GUNNEDAH SECOND ROAD OVER RAIL BRIDGE

Hydrologic/Hydraulic Assessment Report

Prepared for:

Roads and Maritime Services – Northern Region

31 Victoria Street Grafton, NSW, 2460 Telephone 02 6640 1078

Prepared by:

Kellogg Brown & Root Pty Ltd

ABN 91 007 660 317 Level 13, 201 Kent Street Sydney, NSW, 2000 Telephone 02 8284 2000, Facsimile 02 8284 2200

12 December 2013

SEC143-TD-HY-REP-0001 Rev A

© Kellogg Brown & Root Pty Ltd, 2013

Limitations Statement

The sole purpose of this report and the associated services performed by Kellogg Brown & Root Pty Ltd (KBR) is to provide a Hydrologic/Hydraulic Assessment in accordance with the scope of services set out in the contract between KBR and Roads and Maritime Services – Northern Division ('the Client'). That scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

KBR derived the data in this report primarily from visual inspections, examination of records in the public domain, interviews with individuals with information about the site and previous assessments undertaken by others. The passage of time, manifestation of latent conditions or impacts of future events may require further exploration at the site and subsequent data analysis, and re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, KBR has relied upon and presumed accurate certain information (or absence thereof) relative to the site provided by government officials and authorities, the Client and others identified herein. Except as otherwise stated in the report, KBR has not attempted to verify the accuracy or completeness of any such information.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between KBR and the Client. KBR accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Revision History

			Signatures						
Revision	Date	Comment	Originated by	Signatures Checked Approved by by Z Lapoiavic W Zhorowski					
А	12/12/2013	Issue for Review	M Kang	Z Lepojevic	W Zborowski				

CONTENTS

Section		Page	
1	INTRODUCTION	1	
2	PREVIOUS STUDIES & INFORMATION SOURCE	ES 4	
3	INPUT DATA	6	
4	METHODOLOGY	8	
5	RESULTS	12	
6	CONCLUSION	14	
7	REFERENCES	15	
APP	ENDICES		
А	RORB Result Table		
в	HEC-RAS Result Table		
С	Pier Arrangement		
D	HEC-RAS Longitudinal Section		
Е	HEC-RAS Perspective Plot		
F	Ashford Watercourse Catchment		
G	RORB Plan		
Н	HEC-RAS Plan		

iii

1 Introduction

1.1 BACKGROUND

Kellogg Brown and Root (KBR) Pty Ltd has been engaged by Roads and Maritime Services (RMS) to identify a preferred option for a new road over rail bridge in Gunnedah, New South Wales.

The Oxley Highway is a main route which connects Tamworth and Coonabaran via Gunnedah and is predicted to receive an increase in traffic due to major coal developments in the Gunnedah Basin.

An increase in frequency of trains and also the longer length of coal trains cause significant delays at the existing rail crossings within Gunnedah. A grade separation to replace the New Street level crossing will assist in alleviating traffic pressures, facilitate efficiency and improve safety for both vehicles and pedestrians and assist council in improving local transport infrastructure.

This report has been prepared to assist in the investigation of the flooding impacts of the shortlisted options in the vicinity of Blackjack Creek.

1.2 GENERAL DESCRIPTION OF THE STUDY AREA

Blackjack Creek drains runoff from a catchment area of approximately 24km² to the south of the Oxley Highway over a length of 8km between the upper reach catchment boundary to the cross drainage structures at the Oxley Highway. Between the Oxley Highway and the railway culvert bridge, Ashfords Watercourse (refer to Appendix F) which consists of a rectangular concrete channel joins the eastern side of the Blackjack Creek bank (refer to Figure 1).

Figure 1: Blackjack Creek Catchment Area (Lyall, 2005)

The creek then discharges to the floodplain of the Namoi River, which is a significant floodplain impacting the township of Gunnedah and directly impacting the study area.

1.3 SCOPE AND OBJECTIVES OF THIS ASSESSMENT

Whilst various flood related studies have been completed in the past, the purpose of this study is to:

- Estimate changes in water levels (afflux) upstream and downstream of the proposed alignment options for a 100 year Average Recurrence Interval (ARI) and
- 2. Calculate velocities around the proposed bridge piers for a 100 year ARI in Blackjack Creek as a result of construction of Option B and Option B/C and potential for scour and erosion.

Providing a flood extent and flood levels for pre/post construction of the proposed road alignment is not part of the scope.

The three (3) options shortlisted at the time of the Preferred Option Report dated September 2013 are illustrated in Figure 1 below.

Option A, being geographically removed from Blackjack Creek, does not contribute any impact to flooding. Therefore Option A was excluded in this assessment.

Option B and B/C have a similar tie-in configuration at Warrabungle Street. The major difference between the options is the departure angle from the Oxley Highway roundabout. Both options are located on the top of the existing embankment.

Figure 1: Map of Options A, B and B/C

2 Previous Studies & Information Sources

2.1 FLOOD INUNDATION MAP: NAMOI RIVER AT GUNNEDAH (NSW WATER RESOURCES COMMISSION, 1978)

This map only includes the flood extent of the Namoi River. As it was produced 35 years ago, the condition of Blackjack Creek would have changed and this may expand the flood extent further upstream of the Blackjack Creek corridor.

2.2 FLOOD STUDY REPORT GUNNEDAH AND CARROLL (SMEC, 1996)

The flood study report for Gunnedah prepared by SMEC in 1996 describes the results of a detailed flood study of the surrounding area of Gunnedah and the village of Carroll. This report superseded the Flood Inundation Map (NSW Water Resources Commission, 1978).

The study found that the flood elevation of Namoi River in the vicinity of the study area is RL 264.4m (Australian Height Datum, AHD) for the 100 year ARI. This flood elevation has been linearly interpolated by KBR between cross sections (the hydraulics model by SMEC) at Kelvin Road and upstream of the confluence of Blackjack Creek and Namoi River.

