Intended for

John Holland Rail

Document type

Addendum

Date

November 2020

TARAGO RAIL CORRIDOR AND TARAGO AREA DETAILED SITE INVESTIGATION ADDENDUM

RAMBOLL Bright ideas. Sustainable change.

TARAGO RAIL CORRIDOR AND TARAGO AREA DETAILED SITE INVESTIGATION ADDENDUM

Project name Detailed Site Investigation Addendum

Project no. 318000780
Recipient John Holland Rail
Document type Report Addendum

Version Final

Approved by Fior

Description

Fiona Robinson CEnvP Site Contamination Specialist No. SC40100

This document presents the findings from additional surface water, sediment and soil investigations carried out at the Tarago Rail Corridor and Tarago area and is presented as an addendum to the DSI prepared

by Ramboll in July 2020.

Ramboll

Level 2, Suite 18 Eastpoint

50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

Revision	Date	Prepared by	Checked by	Approved by	Description
Draft	9/11/2020	J Kirsch	S Maxwell	F Robinson	For client review
Final	12/02/2021	J Kirsch	S Maxwell	F Robinson	For issue

F. Robinson CEnvP Certification No. SC400100

CONTENTS

ABBREVIA	ATIONS	6
EXECUTIV	E SUMMARY	7
1.	INTRODUCTION	9
1.1	Background	9
1.2	Objectives	10
1.3	Scope of Work	10
2.	PREVIOUS INVESTIGATIONS	11
3.	SAMPLING AND ANALYSIS QUALITY PLAN	13
4.	Quality Assurance and Quality Control	14
5.	Preliminary Conceptual Site Model	21
5.1	Sources of Contamination	21
5.2	Chemicals of Concern	21
5.3	Receptors	21
5.4	SPR Linkages	22
6.	TIER 1 ASSESSMENT CRITERIA	23
6.1	Surface Water	23
6.2	Sediment	25
6.3	Soil	27
7.	RESULTS	29
7.1	Surface Water	29
7.1.1	Monitoring Events	29
7.1.2	Physico-Chemical Results	31
7.1.3	Analytical Results	33
7.1.4	Additional Observations	35
7.2	Sediment	35
7.2.1	Human health	35
7.2.2	Ecology	35
7.3	Loadout Complex	36
7.4	Characterisation of Materials to be Generated During Remediation	37
7.5	Additional Contaminants of Potential Concern	39
8.	DISCUSSION	40
8.1	Surface Water	40
8.1.1	Lead Concentration Trends	40
8.1.2	Human Health Risks from Lead in Surface Water	40
8.1.3	Ecological Risks from Lead in Surface Water	41
8.1.4	Copper Concentration Trends	42
	43	
8.1.5	Human Health Risks from Copper in Surface Water	44
8.1.6	Ecological Risks from Copper in Surface Water	44
8.1.7	Zinc Concentration Trends	44
8.1.8	Human Health Risk from Zinc in Surface Water	46
8.1.9	Ecological Risks from Zinc in Surface Water	46
8.2	Sediment	47
8.2.1	Southern Culvert	47
8.2.2	Middle Culvert	47
8.2.3	Northern Culvert	48
8.2.4	Mulwaree River	48
8.3	Loadout Complex	48
8.4	Additional Contaminants of Potential Concern	49
9.	UPDATED CONCEPTUAL SITE MODEL	50

9.1 9.2 9.3 9.4 9.5 10.	Sources of the Contaminant Chemicals of Concern Receptors Transport Mechanisms SPR Linkages Conclusions and Recommendations LIMITATIONS	50 50 50 51 51 53
11.1 12.	User Reliance References	54 55
	TABLES	
	Table 1-1 VMP Principle Features	10
	Table 4-1 Sampling and Analysis Methodology Assessment	14
	Table 4-2 Field and Laboratory QA/QC	17
	Table 4-3 QA/QC Assessment Table 5-1: Exposure Assessment Summary	18 22
	Table 6-1: Surface Water Investigation Levels (ug/L)	25
	Table 6-2: Sediment Assessment Criteria – Ecological Investigation	23
	Criteria (mg/kg)	25
	Table 6-3 Guideline Summary	27
	Table 6-4: Soil Assessment Criteria – Human Health and Ecological	
	Investigation Levels (mg/kg)	28
	Table 7-1: Assessment of Rainfall Preceding Surface Water Monitoring	
	against Critical Duration Design Rainfall for the Mulwaree Catchment	30
	Table 7-2 Surface Water Physico-chemical Parameters Table 7-3 Surface Water Analytical Results Summary – Metals	32 33
	Table 7-3 Surface Water Analytical Results Summary - Metals Table 7-4 Onsite Sediment Analytical Results Summary - Metals	36
	Table 7-5 Results Summary Former Load Out Complex (mg/kg)	37
	Table 7-6 Onsite Soil Analytical Results Summary	38
	Table 7-7: CoPC Assessment	39
	Table 9-1 Contaminant Transport Mechanisms	51
	Table 9-2: Updated Exposure Assessment Summary	52
	FIGURES	
	Figure 8-1: Total Lead Concentration Trends, Upgradient and Onsite	40
	Figure 8-2: Total Lead Concentrations, Mulwaree River	41
	Figure 8-3: Dissolved Lead Concentration Trends, Upgradient and Onsite	42
	Figure 8-4: Total Copper Concentrations, Upgradient and Onsite	43
	Figure 8-5: Total Copper Concentrations, Mulwaree River	43
	Figure 8-6: Dissolved Copper Concentrations, Upgradient and Onsite	44
	Figure 8-7: Total Zinc Concentration Trends	45
	Figure 8-8: Zinc Concentration Trends, Mulwaree River Figure 8-9: Dissolved Zinc Concentration Trends	45 46
	Figure 8-10: Dissolved Zinc Concentration Trends, Mulwaree River	40
	rigate 5 for biodored Line Concentration Frends, Planwards Rivel	-⊤/

APPENDICES

Appendix 1

Figures

Appendix 2

SAQPs

Appendix 3

Calibration Certificates

Appendix 4

Results

Appendix 5

Laboratory Reports

Appendix 6

EIL Calculations

Appendix 7

Photographic Log

Appendix 8

Testpit Logs

ABBREVIATIONS

Abbreviation	Description
%	per cent
°C	Degrees Celsius
μg/L	micrograms per Litre
μS/cm	Micro siemens per centimetre
m	metre(s)
bgl	below ground level
mg/kg	milligrams per Kilogram
mg/L	milligrams per Litre
mm	millimetre
mV	milli volts
ppm	parts per million
ADWG	Australian Drinking Water Guidelines
ANZECC	Australian and New Zealand Environment and Conservation Council
	Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene (Monocyclic Aromatic
BTEXN	Hydrocarbons)
СН	Chainage
CLM Act	NSW Contaminated Land Management Act 1997
CoC	Chain of Custody
DO	Dissolved Oxygen
DP	Deposited Plan
DQI	Data Quality Indicator
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
Eurofins	Eurofins Environment Testing
HIL	Health Investigation Level
LOR	Limit of Reporting
	As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead,
Metals	Zn:Zinc, Hg: Mercury
NATA	National Association of Testing Authorities
ND	Not Detected
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
n	Number of Samples
OCPs	Organochlorine Pesticides
OPPs	Organophosphorus Pesticides
ORP	Oxidation reduction potential
PCBs	Polychlorinated Biphenyls
рН	A measure of acidity, hydrogen ion activity
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
RRE	Resource Recovery Exemption
SAQP	Sampling Analysis and Quality Plan
TDS	Total Dissolved Solids
UCL	Upper Confidence Limit
US EPA	United States Environmental Protection Agency
XRF	X-Ray Fluorescence
-	On tables is "not calculated", "no criteria" or "not applicable"

EXECUTIVE SUMMARY

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfNSW) to assess contaminant impacts from the former Woodlawn Mines Ore Concentrate Loadout Complex (the Loadout Complex) which was identified as having been historically located within the Goulburn – Bombala rail corridor at Tarago, New South Wales (NSW), Australia.

A Detailed Site Investigation (DSI) was prepared by Ramboll in July 2020 (Ramboll 2020, the DSI). The DSI was reviewed by the site auditor and NSW Environmental Protection Authority (EPA) who provided comment that data gaps remained regarding onsite impacts within the Loadout Facility and that further investigation was warranted to confirm the extent of offsite contaminant migration via surface water.

This report is an addendum to the DSI. Additional investigation reported herein comprises supplementary water, sediment and soil investigations carried out at the Tarago Rail Corridor and Tarago area to address EPA and site auditor comments. The objectives were to:

- further investigate the extent of offsite contaminant migration via surface water from three culverts which direct surface water beneath the rail formation onsite
- further assess contaminants within the footprint of the former Loadout Complex
- characterise contaminated material to be generated onsite during remediation
- to assess concentrations of contaminants of potential concern associated with rail corridors that had not previously been considered; organochlorine / organophosphate pesticides (OCPs/OPPs) and polychlorinated biphenyls (PCBs).

Summarily the additional investigations comprised:

- surface water and co-located sediment sampling at representative locations upstream and downstream of the site and laboratory analysis for total and dissolved metals
- measurement of metal concentrations in sediment along drainage lines downgradient of the site using field-portable X-ray Fluorescence (XRF), analytical samples were collected were sediments were saturated
- supplementary intrusive assessment of soil within the footprint of former Loadout Complex and measurement of lead using XRF
- laboratory characterisation of contaminant concentrations in materials to be generated during remediation
- review of existing OCP / OPP and PCB results from samples collected within the rail formation, surrounding the rail formation and sediments along drainage lines
- · consolidation of the above results with existing data obtained during previous investigations
- · assessment of results against adopted Tier 1 assessment criteria
- assessment of data quality and reliability
- refinement of the conceptual site model.

Key findings were:

- risks to human health from offsite migration of contaminants in surface water are considered to be low and acceptable
- risks to ecology from offsite migration of contaminants in surface water appear limited to the offsite dam downstream of the northern culvert. Elevated concentrations of copper and zinc observed in the Mulwaree River are consistent with background concentrations
- potential risks to human health from offsite migration of contaminants in sediment around the Boyd Street causeway and the area adjacent/downstream of Braidwood Road have been identified however an additional contaminant source appears to have contributed to impacts downstream of Braidwood Road

- potential risks to ecology from offsite migration of contaminants in sediment have been identified downstream of the southern, middle and northern rail culverts. Site specific ecological risk assessment in these areas should occur to define requirements for remediation
- lead concentrations in soils at depth around the footprint of the former Loadout Complex exceed human health and ecological criteria however are unlikely to present a risk due to positioning beneath clay capping
- risks associated with OCP, OPP and PCB at and originating from the site are considered to be low and acceptable.

Recommendations include:

- site specific human health risk assessment or remediation of lead in sediment around the Boyd Street Causeway and in the drainage swale adjacent/downstream of Braidwood Road should occur
- site specific ecological risk assessment of copper, zinc and to a lesser extent lead in sediment downstream of the site should occur to define remedial requirements
- ongoing monitoring of surface water and sediment should occur on a quarterly basis and preferably after rainfall. This should include analysis for both total and dissolved metals in order to accurately assess potential human health and ecological risks.

1. INTRODUCTION

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfNSW) to assess contaminant impacts from the former Woodlawn Mines Ore Concentrate Loadout Complex (the Loadout Complex) which was identified as having been historically located within the Goulburn – Bombala rail corridor at Tarago, New South Wales (NSW), Australia.

A Detailed Site Investigation (DSI) was prepared by Ramboll in July 2020 (Ramboll 2020, the DSI). A Detailed Site Investigation (DSI) was prepared by Ramboll in July 2020 (Ramboll 2020, the DSI). The DSI was reviewed by the site auditor and NSW Environmental Protection Authority (EPA) who provided comment that data gaps remained regarding onsite impacts within the Loadout Facility and that further investigation was warranted to confirm the extent of offsite contaminant migration via surface water.

This document presents the findings from additional surface water, sediment and soil investigations carried out at the Tarago Rail Corridor and Tarago area to address EPA and auditor comments and is presented as an addendum to the DSI prepared by Ramboll in July 2020.

1.1 Background

Lead and to a lesser extent zinc and copper have been identified in soils within the Goulburn – Bombala rail corridor at Tarago in the vicinity of the former Woodlawn Mines Ore Concentrate Loadout Complex (the Loadout Complex). The load out complex was identified as having been historically located within the rail corridor at this location and investigations have identified lead and to a lesser extent zinc and copper in soils within the corridor.

Ramboll has completed a DSI of the rail corridor to characterise the extent of contamination present. Additional investigation comprising assessment of contamination to surrounding private and public properties has been completed. Information relating to the site and offsite public land has been presented in the DSI. Private property reports have been presented under separate covers.

In November 2019, based on the investigations completed, the site was notified to the NSW Environment Protection Authority (EPA) under Section 60 of the *Contaminated Land Management Act 1997* (CLM Act) and on 25 March 2020 the NSW EPA declared the site to be significantly contaminated under Section 11 of the CLM Act (Declaration Number: 20201102; Area Number 3455). The site was published on the EPA's list of notified sites as "contamination is regulated by the EPA under the CLM Act". The declaration defines the substance of concern ("the Contaminant") in soil as lead described as follows:

- lead concentrations in soil within the rail corridor (Lot 22 DP1202608) exceed national guideline values for the protection of human health and the environment
- lead contamination has impacted adjacent land at 106 Goulburn Street, Tarago (Lot 1 DP816626), with soil found to contain lead at concentrations exceeding national guideline values for the protection of human health and the environment
- there are complete exposure pathways to lead for occupants of 106 Goulburn Street, as well
 as potentially complete exposure pathways for persons working within the rail corridor
- there are potentially complete exposure pathways for onsite and offsite ecological receptors.

A voluntary management proposal (VMP) was prepared to define how the Contaminant and associated risks would be managed and this was approved by the NSW EPA on 28 May 2020. Principal features of the VMP as relate to assessment of the Contaminant are described in **Table 1-1**.

Table 1-1 VMP Principle Features

Item	Current status
P1. Appoint a NSW EPA auditor accredited under the Contamination Land Management Act 1997	A NSW EPA accredited auditor has been engaged.
P2. Collate and review data from third parties in relation to the Contaminant in soil and water in the Tarago area	Previous communication with nearby industry identified periodic monitoring of the environment surrounding the site had occurred. This data was not made available for review.
P3. Undertake delineation of the Contaminant within the site and at the Loadout Complex	At the site, the Contaminant has been delineated through a series of investigations, refer to Section 2 . The DSI (Ramboll 2020) identified data gaps pertaining to delineation of the Contaminant at depth within the footprint of the former Loadout Complex. Included in this DSI Addendum are the results of subsequent delineation sampling undertaken at the Loadout Complex during September 2020.
P4. Install groundwater monitoring wells to assess impacts to groundwater from the Contaminant originating from the site	Groundwater monitoring wells were installed in March 2020 and assessment of groundwater conditions were included in the DSI (Ramboll 2020).
P5. Assess the potential migration from the site of the Contaminant in surface waters and sediments	Assessment of surface water and sediment were included in the DSI (Ramboll 2020) however, the extent of offsite contaminant migration via surface water had not been determined. Included in this DSI Addendum are the results of subsequent surface water and sediment sampling.
P6. Prepare a Detailed Site Investigation report	A DSI has been prepared (Ramboll 2020). Recommendations included further assessment to confirm the extent of offsite contaminant migration via surface water and to delineate the Contaminant at depth within the footprint of the former loadout complex buildings. These recommendations are assessed in this DSI addendum.

1.2 Objectives

The objectives of this DSI Addendum were to further investigate the extent of offsite contaminant migration via surface water and further assess the loadout complex building footprint as recommended in the DSI.

Additional objectives were to characterise contaminated material to be generated onsite during remediation and to assess concentrations of contaminants of potential concern associated with rail corridors that had not previously been considered; organochlorine / organophosphate pesticides (OCPs/OPPs) and polychlorinated biphenyls (PCBs).

1.3 Scope of Work

The scope of work performed to meet the objective(s) of the DSI Addendum comprised:

- surface water and co-located sediment sampling at representative locations upstream and downstream of the site and laboratory analysis for total and dissolved metals
- measurement of metal concentrations in sediment along drainage lines downgradient of the site using field-portable X-ray Fluorescence (XRF), analytical samples were collected were sediments were saturated
- supplementary intrusive assessment of soil within the footprint of former Loadout Complex and measurement of lead using XRF
- laboratory characterisation of contaminant concentrations in materials to be generated during remediation
- review of existing OCP / OPP and PCB results from samples collected within the rail formation, surrounding the rail formation and sediments along drainage lines
- consolidation of the above results with existing data obtained during previous investigations
- assessment of results against adopted Tier 1 assessment criteria
- assessment of data quality and reliability
- refinement of the conceptual site model.

2. PREVIOUS INVESTIGATIONS

Previous investigations completed at the site are presented in the following documents:

- 'Tarago Rail Siding Extension, Preliminary Contaminated Site Assessment' dated June 2015 by McMahon Earth Science (McMahon 2015)
- 'August 2019 Surface Water Monitoring Tarago Loop Extension' dated 29 August 2019 by Ramboll (Ramboll 2019)
- 'Tarago Loop Extension Further Intrusive Assessment and Lead Management Plan' dated 11 September 2019 by Ramboll (Ramboll 2019a)
- 'Tarago Crossing Loop Extension Short-Term Lead Management Plan' dated 11 September 2019 by Ramboll (Ramboll 2019b)
- Tarago Loop Extension Preliminary Human Health Risk Assessment Ramboll' dated
 17 October 2019 by Ramboll (Ramboll 2019c)
- 'Tarago Rail Corridor Environmental Site Assessment' dated 18 October 2019 by Ramboll (Ramboll 2019d)
- 'Tarago Loop Extension: Interim Lead Management Plan' dated 16 December 2019 by Ramboll (Ramboll 2019e)
- 'Tarago Loop Extension Remedial Action Plan' dated 16 December 2019 by Ramboll (Ramboll 2019f)
- 'Tarago Rail Corridor Environmental Data Gap Assessment' DRAFT dated 30 January 2020 by Ramboll (Ramboll 2020a)
- 'Rail Sleeper Waste Classification, Tarago Loop Extension' dated 26 March 2020 by Ramboll (Ramboll 2020b)
- 'Tarago Air Quality Monitoring Report April 2020' dated 21 May 2020 by Ramboll (Ramboll 2020c)
- 'Tarago Air Quality Monitoring Report May 2020' dated 3 June 2020 by Ramboll (Ramboll 2020d).

The DSI supplemented the assessments described above with further assessment of contamination at or originating from the site in soil, dust, surface water, groundwater, paint, tank water and tank sediment.

Key findings of the DSI were:

- Lead has been delineated onsite within the rail formation, adjacent shallow soils and drainage lines. Investigation within the footprint of the former Loadout Complex identified contamination at depth though this is considered unlikely to present a risk to human health or the environment
- Lead has not impacted groundwater. All contaminant concentrations measured in groundwater
 at all locations tested were reported below the Australian Drinking Water Guidelines and
 guidelines relevant for potable use. Some metals in groundwater exceed criteria relevant to
 protection of ecology. Impacts to groundwater from site contamination are considered to be low
 and acceptable and no further investigation is warranted.
- Offsite migration of lead and other metals has occurred via surface water. Deposition of elevated metal concentrations in surficial soils appears to have occurred in land immediately east of the site and across Boyd Street onto other nearby properties.
- Surface water impacts to the Mulwaree River are not evident.
- Offsite migration of lead has occurred in airborne dust. Elevated concentrations of lead in rainwater tank sediment and internal dust were identified in close proximity of the site indicating limited offsite migration of contaminants in air borne dust has occurred. Dust monitoring is ongoing however early data suggests migration of lead in dust from the site is now low.
- All contaminant concentrations measured in rainwater tank water at all locations tested were below the Australian Drinking Water Guidelines and guidelines relevant for all potable use.

Based on risks from metals rainwater tank water is considered suitable for all potable uses and unimpacted by contamination from the site.

• High metal concentrations have been identified in local public road reserves and (with the exception of Boyd Street) appear to be unrelated to the rail corridor.

Key recommendations were:

- Further investigation is recommended to confirm the extent of offsite contaminant migration via surface water and to delineate lead at depth within the footprint of the former Loadout Complex.
- Remediation is required onsite and offsite to address risks associated with lead.
- An Action Plan should be developed to mitigate risks associated with site contamination until remediation can occur.
- Ongoing monitoring of surface water and air quality should occur until a long-term remedial strategy is implemented and proven to be effective.

Where elevated contaminant concentrations were identified in tank sediment or internal dust and were considered to have originated from the site, cleaning and validation works were offered to affected stakeholders. In order to maintain confidentiality for the Tarago community, specific identifiers for private property assessment are excluded from the DSI and DSI Addendum.

3. SAMPLING AND ANALYSIS QUALITY PLAN

Sampling and Analysis Quality Plans (SAQPs) including data quality objectives were defined for surface water sampling, soil and sediment sampling and characterisation of materials to be generated during remediation (SAQP for Resource Recovery (RRE)). The SAQPs were prepared prior to the commencement of fieldwork and are attached in **Appendix 2.** Supplementary assessment of the former Loadout Complex was planned through email correspondence with the site auditor and was completed in accordance with relevant guidance and standards.

4. QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance/quality control (QA/QC) assessment was completed for the field investigations and is presented in **Table 4-1** and **Table 4-2**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations and a summary is provided in **Table 4-3**.

Table 4-1 Sampling and Analysis Methodology Assessment

Comment in the	Ramboll's Assessment				
Sampling Methodology	Surface Water ¹	Sediment ¹	Load Out Complex	Characterisation of Materials to be Generated During Remediation	
Sampling Pattern, Density and Locations	Surface water sampling targeted conditions upstream and downstream of three culverts which direct surface water beneath the rail formation onsite. Surface water at the site only occurs after rainfall and is received by the surrounding environment as follows: • water passing through the northern culvert discharges to an adjacent agricultural property and during high rainfall events to a dam on the agricultural property • water passing through the middle culvert discharges across a causeway on Boyd Street to an adjacent vacant block • water passing through the southern culvert discharges beneath Goulburn Street to agricultural land and a tributary to the Mulwaree River (approximately 550m east of site). During the October 2020 sampling round, three additional locations SW_BR001, SW_BR001 were sampled; (SW10) was added within the Mulwaree River, downstream of the drainage line and ephemeral creek that extends from the middle culvert.	Analytical sediment samples were colocated with surface water samples as prescribed in the Surface Water SAQP and analysed by the laboratory for Al, As, Ba, Be, Cd, Cr 3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn. XRF measurement of metals within sediments occurred along drainage lines and ephemeral creek beds located downgradient of the northern, middle and southern culverts. In the event of saturated sediments, laboratory analysis was conducted for metals. Samples targeted the transportation of sediment via surface water flow down-stream of the rail formation from the three culverts and results were assessed in conjunction with existing sediment data collected from drainage lines (where relevant). The data is considered adequate to determine the extent of offsite contaminant migration via surface water deposition of sediment.	Field portable XRF measurements were collected in general accordance with the sampling plan, from various depths across six test pits located within the footprint of the former Loadout Complex. The six test pits supplement an existing four locations, totaling seven locations within the footprint and three locations between the southern end of the building footprint and the rail line and this is considered adequate to characterise the extent of contamination.	Composite samples were collected from 10 locations along a 750 m³ stockpile comprising fouled ballast impacted by ore concentrate. An additional 10 composite samples were collected from test pits located within impacted soils adjacent the rail formation. Test pit locations were selected based on elevated metals concentrations reported during initial investigations. Composite samples were submitted for laboratory analysis of pH, EC, moisture content, total organic carbon, total sulfur and metal(loid)s; As, Be, B, Cd, Co, Cu, Cr, Pb, Mn, Hg, Mo, Ni, Sb, Se, Sn, V, Zn. Composite sampling was initially undertaken to facilitate application of a Resource Recovery Exemption (RRE) however data obtained during the investigation is considered suitable for informing remedial options more generally.	

Sampling	Ramboll's Assessment				
Methodology	Surface Water ¹	Sediment ¹	Load Out Complex	Characterisation of Materials to be Generated During Remediation	
	All locations were sampled (where surface water was encountered). Surface water samples were collected upstream and downstream of each culvert and within receiving water bodies (Mulwaree River). This sampling program is considered adequate to assess offsite contaminant migration via surface water as representative onsite and offsite locations were sampled.				
Sample Depths	Surface water samples were collected from a minimum depth of 100 mm below the water surface where practical.	Sediment samples were collected at the surface between approximately 0.0-0.1 mbgl. XRF measurements were taken from sediment directly at the ground surface.	Field portable XRF measurements were collected from soils at various depths until readings were recorded below site criteria (2,200 mg/kg (Ramboll 2020)). Samples were collected in-situ where possible however, for safety reasons samples greater than half a meter in depth were collected from spoil within the excavator bucket.	For test pits, final depths were determined through field portable XRF measurement of lead which occurred in-situ until concentrations fell below site acceptance criteria (2,200 mg/kg (Ramboll 2020)).	
Sample Collection Method	All samples were collected by personnel trained and experienced in the collection of surface water samples for analysis, using standard industry techniques for sample collection. All samples were collected from the designated depth where possible, using dedicated disposable equipment (i.e. syringes) or a pond sampler. Surface water samples were collected into laboratory provided sampling containers (dosed with the correct preservative), with field filtration for dissolved metals (0.45 µm) and analysed for total and dissolved metals; Al, As, Ba, Be, Cd, Cr 3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn.	Field portable XRF measurement were collected from surficial sediment by placing the instrument directly onto the ground surface following the clearing of debris. Sediment samples for laboratory analysis were collected either by using a disposable bailer cut down to create a 'push tube' or by using a pond sampler. Each push tube was used only once and discarded after use. The pond sampler was decontaminated between sampling locations. Samples were placed into laboratory supplied sampling containers for laboratory analysis of total metals;	Soil samples collected for confirmatory laboratory analysis were collected into laboratory supplied sampling containers for analysis of lead only.	Generally, sampling comprised: collection of five sub-samples per sampling location (each approximately 1 kg) homogenizing and sample reduction through three rounds of coning and quartering as described in AS1141.3.1, to achieve a sample mass of approximately 0.6 kg sample collection for laboratory analyses.	

Commelling in	Ramboll's Assessment				
Sampling Methodology	Surface Water ¹	Sediment ¹	Load Out Complex	Characterisation of Materials to be Generated During Remediation	
		Al, As, Ba, Be, Cd, Cr3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn.			
Decontamination Procedures	Field parameters were recorded after analytical samples had been collected to minimise disturbance of sediments. Non disposable sampling equipment was decontaminated between sampling locations by rinsing with Decon®90 solution and potable water.	Analytical samples were collected into laboratory supplied sampling containers using dedicated disposable sampling equipment or a pond sampler. The pond sampler was decontaminated between sampling locations by rinsing with Decon®90 solution and potable water. For field XRF measurements, the analyzer window of the XRF was cleaned regularly to prevent cross contamination and measurement of reference material was collected (silicon dioxide, SiO ₂).	Measurement of blank reference material (silicon dioxide, SiO ₂) was completed prior to the commencement of fieldwork and repeated every 10 samples. This ensured that cross-contamination of samples was not occurring. The analyser window was cleaned regularly to prevent cross contamination.	The hand trowel and plywood board used for coning and quartering of the composite samples was brushed clean of residual material and rinsed with potable water between sampling locations.	
Sample Storage and Handling	Samples were collected into laboratory supplied bottles dosed with the correct preservative (where applicable). The samples were stored in an ice filled cooler in the field and during transit to the laboratory.				
Chain of Custody	All analytical samples were submitted to the laboratory under chain of custody conditions.				
Calibration of Field Equipment	The water quality meter was rented from an equipment hire company. The water quality meter was calibrated prior to hire and the calibration certificate is provided in Appendix 4 .	·	ollected using a calibrated instrument (calit ation occurred using blank/certified referer		

¹Previous investigation concluded contaminants of concern at and originating from the site are limited to metals. On this basis other contaminants previously assessed in surface water and sediment were excluded.

Table 4-2 Field and Laboratory QA/QC

	Ramboll's Assessment				
Data quality indicator	Surface Water	Sediment / Soil	Load Out Complex	Characterisation of Materials to be Generated During Remediation	
Field Quality Control Samples	A total of seven intra-laboratory and two inter-laboratory duplicate samples have been collected as part of the surface water monitoring program between August 2019 and August 2020 equaling a rate of 17.95% and 35.12%, respectively. This is exceeds minimum targeted intra and inter-laboratory duplicate densities of 5% and so is considered appropriate.	Two intra-laboratory and one interlaboratory duplicate samples were submitted for a total of 20 primary samples, equaling a rate of 10% and 5%, respectively. This is equal to or greater than the minimum targeted intra and interlaboratory duplicate densities of 5% and so is considered appropriate.	Two laboratory QA samples were collected for a total of 27 field portable XRF measurements.	Two intra-laboratory duplicate samples were submitted for a total of 20 primary samples, equalling a rate of 10%. No inter-laboratory samples were analysed.	
Field Quality Control Results	were $< 10 \times LOF$ For the assessment of	ed that concentrations close to the laborators were discounted from assessment. The accidence is XRF / laboratory correlations an acceptance tration was reported in a duplicate sample, intra-laboratory and inter-laboratory duplicate results are presented in Table IX, Appendix 5. RPDs were below the criterion except for: SED7/SED_D01_020420 RPD for Cd 60.6% SED1/DUP01 RPD for Pb 51.9% The high RPD values are likely the result of sample heterogeneity. Higher duplicate values were adopted as a conservative approach however, guideline value exceedances were generally reported in both the primary and duplicate sample. The performance of XRF samples was assessed through correlation of XRF results against laboratory duplicates	ceptance criteria for RPDs of sample pairs > e criteria of 0.7 was adopted for data to be of	10 x LOR was 30% . considered screening level.	

	Ramboll's Assessment					
Data quality indicator	Surface Water	Sediment / Soil	Load Out Complex	Characterisation of Materials to be Generated During Remediation		
	The results for the trip spike samples indicated that the spike recoveries were achieved (acceptance limit 70% to 130%).	Figure 1 – 3, Appendix 5. In summary, the correlations (R²) were: • R² Cu: 0.90 • R² Pb: 0.80 • R² Zn: 0.80¹	homogenised laboratory sample of larger volume (as deeper and wider soil area is sampled for laboratory measurement).	Results for the rinsate sample collected from the hand trowel used to cone and quarter samples reported no detectable concentrations.		
NATA Registered Laboratory and NATA Endorsed Methods	Eurofins and ALS	Eurofins and ALS were the primary and secondary analytical laboratories, respectively. Laboratory certificates are NATA stamped				
Analytical Methods		A summary of analytical methods was included in the laboratory certificates.				
Holding Times		Review of the CoC and laboratory certificates indicate that holding times were met.				
Practical Quantitation Limit (PQL)	PQLs for all analytes were below the adopted guideline values.					
Laboratory Quality Control Samples	Laboratory quality assurance testing was undertaken at appropriate frequencies.					
Laboratory Quality Control Results		Results are contained within the labo	ratory certificates attached in Appendix 6 .			

Table 4-3 QA/QC Assessment

	Ramboll's Comments					
Data Quality Indicator	Surface Water	Sediment	Loadout Complex	Characterisation of Materials to be Generated During Remediation		
Completeness: The completeness of the data set was judged by	Co-located sampling of surface water and sediment occurred upstream and downstream of the three culverts which receive surface water runoff from site and upstream and downstream of the discharge point to the Mulwaree River. Additional XRF measurement of sediments occurred along drainage lines and ephemeral creek beds downstream of the site.		Test pitting and field portable XRF measurements occurred in general accordance with the sampling plan.	All locations sampled as per the SAQP.		

¹ Moisture content may affect the accuracy of XRF measurement particularly where moisture is > 20% (US EPA 2007). XRF analyses of sediment samples was replaced with laboratory analyses at locations where excess moisture was visibly observed (eg: at locations where co-located surface water samples were collected). An XRF measurement was collected at one location where excess moisture was observed (XP6003) however for the purpose of site characterisation laboratory duplicates at this location were relied upon to characterise contaminant concentrations. The XP6003 XRF measurement was also discounted from calculation of correlations above.

Data Quality Indicator	Surface Water	Sediment	Loadout Complex	Characterisation of Materials to be Generated During Remediation
Comparability: Comparability to existing field data	The data collected during the routine m comparable to previous results as the sa quality control methods and monitoring loc	mpling protocols, analysis methods,	The investigation was completed by experience Ramboll personnel.	The field investigation was completed by experienced Ramboll personnel using standard operating procedures.
was maintained by	XRF measurements were completed by exceptions and monitoring loc	kperienced Ramboll personnel using a	Field portable XRF measurements were completed using a calibrated instrument.	Laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods.
Representativeness: The representativeness of the field data was judged by	In the field	endix 2.		
Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random ss.	In the field, Ramboll achieved precision by using sta for the collection of analytical samples and by collec samples for analysis. Laboratory quality control results indicate precision v and secondary laboratory		Field portable XRF measurements were collected by an experiment environmental scientist holding a NSW EPA licence required for field based XRF testing.	Composite samples were collected by suitably experienced Ramboll personnel. After completion of coning
		d by collecting duplicate and triplicate analysis. precision was achieved at the primary	Field portable XRF measurements were collected from soil in-situ (where possible) and measurements were taken by placing the field portable XRF directly on to the soil.	and quartering samples were placed into laboratory supplied sampling containers and stored in chilled coolers in the field and during transportation to the laboratory.
Precision of field data was maintained by			As moisture is known to effect measured concentrations, visibly dry surfaces were chosen for measurement.	Samples were transported to the laboratory under chain of custody conditions.
			Appropriate sampling methodologies utilised and complied with.	Appropriate sampling methodologies utilised and complied with. Works completed in accordance with AS
Accuracy: Accuracy in the collection of field data was controlled by	In the field, Ramboll achieved accuracy by using Ramboll's standard operating procedures for the collection of surface water and sediment samples. Laboratory quality control results indicate accuracy was achieved at the primary and secondary laboratory.	Works completed in accordance with US EPA 2007, Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.	448.1 - 1997 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and semi-volatile compounds and AS 1141.3.1-2012 Methods for Sampling and Testing Aggregates.	

In general, the DQIs outlined above have been met and Ramboll considers that the data is of suitable quality to meet the project objectives.

5. PRELIMINARY CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) is a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human and/or ecological) that may potentially be exposed. This relationship is commonly known as a Source-Pathway-Receptor ("SPR") linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is considered to be incomplete and no further assessment is required. Where this linkage is found to be complete, it does not indicate that health or environmental risk is present, but rather triggers further investigation of risk. This CSM is presented in the DSI and identifies SPR linkages prior to the assessment of data obtained during additional investigations under this DSI Addendum.

5.1 Sources of Contamination

The primary source of contamination was identified as the ore concentrate from the former Loadout Complex that has been deposited within the rail formation and adjacent shallow soils. Secondary sources were identified as:

- surface water and sediment in drainage lines onsite and in the local offsite receiving environment
- dust that has accumulated within buildings and as sediment in rainwater tanks close to the site.

Sources considered within this CSM are those clearly related to site as defined above. Lead contamination that has been identified but which is not related to the site includes impacts on the haul route between the mine and the rail corridor and on Mulwaree Street. Additionally, several instances of localised lead contamination that was geographically separated from the site were identified on private properties. At some of these properties lead based paint was identified in poor condition and lead is generally known to be a cheap and useful metal found frequently in the environment and older homes (NSW EPA 2020). Lead contamination that has been identified but which is not related to the site has been provided to TfNSW which is communicating these findings to relevant stakeholders. Where it is reasonable to conclude that contamination has not originated from site, that contamination has been excluded from further consideration.

5.2 Chemicals of Concern

Chemicals of concern are limited to metals associated with historical mining practices and include lead, copper and zinc.

5.3 Receptors

The receptors identified in this CSM were based on a current and future use of the site and surrounding land, which currently includes residential and a range of community uses.

The human receptors identified were:

- onsite workers (including intrusive maintenance and construction workers)
- users of Tarago Train Station
- the owners of the Station Masters Cottage
- other local residents
- a range of community facilities including the Public School, Preschool and Townhall
- workers in adjacent public road reserves.

The ecological receptors identified were:

- onsite ecology
- offsite ecology including crops and livestock
- ecological receptors in the Mulwaree River.

5.4 SPR Linkages

An assessment of the SPR linkages for the Contaminant onsite (including the former loadout complex) is summarised in **Table 5-1**.

