to Boggabilla	73.0%	27.0%	-
19. Boggabilla to Goondiwindi	62.3%	37.7%	-
Sub-total Zone 1: Tocumwal to Marsden	85.8%	13.0%	1.2%
Sub-total Zone 2: Marsden to Coonabarabran	75.1%	24.8%	-
Sub-total Zone 3: Coonabarabran to Goondiwindi	67.1%	32.8%	0.1%
Total (by length)	75.9%	23.7%	0.4%

Typical pavement deformation on the Newell Highway

Roughness (rural)

Road roughness is important to manage as it can affect motorists' comfort and safety while travelling. Roughness is also a significant factor in heavy vehicle operating costs.

Roads and Maritime Services uses a 'roughness' measure to indicate the quality of ride of a pavement surface.

A 'roughness' score (measured using NAASRA 'counts'):

- Below 90 counts per kilometre indicates a good surface
- Between 90-140 counts per kilometre indicates a fair surface
- In excess of 140 counts per kilometre indicates a very poor surface condition.

Cumulative network targets indicate at least 85 per cent of class 4R roads should have less than 90 counts per kilometre, whereas less than 1.5 per cent of Class 4R roads should have more than 140 counts per kilometre⁷⁰. Overall, the Newell Highway satisfies both these planning targets (Table 4.33) and has an overall average roughness measure of 72 counts per kilometre, marginally higher than the NSW-wide rural Class 4 average of 71. This represents an overall road surface in line with Roads and Maritime Services performance measures.

Road smoothness

The NSW State Plan 2021 sets a target to improve the smoothness of State roads. The target is 93 per cent of roads with a travel weighted NAASRA Roughness Measure (NRM) less than 110⁷¹. The Smooth Travel Exposure (STE) indicator forms one of a suite of *AUSTROADS* National Performance Indicators (NPI) and provides a weighted index of the travel performance of roads.

Overall the Newell Highway satisfies the minimum requirement of 93 per cent. The roughness over the entire length is 98.1 per cent NRM< 110 (travel weighted).

Rutting

Rut measurements are relevant to a road safety perspective, as they provide a measure of the ponding of water on the road surface and the associated potential loss of skid resistance⁷².

Roads and Maritime Services uses rutting as another performance measure along Newell Highway. The monitoring and control of rutting has performance implications because of its influence on vehicle tracking, safety (aquaplaning) and dynamic loading.

Rutting is regarded as a key distress mode and has a strong influence on Roads and Maritime Services' maintenance and rehabilitation programs for future pavement rehabilitation or reconstruction works.

Rut measurements show 53 per cent of the Newell Highway currently exhibits 'slight' rutting and two per cent exhibits 'moderate' rutting (Table 4.34). The rest of the route does not exhibit a rutting deficiency.

Table 4.33 Roughness counts per kilometre

		Counts per kilometre	
	< 90	90-140	> 140
Total highway performance (by length)	89.8%	9.9%	0.3%

70 ibid., p. 30

⁷¹ NSW Government 2011, NSW 2021: A Plan to Make NSW Number One, NSW Government, Sydney, p. 38

⁷² Austroads 2007, Guide to Asset Management: Part 5C: Rutting, Austroads, Sydney

More than 50 per cent of the Newell Highway exhibits slight to moderate rutting – highlighting the need to address this aspect of road pavement conditions in future pavement rehabilitation/reconstruction works.

The large proportion of rutting is a reflection of the long lengths with a natural gravel base layer and a thin bitumen surface, which have inadequate strength to support the increasing heavy vehicle tyre loads.

Typical edge pavement failure

Table 4.34 Rutting

Highway planning section	Good (< 5mm)	Slight (5-10mm)	Moderate (10-20mm)	Extreme (> 20mm)
2. Finley to Jerilderie	30.8%	67.0%	2.2%	-
9. West Wyalong to Forbes	43.9%	53.0%	3.1%	-
10. Forbes to Parkes	36.7%	59.1%	4.1%	-
13. Dubbo to Gilgandra	37.1%	59.4%	3.4%	-
14. Gilgandra to Gowang	43.1%	52.1%	4.9%	-
16. Coonabarabran to Narrabri	53.9%	45.7%	0.4%	-
18. Moree to Boggabilla	41.1%	53.8%	5.1%	-
Sub-total Zone 1: Tocumwal to Marsden	43.6%	55.4%	1.0%	-
Sub-total Zone 2: Marsden to Coonabarabran	44.9%	53.3%	1.8%	-
Sub-total Zone 3: Coonabarabran to Goondiwindi	46.7%	51.5%	1.8%	-
Total (by length)	45.0%	53.4%	1.6%	-

Deflection

Once pavement has been built, it is possible to measure its strength, stiffness and load redistribution features. A number of geotechnical techniques achieve this. One of these is measuring the deflection of the pavement under a standard tyre loading. This does not measure the material properties but rather the resulting load redistribution of the pavement as it is currently performing.

Two factors are typically measured and analysed:

- Deflection: indicates the adequacy of the natural earth strength and the pavement stiffness and depth combination.
- **Curvature**: indicates pavement strength and tyre loading combination.

If deflection is higher than tolerable, the pavement needs to be stiffened or its depth increased. The usual treatment in rural areas is to increase pavement depth at a cost of around \$1 million per kilometre. In urban areas, the pavement would usually be removed and replaced with a stiffer pavement at a cost of around \$2 million per kilometre. There are areas of the Newell Highway such as around Moree where highway levels cannot be raised due to the impact that it would have on the floodplain.

If curvatures are higher than tolerable, the pavement's surface layer needs to be strengthened. The usual treatment is to mechanically or chemically modify this layer by mixing cement, lime, bitumen or stone at a cost of around half a million per kilometre.

Deflection data for the Newell Highway is available and has been analysed to give an indication of the sections which need strengthening – either by overlay or surface layer modification.

- Deflection data (Table 4.35 and Figure 4.26) indicates:
- About 77 per cent of the Newell Highway contains pavement a remaining life greater than 20 years
- 3.5 per cent of the pavement has passed its design life and requires strengthening, in the form of an overlay or surface layer modification.
- Corridor planning between Jerilderie and Morundah requires about 12 kilometres of strengthening.

About 20 per cent of the highway will need to be strengthened within the life of this study.

- The curvature analysis (Table 4.36 and Figure 4.25) indicates:
- More than 50 per cent of the highway requires surface layer treatment, particularly between Finley and Morundah and Narrandera and Tomingley

North of Tomingley, pavement requiring surface layer treatment is less, except for the sections between Gowang and Coonabarabran and Moree and Boggabilla, where 60 and 58 per cent respectively exceed their design life.