The KBR's topographic model shows that the Blackjack Creek invert level upstream of the railway bridge is approximately RL 260.0m. This suggests that the flood waters from Namoi River would introduce a backwater effect.

This study has been used to assess downstream condition for the proposed HEC-RAS model.

2.3 BLACKJACK CREEK FLOOD STUDY (LYALL & ASSOCIATES, 2005)

Lyall & Associates undertook a flood study for Blackjack Creek which drains the catchment of 24km² upstream of the Oxley Highway culverts. This flood study includes report, hydrologic (RORB) and hydraulics (HEC-RAS) models.

The purpose of this flood study was to define flood behaviour in the streams in terms of flows, levels and flooding behaviour for flood frequencies between 5 and 100 years ARI and the Probable Maximum Flood (PMF).

This report can be summarised as follows;

- The small difference in flood levels between the 5 and 100 year ARI events where the flow velocities are generally less than 1m/s.
- Floodwaters extend over a width of floodplain up to 400m downstream of High Street at the 20 year ARI.
- The capacity of the culvert bridge at Oxley Highway would be sufficient for only up to a 20 year ARI.

The hydrologic and hydraulics models created by Lyall & Associates were utilised as a partial base model for this assessment.

2.4 GUNNEDAH LEP FLOOD PLANNING MAP SHEET FLD_005AA (GUNNEDAH SHIRE COUNCIL, 2012)

The discontinuity of the flood extent at the downstream of the railway bridge has been found on the Gunnedah Flood Planning Map (Figure 1). It is suspected that the flood extents from the different sources were combined together independently.

Figure 2: Gunnedah LEP Flood Planning Map (GSC, 2012)

3 Input Data

3.1 SITE INVESTIGATION

A site investigation was carried out on 18 July 2013 to inspect the study area including:

- Creek geometry and local topography to assess Manning's n coefficients
- Culvert crossings including measurements
- Other drainage infrastructures such as concrete open channel and swales
- Spot levels of the creek invert. Leica Viva NetRover (GPS) was used to obtain additional cross sections outside of the topographic survey.

The inspection proceeded from downstream of the Oxley Highway culverts to the Kamilaroi Highway culverts. The vegetation in the vicinity of the railway culvert bridge was found to be extremely dense. The creek channel is well defined although there were areas where the water was ponding locally, particularly upstream and downstream of the culverts.

3.2 TOPOGRAPHIC SURVEY INFORMATION

The 3-dimensional topographic ground survey information of the study area was produced by Moultrie Group on 6 November 2012.

3.3 EXISTING HYDROLOGIC/HYDRAULIC MODELS BY LYALL & ASSOCIATES (2005)

3.3.1 Existing hydrologic/hydraulic models

The following modelling information has been obtained from Lyall & Associates.

- Hydrology: RORB catchment file
 - o It contains 12 sub-catchments.
 - $\circ~$ A catchment for Ashfords Watercourse is missing.
 - o A storm file was not provided.
 - The report was used to confirm the parameters used and the modelling philosophy.

- Hydraulics: HEC-RAS model (steady)
 - It does not cover the entire Blackjack Creek main streams and their tributaries.
 - It was found that the railway bridge was replaced with a culvert crossing after the modelling and the Kamilaroi Highway culvert crossing was not included in the model.

3.3.2 Discrepancy in peak discharges between models and report

The RORB model supplied by Lyall & Associates which only includes a catchment model has been reviewed and it was found that the reproduced peak discharges from the RORB model and Lyall's report were not identical.

RORB requires a catchment file, storm file and model parameters to run a hydrologic model. As a catchment file was only provided for this assessment, the missing information of the RORB model would have caused the discrepancy in peak discharges.

Section 4 provides details on verifying peak discharges for the new model.

4 Methodology

This flood assessment focuses on the rise in water levels (afflux) in Blackjack Creek affected by the proposed alignments and bridges in the floodplain.

It consists of hydrology and hydraulics design components. The existing hydrologic and hydraulic models developed by Lyall & Associates have been reviewed and reused where possible.

4.1 HYDROLOGY

4.1.1 Assumptions and parameters

- The RORB catchment model provided by Lyall & Associates has been used as a base model and then developed for this assessment
- The catchment characteristics of the Lyall's hydrologic model (catchment delineation, impervious and pervious area percentages) were adopted.
- Model parameters including coefficients of storage equation and rainfall losses were specified from the report (Lyall & Associates, 2005).

4.1.2 Modelling

The original RORB model provided by Lyall & Associates was reviewed and the new hydrologic model was developed on the basis of the following information.

- Blackjack Creek Flood Study report by Lyall & Associates (2005)
- The RORB catchment file for the flood study (Lyall, 2005)

It was found that the original RORB model provided by Lyall & Associates required to incorporate the following missing information.

• RORB storm file: As a project specific storm file was not provided, a new project specific storm file has been created.

The rainfall Intensity-Duration-Frequency (IFD) data was extracted from Bureau of Meteorology (BoM) website. The 9 parameters extracted from BoM are:

 $I_{2y,\ 12h}{:}\ 27.43 \quad 4.93 \quad 1.31 \quad 54.57 \quad 10.04 \quad 2.95$

Skew= 0.33, F2 = 4.33 and F50 = 15.94

• The additional Ashford Watercourse catchment (3.2km²) was added into the existing RORB catchment file.

The peak discharge results from the following sources below are described in Table 1.

- The peak discharges provided in the Lyall's flood study report (2005)
- The peak discharges produced with the catchment file provided by Lyall & Associates, a new storm file created by KBR and the parameter values specified in the Lyall's report (2005).
- The peak discharges produced with the revised catchment file by KBR, a new storm file created by KBR and the parameter values specified in the Lyall's report (2005).