Table 5-1: Exposure Assessment Summary

Exposure Route	Potentially Complete SPR? (Yes / No / Potential)										
Exposure Route	Onsite Workers	Onsite Ecology	Residents	Community Activities	Offsite Workers	Offsite Ecology	Irrigation and Livestock	Justification			
Soil and Sediment											
Direct Contact	Р	Р	P ¹	N	Р	Р	Р	Concentrations in soils exceed onsite assessment criteria			
Inhalation	Р	Р	P ¹	N	Р	P	Р	however management measures have been defined to mitigate			
Incidental Ingestion	Р	Р	P ¹	N	Р	Р	P	risks to onsite workers (Ramboll 2019f). Potential remains for impacts to onsite ecology. Concentrations in sediment / soil			
Root Uptake	N/A	Р	N/A	N/A	N/A	N/A	N/A	offsite exceed human health and ecological criteria.			
Surface Water											
Direct Contact	N	P	N	N	N	Р	Р				
Incidental Ingestion	N	Р	N	N	N	Р	P	Flow was not observed in any of the drains or culverts present at the site. However, flow is likely upon rainfall, which can mobilise			
Root Uptake	N/A	Р	N/A	N/A	N/A	Р	N/A	contaminated soils into the local waterway where aquatic ecological receptors may become exposed.			
Migration to groundwater	N	Р	N	N	N	Р	P	, , , , , , , , , , , , , , , , , , ,			
Groundwater											
Potable use including drinking	N	N/A	N	N	N	N/A	N/A	Concentrations in groundwater reported below human health			
Direct Contact	N	N	N	N	N	N	N	criteria. Some metals exceed ecological criteria onsite though			
Incidental Ingestion	N	N	N	N	N	N	N	not defined offsite and do not appear to discharge to the receiving Mulwaree River so ecological exposure considered			
Root Uptake	N/A	N	N/A	N/A	N/A	N	N	unlikely.			
Dust											
Direct Contact	N	N/A	Р	N	N	N/A	N/A				
Inhalation	N	N/A	Р	N	N	N/A	N/A	Contaminant migration via airborne dust has occurred to several local houses and lead exceeds assessment criteria.			
Incidental Ingestion	N	N/A	Р	N	N	N/A	N/A				
Rain Tank Water											
Potable use including drinking	N/A	N/A	N	N	N/A	N	N				
Direct Contact	N/A	N/A	N	N	N/A	N	N	Rain tank water reported below criteria.			
Incidental Ingestion	N/A	N/A	N	N	N/A	N	N	Main tank water reported below Chiena.			
Root Uptake	N/A	N/A	N	N	N/A	N	N				
Rain Tank Sediment											
Direct Contact	N/A	N/A	Р	N	N/A	Р	N	Contaminant migration via airborne dust has occurred and			
Inhalation	N/A	N/A	Р	N	N/A	Р	N	concentrations in tank sediment exceeds criteria for soil at some houses. Exposure to sediment could occur if sediment is			
Incidental Ingestion	N/A	N/A	Р	N	N/A	Р	N	discharged to the ground when cleaning tanks.			

¹Potential for complete exposure pathways between the Contaminant in soil and offsite residents is limited to one property zoned for though not currently developed for residential use.

6. TIER 1 ASSESSMENT CRITERIA

6.1 Surface Water

The criteria proposed for the assessment of surface water contamination are sourced from the following references:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013)
- National Health and Medical Research Council (NHMRC) (2001) National Resource
 Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version
 3.5 updated August 2018, (ADWG 2011)
- National Health and Medical Research Council (NHMRC), National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water (NHMRC, 2008)
- Department of Environment and Conservation (DEC) Guidelines for the Assessment and Management of Groundwater Contamination (DEC, 2007)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) (available at www.waterquality.gov.au/anz-quidelines)
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000)

Assessment criteria adopted for surface water are summarised in

Table 6-1.

ANZECC (2000) guidelines state that where exceedances are observed for ecological values the guidelines can be corrected for water hardness (freshwater ecosystems only). If exceedances remain when assessing values against guidelines where the hardness correction factor has been applied, further assessment of dissolved metals against the corrected guideline may occur (ANZECC 2000).

Table 6-1: Surface Water Investigation Levels (ug/L)

Contaminant	95% Freshwater (ANZG 2018)	Corrected for Hardness (ANZECC 2000)	Drinking Water (ADWG 2011)	Irrigation Short-term Trigger Value (ANZECC 2000)	Stock Water (ANZECC 2000)
Heavy Metals					
Aluminium	55ª	-	-	20,000	5,000
Arsenic	24 ^b	-	10	2,000	500-5,000
Barium	-	-	2,000	-	-
Beryllium	-	-	60	500	-
Cadmium	0.2	0.54 ⁹	2	50	10
Chromium	1.0°	2.5 ⁹	50°	1,000	1,000
Cobalt	1.4	-	-	100	1,000
Copper	1.4	3.5 ⁹	2,000	5,000	400-5,000
Iron	-	-	-	10,000	not sufficiently toxic
Lead	3.4	-	10	5,000	100
Manganese	1,900	-	500	10,000	not sufficiently toxic
Mercury	0.06 ^{d, e}	-	1	2	2
Nickel	11	27.5 ⁹	20	2,000	1,000
Zinc	8	20 ⁹	-	5,000	20,000

blank cell denoted with - indicates no criterion available.

6.2 Sediment

The sediment default guideline values (DGV) indicate the concentrations below which there is a low risk of unacceptable effects occurring, while the 'upper' guideline values (GV-high), provide an indication of concentrations at which toxicity-related adverse effects may already be occurring. As such, the GV-high value should only be used as an indicator of potential high-level toxicity problems, not as a guideline value to ensure protection of ecosystems.

Sediment DGVs were generally used to assess sediments located within ephemeral creek beds and sampling locations with permanent standing water. Sediment located within open drainage lines adjacent the road verge were assessed against soil criteria for recreational / public open space as detailed in **Section 6.3**. These locations are mostly dry and therefore likely to be dominated by terrestrial organisms rather than aquatic fauna. It is possible that soil elevated with contaminants may be carried to the downstream waterways where there are permanent flows and hence aquatic ecological risks may be present.

The criteria proposed for the assessment of sediment contamination are sourced from the default guideline values in ANZG (2018) and are summarised in **Table 6-2**.

Table 6-2: Sediment Assessment Criteria – Ecological Investigation Criteria (mg/kg)

^a Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

^b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Guideline value for m-xylene. Guideline values also exist for both o-xylene and p-xylene as per ANZG (2018). The default guideline value for m-xylene guideline has been adopted as it is the most conservative

^g Hardness correction factor applied to the threshold value as detailed in ANZECC 2000.

Contaminant	Sediment DGV	GV-High
Heavy Metals		
Aluminium	-	-
Arsenic	20	70
Barium	-	-
Beryllium	-	-
Cadmium	1.5	10
Chromium	80	370
Cobalt	-	-
Copper	65	270
Iron	-	-
Lead	50	220
Manganese	-	-
Mercury	0.15	1.0
Nickel	21	52
Zinc	200	410

The DGV was derived using a ranking of both observed field and laboratory ecotoxicity-effects and represents the 10th percentiles of that data distribution. GV-high represents the median of that data distribution to provide an upper guideline value. Effects on sediment biota are rarely seen for concentrations below the DGV, while effects are more frequently evident above the GV-high value.

Sediment results were assessed against Tier 1 assessment criteria to identify contaminant migration from three culverts which direct surface water beneath the rail formation. The culverts are identified as follows:

- the southern culvert located at CH 262.660 directs a local water course through the rail corridor. This water course is an unnamed tributary to the Mulwaree River. Water discharging from site flows (after high rainfall events only) under the Goulburn Street bridge and through agricultural land before discharging to the River
- the middle culvert located at CH 262.354 directs water to a shallow pond within the
 corridor and then offsite through a causeway on Boyd Street. From the Boyd Street
 causeway surface water is partly directed into a drain along the eastern side of Boyd
 Street and partly discharges into an adjacent paddock
- the northern culvert is located at CH 262.040 and directs water along an informal flow path to a dam on an adjacent agricultural property.

Sediment DGVs were used to assess sediment in areas frequented with water (i.e. samples SED1_UP to SED10) or locations characterised as main tributaries to the Mulwaree River (Creek1 to Creek6 and SED_BR002 to XP6005). Sediment within open drainage lines adjacent the road verge were assessed against EILs for recreational land use as detailed in **Section 6.3**. These locations were determined to be mostly dry and therefore likely to be dominated by terrestrial organisms rather than aquatic fauna.

Results from sediment sampling completed during October 2020 were assessed in conjunction with existing sediment and soil data to determine the extent of offsite contaminant migration via surface water deposition of sediment. Previous results included in the assessment are as follows:

• field portable XRF measurements from seven locations along the ephemeral creek bed extending from the southern culvert (sampled 30 June 2020)

- field portable XRF measurements from five locations along the Boyd Street drainage swale, measured as part of the broader assessment of the vacant lot
- laboratory analytical results from one location (P6_HA05) located within the ephemeral creek bed east of Braidwood Road, sampled as part of the broader assessment of the sports ground
- XRF and laboratory QA results from three locations along the Boyd Street causeway (XBOYDSTW2, XBOYDSTW1 and XBOYDSTE1) sampled as part of the DSI.

Sediment samples were assessed against guideline values defined in **Table 6-3**.

Table 6-3 Guideline Summary

Guideline Used	Sample ID	Justification
Sediment DGV	SED_BR002, XP6001, XP6002, P6_HA05, XP6003, XP6004, XP6005, SED1_UP, SED8, SED9, SED10, Creek 1, Creek 1a, Creek 2, Creek 3, Creek 4, Creek 5	Located within main tributaries of the Mulwaree River outside of the rail corridor and downgradient of the middle and southern culverts within ephemeral creek beds. Use of sediment DGVs at these locations is considered a conservative approach.
Sediment DGV High	SED1, SED2, SED3, SED4, SED5, SED6, SED7	Small pools of aquatic ecology generally located within the rail corridor. Considered to hold little to no ecological value.
HIL C / EIL Public Open Space	XBOYDSTW2, XBOYDSTW1, XBOYDSTE1, BOYD1, BOY2, BOYD3, BOYD4, BOYD5, XBOYD001, XBOYD002, XBOYD003, XBR001, XBR002, XBR003, XBR004, XBR005, XBR006, XBR007, XBR008, XBR009, XBR010, XBR011, XBR012, XBR013, XBR014, SED_BR001	Located within drainage lines directly adjacent the road verge. These locations are mostly dry and therefore likely to be dominated by terrestrial organisms rather than aquatic fauna.

Sediment assessment against the criteria detailed above is provided in **Table III** and **Table IV**, **Appendix 5**. Exceedances are presented on **Figure 3a** and **Figure 3b**, **Appendix 1**.

6.3 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013)
- 'Tarago Loop Extension Preliminary Human Health Risk Assessment Ramboll' dated 17 October 2019 by Ramboll (Ramboll 2019c).

The NEPM (2013) provides health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. Based on the current and future use of the site, and the surrounding land, the guidelines adopted for the DSI Addendum are as follows:

- HIL C Health investigation level for recreational / open space such as parks, playgrounds, playing fields, secondary schools and footpaths. This does not include undeveloped public open space where the potential for exposure is lower and where a site-specific assessment may be more appropriate. HIL C criteria was used for the assessment of offsite soils located within drainage lines adjacent the road verge.
- HIL D Health investigation level for commercial / industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant

- pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use. HIL D criteria was used for the assessment of soils within the rail corridor, including the former Loadout Complex.
- EIL for urban recreational and public open space and EIL for commercial / industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil. EIL calculations are included in **Appendix 6**. The average of five locations was used. Commercial / industrial EILs were applied within the rail corridor and open space EILs were applied in public areas downstream of the site.

The human health and ecological criteria adopted for soils are provided in **Table 6-4**.

Table 6-4: Soil Assessment Criteria – Human Health and Ecological Investigation Levels (mg/kg)

Contaminant	HIL C – Recreational / Public Open Space	HIL D – Commercial / Industrial	EIL – Urban Residential and Public Open Space	EIL -Commercial / Industrial	
Heavy Metals					
Aluminium	-	-	-	-	
Arsenic	300	3,000	100	160	
Barium	-	-	-	-	
Beryllium	90	500			
Cadmium	90	900	-	-	
Chromium	300ª	3,600ª	424 ^{b,f}	710 ^{b,c}	
Cobalt	300	4,000	-	-	
Copper	17,000	240,000	125 ^f	160°	
Iron	-	-	-	-	
Lead	600	2,200 ^d	1,100	1,800	
Manganese	19,000	60,000	-	-	
Mercury	80 ^e	730 ^e	-	-	
Nickel	1,200	6,000	194 ^f	340°	
Zinc	30,000	400,000	308 ^f	370°	

^a HIL for chromium (VI)

^b EIL for chromium (III)

^c Site specific EIL (Ramboll 2019d)

^d Site specific HIL (Ramboll 2019c)

e HIL for inorganic mercury

f Site specific EIL (updated for the DSI Addendum)

7. RESULTS

7.1 Surface Water

7.1.1 Monitoring Events

A total of eight routine monitoring events have been completed between August 2019 and October 2020. Surface water monitoring events were completed after a period of rainfall (when possible) as this is the only occasion where surface water is present in the drainage channels. A summary of monitoring events is outlined in **Table 7-1**. A photographic log is presented as **Appendix 8**.

Table 7-1 below includes information on rainfall conditions precedent to each monitoring event. The table includes comparison of the rainfall falling over the 48 hour period preceding the sampling event to the design rainfall events for the Mulwarree catchment (Wollondilly and Mulwaree Rivers Flood Study WMA Water 2016) in order to provide an indication of the significance of the rainfall event. Average monthly rainfall data compared to actual monthly rainfall data is also included to indicate the general climate conditions in the month of sampling.

Table 7-1: Assessment of Rainfall Preceding Surface Water Monitoring against Critical Duration Design Rainfall for the Mulwaree Catchment

	Max Rainfall over 48hr	Rainfall in 48 hrs preceding monitoring events (mm)									
Event	Critical Duration (mm)	13-Aug-19 24-Sep-19		29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20				
< 10% AEP	< 126	0	0	0	0	-	0				
10% AEP	126	-	-	-	-	-	-				
5% AEP	147	-	-	-	-	-	-				
2% AEP	175	-	-	-	-	163	-				
1% AEP	197	-	-	-	-	-	-				
Monthly Ra	infall Observed (mm)	19	41.2	22	79.2*	157.8	94.4				
Average Mo	onthly Rainfall (mm)	42.9	44	49	40.4*	42.9	44				
Comment		Dry month, dry conditions precedent	Average rainfall month, dry conditions predecent	Dry month, dry conditions precedent	Wet month, dry conditions precedent	Wet month, high rainfall event predecent	Wet month. Dry conditions precedent				

Notes: All rainfall data was sourced from the Australian Bureau of Meteorology. Daily rainfall was sourced from the closest weather station with rainfall records preceding each monitoring event (Lake Bathurst, Windellama and Goulburn Airport). Monthly averages and records were sourced from the closest weather station with a complete record (Goulburn Airport). Monthly observations and averages are for rainfall in the calendar month in which each monitoring event occurred except for the 1 April 2020 event for which March data is presented. Based on this the monthly data is not a direct representation of rainfall preceding monitoring though is considered an sufficiently as an indicator of general conditions around each monitoring event

The monitoring data presented in Table XX includes quarterly events through 2019 - 2021 and so is considered representative of the effects of recent seasonal variability.

Rainfall measured in August 2019, September 2019 and January 2020 was lower than the monthly average though rainfall measured in the April, August and October 2020 exceeded the monthly averages. This indicates that monitoring has occurred across a dry period at the end of 2019 and a wet period from April 2020 onward. Further, average monthly rainfalls are based on a 25 year data set and so integrate effects of longer weather cycles such as El Nino. The monitoring data is considered representative of the effects of potential rainfall totals.Rainfall preceding the August 2020 monitoring event (163.4 mm Windellama) fell between Design Rainfalls for 5% and 2% Annual Exceedance Probability events. That is there is a 2 – 5% chance that the critical duration event preceding the August 2020 monitoring will be repeated in future years. The monitoring data is considered representative of the effects of high rainfall events.

It is considered that the effects of seasonal variability, total rainfall and high rainfall events on contaminant migration in surface water from the site are adequately represented. Within this context the surface water monitoring data is considered adequately representative of the effects of potential meteorology to inform assessment of associated risks to human health and the environment.

7.1.2 Physico-Chemical Results

Surface water physico-chemical parameters were measured in the field during the majority of sampling rounds. The surface water parameters are summarised in **Table 7-2** and presented in **Table I**, **Appendix 5**.

Surface water pH ranged between 5.75 and 8.92 but was generally characteristic of neutral conditions. Slightly acidic conditions were reported during early April 2020 at SW1 (pH 6.35) and SW3 (pH 6.23). Moderately acidic conditions were reported at SW4 (pH 5.75) during late April 2020.

EC measurements ranged between 94.7 μ S/cm and 2342 μ S/cm but were generally characteristic of freshwater conditions. Fresh to brackish conditions (>700 μ S/cm) were recorded at offsite locations SW7, SW8, SW9 and SW10 only.

ORP measurements generally ranged between 56.0 mV and 263.1 mV indicating oxidising conditions. Reducing conditions (-3.0 mV) were reported during October 2020 at SW5 only.

Table 7-2 Surface Water Physico-chemical Parameters

Cameria ID	No. of		Temperature	SPC	рН	DO	ORP	TDS	Commonto
Sample ID	Recordings		°C	μS/cm	pH units	mg/L	mV	mg/L	- Comments
Onsite									
		Minimum	7.8	206.1	6.4	2.7	115.0	133.9	
SW1	3	Maximum	17.4	678.0	7.7	11.0	169.5	434.0	Dry during January 2020.
		Average	11.9	486.4	7.2	6.5	136.5	312.0	
		Minimum	8.0	205.6	7.1	2.6	94.0	133.3	
SW1-UP	3	Maximum	19.9	673.0	7.4	10.6	170.7	431.0	Dry during January 2020. Parameters not recorded during September 2019.
		Average	13.3	487.5	7.3	6.0	139.6	312.8	not recorded during September 2015.
		Minimum	7.3	213.3	6.5	3.3	96.0	137.8	
SW2	4	Maximum	17.5	650.0	8.3	10.6	185.9	416.0	Dry during January 2020. Parameters not recorded during September 2019.
		Average	11.6	456.6	7.5	5.9	157.5	294.7	not recorded during September 2019.
		Minimum	8.9	142.5	6.2	4.8	137.0	92.3	
SW3	3	Maximum	21.8	245.0	8.0	9.4	178.0	159.0	Dry during January 2020. Parameters not recorded during September 2019.
		Average	14.1	205.5	7.2	6.5	163.2	133.4	not recorded during September 2019.
		Minimum	7.4	128.2	5.8	3.5	107.0	99.5	
SW4	5	Maximum	20.3	388.3	8.8	10.4	263.1	251.8	Dry during January 2020. Parameters
		Average	12.4	254.8	7.4	6.9	189.8	186.1	not recorded during September 2019.
		Minimum	11.2	117.9	7.3	4.1	-3.0	76.7	
SW5	2	Maximum	12.0	187.0	8.4	7.9	163.2	121.0	Dry during January and April 2020.
		Average	11.6	152.5	7.8	6.0	80.1	98.9	
SW6	1		8.3	168.3	7.47	9.61	187.0	109.2	Dry during January and April 2020.
Offsite									
		Minimum	12.5	94.7	7.2	4.5	56.0	61.8	
SW7	4	Maximum	23.1	2342.0	8.9	8.5	114.2	396.6	
		Average	18.8	804.4	7.8	6.5	90.8	180.6	
		Minimum	9.1	170.5	7.2	4.4	84.0	107.9	
SW8	4	Maximum	23.6	1007.0	8.5	9.3	124.0	656.5	
		Average	17.7	612.6	7.8	6.6	113.3	395.8	
		Minimum	8.9	125.3	7.6	6.3	83.0	115.7	
SW9	4	Maximum	25.0	852.0	8.4	16.8	173.6	812.5	
		Average	18.4	384.3	8.0	11.0	120.1	430.2	
SW10	1		16.02	881	7.19	3.58	79.0	564.0	

7.1.3 Analytical Results

Surface water analytical results are summarised in **Table 7-3.** Tabulated results are included in **Table II**, **Appendix 5**. Surface water analytical reports are included in **Appendix 6**.

Table 7-3 Surface Water Analytical Results Summary – Metals

Analyte	No. of Samples	No. of Detects	Min.	Max.	Average	Drinking Water (ADWG 2011)	Irrigation Short-term Trigger Value (ANZECC 2000)	Stock Water		
	·					Total Metals with Hardness Correction Factor Applied	Dissolved Metals with Hardness Correction Factor Applied ¹	(ANZECC 2000)		
Aluminum	30	22	< 0.05	11	1.141	N/A	N/A	0	0	1 13 October 2020: SW5
Arsenic	34	21	< 0.001	0.016	0.003	0	0	1 29 January 2020: SW7	0	0
Barium	31	30	0.02	0.36	0.086	0	0	0	0	0
Beryllium	34	0	< 0.001	< 0.001	-	0	0	0	0	0
Cadmium	34	21	< 0.0002	0.04	0.006	17 29 January 2020: SW7 1-2 April 2020: SW1, SW2, SW3, SW4, SW7 30 April 2020: SW4 10-11 August 2020: SW3, SW4, SW5, SW6, SW7 13 October 2020: SW1, SW2, SW3, SW4, SW5	13 6 August 2019: SW4 24 September 2019: SW2, SW3, SW4 11 August 2020: SW3, SW4, SW5, SW6, SW7 13 October 2020: SW2, SW3, SW4, SW5	9 1 April 2020: SW3, SW4 30 April 2020: SW4 11 August 2020: SW4, SW6 13 October 2020: SW1, SW3, SW4, SW5	21 29 January 2020: SW7 1-2 April 2020: SW1, SW2, SW3, SW4, SW7 30 April 2020: SW2, SW4 10-11 August 2020: SW3, SW4, SW5, SW6, SW7, SW8, SW9 13 October 2020: SW1, SW2, SW3, SW4, SW5, SW7	4 1 April 2020: SW3, SW4 30 April 2020: SW4 13 October 2020: SW4
Chromium	31	19	< 0.001	0.011	0.002	3 11 August 2020: SW5, SW6, 13 October 2020: SW5	2 11 August 2020: SW5, SW6	0	0	0
Cobalt	34	13	< 0.001	0.014	0.005	N/A	N/A	0	0	0
Copper	32	25	< 0.001	0.31	0.054	29 January 2020: SW7 1-2 April 2020: SW1, SW2, SW3, SW4, SW7 30 April 2020: SW2, SW4 10-11 August 2020: SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9 12-13 October 2020: SW1, SW2, SW3, SW4, SW5, SW7	16 6 August 2019: SW4 24 September 2019: SW2, SW3, SW4 29 January 2020: SW7 10-11 August 2020: SW3, SW4, SW5, SW6, SW7, SW8, SW9 12-13 October 2020: SW3, SW4, SW5, SW7,	0	0	0
Iron	30	28	0.02	8.9	1.461	0	N/A	0	0	0
Lead	39	31	< 0.001	0.17	0.027	16 24 September 2019: SW3, SW4 29 January 2020: SW7 1-2 April 2020: SW1, SW2, SW3, SW4, SW7 30 April 2020: SW4 10-11 August 2020: SW4, SW6, SW7 12-13 October 2020: SW1, SW3, SW4, SW5,	5 29 January 2020: SW7 24 September 2020: SW2, SW4 13 October 2020: SW3, SW4	19 6 August 2019: SW4 24 September 2019: SW3,	0	2 1 April 2020: SW3 30 April 2020: SW4
Manganese	34	33	0.012	1.9	0.279	N/A	N/A	6 29 January 2020: SW7 1-2 April 2020: SW1, SW3, SW8 30 April 2020: SW4 13 October 2020: SW1	0	0
Mercury	34	0	< 0.0001	< 0.0001	-	0	0	0	0	0
Nickel	34	29	< 0.001	0.12	0.012	5 1 April 2020: SW3, SW4 30 April 2020: SW4 11 August 2020: SW6 13 October 2020: SW4	1 13 October 2020: SW4	5 1-2 April 2020: SW3, SW4 30 April 2020: SW4 11 August 2020: SW6 13 October 2020: SW4	0	0

Analyte	No. of Samples	No. of Detects	Min.	Max.	Average	Drinking Water (ADWG 2011) Total Metals with	Irrigation Short-term Trigger Value (ANZECC 2000) Dissolved Metals with	Stock Water (ANZECC 2000)		
						Hardness Correction Factor Applied	Hardness Correction Factor Applied ¹			
Zinc	34	32	< 0.005	7	0.689	24 29 January 2020: SW7 1-2 April 2020: SW1, SW2, SW3, SW4, SW7, SW8 30 April 2020: SW2, SW4 10-11 August 2020: SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9 12-13 October 2020: SW1, SW2, SW3, SW4, SW5, SW7	20 6 August 2019: SW4 24 September 2019: SW2, SW3, SW4 29 January 2020: SW7 10-11 August 2020: SW1, SW3, SW4, SW5, SW6, SW7, SW8, SW9 12-13 October 2020: SW1, SW2, SW3, SW4, SW5, SW7	0	1 30 April 2020: SW4	0

¹ Dissolved concentration compared against hardness corrected trigger values per flow chart presented in Table 3.4.3 (ANZECC 2000)

7.1.4 Additional Observations

During the October 2020 monitoring event, surface water was observed at two sediment sampling locations, one within a drainage line (SW_BR001) and one within an ephemeral creek (SW_BR002) extending east off Braidwood Road. Surface water samples at these locations were collected opportunistically based on observation of water to further inform assessment of metals in surface water from the site. Samples were analysed metals and reported a total lead concentration above the human health guideline value at SW_BR002. Concentrations of total copper and zinc exceeded the ecological guideline value (95% protection) at both locations.

7.2 Sediment

7.2.1 Human health

7.2.1.1 Middle Culvert

Lead concentrations above the human health guideline value of 600 mg/kg (HIL C) were identified at four locations within the drainage line extending east from the middle culvert (BOYD1, BOYD2, XBOYD002, XBOYD003). Lead exceedances decreased in magnitude with increasing distance from the site. All other metals at all locations around and downstream of the middle culvert were reported below adopted human health assessment criteria.

7.2.1.2 Northern Culvert

Downgradient of the northern culvert, sediments located within the open drainage line adjacent Braidwood Road did not exceed the adopted human health guideline value (HIL C) for any analyte tested.

7.2.2 Ecology

7.2.2.1 Upgradient

SED1_UP located upgradient of the site shows no impact from the site. Metal concentrations were all reported below sediment DGVs.

7.2.2.2 Onsite

DGV-High exceedances were reported at the southern culvert (SED1, SED2), the middle culvert (SED3, SED4) and the downgradient side of the northern culvert (SED6, SED7) as summarised in **Table 7-4.**

Table 7-4 Onsite Sediment Analytical Results Summary - Metals

Analyte	No. of Samples	No. of Detects	Min.	Max.	Average	No. > Sediment DGV-High
Aluminium	14	14	4400	28000	10,700.0	0
Arsenic	14	14	2.9	37	15.4	0
Barium	14	14	53	240	114.4	0
Beryllium	14	0	0	0	-	0
Cadmium	14	14	0.5	8.2	4.4	0
Chromium	14	14	8.1	25	38.7	0
Cobalt	14	5	5.4	11	7.9	0
Copper	14	13	13	600	185.4	3 1 April 2020: SED2, SED4 13 October 2020: SED2
Iron	14	14	6600	24000	15,021.4	0
Lead	21	20	24	4700	795.4	11 1 April 2020: SED1, SED2, SED4 11 August 2020: SED1, SED2, SED3, SED4, SED6 13 October 2020: SED1, SED2, SED3
Manganese	14	13	61	640	206.1	0
Mercury	14	2	0.1	0.3	0.5	0
Nickel	14	9	6.9	17	14.9	0
Zinc	14	14	81	2400	784.1	10 1-2 April 2020: SED1, SED2, SED4, SED6, SED7 12-13 October: SED1, SED2, SED4, SED6, SED7

7.2.2.3 Southern Culvert

Creek1a and Creek 1 to Creek 6, located downgradient of the southern culvert, exceeded the adopted sediment DGV for copper, lead and zinc with the highest concentrations generally reported within 100 m of the site.

7.2.2.4 Middle Culvert

Sediment within the drainage line (XBOYDSTW2 to XBR002) and within the ephemeral creek bed (SED_BR002 to XP6005) downgradient of the middle culvert exceeded respective EIL and sediment DGV guidelines for a number of metals including lead, copper and zinc. The highest metal concentrations were reported at SED_BR002. Lead concentrations at this location exceeded the sedimented DVG by more than 35-times.

7.2.2.5 Northern Culvert

Zinc concentrations at SED7, located adjacent the northern culvert, exceeded the sediment GV-High of 410 mg/kg. Downgradient of SED7, the concentration of zinc at two isolated locations XBR010 and XBR011, located within the drainage line adjacent the road verge, exceeded the adopted EIL value for recreational land use (310 mg/kg).

7.2.2.6 Mulwaree River

Sediment within the Mulwaree River shows no impact from the site. Metal concentrations were all reported below sediment DGVs.

7.3 Loadout Complex

Assessment of soils within the footprint of the former Load Out Complex was completed on 19 August 2020 and comprised the advancement of a further six test pits (LO_TP01 to LO_TP06) to supplement existing locations. Sampling locations and Tier 1 assessment criteria exceedances are presented on **Figure 4**, **Appendix 1**. Results are summarised **Table 7-5** and tabulated in **Table V**, **Appendix 4**. Testpit logs are presented as **Appendix 8**.

Lead concentrations were reported above human health and ecological guideline values at three locations as follows:

- LO_TP02 at 1.1 m bgl (5,700 ppm) and 1.3 m bgl (6,900 ppm)
- LO_TP03 at 1.6 m bgl (3,662 ppm)
- MW2_1.0 at 1.0 m bgl (3,600 mg/kg), sampling completed by Ramboll 18 May 2020

Results indicate that lead contamination is present at depth beneath a clay capping layer approximately 1 m thick. During test pitting completed in August 2020, foreign material (i.e. plastic, metal, wire and glass) was noted at LO_TP03 and LO_TP05 at depths consistent with elevated lead concentrations. The highest lead concentration was reported at LO_TP02 at 1.3 m bgl.

Table 7-5 Results Summary Former Load Out Complex (mg/kg)

Depth (m)	Analyte	No. of Samples	No. of Detects	Minimum	Maximum	Average	No > HIL D	No > EIL
0.0 - 0.5		17	16	ND	380	94.2	0	0
0.5 - 1.0		13	12	< 5	3,600	615.7	1	1
1.0 - 1.5	Lead	12	12	8	6,900	1,382.8	2	2
1.5 - 2.0		4	4	29	3,662	963.0	1	1
>2.0		3	3	42	200	127.3	0	0

7.4 Characterisation of Materials to be Generated During Remediation

During August 2020, twenty composite samples were collected from materials located within the rail corridor to facilitate application of a Resource Recovery Exception (RRE). The RRE application was negated however data obtained during the investigation is considered suitable for informing remedial options more generally and a summary of results is provided in **Table 7-6**. Complete results are provided in **Table VI**, **Appendix 5**. Exceedances of site assessment criteria are presented in **Figure 5**, **Appendix 1**.

Table 7-6 Onsite Soil Analytical Results Summary

Analyte	No. of Samples	No. of Detects	Minimum	Maximum	Average	No > HIL D	No > EIL
Inorganics							
Conductivity	20	20	29	1100	465.9		
pH	20	20	4	8.3	5.4		
Sulphur	20	20	79	16000	4888.0		
Total Organic Carbon	20	19	< 0.1	6.5	1.5		
Total Metals							
Antimony	20	14	< 10	55	24.4		
Arsenic	20	20	14	190	83.9	0	3
Beryllium	20	0	< 2	0		0	
Boron	20	0	< 20	0		0	
Cadmium	20	20	1.8	170	14.9	0	
Chromium	20	20	12	130	48.6	0	0
Cobalt	20	13	< 5	30	12.4	0	
Copper	20	20	240	4,100	1,210.5	0	20
Lead ¹	20	20	230	19,000	5,046.0	14	14
Manganese	20	20	70	1,100	501.5	0	
Mercury	20	19	< 0.1	2.9	0.7	0	
Molybdenum	20	14	< 5	20	9.0		
Nickel	20	19	< 5	85	30.2	0	0
Selenium	20	17	< 2	27	13.1	0	
Tin	20	18	< 10	400	72.6		
Vanadium	20	20	30	93	62.1		
Zinc	20	20	550	12,000	1,784.0	0	20

¹ indicates site-specific guideline value adopted from HHRA (Ramboll 2019c)

7.5 Additional Contaminants of Potential Concern

Further consideration of eleven existing samples was carried out with respect for Contaminants of Potential Concern (CoPC) generally associated with rail corridors including OCPs/OPPs and PCBs. No detections were made above the laboratory limit of reporting in any of the samples.

A summary is provided in **Table 7-7**, complete tabulated results are included in **Table VII**, **Appendix 5**.

Table 7-7: CoPC Assessment

Analyte	No. of Samples	No. of Detects	Minimum	Maximum	Average		
Organochlorine Pestici	Organochlorine Pesticides						
DDT+DDE+DDD	11	0	< 0.05	< 0.05	-		
Aldrin and Dieldrin – Total	11	0	< 0.05	< 0.05	-		
Chlordanes - Total	11	0	< 0.1	< 0.1	-		
Endosulfan Sulphate	11	0	< 0.05	< 0.05	-		
Endrin	11	0	< 0.05	< 0.05	-		
Heptachlor	11	0	< 0.05	< 0.05	-		
НСВ	11	0	< 0.05	< 0.05	-		
Methoxychlor	11	0	< 0.2	< 0.2	-		
Toxaphene	11	0	< 1	< 1	-		
Organophosphorus Pesticides							
Chlorpyrifos	11	0	< 0.2	< 0.2	-		
Polychlorinated Bipher	Polychlorinated Biphenyls						
PCBs – Total	11	0	< 0.1	< 1	-		

All units are in mg/kg unless stated otherwise

8. DISCUSSION

8.1 Surface Water

8.1.1 Lead

8.1.2 Concentration Trends on and near site

Figure 8-1 describes total lead concentrations in surface water upstream and downstream of three onsite rail culverts across multiple monitoring rounds from August 2019 – October 2020. The ADWG assessment criteria for lead has been conservatively included to inform consideration of potential human health risks. The standard ANZECC criteria for 95% species protection and a hardness corrected criterion have been conservatively included to inform consideration of potential ecological risks. Rainfall is presented across the same period.

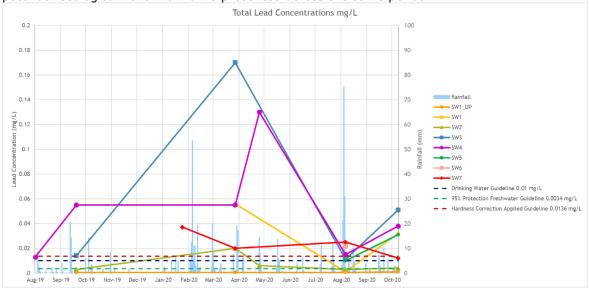


Figure 8-1: Total Lead Concentration Trends, Upgradient and Onsite

SW1_UP (upstream and offsite) reported consistent lead concentrations below the human health and ecological guideline value throughout the course of monitoring.

Concentrations decreased at all onsite locations and increased slightly at the dam downstream of the northern culvert (SW7) following high rainfall in August 2020. The absence of elevated lead concentrations in surface water upstream from the site and presence of elevated lead at the site indicates previously identified site contamination is affecting surface water discharging from the site. The increase at SW7 indicates offsite migration of lead in surface water occurred during high rainfall.

8.1.2.1 Human Health Risks from Lead in Surface Water

In October 2020 total lead concentrations exceeded the human health guideline (from the ADWG) at all locations sampled onsite and in the dam downstream of the northern culvert. The highest concentrations reported either side of the middle culvert (at SW3 and SW4) which is located in the most contaminated area of the site. This does not indicate risks to human health onsite or users of the dam downstream as water is not used for human consumption from either of these sources.

However, the presence of these lead concentrations could result in increase of total lead concentrations in the Mulwaree River.

Figure 8-2 presents lead concentrations across multiple monitoring rounds from February – October 2020 in the Mulwaree River upstream and downstream of where site water would be expected to discharge. Rainfall is presented across the same period.

