Intended for John Holland Rail

Document type Report

Date 29 August 2019

Project Number 318000780-T1-03

AUGUST 2019 SURFACE WATER MONITORING -TARAGO RAIL LOOP EXPANSION

AUGUST 2019 SURFACE WATER MONITORING - TARAGO RAIL LOOP **EXPANSION**

Project name	Tarago Loop Expansion	Ramboll
Project no.	318000780	Level 2, Suite 18 Eastpoint 50 Glebe Road
Recipient	Wayne D'Souza	PO Box 435 The Junction
Document typ	e Report	NSW 2291
Document	318000780 T1-03 Rev0	Australia
Reference		T +61 2 4962 5444
Description	August 2019 Surface Water Monitoring Report for the Tarago Loop	https://ramboll.com
	Expansion	
Approved by	F Robinson CEnvP Certification SC400100	
	No SCHOOL	

This document is issued in confidence to John Holland Rail for the purposes of presenting surface water monitoring results. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© Ramboll Australia Pty Ltd

CONTENTS

1.	INTRODUCTION	4
1.1	Preamble	4
1.2	Background	4
1.3	Objective	4
2.	SCOPE OF WORK	5
2.1	Monitoring Scope	5
2.2	Sampling Methodology	5
2.3	Quality Assurance and Quality Control Program	6
3.	ASSESSMENT CRITERIA	7
4.	RESULTS	10
4.1	Field Sampling Observations	10
4.2	Analytical Results	10
4.2.1	Metals	10
4.2.2	Nitrogen	10
4.2.3	Total Recoverable Hydrocarbons	10
4.2.4	BTEX	10
5.	CONCLUSIONS	11
6.	REFERENCES	12

TABLE OF TABLES

Table 2-1: Surface Water Sampling Locations	5	
Table 3-1: Health-based screening criteria for recreational waters (NHMI	RC 2008)	8
Table 3-2: Ecological screening criteria for surface water	8	

APPENDICES

Appendix 1 Figures

Appendix 2 Results Tables

Appendix 3 Laboratory Reports

Appendix 4 Photographs

1. INTRODUCTION

1.1 Preamble

Ramboll Australia Pty Ltd (Ramboll) was commissioned by John Holland Rail (JHR) to conduct surface water monitoring within the Country Regional Network (CRN) rail corridor adjacent Tarago Station, Tarago NSW.

The monitoring was commissioned to establish a baseline of surface water conditions ahead of proposed expansion of the Tarago Rail Loop. The construction footprint associated with loop expansion is here-in referred to as "the site".

This report presents the results from surface water monitoring conducted in August 2019.

1.2 Background

The proposed construction includes extension of an existing passing loop opposite the Tarago Railway Station. The site is understood to occupy approximately 1800 lineal meters of rail corridor from Chainage (CH): 261.280 km to CH: 263.100 km (as distance from Sydney).

JHR provided a procedure to guide surface water monitoring which included sampling at six locations as defined on **Figure 1**, **Appendix 1** integrating assessment of three water bodies running beneath the rail formation within the site at up-stream (west) and down-stream (east) locations relative to the formation. Analyses were prescribed as presented in **Table 1-1**.

General Parameters	Dissolved Metals	Nutrients	Hydrocarbons					
Electrical Conductivity (1:5)	Aluminium	Ammonia as N	BTEX (Benzene, Toluene, Ethyl Benzene, Xylene)					
рН	Beryllium	Nitrate an N	TPH (C6 to C36)					
Total Dissolved Solids	Barium	Nitrite as N						
Total Suspended Solids	Cobalt	Total Nitrogen						
Turbidity	Lead	Total Phosphorus						
	Iron							
	Manganese							
	Zinc							

Table 1-1: Prescribed Surface Water Analytes

1.3 Objective

The objective of surface water monitoring is to establish a baseline of surface water conditions to inform assessment of potential impacts associated with the proposed loop expansion.

2. SCOPE OF WORK

2.1 Monitoring Scope

The following scope of work was undertaken to complete the surface water sampling:

- Mobilisation to site
- Inspection of the six prescribed surface water sampling locations (SW1 to SW6) to assess the presence of surface water suitable for sampling
- Sampling of surface water at locations where water was observed noting this included one prescribed location (SW4), sampled 6 August 2019, and one additional location (SW1 UP), sampled 12 August 2019. A summary of all prescribed locations and SW1 UP is presented in Table 2-1. Sampling occurred in general accordance with the procedure supplied by JHR and per the methodology outlined in Section 2.2
- Submission of samples to the laboratory for prescribed analysis, as outlined in Table 1-1.
- Preparation of this report presenting the results of the monitoring.

Sample Designation	Location
SW1 – UP	Intended as an up-gradient sample, located on a western tributary of the Mulwaree River, approximately 100 m west of the rail corridor at CH. 262.600. Water was present as small, non-continuous ponds – no flow was observed.
SW1	Adjacent to a culvert on the western side of the rail line at CH 262.600 on tributary of Mulwaree River. Water was not present and could not be sampled.
SW2	Adjacent to a culvert on the eastern side of the rail line at CH 262.600 on tributary of Mulwaree River. Water was not present and could not be sampled.
SW3	Adjacent to a culvert on the western side of the rail line at CH 262.300. <i>Water was not present</i> and could not be sampled.
SW4	Adjacent to a culvert on the eastern side of the rail line at CH 262.300. Water as present as a series of stagnant ponds and not flowing.
SW5	Adjacent to a culvert on the western side of the rail line at CH 262.000. <i>Water was</i> not present and could not be sampled.
SW6	Adjacent to a culvert on the eastern side of the rail line at CH 262.000. Water was not present and could not be sampled.

Table 2-1: Surface Water Sampling Locations

Sampling locations are also presented in Figure 1, Appendix 1.

2.2 Sampling Methodology

The following procedures were undertaken for the sampling program:

- Samples of surface water were collected from two locations where water was present (SW1-UP and SW4). The other five prescribed locations (SW1, SW2, SW3, SW5 and SW6) were dry and could not be sampled. Sample locations are shown as per **Table 2-1** and shown on **Figure 1** (**Appendix 1**).
- 2. Chemical and physical parameters, including temperature, pH, electrical conductivity, dissolved oxygen and oxidation/reduction potential were measured in the field as part of the sampling event for the collection of SW4. Sample SW1-UP was collected as an opportunistic grab sample in a later sampling event (12 August 2019) and the field water quality meter was not available for field measurement. Both samples were filtered in the field for metals analysis.
- 3. At each sampling location, surface water was collected using a clean container and placed into clean laboratory-supplied sample bottles, containing the appropriate preservative for the analysis required.
- 4. Samples were collected from a depth of approximately 0.1 m below the water surface.
- 5. Each sample bottle was clearly labelled with a unique sample name, date and location.

- 6. Samples were collected following the quality control and quality assurance procedures described in **Section 2.3**.
- 7. Samples were analysed for the following analytical suite which included the parameters listed in **Table 1-1**. Additional metals, arsenic, cadmium, chromium, copper, mercury and nickel were also analysed. For SW4, analysis for total lead was also included. **NB** The sample SW1-UP was incorrectly labelled as S03-UP in the Eurofins Laboratory report. All references in this report to SW1_UP should be referenced to the result for S03-UP in Eurofins report 670969_W (**Appendix 3**).

2.3 Quality Assurance and Quality Control Program

The following quality assurance and quality control (QA/QC) procedures were employed during the sampling program:

- 1. All samples were collected by personnel trained and experienced in the collection of water samples for analysis, using standard industry techniques for sample collection
- 2. All proposed samples were collected (where water was present)
- 3. Clean, single location use sampling equipment was used to collect each sample to minimise the opportunity for cross contamination
- 4. With the exception of dissolved metals analysis, all samples were promptly placed in clean, laboratory-supplied containers appropriate for the required analyses and containing the appropriate preservative
- 5. For dissolved metals analysis, all samples were filtered using a single use syringe and 0.45 μ m filter, prior to placement in the container with appropriate preservative
- 6. All samples were labelled with unique names, identifying location and date
- 7. All samples were placed in an esky chilled with ice
- 8. Samples were submitted to the laboratory under chain-of-custody protocols
- 9. All samples were analysed within the recommended holding times
- 10. A NATA accredited laboratory was used for the analyses conducted and is experienced in the analytical requirements for potentially contaminated soil and groundwater.
- 11. Submission of quality control samples for analysis:
 - a. Field duplicate analysed for all parameters, Duplicate ID: D01_130819. Primary sample ID: SW1-UP (S03-UPTC)
 - b. Field duplicate analysed for all parameters, Duplicate ID: SW04A. Primary sample ID: SW4
 - c. Trip blanks 6 August 2019 and 12 August 2019 analysed for TRH C6-C9 and BTEXN
 - d. Trip spikes 6 August 2019 and 12 August 2019 analysed for BTEXN and TRH C6-C9.

Quality control results are summarised in **Table 3**, **Appendix 2**. Results for the trip blanks found no detectable concentrations. Results for the trip spike were within acceptable recovery limits. Review of the calculated relative percent difference (RPD) between primary and duplicate sample pairs found all concentrations within the RPD criteria of $\pm 30\%$.

Internal laboratory quality control analyses including method blanks, laboratory control samples (LCS), matrix spikes and laboratory duplicates were completed to cover project analytes.

Laboratory internal quality assurance (QA) testing results are contained within the laboratory report sheets, **Appendix 3**. Internal laboratory review indicated internal duplicates, method blanks, laboratory control samples and matrix spikes to be within acceptable quality control limits.

The analytical data is considered to be of suitable quality for the purpose of this project.

3. ASSESSMENT CRITERIA

Assessment criteria proposed for the assessment of surface water are sourced from the following references:

- 1. National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013)
- 2. National Health and Medical Research Council (2008) *Guidelines for Managing Risks in Recreational Water*
- 3. NSW DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*
- 4. ANZECC & ARMCANZ (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

NSW DEC (2007) indicates that for assessing groundwater quality, it is first necessary to assess the beneficial uses of groundwater and surface water downgradient of the site. This assessment of beneficial uses is considered to be suitable for assessing surface water quality.