Table 1: Comparison of design peak discharges for the critical storm duration

		100yr ARI	
Location	Lyall's Report	Existing Lyall RORB	Revised model with Ashfords by KBR
	(m³/s)	(m³/s)	(m³/s)
Main Arm at Lincoln Street	66	70	67
Tributary at Lincoln Street	45	46.5	44.5
Junction of Main Arm and Tributary d/s Lincoln Street	115	123	117
High Street	117	126	120
Short Street	126	137.5	131
Oxley Highway	127	139.5	132.5
D/S Oxley (D/S Ashfords)	144	Not modelled	147.5

The results from the different sources are very similar and the revised model with an additional catchment from Ashfords watercourse has been adopted as inflows for HEC-RAS modelling.

4.2 HYDRAULICS

4.2.1 Modification of the original HEC-RAS model by Lyall

The HEC-RAS model provided by Lyall & Associates covers approximately 4.5km (from the railway culvert bridge downstream to Hunts St upstream) of the mainstreams and tributaries of Blackjack Creek.

This original HEC-RAS model then was utilised as a base model (preconstruction of the proposed road alignment) to incorporate the following changes.

- The railway bridge in the original HEC-RAS model has been updated due to the replacement of the railway bridge with a culvert crossing after the flood study was undertaken by Lyall & Associates
- The original HEC-RAS model has been extended approximately 70m downstream to incorporate Kamilaroi Highway culverts and additional cross sections downstream.
- Extra cross sections have been included from the topographic survey information in the vicinity of the alignment options. The cross section locations have been determined by new proposed bridge pier locations.

4.2.2 Manning's n coefficients

The Manning's 'n' coefficients have been amended based on the site visit, photos, experience and also to incorporate new viaduct piers.

4.2.3 Viaduct and Wall Scenarios for Each Option

The following scenarios were modelled for each option for post-construction of the proposed viaduct and road alignment.

- Viaduct (30m span) construction allowing with reinforced soil walls provided up to 4.5m height
- Reinforced soil wall construction allowing only the minimum opening for the ARTC rail clearances (17m minimum horizontal clearance).

4.2.4 Boundary Condition & Sensitivity Analysis

Downstream boundary

The original HEC-RAS model has been extended 70m downstream to incorporate the Kamilaroi Highway culverts and additional cross sections.

Normal flow has been used for the downstream boundary condition in this study. The longitudinal slope of 0.53% was specified for downstream boundary, as an extrapolation of the existing channel slope.

Upstream boundary

It remains the same as the original Lyall's model which peak flows derived from RORB provided the boundary conditions at the upstream end of the model.

The upstream normal depth slopes specified by Lyall & Associates are as follows.

- Blackjack Creek = 0.42%
- Blackjack Creek tributary 1 = 1.53%
- Blackjack Creek tributary 2 = 6.98%

4.2.5 Sensitivity Analysis

It is anticipated there would be a backwater effect from Namoi River (refer Section 2.2) which would change the downstream boundary condition. As a sensitivity check, the water level at the downstream boundary was set to RL 264.4m (AHD) as per the flood study undertaken by SMEC (1996). However, it did not influence the afflux in the vicinity of proposed alignments.

A joint probability analysis of Blackjack Creek and Namoi River flooding behaviours is beyond the scope of this assessment.

The railway culvert bridge creates an obstruction in Blackjack Creek which would cause the flood water to back up behind of it. Therefore the railway culvert bridge works as a dam or weir to obstruct the flood waters to act as a lake upstream of the bridge. The velocities are less than 1.5 m/s and any piers or obstruction would have little effect on water afflux levels.

5 Results

The pre-construction HEC-RAS model has been adopted as a base model to identify the rise in water levels and the change in velocity for two (2) scenarios (viaduct and wall) for two (2) proposed road alignment options (Option B and Option B/C). In this assessment, the 100 year ARI was only considered.

5.1 REINFORCED SOIL WALL SCENARIO

It was found that the flood waters of the 100 year ARI for the reinforced soil wall scenario would overtop the existing levee and the railway line. From the drainage perspective, it is not a preferred scenario.

5.2 VIADUCT SCENARIO

The results of the viaduct scenario for each option at River Station (RS) 1.6 and RS 1.7 from this modelling are tabulated as below.

- RS1.6: Pier
- RS1.7: Upstream embankment

For the results and the locations of each River Station, refer to Appendix B and Appendix H.

	Afflu	x (mm)	Velocity (m/s)					
100yr ARI	Option B	Option B/C	Existing	Option B	Option B/C			
RS1.6 (Pier)	10	7	1.4	1.01	1.02			
RS1.7 (Upstream Embankment)	20	40	1.57	1.54	1.43			

Table 2: Afflux and velocity at RS 1.6 & 1.7

5.2.1 Afflux

The afflux for Option B/C is 20mm higher that Option B at the upstream embankment. The Option B/C embankment is located between Blackjack Creek and the Ashfords Watercouse channel whereas the Option B embankment is further away from the Ashfords Watercourse channel. The embankment of Option B/C near the Oxley Highway takes a larger cross section area than Option B which would slightly reduce the capacity of the floodplain.

5.2.2 Velocities

The results show that the velocities of Option B and Option B/C are very similar at the pier (approximately 0.01 m/s difference) and the velocity for Option B is slightly higher than Option B/C, 0.1 m/s around the embankment. The velocities of each option appear to be very slow (~1.54 m/s). The existing railway bridge acts as a dam or weir which makes the floodplain as a retention basin upstream of the railway bridge. This demonstrates velocities are not a critical problem for a 100 year ARI event.

6 Conclusion

The hydraulic modelling results show that the flood impact of each option for the viaduct scenario would be insignificant as the afflux values for the Option B and Option B/C viaduct options are less than 10mm around piers. This is due in part to the viaduct approach with long spans between piers, so that the extent of obstruction and adjacent to the creeks is minimised.

However the afflux values in the vicinity of the Option B/C embankment near the Oxley Highway roundabout is approximately 40mm. The afflux of Option B/C is greater than Option B by 20mm because the embankment of the Option B/C alignment is in the middle of Blackjack Creek and the concrete dish drain. This would reduce the capacity of the floodplain.

These afflux values for the viaduct scenario for the both options appear to be manageable and would require a minor reinstatement works for the existing creek and channel.