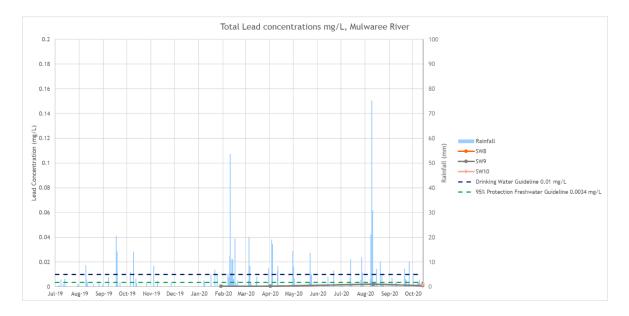


Figure 8-2: Total Lead Concentrations, Mulwaree River

Lead concentrations were reported below drinking water guidelines and adopted ecological assessment criteria in all samples. Surface water within the Mulwaree River showed little to no change in total lead concentration as a result of high rainfall in August 2020. Risks to human health associated with lead in surface water from the site are considered to be low and acceptable.

8.1.2.2 Ecological Risks from Lead in Surface Water

Following exceedances of total lead concentrations against both the ecological guideline value for 95% species protection and the hardness corrected value, dissolved lead concentrations for onsite locations were assessed against the hardness corrected guideline value of 0.036 mg/L as shown in **Figure 8-3**.

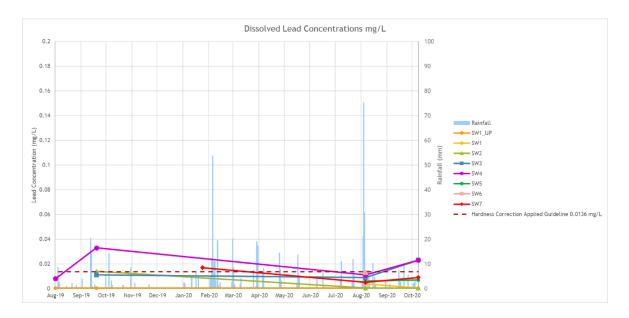


Figure 8-3: Dissolved Lead Concentration Trends, Upgradient and Onsite

During October 2020, dissolved lead concentrations exceeded the ecological hardness corrected value at SW3 and SW4 only. The framework for assessing ecological risk from metals in surface water (ANZECC 2000) includes provision for assessment of metal speciation and/or bioavailability where dissolved concentrations exceed hardness corrected assessment criteria. Such assessment could be completed however remediation of contaminated soils in the area around SW3 and SW4 are expected to lead to reduced concentrations in surface water.

8.1.3 Copper

8.1.3.1 Concentration Trends On and Near Site

Figure 8-4 describes total copper concentrations in surface water upstream and downstream of the three onsite rail culverts across multiple monitoring rounds from August 2019 – October 2020. Rainfall is presented across the same period. The copper concentration range (0 - 0.2 mg/L) was selected to facilitate consideration of temporal trends and screening against adopted ecological assessment criteria. The drinking water guideline (2 mg/L) and the concentration observed at SW4 30 April 2020 (0.31 mg/L) fall outside the figure extent.

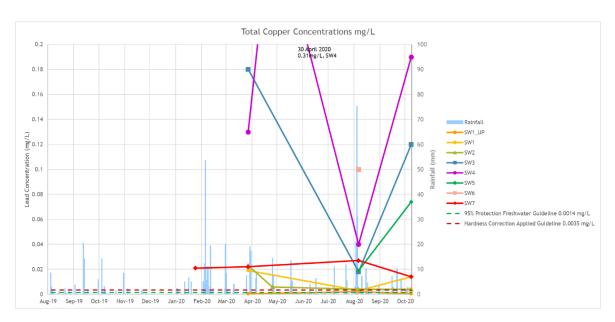


Figure 8-4: Total Copper Concentrations, Upgradient and Onsite

Total copper concentrations follow a similar trend to lead. Highest concentrations were reported at SW3 and SW4. Decreased concentrations were observed at onsite locations and increased concentrations were observed in the dam downstream of the northern culvert (SW7) after high rainfall in August 2020.

Figure 8-5 presents total copper concentrations in the Mulwaree River upstream and downstream of where site water would be expected to enter across multiple monitoring rounds from February – October 2020. Rainfall is presented across the same period.

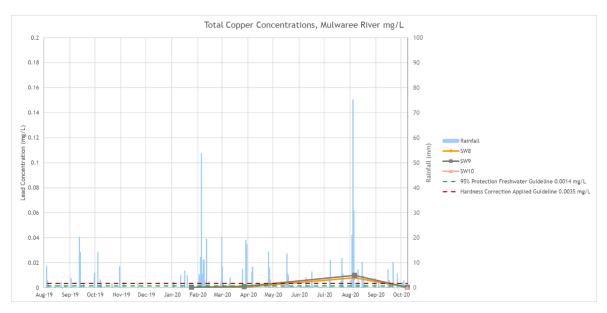


Figure 8-5: Total Copper Concentrations, Mulwaree River

Total copper concentrations within the Mulwaree River increased after heavy rainfall in August 2020. This trend however was observed at both the upgradient (SW9) and downgradient (SW8) locations. A relationship between copper in surface water from the site and in the Mulwaree River was not identified. Rather, the consistency between copper concentrations upstream and

downstream of site discharge may indicate an upstream contaminant source more directly affects copper concentrations in the Mulwaree River.

8.1.3.2 Human Health Risks from Copper in Surface Water

The maximum copper concentration in surface water (SW4 0.31 mg/L) is lower than the ADWG (2 mg/L) and on this basis risks to human health associated with copper in surface water from the site are considered to be low and acceptable.

8.1.3.3 Ecological Risks from Copper in Surface Water

As presented in **Figure 8-6** total copper concentrations onsite and in the offsite dam downstream of the northern culvert (SW7) exceed hardness corrected ecological assessment criteria.

Dissolved copper concentrations for onsite surface water locations were assessed against the hardness corrected value of 0.0035 mg/L as shown in **Table II**, **Appendix 5**.

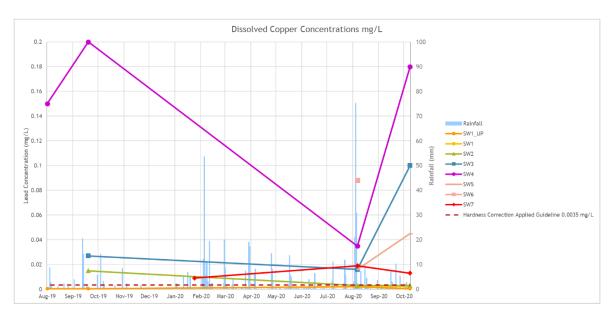


Figure 8-6: Dissolved Copper Concentrations, Upgradient and Onsite

Dissolved copper exceeded hardness corrected ecological assessment criteria around the middle and northern culverts and in the downstream offsite dam. Based on the degree and extent of copper exceeding ecological criteria in surface water assessment of metal speciation and/or bioavailability may be warranted to determine if/where remediation may be required.

As discussed in **Section 8.1.3** copper concentrations in the Mulwaree River were elevated though a relationship with site contamination was not identified. The concentrations observed in the Mulwaree River are presented in **Table II**, **Appendix 5** and exceed hardness corrected ecological criteria however as they appear unrelated to the site recommendations for further assessment are not provided.

8.1.4 Zinc

8.1.5 Concentration Trends On and Near Site

Figure 8-7 describes total zinc concentrations in surface water upstream and downstream of the three onsite rail culverts across multiple monitoring rounds from August 2019 – October 2020. Rainfall is presented across the same period. The zinc concentration range (0 – 4 mg/L) was selected to facilitate consideration of temporal trends and screening against adopted ecological assessment criteria.

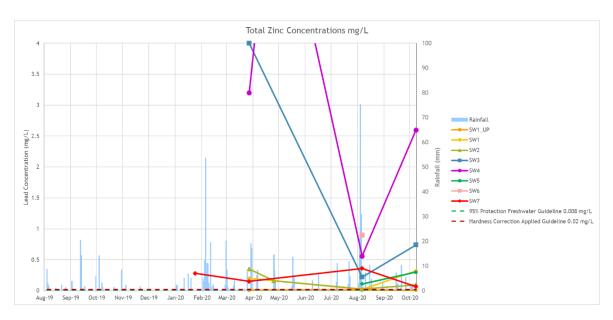


Figure 8-7: Total Zinc Concentration Trends

Total zinc concentrations follow a similar trend to copper and lead. Highest concentrations were reported at SW3 and SW4. Decreased concentrations were observed at onsite locations and increased concentrations were observed in the dam downstream of the northern culvert (SW7) after high rainfall in August 2020.

Figure 8-8 presents total zinc concentrations in the Mulwaree River upstream and downstream of where site water would be expected to enter across multiple monitoring rounds from February – October 2020. Rainfall is presented across the same period.

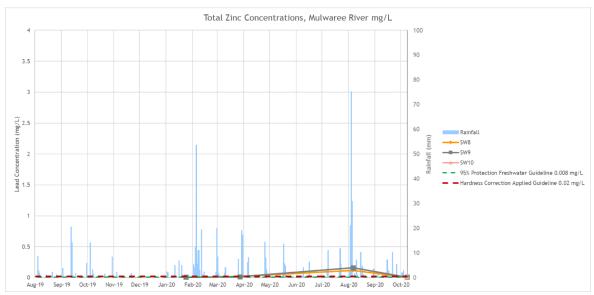
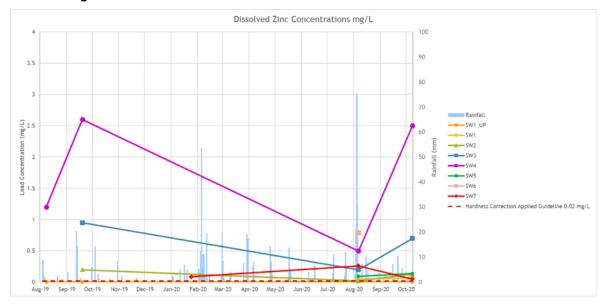


Figure 8-8: Zinc Concentration Trends, Mulwaree River

Total zinc concentrations within the Mulwaree River increased after heavy rainfall in August 2020. Similar to copper, this trend was observed at both the upgradient (SW9) and downgradient (SW8) locations. A relationship between zinc in surface water from the site and in the Mulwaree River was not identified. Rather, the consistency between zinc concentrations upstream and


downstream of site discharge may indicate an upstream contaminant source more directly affects zinc concentrations in the Mulwaree River.

8.1.6 Human Health Risk from Zinc in Surface Water

Health guidelines adopted for zinc were limited to an aesthetic criterion of 3 mg/L as presented in the ADWG. In October 2020 total zinc concentrations at all locations were reported below this criteria and risks to human health associated with zinc in site surface water are considered to be low and acceptable.

8.1.7 Ecological Risks from Zinc in Surface Water

Following exceedances of total zinc concentrations against both the ecological guideline value for 95% species protection and the hardness corrected value, dissolved zinc concentrations for onsite and Mulwaree River locations were assessed against the hardness corrected guideline value as shown in **Figure 8-9**.

Figure 8-9: Dissolved Zinc Concentration Trends

Exceedances were reported at all onsite locations indicating a potential risk to onsite ecology. The heavy industrial site use and highly disturbed condition of the site indicate the site holds little ecological value however potential remains for elevated concentrations of zinc to migrate offsite during heavy rainfall events. Further, the elevated concentration at SW7 in August 2020 indicates localised offsite migration following rainfall in August 2020 appears to have occurred to the dam downstream of the northern culvert (SW7).

Based on the degree and extent of zinc exceeding ecological criteria in surface water assessment of metal speciation and/or bioavailability may be warranted to determine if/where remediation may be required.

Figure 8-10 presents dissolved zinc concentrations in the Mulwaree River upstream and downstream of where site water would be expected to enter across multiple monitoring rounds from February – October 2020. Rainfall is presented across the same period.

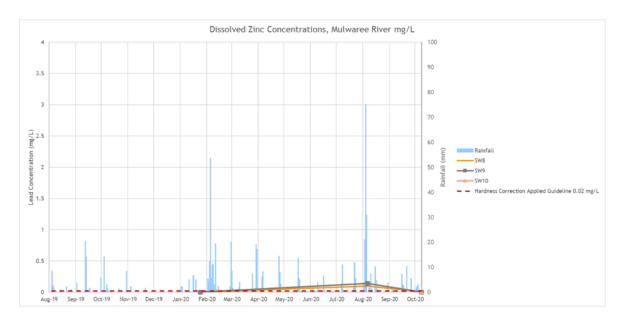


Figure 8-10: Dissolved Zinc Concentration Trends, Mulwaree River

As discussed in **Section 8.1.4** zinc concentrations in the Mulwaree River were elevated though a relationship with site contamination was not identified. The concentrations observed in the Mulwaree River are presented in **Table II, Appendix 5** and exceed hardness corrected ecological criteria however as they appear unrelated to the site, recommendations for further assessment are not provided.

8.2 Sediment

8.2.1 Southern Culvert

Copper lead and zinc concentrations in sediment downstream of the southern rail culvert are presented on **Figure 3a**, **Appendix 1**.

All concentrations were reported below adopted human health assessment criteria.

Copper was reported above adopted ecological assessment criteria at locations within 100 m of the site (Creek 1 and Creek 2). Lead and zinc exceeded adopted ecological assessment criteria at all locations (Creek 1 – Creek 6), located within the ephemeral creek bed, exceeded the adopted sediment DGV for copper, lead and zinc with concentrations generally decreasing away from the site.

Based on the degree and extent of copper, lead and zinc in sediment from the site exceeding Tier 1 criteria, site specific ecological risk assessment is considered warranted to more accurately characterise risks and associated drivers for remediation.

8.2.2 Middle Culvert

Copper lead and zinc concentrations in sediment downstream of the middle rail culvert are presented on **Figure 3b**, **Appendix 1**. The contaminant distribution indicates that offsite migration of contaminated soils has occurred across a concrete causeway on Boyd Street, along drains on Boyd Street and Braidwood Road and into a drainage swale / ephemeral creek bed located north of the sports ground. Lead concentrations generally decrease away from the site.

Lead was reported above the adopted human health assessment criteria at the Boyd Street causeway (XBOYDSTW1) and in the Boyd Street drain (BOYD1, BOYD2, XBOYD02 and XBOYD03).

Lead was also reported above the human health assessment criteria adjacent / downstream of Braidwood Road (SED_BR002) and P6_HA05. Due to low concentrations at XBOYD003, XBR001 and XBR002, this lead contribution appears potentially related to a source other than the site².

Guidance endorsed by the NSW EPA makes provision for contaminant risks to be assessed through calculation of the 95% upper confidence limit (95% UCL) of the mean concentration. The 95% UCL is a value that, when calculated repeatedly for randomly drawn subsets of site data, equals or exceeds the true mean 95 percent of the time. The 95% UCL is only relevant where:

- 1. the standard deviation of the results should be less than 50% of the relevant investigation or screening level, and
- 2. no single value should exceed 250% of the relevant investigation or screening level.

The maximum lead concentration excluding the Boyd Street Causeway and the area adjacent/downstream of Braidwood Road was 800 mg/kg (< 250% of the guideline) and the standard deviation was 302 mg/kg (50% of the guideline). The standard deviation is not less than 50% of the guideline however exceeds only marginally. The 95% UCL was therefore considered relevant and was calculated at 509 mg/kg and below the adopted guideline. Calculations are presented as **Table XI**, **Appendix 4**). Within this context risks to human health from lead in sediment downstream of the middle culvert excluding the area around the Boyd Street Causeway and the area adjacent/downstream of Braidwood Rd are considered to be low and acceptable. Soils with elevated lead concentrations in the area around the Boyd Street Causeway and the area adjacent/downstream of Braidwood Rd require further site specific risk assessment to inform the need for remediation.

Elevated concentrations above the adopted sediment DGV criteria were reported at five locations north of the sports ground. At three of these locations contaminant concentrations also exceeded sediment GV-high criteria. The highest concentration of 1,900 mg/kg was north of the sports ground (SED_BR002) and adjacent (downstream) of Braidwood Road. Based on the degree and extent of these exceedances, site specific ecological risk assessment is considered warranted to more accurately characterise risks and associated drivers for remediation.

8.2.3 Northern Culvert

Downgradient of the northern culvert, contaminant concentrations were reported below human health assessment criteria³.

Zinc concentrations in sediment exceeded ecological criteria in the offsite dam (SW7) and at two locations along the drainage line adjacent Braidwood Road (XBR010 and XBR011.

8.2.4 Mulwaree River

All contaminant concentrations in sediments collect from the Mulwaree River were reported below adopted human health and ecological assessment criteria.

8.3 Loadout Complex

The distribution and degree of lead in test pits targeting the loadout complex indicates that contamination remains at the former site surface in this area, now approximately 1 m bgl. The extent of contamination to the south, east and north has been accurately characterised. Some uncertainty remains in the extent to the west.

² Contaminant impacts on private property downstream of the middle culvert are assessed further in separate reports.

³ Contaminant impacts on private property downstream of the northern culvert are assessed further in separate reports.

8.4 Additional Contaminants of Potential Concern

Concentrations of OCP, OPP, PCB were reported as non-detect in all samples. Within this context risks to human health and the environment associated with these contaminants at the site are considered to be low and acceptable.

9. UPDATED CONCEPTUAL SITE MODEL

This is a revision to the preliminary CSM presented in **Section 5**. The updated CSM does not include the material to be generated as part of remediation. The update CSM incorporates all available data, including data presented in the DSI.

9.1 Sources of the Contaminant

The primary source of contamination was identified as the ore concentrate from the former Loadout Complex that has been deposited within the rail formation and adjacent shallow soils. Secondary sources were identified as:

- surface water and sediment in drainage lines onsite and in the local offsite receiving environment
- dust that has accumulated within buildings and as sediment in rainwater tanks close to the
 site. This source has been remediated to the extent practical through cleaning and validation
 of properties where impacts were identified and where property owners consented to
 cleaning works occurring.

Sources considered within this CSM are those clearly related to site as defined above. Lead contamination that has been identified but which is not related to the site includes impacts on the haul route between the mine and the rail corridor and on Mulwaree Street. Additionally, several instances of localised lead contamination that was geographically separated from the site were identified on private properties. At some of these properties lead based paint was identified in poor condition and lead is generally known to be a cheap and useful metal found frequently in the environment and older homes (NSW EPA 2020). The sue and distribution of copper and zinc within the built environment is similarly widespread. Contamination that has been identified but which is not related to the site should be considered further by the polluters, property owners and relevant regulatory stakeholders. Where it is reasonable to conclude that contamination has not originated from site, that contamination has been excluded from further consideration.

9.2 Chemicals of Concern

Chemicals of concern are limited to copper, lead and zinc at or originating from the site. Concentrations of OCP/OPP and PCBs were not identified above the laboratory limit of reporting in the ten samples collected and are therefore not considered a contaminant of concern.

9.3 Receptors

The receptors identified in this CSM were based on a current use of the site and surrounding land, which currently includes residential and a range of community uses.

The human receptors identified were:

- onsite workers (including intrusive maintenance and construction workers)
- users of Tarago Train Station
- the owners of the Station Masters Cottage
- other local residents
- a range of community facilities including the Public School, Preschool and Townhall
- workers in adjacent public road reserves.

For lead exposure, the most sensitive receptors are females of reproductive capacity and infants/children.

The ecological receptors identified were:

- onsite terrestrial/aquatic ecology
- offsite terrestrial ecology including crops and livestock
- aquatic ecology of the Mulwaree River.

9.4 Transport Mechanisms

Identified transport mechanisms by which contaminants of concern may migrate from the source of contamination are outlined in **Table 9-1**.

Table 9-1 Contaminant Transport Mechanisms

Transport	Comment	Likelihood
Onsite direct contact, inhalation, incidental ingestion	Rail workers in contaminated areas exposed to soil and dust	Potential
Offsite transport of contaminated sediment and surface water via surface water runoff	Movement of surface water and sediment from the site occurs during high rainfall events. Root uptake of dissolved metals expected.	Confirmed
Offsite transport of contaminated dust in air	Movement of contaminants in airborne dusts from the site has occurred.	Confirmed

9.5 SPR Linkages

In order for a receptor to be exposed to a contaminant derived from a site, there must be an exposure pathway linking the source of contamination and the exposed receptor. An exposure pathway is described as the course a chemical or physical agent takes from the source to the exposed receptor and generally includes the following elements (US EPA 1989):

- a source and mechanism of chemical release
- a retention or transport medium (or media where chemicals are transferred between media)
- a point of potential human and/or ecological contact with the contaminated media
- exposure route (e.g. ingestion, inhalation) at the point of exposure.

An evaluation of source-pathway-receptor linkages is provided in **Table 9-2**.

Table 9-2: Updated Exposure Assessment Summary

					Complete SPR Linkage? (Yes / No / Potential)				
Exposure Route	Onsite Workers	Onsite Ecology	Residents	Community Activities	Offsite Workers	Offsite Ecology	Irrigation and Livestock	Justification	
Onsite Soil and Sediment									
Direct Contact	Potential	Potential	Potential ¹	No	N/A	N/A	N/A	Concentrations in soils exceed onsite assessment criteria	
Inhalation	Potential	Potential	Potential ¹	No	N/A	N/A	N/A	however management measures have been defined to mitigate risks to onsite workers (Ramboll 2019f). Potential remains for impacts to onsite ecology. Ecological risks are considered low due to the rail corridor holding little to no ecological significance.	
ncidental Ingestion	Potential	Potential	Potential ¹	No	N/A	N/A	N/A	Contamination in soils at depth within the footprint of the forme Loadout Complex exceed human health and ecological criteria however are unlikely to present a risk to human health or ecology due to positioning beneath clay capping.	
Root Uptake	N/A	Potential	N/A	N/A	N/A	N/A	N/A	Dust migration from the site could impact on the adjoing resident. Dust generation is being managed on site and demonstrates low and acceptable levels of lead migration in dust from the site.	
Offsite Soil and Sediment								and deceptable levels of lead migration in dase from the site.	
Direct Contact	N/A	N/A	Potential	Potential	Potential	Yes	Potential		
Inhalation	N/A	N/A	Potential	Potential	Potential	Yes	Potential	Concentrations in soil and sediment offsite exceed human health	
Incidental Ingestion	N/A	N/A	Potential	Potential	Potential	Yes	Potential	and ecological criteria.	
Root Uptake	N/A	N/A	N/A	N/A	N/A	Yes	Potential		
Surface Water		.4			.4				
Direct Contact	No	Yes	No	No	No	Yes	No	Concentrations of connex load and sine were observed in a dan	
ncidental Ingestion	No	Yes	No	No	No	Yes	No	Concentrations of copper, lead and zinc were observed in a dam downstream of the site at concentrations which may present a	
Root Uptake	N/A	Yes	N/A	N/A	N/A	Yes	No	risk to ecology. Elevated concentrations of copper and zinc were also observed in the Mulwaree River though appear unrelated to	
Migration to groundwater	No	No	No	No	No	Yes	No	site.	
Groundwater									
Potable use including drinking	No	N/A	No	No	No	N/A	N/A	Concentrations of metals in groundwater were reported below	
Direct Contact	No	No	No	No	No	No	No	human health criteria. Some metals exceed ecological criteria	
ncidental Ingestion	No	No	No	No	No	No	No	onsite though not defined offsite and do not appear to discharge to the receiving Mulwaree River so ecological exposure is	
Root Uptake	N/A	No	N/A	N/A	N/A	No	No	considered unlikely.	
Dust									
Direct Contact	No	N/A	Potential	No	No	N/A	N/A	Elevated concentrations of lead in internal dust were identified in close proximity of the site indicating limited offsite migration of	
Inhalation	No	N/A	Potential	No	No	N/A	N/A	contaminants in air borne dust has occurred. Dust monitoring is ongoing however early data suggests migration of lead in dust	
Incidental Ingestion	No	N/A	Potential	No	No	N/A	N/A	from the site is now low.	
Rain Tank Water									
Potable use including drinking	N/A	N/A	No	No	N/A	No	No		
Direct Contact	N/A	N/A	No	No	N/A	No	No	Rain tank water reported contaminant concentrations below	
ncidental Ingestion	N/A	N/A	No	No	N/A	No	No	criteria.	
Root Uptake	N/A	N/A	No	No	N/A	No	No		
Rain Tank Sediment									
Direct Contact	N/A	N/A	Potential	No	N/A	Potential	No	Contaminant migration via airborne dust has occurred and	
Inhalation	N/A	N/A	Potential	No	N/A	Potential	No	concentrations in tank sediment exceeded criteria for soil at some houses. Where identified (and where permitted) tank	
Incidental Ingestion	N/A	N/A	Potential	No	N/A	Potential	No	some houses. Where identified (and where permitted) tank sediment with elevated contaminant concentrations from the was removed.	

¹Potentially complete exposure pathways between the Contaminant in soil and offsite residents are limited to approved (though not current) use of one residential property

10. CONCLUSIONS AND RECOMMENDATIONS

The objectives of this DSI Addendum were to investigate data gaps identified in the DSI as follows:

- Further investigate the extent of offsite contaminant migration via surface water from three culverts which direct surface water beneath the rail formation onsite
- Further assess contaminants within the footprint of the former Loadout Complex
- Characterise contaminated material to be generated onsite during remediation
- To assess concentrations of contaminants of potential concern associated with rail corridors that had not previously been considered; organochlorine / organophosphate pesticides (OCPs/OPPs) and polychlorinated biphenyls (PCBs).

Key findings were:

- Risks to human health from offsite migration of contaminants in surface water are considered to be low and acceptable
- Risks to ecology from offsite migration of contaminants in surface water appear limited to
 the offsite dam downstream of the northern culvert. Concentrations of lead, copper and zinc
 observed in the Mulwaree River are consistent with background concentrations and do not
 indicate impacts from the site
- Potential risks to human health from offsite migration of contaminants in sediment around the Boyd Street causeway and the area adjacent/downstream of Braidwood Road have been identified however an additional contaminant source appears to have contributed to impacts downstream of Braidwood Road.
- Potential risks to ecology from offsite migration of contaminants in sediment have been identified downstream of the southern, middle and northern rail culverts.
- Lead concentrations in soils at depth around the footprint of the former Loadout Complex exceed human health and ecological criteria however are unlikely to present a risk due to positioning beneath clay capping
- Risks associated with OCP, OPP and PCB at and originating from the site are considered to be low and acceptable.

Recommendations include:

- Site specific human health risk assessment of lead in sediment around the Boyd Street Causeway and in the drainage swale adjacent/downstream of Braidwood Road should be undertaken to assess the requirement for remediation
- Site specific ecological risk assessment of copper, zinc and to a lesser extent lead in sediment downstream of the site be undertaken to assess risks and the need for remediation
- Monitoring of surface water and sediment should continue on a quarterly basis and preferably after rainfall. This should include analysis for both total and dissolved metals in order to accurately assess potential human health and ecological risks.

11. LIMITATIONS

Ramboll Australia Pty Ltd (Ramboll) prepared this report in accordance with its engagement with John Holland Rail and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment.

Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

11.1 User Reliance

This report has been prepared exclusively for John Holland Rail and may not be relied upon by any other person or entity without Ramboll's express written permission.

12. REFERENCES

ANZECC. (2000). Australia and New Zealand Environment and Conservation Council, Guidelines for Fresh and Marine Water Quality.

ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

BOM. (2018). Australian Groundwater Explorer.

DEC. (2007). Department of Environment and Conservation NSW, Guidelines for the Assessment and Management of Groundwater Contamination.

DECCW. (2010). UPSS Regulation - Sensitive Zones Map.

Department of Environment and Heritage Protection. (2012). *Guidelines for Contaminated Land Professionals*.

Friebel, E. &. (2011). Health Screening Levels for petroleum hydrocarbons in soil and groundwater. CRC Care Technical Report no.10. Adelaide, Australia: CRC for Contamination Assessment and Remediation of the Environment.

JBS&G. (2017). Stage 2 Remedial Action Plan, Former Newcastle Gasworks Chatham Road, Hamilton North, NSW.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1). NEPC.

NEPC. (2013). National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.

NHMRC. (2008). National Health and Medical Research Council Guidelines for Managing Risk in Recreational Waters.

NHMRC. (2008). *National Health and Medical Research Council Guidelines for Managing Risks in Recreational Waters.*

NHMRC. (2018). National Health and Medical Research Council, Australian Drinking Water Guidelines.

NSW EPA. (1995). Sampling Design Guidelines.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste.

NSW EPA. (2017). Guidelines for the Site Auditor Scheme (3rd Edition).

OEH. (2011). Guidelines for Consultants Reporting on Contaminated Sites.

OEH. (2011). Office of Environment and Heritage, Contaminated Sites: Guidelines for Consultants reporting on Contaminated Sites.

WHO. (2008). World Health Organisation (WHO) Guidelines for Drinking-water Quality, third edition.

NIWA Taihoro Nukurangi (2013) Updating nitrate toxicity effects on freshwater species, prepared for Ministry of Building, Innovation and Employement: Funded by Envirolink

Ramboll (2019a) Tarago Loop Extension Further Intrusive Assessment and Lead Management Plan

Ramboll (2019b) Tarago Loop Extension Short Term Lead Management Plan

Ramboll (2019c) Tarago Loop Extension Preliminary Human Health Risk Assessment

Ramboll (2019d) August 2019 Surface Water Monitoring – Tarago Rail Loop Expansion

Ramboll (2019e) September 2019 Surface Water Monitoring – Tarago Rail Loop Expansion

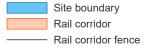
Ramboll (2019f) Tarago Loop Extension Remedial Action Plan

Ramboll (2019g) Tarago Loop Extension Interim Lead Management Plan

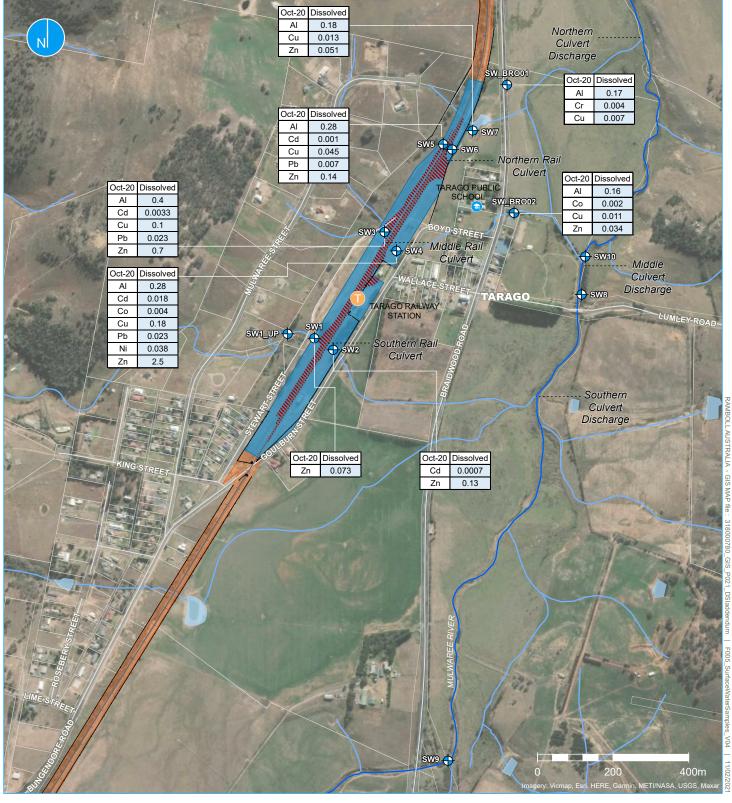
Ramboll (2019h) Tarago Rail Corridor Environmental Site Assessment

Ramboll (2020) Tarago Rail Corridor and Tarago Area Detailed Site Investigation Revision 3

Ramboll (2020a) Tarago Rail Corridor Lead Contamination – Assessment of Public Spaces by Field Portable XRF


US EPA (1989) Risk Assessment Guidance for Superfund Volume 1, Human Health Evaluation Manual (Part A)

US EPA (2007) Field Portable X-Ray Fluoresence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment


APPENDIX 1 FIGURES

•

Surface water sampling location

Rail corridor

Rail corridor fence

Area of lead exceedance (within rail corridor)

Indicative surface water flow path (ie: not ephemeral) Indicative ephemeral surface water flow path

Surface water sample criteria

Contaminant	95% Protection (ANZG 2018)
Al	>0.055 mg/L
Cd	>0.00054 mg/L
Cr	>0.0025 mg/L
Co	>0.0014 mg/L
Cu	>0.0035 mg/L
Pb	>0.0136 mg/L
Ni	>0.0275 mg/L
Zn	>0.02 mg/L

Note: Hardness correction factor applied to the threshold value of Cd, Cr, Cu, Pb, Ni, Zn.