The closest surface water body to the site is Mulwaree River, located approximately 600 m east of site. Mulwaree River falls under the Goulburn-Mulwaree Council Local Environmental Plan (LEP), and is classified as a recreational waterway (W2) zone, protective of the following values:

- 1. Ecological, scenic and recreational
- 2. Water based recreational, and
- 3. A sustainable agricultural industry for irrigation and stock watering.

Assessment criteria has been adopted to be consistent with the values described above consistent with values were taken from:

- 1. Health-based screening criteria for recreational water derived from drinking water standards by factoring by ten, in accordance with the National Health and Medical Research Council *Guidelines for Managing Risk in Recreational Waters 2008* (NHMRC 2008)
- Ecological criteria based on the ANZECC & ARMCANZ (2000) Australian And New Zealand Guidelines for Fresh and Marine Water Quality for the Protection of Aquatic Ecosystems of Receiving Waters 2000 (ANZECC 2000)

As of August 2018, the Australian Water Quality Guidelines for Fresh and Marine Waters (ANZECC, October 2000), were replaced by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018). The ANZG 2018 guidelines have been used in this assessment of surface water however it is noted that there are no changes to assessment criteria in the revised guidelines.

ANZG (2018) advocates a site-specific approach to developing guideline trigger values based on such factors as local biological effects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess ecological risks or management and remedial actions. Low risk trigger values are presented ANZG 2018 for the protection of 80-99% of species in fresh waters, with trigger values depending on the health of the receiving waters.

A 95% protection of freshwater species was selected due to the partially degraded environment in the river which flow to Mulwaree River.

A summary of the assessment criteria for surface water is provided in Table 3-1 and Table 3-2.

Analyte	Recreational Water (µg/L)
Ammonia	5000
Nitrate	50,000
Nitrite	30,000
Total Kjeldahl nitrogen	800
TRH C6-C10 minus BTEX (F1)	-
TRH >C10-C16 minus naphthalene (F2)	-
Benzene	10
Toluene	8,000
Ethylbenzene	3,000
Xylenes	6,000
Naphthalene	17
Aluminium	2000
Arsenic	100
Barium	2000
Beryllium	600
Cadmium	20
Copper	20,000
Iron	3,000
Lead	100
Manganese	5,000
Mercury (total)	10
Nickel	200
Zinc	30,000

Table 3-1: Health-based screening criteria for recreational waters (NHMRC 2008)

Table 3-2: Ecological screening criteria for surface water

Analyte	Ecological, freshwater criteria (µg/L)	Reference
Aluminium (filtered)	55	ANZG 2018, fresh water guideline adopted
Beryllium (filtered)	No criteria	
Cobalt (filtered)	No criteria	
Iron (filtered)	300	ANZECC 2000, fresh water guideline adopted
Lead (filtered)	3.4	ANZG 2018, fresh water guideline adopted
Manganese (filtered)	1900	ANZG 2018, fresh water guideline adopted
Arsenic (filtered)	24	ANZG 2018, fresh water guideline adopted
Cadmium (filtered)	2	ANZG 2018, fresh water guideline adopted
Chromium (filtered)	27	ANZG 2018, fresh water guideline adopted
Copper (filtered)	12	ANZG 2018, fresh water guideline adopted
Mercury (filtered)	0.6	ANZG 2018, fresh water guideline adopted

Analyte	Ecological, freshwater criteria (µg/L)	Reference					
Nickel (filtered)	97	ANZG 2018, fresh water guideline adopted					
Zinc (filtered)	70	ANZG 2018, fresh water guideline adopted					
Ammonia	900	ANZG 2018, fresh water guideline adopted					
Nitrate	3500	ANZG 2018, fresh water guideline adopted					
Total Suspended Solids (TSS)	700						
Benzene	950	ANZG 2018, fresh water guideline adopted					
Toluene	180	ANZG 2018, fresh water guideline adopted					
Total xylenes	200	ANZG 2018, fresh water guideline adopted					
Ethylbenzene	80	ANZG 2018, fresh water guideline adopted					

4. **RESULTS**

4.1 Field Sampling Observations

Sampling of SW4 occurred on 6 August 2019 and sampling of SW1 UP occurred on 13 August 2019.

The Bureau of Meteorology indicated no rainfall had occurred in the preceding week. The weather was fine with very light winds.

Surface water was limited to non-flowing ponds at SW4 and SW1 UP and was not observed elsewhere onsite (including at any of the other prescribed sampling points).

Physico-chemical parameters for each of the sample locations are presented in **Table 1**, **Appendix 2**.

The following was generally noted:

- 1. pH ranged from slightly alkaline (7.9 SW4) to alkaline (8.8 SW1-UP)
- 2. Conductivity indicated fresh to slightly brackish water
- 3. Oxidising conditions and moderately oxygenated water in SW4

Photographs of sampling locations are presented in Appendix 4.

4.2 Analytical Results

The analytical results are presented as a summary table in **Table 2**, **Appendix 2** and laboratory reports are presented in **Appendix 3**.

A brief discussion of the results is presented below.

4.2.1 Metals

Arsenic, cadmium, barium, copper, lead, nickel and zinc were detected above the laboratory limits of reporting in the surface water samples as follows:

- 1. SW1-UP, (Ba)
- 2. SW4, (Al, As, Ba, Cd, Cu, Fe, Pb, Ni, Zn)

Metal concentrations were below the adopted human health criteria but exceeded ecological criteria of 55 μ g/L for aluminium, 2 μ g/L for cadmium, 12 μ g/L for copper, 8 μ g/L for lead, 11 μ g/L nickel and 70 μ g/L for zinc at SW4.

Beryllium, cobalt, chromium and mercury were not detected at concentrations above the laboratory limits of reporting at either sampling location.

4.2.2 Nitrogen

Nitrogen was detected as follows:

- 1. Ammonia was detected at SW1-UP
- 2. Kjehldahl nitrogen was detected at SW4

Nitrogen concentrations were otherwise below the laboratory limits of reporting and all were below adopted ecological criteria of 900 μ g/L for ammonia and 3500 μ g/L for nitrate.

4.2.3 Total Recoverable Hydrocarbons

TRH fractions were below laboratory limits of reporting for all samples.

4.2.4 BTEX

BTEX compounds at the sampling locations were reported below the laboratory limit of reporting.

5. CONCLUSIONS

The preliminary surface water sampling event for the Tarago Rail Loop area was conducted on 6 August and 12 August 2019.

Of the six prescribed locations (SW1 to SW6), water was only observed at SW4. A location upstream from SW1, (SW1-UP), where water was observed, was also sampled to provide an indication of background surface water conditions. Surface water in both locations was observed to be in isolated stagnating ponds with no flow evident.

All results were reported below human health criteria.

Exceedances of ecological criteria were identified for location SW4 for metals, aluminium, cadmium, copper, lead, nickel and zinc.

All other results were reported below laboratory limits of reporting or adopted criteria.

It is considered that given the location of the impacted sample (SW4), within the rail corridor and the dry conditions (no flow), the implications for potential impacts on offsite downstream receptors is unclear.

6. **REFERENCES**

ANZECC & ARMCANZ (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

AS/NZS 5667.11 1998, Water Quality – Sampling – Guidance on Sampling of Groundwater

Australian and New Zealand Environment and Conservation Council (ANZECC) 1992, Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018)

Contaminated Land Management Act NSW 1997


National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013)

National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination

Ramboll - Surface Water Monitoring - Tarago Rail Loop Expansion

APPENDIX 1 FIGURES

A4

Legend

- Rail corridor
- ------ Rail corridor fence
 - 0.1km chainage point
 - Goulburn Street level crossing
- Construction compound
 - Goods shed exclusion zone

Surface water sampling locations

- SampledProposed
 - Proposed (dry)

Ramboll - Surface Water Monitoring - Tarago Rail Loop Expansion

APPENDIX 2 RESULTS TABLES Project No: 318000780 Client Name: JHR Project Name: Surface Water Sampling Tarago Rail Loop Project Site: Tarago Station 29-08-19

Sample Location	Sample Date	Time	Sample Depth (m below surface)	Temp (°C)	Spec Conductivity (µScm-¹)	рН	Dissolved Oxygen (mg/L)	Redox (mV)	TDS (ppm)	
SW1-UP	12-08-19	7:45	0.1	NA	820.0	7.9	NA	NA	420.0	
SW4	06-08-19	11:35	0.1	12.4	169.00	169.00 8.80		200.0	-	st