The afflux values for the reinforced soil wall options were approximately 120mm. It appears that flood waters would overtop the existing levee and the railway line. This is not a preferred scenario from a drainage perspective as it would have a significant impact on the existing infrastructure.

The flow velocity is used primarily to identify potential scour issues at bridge and embankment support structures. A value exceeding 2 m/s is typically enough to produce scour.

This assessment demonstrates that the afflux values and the velocities produced from the modelling would have no significant issue for the proposed viaduct and road alignment construction and operation phases.

This report only covers the assessment of the rise in water levels in Blackjack Creek affected by the proposed alignments and bridges in the floodplain. In order to determine flood water levels and flood extent, two-dimensional hydraulic modelling should be considered in future project stages.

7 References

- 1. Pilgrim D. H. (Editor in Chief), 1987, Australian Rainfall and Runoff A Guide to Flood Estimation, Institution of Engineers, Australia.
- 2. *Flood inundation map: Namoi River at Gunnedah*, 1978, 1:10,000, Water Resources Commission, N.S.W.
- 3. SMEC, *Flood Study Report Gunnedah and Carroll*, 1996, Gunnedah Shire Council.
- 4. SMEC, *Gunnedah and Carroll Floodplain Management Study*, 1999, Gunnedah Shire Council.
- 5. Lyall & Associates, 2005, *Blackjack Creek Flood Study*, Gunnedah Shire Council
- 6. Lyall & Associates, 2005, *Blackjack Creek Floodplain Risk Management Study and Plan*, Gunnedah Shire Council
- 7. *Gunnedah LEP Flood Planning Map Sheet FLD_005AA*, 2012, 1:40,000, Gunnedah Shire Council

Appendix A

RORB RESULT TABLE

lyall_batch.out

* * * * * * * * * * * * * * * * * * * *	
Program version 6.15 (Last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz	
Date run: 09 Sep 2013 09:12	
Catchment file : 0:\BRS\Projects\SEC\SEC143 - Gunnedah Road over Rail\2 Design Working\Civil\Flood Study\RORB\Iyall.txt Rainfall location: Gunnedah Temporal pattern : AR&R87 Volume 2 for zone 2 (unfiltered) Spatial pattern : Uniform Areal Red. Fact. : Based on ARR87 Bk II, Figs 1.6 and 1.7 Loss factors : Constant with ARI	
Parameters: kc = 4.80 m = 0.80	
Loss parameters Initial loss (mm) Cont. loss (mm/h) 2.50	
Peak Description	
Calculated hydrograph, O2Calculated hydrograph, Areas F-G at Lincoln02Calculated hydrograph, Calculated hydrograph, Calculated hydrograph, High Street04Calculated hydrograph, Calculated hydrograph, High Street05Calculated hydrograph, High Street06Calculated hydrograph, Area J at Short07Calculated hydrograph, Area K at Short08Calculated hydrograph, Area L u/s Oxley Hwy09Calculated hydrograph, OUTFLOW AT HIGHWAY	
LI Run Dur ARI Rain(mm) ARF Peak0001 Peak0002 Peak0003 Peak0004 Peak0005 Peak0006 Peak0007 Peak0008 Peak0009 Peak0010 15.00 10m 100y 29.25 0.93 10.6384 10.5117 5.2731 17.9662 5.0227 17.9838 12.1332 7.9154 20.4862	P
1 15m 100y 36.22 0.93 18.1056 17.8571 8.0719 30.4412 7.1744 30.3279 16.5076 11.4566 31.1639 2.6749 20m 100y 41.71 0.93 24.3594 23.8425 9.8588 40.8148 8.4706 40.6311 19.5736 14.0186 41.6394 4.0775	
2 25m 100y 46.32 0.93 29.7575 28.9987 11.3464 49.8790 9.4685 49.5920 20.9510 15.0129 50.7910 4.9527 3 20m 100y 50.22 0.93 29.7575 28.9987 11.3464 49.8790 9.4685 49.5920 20.9510 15.0129 50.7910 4.9527 3 20m 100y 50.22 0.93 29.7575 5.6769	!
4 45m 100y 59.59 0.94 47.0526 42.4480 15.1709 79.1272 11.8813 78.5378 23.9973 17.2118 80.4132 6.2418	;
5 1h 100y 66.81 0.95 56.8833 47.5179 16.4907 96.3110 12.8801 95.2743 26.3512 19.2049 97.7487 18.2059 6 1.5h 100y 76.65 0.96 65.6925 47.5473 16.0164 115.023 12.1573 113.751 23.6147 16.7295 118.203 7.9232	
2h 100y 84.16 0.98 71.2184 49.7198 16.3393 124.057 12.0759 125.299 24.1068 17.6506 133.141 7.7232 8 3h 100y 95.72 0.98 72.0203 49.7100 16.6605 124.973 13.1189 127.436 26.4030 18.9595 137.673 8.0097 9 3h 100y 95.72 0.98 72.0203 49.7100 16.6605 124.973 13.1189 127.436 26.4030 18.9595 137.673 8.0097	
9 0 4. 5h 100y 108. 73 0. 98 70. 0041 46. 2723 14. 9893 122. 619 11. 2633 125. 821 22. 4820 16. 1634 137. 288 6. 3061 11 6h 100y 119. 04 0. 98 68. 9894 44. 5191 14. 2712 118. 511 10. 2232 123. 644 19. 9290 13. 4566 135. 238 7. 3818	
12 9h 100y 135.38 0.99 59.9129 41.3620 13.2614 104.691 9.6877 105.519 18.8897 12.6792 114.929 6.9375 13 12h 100y 148.37 0.99 62.9497 44.1214 14.8282 105.956 10.9020 109.267 19.1097 12.8930 117.359 6.4525	
14 18h 100y 172.46 0.99 55.9232 38.3475 11.8178 97.0644 8.0433 98.8929 13.6212 9.1318 108.641 7.2782 15 24h 100y 191.43 0.99 69.0353 44.3830 14.3437 117.318 10.0909 124.433 16.8482 11.4808 133.981 5.6940	
16 30h 100y 207.03 0.99 58.2882 34.4902 9.9230 102.701 7.0083 109.037 11.9158 7.8295 121.264 6.9818 17 36h 100y 220.13 0.99 57.9768 33.7382 9.8199 101.389 7.1045 108.143 12.1235 7.9912 120.012 4.7142	
18 48h 100y 240.93 0.99 59.3760 34.6815 10.0023 103.993 7.2310 110.823 12.3449 8.1497 122.998 4.7754 18 48h 100y 240.93 0.99 59.3760 34.6815 10.0023 103.993 7.2310 110.823 12.3449 8.1497 122.998 4.8643 10 72.692 7.25 59.48 8.0648 6.5269 5.517 72.6966 8.9894 5.8144 82.9192 4.8643	
20 El apsed Run Time (hh: mm: ss) = 00: 00: 01	•