A4 1:10,000

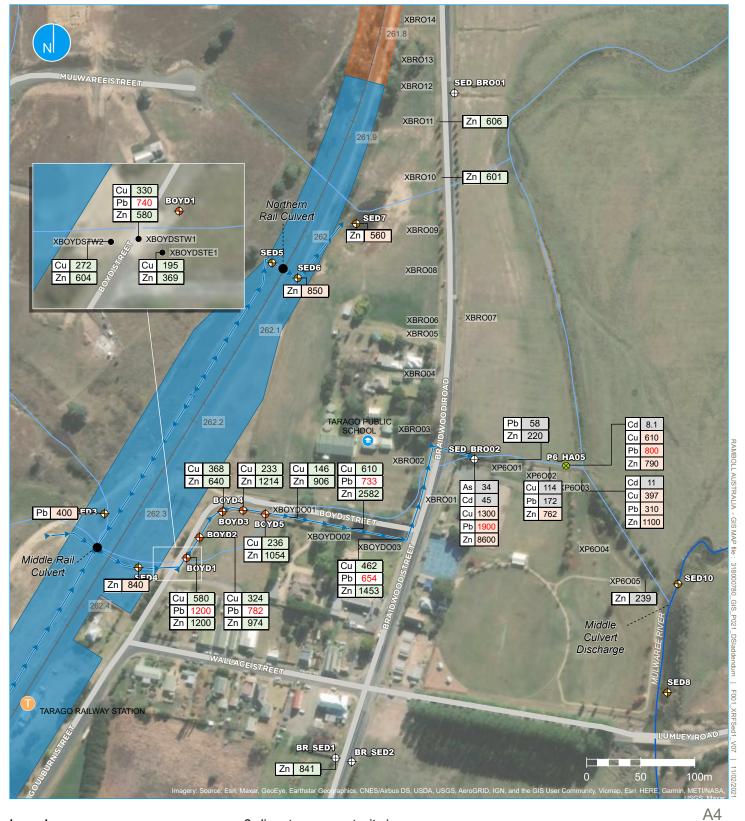
Site boundary/rail corridor

Hauling route

Indicative drainage line
Indicative surface water flow path
(ie: not ephemeral)
Indicative ephemeral surface
water flow path

Sediment sample

Sediment assessment criteria


Contaminant	Sediment DGV	Sediment GV-High
Cu	>65 mg/kg	>270 mg/kg
Pb	>50 mg/kg	>220 mg/kg
Zn	>200 mg/kg	>410 mg/kg

Soil assessment criteria

Contaminant	(NEPM 2013)	Site Specific EIL
Cu	>17,000 mg/kg	>125 mg/kg
Pb	>600 mg/kg	>1,100 mg/kg
Zn	>30,000 mg/kg	>308 mg/kg

Site boundary/rail corridor
Indicative drainage line
Indicative surface water flow path
(ie: not ephemeral)
Indicative ephemeral surface

- Sediment sample
- Hand auger sample

water flow path

- Soil sample
- XRF sample

Sediment assessment criteria

Contaminant	Sediment DGV	Sediment GV-High
As	>20 mg/kg	>70 mg/kg
Cd	>1.5 mg/kg	>10 mg/kg
Cu	>65 mg/kg	>270 mg/kg
Pb	>50 mg/kg	>220 mg/kg
Zn	>200 mg/kg	>410 mg/kg

Soil assessment criteria

Contaminant	HIL C (NEPM 2013)	Site Specific EIL
Cu	>17,000 mg/kg	>125 mg/kg
Pb	>600 mg/kg	>1,100 mg/kg
Zn	>30,000 mg/kg	>308 mg/kg

1:3,500

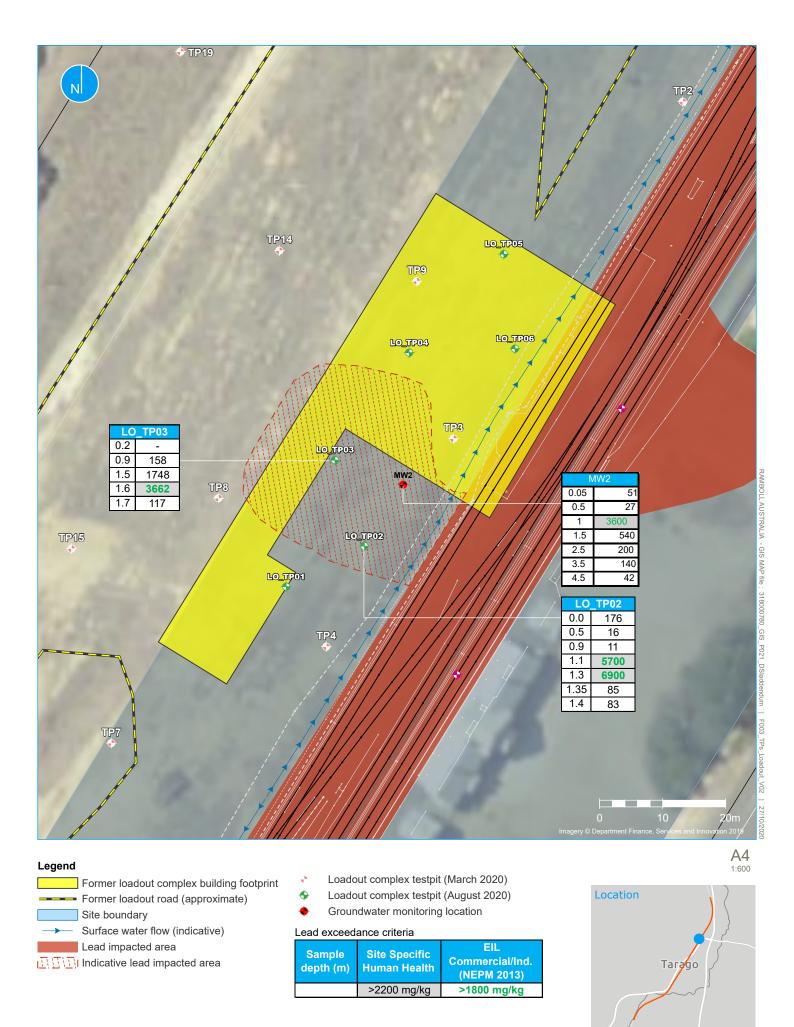
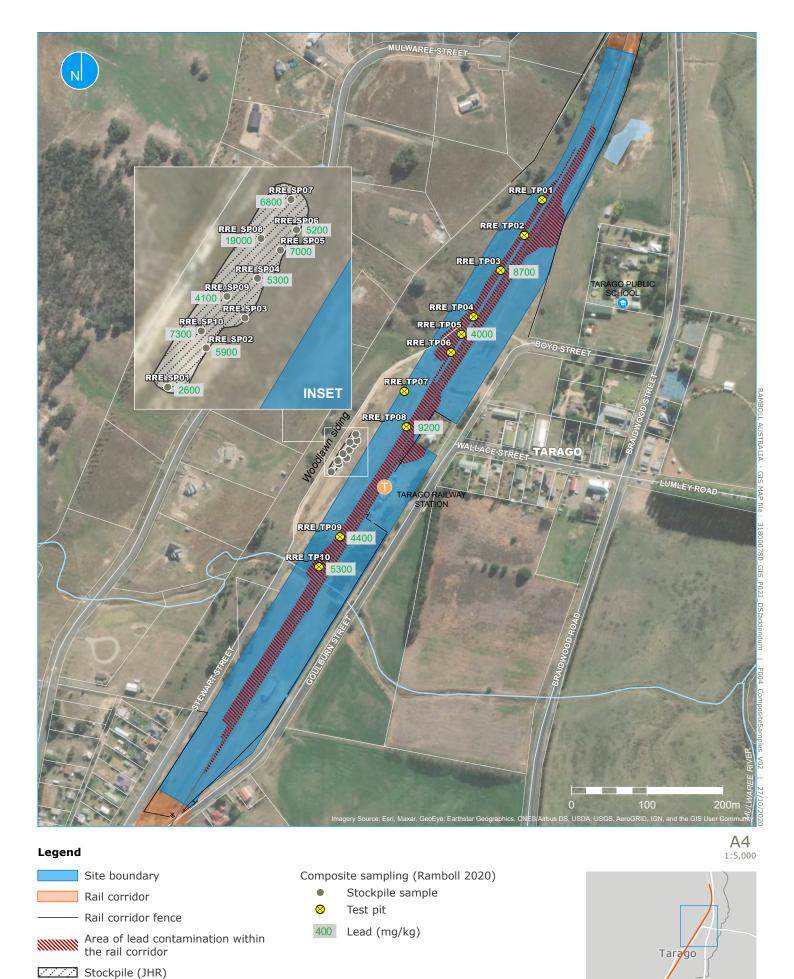



Figure 4 | Loadout complex sampling locations

Location

Figure 5 | Charaterisation of Remediation Spoil

APPENDIX 2 SAQPS

Intended for

John Holland Rail Pty Ltd

Document type

Plan

Date

August 2020

Project Number

Sampling Analysis and Quality Plan (SAQP) - Surface Water Monitoring

SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) – SURFACE WATER MONITORING TARAGO LEAD MANAGEMENT

TARAGO LEAD MANAGEMENT SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) – SURFACE WATER MONITORING

Project name Tarago Lead Management

Project no. **318000780-T24-01**Recipient **John Holland Rail Pty Ltd**

Document type Plan Version 0

Date 6/08/2020

Prepared by Stephen Cadman/Jordyn Kirsch

Checked by Stephen Maxwell Approved by Fiona Robinson

Description This document comprises the Sampling Analysis and Quality Plan

(SAQP) for surface water monitoring associated with

management of lead contamination from the Tarago rail corridor.

Ramboll

Level 2, Suite 18 Eastpoint

50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

This document is issued in confidence to John Holland Rail Pty Ltd for the purposes of providing a Sampling Analysis and Quality Plan for surface water monitoring at Tarago NSW, and subject to NSW EPA Accredited Site Auditor review. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© Ramboll Australia Pty Ltd

CONTENTS

1.	INTRODUCTION	1			
1.1	Preamble	1			
1.2	Background	1			
1.3	Regulation	1			
1.4	Objective	1			
2.	SITE IDENTIFICATION	2			
3.	REGULATORY REQUIREMENTS	3			
4.	SUMMARY OF CONCEPTUAL SITE MODEL	4			
5.	SITE ACCEPTANCE CRITERIA	5			
6.	DATA QUALITY OBJECTIVES	7			
6.1	Step 1: State the problem	7			
6.1.1	Contaminants of Concern	7			
6.2	Step 2: Identify the decisions / goal of the study	7			
6.3	Step 3: Identify the information inputs	8			
6.4	Step 4: Definition of the Study Boundary	8			
6.5	Step 5: Develop the decision rules or analytical approach	8			
6.6	Step 6: Specify the performance or acceptance criteria	9			
6.6.1	The tolerable limits on decision errors are as follows:	9			
6.6.2	Evaluation of Analytical Data	9			
6.7	Step 7: Develop a plan for obtaining data	11			
7.	SAMPLING PLAN	12			
7.1.1	Surface Water Sampling Locations	12			
7.1.2	Water Quality Monitoring Performance Criteria	12			
8.	REPORTING	14			
8.1	Surface Water Monitoring Report	14			
9.	REFERENCES	15			
LIST OF	TABLES				
Table 2-1:	Site Identification	2			
Table 4-1	Conceptual Site Model Summary	4			
Table 5-1:	Surface Water Investigation Levels (µg/L)	5			
	Sediment Assessment Criteria – Ecological Investiga				
Criteria (mg/kg)6					
Table 7-1 Surface Water Sampling Locations 12					
Table 7-2 Surface Performance Criteria					

APPENDICES

Appendix 1

Figures

1. INTRODUCTION

1.1 Preamble

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfN) to complete periodic surface water monitoring upstream and downstream of contamination within the Goulburn – Bombala rail corridor at Tarago, New South Wales, Australia.

1.2 Background

The site is identified as part Lot 22 Deposited Plan (DP) 1202608 and is located in Tarago, NSW. The site occupies an area of approximately three hectares and is located approximately 32 km south of Goulburn.

The Woodlawn Mines Ore Concentrate Load-Out Complex operated within the Goulburn – Bombala rail corridor at Tarago from the 1970s – 1990s. Concentrates were produced at the Woodlawn Mine approximately 6.5 km west and included a zinc concentrate consisting mainly of sphalerite (zinc sulphide), a lead concentrate of galena (lead sulphide) and copper concentrates of chalcopyrite (copper iron sulphide).

An extensive body of work has been completed to characterise contaminant impacts associated with historic operation of the site. This work has included assessment of soil, groundwater and surface water across the site and assessment of soil, groundwater, surface water and airborne dust within the surrounding area. Recent assessments identified contaminants within approximately 900 lineal meters of the rail formation at Tarago. This area is herein referred to as the 'site' and is presented on **Figure 1**, **Appendix 1**.

Offsite contaminant migration in surface water appears limited to three culverts which pass beneath the rail formation onsite. Contaminants of potential concern (CoPC) relevant to receiving surface waters appear limited to metals (aluminium, cadmium, copper, lead, nickel, zinc) which exceed the adopted relevant health and/or ecological assessment criteria.

1.3 Regulation

On 25 March 2020 the NSW Environment Protection Authority (NSW EPA) declared the site as significantly contaminated under Section 11 of the Contaminated Land Management Act 1997 (Declaration Number 20201103). Transport for NSW is currently managing the contamination under a Voluntary Management Proposal (VMP) which includes further assessment of site contamination and remediation to address the potential risks to human health and the environment posed by the contamination.

1.4 Objective

The objective of the surface water monitoring is to collect reliable water quality data, providing a data continuum which forms a basis for assessment of impacts from the site on surrounding surface water receptors.

2. SITE IDENTIFICATION

The site locality is shown in **Figure 1**, Error! Reference source not found..

The site details are presented in **Table 2-1.**

Table 2-1: Site Identification

Information	Description
Street Address:	Accessed from Stewart Street and Goulburn Street Tarago NSW
Identifier:	Part Lot 1 DP 595856
Site Area:	Approximately 7.5 ha
Local Government:	Goulburn Mulwaree Shire
Owner:	Transport for NSW
Current Site Use:	Forms part of the Goulburn to Bombala rail line and the Country Regional rail Network (CRN)

3. REGULATORY REQUIREMENTS

This SAQP has been prepared in general accordance with the following guidance documents:

- 1. Australia and New Zealand Environment and Conservation Council, *Guidelines for Fresh and Marine Water Quality* (ANZECC, 2018)
- 2. National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013)
- 3. NSW EPA, Contaminated Sites: *Guidelines for Consultants Reporting on Contaminated Lands* (NSW EPA 2020)
- 4. NSW EPA, Guidelines for the Site Auditor Scheme (3rd Edition) (NSW EPA, 2017)

4. SUMMARY OF CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) was prepared as part of a Detailed Site Investigation prepared by Ramboll (2020). The CSM provides a summary of the source-pathway-receptor linkages for surface water and sediment and is summarised in **Table 4-1**.

Table 4-1 Conceptual Site Model Summary

Exposure Pathway	Onsite Workers	Onsite Ecology	Residents	Community Activities	Offsite Workers	Offsite Ecology	Irrigation and Livestock
Surface Water							
Direct contact	N	Р	N	N	N	Р	Р
Incidental ingestion	N	Р	N	N	N	Р	Р
Root uptake	N/A	Р	N/A	N/A	N/A	Р	N/A
Migration to groundwater	N	Р	N	N	N	Р	Р
Sediment							
Direct Contact	P	Р	P¹	N	P	Р	Р
Inhalation	P	P	P¹	N	P	Р	Р
Incidental Ingestion	P	Р	pı	N	P	Р	Р
Root Uptake	N/A	P	N/A	N/A	N/A	N/A	N/A

¹Potentially complete exposure pathways between the Contaminant in soil and offsite residents are limited to approved (though not current) use of one residential property.

5. SITE ACCEPTANCE CRITERIA

The assessment criteria proposed for surface water was sourced from the following references:

- 1. National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013)
- National Health and Medical Research Council (NHMRC) (2001) National Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version 3.5 updated August 2018, (ADWG 2011)
- 3. National Health and Medical Research Council (NHMRC), National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water (NHMRC, 2008).
- 4. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) (available at www.waterquality.gov.au/anz-guidelines).
- 5. Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian
- 6. New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000)

Based on the review of potential beneficial uses of surface water, the criteria for protection of aquatic ecosystems and recreational use will be adopted. The adopted criteria are presented in **Table 5-1**. Dissolved metals will be assessed against ecological criteria (95% Freshwater (ANZG 2018)) while total metals will be assessed against all other criteria.

Table 5-1: Surface Water Investigation Levels (μg/L)

Contaminant	95% Freshwater (ANZG 2018)	Recreational ^g	Irrigation Short-term Trigger Value (ANZECC 2000)	Stock Water (ANZECC 2000)
Heavy Metals				
Aluminium	55ª	-	20,000	5,000
Arsenic	24 ^b	100	2,000	500-5,000
Barium	-	20	-	-
Beryllium	-	6	500	-
Cadmium	0.2	20	50	10
Chromium	1.0°	500	1,000	1,000
Cobalt	1.4	-	100	1,000
Copper	1.4	20,000	5,000	400-5,000
Iron	-	-	10,000	not sufficiently toxic
Lead	3.4	100	5,000	100
Manganese	1,900	5000	10,000	not sufficiently toxic
Mercury	0.06 ^{d, e}	10	2	2
Nickel	11	200	2,000	1,000
Zinc	8	-	5,000	20,000
Inorganics				
Ammonia (as N)	900	-	-	-
Nitrate	-	500,000	-	-
Nitrite	-	-	-	-
Total nitrogen	-	-	25,000-125,000	-

Total phosphate (as P)	-	-	800-12,000	-
BTEXN				
Benzene	950	10	-	-
Toluene	180	8000	-	-
Ethylbenzene	80	3000	-	-
Total xylenes	75 ^f	6000	-	-
Naphthalene	16	-	-	-

blank cell denoted with - indicates no criterion available.

The criteria proposed for the assessment of sediment contamination are sourced from the default guideline values in ANZG (2018). The adopted assessment criteria for sediment are summarised in **Table 5-2**.

Table 5-2: Sediment Assessment Criteria – Ecological Investigation Criteria (mg/kg)

Contaminant	Sediment DGV	GV-High
Aluminium	-	-
Arsenic	20	70
Barium	-	-
Beryllium	-	-
Cadmium	1.5	10
Chromium	80	370
Cobalt	-	-
Copper	65	270
Iron	-	-
Lead	50	220
Manganese	-	-
Mercury	0.15	1.0
Nickel	21	52
Zinc	200	410

The DGV was derived using a ranking of both observed field and laboratory ecotoxicity-effects and represents the 10th percentiles of that data distribution.

GV-high represents the median of that data distribution to provide an upper guideline value. Effects on sediment biota are rarely seen for concentrations below the DGV, while effects are more frequently evident above the GV-high value.

^a Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

^b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Guideline value for m-xylene. Guideline values also exist for both o-xylene and p-xylene as per ANZG (2018). The default quideline value for m-xylene quideline has been adopted as it is the most conservative.

⁹ Recreational investigation values calculated by multiplying drinking water guidelines (ADWG 2018) by 10 as recommended in NHMRC (2008) Guidelines for Managing Risks in Recreational Water

6. DATA QUALITY OBJECTIVES

To achieve the objectives and purpose of the surface water monitoring program, both the field and laboratory programs must result in data that is representative of the conditions at the site. As such, specific Data Quality Objectives (DQOs) have been developed for the tasks to be completed to validate the remediation of the site. The DQO process is a systematic, seven step process that defines the criteria that the validation sampling should satisfy in accordance with the *Guidelines for the NSW Site Auditor Scheme (3rd Edition)* (NSW EPA 2017).

The seven step DQOs process comprises:

- 1. Step 1: State the problem;
- 2. Step 2: Identify the decisions/ goal of the study;
- 3. Step 3: Identify the information inputs;
- 4. Step 4: Define the boundaries of the study;
- 5. Step 5: Develop the decision rules or analytical approach;
- 6. Step 6: Specify the performance or acceptance criteria;
- 7. Step 7: Develop the plan for obtaining data.

The seven step DQO process has been completed for surface water monitoring to be completed before, during and after site remediation.

6.1 Step 1: State the problem

Due to historic loadout of ore concentrate surface water flow over ore impacted soils has been identified to result in migration of total and dissolved metal concentrations from the site. Elevated concentrations can impact on surface water and sediments off site. Remediation of the site is proposed however the extent of remediation required for impacted sediments is not known. The site has been declared significantly contaminated land by the NSW EPA and a VMP has been prepared to describe how associated risks to human health and the environment will be managed.

Concurrently, Ramboll has worked under engagement to JHR to assess risks associated with site contamination and provide management advice to mitigate associated risks.

6.1.1 Contaminants of Concern

Contaminant of Concern relevant to receiving surface waters appear limited to metals (aluminium, cadmium, copper, lead, nickel, zinc) which exceed the adopted relevant health and/or ecological assessment criteria.

Historical observations are summarised on **Figure 1**, **Appendix 1** and show lead concentrations in surface water above the freshwater ecosystems criteria and above the stock watering criteria, with the higher lead concentrations reported in SW3, SW4 and SW1 located within the area of known lead impact in the rail corridor. Upstream samples, SW1_UP and SW9, and SW8 located downstream of the Mulwaree River tributary did not report lead concentrations above the laboratory limit of reporting. Lead concentrations in sediment followed a similar distribution to the surface water samples, with the highest lead concentrations reported in SED1, SED2 and SED4 above the GV-high criterion. Other heavy metals were variably reported above the adopted criteria for surface waters and sediments, with the highest concentrations generally reported in sample locations within the area of known lead impact (SW1, SW3 and SW4).

6.2 Step 2: Identify the decisions / goal of the study

The goal of the study is to assess the migration of metal(loid) contamination from the site in surface waters and the impact of migration to surface waters and sediments off site.

Based on the decision-making process for assessing urban redevelopment sites, detailed in the *NSW Site Auditor Guidelines, 3rd Edition 2017*, the following decisions must be made with respect to the targeted validation goals:

- 1. Is the data collected of sufficient quality to meet the project objectives?
- 2. Is the data reliable?
- 3. What is the fate and transport of contaminant offsite?
- 4. What are the potential risks to human health and the environment?

6.3 Step 3: Identify the information inputs

Inputs to the decisions will be sourced from:

- 1. Review of historical surface water monitoring and sediment results
- 2. Physico-chemical properties collected for each of the 10 surface water sampling locations
- 3. Sampling of surface water and analysis for contaminants of concern
- 4. Analytical results for metal(loid)s for each of the 10 sampling locations (surface water and colocated sediment)
- 5. Quality Assurance / Quality Control data review
- 6. Comparison of the above samples to the site acceptance criteria outlined in **Section 5**.
- 7. All sample analyses conducted using National Association of Testing Authorities (NATA) registered methods in accordance with ANZECC (1996) and NEPC (1999) guidelines
- 8. All samples appropriately preserved and handled in accordance with the sampling methodology
- 9. PQLs less that the adopted assessment criteria

6.4 Step 4: Definition of the Study Boundary

The spatial boundaries are shown on **Figure 1** and include:

- 1. Three tributaries of the Mulwaree River, one located approximately 100 m west of the rail corridor at CH. 262.600, one adjacent to a culvert on the western side of the rail line at CH 262.600 and one adjacent a culvert on the eastern side of the rail line at CH 262.600.
- 2. Four locations adjacent to culverts, one western side of the rail line at CH 262.300, one on the eastern side of the rail line at CH 262.300, one on the western side of the rail line at CH 262.000 and one on the eastern side of the rail line at CH 262.000.
- 3. The dam located downgradient from the site northern rail culvert forming part Lot A DP 440822, and two locations along the Mulwaree River

The vertical boundaries are limited to surface waters and co-located sediment.

The temporal boundary includes historical surface water and sediment results as well as data collected under this SAQP comprising quarterly monitoring events over pre-remediation, remediation and post-remediation periods. Two post remediation surface water monitoring events will be included in the validation report.

Sediment sampling will be completed on one occasion.

6.5 Step 5: Develop the decision rules or analytical approach

The decisions rules for this investigation are as follows:

1. Has contaminant migration via surface water been adequately assessed?

- 2. Have contaminant impacts to surface water and sediment off site been adequately assessed?
- 3. Is the data reliable?
- 4. Does the data define clear presence / absence of unacceptable risk when assessed against Tier 1 criteria?
- 5. If Tier 1 assessment of risk is not clear, then does Tier 2 / Tier 3 risk assessment define absence of unacceptable risk?
- 6. Are there any remaining data gaps?

6.6 Step 6: Specify the performance or acceptance criteria

- 6.6.1 The tolerable limits on decision errors are as follows:
 - 1. Probability that 95% of data will satisfy the DQIs, therefore a limit on decision error will be 5% that a conclusive statement may be incorrect:
 - 1.1. A 5% probability of a false negative (i.e. assessing that the average concentration of contaminants of concern are less than the assessment criteria when they are not); and
 - 1.2. A 5% probability of a false positive (i.e. assessing that the average concentration of contaminants of concern are more than the assessment criteria when they are not).

The potential for significant errors will be minimised by:

- 1. Completion of QA/QC measures of the investigation data to assess if the data satisfies the DQIs.
- 2. Assessment of whether appropriate sampling and analytical densities were completed for the purposes of the investigation.
- 3. Ensuring that the criteria set for the investigation were appropriate for the land use.

DQIs have been established to set acceptance limits on field and laboratory data collected as part of the investigation and are discussed further below.

6.6.2 Evaluation of Analytical Data

Acceptable limits and the manner of addressing possible decision errors for laboratory analysis associated with water quality monitoring and verification of imported materials are outlined below.

Accuracy: Accuracy is defined as the nearness of a result to the true value, where all random errors have been statistically removed. Internal accuracy is measured using percent recovery '%R' and external accuracy is measured using the Relative Percent Difference '%RPD'.

Internal accuracy will be tested utilising:

Surrogates

Matrix spikes

	field and QA/QC samples at the beginning of the sample extraction process in the laboratory, where applicable. Surrogates are closely related to the organic target analytes being measured, are to be spiked at similar concentrations, and are not normally found in the natural environment;
Laboratory control samples	An externally prepared and supplied reference material containing representative analytes under investigation. These will be undertaken at a frequency of one per analytical batch.

of contaminant and then tested to determine the potential for adsorption onto the matrix. These will be undertaken at a frequency of 5%.

Field samples which are injected with a known concentration

Surrogates are QC monitoring spikes, which are added to all

Recovery data shall be categorised into one of the following control limits:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

External accuracy will be determined by the submission of inter-laboratory duplicates at a frequency of 5%. Data will be analysed in accordance with the following control limits:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random errors. Precision is measured using the standard deviation 'SD' or Relative Percent Difference '%RPD'.

Internal precision will be determined by the undertaking of laboratory duplicates, where two sub samples from a submitted sample are analysed. These will be undertaken at a frequency of 10%. A RPD analysis is calculated and results compared to:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

External precision will be determined by the submission of intra-laboratory duplicates at a frequency of 5%. The external duplicate samples are to be obtained by mixing and then splitting the primary sample to create two identical sub samples. Field duplicate samples are to be labelled with a unique identification that does not reveal the association between the primary and duplicate samples e.g., QA1.

It must be noted that significant variation in duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity or concentrations reported near the Practical Quantification Limit (PQL).

A RPD analysis is calculated and results compared to:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

Blank samples will be submitted with the analytical samples and analysed for the contaminants of concern One field blank will be collected and analysed per matrix type for each batch samples/each day.

The laboratory will additionally undertake a method blank with each analytical batch of samples. Laboratory method blank analyses are to be below the PQLs. Results shall be examined, and any positive results shall be examined. Positive blank results may not be subtracted from sample results.

Positive results may be acceptable if sample analyte concentrations are significantly greater than the amount reported in the blank (ten times for laboratory reagents such as methylene chloride, chloroform, and acetone etc., and five times for all other analytes). Alternatively, the laboratory PQL may be raised to accommodate blank anomalies provided that regulatory guidelines are not compromised by any adjustment made to the PQL.

Completeness: The completeness of the data set shall be judged as:

- 1. The percentage of data retrieved from the field compared to the proposed scope of works. The acceptance criterion is 95%.
- 2. The percentage of data regarded as acceptable based on the above data quality objectives. 95% of the retrieved data must be reliable.
- 3. The reliability of data based on cumulative sub-standard performance of data quality objectives.
- 4. All PQLs are below adopted assessment criteria.

Where two or more data quality objectives indicate less reliability than what the acceptance criteria dictates, the data will be considered with uncertainty.

Representativeness: Sufficient samples must have been collected.

Samples must be collected and preserved in accordance with the sampling methodology proposed in Step 7 to ensure that the sample is representative of the assessed stratum.

Comparability: The data must show little to no inconsistencies with results and field observations and include likely associates e.g. TPH C6-C9 and BTEX.

Decision Error Protocol

If the data received is not in accordance with the defined acceptable limits outlined in Step 6, it may be considered to be an estimate or be rejected. Determination of whether this data may be used or if re-sampling is required will be based on the following considerations:

- 1. Closeness of the result to the guideline concentrations.
- 2. Specific contaminant of concern (e.g. response to carcinogens may be more conservative).
- 3. The area of site and the potential lateral and vertical extent of questionable information.
- 5. Whether the uncertainty can be effectively incorporated into site management controls.

6.7 Step 7: Develop a plan for obtaining data

The overall design of the sampling plan considers migration of surface water and sediment from the site. Further detail is provided in **Section 7**.

7. SAMPLING PLAN

The sampling plan for surface water quality will be based on quarterly monitoring events over pre-remediation, remediation and post-remediation periods. Two post remediation surface water monitoring events will be included in the validation report.

Sediment sampling at co-located surface water locations will be completed on one occasion.

Surface water sampling will target conditions upstream and downstream of three culverts which direct surface water beneath the rail formation onsite. Surface water at the site only occurs after rainfall and is received to the surrounding environment as follows:

- 1. Water passing through the northern culvert discharges to an adjacent agricultural property and during high rainfall events to a dam on the agricultural property.
- 2. Water passing through the middle culvert discharges across a causeway on Boyd Street to an adjacent vacant block.
- 3. Water passing through the southern culvert discharges beneath Goulburn Street to agricultural land in a tributary to the Mulwaree River (approximately 550m east of site)

Co-located surface water and sediment samples will be collected upstream and downstream of each culvert and in receiving water bodies as shown on **Figure 1**.

Surface water samples will be analysed for total and dissolved metals (Al, As, Ba, Be, Cd, Cr 3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn). Sediment samples will be co-located with surface water monitoring locations and be analysed for total metals only (Al, As, Ba, Be, Cd, Cr 3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn).

7.1.1 Surface Water Sampling Locations

The co-located surface water and sediment sampling locations are shown on **Figure 1**, **Appendix 1** and are summarised in **Table 7-1**.

Table 7-1 Surface Water Sampling Locations

Sample Designation Surface Water / Sediment	Location								
SW1 - UP / SED1	Intended as an up-gradient sample, located on a western tributary of the Mulwaree River, approximately 100 m west of the rail corridor at CH. 262.600.								
SW1 / SED1	Adjacent to a culvert on the western side of the rail line at CH 262.600 on tributary of Mulwaree River.								
SW2 / SED2	Adjacent to a culvert on the eastern side of the rail line at CH 262.600 on tributary of Mulwaree River.								
SW3 / SED3	Adjacent to a culvert on the western side of the rail line at CH 262.300.								
SW4 / SED4	Adjacent to a culvert on the eastern side of the rail line at CH 262.300.								
SW5 / SED5	Adjacent to a culvert on the western side of the rail line at CH 262.000.								
SW6 / SED6	Adjacent to a culvert on the eastern side of the rail line at CH 262.000.								
SW7 / SED7	A dam located downgradient from the site northern rail culvert forming part Lot A DP 440822								
SW8 / SED8	Mulwaree River adjacent Lumley Road								
SW9 / SED9	Mulwaree River off Braidwood Road								

7.1.2 Water Quality Monitoring Performance Criteria

Surface water sampling will be completed in accordance with performance criteria defined in **Table 7-2**.

Table 7-2 Performance Criteria

Category	Validation Criteria							
Accuracy: Accuracy in the collection of field data will be	1. Calibrated measurement equipment used. The water quality meter will be calibrated by the technical rental company prior to use.							
controlled by:	 Appropriate sampling methodologies utilised and complied with. Works to be completed with regard for AS NZS 5667.6-1998 Water quality - Sampling - Guidance on sampling of rivers and streams. 							
	 Collection of one intra-laboratory duplicate for surface water and one intra- laboratory duplicate for sediment. 							
	4. Rinsate samples are not proposed to be collected due to surface water samples being collected directly into dedicated sampling containers (or field filtered using single use syringes and filters) using disposable nitrile gloves. Sediment samples will be collected using plastic tubing (bailers) cut down to act as disposable sediment core samplers.							
Precision: The degree to which	1. A new pair of disposable nitrile gloves to handle each sample.							
data generated from replicate or repetitive measurements differ from one another due to random	Samples will be placed immediately into laboratory supplied and appropriately preserved sampling vessels.							
errors. Precision of field data will be maintained by:	 Samples will be stored in chilled, insulated containers with ice for transportation to the laboratory. 							
· ·	 Sample numbers, preservation and analytical requirements will be recorded on chain of custody documents. 							
	5. Samples will be transported to the laboratory under chain of custody conditions.							
Completeness: The completeness of the data set shall be judged by:	1. All locations sampled as outlined in Sections 7.1.1 and Figure 1 , Appendix 1 .							
	Sampling completed by experienced personnel.							
	3. Field documentation completed correctly.							
Representativeness: The representativeness of the field data will be judged by:	 Non-disposable sampling equipment, such as the grab sampler and water quality meter, will be thoroughly decontaminated between locations using Decon 90 solution and deionised rinsate water. 							
	At each location, a pair of disposable nitrile gloves will be worn while sampling and handling the sample; gloves will be replaced between each successive sample.							
	3. Surface water analytical samples will be collected directly into the sampling vessels using an extendable pole sampler where appropriate.							
Comparability: Comparability to	Use of the same appropriate sampling methodologies.							
existing field data will be maintained by:	2. Same sampling depths for surface water (where practical).							
mantained by.	3. Field water quality parameters will be obtained using a calibrated water quality meter and recorded on a field sheet, comprising pH, temperature, total dissolved solids (TDS), dissolved oxygen (DO), redox potential and electrical conductivity (EC).							
	4. Samples for dissolved metal analysis will collected in dedicated disposable 50 mL plastic syringes and field filtered through 0.45 μ m filters directly into a sample bottle containing acid preservative.							
	5. Visual and olfactory observations will also be recorded on the field sheet.							
	6. Photographs will be taken of sampling location conditions at the time of sampling.							

8. REPORTING

8.1 Surface Water Monitoring Report

Following the cessation of surface water sampling, a report will be prepared documenting the completed sampling, trend analysis, quality assurance / quality control and laboratory reports.

The report shall include the following:

- 1. Executive summary
- 2. Introduction
- 3. Objectives and scope of work
- 4. Summary of completed field sampling and laboratory analysis
- 5. QA/QC review
- 6. Mann-Kendall trend analysis
- 7. Conclusions

8.2 Sediment Reporting

Following sediment sampling a detailed site investigation report will be prepared in general accordance with the National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPC 2013) and Consultants reporting on contaminated sites - Contaminated Land Guidelines (NSW EPA 2020). The report will include:

- 1. Summary review of previous investigations, preliminary CSM and SAQP as presented here-in
- 2. Assessment of data against site specific human health and Tier 1 ecological criteria
- 3. Development of a revised CSM
- 4. Summary assessment of the degree and extent of remediation (if required)
- 5. Conclusions.

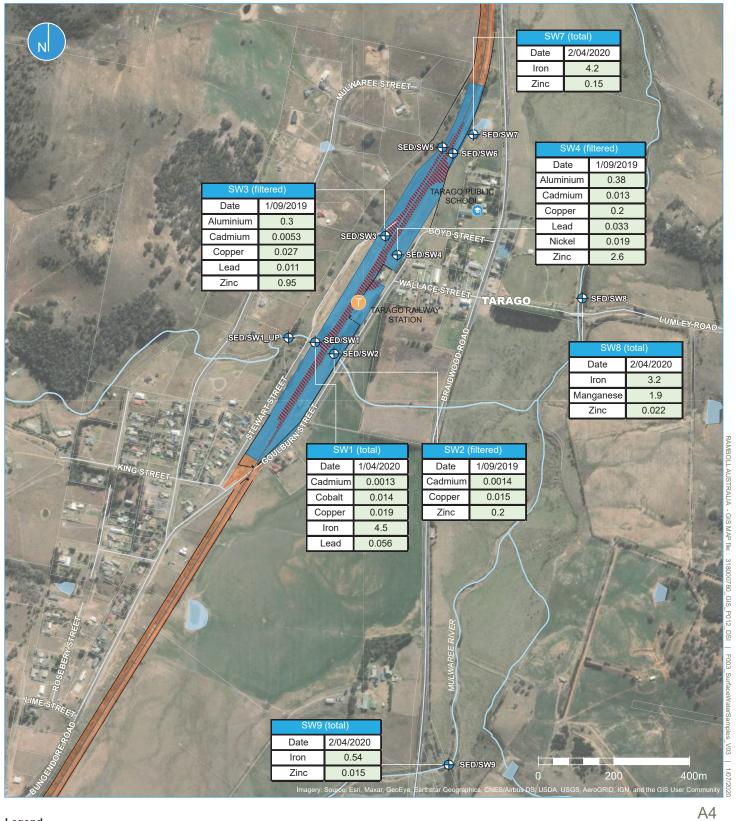
9. REFERENCES

Australian Government National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) (available at www.waterquality.gov.au/anz-guidelines)

Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) 2000 Australian New Zealand Guidelines for Fresh and Marine Water Quality

Department of Environment and Conservation (DEC) Guidelines for the Assessment and Management of Groundwater Contamination (DEC, 2007).


NEPM 2013. National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.

NSW EPA 1995. Sampling Design Guidelines.

NSW EPA 2017. Guidelines for the NSW Site Auditor Scheme (3rd Edition).

NSW OEH 2011. Guidelines for Consultants Reporting on Contaminated Sites.

APPENDIX 1 FIGURES

Surface water and sediment sampling locations (co-located)
Rail corridor

D ii ii f

Rail corridor fence

Area of lead exceedance (within rail corridor)

Exceedances (surface water)

Contaminant	> ANZG 2018							
(mg/L)	Freshwater							
	Ecosystems							
Aluminium	0.055							
Cadmium	0.0002							
Cobalt	0.09							
Copper	0.0014							
Iron	0.3							
Lead	0.0034							
Manganese	1.9							
Nickel	0.011							
Zinc	0.008							

Figure 1 | Surface water and sediment sampling locations

Intended for

John Holland Rail Pty Ltd

Document type

Plan

Date

August 2020

Project Number

Sampling Analysis and Quality Plan (SAQP) - Resource Recovery

SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) – RESOURCE RECOVERY TARAGO LEAD MANAGEMENT

TARAGO LEAD MANAGEMENT SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) - RESOURCE RECOVERY

Project name Tarago Lead Management

Project no. **318000780-T24-06**Recipient **John Holland Rail Pty Ltd**

Document type Plan Version 0

Date 06/08/2020
Prepared by Jordyn Kirsch

Checked by Annette Nolan/Stephen Maxwell

Approved by Fiona Robinson

Description This document presents a Sampling Analysis and Quality Plan for

waste characterisation of ore impacted material located within, and stockpiled adjacent to, the Goulburn – Bombala rail corridor at Tarago for the purpose of applying for a resource recovery

exemption.