 Table 4.35
 Deflection analysis

Highway planning section	20+ design life (<820 microns)	0.2-20 year design life (820-1300 microns)	Past design life (>1300 microns)
	%	%	%
1. Tocumwal to Finley	86.1%	11.9%	1.9%
2. Finley to Jerilderie	67.5%	29.3%	3.1%
3. Jerilderie to Morundah	45.3%	39.0%	15.8%
4. Morundah to Narrandera	84.2%	13.6%	2.2%
Narrandera to Grong Grong	68.9%	27.1%	4.0%
6. Grong Grong to Ardlethan	77.3%	18.9%	3.7%
7. Ardlethan to Mirrool	89.3%	10.7%	-
8. Mirrool to West Wyalong	85.7%	13.3%	1.0%
9. (a) West Wyalong to Marsden (b) Marsden to Forbes	71.4%	25.9%	2.7%
10. Forbes to Parkes	78.5%	20.0%	1.5%
11. (a) Parkes to Peak Hill (b) Peak Hill to Tomingley	72.9%	22.8%	4.3%
12. Tomingley to Dubbo	90.3%	8.1%	1.6%
13. Dubbo to Gilgandra	89.0%	10.4%	0.6%
14. Gilgandra to Gowang	87.0%	12.5%	0.5%
15. Gowang to Coonabarabran	79.7%	18.2%	2.1%
16. Coonabarabran to Narrabri	96.4%	3.7%	-
17. Narrabri to Moree	76.8%	17.7%	5.5%
18. Moree to Boggabilla	61.4%	33.7%	4.9%
19. Boggabilla to Goondiwindi	100.0%	-	-
Sub-total Zone 1: Tocumwal to Marsden	71.9%	22.8%	5.2%
Sub-total Zone 2: Marsden to Coonabarabran	80.2%	17.6%	2.2%
Sub-total Zone 3: Coonabarabran to Goondiwindi	78.6%	18.2%	3.3%
Total (by length)	77.0%	19.5%	3.5%

 Table 4.36
 Curvature analysis

Highway planning section	20+ design life (<90 microns)	0.2-20 year design life (90-150 microns)	Past design life (>150 microns)
	%	%	%
1. Tocumwal to Finley	36.4%	16.0%	47.7%
2. Finley to Jerilderie	4.3%	13.9%	81.8%
3. Jerilderie to Morundah	5.5%	22.8%	71.6%
4. Morundah to Narrandera	22.7%	28.6%	48.7%
5. Narrandera to Grong Grong	21.8%	21.6%	56.6%
6. Grong Grong to Ardlethan	11.8%	27.6%	60.6%
7. Ardlethan to Mirrool	4.2%	27.2%	68.6%
8. Mirrool to West Wyalong	4.8%	27.2%	68.0%
9. West Wyalong to Forbes	14.2%	25.2%	60.6%
10. Forbes to Parkes	18.9%	17.3%	63.9%
11. Parkes to Tomingley	9.9%	24.0%	66.2%
12. Tomingley to Dubbo	21.9%	34.7%	43.4%
13. Dubbo to Gilgandra	23.8%	30.2%	46.0%
14. Gilgandra to Gowang	23.4%	30.8%	45.8%
15. Gowang to Coonabarabran	22.6%	17.4%	60.0%
16. Coonabarabran to Narrabri	56.8%	21.7%	21.5%
17. Narrabri to Moree	32.0%	27.2%	40.8%
18. Moree to Boggabilla	12.5%	29.4%	58.1%
19. Boggabilla to Goondiwindi	14.4%	42.8%	42.8%
Sub-total Zone 1: Tocumwal to Marsden	12.5%	23.6%	63.9%
Sub-total Zone 2: Marsden to Coonabarabran	17.8%	26.7%	55.6%
Sub-total Zone 3: Coonabarabran to Goondiwindi	34.0%	25.9%	40.1%
Total (by length)	21.3%	25.4%	53.3%

Flooding of roads in Forbes

Figure 4.24 Pavement deflection

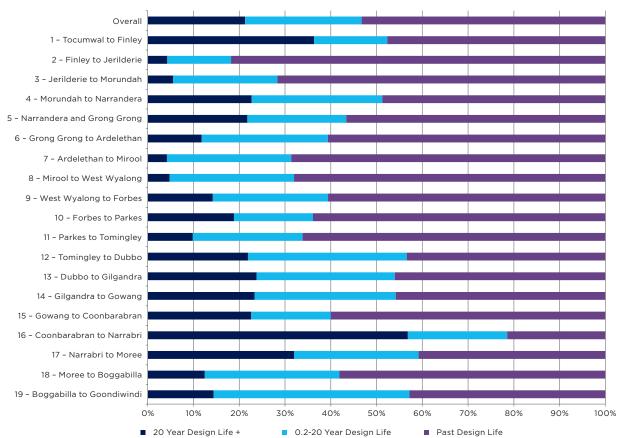


Figure 4.25 Curvature criteria

The intersection of the Newell Highway and Bruxner Way in Boggabilla

4.6 Environment

The Newell Highway corridor is a source of rich biodiversity, cultural heritage and agricultural production.

It passes through predominantly agricultural areas of central NSW. Most homes are set back from the road, however, in some urban areas homes front the road directly.

Flora

The landscape surrounding the road corridor has been largely cleared of native vegetation to make way for agricultural activities. Land has been extensively cleared in western NSW, largely as a result of its long history of agricultural land use, including grazing and cropping.

The major exception is the Pilliga Forest, north of Coonabarabran, which comprises 3000km² of semi arid woodland.

The Newell Highway road reserve itself is a unique biodiversity asset.

In some parts of the Newell Highway corridor, remnant vegetation is exclusively found in the road reserve, with the surrounding environment highly modified or disturbed. The intrinsic value of standalone flora species makes remnant vegetation within the road reserve of very high conservation value.

Trees along north-south corridors such as the Newell Highway provide important connections for migratory birds and other threatened species. The corridor also has eastwest habitat links, generally along creek lines, as well as vegetated road reserves, to other remnant patches, such as the wooded foothills of the Great Dividing Range.

There are 14 different endangered ecological communities present along the corridor.

These communities are listed under either the *Threatened Species Conservation Act*⁷³ or the *Federal Environment Protection and Biodiversity Conservation Act*⁷⁴. They include:

- · The Sandhill Pine Woodland
- Ocasuarina luehmannii Woodland
- Myall Woodland
- Inland Grey Box Woodland
- Grey Box (Eucalyptus microcarpa)
 Grassy Woodlands
- Buloke Woodlands
- Weeping Myall Woodland
- Box-gum Woodland
- Fuzzy Box Woodland
- Poplar Box Woodland
- White Box Yellow Box Blakely's Red Gum Woodland
- Brigalow, Natural Grasslands on Basalt of northern NSW
- Pilliga Box Woodland.

The diversity and complexity of remnant and regenerating vegetation in the road reserve is highly valuable in most cases.

⁷³ Threatened Species Conservation Act 1995 (NSW)

⁷⁴ Federal Environment Protection and Biodiversity Conservation Act 1999 (Cth)

Fauna

Vegetation along the Newell Highway is home to threatened fauna including the Squirrel Glider and the Brown Tree Creeper. It is also a seed resource for threatened trees, grasses and shrubs, while also forming a transparent screen for agricultural activities. It is a slice of central NSW biodiversity highly visible to motorists.

Indigenous and European history

The Newell Highway corridor also has a long Aboriginal and European history. A diverse range of Aboriginal heritage exists along the length of the Newell Highway, including scarred trees, stone implements and

meeting places. Roads and Maritime Services procedures, developed in consultation with local Aboriginal communities, ensure the identification and ongoing protection of sensitive cultural sites within the road corridor.

Non-Aboriginal heritage associated with mining and agriculture also abound, for example, the gold mine at Peak Hill.

It is Roads and Maritime Services' responsibility to manage the road reserve in a way that balances the needs of road users with the needs of the environment. This can be achieved by planting native species and improving habitat conditions outside the clear zone, through re-establishing groundcover and understory species.