Peak0011 18. 5776 31. 0847 41. 4923 50. 5923 58. 4663 80. 0356 97. 3638 117. 923 132. 663 138. 865 139. 167 136. 682 115. 432 120. 038 112. 490 133. 135 123. 474 122. 566 125. 547 89. 6776

Ashford water course added2_batch.out

RORBWin Batch Run Summary	
Program version 6.15 (last u Copyright Monash University	dated 30th March 2010) nd Sinclair Knight Merz
Date run: 11 Sep 2013 17:24	
Catchment file : O:\BRS\Pr Rainfall location: Gunnedah Temporal pattern : AR&R87 Vo Spatial pattern : Uniform Areal Red. Fact. : Based on Loss factors : Constant	jects\SEC\SEC143 - Gunnedah Road over Rail\2 Design Working\Civil\Flood Study\RORB\Ashford water course added2.catg ume 2 for zone 2 (unfiltered) RR87 Bk II, Figs 1.6 and 1.7 ith ARI
Parameters: kc = 4.80	m = 0.80
Loss parameters Initial	oss (mm) Cont. Loss (mm/h) 2.50
Peak Description Cal cul ated hydrograph, 01 Cal cul ated hydrograph, 02 Cal cul ated hydrograph, 03 Cal cul ated hydrograph, 04 Cal cul ated hydrograph, 05 Cal cul ated hydrograph, 06 Cal cul ated hydrograph, 07 Cal cul ated hydrograph, 08 Cal cul ated hydrograph, 09 Cal cul ated hydrograph, 10 Cal cul ated hydrograph, 11 Cal cul ated hydrograph, 12 Cal cul ated hydrograph,	Areas A-E at Lincoln Areas F-G at Lincoln Area H at d/s Lincoln Lincoln Street Area I at High High Street Area J at Short Area K at Short Short Street Area L u/s Oxley Hwy total flow at Oxley Ashford Water Course OUTFLOW before railway bridg
13.00RunDurARIRai n (mm)10m100y29.25115m100y36.2220m100y41.71225m100y46.32330m100y50.23445m100y59.5951h100y66.8161.5h100y76.6572h100y84.1683h100y95.72904.5h100y108.73116h100y119.04129h100y135.381312h100y148.371418h100y172.461524h100y207.031736h100y220.131848h100y240.931972h100y268.2220El apsedRunTime	ARF Peak0001 Peak0002 Peak0003 Peak0004 Peak0005 Peak0006 Peak0007 Peak0008 Peak0000 Peak0011 Peak0011 Peak0012 Peak0013 0.92 9.5781 9.4664 4.7839 16.1788 4.5815 16.2002 11.176 7.2176 18.6900 2.4276 16.7524 17.3215 22.0304 0.92 22.0784 21.6104 9.0730 36.9880 7.7851 36.8088 18.1216 12.9923 37.7368 3.7296 37.6209 26.1937 41.1954 0.92 27.0449 26.4126 10.5022 45.2937 8.7579 45.0250 19.5919 14.0823 46.1062 5.2641 51.1209 25.9290 58.1709 0.93 43.0371 39.2682 14.2348 72.3313 11.1697 7.742 16.3813 73.4895 5.7474 7.31618 26.2172 80.1000 0.95 52.3412 45.0734 15.1730 106.868 11.5994 105.446 22.6229 16.1300 <td< td=""></td<>