Ramboll

Level 2, Suite 18 Eastpoint

50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

This document is issued in confidence to John Holland Rail Pty Ltd for the purposes of providing a Sampling Analysis and Quality Plan for waste characterisation of ore impacted material located within, and stockpiled adjacent to, the Goulburn – Bombala rail corridor at Tarago, and subject to NSW EPA Accredited Site Auditor review. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© Ramboll Australia Pty Ltd

CONTENTS

1.	INTRODUCTION	1
1.1	Preamble	1
1.2	Background	1
1.3	Regulation	1
1.4	Objective	1
2.	SITE DECRIPTION	2
3.	REGULATORY REQUIREMENTS	3
4.	PREVIOUS INVESTIGATIONS	4
5.	DATA QUALITY OBJECTIVES	6
5.1	Step 1: State the problem	6
5.2	Step 2: Identify the decisions/ goal of the study	6
5.3	Step 3: Identify the information inputs	6
5.4	Step 4: Definition of the Study Boundary	7
5.5	Step 5: Develop the decision rules or analytical approach	7
5.6	Step 6: Specify the performance or acceptance criteria	7
5.6.1	Evaluation of Analytical Data	8
5.7	Step 7: Develop a plan for obtaining data	9
6.	SAMPLING PLAN	10
6.1.1	Composite Sampling	10
6.1.2	Soil Sampling Criteria	11
6.1.3	Soil Sampling Methods	12
7.	REPORTING	13
8.	REFERENCES	14

LIST OF TABLES

Table 2-1: Identification	2
Table 6-1 Performance Criteria	. 11
Table 6-2: Laboratory Analytical Methods	. 12

APPENDICES

Appendix 1

Figures

1. INTRODUCTION

1.1 Preamble

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfN) to complete additional sampling of ore contaminated material located within, and stockpiled adjacent to, the Goulburn – Bombala rail corridor at Tarago, approximately 32 km south of Goulburn, New South Wales (NSW).

1.2 Background

The Woodlawn Mines Ore Concentrate Load-Out Complex (the Loadout Complex) operated within the Goulburn – Bombala rail corridor at Tarago from the 1970s – 1990s. Concentrates were produced at the Woodlawn Mine approximately 8 km west of site and included a zinc concentrate consisting mainly of sphalerite (zinc sulfide), a lead concentrate of galena (lead sulfide) and copper concentrates of chalcopyrite (copper iron sulfide).

The area of investigation comprises a 750 m^3 contaminated stockpile located north east of the Tarago Railway Station as shown on **Figure 1**, **Appendix 1**, as well as approximately 1000 lineal metres of ore impacted material located within the rail corridor, illustrated with red shading in **Figures 2a – 2e**, **Appendix 1**.

An extensive body of work has been completed to characterise contaminant impacts associated with historic operation of the Loadout Complex. Contaminants (mainly lead) have been identified within the rail formation at Tarago. Recent assessment has included soil, groundwater and surface water across the site and assessment of soil, groundwater, surface water and airborne dust within the surrounding area.

1.3 Regulation

On 25 March 2020, the NSW Environment Protection Authority (NSW EPA) declared the site as significantly contaminated under Section 11 of the Contaminated Land Management Act 1997 (Declaration Number 20201103). The declaration defines the substance of concern ("the Contaminant") in soil as lead described as follows:

- 1. lead concentrations in soil within the rail corridor (Lot 22 DP1202608) exceed national guideline values for the protection of human health and the environment
- 2. lead contamination has impacted adjacent land at 106 Goulburn Street, Tarago (Lot 1 DP816626), with soil found to contain lead at concentrations exceeding national guideline values for the protection of human health and the environment
- 3. there are complete exposure pathways to lead for occupants of 106 Goulburn Street, as well as potentially complete exposure pathways for persons working within the rail corridor and
- 4. there are potentially complete exposure pathways for onsite and offsite ecological receptors.

A voluntary management proposal (VMP) was prepared to define how the Contaminant and associated risks would be managed and this was approved by the NSW EPA on 28 May 2020.

1.4 Objective

The objective of this SAQP is to detail sampling proposed for characterisation of ore impacted materials within the rail corridor. Beneficial re-use of the ore impacted soils within the former Woodlawn Mine is being considered and detailed characterisation is required to support an application for resource recovery exemption to facilitate the re-use.

2. SITE DECRIPTION

The area of investigation comprises a 750 m³ contaminated stockpile located northeast of the Tarago Railway Station as shown on **Figure 1**, **Appendix 1**, as well as approximately 1000 lineal metres of ore impacted material located within the rail corridor, illustrated with red shading in **Figures 2a – 2e**, **Appendix 1**. Details are presented in **Table 2-1**.

Table 2-1: Site Identification

Information	Description						
Street Address:	Accessed from Stewart Street and Goulburn Street Tarago NSW						
Identifier:	Part Lot 22 DP 1202608 and Part Lot 1 DP 595856						
Site Area:	Approximately 7.5 ha						
Local Government:	Goulburn Mulwaree Shire						
Owner:	Transport for NSW						
Current Site Use:	Forms part of the Goulburn to Bombala rail line and the Country Regional Rail Network (CRN)						

3. REGULATORY REQUIREMENTS

This SAQP has been prepared in general accordance with the following guidance documents:

- 1. National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013).
- 2. NSW Office of Environment and Heritage, Contaminated Sites: *Guidelines for Consultants Reporting on Contaminated Lands* (NSW EPA 2020).
- 3. NSW EPA, Guidelines for the Site Auditor Scheme (3rd Edition) (NSW EPA, 2017).
- 4. NSW EPA, Guidelines on Resource Recovery Orders and Exemptions for the land application of waste materials as fill (NSW EPA, 2017).
- 5. US EPA 2007, Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.
- 6. Standards Australia AS4482.1 2005, Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds.
- 7. Standards Australia AS 1141.3.1 2012, Methods for Sampling and Testing Aggregates.

4. PREVIOUS INVESTIGATIONS

Previous investigations of contaminant impacts within and originating from the rail corridor at Tarago are consolidated in the Tarago Rail Corridor and Tarago Area, Detailed Site Investigation Ramboll (2020). Key findings of this investigation included:

- 1. The Contaminant has been delineated onsite within the rail formation, adjacent shallow soils and drainage lines. Investigation within the footprint of the former Loadout Complex buildings identified localised Contaminant at depth though this is considered unlikely to present a risk to human health or the environment.
- 2. The Contaminant has not impacted groundwater. All contaminant concentrations measured in groundwater at all locations tested were reported below the Australian Drinking Water Guidelines and guidelines relevant for potable use. Some metals in groundwater exceed criteria relevant to protection of ecology. Impacts to groundwater from site contamination are considered to be low and acceptable and no further investigation is warranted.
- 3. Offsite migration of the Contaminant and other metals has occurred via surface water. Deposition of elevated metal concentrations in surficial soils appears to have occurred in land immediately east of the site and across Boyd Street onto other nearby properties.

A focus on lead as the Contaminant is supported by assessment of a broad range of other potential contaminants of concern commonly associated with rail corridor land use.

A summary of the assessment of PCOPCs identified for the rail corridor at Tarago is presented as **Table 4-1** below.

Table 4-1: Previous investigation results summary from site soils - TRH, BTEXN PAH, metals, OCP, OPP, PCB, asbestos

Analyte	Asbestos	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b+j)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Sum of polycyclic aromatic hydrocarbons	, Benzo(a)pyrene TEQ (zero)	Benzo(a)pyrene TEQ (half	Benzo(a)pyrene TEQ (LOR)	C6 - C10 Fraction	C6 - C10 Fraction minus BTEX (F1)	>C10 - C16 Fraction	>C16 - C34 Fraction (F3)	>C34 - C40 Fraction (F4)	>C10 - C40 Fraction (sum)	>C10 - C16 Fraction minus Naphthalene (F2)	ene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene	Total Xylenes	ОСР	ОРР	PCB
Number of Samples (n)	30	35	35	35	35	197	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	30	30	35	35	35	30	30	30	30	30	30	30	30	10	14	10
Detections	0	31	33	26	31	196	16	35	8	3	0	0	0	1	0	2	4	4	0	0	0	4	3	0	3	7	4	4	4	0	0	7	18	9	13	2	0	0	0	0	0	0	0	0	0
Minimum (mg/kg)	n/a	2	0.4	5	5	5	5	5	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	20	20	50	100	100	100	50	0.1	0.1	0.1	0.2	0.1	0.3	0.2	0.2	0.5
Maximum (mg/kg)	n/a	150	15	57	1700	184000	17	2800	0.6	1.7	0.3	0.3	0.3	1.3	0.3	1.2	1	0.7	0.3	0.25	0.25	0.7	0.6	0.25	0.6	6	0.8	1.1	1.4	10	10	125	1700	840	506	92	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.5

n/a - non applicable

5. DATA QUALITY OBJECTIVES

To achieve the objectives of the investigation, both the field and laboratory programs must result in data that is representative of the waste to be removed. As such, specific Data Quality Objectives (DQOs) have been developed for the tasks to be completed under the waste characterisation. The DQO process is a systematic, seven step process that defines the criteria the investigation should satisfy in accordance with the *Guidelines for the NSW Site Auditor Scheme (3rd Edition)* (NSW EPA 2017).

The seven step DQOs process comprises:

- Step 1: State the problem;
- Step 2: Identify the decisions/ goal of the study;
- Step 3: Identify the information inputs;
- Step 4: Define the boundaries of the study;
- Step 5: Develop the decision rules or analytical approach;
- Step 6: Specify the performance or acceptance criteria;
- Step 7: Develop the plan for obtaining data.

5.1 Step 1: State the problem

In-situ waste characterisation has been completed on ore impacted material at the area of assessment. The waste classification indicated that metals associated with ore concentrate are the primary contaminates of concern. Further investigation is required to characterise waste in accordance with Guidelines on Resource Recovery Order and Exemptions (NSW EPA 2017) in order to prepare a Remedial Options Assessment, which will consider the return of impacted materials to the site of origin - Woodlawn Mine¹.

5.2 Step 2: Identify the decisions/ goal of the study

Goals of the study are:

- 1. To determine characterisation based on contaminant concentrations present in material once excavated.
- 2. To determine material suitability for return to Woodlawn Mine.

Decisions to be made in relation to data quality include:

- 1. Does the data meet the Data Quality Indicators of completeness comparability, precision, accuracy, representativeness and sensitivity?
- 2. Is the data collected of sufficient quality to meet the project objectives?

5.3 Step 3: Identify the information inputs

Inputs to the decisions include:

1. Historical data from previous investigations completed by Ramboll on the area of assessment and surrounding land.

¹ Geotechnical parameters may also need to be assessed to inform consideration of the suitability of waste materials for the proposed use. These parameters are not yet known and so have been excluded from this SAOP.

- 2. Laboratory analysis of composite soil samples as per Table 1 of the Guidelines on Resource Recovery Order and Exceptions (NSW EPA 2017).
- 3. Additional analyses of soils by field portable XRF to offset uncertainty associated with laboratory test method previously identified in samples with lead > 6,000 mg/kg.

5.4 Step 4: Definition of the Study Boundary

The study boundaries have been identified as follows:

The spatial boundaries comprise the extent of the Residual Material from Woodlawn Ore Transport, including the contaminated stockpile and lead impacted material within the rail corridor, as illustrated in red in **Figure 2a-2e**, **Appendix 1**.

The vertical boundary extends from ground surface to the depth of lead impact determined using a field portable XRF. The vertical boundary of the stockpile extends from the surface of the stockpile to the depth of lead impacted material below.

The temporal boundary is limited to the time at which the characterisation was completed.

5.5 Step 5: Develop the decision rules or analytical approach

- 1. If it is determined that the data generated through the investigation are reliable, complete, comparable, accurate and representative then the information will be used to address the objectives;
- 2. If it is determined that the data generated through the investigation are not suitable, comprehensive or reliable for use in achieving the goals of the study, then further investigations may be required to reduce uncertainties; and
- 3. If it is determined that insufficient information is available to make conclusions on the assessment, then further information may be required.

5.6 Step 6: Specify the performance or acceptance criteria

The tolerable limits on decision errors are as follows:

- 1. A 5% probability of a false negative; and
- 2. A 5% of a false positive.

The potential for significant decision errors will be minimised by:

- 1. Completion of QA/QC measures of the investigation data to assess if the data satisfies the DQIs.
- 2. Assessment of whether appropriate sampling and analytical densities were completed for the purposes of the investigation.
- 3. Completion of sampling by suitably qualified and experienced environmental professionals in general accordance with NSW EPA 2017 *Guidelines on Resource Recovery Orders and Exemptions for land application of waste as fill* and US EPA 2007, Method 6200, *Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment*.
- 4. Daily system checks and internal calibration as recommended by the field portable XRF manual.
- 5. Measurement of a blank reference material (silicon dioxide, SiO_2) this will be done at the start of the day and repeated every 10 samples. This will help mitigate potential inaccuracies associated with cross-contamination of samples. The analyser window will also be cleaned regularly to prevent cross-contamination.
- 6. Certified reference materials (CRMs) will be measured to check instrument response and calibration. This will be conducted every 20 samples.

7. Precision – the precision of the field portable XRF results can be improved by extending the dwell time of the measurement. A dwell of 60 seconds is considered to provide sufficient precision for the sampling program. The analyser precision will be calculated using data from the CRM samples. The following equation provided by USEPA (2007) will be used:

$$Precision \, RSD = \frac{Standard \, Deviation}{Mean \, concentration} \times 100$$

5.6.1 Evaluation of Analytical Data

Acceptable limits for field portable XRF measurements will be determined through development of correlations for each COPC with laboratory analysis. Section 9.7 of the USEPA XRF test method (USEPA 2007) prescribes that the R² value for the results should be 0.7 or greater for the field portable XRF data to be considered for screening level data. If the R² is 0.9 or greater and inferential statistics indicate the field portable XRF data and the confirmatory data are statistically equivalent at a 99% confidence level, the data could potentially meet definitive level data

Acceptable limits and the manner of addressing possible decision errors for laboratory analysis associated are outlined below.

Accuracy: defined as the nearness of a result to the true value, where all random errors have been statistically removed. Internal accuracy is measured using percent recovery '%R' and external accuracy is measured using the Relative Percent Difference 'RPD'.

Internal accuracy: will be tested utilising laboratory control samples (LCS). LCS involves analysis of externally prepared and supplied reference materials containing the analytes under investigation. These will be analysed by the laboratory at a frequency of one sample per batch.

External accuracy: will be determined by the submission of inter-laboratory duplicates at a frequency of 5%. Data will be analysed in accordance with the following control limits:

• 70%-130%R confirming acceptable data, noting there are some larger %R for intractable substances.

Any data that does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random errors. Precision is measured using the standard deviation 'SD' or Relative Percent Difference 'RPD'.

Internal laboratory analytical precision will be assessed by sub-sampling primary samples to create laboratory duplicates. Internal precision will be assessed through relative percentage difference (RPD) between laboratory duplicates and primary samples. Recovery limits will be defined in accordance with the laboratory's NATA certified methods, though will be based on 70%-130% RPD. These will be undertaken at a frequency of 10%.

External precision: will be determined by the submission of intra-laboratory duplicates at a frequency of 5%. The external duplicate samples are to be obtained by mixing and then splitting the primary sample to create two identical sub samples. Field duplicate samples are to be labelled with a unique identification that does not reveal the association between the primary and duplicate samples e.g., QA1.

It must be noted that significant variation in duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity or concentrations reported near the Practical Quantification Limit (PQL).

RPD analysis is calculated and results are compared to:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data that does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of waste characterisation.

Completeness: The completeness of the data set shall be judged as:

- 1. The percentage of data retrieved from the field compared to the proposed scope of works. The acceptance criterion is 95%.
- 2. The percentage of data regarded as acceptable based on the above data quality objectives. 95% of the retrieved data must be reliable.
- 3. The reliability of data based on cumulative sub-standard performance of data quality objectives.
- 4. All PQLs are below adopted assessment criteria.

Where two or more data quality objectives indicate less reliability than what the acceptance criteria dictates, the data will be considered with uncertainty.

Representativeness: Sufficient samples must have been collected.

Samples must be collected and preserved in accordance with the sampling methodology proposed in Step 7 to ensure that the sample is representative of the assessed stratum.

Comparability: The data must show little to no inconsistencies with results and field observations and include likely associates e.g. TPH C6-C9 and BTEX.

Decision Error Protocol

If the data received are not in accordance with the defined acceptable limits outlined in Step 6, it may be considered an estimate or may be rejected. Determination of whether this data may be used or if re-sampling is required will be based on the following considerations:

- 1. Closeness of the result to the guideline concentrations.
- 2. Specific contaminant of concern (e.g. response to carcinogens may be more conservative).
- 3. The area of the site and the potential lateral and vertical extent of questionable information.
- 4. Whether the uncertainty can be effectively incorporated into site management controls.

5.7 Step 7: Develop a plan for obtaining data

Data collection relating to the investigation are presented by task in **Section 6**.

6. SAMPLING PLAN

The sampling plan for the waste characterisation will comprise:

- Collection of up to 10 composite samples from a 750 m³ stockpile comprising fouled ballast impacted by ore concentrate. An excavator will be used to pull down 10 sample pads in equal increments around the walls of the stockpile so that composite sampling may be completed on the fresh face.
- 2. Collection of 10 composite samples from test pits located within impacted soils adjacent the rail formation (locations selected based on elevated metals concentrations reported during initial investigations, see **Figures 2a 2e**). Composite samples will be collected from spoil generated from the test pit and field portable XRF measurements will be collected at the base of the test pit to confirm a sufficient depth has been achieved (depth of lead impact).
- 3. Field portable XRF measurement of all composite samples collected to confirm laboratory analysis.
- 4. Laboratory analysis of 20 composite samples (plus QA) for pH, electrical conductivity, moisture content, total organic carbon, total sulfur and metal(loid)s; Sb, As, Be, B, Cd, Co, Cu, Cr, Pb, Mn, Hg, Mo, Ni, Se, Sn, V, Zn, as outlined in Table 1 of the NSW EPA 2017, Guidelines on Resource Recovery Order and Exemptions.

6.1.1 Composite Sampling

Composite sampling of the contaminated stockpile and test pit spoil will be completed in general accordance with AS 4482.1 – 1997 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and semi-volatile compounds and AS 1141.3.1 – 2012 Methods for Sampling and Testing Aggregates.

Sampling of the stockpile will include:

- 1. Removal of stabilised sand stockpile using a small excavator with a wide mud-bucket
- 2. Scraping of soil from the stockpile face to a minimum depth of 0.2m
- 3. Back blading as described in AS1141.3.1 to create a sampling pad
- 4. Collection of five sub-samples (each approximately 1 kg) from the stockpile face and sampling pad
- 5. Homogenising and sample reduction through three rounds of coning and quartering as described in AS1141.3.1 to achieve a sample mass of approximately 0.6 kg
- 6. Sample collection for laboratory analyses

The sampling pad will then be replaced in the exposed stockpile face, lead concentrations will be measured in underlying soils to ensure contaminated material has been appropriately replaced in the stockpile and the open face will be recovered with stabilised sand. This process will be applied at ten locations on approximately even spacing around the perimeter of the stockpile.

Sampling of the test pits will include:

- 1. Progressive removal of soils on approximate 0.05 m using a small excavator with wide mud-bucket across an area of approximately 2 m2 (nominal 2 m length x 1 m wide)
- 2. Measurement of lead concentrations in exposed soils by field portable XRF until lead concentrations fall below site acceptance criteria (2200 mg/kg (Ramboll 2020))
- 3. Collection of five sub-samples (each approximately 1 kg) from the stockpile face and sampling pad
- 4. Homogenising and sample reduction through three rounds of coning and quartering as described in AS1141.3.1 to achieve a sample mass of approximately 0.6 kg
- 5. Sample collection for laboratory analyses

Spoil will be replaced in the excavation after sampling.

6.1.2 Soil Sampling Criteria

In field analyses and soil sampling will be completed in accordance with performance criteria defined for all analytical data (**Section 5.6.1**) and those defined in **Table 6-1**.

Table 6-1 Performance Criteria

Category	Validation Criteria								
Accuracy: Accuracy in the collection of field data will be controlled by:	Appropriate sampling methodologies utilised and complied with. Works to be completed in accordance with NSW EPA 2017, Guidelines on Resource Recovery Orders and Exemptions for land application of waste as fill and US EPA 2007, Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.								
Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random errors.	 In the field, precision will be maintained by: Using standard operating procedures for the collection of soil samples. Collection of soil samples by suitably experienced environmental scientists. Use of disposable nitrile rubber gloves between sampling locations. Placement of soil samples directly into laboratory supplied (and appropriately preserved) sampling containers. Collection of intra-laboratory and inter-laboratory duplicate samples at a rate of 1 in 20 primary samples. Collection of one rinsate sample on reusable sampling equipment at the end of each day. Recording of sample identification and analytical requirements on chain of custody documents. Samples transported to the laboratory under chain of custody conditions to a laboratory with NATA accreditation for the analytical methods prescribed. XRF readings collected by an experienced scientist holding a NSW EPA license required for field based XRF testing. 								
Completeness: The completeness of the data set shall be judged by:	 split duplicates. All locations sampled as outlined in Section 6 and on Figure 2a -2e, Appendix 1. Sampling completed by experienced personnel. Field documentation completed correctly. 								
Representativeness: The representativeness of the field data will be judged by:	1. Non-disposable sampling equipment, such as the hand auger, will be thoroughly decontaminated between locations using Decon®90 solution and deionised rinsate water. 2. At each location, a pair of disposable nitrile gloves will be worn while sampling and handling the sample; gloves will be replaced between each successive sample. 3. Soil analytical samples will be collected directly into the sampling containers following size reduction and splitting.								
Comparability: Comparability to existing field data will be maintained by:	 Use of the same appropriate sampling methodologies. Same sampling depths will be used (where practical). Analytical samples will be collected for submission to the laboratory. Photographs will be taken of sampling location conditions at the time of sampling. 								

6.1.3 Soil Sampling Methods

The test methods outlined in **Table 6-2** are prescribed in the NSW EPA 2017, *Guidelines on Resource Recovery Orders and Exemptions for land application of waste as fill* and must be used for waste characterisation.

Table 6-2: Laboratory Analytical Methods

Analyte	Sample Preparation / Digestion	Sample Digestion	Test Method
Metal(loid)s (Sb, As, Be, B, Cd, Co, Cu, Cr, Pb, Mn, Mo, Ni, Se, Sn, V, Zn)	Size reduction and splitting techniques	US EPA 3051A (or equivalent method)	US EPA 6010D (or equivalent method) reported as mg/kg dry weight
Total Organic Carbon	N/A	N/A	Methods 6B2 or 6B3 in Rayment & Lyons (2011) Soil Chemical Methods – Australasia (or equivalent method)
Total Sulfur	N/A	N/A	Method 10A1 in Rayment & Lyons (2011) Soil Chemical Methods – Australasia (or equivalent method)
Moisture Content	N/A	N/A	US EPA 90001 (or equivalent method)
Mercury	Pre-treatment (as required) using a separate moisture test in order to calculate dry weight. Cold vapour atomic absorption spectroscopy using US EPA7471B (or equivalent method) – preparation and analytical method.	N/A	Cold vapour atomic absorption spectroscopy using US EPA7471B (or equivalent method) – preparation and analytical method. Reporting as mg/kg dry weight.
Electrical Conductivity	N/A	N/A	Method 3A1 in Rayment & Lyons (2011) Soil Chemical Methods – Australasia (or equivalent method)
рН	N/A	N/A	Method 4A1 or (where the waste contains high concentrations of soluble salts) method 4B1 in Rayment & Lyons (2011) Soil Chemical Methods – Australasia (or equivalent method)

7. REPORTING

Results from the waste characterisation will be included in a Resource Recovery Exemption (RRE) application that will be prepared in general accordance with the NSW EPA (2017) *Guidelines on Resource Recovery Orders and Exemptions for land application of waste as fill.* The RRE will include:

- 1. Contact details
- 2. Background information about the waste
- 3. Characterisation of the waste
- 4. Mixing or blending of the waste
- 5. Proposed use of application
- 6. Information on the receiving environment
- 7. Quality assurance and quality controls
- 8. Specifications and standards

8. REFERENCES

NEPM 2013. National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.

NSW EPA 1995. Sampling Design Guidelines.

NSW EPA 2017. Guidelines for the NSW Site Auditor Scheme (3rd Edition).

NSW EPA 2017. Guidelines on Resource Recovery Orders and Exemptions for land application of waste as fill

NSW EPA 2020. Consultants reporting on contaminated sites - Contaminated Land Guidelines

US EPA 2007. Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment

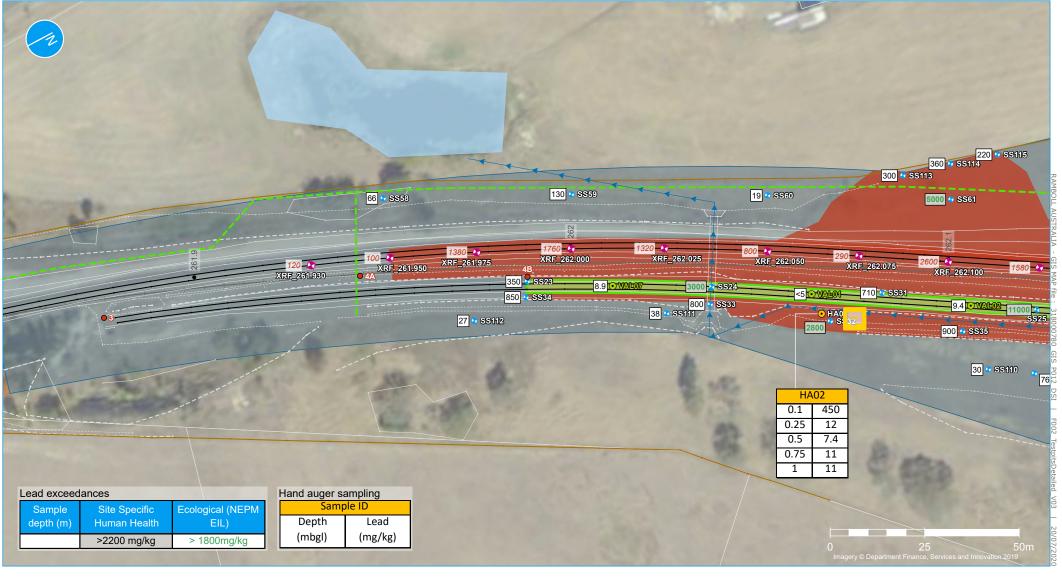
Ramboll (2019) Tarago Rail Corridor Environmental Site Assessment

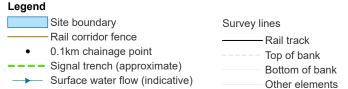
Ramboll (2020) Tarago Rail Corridor and Tarago Area, Detailed Site Investigation

Standards Australia AS 1141.3.1 – 2012 Methods for Sampling and Testing Aggregates, Method 3.1: Sampling – Aggregates

Standards Australia AS 4482.1 – 2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds

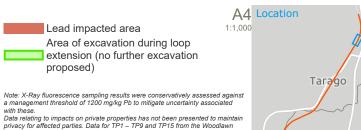
APPENDIX 1 FIGURES


Site boundary


Approximate location of contaminated stockpile

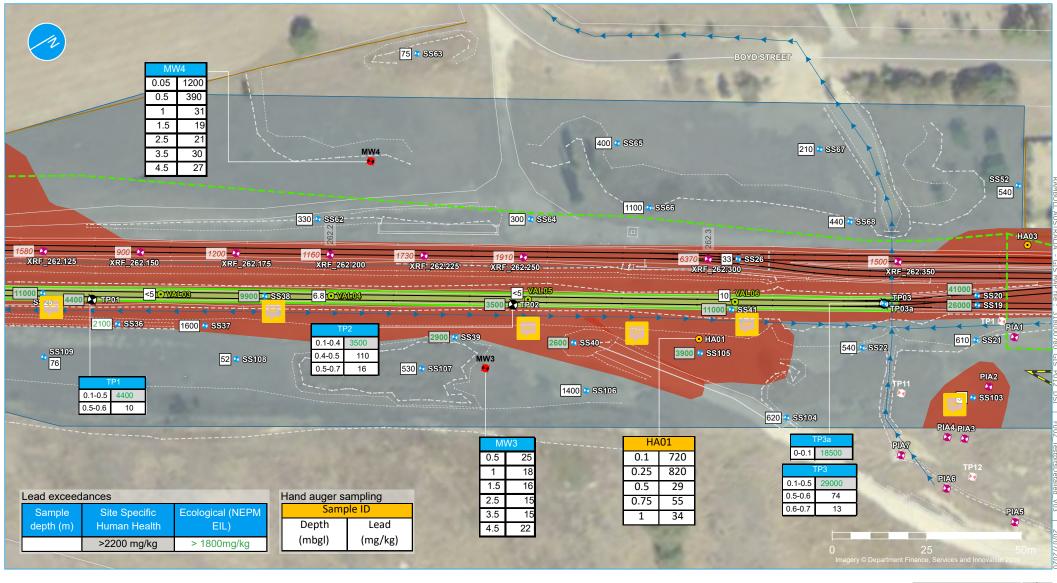
Rail corridor

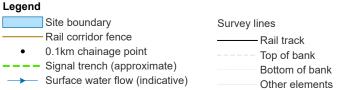
Rail corridor fence

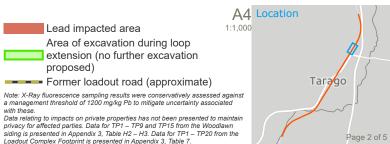

X-Ray fluorescence sampling (Ramboll 2019, 2020) Previous sampling location (McMahon)

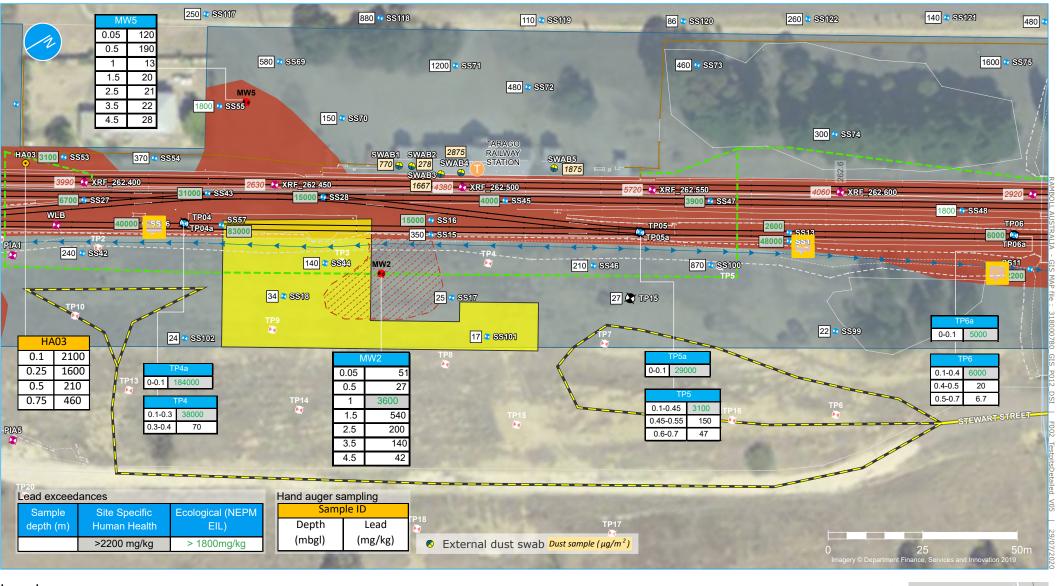
Shallow soil (Ramboll 2019)

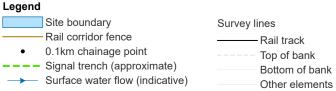
Hand auger (Ramboll 2019)


Lead concentration for XRF sample (mg/kg)


Validation sample (Ramboll 2019)


with these.


Data relating to impacts on private properties has not been presented to maintain privacy for affected parties. Data for TP1 – TP9 and TP15 from the Woodlawn siding is presented in Appendix 3, Table H2 – H3. Data for TP1 – TP20 from the Loadout Complex Footprint is presented in Appendix 3, Table 7.



- X-Ray fluorescence sampling (Ramboll 2019, 2020) Shallow soil (Ramboll 2019)
- Test pit (Ramboll 2019)
- Hand auger (Ramboll 2019)
- Lead concentration for XRF sample (mg/kg)
- Validation sample (Ramboll 2019)
- Groundwater monitoring location
- Test pit (loadout complex)

X-Ray fluorescence sampling (Ramboll 2019, 2020)

Shallow soil (Ramboll 2019)

Test pit (Ramboll 2019)

Hand auger (Ramboll 2019)

Lead concentration for XRF sample (mg/kg)

Groundwater monitoring location

Test pit (loadout complex)

Loadout Complex Footprint is presented in Appendix 3, Table 7

Figure 2c Site Plan

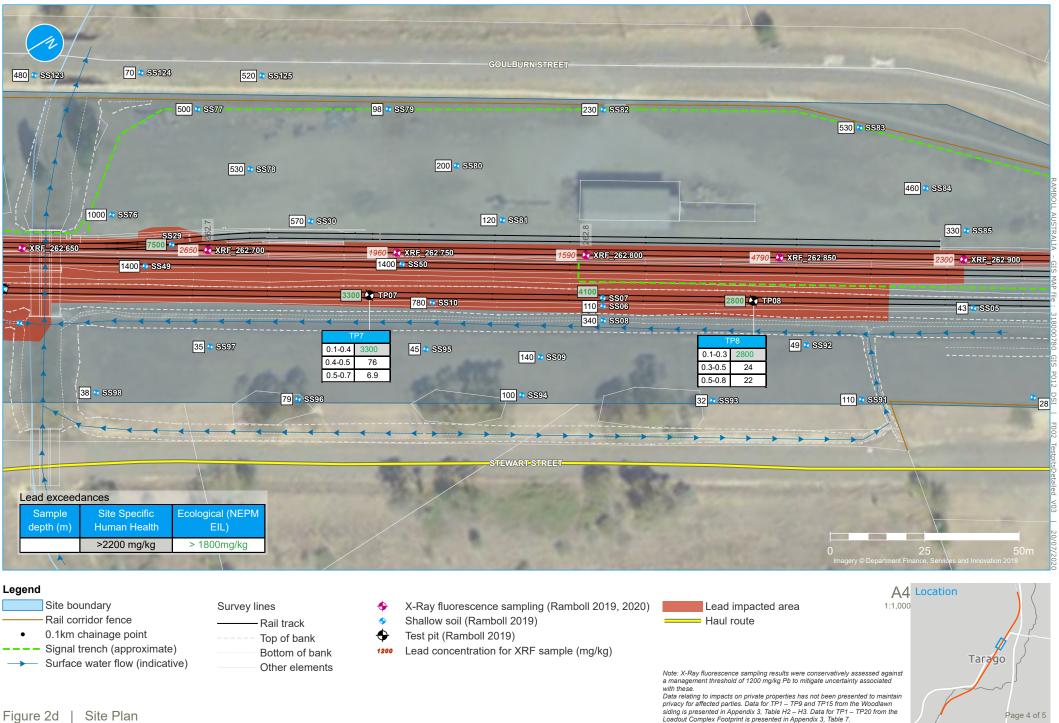
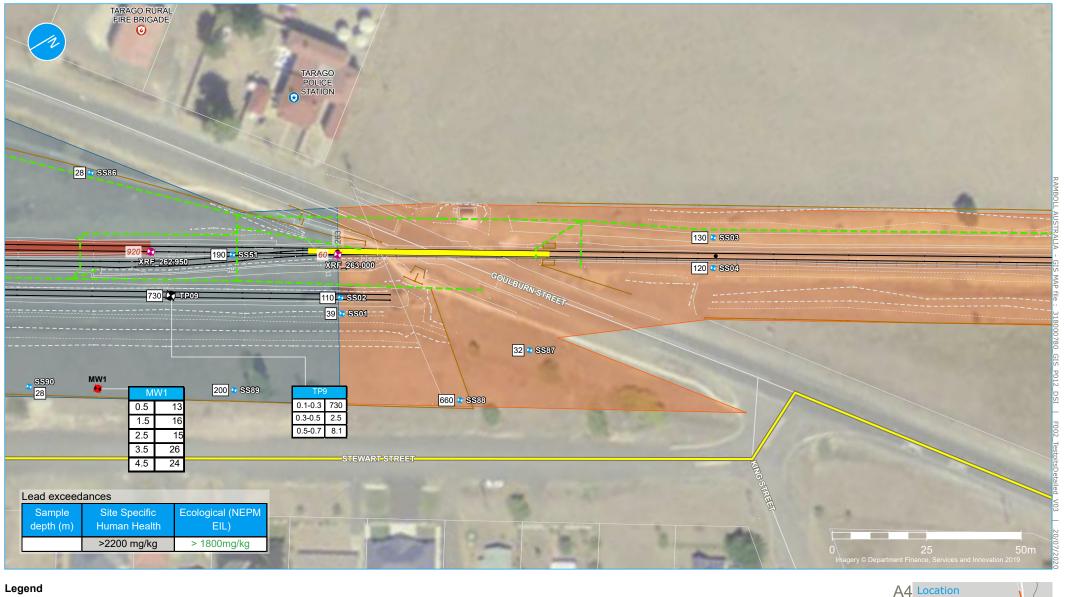



Figure 2d Site Plan

0.1km chainage point
 Goulburn Street level crossing

---- Signal trench (approximate)

Surface water flow (indicative)

Survey lines

Rail track
Top of bank
Bottom of bank

Other elements

X-Ray fluorescence sampling (Ramboll 2019, 2020)

Shallow soil (Ramboll 2019)

Test pit (Ramboll 2019)

1200 Lead concentration for XRF sample (mg/kg)

• Groundwater monitoring location

Lead impacted area
Haul route

Note: X-Ray fluorescence sampling results were conservatively assessed against a management threshold of 1200 mg/kg Pb to mittigate uncertainty associated with these.