Typical scarred tree of significant Aboriginal cultural value adjacent to the Newell Highway

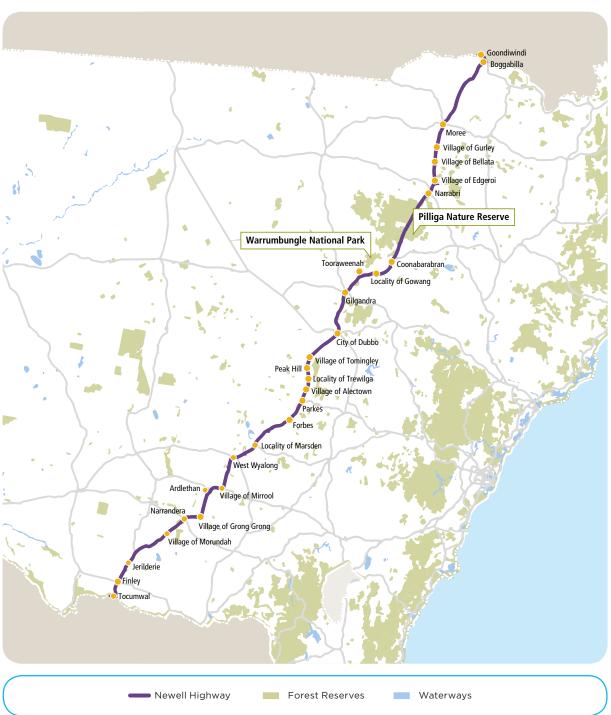


Figure 4.26 National parks, State forests and other protected areas

5 FUTURE CORRIDOR CHANGES

Population growth is expected across NSW regions into the future. With this growth, there is a need to balance increasing demand for housing, infrastructure and services with the protection of productive agricultural land and natural assets. Higher traffic volumes and increased freight flows must be managed, while at the same time preserving the amenity and character of towns and communities.

5.1 Population and demographics

Population forecast

Across regional NSW, a range of changes will influence travel demands over the next two decades. In general, populations in regional NSW have grown by 1.2 per cent per year on average since 2006. This is expected to reduce to an average 0.8 per cent per annum growth through to 2031. Regional populations will continue to get older, with 21 per cent of the population expected to be over 65 years in 2031⁷⁵.

The total population of the Newell Highway corridor is about 124,206 people – of which 63 per cent of the total population live in key towns⁷⁶.

Transport for NSW prepared population projections and growth rates for regional NSW in the *NSW Long Term Transport Master Plan*. These projections show regional NSW is likely to experience uneven population growth from 2011 to 2031. Some regions are expected to grow strongly, while other regions will experience a reduction in population.

As shown in Figure 5.2, population growth varies across NSW, but is generally occurring most rapidly in coastal areas. Along the Newell Highway corridor, the highest population increase is expected in Dubbo, which is set to grow from 41,000 40,491 in 2011 to 45,300 45,400 people in the year 2031, an annual average change of 0.6 per cent between 2011 and 2031. (Insert a new reference: Department of Planning and Infrastructure 2013, New South Wales in the future: Preliminary 2013

As shown in Figure 5.2, population growth varies across NSW, but is generally occurring most rapidly in coastal areas. Along the Newell Highway corridor, the highest population increase is expected in Dubbo, which is set to grow from 41,491 in 2011 to 45,400 people in the year 2031⁷⁷, an annual average change of 0.6 per cent between 2011 and 2031.

Population growth in the corridor is not expected to have a notable impact on the critical freight task of the Newell Highway.

Demographic changes and trends

Population growth in regional NSW will be accompanied by a significant change in demographic structure. The number of people over the age of 65 will increase from 15 per cent of the regional population in 2011 to 21 per cent of the population in 2031⁷⁸.

The Newell Highway corridor is already experiencing this demographic trend. The number of young people and people of working age living in the corridor has decreased, while the number of older residents increased. During the period 2001 to 2011, the number of people of working age in the corridor decreased by 8.9 per cent. The most significant decline was among people aged 25 to 29, where the population declined by 18.2 per cent⁷⁹.

- 77 Department of Planning and Infrastructure 2013, New South Wales in the future: Preliminary 2013 population projections, Preliminary release of NSW state and local government area population projections, DPI, Sydney
- 78 Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 215
- 79 Australian Bureau of Statistics 2011, Census Data, ABS, Canberra

population projections, Preliminary release of NSW state and local government area population projections, DPI, Sydney)

⁷⁵ Transport for NSW 2012, *NSW Long Term Transport Master Plan*, TfNSW, Sydney, p. 214

⁷⁶ Australian Bureau of Statistics 2011, *Census Data*, ABS, Canberra

Figure 5.1 Regional NSW population growth from 2011 to 2031⁸⁰

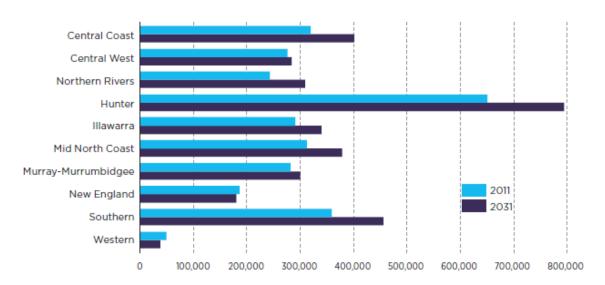
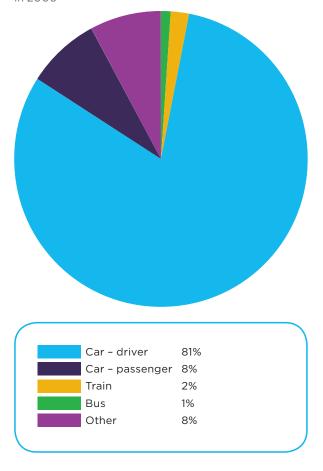



Figure 5.2 Forecast NSW population growth from 2011 to 2031⁸¹


⁸⁰ Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 215

In addition, during this period the number of older people in the corridor increased. For example, the number of residents in the corridor aged between 80 and 84 increased by 15.2 per cent and the number of residents aged over 85 increased by 15 per cent from 2001 to 2006.

As the population ages, demand for public and community transport connections between towns and larger regional centres will grow.

Every day, people in regional NSW make around 7.5 million trips. Most journeys to work are made by car and this trend is likely to continue into the future. As illustrated in Figure 5.3, journey to work trips by train or bus account for only three per cent of regional travel.

Figure 5.3 Journey to work trips in regional NSW in 2006^{82}

In regional areas, levels of car ownership are very high and motor vehicles are the main way people choose to move around. 86.8 per cent of households in the corridor own one or more motor vehicles, similar to the Australian average of 86.9 per cent⁸³ About 16.7 per cent of households in the corridor own three or more motor vehicles, which is slightly higher than the Australian average of 15 per cent. This represents a higher than average reliance on cars for commuter and leisure trips.

The proportion of households in the corridor that own at least one motor vehicle varies across the corridor. Moree Plains Shire – where 83.8 per cent of households own one motor vehicle or more – has the lowest rate of car ownership in the corridor, while the Bland Shire has the highest at 90.4 per cent.