Notes

ppm = parts per million

 μ Scm⁻¹ = microSiemens per centimetre

mV = milli Volts

n/a = not applicable

Comments

stagnant pond, clear

stagnant pond, clear, slightly yellow

					Sample Typ	e:	Surface Water	Surface Water
	-				Lab ID			
	-						12-08-19	06-08-19
	-				Sample dat			
	 Health-based			Ecological	Sample ID:		SW1-UP	SW4
	Screening Criteria	Stockwater Guidelines	STV - Irrigation	Sceening Criteria (ANZG 95%	Project Nan	ne:	Tarago SW Monitoring	Tarago SW Monitoring
	(Recreational Waters)	(ANZECC 2000)	(ANZECC 2000)	Protection) Fresh	Project No:		318000780	318000780
				Water	Sample Loc	ation	Tarago Rail Loop	Tarago Rail Loop
					Sampling M	lethod:	surface water sample	surface water sample
Guidelines					Sample Des	scription:	-	-
Analyte grouping/Analyte					Units	LOR		
The second								
<i>Inorganics</i> Ammonia (as N)	500	-	_	900	µg/L	10	10	<10
Conductivity (at 25@°C)		-	-		μS/cm	100	820	170
Nitrate & Nitrite (as N)	-	-	-	-	μg/L	100	< 10	<50
Nitrate (as N)	50000	400000	-	3500	μg/L	10	< 20	< 20
Nitrite (as N)	30000	30000	-	-	μg/L	10	< 20	< 20
pH (at 25@°C)	-	-	-	-	pH units	0.1	7.9	6.9
Phosphate total (as P)	-	-	800-1200	_	µg/L	10	< 50	30
Total Dissolved Solids Dried at $180^{\circ}C \pm 2^{\circ}C$	-	-	-	-	mg/L	5	420	< 10
Total Kjeldahl Nitrogen (as N)	800	-	-	-	µg/L	5	<20	10
Total Nitrogen (as N)	-	-	25000-125000	-	μg/L	5	<20	10
Total Suspended Solids Dried at 105°C	-	-	-	700	mg/L	5	< 5	7
Turbidity	-	-	-	-	NTU	1	1	6
Dissolved and Total Metals								
Aluminium (filtered)	2000	5000	20000	55	µg/L	50	< 50	170
Barium (filtered)	2000	-	-	-	µg/L	1	100	40
Beryllium (filtered)	600	-	500	0.13	µg/L	1	<1	<1
Cobalt (filtered)	-	1000	100	90	µg/L	1	<1	<1
Iron (filtered)	3000		10000	300	μg/L	50	< 50	220
Lead (total)		-		-	µg/L	100	NA	13
Lead (filtered)	100	100	5000	3.4	µg/L	1	<1	8
Manganese (filtered)	5000	10000	2500	1900	µg/L	5	<5	15
Arsenic (filtered)	100	500	2000	13	µg/L	1	<1	1
Cadmium (filtered)	20	10	50	0.2	µg/L	0.2	< 0.2	5.5
Chromium (filtered)	500	1000	1000	3.3	µg/L	1	<1	<1
Copper (filtered)	20000	500	100	1.4	µg/L	1	<1	140
Mercury (filtered)	10	2	2	0.06	µg/L	0.1	< 0.1	< 0.1
Nickel (filtered)	200	1000	2000	11	µg/L	1	<1	14
Zinc (filtered)	30000	20000	5000	8	µg/L	5	<5	1200
Total Recoverable Hydrocarbons - 1999 N	IEPM Fractions			1				
TRH C10-C14	-	-	-	-	µg/L	50	<50	<50
TRH C10-C36 (Total)	-	-	-	-	µg/L	100	<100	<100
TRH C15-C28	-	-	-	-	µg/L	100	<100	<100
TRH C29-C36	-	-	-	-	µg/L	100	<100	<100
TRH C6-C9	-	-	-	-	µg/L	20	<20	<20
Total Recoverable Hydrocarbons - 2013 N	IEPM Fractions	<u> </u>	<u> </u>	ļ				
Naphthalene	17	-	-	16	µg/L	10	<10	<10
TRH >C10-C16	-	-	-	-	µg/L	50	<50	<50
TRH >C10-C16 less Naphthalene (F2)	-	-	-	-	µg/L	50	<50	<50
TRH >C10-C40 (total)*	-	-	-	-	µg/L	100	<100	<100
TRH >C16-C34	-	-	-		µg/L	100	<100	<100
TRH >C34-C40	-	-	-]	µg/L	100	<100	<100
TRH C6-C10	-	-	-		µg/L	20	<20	<20
TRH C6-C10 less BTEX (F1)	-	-	-	-	µg/L	20	<20	<20
	1	l	l	1			1	
BTEX Benzene	10	-	-	950	µg/L	1	<1	<1
Ethylbenzene	3000	-	-	80	μg/L μg/L	1	<2	<2
m&p-Xylenes		-	-		µg/L µg/L	2	<2	<2
o-Xylene	-	-	-	-	µg/L µg/L	1	<2	<2
Toluene	8000	-	-	180	µg/L µg/L	1	<2	<2
Xylenes - Total	6000	-	-	200	µg/L µg/L	3	<3	<3
	0000			200	P9/ L			
	1							
		I	I	1	1.1		-I	L

- indicates no criterion available

All results are in µg/L

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

NOC = No observed contamination

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM) Groundwater Investigation Levels for Fresh and Marine Water Quality. Investigation levels apply to typical slightly-moderately

disturbed systems. See ANZECC & ARMCANZ (2000) for guidance on applying these levels to different ecosystem conditions.

Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Guidelines in *italics* are low level reliability guidelines

ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.

Concentration in **red bold** font exceed the Health-based Recreational Use Criteria

Concentration in grey box exceed the Ecological Criteria

Concentration in **blue bold** font exceed the Irrigation short term value Criteria

Concentration in green bold font exceed the Stock watering Criteria

Blank where not analysed

(1) Generally 95% protective level for fresh water ecosystems.

Details of Guideline values are presented in **Section 3** of report, (**Tables 3.1 and 3.2**)

Z:\Projects\John Holland Rail\318000780 Tarago Rail Loop Lead Management\6. Deliverables\T1 - Intrusive Assessment SLMP and SWM\2. Surface Water Monitoring\318000780 SWM Results Aug 19.xlsx318000780 SWM Results Aug 19.xlsx

Project No: 318000780 Client Name: JHR Project Name: Surface Water Sampling Tarago Rail Loop Project Site: Tarago Station 29-08-19

		Sample Type:		Surface Water		Surface Water	Surface Water		Blank	Spike	Blank	Spike
	Lab ID		-	ļ		-			L			
	Sample dat		12-08-19	12-08-19		06-08-19	06-08-19		12-08-19	12-08-19	06-08-19	06-08-19
	Sample ID	:	SW1-UP	D01_130819		SW4	SW4A		BLANK	SPIKE	BLANK	SPIKE
	Project Na	me:	Tarago SW Monitoring	Tarago SW Monitoring	RPD (%)	Tarago SW Monitoring	Tarago SW Monitoring	RPD (%)		Tarago SW Monitoring		
	Project No	:	318000780	318000780	- (~)	318000780	318000780	(/ • /		318000780		318000780
	Sample Location		Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop			Tarago Rail Loop		
	Sampling N		surface water sample	surface water sample		surface water sample	surface water sample		Blank	Spike	Blank	Spike
Analyte grouping/Analyte	Units	LOR									ļ!	
Inorganics												
Ammonia (as N)	µg/L	10	10	<10	ND	<10	<10	ND				
Conductivity (at 25@°C)	μS/cm	100	820	790	3.7	170	170	0.0				
Nitrate & Nitrite (as N)	µg/L	10	< 10	<5	ND	<50	<50	ND				
Nitrate (as N)	µg/L	10	< 20	< 20	ND	< 20	< 20	ND				
Nitrite (as N)	µg/L	10	< 20	< 20	ND	< 20	< 20	ND				
pH (at 25@°C)	pH units	0.1	7.9	7.9	0.0	6.9	7	1.4				
Phosphate total (as P)	µg/L	10	< 50	< 50	ND	30	30	ND				
Total Dissolved Solids Dried at 180°C :	<u> </u>	5	420	440	4.7	< 10	< 10	ND				
Total Kjeldahl Nitrogen (as N)	µg/L	5	<20	<20	ND	100	120	18.2				
Total Nitrogen (as N)	µg/L	5	<20	<20	ND	100	120	18.2				
Total Suspended Solids Dried at 105°C Turbidity	C mg/L NTU	5	< 5	9 < 1	ND ND	,	7.4 5.9	5.6				
	NIU				טא	6	5.9	1./				
Dissolved Metals												
Aluminium	µg/L	50	< 50	< 50	ND	170	80	72.0				
Barium (filtered)	μg/L	0.2	100	100	0.0	40	100	85.7				
Beryllium (filtered)	μg/L	1	<1	< 1	ND	<1	< 1	ND				
Cobalt (filtered)	μg/L	1	<1	< 1	ND	<1	< 1	ND				
Iron (filtered)	μg/L	1	< 50	<50	ND	220	<50	ND				
Lead (total)	µg/L	0.1	NA	NA	ND	13	12	8.0				
Lead (filtered)	µg/L	1	<1	<1	ND	8	8	0.0				
Manganese (filtered)	µg/L	5	<5	<5	ND	15	14	6.9				
Arsenic (filtered)	µg/L	1	<1	<1	ND	1	<1	ND				
Cadmium (filtered)	µg/L	0.2	<0.2	<0.2	ND	5.5	5.6	1.8				
Chromium (filtered)	µg/L		<1	<1	ND	1	<1	ND				
Copper (filtered)	µg/L	1	<1	<1	ND	140	150	6.9				
Mercury (filtered)	µg/L	0.1	<0.1	<0.1	ND	<0.1	<0.1	ND				
Nickel (filtered)	µg/L		<1	<1	ND	14	14	0.0				
Zinc (filtered)	µg/L	5	<5	<5	ND	1200	1200	0.0				
Total Recoverable Hydrocarbons -	1999 NFPM	Fractions										
TRH C10-C14	μg/L	50	<50	<100	ND	<50	<100	ND				
TRH C10-C36 (Total)	μg/L μg/L	100	<100	< 50	ND	<100	< 50	ND				
TRH C15-C28	μg/L	100	<100	< 100	ND	<100	< 100	ND				
TRH C29-C36	μg/L	100	<100	< 100	ND	<100	< 100	ND				
Total Recoverable Hydrocarbons -								• • •				
Naphthalene	µg/L	10	< 10	< 10	ND	< 10	< 10	ND	<10		<10	
TRH $>$ C10-C16	µg/L	50	< 50	< 50	ND	< 50	< 50	ND				
TRH >C10-C16 less Naphthalene (F2)	1 3,	50	< 50	< 50	ND	< 50	< 50	ND				
TRH >C10-C40 (total)* TRH >C16-C24	µg/L	100	< 100	< 100	ND	< 100	< 100	ND				
TRH >C16-C34 TRH >C34-C40	µg/L	100 100	< 100 < 100	< 100 < 100	ND ND	< 100	< 100	ND ND				
TRH >C34-C40 TRH C6-C10	µg/L	20	< 100	< 100	ND ND	< 100 < 20	< 100 < 20	ND ND	<20		 <20	
TRH C6-C10 less BTEX (F1)	μg/L μg/L	20	< 20	< 20	ND ND	< 20	< 20	ND ND	<20		<20	
	<u>µ9/⊏</u>	20	~ 20	~ 20		~ 20	~ 20	IND	~20		~20	
BTEX												
Benzene	µg/L	1	<1	<1	ND	<1	<1	ND	<1	100%	<1	100%
Ethylbenzene	µg/L	1	<1	<1	ND	<1	<1	ND	<1	100%	<1	100%
m&p-Xylenes	μg/L	2	<2	<2	ND	<2	<2	ND	<2	100%	<2	100%
	M 9/ L											
	μα/Ι	1 1	<1	<1	ND	<1	<1 1	ND	<1	100%	<1	100%
o-Xylene Toluene	μg/L μg/L	1	<1 <1	<1 <1	ND ND	<1 <1	<1 <1	ND ND	<1 <1	100% 99%	<1 <1	100% 99%

(1) Trip Spike in % recovery

LOR = Limit of Reporting

ND = not calculated as one or more results are below the LOR.