Data relation to impacts on private properties has not been presented to maintain.

Data relating to impacts on private properties has not been presented to maintain privacy for affected parties. Data for TP1 – TP9 and TP15 from the Woodlawn siding is presented in Appendix 3, Table H2 – H3. Data for TP1 – TP20 from the Loadout Complex Footprint is presented in Appendix 3, Table 7.

Site boundary

Rail corridor

Rail corridor fence

Area of lead contamination within the rail corridor

Sampling locations

- Deposited dust and lead (from dust deposition guage)
- TSP and lead (from high volume air
- Continuous PM10 and PM2.5 (from particle counter)
- Regional meteorological monitoring
- from DPIE Air quality monitoring station (see location inset)

Figure 4 | Air quality monitoring locations

APPENDIX 3 CALIBRATION CERTIFICATES

Multi-Parameter Water Quality Meter Calibration

Instrument: Horiba U-50 Series

Control Unit Serial No: WVM29BTT Sensor Probe Unit Serial No: WSMJCJ88

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Solution	Standard Solution	Solution Model No.	Instrument Reading
рН	pH 4 AUTO CAL SOLN	4.01 pH units	100-4	4.00 pH units
Conductivity	pH 4 AUTO CAL SOLN	4.49 mS/cm	100-4	4.48 mS/cm
Turbidity	pH 4 AUTO CAL SOLN	0.0 NTU	100-4	0.0 NTU
DO	Ambient Air	9.09 mg/L	N/A	11.01 mg/L DO
Depth	Ambient Air	0.00 m	N/A	0.00 m

Calibrated by: Jake Bourke

Calibration date: 31/08/2020

Next calibration due: 03/11/2020

Instrument Serial No.

YSI Pro DSS 18D102529

Air-Met Scientific Pty Ltd 1300 137 067

ltem	Test	Pass	
Battery	Charge Condition	√ rass	Comments
	Fuses	1	
	Capacity	/	
	Recharge OK?	/	
Switch/keypad	Operation	/	
Display	Intensity	1	
	Operation		
	(segments)		
Grill Filter	Condition	/	
	Seal	/	
PCB	Condition	_	
Connectors	Condition	/	
Sensor	1. pH/ORP	V	
	2. Turbidity	1	
	3. Conductivity	1	
	4. D.O	/	
	5. Temp	1	
	6. Depth	x	
larms	Beeper	^	
	Settings		
oftware	Version		
ata logger	Operation		
ownload	Operation		
ther tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument
. EC		0.75	0.70		
2. Temp		2.76mS		Number 333787	Reading
B. pH 4		21.0°C		Testo	2.74mS
. pH 7		pH 4.00		330734	20.6°C
		pH 7.00			pH 4.01
. pH10		pH 10.00		330737	pH 6.98
. DO				332474	pH 9.87
. mV		0.00ppm		1904288592	0.00ppm
.Tubidity		231.8mV		346052/342074	
		20NTU		335947	230.6mV 18.7NTU

Calibrated by:

Remy Tarasin

Calibration date:

23/04/2020

Next calibration due:

23/05/2020

Certificate of Calibration

Model: XL2t 800 Escale: 7.08

Date of Q.C.: 25-August-2020 Inspector: Dave

60 second analysis time per filter, all switched on

Elements that are in BLUE BOLD should be detected

Elements not in BLUE BOLD need not be detected but record if present

NIST HIGH 2710	Certified	Low	High	Measured	Err	Pass	<lod?< th=""></lod?<>
Ba	707	507	978	543.605	99.145	OK	LODI
			-				
Sb	38.4	-100	110	23.235	21.06	OK	< LOD
Sn	NR	-100	100	11.99	15.225	OK	< LOD
Cd	21.8	-10	50	17.765	9.49	OK	LEOD
Ag	35.3	0	60	29.465	9.005	OK	
Pd	NR	-70	70	0.015	6.94	OK	< LOD
Zr	NR	0	0	112.95	13.6	0	
Sr	330	280	380	296.025	10.095	OK	
Rb	120	80	160	112.33	6.91	OK	
Pb	5532	5400	5832	5547.2	86.08	OK	
Se	NR	-30	30	1.79	6.34	OK	< LOD
As	626	510	750	652.5	74.7	OK	1 LOD
Hg	32.6	0	50	16.4	11.6	OK	< LOD
Zn	6952	8700	7250	6962.1	119.9	OK	LOD
W	93	0	400	83.4	91.7	OK	< LOD
Cu	2950	2700	3250	2958.6	90.9	OK	1,200
Ni	14.3	0	105	26.11	32.78	OK	< LOD
Co	10	-270	270	2.53	0	OK	
Fe	33800	30420	37180	34121.31	473.76	OK	
Mn	10100	9500	12000	10129.3	326.3	OK	
Cr	39	-100	120	45.285	44.72	OK	< LOD
Ti	N/A			3231.625	248.62		

SiO2 (Blank)	Expected**	Low	High	Measured	Err	Pass	<lod?< th=""></lod?<>
Ba	0	-200	200	-111.91	68.505	OK	< LOD
Sb	0	-120	80	-6.045	15.34	OK	< LOD
Sn	0	-120	70	7.005	7.005	OK	< LOD
Cd	0	-50	50	-4.045	9.49	OK	< LOD
Ag	0	-30	30	0.585	6.13	OK	< LOD
Pd	0	-50	50	-0.25	5.13	OK	< LOD
Zr	0	-10	10	1.59	0	OK	
Sr	0	-10	10	1.14	2.355	OK	< LOD
Rb	.010						
RD	<210	-10	210	-0.88	1.74	OK	< LOD
Pb	0	-10	10	0.43	6.36	OK	< LOD
Se	0	-20	20	-1.22	2.3	OK	< LOD
As	0	-10	10	0.41	5.195	OK	< LOD
Hg	0	-10	10	-0.915	4.26	OK	< LOD
Zn	0	-10	10	4.28	0.00	OK	LOD
W	0	-60	60	-2.98	28 17	OK	< LOD
Cu	0	-20	20	-6.885	0.00	OK	< LOD
Ni	0	-70	70	-10.465	25	OK	< LOD
Co	0	-50	50	-12.635	14.28	OK	< LOD
Fe	0	-50	50	32.445	30.77	OK	< LOD
Mn	0	-100	300	-15.53	37.035	OK	< LOD
Сг	0	-120	120	5.045	30.055	OK	< LOD
Ti	0	-700	700	-50.38	64.225	OK	< LOD

Certified	Low	High	Measured	Err	Pass	<lod1< th=""></lod1<>
968	638	1238	649.36	86.955		
					OK	< LOD
				13.19	OK	< LOD
				11.22	OK	< LOD
				7.24	OK	< LOD
NR	-60	60	0.675	6.09	OK	< LOD
160	120	200	133.82	11 495	OK	
231	180	300	197.125	7.26		
96	0	0	77.75	4.90	0	0
18.9	0	35	13.29	8 675	OK	
1.57	-30	30				< LOD
17.7	0	35				< LOD
1.4	-10	10				LOD
106	50	160	87.64			
2	-80	80	-3.35			< LOD
34.6	0	60	33.09			LOD
88	0	125	40.75			
13.4	-250	280	147.22			
35000	25000	35000	26821 015			
538	0	700	399.3			
130	30	200	109.5	40.5	OK	
N/A			4000 8	235.5		
	968 7.9 NR 0.34 180 231 157 1.7 1.4 106 2 34.6 88 13.4 35000 538 130	968 638 7.9 -90 NR -100 0.38 -60 0.41 -40 NR -60 160 120 231 180 18.9 0 1.57 -30 17.7 0 106 50 2 -80 34.6 0 38.6 0 34.6 0 38.6 0 38.9 0 13.4 -250 35000 25000 13.9 30	968 638 1238 7.9 -90 100 NR -100 100 0.38 -60 60 0.41 -40 40 NR -60 60 180 120 200 18.9 0 35 1.77 0 35 1.77 0 35 1.77 0 35 1.4 -10 10 106 50 160 2 -80 80 34.6 0 60 34.6 0 60 34.6 0 60 34.6 0 60 34.6 0 50 38.8 0 125 13.4 -250 280 35000 25000 35000 130 30 200	968 638 1238 649.96 7.9 -90 100 -3.235 NR -100 100 6.905 0.38 -60 60 -3.82 0.41 -40 40 -0.81 NR -60 60 0.675 160 120 200 133.82 231 180 300 197.125 96 0 0 77.75 18.9 0 35 13.29 1.57 -30 30 1.77 17.7 0 35 10.02 14 -10 10 0.1 106 50 160 87.64 2 -80 80 -3.35 34.6 0 60 33.09 88 0 3.35 34.6 0 60 33.09 88 0 4.75 13.4 -250 280 147.22 35000 25000 35000 26821.015 58 0 700 399.3 130 30 200 109.5	968 638 1238 649.36 86.955 7.9 -90 100 -3.235 18.16 NR -100 100 6.905 13.19 0.38 -60 60 -3.82 11.22 0.41 -40 40 -0.81 7.24 NR -60 60 0.675 6.09 160 120 200 133.82 11.495 231 180 300 197.125 7.26 96 0 0 77.75 4.90 18.9 0 35 13.29 8.675 1.57 -30 30 1.77 3.14 17.7 0 35 10.02 7.51 1.4 -10 10 0.1 0.0 106 50 160 87.64 14.56 2 -80 80 -3.35 38.13 34.6 0 60 33.09 18.80 88 0 125 40.75 26.39 13.40 -2500 280 147.22 96.61 35800 25000 38500 26821.015 362.3 538 0 700 389.3 82.5 130 30 200 109.5 40.5	968 638 1238 649.36 86.955 OK 7.9 -90 100 -3.235 18.16 OK NR -100 100 6.905 13.19 OK 0.38 -60 60 -3.82 11.22 OK 0.41 -40 40 -0.81 7.24 OK NR -60 60 0.675 6.09 OK 160 120 200 133.82 11.495 OK 231 180 300 197.125 7.26 OK 96 0 0 77.75 4.90 0 18.9 0 35 13.29 8.675 OK 1.57 -30 30 1.77 3.14 OK 1.4 -10 10 0.1 0.0 OK 1.58 -50 0K 2 -80 80 -3.35 38.13 OK 34.6 0 60 33.99 18.80 OK 88 0 125 40.75 26.39 OK 13.4 -250 280 147.22 96.81 OK 538 0 700 399.3 82.5 OK 538 0 700 399.3 82.5 OK

RCRA	Expected**	Low	High	Measured	Err	Pass	<lod< th=""></lod<>
Ba	0	0	0	657.715	97.365	0	0
		-		-			
Sb	0	0	0	16.185	21.54	0	0
Sn	0	0	0	23.165	16.115	0	0
Çd	500	400	600	458.87	18,795	OK	
Ag	500	400	600	431.015	15.21	OK	
Pd	0	0	0	11.43	7.445	0	0
Zı	0	0	0	248.46	14.31	0	
Sr	NA	0	0	172.94	7.665	0	0
							-
Rb	NA	0	0	77.615	5.535	0	0
Pb	500	400	600	494.79	30.505	OK	
Se	500	400	600	422.025	17.68	OK	
As	500	400	600	503,075	31.085	OK	
Hg	NA	0	0	-0.695	7.53	0	0
Zn	NA	0	0	78.63	16.29	0	0
W	0	0	0	9.08	45.965	0	0
Cu	NA	0	0	62.53	23.685	0	0
Ni	NA	0	0	4.39	30.91	0	0
Co	NA	0	0	284.39	140.01	0	0
Fe	NA	0	0	46165.33	525.99	0	0
Mn	NA	0	0	851.95	119.945	0	0
Cr (variable)	500	0	0	398.11	51.43	0	0
Ti	0	0	0	4665.325	253 99	0	0

GBW 07411	Certified	Low	High	Measured	Err	Pass	<lod?< th=""></lod?<>
Ва	550	320	800	560.76	97.355	OK	, LOD:
Sb	9	-80	100	-5,045	20.43	OK	< LOD
Sn	NR	-120	120	41.055	15.285	OK	
Cd	28	0	47	33.75	13.205	OK	
Ag	5	-35	47	3.085	8.26	OK	< LOD
Pd	NR	-60	60	-0.895	6.795	OK	< LOD
Zr	192	25	359	166.805	13.25	OK	
Sr	130	95	159	116.655	6.7	OK	
Rb	111	61	116	95.99	6.14	OK	
Pb	2700	2324	2900	2648.16	58 575	OK	
Se	1	-10	15	-1.50	4.65	OK OK	-1.00
As	205	127	283	176.02	49.64	OK	< LOD
Hg	0	-10	50	5.66	8 41	OK	< LOD
Zn	3800	2711	4880	3589.02	84.04	OK	< LOD
W	7	-184	184	-48.51	65.61	OK	< LOD
Cu	65	42	80	74.61	25.82	OK	LOD
Ni	24	-35	117	17.70	31.30	OK	< LOD
Co	12	-232	232	27.475	0	OK	\ LOD
Fe	0	0	60000	53573.47	576.435	OK	
Mn	9700	4561	10643	9829 0	316.2	OK	
Cr	60	-317	380	54.3	45.7	OK	< LOD
Ti	4100	3283	4917	4848.0	277.3	OK	

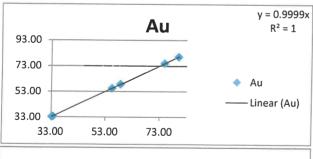
TILL4	Certified	Low	High	Measured	Err	Pass	<lod'< th=""></lod'<>
Ba	395	195	610	449.075	89.005	OK	
Sb	1	-100	100	0	0	OK	< LOD
Sn	NR	-100	100	16.165	13.825	OK	< LOD
Cd	NR	-70	70	2.37	11.758	OK	< LOD
Ag	NR	-50	50	-0.825	7.525	OK	< LOD
Pd	NR	-60	60	2.525	6.375	OK	< LOD
Zr	385	185	585	351.26	14.245	ОК	
Sr	109	50	150	107.635	5.91	OK	
Rb	161	100	210	136.34	6.41	OK	
Pb	50	28	70	44.97	10.855	OK	
Se	NR	-15	15	2.63	3.71	OK	< LOD
As	111	80	140	107.13	12.52	OK	
Hg	NR '	-15	15	4.9	7.5	OK	< LOD
Zn	70	45	95	67.66	15.30	OK	
W	204	130	280	196.59	51.62	OK	
Cu	237	200	280	227.15	28.42	OK	
Ni	17	-50	90	-11.04	26.03	OK	< LOD
Co	- 8	-300	300	214.55	110.735	OK	- 200
Fe	39700	29700	49700	32896.945	414,225	OK	
Mn	490	300	600	423.4	88.0	OK	
Cr	53	-50	150	25.6	37.1	OK	< LOD
Ti	4840	3870	5808	5516.7	252.7	OK	

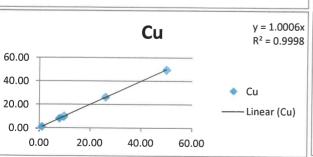
This certificate is issued in accordance with Thermo Fisher Scientific factory specifications. The measurements were found to be within specification limits at the time of manufacture and calibration.

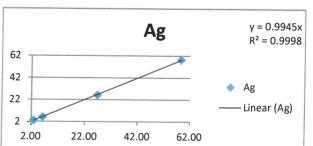
Standards are traceable to National Institute of Standards & Technology (NIST) standards. ** - Not Certified

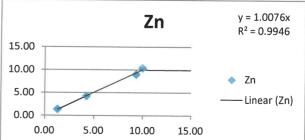
Signed:

Dave Scattergood Service Manager




Serial #: 86956 Res: 175.88 Model: XL2t 800 Escale: 7.08 Software: 8.4I.10
Source: X-ray tube


Date of Q.C.: 25-Jun-20 Inspector: Dave S


3 x 20 second analysis times

Standard	Element	Certified	Measured	Absolute Err	Cert Error %
	Au	55.54	55.57	0.39	0.03
	Ag	26.27	26.91	0.32	0.64
0744-16	Cu	10.25	9.84	0.22	-0.41
0144-10	Zn	1.38	1.30	0.11	-0.08
	Pd	6.56	6.38	0.16	-0.18
	Ni		A STATE OF THE STA		
	Au	33.52	33.74	0.36	0.22
[Ag	6.24	6.34	0.14	0.10
0734-16	Cu	49.82	49.93	0.34	0.11
0/34-10	Zn	10.42	9.98	0.18	-0.44
	Pd				
	Ni				
	Au	33.33	33.27	0.36	-0.06
	Ag	58.61	58.70	0.41	0.09
0732-16	Cu	8.06	8.03	0.21	-0.03
0/32-16	Zn				-0.00
	Pd				
	Ni				
	Au	80.15	80.19	0.38	0.04
	Ag				
0743-16	Cu	1.05	1.10	0.10	0.05
0743-10	Zn	4.27	4.26	0.15	-0.01
	Pd				
	Ni	14.53	14.43	0.25	-0.10
	Au	75.07	74.98	0.40	-0.09
	Ag	3.00	2.97	0.12	-0.03
0704-16	Cu	9.40	9.73	0.21	0.33
0704-10	Zn		SECRETARIA DE LA CONTRACTORIA DE L		
	Pd	12.53	12.32	0.23	-0.21
	Ni				
	Au	58.69	58.65	0.36	-0.04
	Ag				
0715-16	Cu	26.32	26.06	0.29	-0.26
07 10-10	Zn	9.00	9.32	0.19	0.32
	Pd	TANDER BY			
	Ni	5.99	5.97	0.17	-0.02

Certificate of Calibration

XL2/3 Alloy Main QC Sheet Revision: A Revision Date: August 11, 2011

Serial Number: _ Resolution: 179.53

Model: XL2t 800 Escale: 7.08

Software: 8.4I.10
Source: X-ray tube

Date of Q.C.: 13-Feb-20
Inspector: Rachelle W.

30 second analysis times

Elements that are in BLUE BOLD should be detected

Elements not in BLUE BOLD need not be detected but record if present

	Pure Fe Pure Fe Pure Fe Pure Fe Pure Fe Pure Fe Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni	Fe Fe Fe Fe Ta Ta Ta Ta Ta Sn Sn Sn Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	99 99 99 99 99 97 97 97 97 97 97 97 97 9	100 100 100 100 150 100 100 100 100 100	99.97 99.97 99.91 99.91 99.91 99.99 99.99 99.97 99.99 99.99 99.99 99.99	Err 0.19 0.23 0.24 0.75 0.82 0.65 0.82 0.65 0.99 1.26 1.32	OK O
	Pure Fe Pure Fe Pure Fe Pure Fe Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni	Fe Fe Fe Ta Ta Ta Ta Ta Sn Sn Sn Sn Cu Cu Cu Cu Cu Ni	99.9 99.9 98.9 98.9 99.9 99.9 99.9 99.9	99 99 99 97 97 97 97 97 97 97 97 97 97 9	100 100 190 100 100 100 100 100 100 100	99.91 99.91 99.91 99.99 99.99 99.97 99.99 99.99 99.99	0.24 0.23 0.24 0.75 0.82 0.65 0.82 0.65 0.99 1.26 1.32	OK OK OK OK OK OK OK OK
	Pure Fe Pure Fe Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu	Fe Fe Ta Ta Ta Ta Ta Sn Sn Sn Sn Cu Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	99 99 97 97 97 97 97 97 97 97 97 97 97	100 180 100 100 100 100 100 100 100 100	99.97 99.91 99.99 99.99 99.97 99.97 99.99 99.99	0.23 0.24 0.75 0.82 0.65 0.82 0.65 0.99 1.26 1.32	OK
	Pure Fe Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Fe Ta Ta Ta Ta Ta Ta Ta Ta Sn Sn Sn Sn Cu Cu Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	99 97 97 97 97 97 97 97 97 97 97 97	180 100 100 100 100 100 100 100 100	99.91 99.99 99.99 99.97 99.97 99.99 99.99 99.99	0.24 0.75 0.82 0.65 0.82 0.65 0.99 1.26 1.32	OK OK OK OK OK OK OK
	Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Ta Ta Ta Ta Ta Ta Sn Sn Sn Sn Cu Cu Cu Cu Cu Ni	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97 97 97 97 97 97 97	100 100 100 100 100 100 100 100	99.99 99.99 99.97 99.99 99.97 99.99 99.99	0.75 0.82 0.65 0.82 0.65 0.99 1.26 1.32	OK OK OK OK OK
	Pure Ta Pure Ta Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Ta Ta Ta Ta Ta Ta Sn Sn Sn Sn Cu Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97 97 97 97 97 97	100 100 100 100 100 100 100 100	99.99 99.97 99.99 99.97 99.99 99.99	0.82 0.65 0.82 0.65 0.99 1.26	OK OK OK OK OK
	Pure Ta Pure Ta Pure Ta Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Ta	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97 97 97 97	100 100 100 100 100 100 100	99.97 99.99 99.97 99.99 99.99 99.99	0.65 0.82 0.65 0.99 1.26 1.32	OK OK OK OK
	Pure Ta Pure Sn Pure Cu Pure Ni	Ta Ta Ta Sn Sn Sn Sn Sn Cu Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97 97 97	100 100 100 100 100 100	99.99 99.97 99.99 99.99 99.99	0.82 0.65 0.99 1.26 1.32	OK OK OK
	Pure Ta Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Ta Sn Sn Sn Sn Sn Cu Cu Cu Cu NI	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97 97	100 100 100 100 100	99.97 99.99 99.99 99.99	0.65 0.99 1.26 1.32	OK OK
	Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Sn Sn Sn Sn Sn Cu Cu Cu	99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.	97 97 97 97 97 97	100 100 100 100	99.99 99.99 99.99	0.99 1.26 1.32	OK OK
	Pure Sn Pure Sn Pure Sn Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Sn Sn Sn Cu Cu Cu Cu	99.9 99.9 99.9 95.9 99.9 95.9 99.9	97 97 97 97 99	100 100 100	99.99 99.99	1.26 1.32	OK
	Pure Sn Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Sn Sn Cu Cu Cu Cu	99.9 95.9 99.9 95.9 99.9	97 97 99	100	99.99	1.32	
	Pure Sn Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Sn Cu Cu Cu Cu Ni	99.9 99.9 99.9 99.9	97 99	100			
	Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Cu Cu Cu Cu Ni	99.9 95.9 99.9 99.9	99	180		1.26	OK
	Pure Cu Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Cu Cu Cu Cu Ni	99.9 99.9 99.9			99,99	1.32	OK
	Pure Cu Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Cu Cu Cu Ni	99.9 99.9	99	100	99.99	0.15	OK
	Pure Cu Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Cu Cu Ni	99.9		100	99.97	0.14	OK
	Pure Cu Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Cu Ni		99	100	99.99	0.12	OK
	Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni Pure Ni	Ni	99.9	99	100	99.97 99.99	0.14 0.12	OK
	Pure Ni Pure Ni Pure Ni Pure Ni		99.9	99	100	99.98	0.12	OK OK
	Pure Ni Pure Ni	Ni	99.9	99	100	99.98	0.16	OK
	Pure Ni	Ni	99.9	99	100	99.99	0.19	OK
		Ni	99.9	99	100	99.98	0.16	OK
}	Pure Ti	Ni	99.9	99	100	99.99	0.19	OK
		Ti	99.9	99	100	99.99	0.23	OK
-	Pure Ti	Ti	99.9	99	100	99.99	0.23	OK
-	Pure Ti	Ti	99.9	99	100	99.99	0.26	OK
	Pure Ti Pure Ti	Ti Ti	99.9	99	100	99.99	0.23	OK
L	Fule II	11	99,9	99	100	99.99	0.26	OK
BS 187A	20Cb3	Nb	0.57	0.47	0.67	0.51	0.02	Ć.
	20Cb3	Mo	2.06	1.83	2.28	2.01	0.02	OK OK
	20Cb3	Cu	3.10	2,85	3.35	3.02	0.11	OK OK
	20Cb3	Ni	33.06	31.40	35.40	33.21	0.25	OK
	20Cb3	Fe	40.19	38.2	42.2	39.95	0.23	OK
-	20Сь3	Mn	0.52	0.42	0.65	0.59	0.11	OK
L	20Cb3	Cr	19.75	19.35	20.35	20.07	0.16	OK
IARM 86C	CDA 836	Sn	4.37	2.40		1.15		
	CDA 836	Pb	5.03	3.46 4.68	5.38 5.44	4.45 5.08	0.09	OK OK
	CDA 836	Zn	5,38	4.79	6.08	5.40	0.23	OK
	CDA 836	Cu	84.6	82.60	86,60	84.41	0.23	OK
L	CDA 836	Ni	0.27	0.10	0.40	0.25	0.04	OK
IARM 69B	H4 W	No. 1						
IAKIVI 09B	Hast X Hast X	Mo	8.78	8.20	9.37	8.76	0.10	OK
F	Hast X	Nb W	0.11 0.78	0.02	0.17	0.09 0.75	0.02	OK
-	Hast X	Ni	47.37	45,37	49,33	47.72	0.08 0.26	OK OK
-	Hast X	Co	1.58	1.40	1.82	1.54	0.12	
	Hast X	Fe	17.84	16.93	18.76	17.80	0.12	OK OK
	Hast X	Mn	0.68	0.41	1.11	0.70	0.11	OK
L	Hast X	Cr	21.90	21.04	22.77	22.45	0.20	OK
IADM CD [00004	**-						
IARM 6D	SS321	Mo	0.36	0.29	0.44	0.41	0.03	OK
-	\$\$321 \$\$321	Nb Cu	0.04	0.01	0.06	0.04	0.01	OK
-	SS321	Ni	9.42	0.15	0.5 9.8	0.33 9.36	0.06	OK
-	SS321	Fe	69.40	68.4	70.4	69.61	0.19	OK OK
	SS321	Mn	1.52	1.25	1.85	1.49	0.12	
	SS321	Cr	17.45	17.1	18	17.52	0.12	OK OK
	SS321	Ti	0.63	0.43	0.83	0.71	0.08	OK
IADM 050	Stallita OD	88.	4.00	- 10:				
IARM 95C	Stellite 6B Stellite 6B	Mo W	1.37	1.24	1.5	1.38	0.04	OK
-	Stellite 6B	Ni Ni	3.96 2.88	3.66 2.58	4.26 3.18	3.92 2.73	0.14	OK
<u> </u>	Stellite 6B	Co	57.00	56.1	60.1	57.22	0.13 0.32	OK OK
<u> </u>	Stellite 6B	Fe	2.47	2.07	2.87	2.42	0.32	OK
F	Stellite 6B	Mn	1.55	1.16	1.96	1.54	0.11	OK OK
	Stellite 6B	Cr	29.00	28.4	30.4	28.58	0.21	OK
IADM 255	4.000							
IARM 35F	1.25Cr 1Mo	Mo Cu	0.48	0.44	0.54	0.50	0.03	OK
-	1.25Cr 1Mo	Fe	97.00	95.94	98.04	0.02	0.02	OK
-	1.25Cr 1Mo	Mn	0.50	0.29	0.69	97.03 0.47	0.20	OK
	1.25Cr 1Mo	Cr	1.16	0.96	1.37	1.16	0.07	OK OK
							0.00	- Ort
IARM 44C	M2	Мо	5.00	4.76	5.3	4.92	0.07	OK
	M2	W	6.00	5.5	6.57	5.90	0.17	OK
	M2	Co	0.25	-0.06	0.59	0.10	0.14	OK
<u> </u>	M2	Fe	80.9	78.9	82.9	81.13	0.27	OK
-	M2 M2	Cr V	4.06 1.92	3.67	4.5	4.16	0.10	ŌΚ
	1914	v	1.74	1.46	2.35	1.92	0.10	OK
L	6-2-4-2	Zr	3.97	3.87	4.07	4.01	0.06	ÓK
IARM 177B		Mo	1.93	1.73	2.13	1.94	0.04	OK
IARM 177B	6-2-4-2 6-2-4-2	Sn	1.95	1,75	2.15	1.96	U.UT	

This certificate is issued in accordance with Thermo Fisher Scientific factory specifications.

The measurements were found to be within specification limits at the time of manufacture and calibration.
Standards are traceable to National Institute of Standards & Technology (NIST) standards.

** - Not Certified

This certificate is valid for 2 years from the "Date of QC" indicated at the top of this page

Signed:

Dave Scattergood Service Manager

Customer:	Ramboll	Model:	XL2 800
Serial #:	86956	Date:	12/10/2020

Packing List

Part#	Description	Qty	Delivered
XL2 800	Niton Analyser	1	Denvered
420-002	XL3, 6 Cell Battery Pack 7.8Ah	2	
420-003	Battery Charger, Base and Power cable	1	
179-051	Case Lock	1	
179-727	Mini USB Cable	1	
	Soil Standards Set	1	
410-002	XL2, USD NDT USB	1	
	Following items in Document Wallet:-		
1187-1555	Prolene Kapton Windows	10	

All good received and in good condition:

Signed:	
Print:	
Date:	

Portable Analytical Solutions Pty Ltd Ground Floor, Fortunity Building, 155 The Entrance Road, Erina NSW 2250 PO Box 4185, Copacabana NSW 2251 Australia

Ph: +61 (0)2 4381 2844 Fax: +61 (0)2 8088 4386

APPENDIX 4 RESULTS

Sample Location	Sample Date	Time	Sample Depth (mm below surface)	Temperature (°C)	Spec Conductivity (µScm-¹)	рН	Dissolved Oxygen (mg/L)	Redox (mV)	TDS (ppm)	Comments
SW1_UP										
SW1_UP	13-Aug-19	7:45	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded
SW1_UP	24-Sep-19	Not recorded	100	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Clear/slightly brown. Frogs audible.
SW1_UP	29-Jan-20									DRY
SW1_UP	1-Apr-20	13:25	200	19.94	584	7.05	4.72	154.0	374.0	Clear. No turbidity. No odour. No flow.
SW1_UP	11-Aug-20	Not recorded	100	8.0	205.6	7.43	10.55	170.7	133.3	Clear to slightly brown. Flowing.
SW1_UP	13-Oct-20	7:37	400	11.9	673	7.39	2.6	94.0	431.0	Water clear/brown, flowing.
SW1										
SW1	29-Jan-20									DRY Clear to brown, low/no turbidity, minor suspended solids. No odour. No
SW1	1-Apr-20	12:45	100	17.4	575	6.35	5.88	115.0	368.0	flow.
SW1	11-Aug-20	Not recorded	100	7.8	206.1	7.44	11.00	169.5	133.9	Brown, slightly turbid, continuous flow.
SW1	13-Oct-20	7:35	50	10.38	678	7.7	2.71	125.0	434.0	Water flowing, turbid, yellow/brown, water level shallow.
SW2			Surface. Shallow							
SW2	24-Sep-19	Not recorded	water.	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Clear.
SW2	29-Jan-20									DRY Brown, low-medium turbidity, some suspended solids. No odour. No
SW2	1-Apr-20	13:50	100	17.5	358	7.25	3.84	163.0	233.0	flow.
SW2	30-Apr-20	17:40	50	9.8	605	6.54	3.32	185.9	391.9	Collected at Goulburn Street footbridge. Clear, not flowing.
SW2	11-Aug-20	Not recorded	100	7.3	213.3	8.13	10.59	185.2	137.8	Clear to slightly turbid. Flowing.
SW2	13-Oct-20	8:15am	200	11.8	650	8.27	5.92	96.0	416.0	Water clear, flowing, water level low.
SW3										
SW3	24-Sep-19	Not recorded	50	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Moderate turbidity. Frogs audible.
SW3	29-Jan-20									DRY
SW3	1-Apr-20	14:20	100	21.8	245	6.23	5.24	178.0	159.0	Brown to yellow, medium turbidity, some brown matter at surface.
SW3	11-Aug-20	Not recorded	100	8.9	142.5	7.43	9.43	174.7	92.3	Brown to clear.
SW3	13-Oct-20	8:36	100	11.63	229	7.96	4.84	137.0	149.0	Water clear/brown to slightly turbid, flowing.
SW4	C Aver 10	11.25	100	12.4	120.2	0.0	0.74	200.0	Matrical	Character and advantage distributions
SW4	6-Aug-19	11:35	100	12.4	128.2	8.8	9.74	200.0	Not recorded	Stagnant pond, clear to slightly yellow.
SW4	24-Sep-19	Not recorded	100	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Not recorded	Turbid. Frogs audible.
SW4 	29-Jan-20	15.00	200	20.22	297	6.73	 E 24	168.0	193.0	DRY
SW4	1-Apr-20	15:00 17:30	50	20.33	388.3	5.75	5.24 3.53	263.1	251.8	Light brown, low turbidity. No odour. No flow. Collected at Boyd Street culvert. Flowing.
SW4	30-Apr-20 11-Aug-20	Not recorded	100	7.4	153.4	7.69	10.42	210.9	99.5	Brown, slightly turbid, full but flow not evident.
SW4	13-Oct-20	8:50	300	13.1	307	8.19	5.73	107.0	200.0	Water flowing, turbid, brown, no odour.
SW5	13-001-20	8.30	300	13.1	307	0.19	3.73	107.0	200.0	water nowing, turbia, brown, no odour.
SW5	29-Jan-20									DRY
SW5	1-Apr-20									DRY
SW5	11-Aug-20	Not recorded	100	11.2	117.9	7.33	7.94	163.2	76.7	Brown, turbid, flow at culvert evident beneath crushed rock.
SW5	13-Oct-20	9:06	50	11.95	187	8.35	4.06	-3.0	121.0	Water not flowing, very shallow, turbid, light brown, no odour.
SW6	13 000 20	3.00	30	11.55	107	0.33	4.00	3.0	121.0	water not nowing, very snahow, tarbia, nght brown, no ododi.
SW6	29-Jan-20									DRY
SW6	1-Apr-20									DRY
SW6	11-Aug-20	Not recorded	50	8.3	168.3	7.47	9.61	187.0	109.2	Brown, slightly turbid. Not flowing.
SW6	13-Oct-20									DRY
SW7										
SW7	29-Jan-20	10:00	50	23.1	609	8.92	8.46	83.0	396.6	Silty, from dam, low level water.
SW7	2-Apr-20	Not recorded	10	18.1	2342	7.23	4.45	114.2	152.1	Highly turbid.
SW7	11-Aug-20	Not recorded	100	12.5	94.7	7.26	7.80	109.8	61.8	Brown, turbid.
SW7	12-Oct-20	17:46	200	21.34	172	7.69	5.35	56.0	112.0	Water slightly turbid, brown, not flowing.
SW8					_					, , , , , , , , , , , , , , , , , , ,
SW8	29-Jan-20	11:01	100	23.6	1007	7.77	5.22	121.6	656.5	Upstream Lumley Road bridge. Clear, vegetation. Not flowing.
SW8	2-Apr-20	9:30am	10	18	425.7	7.23	4.39	124.0	276.9	Grease at surface, lots of algae growing on plants.
SW8	10-Aug-20	Not recorded	100	9.1	170.5	8.53	9.34	123.6	107.9	Water flowing, level high, turbid, sediment sample collected higher up
SW8	12-Oct-20	17:26	200	20.12	847	7.76	7.58	84.0	542.0	embankment than previous round due to water level. Water flowing, clear/brown.
SW9										
SW9	29-Jan-20	12:22	300	25.0	125.3	8.35	16.8	99.4	812.5	Stagnant pond. Algae and fish present. Slightly turbid.
SW9	02-Apr-20	Not recorded	10	18.2	381.7	7.62	6.29	124.5	247.7	Non-turbid, slightly brown, not flowing but full.
SW9	10-Aug-20	Not recorded	100	8.9	178.2	7.84	10.73	173.6	115.7	High level, brown, slightly turbid, bubbles at surface.
SW9	12-Oct-20	16:47	200	21.39	852	8.17	10.04	83.0	545.0	Water flowing, clear/brown, slightly turbid.
SW10										
SW10	13-Oct-20	12:26	400	16.02	881	7.19	3.58	79.0	564.0	Water flowing, clear/brown, slightly turbid, no odour.
Notes										