⁸² Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney, p. 216

⁸³ Australian Bureau of Statistics 2006, Census Data, ABS, Canberra

5.2 Land use changes

The Newell Highway is not currently subject to any NSW Department of Planning and Infrastructure (DPI) regional strategies, although the draft Murray Regional Strategy⁸⁴ applies to the Murray-Murrumbidgee section of the Newell Highway, near Tocumwal, Berrigan and Finley). DPI works closely with councils, key agencies and groups across Western NSW to manage land use and planning processes. Across the corridor, DPI seeks to promote economic development, protect natural and built resources and help build rural and regional communities.

Urban development in the corridor is concentrated on the major towns and centres. For example, urban developments such as west Dubbo and east Dubbo are likely to result in increased traffic volumes on the Newell Highway.

Typical landscape between Forbes and West Wyalong

There is ongoing development pressure in the coal basin at the northern end of the corridor around Narrabri and Moree Plains. This is due to increased mining activity and the exploration of coal seam gas. Growth in the mining industry is likely to result in land supply and housing issues. New and a greater variety of housing will be needed in the future to cater for expected industry and population growth, including areas like Narrabri Shire. There is likely to be ongoing demand for short-term accommodation and temporary housing. Even in areas with low population growth, there will be demand for new homes to provide greater housing choice.

Box Gum Woodland Endangered Ecological Community near Alectown

5.3 Traffic growth

Traffic growth can be forecast by considering historical average annual daily traffic (AADT) data and projecting population, land use and freight changes in the future.

Annual traffic growth from 1996 to 2005 showed that average linear growth rates for the different sections of the highway varied considerably. These growth rates are shown in Table 5.1.

The highest linear growth rate was recorded near Gil Gil Creek Bridge in Moree Plains Shire, where there was linear traffic growth of 2.7 per cent per annum. TRARR (Traffic on Rural Roads) modelling of traffic forecasts showed the level of service along the highway deteriorated below level of service C by 2021, particularly at the northern end. Therefore, there will be an ongoing need to provide additional overtaking lanes along the corridor and specifically at the northern end.

 Table 5.1 Historical AADT volumes and growth rates (1996 to 2005)

Location (chainage)	1996 AADT	2005 AADT	% Growth per annum	Predicted 2031 AADT
Marsden – at Bland Shire boundary (302 km)	3473	2856	-2.0%	2856*
At Weddin Shire boundary (319.4 km)	3010	2604	-1.5%	2604*
At Forbes Shire boundary (384.7 km)	4442	4597	0.4%	5100
Trewilga - north of Baldry Road (441.1 km)	3682	4490	2.4%	8319
At Parkes Shire boundary (454.4 km)	3964	4040	0.2%	4255
13 mile Creek - Narromine/ Dubbo boundary (488.4 km)	3715	4304	1.8%	6844
1.5 km south of HW7, Victoria Street (513.5 km)	5928	6863	1.8%	10913
Eumungerie – south of MR572, Narromine Road (552.8 km)	3964	4540	1.6%	6859
At Dubbo City boundary (556.9 km)	4347	4769	1.1%	6338
At Gilgandra - Coonabarabran Shire boundary (630.4 km)	3080	3363	1.0%	4356
0.3 km south of Bohena Creek Bridge (632.1 km)	2737	3333	2.4%	6175
Edgeroi – south of road to Curramanga (711.5 km)	4660	4994	0.8%	6144
At Gil Gil Creek Bridge (824.2 km)	3778	4686	2.7%	9368

Where population growth is expected to decline, 2031 AADT has been assumed to equal 2005 AADT due to heavy vehicle growth predictions

5.4 Future freight task and heavy vehicle volumes

The NSW Freight and Port Strategy identifies the freight task in NSW is projected to nearly double to 794 million tonnes by 2031. Mining represents almost half the current task and is expected to remain the single largest freight task in NSW. The total freight task in the Melbourne to Brisbane corridor is estimated to increase from 4.5 million tonnes per year in 2007 to 11.5 million tonnes by 2029⁸⁵.

Road transport is forecast to account for more than two thirds of the total freight task in the Melbourne to Brisbane corridor by 2030, with much of this task assigned to the Newell Highway. Despite forecast improvements in the share of freight movement by rail corridor, it is likely that road transport will remain the dominant method of movement of both interstate and regional freight⁸⁶.

About 70% of intercapital freight currently travelling from Melbourne-Brisbane or Brisbane-Melbourne is carried by road, principally on the Newell Highway in NSW and connecting highways in Victoria and Queensland. This is expected to decrease to around 33% by 2040 if Inland Rail commences operation in 2020⁸⁷.

B-doubles were introduced to the Newell Highway in 1991. Since then, there has been a steady increase in the use of B-doubles, averaging an increase of five per cent per annum. The growth in B-doubles can be attributed to increases in freight demand. It is also noted that there has been a shift from semi-trailers to B-doubles in this time. As operators initially shifted towards B-doubles, semi-trailer numbers declined; however over the last five years this has settled with small growth again being experienced.

The forecast daily truck movements and freight task on the Newell Highway for 2031 is shown in Table 5.2. The highest growth is shown in the northern and southern parts of the corridor of around 80 per cent between 2011 and 2031.

- 85 This estimate is limited to end-to-end freight and does not include freight movements within the corridor.
- 86 Commonwealth of Australia 2007, Melbourne-Brisbane Corridor Strategy: *Building our National Transport Future*, Commonwealth of Australia, Barton, p. 16
- 87 Australian Rail Track Corporation 2010, Melbourne-Brisbane Inland Rail Alignment Study Final Report, ARTC, Adelaide

Table 5.2 Forecast year daily truck annual tonnage (2031) 88

From	To			Daily Trucks	rucks				Freight	Volume (Freight Volume (kilotonnes p.a.)	p.a.)		%
			2011			2031			2011			2031		increase
		Forward	Reverse	Total	Forward	Reverse	Total	Forward	Reverse	Total	Forward	Reverse	Total	from 2011
Tocumwal	Finley	650	650	1,300	1,175	1,175	2,350	4,600	5,800	10,400	8,500	10,300	18,800	81%
Finley	Jerilderie	595	595	1,190	1,045	1,045	2,090	4,400	5,100	9,500	7,900	8,800	16,700	%92
Jerilderie	Morundah	570	570	1,140	1,000	1,000	2,000	4,300	4,800	9,100	7,600	8,400	16,000	%9/
Morundah	Narrandera	570	570	1,140	1,005	1,005	2,010	4,300	4,800	9,100	7,700	8,400	16,100	77%
Narrandera	Grong Grong	470	470	940	830	830	1,660	3,400	4,100	7,500	6,100	7,200	13,300	77%
Grong Grong	Ardletham	465	465	930	820	820	1,640	3,400	4,000	7,400	6,000	7,100	13,100	77%
Ardletham	Mirrool	465	465	930	820	820	1,640	3,400	4,000	7,400	6,000	7,100	13,100	77%
Mirrool	West Wyalong	445	445	890	790	790	1,580	3,200	3,900	7,100	5,800	6,800	12,600	77%
West Wyalong	Marsden	430	430	860	770	770	1,540	3,200	3,700	6,900	5,700	6,600	12,300	78%
Marsden	Forbes	415	415	830	740	740	1,480	3,100	3,500	009'9	5,600	6,200	11,800	%62
Forbes	Parkes	430	430	860	765	765	1,530	3,300	3,600	006'9	5,800	6,400	12,200	77%
Parkes	Tomingley	395	395	790	069	069	1,380	3,100	3,200	6,300	5,300	5,700	11,000	75%
Tomingley	Dubbo	395	395	790	069	069	1,380	3,100	3,200	6,300	5,300	5,700	11,000	75%
Dubbo	Gilgandra	505	505	1,010	890	890	1,780	4,200	3,900	8,100	7,300	6,900	14,200	75%
Gilgandra	Gowang	515	515	1,030	925	925	1,850	4,100	4,100	8,200	7,400	7,400	14,800	80%
Gowang	Coonabarabran	n 515	515	1,030	925	925	1,850	4,100	4,100	8,200	7,400	7,400	14,800	80%
Coonabarabran	Narrabri	495	495	066	902	902	1,810	3,900	4,000	7,900	7,200	7,300	14,500	84%
Narrabri	Moree	555	522	1,110	995	995	1,990	4,400	4,500	8,900	8,000	7,900	15,900	%62
Moree	Boggabilla	290	290	1,180	1,055	1,055	2,110	4,900	4,500	9,400	8,900	8,000	16,900	80%
Boggabilla	Goondiwindi	595	595	1,190	1,055	1,055	2,110	5,000	4,500	9,500	8,900	8,000	16,900	78%