Appendix B

HEC-RAS RESULT TABLE

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	# Chl
Blackjack lower	1.7	100yr	existing opt b	147	265.09	267.28	266.25	267.37	0.003139	1.57	130.92	158.18	0.39
Blackjack lower	1.7	100yr	viaduct opt b	147	265.09	267.3	266.25	267.39	0.002985	1.54	133.62	160.08	0.38
Blackjack lower	1.7	100yr	opt bc-viaduct	147	265.09	267.32	266.26	267.4	0.002491	1.43	125.75	151.71	0.35
Blackjack lower	1.7	100yr	opt bc wall leve	147	265.09	267.43	266.26	267.49	0.002035	1.34	141.52	157.3	0.32
Blackjack lower	1.7	100yr	opt b wall leve	147	265.09	267.4	266.25	267.47	0.002206	1.38	151.77	171.35	0.33
Blackjack lower	1.65	100yr	existing opt b	147	265.03	267.21	266.23	267.28	0.002605	1.4	143.8	162.54	0.35
Blackjack lower	1.65	100yr	viaduct opt b	147	265.03	267.23	266.23	267.3	0.002463	1.37	147.24	165.64	0.34
Blackjack lower	1.65	100yr	opt bc-viaduct	147	265.03	267.23	266.32	267.32	0.003108	1.54	125.46	149.67	0.38
Blackjack lower	1.65	100yr	opt bc wall leve	147	265.03	267.36	266.32	267.43	0.002268	1.37	146.18	162.58	0.33
Blackjack lower	1.65	100yr	opt b wall leve	147	265.03	267.36	266.23	267.41	0.001767	1.21	169.43	177.24	0.29
Blackjack lower	1.63	100yr	existing opt b	147	264.64	267.14	265.9	267.17	0.000806	0.95	202.18	122.84	0.21
Blackjack lower	1.63	100yr	viaduct opt b	147	264.64	267.15	265.9	267.18	0.000925	1.02	184.37	107.97	0.22
Blackjack lower	1.63	100yr	opt bc-viaduct	147	264.64	267.14	265.93	267.18	0.001011	1.09	177.23	105.54	0.23
Blackjack lower	1.63	100yr	opt bc wall leve	147	264.64	267.29	265.93	267.33	0.00078	1	193.32	108.27	0.21
Blackjack lower	1.63	100yr	opt b wall leve	147	264.64	267.29	265.9	267.32	0.00072	0.94	200.36	110.53	0.2
Blackjack lower	1.62	100yr	existing opt b	147	264.41	267.12	265.76	267.15	0.000761	0.93	190.44	96.86	0.2
Blackjack lower	1.62	100yr	viaduct opt b	147	264.41	267.13	265.76	267.16	0.000747	0.93	191.57	96.96	0.2
Blackjack lower	1.62	100yr	opt bc-viaduct	147	264.41	267.13	265.76	267.16	0.00075	0.93	191.35	96.94	0.2
Blackjack lower	1.62	100yr	opt bc wall leve	147	264.41	267.27	265.82	267.3	0.00083	1.02	176.32	85.02	0.21
Blackjack lower	1.62	100yr	opt b wall leve	147	264.41	267.26	265.75	267.3	0.000815	1.01	176.04	82.95	0.21
Blackjack lower	1.61615	100yr	existing opt b	147	264.41	267.11	265.76	267.14	0.000766	0.94	190.06	96.82	0.2
Blackjack lower	1.61615	100yr	viaduct opt b	147	264.41	267.12	265.76	267.15	0.000754	0.93	190.99	96.91	0.2
Blackjack lower	1.61615	100yr	opt bc-viaduct	147	264.41	267.12	265.76	267.15	0.000757	0.93	190.72	96.88	0.2
Blackjack lower	1.61615	100yr	opt bc wall leve	147	264.41	267.26	265.82	267.3	0.000835	1.02	175.94	84.98	0.21
Blackjack lower	1.61615	100yr	opt b wall leve	147	264.41	267.26	265.75	267.3	0.00082	1.01	175.69	82.91	0.21
Blackjack lower	1.6	100yr	existing opt b	147	264.16	267.08	265.64	267.13	0.000805	1.02	166.29	78.54	0.21
Blackjack lower	1.6	100yr	viaduct opt b	147	264.16	267.09	265.64	267.13	0.000794	1.01	167.07	78.6	0.21

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	# Chl
Blackjack lower	1.6	100yr	opt bc-viaduct	147	264.16	267.09	265.64	267.13	0.000797	1.02	166.85	78.58	0.21
Blackjack lower	1.6	100yr	opt bc wall leve	147	264.16	267.21	265.76	267.28	0.0012	1.21	139.39	63.3	0.24
Blackjack lower	1.6	100yr	opt b wall leve	147	264.16	267.22	265.65	267.28	0.000923	1.13	148.75	65.69	0.22
Blackjack lower	1.59	100yr	existing opt b	147	264.16	267.08	265.64	267.12	0.00081	1.02	165.96	78.52	0.21
Blackjack lower	1.59	100yr	viaduct opt b	147	264.16	267.08	265.64	267.13	0.000804	1.02	166.35	78.55	0.21
Blackjack lower	1.59	100yr	opt bc-viaduct	147	264.16	267.08	265.64	267.12	0.000806	1.02	166.27	78.54	0.21
Blackjack lower	1.59	100yr	opt bc wall leve	147	264.16	267.21	265.76	267.27	0.001129	1.23	138.89	63.25	0.25
Blackjack lower	1.59	100yr	opt b wall leve	147	264.16	267.22	265.65	267.27	0.000929	1.13	148.43	65.66	0.23
Blackjack lower	1.55	100yr	existing opt b	147	264.08	267.04	265.63	267.08	0.000857	1.08	163.18	79.5	0.22
Blackjack lower	1.55	100yr	viaduct opt b	147	264.08	267.04	265.63	267.09	0.00085	1.07	163.6	79.54	0.22
Blackjack lower	1.55	100yr	opt bc-viaduct	147	264.08	267.04	265.63	267.09	0.000851	1.07	163.52	79.53	0.22
Blackjack lower	1.55	100yr	opt bc wall leve	147	264.08	267.15	265.77	267.22	0.001126	1.27	138.38	66.33	0.25
Blackjack lower	1.55	100yr	opt b wall leve	147	264.08	267.16	265.71	267.22	0.001093	1.25	140.11	66.06	0.25
Blackjack lower	1.54	100yr	existing opt b	147	264.08	267.03	265.63	267.08	0.000862	1.08	162.82	79.46	0.22
Blackjack lower	1.54	100yr	viaduct opt b	147	264.08	267.03	265.63	267.08	0.000864	1.08	162.72	79.45	0.22
Blackjack lower	1.54	100yr	opt bc-viaduct	147	264.08	267.03	265.63	267.08	0.000864	1.08	162.72	79.45	0.22
Blackjack lower	1.54	100yr	opt bc wall leve	147	264.08	267.14	265.77	267.21	0.001135	1.27	137.99	66.28	0.25
Blackjack lower	1.54	100yr	opt b wall leve	147	264.08	267.15	265.71	267.22	0.001101	1.26	139.73	66.01	0.25
Blackjack lower	1.1	100yr	existing opt b	147	264.09	266.85	265.69	267.05	0.000317	1.99	75.97	44.1	0.4
Blackjack lower	1.1	100yr	viaduct opt b	147	264.09	266.85	265.69	267.05	0.000317	1.99	75.9	44.03	0.4
Blackjack lower	1.1	100yr	opt bc-viaduct	147	264.09	266.85	265.69	267.05	0.000317	1.99	75.9	44.03	0.4
Blackjack lower	1.1	100yr	opt bc wall leve	147	264.09	267.02	265.69	267.19	0.00025	1.85	84.03	51.63	0.36
Blackjack lower	1.1	100yr	opt b wall leve	147	264.09	267.03	265.69	267.2	0.000247	1.84	84.5	52.08	0.36
Blackjack lower	1			Culvert									
Blackjack lower	0.5	100yr	existing opt b	147	264.07	265.89	265.67	266.41	0.015841	3.21	45.86	28.57	0.81
Blackjack lower	0.5	100yr	viaduct opt b	147	264.07	266.11	265.67	266.51	0.01042	2.81	52.29	28.6	0.66