Notes

ppm = parts per million μ Scm⁻¹ = microSiemens per centimetre mV = milli Volts n/a = not applicable

Project Name: DSI Addendum

Job No: 318000780

Project Name. D3i Addendum																			
						Sample Type	:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
						Lab ID		S19-Au17273	S19-Se37061	-	S20-Ap12287	S20-Au23116	S20-Oc25321	-	S20-Ap12286	S20-Au23115	S20-Oc25141	S19-Se37062	-
						Sample date:	1	13-Aug-19	24-Sep-19	29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20	29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20	24-Sep-19	29-Jan-20
						Sample ID:		SW1-UP	SW1-UP	SW1_UP	SW1-UP	SW1_UP	SW1_UP	SW1	SW1	SW1	SW1	SW2	SW2
						Project Name	e:	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW
								Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
						Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780
	95% Freshwater	Hardness Correction	Drinking Water	Irrigation Short-	Stock Water	Sample Loca	tion	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail
	(ANZG 2018)	Value Applied	(ADWG 2011)	term Trigger Value	(ANZECC 2000)	-		Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop
	(A1120 2010)	(ANZECC 2000)	(ADWG 2011)	(ANZECC 2000)	(ANZECC 2000)	Sampling Me	thod:	Grab Sample	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	-
Guidelines						Sample Desc	ription:	Not recorded.	Clear/slightly brown.	DRY	Clear. No turbidity. No odour.	Clear to slightly brown. Flowing.	Water clear/brown, flowing.	DRY	Clear to brown, low/no turbidity, minor suspendid solids. No odour.	Brown, slightly turbid, continuous flow.	Water flowing, turbid, yellow/borwn, water level shallow.	Clear.	DRY
Analyte grouping/Analyte						Units	LOR												
Dissolved and Total Metals	-									_				•				•	
Aluminium	0.055 ^a	-	-	20	5	mg/L	0.05	-	-	-	< 0.05	0.85	< 0.05	-	0.13	0.88	<u>0.61</u>	-	-
Dissolved Aluminium	0.055°	-	-	20	5	mg/L	0.05	< 0.05	< 0.05	-	-	0.45	< 0.05	-	-	<u>0.54</u>	< 0.05	< 0.05	-
Arsenic	0.024 ^b	-	0.01	2	0.5-5	mg/L	0.001	- 0.001	-	-	< 0.001	< 0.001	< 0.001	-	0.004	< 0.001	0.004	- 0.001	-
Dissolved Arsenic	0.024 ^b	-	0.01	2	0.5-5	mg/L	0.001	< 0.001	<0.001	-	- 0.1	< 0.001	< 0.001	-	- 0.15	< 0.001	< 0.001	< 0.001	-
Barium	-	-	2	-	-	mg/L	0.001	- 0.1	- 0.1	-	0.1	0.05	0.1	-	0.15	0.04	0.36	- 0.07	-
Dissolved Barium	-	-	2	-	-	mg/L	0.001	0.1	0.1	-	- 0.001	0.04	0.1	-	- 0.001	0.04	0.11	0.07	-
Beryllium	-	-	0.06 0.06	0.5 0.5	-	mg/L	0.001 0.001	< 0.001	<0.001	-	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001 < 0.001	< 0.001	-
Dissolved Beryllium Boron	-	-	-	-	-	mg/L mg/L	0.001	< 0.001	- <0.001	-	-	< 0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	-
Dissolved Boron	<u> </u>	-	<u> </u>	-	-	ma/L	0.05	-	-	-	-	-	-	-		-	-	-	_
Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	mg/L	0.0002	-	_	-	< 0.0002	< 0.0002	< 0.0002	-	0.0013	< 0.0002	0.0021	_	_
Dissolved Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	mg/L	0.0002	< 0.0002	<0.0002	-	- 0.0002	< 0.0002	< 0.0002	_	- 0.0015	0.0002	0.0005	0.0014	
Chromium	0.001 ^c	0.0005 ^q	0.05 ^c	1	1	mg/L	0.001	- 0.0002	-	_	< 0.001	0.002	< 0.001	-	< 0.001	<u>0.002</u>	0.001	-	-
Dissolved Chromium	0.001 ^c	0.0025 ^g	0.05°	1	1	mg/L	0.001	< 0.001	<0.001	_	-	< 0.001	< 0.001	-	-	0.001	< 0.001	< 0.001	_
Cobalt	0.0014	-	-	0.1	1	mg/L	0.001	-	-	-	< 0.001	< 0.001	< 0.001	-	0.014	< 0.001	0.007	-	_
Dissolved Cobalt	0.0014	-	-	0.1	1	mg/L	0.001	< 0.001	< 0.001	-	-	< 0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	-
Copper	0.0014	0.0035 ^g	2	5	0.4-5	mg/L	0.001	-	-	-	< 0.001	0.002	< 0.001	-	0.019	0.003	0.014	-	-
Dissolved Copper	0.0014	0.0035 ⁹	2	5	0.4-5	mg/L	0.001	< 0.001	< 0.001	-	-	0.002	< 0.001	-	-	<u>0.003</u>	0.002	0.015	-
Iron	-	-	-	10	not sufficiently toxic	mg/L	0.05	-	-	-	0.26	0.93	0.12	-	4.5	0.91	<u>1.41</u>	-	-
Dissolved Iron	-	-	-	10	not sufficiently toxic	mg/L	0.05	< 0.05	< 0.05	-	-	0.3	< 0.05	-	-	0.34	< 0.05	< 0.05	-
Lead	0.0034	0.0136 ^g	0.01	5	0.1	mg/L	0.001	-	< 0.001	-	< 0.001	< 0.001	0.001	-	0.056	0.001	<u>0.032</u>	0.003	-
Dissolved Lead	0.0034	0.0136 ⁹	0.01	5	0.1	mg/L	0.001	< 0.001	<0.001	-	-	< 0.001	< 0.001	-	-	<u>0.004</u>	< 0.001	0.014	-
Manganese	1.9	-	0.5	10	not sufficiently toxic	mg/L	0.005	-	-	-	0.044	0.026	0.022	-	0.76	0.024	<u>0.706</u>	-	-
Dissolved Manganese	1.9	-	0.5	10	not sufficiently toxic	mg/L	0.005	< 0.005	<u>0.005</u>	-	-	0.02	0.022	-	-	0.018	<u>0.044</u>	0.014	-
Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	mg/L	0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	-	< 0.0001	< 0.0001	< 0.0001	-	-
Dissolved Mercury	0.0006 ^{d,e}	-	0.001	0.002	0.002	mg/L	0.0001	< 0.0001	< 0.0001	-	-	<0.0001	< 0.0001	-	-	< 0.0001	< 0.0001	< 0.0001	-
Nickel	0.011	0.0275 ⁹	0.02	2	1	mg/L	0.001	-	-	-	< 0.001	0.002	< 0.001	-	0.003	0.002	<u>0.002</u>	-	-
Dissolved Nickel	0.011	0.0275 ⁹	0.02	2	1	mg/L	0.001	< 0.001	<0.001	-	-	0.002	< 0.001	-	-	0.002	< 0.001	< 0.001	-
Selenium	-	-	-	-	-	mg/L	0.001	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Selenium	-	-	-	-	-	mg/L	0.001	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	0.008	0.02 ^g	-	5 -	20	mg/L	0.005	-	-	-	0.011	0.011	0.009	-	0.2	0.02	0.32	-	-
Dissolved Zinc	0.008	0.02 ^g	-] 5	20	mg/L	0.005	< 0.005	<0.005	-	-	0.008	< 0.005	-	-	<u>0.045</u>	0.073	0.2	-

- indicates no criterion available or not analysed

LOR = Limit of Reporting Concentrations below the LOR noted as <value

The LOR for mercury exceeds the ecological criteria for 95% protection freshwater ecosystems however concentrations

reported as <LOR are considered acceptable as mercury is not a contaminant of concern at the site.

Details of Guideline values are presented in **Section 6** of report (**Table 6-1**) Concentrations <u>underlined and in italics</u> adopted the higher duplicate value

Concentration in a grey box exceed the ecological criteria of 95% protection freshwater ecosytems

Concentrations in a dark grey box exceed the criteria of 95% protection freshwater ecosystems and the hardness corrected value

Concentrations in a bold box exceed the human health quideline value for drinking water Concentrations in blue font exceed the irrigation short term value

Concentrations in **bold font** exceed stock watering criteria

 $^{\rm a}$ Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

^b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

^e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Hardness correction factor applied to the threshold value as detailed in Section 3.4.3 and Table 3.4.4 of ANZECC 2000. For

calculations, water hardness was conservatively presumed moderately hard based on the Goulburn Mulwaree Regional State

Job No: 318000780

Project Name: DSI Addendum

						Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
						S20-Ap12288	S20-My01341	S20-Au23117	S20-Oc25143	S19-Se37063	Surface Water	S20-Ap12289	S20-Au23118	S20-Oc25145		S19-Se37064	Sarrace Water	S20-Ap12290
						1-Apr-20	30-Apr-20	11-Aug-20	13-Oct-20	24-Sep-19	29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20	06-Aug-19	24-Sep-19	29-Jan-20	1-Apr-20
						SW2	SW2	SW2	SW2	SW3	SW3	SW3	SW3	SW3	SW4	SW4	SW4	SW4
						Tarago SW	1	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	t	Tarago SW	†	Tarago SW	Tarago SW	Tarago SW
						Monitoring	Tarago SW Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Tarago SW Monitoring	Monitoring	Tarago SW Monitoring	Monitoring	Monitoring	Monitoring
												_			_			
						318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780
	95% Freshwater	Hardness Correction	Drinking Water	Irrigation Short-	Stock Water	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail
	(ANZG 2018)	Value Applied	(ADWG 2011)	term Trigger Value	(ANZECC 2000)	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop
	(ANZG 2010)	(ANZECC 2000)	(ADWG 2011)	(ANZECC 2000)	(ANZECC 2000)	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	-	Grab Sample
Guidelines						Brown, low- medium turbidity, some suspended solids. No odour.	Collected at Goulburn Street footbridge. Not flowing.		Water clear, flowing, water level low.	Moderate turbidity.	DRY	Brown to yellow, medium turbidity, some brown matter at surface.	Brown to clear.	Water clear/brown to slightly trubid, flowing.	Stagnant pond, clear to slightly yellow.	Turbid.	DRY	Light brown, low turbidity. No odour.
Analyte grouping/Analyte																		
Dissolved and Total Metals				<u> </u>														
	0.0553		T	1 20		0.08	0.06	0.95	< 0.05	<u> </u>	T	0.92	0.61	0.46	1	<u> </u>	<u> </u>	0.10
Aluminium	0.055°	-	-	20	5		0.06			- 0.2	-		0.61		- 0.17	- 0.20	-	0.18
Dissolved Aluminium	0.055°	-	-	20	5	- 0.000	- 0.001	0.47	< 0.05	0.3	-	- 0.004	0.69	0.4	0.17	0.38	-	- 0.000
Arsenic	0.024 ^b	-	0.01	2	0.5-5	0.002	< 0.001	< 0.001	< 0.001	-	-	0.004	< 0.001	0.003	-	-	-	0.002
Dissolved Arsenic	0.024 ^b	-	0.01	2	0.5-5	-	-	< 0.001	< 0.001	<0.001	-	-	< 0.001	0.002	0.001	<0.001	-	-
Barium	-	-	2	-	-	0.1	0.08	0.05	0.11	-	-	0.1	0.05	0.07	-	-	-	0.07
Dissolved Barium	-	-	2	-	-	-	-	0.04	0.11	0.08	-	-	0.05	0.07	0.04	0.05	-	-
Beryllium	-	-	0.06	0.5	-	< 0.001	< 0.001	< 0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	-	-	-	< 0.001
Dissolved Beryllium	-	-	0.06	0.5	-	-	-	< 0.001	< 0.001	<0.001	-	-	< 0.001	< 0.001	<0.001	<0.001	-	-
Boron	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Boron	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.0002	0.00054 ⁹	0.002	0.05	0.01	0.0019	0.0004	< 0.0002	0.0007	-	-	0.021	0.0011	0.0036	· -	-	-	0.019
Dissolved Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	-	-	< 0.0002	0.0007	0.0053	-	-	0.001	0.0033	<u>0.0056</u>	0.013	-	-
Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	0.001	< 0.001	0.002	< 0.001	-	-	0.002	0.001	0.001	-	-	-	< 0.001
Dissolved Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	-	-	< 0.001	< 0.001	< 0.001	-	-	0.001	0.001	< 0.001	< 0.001	-	-
Cobalt	0.0014	-	-	0.1	1	0.004	0.002	< 0.001	< 0.001	-	-	0.006	< 0.001	< 0.001	-	-	-	0.005
Dissolved Cobalt	0.0014	-	-	0.1	1	- 0.022	- 0.006	< 0.001	< 0.001	0.005	-	- 0.10	< 0.001	< 0.001	<0.001	0.003	-	- 0.12
Copper	0.0014	0.0035 ^g	2	5	0.4-5	0.023	0.006	0.004	0.004	- 0.027	-	0.18	0.018	0.12	- 0.15	- 0.2	-	0.13
Dissolved Copper	0.0014	0.0035 ^g	2	5	0.4-5	- 0.04	- 0.75	0.003	0.003	0.027	-	- 1.0	0.016	0.1	<u>0.15</u>	0.2	-	- 0.60
Iron	-	-	-	10	not sufficiently toxic	0.94	0.75	1 0 24	< 0.05	- 0.22	-	1.8	0.6	1.4	- 0.22	- 0.27	-	0.68
Dissolved Iron	- 0.0024	-	- 0.01	10	not sufficiently toxic	- 0.03	- 0.006	0.31	< 0.05	0.33	-	0.17	0.46	1.1	0.22	0.37	-	- 0.055
Lead	0.0034	0.0136 ⁹	0.01	5	0.1	0.02	0.006	0.003	0.004	0.014	-	0.17	0.011	0.051	0.013	0.055	-	0.055
Dissolved Lead	0.0034	0.0136 ^g	0.01	5	0.1	- 0.41	- 0.26	< 0.001	< 0.001	0.011	-	- 0.52	0.009	0.023	0.008	0.033	-	- 0.42
Manganese	1.9	-	0.5	10	not sufficiently toxic	0.41	0.26	0.043	0.017	- 0.015	-	0.52	0.017	0.042	- 0.015	-	-	0.42
Dissolved Manganese	1.9	-	0.5	10	not sufficiently toxic	- 0.0001	0 0001	0.015	0.017	0.015	-	0 0001	0.014	0.029	0.015	0.2	-	- 0.0001
Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001
Dissolved Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	- 0.000	- 0.001	< 0.0001	< 0.0001	< 0.0001	-	- 0.006	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-
Nickel	0.011	0.0275 ^g	0.02	2	1	0.002	< 0.001	0.002	< 0.001	-	-	0.036	0.002	0.011	- 0.014	- 0.010	-	0.037
Dissolved Nickel	0.011	0.0275 ^g	0.02	2	1	-	-	0.002	< 0.001	0.002	-	-	0.002	0.011	0.014	0.019	-	-
Selenium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Selenium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	0.008	0.02 ^g	-	5	20	0.35	0.16	0.028	0.096	-	-	4	0.22	0.74	-	-	-	3.2

0.02

20

0.13

0.95

- indicates no criterion available or not analysed

LOR = Limit of Reporting Concentrations below the LOR noted as <value

Dissolved Zinc

The LOR for mercury exceeds the ecological criteria for 95% protection freshwater ecosystems however concentrations

reported as <LOR are considered acceptable as mercury is not a contaminant of concern at the site.

 0.02^{g}

Details of Guideline values are presented in **Section 6** of report (**Table 6-1**)

Concentrations <u>underlined and in italics</u> adopted the higher duplicate value Concentration in a grey box exceed the ecological criteria of 95% protection freshwater ecosytems

Concentrations in a dark grey box exceed the criteria of 95% protection freshwater ecosystems and the hardness corrected value Concentrations in a bold box exceed the human health quideline value for drinking water

0.008

Concentrations in blue font exceed the irrigation short term value Concentrations in **bold font** exceed stock watering criteria

 $^{\rm a}$ Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

^b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

^e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Hardness correction factor applied to the threshold value as detailed in Section 3.4.3 and Table 3.4.4 of ANZECC 2000. For

calculations, water hardness was conservatively presumed moderately hard based on the Goulburn Mulwaree Regional State

Job No: 318000780

Project Name: DSI Addendum

	R	AMBO	LL
ace Water	Surface Water	Surface Water	
-	S20-Ja29060	S20-Ap12291	

Name. DSI Addendam																		
						Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
						S20-My01342	S20-Au23119	S20-Oc25147	-	-	S20-Au23120	S20-Oc25149	-	-	S20-Au23121	-	S20-Ja29060	S20-Ap12291
						30-Apr-20	11-Aug-20	13-Oct-20	29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20	29-Jan-20	1-Apr-20	11-Aug-20	13-Oct-20	29-Jan-20	2-Apr-20
						SW4	SW4	SW4	SW5	SW5	SW5	SW5	SW6	SW6	SW6	SW6	SW7	SW7
						Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW
						Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
						318000780	318000780	318000780	318000780	318000785	318000785	318000785	318000780	318000785	318000785	318000785	318000786	318000786
		Hardness Correction		Irrigation Short-		Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail
	95% Freshwater	Value Applied	Drinking Water	term Trigger Value	Stock Water	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop
	(ANZG 2018)	(ANZECC 2000)	(ADWG 2011)	(ANZECC 2000)	(ANZECC 2000)	Grab Sample	Grab Sample	Grab Sample	-	-	Grab Sample	Grab Sample	-	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines						Collected at Boyd Street culvert. Flowing.	Brown, slightly trubid, full but flow not evident.	Water flowing, turbid, brown, no odour.	DRY	DRY	Brown, turbid, flow at culvert evident beneath crushed rock.	Water not flowing, very shallow, turbid, light brown, no odour.	DRY	DRY	Brown, slightly turbid. Not flowing.	DRY	Silty, from dam, low level water.	' Highly turbid.
Analyte grouping/Analyte																		
Dissolved and Total Metals						1												
Aluminium	0.055ª	_	_	20	5	0.49	0.59	0.36	_	T -	1.8	11	I -		1.8			0.29
Dissolved Aluminium	0.055°	_	_	20	5	-	0.63	0.28	-	-	3.2	0.28	-	-	2.4	-	_	-
Arsenic	0.024 ^b	-	0.01	2	0.5-5	0.002	< 0.001	0.003	-	-	0.001	0.005	-	-	0.002	-	0.016	0.004
Dissolved Arsenic	0.024 ^b	_	0.01	2	0.5-5	-	< 0.001	0.002	-	-	0.001	0.002	-	-	0.001	-	0.011	-
Barium	-	-	2	-	-	0.07	0.05	0.08	-	-	0.03	0.17	-	-	0.06	-	-	0.08
Dissolved Barium	-	-	2	-	-	-	0.04	0.08	_	_	0.03	0.08	_	_	0.05	-	-	-
Beryllium	-	-	0.06	0.5	-	< 0.001	< 0.001	< 0.001	-	-	< 0.001	< 0.001	_	_	< 0.001	-	< 0.001	< 0.001
Dissolved Beryllium	-	-	0.06	0.5	-	-	< 0.001	< 0.001	-	-	< 0.001	< 0.001	_	_	< 0.001	-	< 0.001	-
Boron	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-
Dissolved Boron	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-
Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	0.04	0.003	0.019	-	-	0.0009	0.0021	-	-	0.0072	-	0.0016	0.0009
Dissolved Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	-	0.0029	0.018	-	-	0.0009	0.001	-	-	0.0063	-	0.0005	-
Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	0.001	0.001	0.001	-	-	0.003	0.011	-	-	0.003	-	-	0.001
Dissolved Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	-	< 0.001	< 0.001	-	-	0.003	< 0.001	-	-	0.003	-	-	-
Cobalt	0.0014	-	-	0.1	1	0.009	0.001	0.004	-	-	< 0.001	0.003	-	-	< 0.001	-	0.002	0.002
Dissolved Cobalt	0.0014	-	-	0.1	1	-	< 0.001	0.004	-	-	< 0.001	0.001	-	-	< 0.001	-	0.002	-
Copper	0.0014	0.0035 ⁹	2	5	0.4-5	0.31	0.04	0.19	-	-	0.019	0.074	-	-	0.1	-	0.021	0.022
Dissolved Copper	0.0014	0.0035 ^g	2	5	0.4-5	-	0.035	0.18	-	-	0.016	0.045	-	-	0.088	-	0.009	-
Iron	-	-	-	10	not sufficiently toxic	0.83	0.57	1.3	-	-	1.5	8.9	-	-	1.4	-	-	4.22
Dissolved Iron	-	-	-	10	not sufficiently toxic	-	0.47	0.89	-	-	1.4	0.54	-	-	1.1	-	-	=
Lead	0.0034	0.0136 ^g	0.01	5	0.1	0.13	0.015	0.038	-	-	0.01	0.031	-	-	0.022	-	0.037	0.02
Dissolved Lead	0.0034	0.0136 ^g	0.01	5	0.1	-	0.011	0.023	-	-	0.006	0.007	-	-	0.013	-	<u>0.017</u>	-
Manganese	1.9	-	0.5	10	not sufficiently toxic	0.63	0.045	0.37	-	-	0.012	0.15	-	-	0.018	-	1.1	0.41
Dissolved Manganese	1.9	-	0.5	10	not sufficiently toxic	-	0.041	0.38	-	-	0.008	0.09	-	-	0.013	-	0.68	-
Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	< 0.0001	< 0.0001	< 0.0001	-	-	< 0.0001	< 0.0001	-	-	< 0.0001	-	< 0.0001	< 0.0001
Dissolved Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	-	< 0.0001	< 0.0001	-	-	< 0.0001	< 0.0001	-	-	< 0.0001	-	< 0.0001	-
Nickel	0.011	0.0275 ⁹	0.02	2	1	0.12	0.006	0.038	-	-	0.002	0.007	-	-	0.029	-	0.012	0.006
Dissolved Nickel	0.011	0.0275 ^g	0.02	2	1	-	0.006	0.038	-	-	0.002	0.003	-	-	0.026	-	0.009	-
Selenium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001	-
Dissolved Selenium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001	-
Zinc	0.008	0.02 ^g	-	5	20	7	0.56	2.6	-	-	0.11	0.3	-	-	0.9	-	0.28	0.15
Dissolved Zinc	0.008	0.02 ^g	-	5	20	-	0.5	2.5	-	-	0.094	0.14	-	-	0.79	-	0.087	-

⁻ indicates no criterion available or not analysed

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

The LOR for mercury exceeds the ecological criteria for 95% protection freshwater ecosystems however concentrations

reported as <LOR are considered acceptable as mercury is not a contaminant of concern at the site.

Details of Guideline values are presented in **Section 6** of report (**Table 6-1**) Concentrations <u>underlined and in italics</u> adopted the higher duplicate value

Concentration in a grey box exceed the ecological criteria of 95% protection freshwater ecosytems

Concentrations in a dark grey box exceed the criteria of 95% protection freshwater ecosystems and the hardness corrected value Concentrations in a bold box exceed the human health quideline value for drinking water

Concentrations in blue font exceed the irrigation short term value

Concentrations in **bold font** exceed stock watering criteria

 $^{\rm a}$ Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

^b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

^e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Hardness correction factor applied to the threshold value as detailed in Section 3.4.3 and Table 3.4.4 of ANZECC 2000. For

calculations, water hardness was conservatively presumed moderately hard based on the Goulburn Mulwaree Regional State

Job No: 318000780

Project Name: DSI Addendum

								,						1			•	
						Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
						S20-Au23122	S20-Oc25163	S20-Ja29061	S20-Ap12292	S20-Au23123	S20-Oc25165	S20-Ja29062	S20-Ap12293	S20-Au23124	S20-Oc25167	S20-Oc25153	S20-Oc25317	S20-Oc25319
						11-Aug-20	12-Oct-20	29-Jan-20	2-Apr-20	10-Aug-20	12-Oct-20	29-Jan-20	2-Apr-20	10-Aug-20	12-Oct-20	13-Oct-20	13-Oct-20	13-Oct-20
						SW7	SW7	SW8	SW8	SW8	SW8	SW9	SW9	SW9	SW9	SW10	SW_BR001	SW_BR002
						Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW
						Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
						318000785	318000785	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780
		Hardness Correction		Irrigation Short-		Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail	Tarago Rail
	95% Freshwater	Value Applied	Drinking Water	term Trigger Value	Stock Water	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop	Loop
	(ANZG 2018)	(ANZECC 2000)	(ADWG 2011)	(ANZECC 2000)	(ANZECC 2000)	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines						Brown, turbid.	Water slightly trubid, brown, not flowing.	Clear, vegetation. Not flowing.	Grease at surface, lots of algae growing on plants.	Water flowing, level high, turbid.	Water flowing, clear/brown.	Stagnant pond. Algae and fish present. Slightly turbid.	Non-turbid, slightly brown, not flowing but full.	High level, brown, slightly turbid, bubbles at surface.	Water flowing, clear/brown, slightly turbid.	Water flowing, clear/brown, slightly turbid, no odour.	Water slightly turbid, yellow/brown, no odour, not flowing.	Water flowing, turbid, brown, no odour.
Analyte grouping/Analyte																		
											L							
Dissolved and Total Metals				T									T			T		
Aluminium	0.055 ^a	- 1	-	20	5	1.7	0.33	-	< 0.05	0.72	< 0.05	-	0.05	0.53	< 0.05	< 0.05	0.48	0.38
Dissolved Aluminium	0.055ª	-	-	20	5	0.95	0.18	-	-	0.41	< 0.05	-	-	0.35	< 0.05	< 0.05	0.17	0.16
Arsenic	0.024 ^b	-	0.01	2	0.5-5	0.003	0.005	< 0.001	0.001	< 0.001	0.001	0.001	0.001	< 0.001	0.001	0.001	0.003	0.003
Dissolved Arsenic	0.024 ^b	-	0.01	2	0.5-5	0.001	0.004	< 0.001	-	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	0.003	0.002
Barium	-	-	2	-	-	0.04	0.05	-	0.12	0.02	0.08	-	0.08	0.02	0.09	0.1	0.05	< 0.02
Dissolved Barium	-	-	2	-	-	0.03	0.05	-	-	0.02	0.09	-	-	0.02	0.09	0.11	0.05	< 0.02
Beryllium	-	-	0.06	0.5	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Beryllium	-	-	0.06	0.5	-	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05	-	-	-	-	-	-
Dissolved Boron	-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05	-	-	-	-	-	-
Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	0.0014	0.0003	< 0.0002	< 0.0002	0.0003	< 0.0002	< 0.0002	< 0.0002	0.0004	< 0.0002	< 0.0002	0.0002	0.0005
Dissolved Cadmium	0.0002	0.00054 ^g	0.002	0.05	0.01	0.001	< 0.0002	< 0.0002	-	0.0002	< 0.0002	< 0.0002	-	0.0004	< 0.0002	< 0.0002	< 0.0002	0.0003
Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	0.002	0.001	-	< 0.001	0.001	< 0.001	-	< 0.001	0.002	< 0.001	< 0.001	0.005	0.001
Dissolved Chromium	0.001 ^c	0.0025 ^g	0.05 ^c	1	1	0.002	< 0.001	-	-	0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	0.004	< 0.001
Cobalt	0.0014	-	-	0.1	1	< 0.001	< 0.001	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002
Dissolved Cobalt	0.0014		-	0.1	1	< 0.001	< 0.001	< 0.001	0 001	< 0.001	< 0.001	< 0.001	- 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002
Copper	0.0014	0.0035 ^g	2	5	0.4-5	0.027	0.014	< 0.001	< 0.001	0.008	< 0.001	< 0.001	0.001	0.01	< 0.001	< 0.001	0.008	0.016
Dissolved Copper	0.0014	0.0035 ^g	2	5	0.4-5	0.019	0.013	< 0.001	-	0.007	< 0.001	< 0.001	- 0.54	0.008	< 0.001	< 0.001	0.007	0.011
Iron	-	-	-	10	not sufficiently toxic	1.8	3	-	3.2	0.76	0.51	-	0.54	0.6	0.15	0.55	0.43	4
Dissolved Iron	- 0.0024	-	- 0.01	10	not sufficiently toxic	0.57	2.4		- 0.001	0.31	0.15	- 0.001		0.29	< 0.05	0.11	0.16	2
Lead	0.0034	0.0136 ^g	0.01	5	0.1	0.025	0.012	< 0.001	< 0.001	0.002	0.001	< 0.001	< 0.001	0.002	0.001	0.002	0.004	0.011
Dissolved Lead	0.0034	0.0136 ^g	0.01	5	0.1	0.005	0.009	< 0.001	-	< 0.001	< 0.001	< 0.001	- 0.22	< 0.001	< 0.001	< 0.001	< 0.001	0.005
Manganese	1.9	-	0.5	10	not sufficiently toxic	0.032	0.063	0.37	1.9	0.035	0.066	0.19	0.33	0.041	0.03	0.089	0.086	0.2
Dissolved Manganese	1.9	-	0.5	10	not sufficiently toxic	0.028	0.056	0.33		0.028	0.064	0.012	- 0.0001	0.036	0.023	0.089	0.027	0.19
Mercury	0.00006 ^{d,e}	-	0.001	0.002	0.002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dissolved Mercury	0.00006 ^{d,e}		0.001	0.002	0.002	< 0.0001	< 0.0001	< 0.0001	- 0.003	< 0.0001	< 0.0001	< 0.0001	- 0.003	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.011	0.0275 ^g	0.02	2	1	0.003	0.003	0.001	0.002	0.002	0.001	0.002	0.002	0.002	0.001	0.001	0.003	0.006
Dissolved Nickel	0.011	0.0275 ⁹	0.02	2	1	0.003	0.003	< 0.001	-	0.002	0.001	< 0.001	-	0.002	0.001	< 0.001	0.003	0.006
Selenium	-	-	-	-	-	-	-	< 0.001	-	-	-	< 0.001	-	-	-	-	-	-
Dissolved Selenium	-	-	-	-	-	-	-	< 0.001	-	-	-	< 0.001	-	-	-	-	-	-

< 0.005

< 0.005

0.022

0.009

0.01

0.12

0.009

< 0.005

0.015

0.16

0.008

< 0.005

0.013

0.006

0.034

0.051

0.034

- indicates no criterion available or not analysed

LOR = Limit of Reporting

Dissolved Zinc

Concentrations below the LOR noted as <value

The LOR for mercury exceeds the ecological criteria for 95% protection freshwater ecosystems however concentrations

reported as <LOR are considered acceptable as mercury is not a contaminant of concern at the site.

Details of Guideline values are presented in **Section 6** of report (**Table 6-1**) Concentrations <u>underlined and in italics</u> adopted the higher duplicate value

Concentration in a grey box exceed the ecological criteria of 95% protection freshwater ecosytems

Concentrations in a dark grey box exceed the criteria of 95% protection freshwater ecosystems and the hardness corrected value

Concentrations in a bold box exceed the human health quideline value for drinking water

0.008

Concentrations in blue font exceed the irrigation short term value

Concentrations in **bold font** exceed stock watering criteria

 $^{\rm a}$ Aluminium guidelines for pH > 6.5, based on the pH of groundwater measured at the site and surrounding area.

b Guideline value for arsenic (III).

^c Guideline value for chromium (VI).