Bold and Shaded cells exceed RPD > 30%

Bold indicates when above the acceptance criteria for Trip Spikes/Blanks and Rinsates

Blank Cell indicates not analysed

APPENDIX 3 LABORATORY REPORTS

	CHAIN OF CUSTODY Earthry Jung ART Solds of	5321	9				e West NSW 26	066	.CHHE	oane Laboratory D1 Stratiking Files 1 02 4900 EmansSarre				Unit 2 S	Laboratory 91 Leach Highway Kewdal 19633 EnviroSampleWA					Laboratory pad Dandenong South EnviroSampleVic@	
Company	THE GOLD MUST		-	est Ne			>780			Project Mu	nager	STEF	PHErJ	Max	SW5Le	Sam	ripler(i)	EXTE	NDAL	SLE ART	MPLER.
Address	LEVEL 3, 100 F HIGHNAY, NORTH	ACIFIC	Projes	t Name	JH	R	SURFA	et l	NATER	EDD For ESdel, EQU						Hande	d over by		F Ku		
15.00	NGW, 2060.															Email	w Involce	AIKH	ANE	RAMBO	ou com
Contact Nar	NUT NHM.		Totef or 1 ATE prom		N											Email	or Results	AIKA	IANC	RAMBO	u com
Phone Nr	0299548139	·	and a second	2K	JP	47		BTBY TRH								Cherg		tainers pe & sze II.nec	nstary.	Required T Detailt will be	umaround Time. 5 days If not licked,
Special Direct	tons		Articlyn Mei philor te ueed i	1671	METALS	NETAL.		\sim											~	Overnight (r	◆Surcharge will apply eporting by 9am)◆
			au rogae	RAN		N.		S									-		1×	Same day	1 day●
Purchase Ord			an makin BUITE	D	DILLOLVED	j.	M	JAR								500mL Plastic 250mL Plastic	125mL Plastic 200mL Amber Glass	40mL Vial 🔨 500mL PFAS PET	Jar (Glass or HDPE)	2 days♦ 5 days (Star	3 days♦
Quote ID N			-	RM	1953	Totai	16N	200								200mL 200mL	125mL 00mL Arr	40mL 500mL Pi	lar (Glass	Other(·)
No	Client Sample ID	Sampled Date/Time date://	Matrix Salid.(%) Weber (%)	GENERM PARAMETERS	DIS	r	NUTRIENTS	HYDROCARBONS											90	Sample / Dangerous Go	Comments ods Hazard Warning
Si	WO4	6-8-19 10:45	W	V	~	V	~	~								1	1	2	3	7 ESK	161 4 61
2 S	WOYA	6-8-19 11:00	W	V	~	V	~	~								;	1	2	3	2	0
3 5	WY (TRIPBLANK) ~ X (TRIP SPIKE)		N													-		2			
C.	TRIP		W										-			-					
51	~X(SPIKE)		~~											_				2	-		
5																			-		
6																					
7																					
8								_						-							
											_		_								
											_	_								2	
10)																					
	All Contraction	Tota	l Counts																	1.4	S. Surger
Method of Shipment	Courier (#)	Hand Delivered		Pos	tal	Nam	e	ASIF K	han		Signature	. ,	H	I	Da	ate	06/02	8/19	Time	
Eurofins I	mgt Received By	eera D		SYDI	8ne į mel	PER A		DRW	Signature	-5	2			Date	06/08/19	Ti	ne	3:06	em	Temperature	8.7 '0
AT IDE 2	Received By			SYD	BNE MEL	PER A	DLINTLII	DRW	Signature			La log		Date		Tir	ne			Report Ne	669788

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

To: Subject:	Asim Khan RE: Sampling Bottles Required
 From: Nibha Vaidya [mailto:NibhaVaidya@eurofins.com] Sent: Friday, August 02, 2019 11:51 AM To: Asif lqbal Khan <<u>AIKHAN@ramboll.com</u>> Cc: Stephen Maxwell <<u>SMAXWELL@ramboll.com</u>>; Victori AlenaBounkeua@eurofins.com; <u>AsimKhan@eurofins.com</u> Subject: RE: Sampling Bottles Required 	From: Nibha Vaidya [mailto:NibhaVaidya@eurofins.com] Sent: Friday, August 02, 2019 11:51 AM To: Asif lqbal Khan < <u>AlKHAN@ramboll.com</u> > Cc: Stephen Maxwell < <u>SMAXWELL@ramboll.com</u> >; Victoria Sedwick < <u>vsedwick@ramboll.com</u> >; AlenaBounkeua@eurofins.com; <u>AsimKhan@eurofins.com</u> Subject: RE: Sampling Bottles Required
Hi Asif,	
Thanks for your call. We will a include 2 eskies as requested.	Thanks for your call. We will arrange the delivery to your North Sydney office for Monday morning. We will also include 2 eskies as requested.
Please find below the list of co	ist of containers required for these parameters:
Parameters	Containers Required
General Parameters	
Electrical Conductivity	
Hd	
Total Dissolved Solids	1 X 500mL plastic (no preservative) - green label
Total Suspended Solids	
Turbidity	
Dissolved Metals	1 x 60mL plastic metals (Nitric acid preserved) - <i>red/orange label</i>
Al, Be, Ba, Co, Pb, Fe, Mn, Zn	Field filter at 0.45 um
Total Metals	
Pb	T X DUML plastic metals (Nitric acid preserved) - red/orange label
Nutrients	
Ammonia	
Nitrate	1 x 60mL plastic nutrients (H2SO4 preserved) - purple label
Nitrite	Nitrite will be conducted from the unpreserved plastic bottle listed above.
Total Nitrogen	
Total Phosphate*	
Hydrocarbons	
ВТЕХ	1 x 200mL glass (no preservative) - orange label
TRH (C6 to C36)	
*Total Phosphate is a nutrient	*Total Phosphate is a nutrients analysis and is the recommended technique in water samples.
As discussed, our Sample Rece pm next Tuesdav and if the frc	As discussed, our Sample Receipt section is open till around midnight. If you are dropping off samples around 6 / 7 pm next Tuesdav and if the front gate or glass door is locked, please call Asim on 0429 051 456 / 02 9900 8432

÷

To: Subject: Stephen Maxwell RE: Eurofins Sample Receipt Advice - Report 669788 : Site JHR SURFACE WATER SAMPLING (318000780)

From: Stephen Maxwell [mailto:SMAXWELL@ramboll.com]
Sent: Tuesday, 6 August 2019 4:08 PM
To: Enviro Sample NSW
Cc: Asif Iqbal Khan
Subject: RE: Eurofins Sample Receipt Advice - Report 669788 : Site JHR SURFACE WATER SAMPLING (318000780)

Thanks

Please analyse the spike sample for what ever it was spiked with (C6 – C9?) and analyse the blank for BTEX and TRH C6 – C9.

Kind regards Stephen Maxwell Lead Consultant

D +61 478658194 M +61 478658194 smaxwell@ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

From: EnviroSampleNSW@eurofins.com <EnviroSampleNSW@eurofins.com> Sent: 6 August, 2019 4:01 PM To: Stephen Maxwell <<u>SMAXWELL@ramboll.com</u>> Cc: Asif Iqbal Khan <<u>AIKHAN@ramboll.com</u>> Subject: Eurofins Sample Receipt Advice - Report 669788 : Site JHR SURFACE WATER SAMPLING (318000780)

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Luca Dominici Sample Receipt

Eurofins | Environmental Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 29900 8421 Email: <u>EnviroSampleNSW@eurofins.com</u> Website:<u>environment.eurofins.com.au</u> EnviroNote 1079 - PFAS Fingerprinting EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click <u>here</u> to report this email as spam.

Scanned By Websense For Eurofins

Alena Bounkeua

From: Sent: To: Subject:	Stephen Maxwell <smaxwell@ramboll.com> Monday, 26 August 2019 9:50 AM Alena Bounkeua RE: Eurofins Test Results - Report 669788 : Site JHR SURFACE WATER SAMPLING (318000780)</smaxwell@ramboll.com>
Follow Up Flag:	Follow up
Flag Status:	Completed

EXTERNAL EMAIL*

Hi Alena

Can you confirm if remnant volume is available on these samples to complete the following analyses?

Aluminium (filtered)
Barium (filtered)
Beryllium (filtered)
Cobalt (filtered)
Iron (filtered)
Lead (filtered)
Manganese (filtered)

If so, please proceed on fastest available turn-around.

Kind regards **Stephen Maxwell** Lead Consultant

D +61 478658194 M +61 478658194 smaxwell@ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

From: <u>AlenaBounkeua@eurofins.com</u> <<u>AlenaBounkeua@eurofins.com</u>> Sent: 9 August, 2019 5:14 PM To: Stephen Maxwell <<u>SMAXWELL@ramboll.com</u>> Cc: Asif Iqbal Khan <<u>AIKHAN@ramboll.com</u>> Subject: Eurofins Test Results - Report 669788 : Site JHR SURFACE WATER SAMPLING (318000780)

Dear Stephen,

Please find attached results for your project in the subject header.