There is currently no direct continuous inland rail link between Melbourne and Brisbane, with end-to end rail freight moving via Sydney along the Sydney-Melbourne and Sydney-Brisbane rail corridors.

A study to scope the engineering and alignment of an inland railway linking Melbourne and Brisbane was released in 2010. The aim of the study was to determine the best route, economic benefits and likely commercial success of a new standard gauge inland railway between Melbourne and Brisbane (Figure 5.4).

The study found 'inland rail will be approaching economic viability in the medium term' and 'it would be appropriate to reexamine the project between about 2015 and 2020, or when tonnage approaches the level identified'89. Although the study identified a route through Albury, Parkes, Moree and Toowoomba, a decision on the final alignment

will not be made until after 2014-15. When a decision is made, the selected alignment will be subject to further environmental and engineering analysis as part of the preconstruction process.

The inland rail route project is identified in the in the Infrastructure Program in the NSW Freight and Ports Strategy, and listed as an ARTC sponsored.

NSW TrainLink currently operate over parts of the potential ARTC Inland Rail Route where it is uses existing rail track corridors:

- Between Melbourne and Illabo (between Cootamundra & Junee)
- Short distance at Parkes on the Broken Hill line
- Between Narrabri and Moree.

89 Australian Rail Track Corporation 2010, *Melbourne-Brisbane Inland Rail Alignment Study Final Report Executive Summary*, ARTC, Adelaide

5.5 Future public transport

In regional NSW, the provision of good public transport services requires careful planning to take account of long travel distances and dispersed demand.

Regional Transport Plans will be integrated with land use planning and other NSW Government initiatives, such as Regional Action Plans and Department of Planning & Infrastructure Regional Land Use Strategies. This will ensure transport services and infrastructure are provided in a timely way, particularly in regions and centres with strong growth. Regional cycling, walking and public transport initiatives are addressed in the New England, Central West and Murray-Murrumbidgee Regional Transport Plans to help reduce reliance on cars in the region.

For example, active transport actions include:

- Construction of Gilgandra cycleway (Jack Renshaw Bridge: part 1 of stage 2) 2.5 metre wide timber decked off-road walking and cycling path (boardwalk) along the north western foreshore of the Castlereagh River from the Jack Renshaw Bridge (Newell Highway) underpass to the existing footpath of the Newell Highway, Gilgandra in 2013/14
- Construction of Warrumbungle cycleway (Getaway Tourist Park) 2.5 metre wide concrete off-road walking and cycling path along the north eastern side of the Newell Highway from the 'Getaway Tourist Park' to Kirban Street Coonabarabran in 2013/14

5.6 Climate change

The expected impacts of climate change in Australia vary across the continent and include changing rainfall patterns, reduced water availability and an increased frequency of severe weather events.

The Office of Environment and Heritage (OEH) is developing new, fine-scale climate projections for New South Wales and the Australian Capital Territory using a regional climate model called the NSW and ACT Regional Climate Model or NARCliM. This will include western NSW and the Newell Highway⁹⁰.

It is likely an increase in the frequency and intensity of storms would lead to more frequent short and long term highway closures. Climatic conditions will continue to be monitored for potential road impacts.

Flood depth marker in Forbes

5.7 Road corridor changes

Long term pavement maintenance

The Newell Highway was originally built during the 1960s and 1970s to provide a pavement that could accommodate general access vehicles only. The design life of the pavement was generally 20 years and in many instances the pavement has significantly outperformed this design life. The road condition analysis indicates that there are significant sections of the pavement that need to be constantly maintained because the pavement in significant sections is cracked or has shoving issues. In addition some sections require frequent maintenance which becomes so expensive that pavement replacement has become more economically viable. Part of the assessment of the value of replacement versus continued in-situ maintenance includes the delays to motorists required to reduce speed at every heavy patching location. Along some sections of the Highway this can occur as often as every 10 kilometres.

There is no definitive standard for when to replace a conventional pavement with a heavy duty pavement however in an ideal situation heavy duty pavement becomes more viable when the number of vehicle axles using the route approaches or exceeds 10⁷ (DESA). Funding constraints typically restrict application to urban areas where the benefits will be greatest because the traffic volumes are greatest. The Newell Highway has a specific combination of constraints that have helped to build a case for using this pavement in a rural context. North of Narrabri the highway has axle loadings exceeding 10⁷, the pavements are in poor condition and delays are caused by road repair crews. Further it is anticipated that there will continue to be a strong demand for PBS class 3(a) freight vehicles using this section of the route, making an important contribution to productivity. Therefore all new pavement replacement north of Narrabri, will where possible, be with heavy duty pavement.

While heavy duty pavement is more expensive in the short term, it has the advantage of having an extremely long life with regular resurfacing, and can be trafficked under almost any wet weather conditions (provided that the route is open). These pavements will therefore provide a greater assurance of access. By progressively constructing this pavement along the route, delays caused by heavy patching and other emergency maintenance activities will be reduced and potentially eliminated altogether.

Heavy duty pavement replacement work will need to be prioritised so that the sections in the worst condition are addressed first. The overall strategy to maintain the Newell Highway may also include work that extends the life of the current pavement by up to 10-15 years, as an interim strategy until the entire length of the route can be replaced over the next several decades. In the first instance priority will be given to pavement replacement for the Northern end of the corridor (north of Narrabri to the Queensland boarder), because of the contribution the northern section makes towards HVP productivity.

Wide centre line treatment

The wide centre line treatment will be progressively implemented along the Highway for all new reconstructed sections. The treatment is provided on an 11m wide pavement, with two 3.5m wide lanes, and a 1.2m centreline with the remaining width being a sealed shoulder. Other interim treatments including audio tactile centre lines may be considered for narrower sections of the corridor.

Moree bypass

The Moree town centre bypass involves building a 4.4 kilometre realignment of the Newell Highway between Bullus Drive, to the south of the town centre, and a position northeast of the Moree Racecourse, to the northeast of the town centre.