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	# Chl
Blackjack lower	0.5	100yr	opt bc-viaduct	147	264.07	266.11	265.67	266.51	0.01042	2.81	52.29	28.6	0.66
Blackjack lower	0.5	100yr	opt bc wall leve	147	264.07	266.61	265.67	266.85	0.004729	2.2	68.01	33.76	0.46
Blackjack lower	0.5	100yr	opt b wall leve	147	264.07	266.62	265.67	266.86	0.004616	2.18	68.56	33.83	0.46
Blackjack lower	0.495	100yr	existing opt b	147	264.07	265.87	265.67	266.4	0.016336	3.24	45.42	28.57	0.82
Blackjack lower	0.495	100yr	viaduct opt b	147	264.07	266.1	265.67	266.5	0.01069	2.83	51.87	28.6	0.67
Blackjack lower	0.495	100yr	opt bc-viaduct	147	264.07	266.1	265.67	266.5	0.01069	2.83	51.87	28.6	0.67
Blackjack lower	0.495	100yr	opt bc wall leve	147	264.07	266.1	265.88	266.8	0.017344	3.71	39.6	19.9	0.84
Blackjack lower	0.495	100yr	opt b wall leve	147	264.07	266.1	265.89	266.81	0.016281	3.75	39.58	19.9	0.85
Blackjack lower	0.49	100yr	existing opt b	147	264.07	265.67	265.67	266.37	0.025058	3.7	39.75	28.54	1
Blackjack lower	0.49	100yr	viaduct opt b	147	264.07	265.45	265.67	266.44	0.044056	4.41	33.37	28.51	1.3
Blackjack lower	0.49	100yr	opt bc-viaduct	147	264.07	265.45	265.67	266.44	0.044056	4.41	33.37	28.51	1.3
Blackjack lower	0.49	100yr	opt bc wall leve	147	264.07	265.88	265.88	266.77	0.024928	4.17	35.25	19.88	1
Blackjack lower	0.49	100yr	opt b wall leve	147	264.07	265.89	265.89	266.78	0.023375	4.2	35.34	19.88	1
Blackjack lower	0.4	100yr	existing opt b	147	263.86	265.31	265.06	265.39	0.005245	1.67	135.77	193.96	0.48
Blackjack lower	0.4	100yr	viaduct opt b	147	263.86	265.33	264.99	265.41	0.004946	1.63	138.51	194.49	0.46
Blackjack lower	0.4	100yr	opt bc-viaduct	147	263.86	265.33	264.99	265.41	0.004946	1.63	138.51	194.49	0.46
Blackjack lower	0.4	100yr	opt bc wall leve	147	263.89	265.38	265.13	265.46	0.006271	1.81	130.54	183	0.51
Blackjack lower	0.4	100yr	opt b wall leve	147	263.89	265.39	265.13	265.46	0.006356	1.72	130.56	182.31	0.48
Blackjack lower	0.35	100yr	existing opt b	147	263.86	265.27	265.06	265.37	0.006229	1.78	128.01	192.46	0.52
Blackjack lower	0.35	100yr	viaduct opt b	147	263.86	265.28	265.06	265.37	0.006112	1.77	128.84	192.62	0.51
Blackjack lower	0.35	100yr	opt bc-viaduct	147	263.86	265.28	265.06	265.37	0.006112	1.77	128.84	192.62	0.51
Blackjack lower	0.35	100yr	opt bc wall leve	147	263.89	265.33	265.13	265.42	0.007746	1.96	121.72	181.18	0.56
Blackjack lower	0.35	100yr	opt b wall leve	147	263.89	265.34	265.13	265.43	0.007834	1.87	121.8	180.49	0.54
Blackjack lower	0	100yr	existing opt b	147	263.83	265.15	264.87	265.23	0.00506	1.54	137.61	195.69	0.46
Blackjack lower	0	100yr	viaduct opt b	147	263.83	265.16	264.87	265.23	0.00489	1.52	139.24	196.07	0.45
Blackjack lower	0	100yr	opt bc-viaduct	147	263.83	265.16	264.87	265.23	0.00489	1.52	139.24	196.07	0.45
Blackjack lower	0	100yr	opt bc wall leve	147	263.83	265.17	264.92	265.26	0.006407	1.85	125.7	182.05	0.53