Kind Regards

Alena Bounkeua Analytical Services Manager

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 2 9900 8414 Mobile: +61 429 365 410 Email: <u>AlenaBounkeua@eurofins.com</u> Website: <u>environment.eurofins.com.au</u>

EnviroNote 1079 - PFAS Fingerprinting EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click <u>here</u> to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Environment TestingMelbourne
6 Monterey RoadSydney
Unit F3, Building F
Lane Cove West NSW 2060Brisbane
1/21 Smallwood Place
Murarrie QLD 4172Phone : +61 3 8564 5000
NATA # 1261Lane Cove West NSW 2060
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name:	Ramboll Australia Pty Ltd
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins reference:	Stephen Maxwell JHR SURFACE WATER SAMPLING 318000780 Not provided 5 Day Aug 6, 2019 3:06 PM 669788

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Black on Phone : (+61) 2 9900 8490 or by e.mail: AndrewBlack@eurofins.com

Results will be delivered electronically via e.mail to Stephen Maxwell - smaxwell@ramboll.com.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com 1 web : www.eurofins.com.au

 Melbourne
 Sy

 6 Monterey Road
 Un

 Dandenong South VIC 3175
 16

 Phone : +61 3 8564 5000
 La

 NATA # 1261
 Ph

 Site # 1254 & 14271
 NA

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

 Brisbane
 Pe

 1/21 Smallwood Place
 2/9

 Murarrie QLD 4172
 Ke

 Phone : +61 7 3902 4600
 Ph

 NATA # 1261 Site # 20794
 NATA

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	Company Name:Ramboll Australia Pty LtdAddress:Level 3/100 Pacific Highway North Sydney NSW 2060Project Name:JHR SURFACE WATER SAMPLING 318000780						Re Ph	Order No.: Report #: 669788 Phone: 02 9954 8118 Fax: 02 9954 8150										Received: Due: Priority: Contact Name:				Aug 6, 2019 3:06 PM Aug 26, 2019 3 Day Stephen Maxwell
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271				Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at 180°C ± 2°C	Total Suspended Solids Dried at 103–105°C	Turbidity	Metals M8 filtered	Eurofins mgt Suite B1	BTEXN and Volatile TRH	a Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	Services Manager : Andrew Black	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
		- NATA Site # 1																				
		y - NATA Site #																				
		NATA Site # 237	'36																			
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	SW04	Aug 06, 2019	Time	Water	S19-Au07234	x	x	x	х	х	х	х	х	x	х	x	Х	х	х		x	
2	SW04 SW04A	Aug 06, 2019 Aug 06, 2019		Water	S19-Au07234	X	x	X	^ X	X	X	X	X	x	X	X	X	X	X		x	
3	SW04A SWY (TRIP BLANK)	Aug 06, 2019 Aug 06, 2019		Water	S19-Au07236				~	~	~	~	~		~	~	~	~	~	х		
4	SWX (TRIP SPIKE)	Aug 06, 2019		Water	S19-Au07237															х		
Test	Counts					2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Stephen Maxwell

Report Project name Project ID Received Date 669788-W-V2 JHR SURFACE WATER SAMPLING 318000780 Aug 06, 2019

Client Sample ID			SW04	SW04A	SWY (TRIP BLANK)	R20SWX (TRIP SPIKE)
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S19-Au07234	S19-Au07235	S19-Au07236	S19-Au07237
Date Sampled			Aug 06, 2019	Aug 06, 2019	Aug 06, 2019	Aug 06, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	94
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	88
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02	-
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	82
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	-	-
BTEX	·					
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	91
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	87
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	88
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	87
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	92
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	89
4-Bromofluorobenzene (surr.)	1	%	94	93	89	101
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01	-	-
Conductivity (at 25°C)	1	uS/cm	170	170	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	-	-
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	-	-
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	-	-
pH (at 25°C)	0.1	pH Units	6.9	7.0	-	-
Phosphate total (as P)	0.01	mg/L	0.03	0.03	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	10	mg/L	< 10	< 10	-	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.0	1.2	-	-
Total Nitrogen (as N)	0.2	mg/L	1	1.2	-	-
Total Suspended Solids Dried at 103–105°C	1	mg/L	7.0	7.4	-	-
Turbidity	1	NTU	6.0	5.9	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	SW04 Water S19-Au07234 Aug 06, 2019	SW04A Water S19-Au07235 Aug 06, 2019	SWY (TRIP BLANK) Water S19-Au07236 Aug 06, 2019	R ²⁰ SWX (TRIP SPIKE) Water S19-Au07237 Aug 06, 2019
Heavy Metals	1					
Aluminium (filtered)	0.05	mg/L	0.17	0.08	-	-
Arsenic (filtered)	0.001	mg/L	0.001	< 0.001	-	-
Barium (filtered)	0.02	mg/L	0.04	0.04	-	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Cadmium (filtered)	0.0002	mg/L	0.0055	0.0056	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Copper (filtered)	0.001	mg/L	0.14	0.15	-	-
Iron (filtered)	0.05	mg/L	0.22	0.14	-	-
Lead	0.001	mg/L	0.013	0.012	-	-
Lead (filtered)	0.001	mg/L	0.008	0.008	-	-
Manganese (filtered)	0.005	mg/L	0.015	0.014	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-	-
Nickel (filtered)	0.001	mg/L	0.014	0.014	-	-
Zinc (filtered)	0.005	mg/L	1.2	1.2	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Testing Site Melbourne	Extracted Aug 07, 2019	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40		0	
Total Recoverable Hydrocarbons	Melbourne	Aug 07, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		0	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Aug 07, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		-	
BTEX	Melbourne	Aug 07, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Aug 07, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P			
Ammonia (as N)	Melbourne	Aug 07, 2019	28 Days
- Method: LTM-INO-4200 Ammonia by Discrete Analyser			
Nitrate & Nitrite (as N)	Melbourne	Aug 07, 2019	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	Aug 07, 2019	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	Aug 07, 2019	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Phosphate total (as P)	Melbourne	Aug 07, 2019	28 Days
- Method: APHA 4500-P E. Phosphorus			
Total Kjeldahl Nitrogen (as N)	Melbourne	Aug 07, 2019	7 Days
- Method: LTM-INO-4310 TKN in Waters & Soils by FIA			
Conductivity (at 25°C)	Melbourne	Aug 07, 2019	28 Days
- Method: LTM-INO-4030 Conductivity			
pH (at 25°C)	Melbourne	Aug 07, 2019	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Dissolved Solids Dried at 180°C ± 2°C	Melbourne	Aug 09, 2019	7 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Total Suspended Solids Dried at 103–105°C	Melbourne	Aug 09, 2019	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Melbourne	Aug 07, 2019	2 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Heavy Metals (filtered)	Melbourne	Aug 26, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8 filtered	Melbourne	Aug 07, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Melbourne	Aug 08, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: Ramboll Australia Pty Ltd Address: Level 3/100 Pacific Highway North Sydney NSW 2060 Project Name: JHR SURFACE WATER SAMPLING				Level 3/100 Pacific Highway North Sydney NSW 2060				der Neport none: ix:	#:	0	69788 2 9954 2 9954	4 811						C F	eceiv Jue: Priority Contac	y:	me:	Aug 6, 2019 3:06 PM Aug 26, 2019 3 Day Stephen Maxwell
	oject ID:	318000780	-															Euro	ofins /	Analy	tical S	Services Manager : Andrew Black
Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at 180°C ± 2°C	Total Suspended Solids Dried at 103–105°C	Turbidity	Metals M8 filtered	Eurofins mgt Suite B1	BTEXN and Volatile TRH	Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P		
Melk	oourne Laborat	ory - NATA Site	# 1254 & 142	271		х	Х	х	Х	х	Х	Х	х	Х	Х	х	Х	х	х	Х	Х	
Sydi	ney Laboratory	- NATA Site # 1	8217																			
		y - NATA Site #																				
		NATA Site # 237	'36																			
Exte No	ernal Laboratory Sample ID	/ Sample Date	Sampling	Matrix	LAB ID																	
			Time																			
1	SW04	Aug 06, 2019		Water	S19-Au07234	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	
2 3	SW04A SWY (TRIP BLANK)	Aug 06, 2019 Aug 06, 2019		Water Water	S19-Au07235 S19-Au07236	X	X	X	x	X	X	Х	X	X	X	X	x	X	X	x	X	
4	SWX (TRIP SPIKE)	Aug 06, 2019		Water	S19-Au07237															х		
Test	Counts					2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01		0.01	Pass	
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		1	1	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank				-		
втех						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total	mg/L	< 0.003		0.003	Pass	
Method Blank						
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Nitrate & Nitrite (as N)	mg/L	< 0.05		0.05	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Nitrite (as N)	mg/L	< 0.02		0.02	Pass	
Phosphate total (as P)	mg/L	< 0.01		0.01	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	mg/L	< 10		10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2		0.2	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 1		1	Pass	
Turbidity	NTU	< 1		1	Pass	
Method Blank						
Heavy Metals						
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery		-		1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	i					
Naphthalene	%	111		70-130	Pass	
Naphthalene	%	111		70-130	Pass	
TRH C6-C10	%	109		70-130	Pass	
TRH C6-C10	%	109		70-130	Pass	
TRH >C10-C16	%	79		70-130	Pass	
LCS - % Recovery						