The bypass includes:

- Upgrading the Bullus Drive/Newell Highway intersection
- Providing a new route through east Moree between Gosport Street and the railway line and allowing Gosport Street to remain a service road
- Building a new signalised intersection with the Gwydir Highway in close proximity to the railway line
- A new road bridge crossing the Mehi River
- Building the Newell Highway on a new alignment to the east of Moree Racecourse

- Noise mitigation measures where appropriate
- · Landscaping.

A detailed environmental management plan has been completed, which includes a noise and vibration management plan.

Ongoing reporting on road works

A Newell Highway Taskforce was established in 2009. This Taskforce consists of representatives of local government areas, through which the Newell Highway passes, the NRMA, members of Parliament, truck operators and transport groups. The taskforce meets three to four times per year. Roads and Maritime Services is invited to attend the meetings, as a guest, to report on works being carried out on the Newell Highway. This group also works closely with groups such as the Newell Highway Promotions Committee.

6 CORRIDOR CHALLENGES

Challenges associated with each of the corridor objectives for the Newell Highway are listed below. These are the main issues that need to be overcome to maintain and improve transport roles and services the Newell Highway provides for the community. They include challenges already evident and others that are expected to emerge as the result of future changes. These challenges can be mapped against broader *NSW Long Term Transport Master Plan* objectives.

challenges can be mapped against broader NSW Long Term Transport Master Plan objectives. Key challenges Newell Highway corridor challenges Addressing the challenges in this strategy Improve liveability Reduce social disadvantage

- The urban amenity of towns along the corridor is diminished by the throughmovements of significant number of heavy vehicles, particularly when the highway passes through the main urban commercial centre of a town.
- An assessment was undertaken to identify priority locations for town bypasses that address urban amenity over the next 20 years along the Newell Highway corridor. The assessment identified bypass at West Wyalong, Parkes, Coonabarabran and Moree Stage 2 as priorities.
- The lack of overtaking lanes along the corridor increases travel times and impacts on safety. The high proportion of heavy vehicles and cars towing caravans means vehicles are grouped into platoons. As suitable overtaking opportunities are limited, vehicles are forced to overtake on the opposite side of the road which creates a safety risk.
- The Newell Highway's level of service and need for overtaking lanes has been assessed. There are five sites in four locations where the level of service is less than the performance target. These are the priority locations for providing overtaking lanes. To address this issue an average spacing of approximately 10 kilometres between overtaking lanes in either direction along the length of the highway is proposed.

Economic growth / productivity

- Poor road geometry along some stretches of the highway results in reduced travel speeds, increased travel times and increased road safety risks.
- Due to the terrain and formation of the highway, it is difficult to provide appropriate lane and shoulder widths in some sections of the corridor.
- An assessment of road design and geometry shows that formation widening is necessary, in the steep winding area from Tooraweenah to Coonabarabran to address width and alignment issues. In addition, the highway needs to be realigned at Trewilga to eliminate a series of substandard curves.

Key challenges

Newell Highway corridor challenges

Addressing the challenges in this strategy

Economic growth / productivity

- Higher Productivity Vehicle (HPV) access to some sections of the corridor is limited by current intersection configurations and also by narrow pavements.
- There are intersections that need to be improved to facilitate HPV access including: Grong Grong, West Wyalong heavy vehicle bypass, Parkes intersections, and Narrandera intersections.
- There are locations where pavement width is below standard due to narrow shoulders and narrow lanes, specifically the section between Coonabarabran and Narrabri. This area should be widened to ensure pavements are accessible to modern PBS vehicles.
- The road over rail bridge at Morundah is narrow and has no shoulders. The pavement on the bridge approaches is in poor condition and requires remediation.
- The existing pavement strength and thickness does not adequately address the current and future needs of freight vehicles.
- The current strategy of heavy patching to repair the road pavement is causing disruptions to traffic.
- There is a lack of good quality natural road building materials in the corridor. The few materials available near the corridor generally have low strength. There are significant transport costs associated with importing good quality road building materials from quarries hundreds of kilometres away.
- Overall pavement strength and remaining life along the corridor is poor, with over a third having less than five years remaining and more than 50 per cent of the pavement estimated to have a remaining life of less than 10 years. The northern end of the corridor north of Narrabri has high axle loadings and the pavement is approaching the end of its life. Replacement of pavement at the north of Narrabri should be prioritised over the remainder of the corridor.
- A transition to a heavy duty pavement type will be considered for the Newell Highway for whole of life economic benefits. Heavy duty pavement would also offer other benefits including fewer disruptions to traffic for maintenance, reduced roughness and lower vehicle operating costs.

Key challenges

Newell Highway corridor challenges

Addressing the challenges in this strategy

Regional development / accessibility

- There are flood immunity issues along the entire route. The highway is currently susceptible to nuisance flooding as well as flooding from larger events including swollen river systems and sheet flow over expansive flood plains.
- The condition of culverts is being assessed and management plans developed to reduce the impact of flooding along the highway. In the short term, nuisance flooding and sheet flow flooding will be progressively addressed by providing more culverts and increasing capacity at priority locations.
- Further solutions to improve flood immunity for the Newell Highway across the Macquarie River at Dubbo should be developed in the medium term.
- Road closures for traffic accidents, spillages, bushfires, flooding and other natural disasters along the corridor currently require large detours because there is a lack of closely spaced support networks and local and regional roads.
- Implementing heavy duty pavement will in the longer term to reduce delays caused by repairs after flooding events.
- Incident Response Plans will continue to be developed to manage flooded river systems.

Improve sustainability

- High value vegetation conservation communities exist along the Newell Highway corridor, that require protection. There is a need to balance the need to protect these communities and the need for adequate clear zones.
- Meet the needs of road users and the environment by progressively relocating trees and other vegetation, and establishing and improving habitat conditions outside the clear zone.

Safety and security

- The mix of vehicles along the Newell Highway includes cars, caravans and heavy vehicles. Heavy vehicles represent a high percentage of vehicles, regularly exceeding 50 per cent and the interaction between the different vehicle types can cause potential conflict.
- A trial of the wide centre line treatment was implemented, and the results were successful. The treatment will be progressively implemented along the corridor.
- Where the formation is narrow (less than 11m), an audio tactile treatment for edge or centre lines will be considered.
- Narrow pavements will be widened progressively (see Economic growth / productivity section)
- To reduce safety risks, expanded access for RAV's along the highway will be restricted to PBS vehicles class 3 (a). The use of other non-PBS HPV vehicles will progressively be phased out over time.

Key challenge	es
Newell Highw	ay corridor challenges

Addressing the challenges in this strategy

Safety and security

- Appropriate infrastructure and services to help manage driver fatigue and facilitate breaks for heavy vehicle operators on this interstate freight route.
- Providing a consistent number and standard of rest areas to cater for all vehicle types along the full length of the route. Major Heavy Vehicle rest areas are provided every 100 kilometres.
- The frequency of minor rest areas and informal parking areas will be further investigated to meet the spacing targets.
- Rail level crossings are a safety risk on the rural network for all road and rail users.
- Managing all rail level crossings will continue to focus on reducing risk to both road and rail users. The longer term vision is to remove rail level crossings in the corridor. The rail level crossing in Parkes will be examined in more detail as part of addressing the HPV access through the town.