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	# Chl
Blackjack lower	0	100yr	opt b wall leve	147	263.83	265.17	264.91	265.25	0.006464	1.78	126.33	182.22	0.51
Blackjack lower	-0.1	100yr	existing opt b	147	263.83	265.12	264.87	265.2	0.005894	1.63	130.53	194	0.5
Blackjack lower	-0.1	100yr	viaduct opt b	147	263.83	265.12	264.87	265.2	0.0059	1.63	130.48	193.99	0.5
Blackjack lower	-0.1	100yr	opt bc-viaduct	147	263.83	265.12	264.87	265.2	0.0059	1.63	130.48	193.99	0.5
Blackjack lower	-0.1	100yr	opt bc wall leve	147	263.83	265.11	264.92	265.22	0.00805	2.01	116.27	179.86	0.59
Blackjack lower	-0.1	100yr	opt b wall leve	147	263.83	265.12	264.91	265.22	0.008091	1.94	117	180.06	0.57
Blackjack lower	-0.5	100yr	existing opt b	147	263.62	265.03	264.69	265.09	0.004125	1.42	146.55	205.24	0.42
Blackjack lower	-0.5	100yr	viaduct opt b	147	263.62	265.03	264.69	265.09	0.004117	1.42	146.5	204.66	0.42
Blackjack lower	-0.5	100yr	opt bc-viaduct	147	263.62	265.03	264.69	265.09	0.004117	1.42	146.5	204.66	0.42
Blackjack lower	-0.5	100yr	opt bc wall leve	147	263.62	265.03	264.69	265.09	0.004117	1.42	146.5	204.66	0.42
Blackjack lower	-0.5	100yr	opt b wall leve	147	263.62	265.03	264.69	265.09	0.004117	1.42	146.5	204.66	0.42
Blackjack lower	-0.6	100yr	existing opt b	147	263.44	264.88	264.54	264.94	0.003982	1.36	145.28	186.16	0.41
Blackjack lower	-0.6	100yr	viaduct opt b	147	263.44	264.88	264.54	264.94	0.003982	1.36	145.28	186.16	0.41
Blackjack lower	-0.6	100yr	opt bc-viaduct	147	263.44	264.88	264.54	264.94	0.003982	1.36	145.28	186.16	0.41
Blackjack lower	-0.6	100yr	opt bc wall leve	147	263.44	264.88	264.54	264.94	0.003982	1.36	145.28	186.16	0.41
Blackjack lower	-0.6	100yr	opt b wall leve	147	263.44	264.88	264.54	264.94	0.003982	1.36	145.28	186.16	0.41
Blackjack lower	-0.7	100yr	existing opt b	147	263.02	264.27	264.25	264.53	0.018448	2.68	76.82	133.1	0.86
Blackjack lower	-0.7	100yr	viaduct opt b	147	263.02	264.27	264.25	264.53	0.018448	2.68	76.82	133.1	0.86
Blackjack lower	-0.7	100yr	opt bc-viaduct	147	263.02	264.27	264.25	264.53	0.018448	2.68	76.82	133.1	0.86
Blackjack lower	-0.7	100yr	opt bc wall leve	147	263.02	264.27	264.25	264.53	0.018448	2.68	76.82	133.1	0.86
Blackjack lower	-0.7	100yr	opt b wall leve	147	263.02	264.27	264.25	264.53	0.018448	2.68	76.82	133.1	0.86
Blackjack lower	-1	100yr	existing opt b	147	262.21	264.01	263.57	264.06	0.002513	1.17	171.64	187.77	0.33
Blackjack lower	-1	100yr	viaduct opt b	147	262.21	264.01	263.57	264.06	0.002513	1.17	171.64	187.77	0.33
Blackjack lower	-1	100yr	opt bc-viaduct	147	262.21	264.01	263.57	264.06	0.002513	1.17	171.64	187.77	0.33
Blackjack lower	-1	100yr	opt bc wall leve	147	262.21	264.01	263.57	264.06	0.002513	1.17	171.64	187.77	0.33
Blackjack lower	-1	100yr	opt b wall leve	147	262.21	264.01	263.57	264.06	0.002513	1.17	171.64	187.77	0.33

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	# Chl
Blackjack lower	-2	100yr	existing opt b	147	262.21	263.55	263.55	263.78	0.0123	2.37	91.71	193.49	0.72
Blackjack lower	-2	100yr	viaduct opt b	147	262.21	263.55	263.55	263.78	0.0123	2.37	91.71	193.49	0.72
Blackjack lower	-2	100yr	opt bc-viaduct	147	262.21	263.55	263.55	263.78	0.0123	2.37	91.71	193.49	0.72
Blackjack lower	-2	100yr	opt bc wall leve	147	262.21	263.55	263.55	263.78	0.0123	2.37	91.71	193.49	0.72
Blackjack lower	-2	100yr	opt b wall leve	147	262.21	263.55	263.55	263.78	0.0123	2.37	91.71	193.49	0.72
Blackjack lower	-2.5			Culvert									
Blackjack lower	-3	100yr	existing opt b	147	262.12	263.34	263.34	263.61	0.015845	2.64	77.44	134.02	0.8
Blackjack lower	-3	100yr	viaduct opt b	147	262.12	263.34	263.34	263.61	0.015845	2.64	77.44	134.02	0.8
Blackjack lower	-3	100yr	opt bc-viaduct	147	262.12	263.34	263.34	263.61	0.015845	2.64	77.44	134.02	0.8
Blackjack lower	-3	100yr	opt bc wall leve	147	262.12	263.34	263.34	263.61	0.015845	2.64	77.44	134.02	0.8
Blackjack lower	-3	100yr	opt b wall leve	147	262.12	263.34	263.34	263.61	0.015845	2.64	77.44	134.02	0.8
Blackjack lower	-4	100yr	existing opt b	147	261.76	262.91	262.5	262.98	0.005317	1.38	127.79	152.99	0.46
Blackjack lower	-4	100yr	viaduct opt b	147	261.76	262.91	262.5	262.98	0.005317	1.38	127.79	152.99	0.46
Blackjack lower	-4	100yr	opt bc-viaduct	147	261.76	262.91	262.5	262.98	0.005317	1.38	127.79	152.99	0.46
Blackjack lower	-4	100yr	opt bc wall leve	147	261.76	262.91	262.5	262.98	0.005317	1.38	127.79	152.99	0.46
Blackjack lower	-4	100yr	opt b wall leve	147	261.76	262.91	262.5	262.98	0.005317	1.38	127.79	152.99	0.46

Appendix C

PIER ARRANGEMENT

<u>CROSS SECTION - 1500 DEEP GIRDERS</u>

PIER ARRANGEMENT IN PLAN

Appendix D

HEC-RAS LONGITUDINAL SECTION

Appendix E

HEC-RAS PERSPECTIVE PLOT VIADUCT OPTIONS

Appendix F

ASHFORD WATERCOURSE CATCHMENT

Appendix G

RORB PLAN

Appendix H

HEC-RAS PLAN