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions						
TRH C6-C9			%	107		70-130	Pass	
TRH C10-C14			%	85		70-130	Pass	
LCS - % Recovery				1				
BTEX								
Benzene			%	103		70-130	Pass	
Toluene			%	102		70-130	Pass	
Ethylbenzene			%	104		70-130	Pass	
m&p-Xylenes			%	102		70-130	Pass	
Xylenes - Total			%	103		70-130	Pass	
LCS - % Recovery								
Ammonia (as N)			%	97		70-130	Pass	
Nitrate & Nitrite (as N)			%	100		70-130	Pass	
Nitrate (as N)			%	100		70-130	Pass	
Nitrite (as N)			%	103		70-130	Pass	
Phosphate total (as P)			%	100		70-130	Pass	
Total Dissolved Solids Dried at 180°	C ± 2°C		%	72		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	-		%	118		70-130	Pass	
Total Suspended Solids Dried at 103	3–105°C		%	118		70-130	Pass	
LCS - % Recovery				1				
Heavy Metals								
Lead			%	93		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					<u> </u>			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	S19-Au07004	NCP	%	94		70-130	Pass	
TRH C6-C10	S19-Au07004	NCP	%	93		70-130	Pass	
TRH >C10-C16	M19-Au03666	NCP	%	74		70-130	Pass	
Spike - % Recovery			70			10100	1 0.00	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S19-Au07004	NCP	%	91		70-130	Pass	
TRH C10-C14	M19-Au03666	NCP	%	79		70-130	Pass	
Spike - % Recovery	M15 A00000		70	15		70 130	1 433	
BTEX				Result 1		[
-	S19-Au07004	NCP	%	93		70-130	Pass	
Benzene Toluene	S19-Au07004	NCP	%	86		70-130	Pass	
Ethylbenzene	S19-Au07004	NCP	%	80		70-130	Pass	
	S19-Au07004	NCP	%	80		70-130		
m&p-Xylenes		1					Pass	
o-Xylene Xylenes - Total	S19-Au07004	NCP	%	88		70-130	Pass	
	S19-Au07004	NCP	%	82		70-130	Pass	
Spike - % Recovery				Deput 4				
Ammonia (ao NI)	M10 AU07024	NCD	0/	Result 1		70-130	Dese	
Ammonia (as N)	M19-Au07034	NCP	%	96			Pass	
Nitrate & Nitrite (as N)	M19-Au07034	NCP	%	96		70-130	Pass	
Nitrate (as N)	M19-Au07034	NCP	%	96		70-130	Pass	
Nitrite (as N)	M19-Au07034	NCP	%	97		70-130	Pass	
Phosphate total (as P)	P19-Au10001	NCP	%	101		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	P19-Au10001	NCP	%	118		70-130	Pass	
Spike - % Recovery					1			
Heavy Metals				Result 1				
Lead	M19-Au02575	NCP	%	81		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	M19-Au09112	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Naphthalene	M19-Au09112	NCP	mg/L	< 0.01	**	<1	30%	Pass	
TRH C6-C10	M19-Au09112	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	M19-Au09112	NCP	mg/L	< 0.02	**	<1	30%	Pass	
TRH >C10-C16	M19-Au03675	NCP	mg/L	4.1	2.5	50	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Au09112	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M19-Au03675	NCP	mg/L	4.0	2.5	47	30%	Fail	Q15
TRH C15-C28	M19-Au03675	NCP	mg/L	2.5	0.9	95	30%	Fail	Q15
TRH C29-C36	M19-Au03675	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	· ·								
BTEX				Result 1	Result 2	RPD			
Benzene	M19-Au09112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M19-Au09112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M19-Au09112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M19-Au09112	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M19-Au09112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M19-Au09112	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate			· · · · ·	•					
·				Result 1	Result 2	RPD			
Ammonia (as N)	M19-Au03122	NCP	mg/L	28	28	3.0	30%	Pass	
Conductivity (at 25°C)	M19-Au08824	NCP	uS/cm	48000	48000	1.0	30%	Pass	
Nitrate & Nitrite (as N)	M19-Au03122	NCP	mg/L	12	12	<1	30%	Pass	
Nitrate (as N)	M19-Au03122	NCP	mg/L	< 2	< 2	<1	30%	Pass	
Nitrite (as N)	M19-Au03122	NCP	mg/L	11	11	2.0	30%	Pass	
pH (at 25°C)	M19-Au08824	NCP	pH Units	7.5	7.6	pass	30%	Pass	
Total Kjeldahl Nitrogen (as N)	P19-Au07887	NCP	mg/L	< 0.2	< 0.2	<1	30%	Pass	
Turbidity	S19-Au09751	NCP	NTU	25	31	20	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	M19-Au02575	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate	· ·						·		
				Result 1	Result 2	RPD			
Total Dissolved Solids Dried at 180°C ± 2°C	M19-Au11648	NCP	mg/L	1200	1200	3.0	30%	Pass	

Comments

This report has been revised (V2) to include results for additional filtered metals.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Analytical Services Manager
Senior Analyst-Metal (VIC)
Senior Analyst-Volatile (VIC)
Senior Analyst-Organic (VIC)
Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet ideadlines and 10 bis production attributed to the subscience of early information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet ideadlines and 10 bis production attributed to the subscience of early information or interpretation given in this indicated otherwise, the tests were performed to early information attributed to the subscience of early information or interpretation given in this indicated otherwise, the tests were performed to early information or interpretation given in this indicated otherwise, the tests were performed to early information or interpretation given in this indicated otherwise, the tests were performed to early information attributed to early information or interpretation given in the site of the subscience of the subscine of the subscience of the su

🔅 Cł	HAIN OF CUS	TODY REC	ORD		d.F, 16 Mars F	Rd, Lane Cove SampleNSW@	e West, NSW 2066 geurofins.com	Unit 1,	ane Laboratory 21 Smallwood PL, Mur 2 4600 EnviroSample		m		boratory Leach Highway, Kewda 500 EnviroSampleWA		2 Kingsto	me Laboratory n Town Close, Oakleigh, 1000 EnviroSampleVic	
Company	RAMB	occ		Project №	(V)	3180	00788)	Project Mana	ager Sce	315	MADO	sou				
	acebe	RD		Project Name			-		Report Form		1000	XCER		Relinquished by	ST2	No ou	Arou
Address	LIGR 20	P22 C	ì	6 1	I'd					The Lotter							1_1_
Contact Name	STEVE			S.	ALG I									Email for Result	s 3Mor	seller	anboll.co
Phone №	047865			L.	SS, Castor									Cor	ntainers	Turn Aroun	d Requirements
Special Direction				Analysis are requested placed specify Total or Theoret N 3 Marry 4 45	a) 'SG									ic ic	olass	Overnight (9	am)*
Purchase Order	-			CLEN	L.									1L Plastic 250mL Plastic 125mL Plastic 200ml Amhar Gl	40mLvial 40mLvial 125mL Amber Glas Jar	3 Day*	5 Day
Quote ID №		and the second		-	RC	0 A								11 2501 1251 200ml	41 125mL	Other () * Surcharges apply
N₽	Client Sample ID	[Date Ma	atrix FL	HO	Liera									Other (Comments / ird Warning
1 300	3 up	13	8/8 31	Arest T	+											in the	
	23		819 50			×											
	24	10	di z	SIC		1											
	25															C. B. Bakelow	
ters and the second	526															-	
	27															191.92.24	
	. 28															1.	
8 55	950	1															
9 55	530		V			y											
	1-120819					0											
			Total Counts														
Method of Shipment	Courier (#	1. A. C. S. C.) 🗌 Hand	d Delivered	Po	ostal	Name			Sigr	nature			Date		Time	
Laboratory Use	Received By	Guare Th	increa	5YD)BNE MEI	L PER /	ADL NEW DAR	Signature	June	enen		Date	13,8,10	7 Time	12:13	Temperature	6.87
Laboratory 050	Received By				BNE ME		ADL NEW DAR	Signature	N			Date		Time		Report №	670968
Page tof 1 QS3009_1	R5 Modilled by S. Kojima Approved by	Dr. R Symons Approved on: 2 No	vember 2016					P1	-12	Submission	of samples to the	Taboratory will be deemed as a	eceptance of Eurolins (mgt Sta	ndard Terms and Conditions unle	as agreed otherwise, A copy of E	uronns (mgt Standard Teims an	a concerons is available on request.

43	CHAIN OF CUS	STODY	RECORD	17	Unit F3 Bk	Laboratory I.F. 16 Mars 100 Enviro	Rd, Lane Cor				Unit 1, 21 S	Laboratory Smallwood PI. 00 EnviroS	, Murarrie, C	QLD 4172 @eurofins.com	n	Unit 2, 9	Laboratory 91 Leach Highwa 9600 EnviroS			m		2	2 Kingstor	me Laboratory n Town Close, Oak 5000 EnviroSamt		
Company				Proj	ect N≌							Project I	Manager													
Address				Projec	t Name	1						Report	Format					1	Relinqu	uished I	у	-				
Contact Na	me			al or Edmod)	Merry S	SIDIT													Email fo	or Resu	lts					
Phone N				ol, Apada		5200														Ca	ontaine	rs		Turn Ar	ound Req	uirements
Special Direc	tion 1 DA-	-1 <1	AT	Analysis ends are requested, please	8 1200	02, 175, 170,0210	ch-c9												tic lastic	lastic	er Glass ial	er Glass		Overnigi] 2 Day*
Purchase O				ole. Where a	Brev	5	100	9											1L Plas 250mL Pla	125mL Plastic	200mL Amber GI 40mLvial	SmL Amb		3 Day*] 5 Day
Quote ID N №	Client Sample ID	and the second	Date	≊. Matrix	HCH U	H'EC'	Brex	ONAN													8	12	Other (ple Comm Hazard Wa	
1 TO	1-120819		12/8/19					×																Somo For A	100	ALS
		9	1	1				x																		
3 50	2-12081	9	5	V				×																Server V	>re	AIS ALTSO
4 De	01-13081	9	13/8/19	when	27	¥								1												
5 58	CANK			WARA			*																			
B	CANK			WARS	-		Y																			
7							1																	1		
8		S. Mark																								
9	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-												2.2												-	
10																										
Method o	Constant Ma		Total C											01								Ļ				
Shipmen	Received By	Guar		Hand Delive	1				w DAR	Signa	ture	da	kn	Signa	ature	Date	13,8	7,19	-)ate ime		12:		Time	ure (.87
Laboratory l	Ise Only Received By	y Oma murran				BNE MEI				Signa	ture	A				Date aboratory will be deemed a		_/		īme				Report N	e 67	10968

6515

Enviro Sample NSW

Subject:

FW: Eurofins Sample Receipt Advice - Report 670968 : Site 318000780

From: Stephen Maxwell [mailto:SMAXWELL@ramboll.com]
Sent: Wednesday, 14 August 2019 9:43 AM
To: Enviro Sample NSW
Subject: RE: Eurofins Sample Receipt Advice - Report 670968 : Site 318000780

Thanks

If feasible to achieve and still report can we add the following analytes to the water samples:

Dissolved Metals Aluminium Beryllium Cobalt Iron Manganese Nutrients Ammonia as N Nitrate an N Nitrite as N Total Nitrogen Total Phosphorus

Kind regards Stephen Maxwell Lead Consultant

D +61 478658194 M +61 478658194 smaxwell@ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: 13 August, 2019 12:54 PM To: Stephen Maxwell <<u>SMAXWELL@ramboll.com</u>> Subject: Eurofins Sample Receipt Advice - Report 670968 : Site 318000780

Dear Valued Client,

T01_120819 and T02_120819 (1 jar each) sent to ALS.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Grace Tuckwell Sample Receipt

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone: +61 29900 8421 Email: <u>EnviroSampleNSW@eurofins.com</u> Website:<u>environment.eurofins.com.au</u>

EnviroNote 1079 - PFAS Fingerprinting EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

Click <u>here</u> to report this email as spam.