Improve transport integration process

- The different needs of both local and through traffic users need to be balanced.
- The length of the corridor means there are many local communities whose needs must be considered and addressed.
- The broad range of stakeholders and user groups with a mix of transport needs will need to be considered in detail. Regional Transport Plans will be progressively implemented in the short term, involving community consultation.

Rest area north of Parkes

7 TAKING ACTION

NSW Government priorities for responding to Newell Highway corridor challenges set out in Chapter 6 are outlined below. The investment priorities are divided into short, medium and long term actions. Implementing these actions will improve road safety, offer whole-of-life economic benefits and increase productivity of the Newell Highway.

7.1 Short-term investment priorities

Actions	Strategic response reference
Improve intersections along the route so high	4.2. Traffic
productivity freight vehicles can travel the full length of the highway, in particular at:	Regional centres and town bypasses
 West Wyalong (Heavy Vehicle Bypass and rail level crossing) 	4.3. Heavy vehicles on the Newell Highway
Grong Grong	Potential intersection improvements required for adequate HPV access
Complete Stage 2 of the Moree town centre bypass to	4.2. Traffic
improve the centre's urban amenity and provide better access for HPV.	Regional centres and town bypasses
Reconstruct the highway with heavy duty pavement,	4.4. Road design and geometry
including the wide centre line treatment, to maintain the asset and provide safe and efficient travel conditions for	Wide centre line treatment
all vehicles between Narrabri and the Queensland border	4.5. Road pavement condition
as a priority.	Pavement types and seals
Heavy duty pavement will be implemented specifically at the following locations:	
Mungle Back Creek to Boggabilla	
North Narrabri to Bellata	
North Moree	
Improve and upgrade heavy vehicle rest areas and facilities for heavy vehicle drivers in particular:	4.3. Heavy vehicles on the Newell Highway
 Improve northbound egress from Bohena rest area 16.3 km south of Narrabri 	Heavy vehicle rest areas
 Upgrade Gillenbah rest area ingress and egress by providing sheltered turning bays 	
 Install consistent signage to show distance to the next heavy vehicle rest stop at all major rest areas along the route from Marsden to Goondiwindi 	
Implementation of the Smart Rest Areas C-ITS trial	

Actions	Strategic response reference
Progressively reconstruct pavements between the	4.4. Road design and geometry
Victorian border to Narrabri as part of asset renewal, including implementing wide centre line treatment	Wide centre line treatment
Resurface bridges over Lake Forbes and Wallon Creek	4.4. Road design and geometry
	Bridge structural health
Provide additional overtaking lanes on the highway	4.2. Traffic
in a prioritised way, as set out in the Newell Highway Overtaking Lanes Strategy.	Level of service and overtaking
	opportunities
The Government has announced funding for the following overtaking lanes:	
Three between Narrabri and Moree	
Two between West Wyalong and Forbes	
One between Coonabarabran and Narrabri	
In addition, \$10 million has been recently announced for further overtaking lanes:	
 Two between Moree and Boggabilla 	
Two between Jerilderie and Narrandera	
 One between Parkes and Tomingley 	
As part of the overtaking lanes between Jerilderie and Morundah, consideration will be also given to an upgrade of the Narrandera road over rail bridge, which is currently	
too narrow to accommodate PBS Class 3(a) vehicles.	
Implement any remaining overtaking lanes (medium to higher priority)	
Assess the risk of culverts and develop and implement	4.4. Road design and geometry
management plans for culverts with an assessed risk level (ARL) rating less than 3	Road culvert risk rating
Improve road alignment at Trewilga and add a	4.4. Road design and geometry
northbound overtaking lane to improve the road to a 110 km/h standard	Speed on curves
	4.2. Traffic
	Level of service and overtaking opportunities
Continue to implement clear zone and safety barrier	4.4. Road design and geometry
improvements, taking into consideration the road geometry and environmental/land use constraints along the corridor	Clear zones and safety barriers
Upgrade minor intersections identified in the 2009	4.4. Road design and geometry
Newell Highway Road Safety Review	Intersections
Replace the Newell Highway / Mitchell Highway roundabout (Whylandra Street / Victoria Street) in Dubbo with traffic signals	4.2. Traffic

7.2 Medium-term investment priorities

Actions	Strategic response reference
 Identify and develop solutions for providing access 	4.2. Traffic
for PBS class 3(a) vehicles through Parkes , such as a bypass to address the three deficient intersections:	Regional centres and town bypasses
Clarinda Street and Mitchell Street	4.3. Heavy vehicles on the Newell Highway
Bogan Street and Hartigan Avenue	Potential intersection improvements
 Hartigan Avenue and Forbes Street and adjacent railway level crossing 	required for adequate HPV access
Identify solutions for providing access for PBS class 3(a) vehicles at Narrandera by improving two intersections:	4.3. Heavy vehicles on the Newell Highway
Cadell Street near Whitton Street Sturt Highway (west)	Potential intersection improvements required for adequate HPV access
• Sturt Highway (west) Reprioritise the Newell Highway at the intersection with the Oxley Highway at Coonabarabran	4.3. Heavy vehicles on the Newell Highway
	Potential intersection improvements required for adequate HPV access
Continue to monitor and improve the adequacy of the major, minor heavy vehicle rest areas and informal truck	4.3. Heavy vehicles on the Newell Highway
parking bays	Heavy vehicle rest areas
Identify solutions to improve flood immunity and provide	4.2. Traffic
a flood free route across the Macquarie River at Dubbo, which may include a bypass	Regional centres and town bypasses
	4.4. Road design and geometry
	Flooding
Continue to assess and manage the risks of culverts	4.4. Road design and geometry
	Road culvert risk rating
Improve the formation width, by widening sealed	4.4. Road design and geometry
Improve the formation width, by widening sealed shoulder and improving lane widths, particularly at the following locations:	
shoulder and improving lane widths, particularly at the	4.4. Road design and geometry
shoulder and improving lane widths, particularly at the following locations:	4.4. Road design and geometry Lane widths
shoulder and improving lane widths, particularly at the following locations: Tooraweenah to Narrabri Five and a half kilometre section between Boggabilla and Goondiwindi Continue to implement clear zone and safety barrier	4.4. Road design and geometry Lane widths Sealed shoulder widths
 shoulder and improving lane widths, particularly at the following locations: Tooraweenah to Narrabri Five and a half kilometre section between Boggabilla and Goondiwindi 	4.4. Road design and geometry Lane widths Sealed shoulder widths Steep grades on curves
 shoulder and improving lane widths, particularly at the following locations: Tooraweenah to Narrabri Five and a half kilometre section between Boggabilla and Goondiwindi Continue to implement clear zone and safety barrier improvements taking into consideration the road geometry and environmental/land use constraints along sections of the corridor Implement any remaining overtaking lanes 	4.4. Road design and geometry Lane widths Sealed shoulder widths Steep grades on curves 4.4. Road design and geometry
 shoulder and improving lane widths, particularly at the following locations: Tooraweenah to Narrabri Five and a half kilometre section between Boggabilla and Goondiwindi Continue to implement clear zone and safety barrier improvements taking into consideration the road geometry and environmental/land use constraints along sections of the corridor 	4.4. Road design and geometry Lane widths Sealed shoulder widths Steep grades on curves 4.4. Road design and geometry Clear zones and safety barriers