ScannedByWebsenseForEurofins

Environment TestingMelbourne
6 Monterey RoadSydney
Unit F3, Building F
Lane Cove West NSW 2060Brisbane
1/21 Smallwood Place
Murarrie QLD 4172Phone : +61 3 8564 5000
NATA # 1261Lane Cove West NSW 2060
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone : +61 2 9900 8400
NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

web : www.eurofins.com.au

Sample Receipt Advice

M

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.

Ramboll Australia Pty Ltd

- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

T01 120819 and T02 120819 (1 jar each) sent to ALS.

Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Stephen Maxwell - smaxwell@ramboll.com.

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	mpany Name: dress:	Ramboll Aus Level 3/100 I North Sydne NSW 2060	Pacific Highwa	ау			Re	der N port i one: x:	#:	0	70968 2 9954 2 9954	4 8118						D	eceiv Jue: riority contac	y:	me:	Aug 14, 2019 9:43 AM Aug 15, 2019 1 Day Stephen Maxwell
	oject Name: oject ID:	318000780															E	urofir	ns Ana	alytic	al Ser	vices Manager : Alena Bounkeua
			mple Detail			Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at 180°C ± 2°C	Total Suspended Solids Dried at 103–105°C	Turbidity	Moisture Set	Eurofins mgt Suite B6 (filtered metals)	BTEXN and Volatile TRH	Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	
	ourne Laborato			2/1		х	x	x	x	x	Х	х	х	x	х	x	x	х	x	x	X X	
	bane Laboratory											~			~			~		~		
	h Laboratory - N																					
	rnal Laboratory																					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	S03 UP	Aug 13, 2019		Water	S19-Au17273	Х	х	Х	х	Х	Х		Х	Х	Х	Х	Х		х		х	
2	SS23	Aug 12, 2019		Soil	S19-Au17274							х						Х				
3	SS24	Aug 12, 2019		Soil	S19-Au17275							х						х				
4	SS25	Aug 12, 2019		Soil	S19-Au17276							Х						Х				
5	SS26	Aug 12, 2019		Soil	S19-Au17277							Х						Х				
6		Aug 12, 2019		Soil	S19-Au17278							Х						Х				
7	SS28	Aug 12, 2019		Soil S19-Au17279								Х						Х			$\left - \right $	
8		Aug 12, 2019		Soil	S19-Au17280							Х						Х				
9	SS30	Aug 12, 2019		Soil	S19-Au17281							Х						Х				

Г

Environment Testing

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

 Brisbane
 F

 1/21 Smallwood Place
 2

 Murarrie QLD 4172
 2

 Phone : +61 7 3902 4600
 F

 NATA # 1261 Site # 20794
 N

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad Pre	ompany Name: Idress: oject Name: oject ID:	Ramboll Aus Level 3/100 North Sydne NSW 2060 318000780	Pacific Highw	ay			Re	der N port i ione: x:		02	70968 2 9954 2 9954	4 8118					E	D P C	eceiv ue: riority ontac s Ana	/: :t Nar		Aug 14, 2019 9:43 AM Aug 15, 2019 1 Day Stephen Maxwell vices Manager : Alena Bounkeua
		Sa	mple Detail			Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at 180°C ± 2°C	Total Suspended Solids Dried at 103–105°C	Turbidity	Moisture Set	Eurofins mgt Suite B6 (filtered metals)	BTEXN and Volatile TRH	Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271																	Х	
Sydi	ney Laboratory	- NATA Site # 1	8217			х	х	х	х	х	х	х	Х	х	х	x	х	х	Х	Х	х	
	bane Laborator	•																				
	h Laboratory - N		736																			
10	D01_120819	D01_120819 Aug 12, 2019 Soil S19-Au17282										X						Х				
11	D02_120819 Aug 12, 2019 Soil S19-Au17283 D04_420840 Aug 42, 2040 Water S40 Au47284								- <u>-</u>			Х						Х				
12	D01_130819 Aug 12, 2019 Water S19-Au17284 SDI/E Aug 12, 2010 Water S19-Au17284					Х	Х	Х	Х	Х	Х		Х	Х	Х	X	Х		Х	~	Х	
13		SPIKE Aug 12, 2019 Water S19-Au17285 NUMBER Aug 12, 2019 NUMBER S19-Au17285						-												X		
14	BLANK											40						4.0		X		
Test	Counts						2	2	2	2	2	10	2	2	2	2	2	10	2	2	2	

עיויי

ac=mr/

 $\omega_{\rm mbd}$

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

Stephen Maxwell

Report Project name Project ID Received Date

318000780 Aug 13, 2019

670968-W

Client Sample ID			S03 UP	D01_130819	R20 SPIKE	BLANK
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S19-Au17273	S19-Au17284	S19-Au17285	S19-Au17286
Date Sampled			Aug 13, 2019	Aug 12, 2019	Aug 12, 2019	Aug 12, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	110	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	82	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	-	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	-	-
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	-	-
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	-	-
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	87	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.5	-	-
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	-	-
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.5	-	-
BTEX	•					
Benzene	0.001	mg/L	< 0.001	< 0.001	100	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	100	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	100	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	100	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	100	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	100	< 0.003
4-Bromofluorobenzene (surr.)	1	%	90	83	97	92
Ammonia (as N)	0.01	mg/L	0.01	< 0.01	-	-
Conductivity (at 25°C)	1	uS/cm	820	790	-	-
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05	< 0.05	-	-
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	-	-
Nitrite (as N)	0.02	mg/L	< 0.02	< 0.02	-	-
pH (at 25°C)	0.1	pH Units	7.9	7.9	-	-
Phosphate total (as P)	0.05	mg/L	< 0.05	< 0.05	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	5	mg/L	420	440	-	-
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	-	-
Total Nitrogen (as N)	0.2	mg/L	< 0.2	< 0.2	-	-
Total Suspended Solids Dried at 103–105°C	5	mg/L	< 5	9.0	-	-
Turbidity	1	NTU	1.0	< 1	-	-

WORLD RECOGNISED

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins Sample No.			S03 UP Water S19-Au17273	D01_130819 Water S19-Au17284	R20 SPIKE Water S19-Au17285	BLANK Water S19-Au17286
Date Sampled			Aug 13, 2019	Aug 12, 2019	Aug 12, 2019	Aug 12, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Barium (filtered)	0.02	mg/L	0.10	0.10	-	-
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	-	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	-	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Manganese (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	-	-
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	-	-
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Testing Site Sydney	Extracted Aug 13, 2019	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40	- , ,	- 5 - 7	-) -
Total Recoverable Hydrocarbons	Sydney	Aug 13, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		0 /	,
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 13, 2019	7 Days
- Method: LTM-ORG-2010 TRH C6-C40		0	
BTEX	Sydney	Aug 13, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		0	2
Eurofins mgt Suite B6 (filtered metals)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 13, 2019	
- Method: LTM-ORG-2010 TRH C6-C40		0	
Metals M8 filtered	Sydney	Aug 13, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS		-	·
Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P			
Ammonia (as N)	Melbourne	Aug 15, 2019	28 Days
- Method: LTM-INO-4200 Ammonia by Discrete Analyser		-	·
Nitrate & Nitrite (as N)	Melbourne	Aug 15, 2019	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrate (as N)	Melbourne	Aug 15, 2019	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Nitrite (as N)	Melbourne	Aug 15, 2019	2 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Phosphate total (as P)	Sydney	Aug 14, 2019	28 Days
- Method: E052 Total Phosphate (as P)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Aug 15, 2019	7 Days
- Method: LTM-INO-4310 TKN in Waters & Soils by FIA			
Conductivity (at 25°C)	Sydney	Aug 13, 2019	28 Days
- Method: LTM-INO-4030 Conductivity			
pH (at 25°C)	Sydney	Aug 13, 2019	1 Days
- Method: LTM-GEN-7090 pH in water by ISE			
Total Dissolved Solids Dried at 180°C ± 2°C	Sydney	Aug 13, 2019	7 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			
Total Suspended Solids Dried at 103–105°C	Sydney	Aug 13, 2019	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			
Turbidity	Sydney	Aug 13, 2019	2 Days
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Heavy Metals (filtered)	Sydney	Aug 14, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 Per

 1/21 Smallwood Place
 2/9

 Murarrie QLD 4172
 Ke

 Phone : +61 7 3902 4600
 Pho

 NATA # 1261 Site # 20794
 NATA

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	ompany Name: Idress:	Ramboll Aus Level 3/100 F North Sydney NSW 2060	Pacific Highwa	ay			Re	der N port ione: x:	#:	0	70968 2 9954 2 9954	4 811	-					D P	Receiv Due: Priorit Conta	y:	me:	Aug 14, 2019 9:43 AM Aug 15, 2019 1 Day Stephen Maxwell
	oject Name: oject ID:	318000780															E	urofir	ns An	alytic	al Ser	vices Manager : Alena Bounkeua
			mple Detail			Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at $180^{\circ}C \pm 2^{\circ}C$	Total Suspended Solids Dried at 103–105°C	Turbidity	Moisture Set	Eurofins mgt Suite B6 (filtered metals)	BTEXN and Volatile TRH	Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	
	ourne Laborato			271		X	×	X	X		X	V		×	×		V			×	X	
	ney Laboratory - bane Laboratory					X	X	X	Х	Х	Х	Х	X	Х	Х	X	X	Х	X	Х	Х	
	h Laboratory - N																					
	rnal Laboratory		00																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	S03 UP	Aug 13, 2019		Water	S19-Au17273	Х	Х	Х	Х	х	Х		х	Х	Х	х	Х		X		Х	
2	SS23	Aug 12, 2019		Soil	S19-Au17274							х						х				
3	SS24	Aug 12, 2019		Soil	S19-Au17275							х						х				
4		Aug 12, 2019		Soil	S19-Au17276		<u> </u>					Х						х				
5	SS26	Aug 12, 2019		Soil	S19-Au17277		<u> </u>					Х						х				
6	SS27	Aug 12, 2019		Soil	S19-Au17278		<u> </u>					Х						х				
7	SS28	Aug 12, 2019		Soil	S19-Au17279							Х						х				
8	SS29	Aug 12, 2019		Soil	S19-Au17280							Х						х				
9	SS30	Aug 12, 2019		Soil	S19-Au17281							Х						Х				l