7.3 Long-term investment priorities

Actions	Strategic response reference
Identify solution for improving access for PBS class (3a) vehicles through Boggabilla, including	4.3. Heavy vehicles on the Newell Highway
addressing intersection at Bruxner Way	Potential intersection improvements required for adequate HPV access
Identify solutions for improving access for PBS class (3a) vehicles through the intersection of Killarney	4.3. Heavy vehicles on the Newell Highway
and Tibbereena Streets at Narrabri	Potential intersection improvements required for adequate HPV access
Identify solutions for improving access through various roundabouts along the route, particularly at	4.3. Heavy vehicles on the Newell Highway
the intersection of Barwan Street and Killarney Street at Narrabri, and Dalgarno Street at Coonabarabran	Potential intersection improvements required for adequate HPV access
Upgrade rail level crossings in high speed	4.4. Road design and geometry
environments and grade separate them from vehicles where possible	Rail crossings
Remove heavy vehicles from the main urban	4.2. Traffic
commercial centre at Coonabarabran	Regional centres and town bypasses
Reconstruct with heavy duty pavement, where	4.4. Road design and geometry
possible, including wide centre line treatment at the following locations:	Wide centre line treatment
Bellata to North Moree	4.5. Road pavement condition
North Moree to Mungle Back Creek	
Boggabilla to Queensland border	
Continue to assess and manage the risks of culverts	4.4. Road design and geometry
	Road culvert risk rating
Progressively widen narrow sealed shoulders and	4.4. Road design and geometry
lanes between the Victorian border and Narrabri especially narrow sections north of Dubbo, north of	Lane widths
Parkes and south of Gilgandra	Sealed shoulder widths
Improve remaining locations where curves are less than 600 metres within 110 km/h speed zones	4.4. Road design and geometry Speed on curves
Continue to implement clear zones and safety	4.4. Road design and geometry
barrier improvements, considering road geometry and environmental/land use constraints along the corridor	Clear zones and safety barriers
Address nuisance flooding on the highway	4.4. Road design and geometry
	Flooding
Replace the roundabout on Newell Highway at Darling Street / Erskine Street in Dubbo with traffic signals	4.2. Traffic

REFERENCES

Note: All documents and references to Roads and Traffic Authority (RTA) have been replaced with Roads and Maritime Services (Roads and Maritime Services).

- Australian Rail Track Corporation 2010, Melbourne-Brisbane Inland Rail Alignment Study Final Report Executive Summary, ARTC, Adelaide
- Australian Bureau of Statistics 2006, Census Data, ABS, Canberra
- Australian Bureau of Statistics 2011, Census Data, ABS, Canberra
- Australian Transport Council 2006, National Guidelines for Transport System Management in Australia, ATC, Canberra
- Austroads 2007, Guide to Asset
 Management: Part 5C: Rutting, Austroads,
 Sydney
- Austroads 2010, Guide to Road Design: Part
 3: Geometric Design, Austroads, Sydney
- Austroads 2012, Guide to Pavement Technology: Part 2: Pavement Structural Design, Austroads, Sydney
- Bland Shire Council, Community Plan 2011-2016
- Bureau of Infrastructure, Transport and Regional Economics 2011, Truck Productivity: Sources, Trends and Future Prospects, BITRE, Canberra
- Cardno 2011, *Traffic Counts on the Newell Highway*
- Cardno for Roads and Maritime Services 2011, Newell Highway: Potential Overtaking Lanes Study, Roads and Maritime Services, Sydney
- Commonwealth of Australia 2007, Melbourne-Brisbane Corridor Strategy: Building our National Transport Future, Commonwealth of Australia, Barton

- Department of Planning 2009, Draft Murray Regional Strategy, DoP, Dubbo
- Department of Planning and Infrastructure 2013, New South Wales in the future: Preliminary 2013 population projections,
 Preliminary release of NSW state and local government area population projections,
 DPI, Sydney
- Federal Environment Protection and Biodiversity Conservation Act 1999 (Cth)
- Hyder Consulting 2010, Strengthen Irrigation Communities
- Hyder Consulting for Transport for NSW 2011, NSW Freight Supply Chain Study -Hunter, Northern, Western Regions
- Levett, S 2010, Curves, clear zones, shoulder widths on rural roads, Centre for Road Safety internal presentation, Roads and Maritime Services, Sydney
- Moree Plains Shire Council 2010, State of the Environment Report
- National Transport Commission 2005, National Guidelines for the Provision of Rest Area Facilities, NTC, Melbourne
- National Transport Commission 2007, Performance Based Standards Scheme Network Classification Guidelines, NTC
- NSW Centre for Road Safety 2009, Newell Highway: Safety Review, Roads and Maritime Services, Sydney
- NSW Centre for Road Safety 2009, NSW Speed Zoning Guidelines, Roads and Maritime Services, Sydney
- NSW Centre for Road Safety 2011, Newell Highway Wide Centre Line Trial Final Report
- NSW Centre for Road Safety 2011, NSW Speed Zoning Guidelines, Roads and Maritime Services, Sydney

- NSW Government 2011, NSW 2021: A Plan to Make NSW Number One, NSW Government, Sydney
- Office of Environment and Heritage 2013, website accessed on 20 August 2013 http:// www.environment.nsw.gov.au/research/ Regionalclimate.htm
- Roads and Maritime Services 2008, Network and Corridor Planning Practice Notes, Roads and Maritime Services, Sydney
- Roads and Maritime Services 2010, Network
 Performance Measures and Network
 Planning Targets, Roads and Maritime
 Services, Sydney
- Roads and Maritime Services 2010, Roads and Maritime Services Strategy for Major Heavy Vehicle Rest Areas on Key Rural Freight Routes in NSW, Roads and Maritime Services, Sydney
- Road Transport (General) Regulation: under Road Transports (General) Act 2005, clause 45 (NSW)
- Threatened Species Conservation Act 1995 (NSW)
- Transport for NSW 2013, NSW Freight and Ports Strategy, TfNSW, Sydney
- Transport for NSW 2012, NSW Long Term Transport Master Plan, TfNSW, Sydney

APPENDIX A - AUSTROADS VEHICLE CLASSIFICATION SYSTEM

V	EHICLE CLASSIFICATION SYSTEM
	AUSTROADS
CLASS	LIGHT VEHICLES
1	SHORT Car, Van, Wagon, 4WD, Utility, Bicycle, Motorcycle
2	SHORT - TOWING Trailer, Caravan, Boat
	HEAVY VEHICLES
3	TWO AXLE TRUCK OR BUS *2 axles
4	THREE AXLE TRUCK OR BUS *3 axles, 2 axle groups
5	FOUR (or FIVE) AXLE TRUCK *4 (5) axles, 2 axle groups
6	THREE AXLE ARTICULATED *3 axles, 3 axle groups
7	FOUR AXLE ARTICULATED *4 axles, 3 or 4 axle groups
8	FIVE AXLE ARTICULATED *5 axles, 3+ axle groups
9	SIX AXLE ARTICULATED *6 axles, 3+ axle groups or 7+ axles, 3 axle groups
	LONG VEHICLES AND ROAD TRAINS
10	B DOUBLE or HEAVY TRUCK and TRAILER *7+ axles, 4 axle groups
11	DOUBLE ROAD TRAIN *7+ axles, 5 or 6 axle groups
12	TRIPLE ROAD TRAIN *7+ axles, 7+ axle groups

For more information, visit www.transport.nsw.gov.au