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Ad	ompany Name: Idress: Dject Name: Dject ID:	Ramboll Aus Level 3/100 I North Sydne NSW 2060 318000780	Pacific Highw	ay			Re	der N port ; ione: x:		0		3 4 811 4 815					E	D P C	eceiv oue: riorit; contac	y: ct Nai		Aug 14, 2019 9:43 AM Aug 15, 2019 1 Day Stephen Maxwell
		Sa	mple Detail			Aluminium (filtered)	Barium (filtered)	Beryllium (filtered)	Cobalt (filtered)	Conductivity (at 25°C)	Iron (filtered)	Lead	Manganese (filtered)	pH (at 25°C)	Total Dissolved Solids Dried at 180°C ± 2°C	Total Suspended Solids Dried at 103–105°C	Turbidity	Moisture Set	Eurofins mgt Suite B6 (filtered metals)	BTEXN and Volatile TRH	Eurofins mgt Suite B19D: Total N, TKN, NOx, NO2, NO3, Total P	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271																	х	
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	х	х	Х	х	х	х	х	Х	Х	X	х	х	x	Х	Х	
Bris	bane Laborator	y - NATA Site #	20794																			
Pert	h Laboratory - N		36					L						<u> </u>								•
10	D01_120819 Aug 12, 2019 Soil S19-Au17282				S19-Au17282							Х						Х				•
11	D02_120819 Aug 12, 2019 Soil S19-Au17283											Х						Х				
12	D01_130819 Aug 12, 2019 Water S19-Au17284					Х	Х	X	Х	Х	Х		Х	Х	Х	X	Х		X		Х	
13	SPIKE Aug 12, 2019 Water S19-Au17285																	Х				
	BLANK																			Х		
Test	Counts						2	2	2	2	2	10	2	2	2	2	2	10	2	2	2	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptanc Limits	e Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	·				
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank				•	
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	ing, c	x 0.000		1 400	
Conductivity (at 25°C)	uS/cm	< 1	1	Pass	
Phosphate total (as P)	mg/L	< 0.05	0.05	Pass	
Total Dissolved Solids Dried at $180^{\circ}C \pm 2^{\circ}C$	mg/L	< 5	5	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 5	5	Pass	
Turbidity	NTU	<1	1	Pass	
Method Blank	NIO			1 435	
Heavy Metals					
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium (filtered)		< 0.001	0.02	Pass	
Beryllium (filtered)	mg/L	< 0.02	0.02	Pass	
Cadmium (filtered)	mg/L		0.0002		
	mg/L	< 0.0002		Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	-
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction		400			
Naphthalene	%	120	70-130	Pass	
TRH C6-C10	%	116	70-130	Pass	
TRH >C10-C16	%	80	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction					
TRH C6-C9	%	120	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	85		70-130	Pass	
LCS - % Recovery								
втех								
Benzene			%	111		70-130	Pass	
Toluene	Toluene		%	112		70-130	Pass	
Ethylbenzene			%	114		70-130	Pass	
m&p-Xylenes			%	116		70-130	Pass	
o-Xylene			%	114		70-130	Pass	
Xylenes - Total			%	115		70-130	Pass	
LCS - % Recovery				·	•			
Conductivity (at 25°C)			%	101		70-130	Pass	
Phosphate total (as P)			%	99		70-130	Pass	
Total Dissolved Solids Dried at 180	°C ± 2°C		%	96		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	111		70-130	Pass	
Total Suspended Solids Dried at 10)3–105°C		%	87		70-130	Pass	
Turbidity			%	94		70-130	Pass	
LCS - % Recovery			,,, 					
Heavy Metals								
Aluminium (filtered)			%	99		70-130	Pass	
Arsenic (filtered)			%	103		70-130	Pass	
Barium (filtered)			%	99		70-130	Pass	
Beryllium (filtered)			%	94		70-130	Pass	
Cadmium (filtered)			%	109		70-130	Pass	
Chromium (filtered)			%	109		70-130	Pass	
Chlorhum (intered)			%					
				101		70-130	Pass	
Copper (filtered)			%	100		70-130	Pass	
Iron (filtered)			%	97		70-130	Pass	
	Lead (filtered)		%	103		70-130	Pass	
	Manganese (filtered)		%	102		70-130	Pass	
Mercury (filtered)			%	99		70-130	Pass	
Nickel (filtered)			%	101		70-130	Pass	
Zinc (filtered)			%	102		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1			[
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
Naphthalene	S19-Au01281	NCP	%	99		70-130	Pass	
TRH C6-C10	S19-Au01281	NCP	%	87		70-130	Pass	
Spike - % Recovery				-	i i i			
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S19-Au01281	NCP	%	92		70-130	Pass	
Spike - % Recovery					· · · ·			
ВТЕХ	1			Result 1				
Benzene	S19-Au01281	NCP	%	100		70-130	Pass	
Toluene	S19-Au01281	NCP	%	99		70-130	Pass	
Ethylbenzene	S19-Au01281	NCP	%	100		70-130	Pass	
	S10 Au01201	NCP	%	99		70-130	Pass	
m&p-Xylenes	S19-Au01281			98		70-130	Pass	
o-Xylene	S19-Au01281 S19-Au01281	NCP	%	90				
· · · ·		NCP NCP	%	99		70-130	Pass	
o-Xylene	S19-Au01281	1				70-130	Pass	
o-Xylene Xylenes - Total	S19-Au01281	1				70-130	Pass	
o-Xylene Xylenes - Total	S19-Au01281	1		99		70-130	Pass Pass	
o-Xylene Xylenes - Total Spike - % Recovery	S19-Au01281 S19-Au01281	NCP	%	99 Result 1				
o-Xylene Xylenes - Total Spike - % Recovery Phosphate total (as P)	S19-Au01281 S19-Au01281	NCP	%	99 Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic (filtered)	S19-Au17284	СР	%	102			70-130	Pass	
Barium (filtered)	S19-Au17284	CP	%	93			70-130	Pass	
Beryllium (filtered)	S19-Au17284	CP	%	103			70-130	Pass	
Cadmium (filtered)	S19-Au17284	CP	%	109			70-130	Pass	
Chromium (filtered)	S19-Au17284	CP	%	100			70-130	Pass	
Cobalt (filtered)	S19-Au17284	CP	%	98			70-130	Pass	
Copper (filtered)	S19-Au17284	CP	%	97			70-130	Pass	
Iron (filtered)	S19-Au17284	CP	%	92			70-130	Pass	
Lead (filtered)	S19-Au17284	СР	%	101			70-130	Pass	
Manganese (filtered)	S19-Au17284	CP	%	101			70-130	Pass	
Mercury (filtered)	S19-Au17284	CP	%	105			70-130	Pass	
Nickel (filtered)	S19-Au17284	CP	%	97			70-130	Pass	
Zinc (filtered)	S19-Au17284	CP	%	100			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				1			1		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S19-Au01280	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S19-Au01280	NCP	mg/L	0.02	0.03	14	30%	Pass	
Duplicate				-				-	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Au01280	NCP	mg/L	0.02	0.02	<1	30%	Pass	
Duplicate								-	
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S19-Au01280	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S19-Au01280	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S19-Au01280	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S19-Au01280	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S19-Au01280	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S19-Au01280	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
-				Result 1	Result 2	RPD			
Conductivity (at 25°C)	S19-Au17175	NCP	uS/cm	690	710	3.0	30%	Pass	
Total Dissolved Solids Dried at 180°C ± 2°C	S19-Au17273	СР	mg/L	420	490	16	30%	Pass	
Total Suspended Solids Dried at								_	
103–105°C	S19-Au17273	CP	mg/L	< 5	< 5	<1	30%	Pass	
Turbidity	S19-Au18928	NCP	NTU	4.1	4.3	5.0	30%	Pass	
Duplicate								1	
Heavy Metals				Result 1	Result 2	RPD		_	
Aluminium (filtered)	S19-Au17273	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	S19-Au17273	CP	mg/L	0.10	0.11	2.0	30%	Pass	
Beryllium (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S19-Au17273	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	S19-Au17273	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese (filtered)	S19-Au17273	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury (filtered)	S19-Au17273	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S19-Au17273	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S19-Au17273	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Organic (NSW) Senior Analyst-Inorganic (NSW) Senior Analyst-Inorganic (VIC)

Authorised By

Alena Bounkeua	
Gabriele Cordero	
Andrew Sullivan	
Gabriele Cordero	
Julie Kay	

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX 4 PHOTOGRAPHIC LOG

Photo 1: SW1 UP location (upstream of Stewart Street and the rail culvert at approx. CH 262.660 km)

Photo 2: SW1 UP water at time of sampling (13/08/2019)

Title:	Tarago Rail Loop Surface Water Sampling	Approved: FR	Project-Nr.: 318000780	Date: August 2019
Site:	Tarago			-
Client:	JHR			RAMBOLL

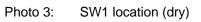


Photo 4: SW2 location (dry)

Title:	Tarago Rail Loop Surface Water Sampling	Approved: FR	Project-Nr.: 318000780	Date: August 2019
Site:	Tarago			
Client:	JHR			RAMBOLL

Photo 5: SW3 location (dry CH 262.354)

Photo 6: SW4 stagnant water observed and sampled (6/08/2019)

Title:	Tarago Rail Loop Surface Water Sampling	Approved: FR	Project-Nr.: 318000780	Date: August 2019
Site:	Tarago			
Client:	JHR			RAMBOLL

Photo 7: SW4 yellow staining observed (6/08/2019)

Photo 8: SW5 location (dry CH 262.040)

Title:	Tarago Rail Loop Surface Water Sampling	Approved: FR	Project-Nr.: 318000780	Date: August 2019
Site:	Tarago			-
Client:	JHR			RAMBOLL

Photo 9: SW6 location (dry CH 262.040). Offsite receiving water in background

Title:	Tarago Rail Loop Surface Water Sampling	Approved: FR	Project-Nr.: 318000780	Date: August 2019
Site:	Tarago			-
Client:	JHR			RAMBOLL

Ramboll - Surface Water Monitoring - Tarago Rail Loop Expansion