^d Guideline value for inorganic mercury.

e 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant.

f Hardness correction factor applied to the threshold value as detailed in Section 3.4.3 and Table 3.4.4 of ANZECC 2000. For calculations, water hardness was conservatively presumed moderately hard based on the Goulburn Mulwaree Regional State

Table III: Sediment Results Client: John Holland Rail

Job No: 318000780 Project Name: DSI Addendum

oject Name: DSI	Addendum																			
			Sample Typ	e:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Sediment
			Site:		Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Ephemeral creek bed	Upgradient
	Co. Hannant	Carllanana	Lab Sample	number:								S20-Oc25318			M20-Jn34830	M20-Ma43808				S20-Ap12275
		Sediment GV-High ^A	Sample dat	e:	30-06-20	30-06-20	30-06-20	30-06-20	30-06-20	30-06-20	30-06-20	13-10-20	13-10-20	13-10-20	25-03-20	25-03-20	13-10-20	13-10-20	13-10-20	1-Apr-20
			Sample ID:		Creek 1	Creek 1a	Creek 2	Creek 3	Creek 4	Creek 5	Creek 6	SED_BR002	XP6O01	XP6O02	P6_HA5_0.0	P6_HA5_0.15	XP6O03	XP6O04	XP6O05	SED1_UP
			Project Na	ne:	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum
			Sampling Method:		Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Sediment Sampler	Field Portable XRF	Field Portable XRF	Hand Auger	Hand Auger	Field Portable XRF	Field Portable XRF	Field Portable XRF	Direct
															Duplicate analysis		Duplicated collected			
Analyte group	ing/Analyte		Units	LOR	<u> </u>	·	•													
Majahawa																				
Moisture Moisture Conte	nt (dried @ 103	3°C)	0/0									64			11	16				_
Moisture Conte	Tit (uned @ 105	, ()	70									04			<u> </u>	10				
Metals																				
Aluminium			mg/kg	10								20000	-	-	<u>13000</u>		17000	-	-	12000
Arsenic	20	70	mg/kg	2	<lod< td=""><td>12</td><td>20</td><td><lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td>34</td><td>-</td><td>-</td><td><u>18</u></td><td></td><td><u>11</u></td><td>-</td><td>-</td><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<>	12	20	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""><td>34</td><td>-</td><td>-</td><td><u>18</u></td><td></td><td><u>11</u></td><td>-</td><td>-</td><td>8.6</td></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""><td>34</td><td>-</td><td>-</td><td><u>18</u></td><td></td><td><u>11</u></td><td>-</td><td>-</td><td>8.6</td></lod<></td></lod<>	<lod< td=""><td>34</td><td>-</td><td>-</td><td><u>18</u></td><td></td><td><u>11</u></td><td>-</td><td>-</td><td>8.6</td></lod<>	34	-	-	<u>18</u>		<u>11</u>	-	-	8.6
Barium			mg/kg	10	132	<lod< td=""><td>356</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>180</td><td><lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	356	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>180</td><td><lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>180</td><td><lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>180</td><td><lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>180</td><td><lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	180	<lod< td=""><td><lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><u>140</u></td><td></td><td><u>200</u></td><td><lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<></td></lod<>	<u>140</u>		<u>200</u>	<lod< td=""><td><lod< td=""><td>65</td></lod<></td></lod<>	<lod< td=""><td>65</td></lod<>	65
Beryllium			mg/kg	2								< 2	-	-	<u>< 2</u>		-	-	-	< 2
Cadmium	1.5	10	mg/kg	0.4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	45	<lod< td=""><td><lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><u>8.1</u></td><td></td><td><u>11</u></td><td><lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<></td></lod<>	<u>8.1</u>		<u>11</u>	<lod< td=""><td><lod< td=""><td>< 0.4</td></lod<></td></lod<>	<lod< td=""><td>< 0.4</td></lod<>	< 0.4
Chromium	80	370	mg/kg	5	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<></td></lod<>	<lod< td=""><td>21</td><td>-</td><td>-</td><td><u>21</u></td><td></td><td><u>16</u></td><td>-</td><td>-</td><td>20</td></lod<>	21	-	-	<u>21</u>		<u>16</u>	-	-	20
Cobalt			mg/kg	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>130</td><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	130	<lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	13	<lod< td=""><td><lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><u>7.3</u></td><td></td><td><u>8.1</u></td><td><lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<></td></lod<>	<u>7.3</u>		<u>8.1</u>	<lod< td=""><td><lod< td=""><td>5.5</td></lod<></td></lod<>	<lod< td=""><td>5.5</td></lod<>	5.5
Copper	65	270	mg/kg	5	76	63	71	54	42	34	31	1300	37	114	<u>610</u>		<u>397</u>	<lod< td=""><td>31.45</td><td>10</td></lod<>	31.45	10
Iron			mg/kg	20	10622	13219	18468	9981	18417	11702	10848	20000	3306	11576.16	<u>23000</u>		<u>23400</u>	10318	10643	23000
Lead	50	220	mg/kg	5	309	226	206	133	121	69	84	1900	58	171.92	<u>800</u>	160	<u>310</u>	22	30	18
Manganese			mg/kg	5	166	502	236	157	240	226	112	68	81	284.01	<u>260</u>		<u>160</u>	338	340	56
Mercury	0.15	1	mg/kg	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.2</td><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.2	<lod< td=""><td><lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<></td></lod<>	< 0.1		<lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< 0.1</td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td></lod<>	< 0.1
Nickel	21	52	mg/kg	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>54</td><td><lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	54	<lod< td=""><td><lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><u>15</u></td><td></td><td><u>18</u></td><td><lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<></td></lod<>	<u>15</u>		<u>18</u>	<lod< td=""><td><lod< td=""><td>8.6</td></lod<></td></lod<>	<lod< td=""><td>8.6</td></lod<>	8.6
Zinc	200	410	mg/kg	5	514	663	857	890	522	405	367	8600	220	761.98	<u>790</u>		<u>1100</u>	175	239	20

LOR = Limit of Reporting LOD = Limit of Detection

Concentrations below the LOR / LOD noted as <value
Concentrations <u>underlined and in italics</u> adopted the higher duplicate value
Concentrations in grey box exceed sediment DGV
Concentrations in orange box exceed sediment DGV-High

Client: John Holland Rail Table III: Sediment Results

Job No: 318000780

Project Name: DSI Addendum

					T	<u> </u>		I		I	I	Г	T	ı			T	I	
			Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
			Upgradient	Upgradient	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Rail corridor	Tarago	Tarago	Tarago	Rail corridor	Rail corridor	Rail corridor
	Sediment	Codimont	S20-Au23105	S20-Oc25320	S20-Ap12274	S20-Au23104	S20-Oc25142	S20-Ap12276 / S20-Jn50647	S20-Au23106	S20-Oc25144	S20-Ap12277 / S20-Jn50648	S20-Au23107	S20-Oc25146	S20-Ap12278 / S20-Jn50649	S20-Au23108	S20-Oc25148	S20-Ap12279	S20-Au23109	S20-Oc25150
	DGV ^A	Sediment - GV-High ^A	11-Aug-20	13-Oct-20	1-Apr-20	11-Aug-20	13-Oct-20	1-Apr-20	11-Aug-20	13-Oct-20	1-Apr-20	11-Aug-20	13-Oct-20	1-Apr-20	11-Aug-20	13-Oct-20	1-Apr-20	11-Aug-20	13-Oct-20
			SED1-UP	SED1-UP	SED1	SED1	SED1	SED2	SED2	SED2	SED3	SED3	SED3	SED4	SED4	SED4	SED5	SED5	SED5
			DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum
			Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct
_												•	•				•		
Analyte groupi	ing/Analyte		1																
Moisture																			
Moisture Conten	t (dried @ 10:	3°C)	-	18	-	- 1	44	-	-	-		-	-	-	-	27	-	-	21
		,									•	•	1				•	•	
Metals																			
Aluminium			-	12000	9200	-	<u>21000</u>	8300	-	14000	13000	-	10000	9200	-	28000	4400	-	7800
Arsenic	20	70	-	16	19	-	9.7	18	-	18	5.1	-	11	37	-	5.1	2.9	-	6.4
Barium			-	49	120	-	<u>170</u>	85	-	110	200	-	110	150	-	240	64	-	98
Beryllium Cadmium	1.5	10	-	< 2 < 0.4	< 2 2.6	-	< 2 7.2	< 2 7.2	-	< 2 6.2	< 2	-	< 2	< 2	-	< 2 8 2	< 2 0.6	-	< 2 0.5
Chromium	80	370	-	29	16	-	7.2	14	-	22	16	-	16	17	-	23	8.3	-	14
Cobalt			-	6.3	9.5	-	<u>25</u> 7.6	6.1		11	< 5		< 5	< 5		5.4	< 5		< 5
Copper	65	270	-	12	200	-	<u>7.0</u> 247	490	-	320	58	-	140	600	-	160	14	-	13
Iron			-	37000	17000	-	19000	16000	-	24000	15000	-	19000	17000	-	18000	6600	-	18000
Lead	50	220	23	29	4700	1700	740	1600	340	1000	130	630	400	2600	1600	130	39	24	27
Manganese			-	70	290	-	120	280	-	640	120	-	97	140	-	220	280	-	200
Mercury	0.15	1	-	< 0.1	< 0.1	-	< 0.1	0.1	-	< 0.1	< 0.1	-	< 0.1	0.3	-	< 0.1	< 0.1	-	< 0.1
Nickel	21	52	-	8.8	9.8	-	<u>14</u>	8.7	-	14	7.6	-	8.7	9.8	-	17	< 5	-	< 5
Zinc	200	410	_	24	610	-	<u>1100</u>	2400	-	2400	320	_	290	750	-	840	100	-	81

LOR = Limit of Reporting LOD = Limit of Detection

Concentrations below the LOR / LOD noted as Concentrations <u>underlined and in italics</u> adopton concentrations in grey box exceed sediment Concentrations in orange box exceed sediment

Table III: Sediment Results

			Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
			Rail corridor	Rail corridor	Rail corridor	Adjacent rail corridor	Adjacent rail corridor	Adjacent rail corridor	Mulwaree River						
	Cadimant	Cadimant	S20-Ap12280	S20-Au23110	-	S20-Ap12281	S20-Au23111	S20-Oc25164	S20-Ap12282	S20-Au23112	S20-Oc25166	S20-Ap12283	S20-Au23113	S20-Oc25168	S20-Oc25154
	Sediment DGV ^A	Sediment GV-High ^A	1-Apr-20	11-Aug-20	13-Oct-20	2-Apr-20	11-Aug-20	12-Oct-20	2-Apr-20	10-Aug-20	12-Oct-20	2-Apr-20	20-Aug-20	12-Oct-20	13-Oct-20
			SED6	SED6	SED6	SED7	SED7	SED7	SED8	SED8	SED8	SED9	SED9	SED9	SED10
			DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum
			Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct	Direct
							I								
Analyte group	ing/Analyte														
Moisture			1	T	T		T		T			Ť	T		
Moisture Conter	<u>nt (dried @ 10</u>	3°C)	-	-	-	-	-	32	-	-	26	-	-	17	32
84-4-1-															
Metals	<u> </u>	Г	6500	l	5100	5200	I	8100	8500		16000	12000	I	3400	13000
Aluminium Arsenic	20	70	10	-	5100 5.7	6.4	-	6.3	4.8	-	7.8	3.6	-	16	4.3
Barium			63	-	5.7 53	60	-	78	93	-	130	96	-	58	110
Beryllium			< 2	-	< 2	< 2	-	< 2	< 2	-	< 2	< 2	-	< 2	< 2
Cadmium	1.5	10	3.3	-	2.1	4.6	-	3.3	0.4	-	< 0.4	0.5	-	< 0.4	0.6
Chromium	80	370	9.6	-	11	8.1	-	10	12	-	16	17	-	13	14
Cobalt			< 5	-	2	< 5	-	< 5	6.3	-	< 5	5.5	-	11	< 5
Copper	65	270	59	-	<u>40</u>	190	-	42	12		10	13	-	12	15
Iron			9200	-	<u>15000</u>	7600	-	8900	10000	ı	14000	14000	-	28000	12000
Lead	50	220	88	290	<u>59</u>	210	56	180	20	15	23	19	24	23	26
Manganese			91	-	<u>136</u>	140	-	61	76	-	130	400	-	380	160
Mercury	0.15	1	< 0.1	-	<lod< td=""><td>< 0.1</td><td>-</td><td>< 0.1</td><td>< 0.1</td><td>-</td><td>< 0.1</td><td>< 0.1</td><td>-</td><td>< 0.1</td><td>< 0.1</td></lod<>	< 0.1	-	< 0.1	< 0.1	-	< 0.1	< 0.1	-	< 0.1	< 0.1
Nickel	21	52	6.9	-	4	< 5	-	< 5	6.6	-	7.3	8.4	-	8.9	7.1
Zinc	200	410	470	-	850	580	-	560	94	-	70	140	-	70	140

LOR = Limit of Reporting
LOD = Limit of Detection
Concentrations below the LOR / LOD noted a
Concentrations <u>underlined and in italics</u> adop
Concentrations in grey box exceed sediment
Concentrations in orange box exceed sedime

Client: John Holland Rail Table IV: Sediment Results (Drainage Lines)

Job No: 318000780 Project Name: DSI Addendum

Project Name: DSI A	ddendum																	
			Sample Type	:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
		NEPM 2013	Site:		Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Boyd Street	Braidwood Road	Braidwood Road	Braidwood Road
	NEPM 2013	EIL	Lab Sample	number:		S20-Jn26497												
	HIL C Open	Residential /	Sample date		18-03-20	18-03-20	18-03-20	30-06-20	30-06-20	30-06-20	30-06-20	30-06-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20
	Space	public Open	Sample ID:		XBOYDSTW2	XBOYDSTW1	XBOYDSTE1	BOYD1	BOYD2	BOYD3	BOYD4	BOYD5	XBOYDO01	XBOYDO02	XBOYD003	XBRO01	XBRO02	XBRO03
	Space	Space	Project Nam	e:	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI
		Space	Sampling Me	ethod:	Field Portable XRF	Sediment Sampler	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF
			Comments:			Duplicate collected							Duplicates collected	Duplicates collected				
Analyte groupin	g/Analyte		Units	LOR														
Moisture																		
Metals																		
Aluminium			mg/kg	10		11000							<u>7700</u>	<u>14000</u>	-	-	-	-
Arsenic	300	100	mg/kg	2	45.6	15	<lod< td=""><td>21</td><td><lod< td=""><td><lod< td=""><td>45</td><td>27</td><td><u>14</u></td><td><u>15</u></td><td>-</td><td>-</td><td>-</td><td>-</td></lod<></td></lod<></td></lod<>	21	<lod< td=""><td><lod< td=""><td>45</td><td>27</td><td><u>14</u></td><td><u>15</u></td><td>-</td><td>-</td><td>-</td><td>-</td></lod<></td></lod<>	<lod< td=""><td>45</td><td>27</td><td><u>14</u></td><td><u>15</u></td><td>-</td><td>-</td><td>-</td><td>-</td></lod<>	45	27	<u>14</u>	<u>15</u>	-	-	-	-
Barium			mg/kg	2	924.35	170	665.38						447.16	<u>180</u>	<lod< td=""><td>930.01</td><td>808.69</td><td>588.94</td></lod<>	930.01	808.69	588.94
Beryllium	90		mg/kg	10		< 2							<lod< td=""><td><u>< 2</u></td><td>-</td><td>-</td><td>-</td><td>-</td></lod<>	<u>< 2</u>	-	-	-	-
Cadmium	90		mg/kg	0.4	<lod< td=""><td>3.8</td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td><u>2.5</u></td><td><u>20</u></td><td><lod< td=""><td>24.63</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3.8	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td><u>2.5</u></td><td><u>20</u></td><td><lod< td=""><td>24.63</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>						<u>2.5</u>	<u>20</u>	<lod< td=""><td>24.63</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	24.63	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Chromium	300	424	mg/kg	5	16.84	14	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td><u>26</u></td><td><u>13</u></td><td>-</td><td>-</td><td>-</td><td>-</td></lod<>						<u>26</u>	<u>13</u>	-	-	-	-
Cobalt	300		mg/kg	5	<lod< td=""><td>5.2</td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td>140.83</td><td><u>20</u></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	5.2	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td>140.83</td><td><u>20</u></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>						140.83	<u>20</u>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	17000	125	mg/kg	5	272.2	330	195.21	<u>580</u>	324	368	233	236	<u>146</u>	<u>610</u>	461.82	<lod< td=""><td>52.66</td><td>48.39</td></lod<>	52.66	48.39
Iron			mg/kg	5	17106.94	19000	11842.94						<u>27700</u>	<u>16000</u>	16241.07	5355.59	11204.85	9208.56
Lead	600	1100	mg/kg	5	363.84	<u>740</u>	459.09	<u>1200</u>	782	484	337	329	<u>249</u>	<u>733</u>	653.74	31.11	28.72	12.73
Manganese	19000		mg/kg	0.1	296.78	450	402.67						<u>380</u>	847.76	899.62	121.76	321.78	103.09
Mercury	80		mg/kg	5	<lod< td=""><td>< 0.1</td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< 0.1	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>						<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	1200	194	mg/kg	5	<lod< td=""><td>9.6</td><td><lod< td=""><td></td><td></td><td></td><td></td><td></td><td><u>12</u></td><td><u>22</u></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9.6	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td><u>12</u></td><td><u>22</u></td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>						<u>12</u>	<u>22</u>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc	30000	308	mg/kg	2	604.04	580	368.63	<u>1200</u>	974	640	1214	1054	905.69	2581.7	1453.34	61.38	240.64	45.17

LOR = Limit of Reporting
LOD = Limit of Detection
Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adoped HIL 'C' for Urban Residential and
Open Public Space
Concentration in **bold green font** exceed the adopted EIL for Open Space and

Recreational Land Use

Client: John Holland Rail Table IV: Sediment Results (Drainage Lines)

Job No: 318000780 Project Name: DSI Addendum RAMBOLL

roject Name: DSI i	Addendum																	
			Sample Typ	e:	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
		NEPM 2013	Site:		Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road	Braidwood Road
	NEPM 2013	EIL	Lab Sample	number:												S20-Oc25316		
	HIL C Open	Residential /	Sample date	e:	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	13-10-20	12-10-20	12-10-20
	Space	public Open	Sample ID:		XBRO04	XBRO05	XBRO06	XBRO07	XBRO08	XBRO09	XBRO10	XBRO11	XBRO12	XBRO13	XBRO14	SED_BR001	BR_SED1	BR_SED2
	Space	Space	Project Nan	ne:	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DSI	Community DS
		Space	Sampling M	ethod:	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Field Portable XRF	Sediment Sampler	Hand Auger	Hand Auger
			Comments:															
Analyte groupi	ng/Analyte		Units	LOR														
<i>loisture</i>																		
																30	-	-
Metals																		
luminium			mg/kg	10	-	-	-	-	-	-	-	-	-	-	-	10000	-	-
rsenic	300	100	mg/kg	2	-	-	-	-	-	-	-	-	-	-	-	9.6	-	-
arium			mg/kg	2	458.69	<lod< td=""><td>233.81</td><td><lod< td=""><td><lod< td=""><td>524.69</td><td><lod< td=""><td><lod< td=""><td>484.8</td><td><lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	233.81	<lod< td=""><td><lod< td=""><td>524.69</td><td><lod< td=""><td><lod< td=""><td>484.8</td><td><lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>524.69</td><td><lod< td=""><td><lod< td=""><td>484.8</td><td><lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	524.69	<lod< td=""><td><lod< td=""><td>484.8</td><td><lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>484.8</td><td><lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	484.8	<lod< td=""><td>1167.84</td><td>84</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	1167.84	84	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Beryllium	90		mg/kg	10	-	-	-	-	-	-	-	-	-	-	-	< 2	-	-
admium	90		mg/kg	0.4	<lod< td=""><td><lod< td=""><td>17.97</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17.97</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	17.97	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>51.79</td><td>< 0.4</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	51.79	< 0.4	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Chromium	300	424	mg/kg	5	-	-	-	-	-	-	-	-	-	-	-	18	-	-
Cobalt	300		mg/kg	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>120.52</td><td>7.5</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	120.52	7.5	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	17000	125	mg/kg	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26.05</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	26.05	<lod< td=""><td><lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>36.63</td><td>14</td><td>89.23</td><td><lod< td=""></lod<></td></lod<>	36.63	14	89.23	<lod< td=""></lod<>
ron			mg/kg	5	13557.85	9488.67	10800.38	8168.78	7362.36	8417.44	6330.73	2274.46	7121.88	14810.29	11969.66	22000	16718.04	4360.83
.ead	600	1100	mg/kg	5	34.03	22.67	16.55	31.04	61.07	35.32	40.95	15.3	<lod< td=""><td>31.93</td><td><lod< td=""><td>35</td><td>97.31</td><td>22.88</td></lod<></td></lod<>	31.93	<lod< td=""><td>35</td><td>97.31</td><td>22.88</td></lod<>	35	97.31	22.88
1anganese	19000		mg/kg	0.1	470.44	240.72	133.08	211.53	182.18	<lod< td=""><td>270.99</td><td>185.79</td><td>233.97</td><td>704.16</td><td>738.6</td><td>310</td><td>431.88</td><td>101.89</td></lod<>	270.99	185.79	233.97	704.16	738.6	310	431.88	101.89
1ercury	80		mg/kg	5	<lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< 0.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	< 0.1	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
lickel	1200	194	mg/kg	5	<lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>5.2</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	5.2	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc	30000	308	ma/ka	2	151.88	150.19	28.24	39.65	152.64	70.42	601	606	182.44	187.54	69.08	93	841.15	210.1

LOR = Limit of Reporting
LOD = Limit of Detection
Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'C' for Urban Residential and
Open Public Space
Concentration in **bold green font** exceed the adopted EIL for Open Space and

Recreational Land Use

Table V: Soil Results (Former Loudout Complex)

			Sample Typ	e:	Soil												
			Site:		Former Loadout												
	NEPM 2013	NEPM 2013			Complex												
	HIL D	EIL	Lab Sample	number:	S19-Jl39934	S19-Jl39997	S19-Jl39998	S19-Au39089	S19-Se37045	S20-Ap02702	S20-Ap02703	S20-Ap02704	S20-Ap44309	S20-Ap44310	S20-Ap44311	S20-Ap44312	S20-Ap44313
	Commercial	Commercial	Sample date	e:	26-07-19	26-07-19	26-07-19	27-08-20	22-09-19	31-03-20	31-03-20	31-03-20	31-03-20	31-03-20	31-03-20	31-03-20	31-03-20
	Industrail	Industrial	Sample ID:		SS15	SS17	SS18	SS44	SS101	TP3_0.0-0.1	TP3_0.5-0.6	TP3_0.6-0.7	TP3_1.5-1.6	TP4_0.0-0.1	P4_0.5-0.6	TP4_1.0-1.1	TP4_1.9-2.0
	Illuustiali	Illuustiiai	Project Nam	ne:	DSI Addendum												
			Sampling M	lethod:	Direct	Direct	Direct	Direct	Direct	Test Pit							
Analyte grouping/Analyte			Units	LOR													
Moisture																	
103°C)			%	1	-	-	-	-	-	7.6	4.2	9.5	10	9.7	8.8	7.3	8
	-																
Metals																	
Lead	2200*	1800	mg/kg	5	350	25	34	140	17	29	1100	< 5	44	380	170	90	29

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**) LOR= Limit of Reporting

Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in green font exceed the adopted EIL for Commercial Industrial land use

Table V: Soil Results (Former Loudout Complex)

				I	Cail	C - !I	Call	Call	Soil	Call	Call	Cail	Call	Cail	C - !I	C - !I	C - iI
			Sample Typ	e:	Soil	Soil	Soil	Soil	Soll	Soil							
			Site:		Former Loadout												
	NEPM 2013	NEPM 2013			Complex												
	HIL D	EIL	Lab Sample	number:	S20-Ap02719	S20-Ap02720	S20-Ap02721	M20-Ma43435	M20-Ma43436	M20-Ma43437	M20-Ma43438	M20-Ma43439	MW2_4.5	N/A	N/A	N/A	N/A
	Commercial	Commercial	Sample date	e:	31-03-20	31-03-20	31-03-20	18-03-20	18-03-20	18-03-20	18-03-20	18-03-20	18-03-20	19-08-20	19-08-20	19-08-20	19-08-20
	Industrail	Industrial	Sample ID:		TP9_0.0-0.1	TP9_0.5-0.6	TP9_1.2-1.3	MW2_0-0.05	MW2_1.0	MW2_1.5	MW2_2.5	MW2_3.5	MW2_4.5	LO_TP01_0.0	LO_TP01_0.5	LO_TP01_1.0	LO_TP01_1.3
	Industran	Industrial	Project Nam	ne:	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addnedum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum					
			Sampling M	lethod:	Test Pit	Test Pit	Test Pit	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole	Test Pit	Test Pit	Test Pit	Test Pit
Analyte grouping/Analyte			Units	LOR													
Moisture																	
103°C)			%	1	8.8	7.6	7.3	< 1	5.5	4.9	4.4	7	7.9	-	-	-	-
			-	-	_	•					•	•	·		•	•	
Metals																	
Lead	2200*	1800	mg/kg	5	40	140	1200	51	3600	540	200	140	42	31	96	50	58

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**) LOR= Limit of Reporting

Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in green font exceed the adopted EIL for Commercial Industrial land use

Table V: Soil Results (Former Loudout Complex)

			Sample Typ	e:	Soil												
			Site:		Former Loadout												
	NEPM 2013	NEPM 2013			Complex												
	HIL D	EIL	Lab Sample	number:	N/A												
	Commercial	Commercial	Sample date	e:	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20
	Industrail	Industrial	Sample ID:		LO_TP02_0.0	LO_TP02_0.5	LO_TP02_0.9	LO_TP02_1.1	LO_TP02_1.3	LO_TP02_1.35	LO_TP02_1.4	LO_TP03_0.9	LO_TP03_1.5	LO_TP03_1.6	LO_TP03_1.7	LO_TP04_0.25	LO_TP04_0.7
	Illuustiali	Illuustiiai	Project Nan	ne:	DSI Addendum												
			Sampling M	ethod:	Test Pit												
Analyte grouping/Analyte	•	•	Units	LOR													
Moisture																	
103°C)			%	1	-	-	-	-	-	-	-	-	-	-	-	1	-
Metals																	
Lead	2200*	1800	mg/kg	5	176	16	11	5700	6900	85	83	158	1748	3662	117	18	199

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**) LOR= Limit of Reporting

Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in green font exceed the adopted EIL for Commercial Industrial land use

			Sample Type	e:	Soil								
			Site:		Former Loadout								
	NEPM 2013	NEPM 2013			Complex								
	HIL D	EIL	Lab Sample	number:	N/A								
	Commercial	Commercial	Sample date	:	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20
	Industrail	Industrial	Sample ID:		LO_TP05_0.3	LO_TP05_0.7	LO_TP05_0.85	LO_TP05_1.1	LO_TP05_1.4	LO_TP06_0.05	LO_TP06_0.5	LO_TP06_0.7	LO_TP06_1.2
	industran	Industriai	Project Nam	e:	DSI Addendum								
			Sampling Mo	ethod:	Test Pit								
Analyte grouping/Analyte			Units	LOR									
Moisture													
103°C)			%	1	-	-	-	-	-	-	-	-	-
													_
Metals													
Lead	2200*	1800	mg/kg	5	90	883	605	150	8	14	ND	273	31

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**) LOR= Limit of Reporting

Concentrations below the LOR / LOD noted as <value
Concentrations in a grey box exceed the adoped HIL 'D' for
Concentration in **green font** exceed the adopted EIL for Commercial Industrial land use

Table VI: Characterisation of Materials to be Generated during Remediation

			Sample Type	e:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Site:		Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor
	NEPM 2013	NEPM 2013	Lab Sample	number:	S20-Au35780	S20-Au35781	S20-Au35782	S20-Au35783	S20-Au35784	S20-Au35785	S20-Au35786	S20-Au35787	S20-Au35788	S20-Au35789
	HIL D	EIL	Sample date		19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20
	Commercial	Commercial	Sample ID:		RRE SP01	RRE SP02	RRE SP03	RRE SP04	RRE SP05	RRE SP06	RRE SP07	RRE SP08	RRE SP09	RRE SP10
	Industrial	Industrial	Project Nam	e:	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum
			Sampling Me		Composite Sample	Composite Sample		Composite Sample		Composite Sample	Composite Sample	Composite Sample		Composite Sample
					•	•	•	•	•	•	•			
Analyte grouping/Analyte			Units	LOR										
Miscellaneous														
Moisture Content (dried @ 103°C)			%	1	6.4	7.1	7	6.1	5.3	6.3	8.1	9	7.9	9.5
Conductivity (1:5 aqueous extract at 25°C as rec.)			uS/cm	10	170	540	91	970	620	1100	970	1100	410	730
pH (1:5 Aqueous extract at 25°C as rec.)			pH Units	0.1	7.4	4.3	8.3	6.4	4.4	4.4	5.3	4	4.4	4.2
Sulphur			mg/kg	5	910	4300	460	14000	3900	11000	8600	16000	5900	4100
Total Organic Carbon			%	0.1	0.5	0.6	1.8	1.2	1.5	0.5	2.3	0.7	< 0.1	0.5
					-									
Metals														
Antimony			mg/kg	10	< 10	19	24	23	31	23	25	39	10	32
Arsenic	3000	160	mg/kg	2	21	70	48	130	190	150	130	190	49	170
Beryllium	500		mg/kg	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Boron	300000		mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Cadmium	900	710	mg/kg	0.4	2.9	7	1.8	10	8.2	25	10	6	3.3	4.6
Chromium	3600	710	mg/kg	5	25	59	24	60	58	130	79	<u>81</u>	37	71
Cobalt	4000	1.00	mg/kg	5	7.4	14	30	8.3	11	14	12	<u>12</u>	8.4	11
Copper	240000	160	mg/kg	5	510	960	450	2100	1700	2200	1900	1600	700	1200
Lead	2200*	1800	mg/kg	5	2600	5900	1300	5300	7000	5200	6800	19000	4100	7300
Manganese	19000 730		mg/kg	0.1	340 0.2	640 0.5	520 0.2	550 0.7	630 1.2	970 1.2	680	710 1.6	540 0.4	1100 0.6
Mercury Molybdenum	/30		mg/kg mg/kg	0.1	< 5	0.5 < 5	0.2 < 5	6.7	8.5	5.8	1.1 6.4	7.3	5.4	< 5
Nickel	6000	340	mg/kg mg/ka	5	10	< 5 29	18	32	22	5.8 45	75	40	18	28
Selenium	10000	340	mg/kg	2	4.3	9.5	< 2	19	23	18	17	27	8.1	15
Tin	10000		mg/kg	10	15	30	23	49	190	140	120	80	28	47
Vanadium			mg/kg	10	52	64	58	64	78	77	69	89	34	93
Zinc	400000	370	ma/ka	5	550	1700	2100	1400	1500	2800	1500	1400	1100	1300

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**) LOR = Limit of Reporting

Concentrations below the LOR noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for Commercial Industrial land use
Concentration in **bold green font** exceed the adopted EIL for Commercial Industrial land use

			Sample Typ	e:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Site:		Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor	Rail Corridor
	NEPM 2013	NEPM 2013	Lab Sample	number:	S20-Au35790	S20-Au35791	S20-Au35792	S20-Au35793	S20-Au35794	S20-Au35795	S20-Au35796	S20-Au35797	S20-Au35798	S20-Au35799
	HIL D	EIL	Sample date	e:	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20	19-08-20
	Commercial	Commercial	Sample ID:		RRE_TP01	RRE_TP02	RRE_TP03	RRE_TP04	RRE_TP05	RRE_TP06	RRE_TP07	RRE_TP08	RRE_TP09	RRE_TP10
	Industrial	Industrial	Project Nan		DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum
			Sampling M	ethod:	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample	Composite Sample
Analysis and Analysis			Ц											
Analyte grouping/Analyte	T	ı	Units	LOR	T	ı	T	T	Γ		<u> </u>	Τ	Τ	Т
Miscellaneous														
		I	0/2	1 1	4.2	6.1	1.4	7.6	10	9.3	1.1	1.4	12	9.3
Moisture Content (dried @ 103°C)			70	1	4.3	6.1	14				11	14	13	
Conductivity (1:5 aqueous extract at 25°C as rec.)			uS/cm	10	33	53	220	250	620	300	74	1000	29	38
pH (1:5 Aqueous extract at 25°C as rec.)			pH Units	0.1	6.7	6.1	4.9	5.2	4.2	6.5	5.7	5.1	5	5
Sulphur			mg/kg	5	79	260	2200	1700	3600	450	2900	12000	3400	2000
Total Organic Carbon			%	0.1	0.3	0.3	1.4	1.5	2.2	0.4	2.7	6.5	1.9	2
	•													
Metals														
Antimony			mg/kg	10	< 10	< 10	18	< 10	11	< 10	< 10	55	14	18
Arsenic	3000	160	mg/kg	2	15	14	130	25	77	31	40	79	52	66
Beryllium	500		mg/kg	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Boron	300000		mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Cadmium	900	74.0	mg/kg	0.4	5.5	7.3	9.6	5.5	3.5	8	4	170	2.4	2.5
Chromium	3600	710	mg/kg	5	31	12	24	15	34	12	52	130	19	19
Cobalt	4000	1.00	mg/kg	5	7.5	< 5	< 5 1200	< 5 670	< 5	< 5	8.2	18	< 5	< 5
Copper Lead	240000	160	mg/kg	5	490	280			830	240	580	4100	1200	1300
	2200*	1800	mg/kg	5	570	820	8700	1600	4000	230	1600	9200	4400	5300
Manganese Margury (19000 730		mg/kg mg/kg	0.1	420 0.2	530 0.1	150 2.9	150 0.5	230 0.3	70 < 0.1	690 0.2	720 0.9	170 0.4	220 0.4
Mercury Molybdenum	/30		3/ 3	0.1	< 5	5.3	2.9 12	10	12	< 0.1 20	0.2 < 5	5.6	9.5	0.4
Nickel	6000	340	mg/kg mg/kg	5	12	22	85	11	12	< 5	< 5 19	<u> </u>	9.5 8.9	8.1
Selenium	10000	340	mg/kg mg/kg	2	< 2	< 2	23	3.9	7.7	2.9	2.8	16	12	14
Jelenium Tin	10000		3, 3	10	< 10	11	400	24	13	< 10	10	<u>16</u> 54	34	38
Vanadium			mg/kg mg/kg	10	76	30	58	43	69	53	45	67	50	72
Zinc	400000	370	mg/kg	5	810	770	1500	1100	600	1100	1300	12000	570	580

Table VI: Characterisation of Materials to be Generated during Remediation

Details of Guideline values are presented in **Section 6** of report (**Table 6-3**)

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

Concentrations in a grey box exceed the adopted HIL 'D' for Commercial Industrial land use

Concentration in **bold green font** exceed the adopted EIL for Commercial Industrial land use

Table VIb: XRF Measurements within Test Pits

			Sample Type:	Soil												
			Site:	Rail Corridor												
	NEPM 2013	NEPM 2013	Lab Sample number:	-	-	-	-	-	-	-	-	1	1	1	-	-
	HIL D	EIL	Sample date:	19-Aug-20												
	Commercial	Commercial	Sample ID:	RRE_TP01_0.0	RRE_TP01_0.05	RRE_TP01_0.10	RRE_TP01_0.15	RRE_TP01_0.20	RRE_TP01_0.30	RRE_TP02_0.0	RRE_TP02_0.05	RRE_TP02_0.10	RRE_TP02_0.15	RRE_TP02_0.2	RRE_TP02_0.25	RRE_TP03_0.0
	Industrail	Industrial	Project Name:	DSI Addendum												
			Sampling Method:	Test Pit												
Analyte grouping/Analyte	e		Units LOR													
Metals																
Lead	2200*	1800	mg/kg 5	150	48	<6	<6	<6	<6	1091	2172	2785	1941	1206	75	2099

LOD= Limit of Detection
Concentrations below the LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in green font exceed the adopted EIL for Commerical Industrial land use

Table VIb: XRF Measurements within Test Pits

			Sample Type	e:	Soil												
			Site:		Rail Corridor												
	NEPM 2013	NEPM 2013	Lab Sample	number:	-	-	-	-	-	-	-	-	-	-	-	-	-
	HIL D	EIL	Sample date):	19-Aug-20												
	Commercial	Commercial	Sample ID:		RRE_TP03_0.05	RRE_TP03_0.10	RRE_TP04_0.0	RRE_TP04_0.05	RRE_TP04_0.1	RRE_TP05_0.0	RRE_TP05_0.05	RRE_TP05_0.10	RRE_TP05_0.15	RRE_TP06_0.0	RRE_TP06_0.05	RRE_TP06_0.10	RRE_TP07_0.0
	Industrail	Industrial	Project Nam	e:	DSI Addendum												
			Sampling Me	ethod:	Test Pit												
Analyte grouping/Analyte	е		Units	LOR													
Metals																	
Lead	2200*	1800	mg/kg	5	2231	1353	774	4867	73	1093	4681	4725	17	718	12300	67	4078

LOD= Limit of Detection
Concentrations below the LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in **green font** exceed the adopted EIL for Commercial Industrial land use

Table VIb: XRF Measurements within Test Pits

			Sample Type	e:	Soil											
			Site:		Rail Corridor											
	NEPM 2013	NEPM 2013	Lab Sample	number:	-	-	-	-	-	-	-	-	-	-	-	-
	HIL D	EIL	Sample date	:	19-Aug-20											
	Commercial	Commercial	Sample ID:		RRE_TP07_0.05	RRE_TP07_0.10	RRE_TP08_0.0	RRE_TP08_0.05	RRE_TP08_0.1	RRE_TP08_0.15	RRE_TP08_0.20	RRE_TP09_0.0	RRE_TP09_0.05	RRE_TP10_0.0	RRE_TP10_0.05	RRE_TP10_0.1
	Industrail	Industrial	Project Name	e:	DSI Addendum											
			Sampling Me	ethod:	Test Pit											
Analyte grouping/Analyte	1		Units	LOR												
Metals																
Lead	2200*	1800	mg/kg	5	19	12	6003	3577	9862	18500	293	4762	67	3715	9523	29

LOD= Limit of Detection
Concentrations below the LOD noted as <value
Concentrations in a grey box exceed the adopted HIL 'D' for
Concentration in green font exceed the adopted EIL for Commerical Industrial land use

	Commis True		Coil	Coil	Coil	Coil	Coil		I .			1 .	
	Sample Type): 	Soil Rail Corridor	Sediment	Sediment Rail Corridor	Sediment Rail Corridor	Sediment						
	Site: Lab Sample r	number:	S20-Jn50651	S20-Jn50652	S20-Jn50653	S20-Jn50654	S20-Jn50656	S20-Jn50657	S20-Jn50658	Rail Corridor S20-Jn50647	S20-Jn50648	S20-Jn50649	Rail Corridor S20-Jn50650
	Sample date:		29-06-20	29-06-20	29-06-20	29-06-20	18-03-20	19-03-20	19-03-20	01-04-20	01-04-20	01-04-20	01-04-20
	Sample ID:		TP3A	TP4A	TP5A	TP6A	MW2_0-0.05	MW4_0-0.05	MW5_0-0.05	SED2	SED3	SED4	SED6
	Project Name		DSI Addendum	DSI Addendum	DSI Addendum	DSI Addendum							
	Sampling Me	etnoa:	Direct	Direct	Direct	Direct	Auger	Auger	Auger	Push Tube	Push Tube	Push Tube	Push Tube
Analyte grouping/Analyte	Units	LOR							!	!	!	!	
Overnochlorino Bosticidos													
Organochlorine Pesticides 4.4'-DDD	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC Aldrin	mg/kg	0.05 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05							
Aldrin and Dieldrin (Total)*	mg/kg mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC DDT + DDE + DDD (Total)*	mg/kg	0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Dieldrin	mg/kg mg/kg	0.05 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate Endrin	mg/kg	0.05 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05							
Endrin aldehyde	mg/kg mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor Heptachlor epoxide	mg/kg	0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Hexachlorobenzene	mg/kg mg/kg	0.05 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Methoxychlor	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.05	< 0.05	< 0.05	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	mg/kg	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vic EPA IWRG 621 OCP (Total)*	mg/kg	0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.2	< 0.2
Organophosphorus Pesticides	11	0.2	1 .02	102		1 .02	102	.0.2	1 .0.2	100	1 .0.2	102	10.2
Azinphos-methyl Bolstar	mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Chlorfenvinphos	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	mg/kg	0.2	< 0.2	< 0.2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos Demeton-O	mg/kg mg/kg	0.2	< 2 < 0.2	< 2 < 0.2	< 0.2	< 0.2	< 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2
Demeton-S	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate Disulfoton	mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
EPN	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop Ethyl parathion	mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2
Ethyl parathion Fenitrothion	mg/kg mg/kg	0.2 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2
Fensulfothion	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Malathion Merphos	mg/kg	0.2 0.5	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.5	< 0.2 < 0.5
Methyl parathion	mg/kg mg/kg	0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	mg/kg	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Naled Omethoate	mg/kg	0.5	< 0.5 < 2	< 0.5 < 2	< 0.5 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.2 < 2	< 0.5 < 2	< 0.5 < 2	< 0.5 < 2	< 0.5 < 2
Phorate	mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos Tetrachlorvinphos	mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Tokuthion	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Polychlorinated Biphenyls													
Aroclor-1016	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1221	mg/kg	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232 Aroclor-1242	mg/kg	0.5 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.1 < 0.1	< 0.1	< 0.1	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5
Aroclor-1242 Aroclor-1248	mg/kg mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5
Aroclor-1254	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	mg/kg	0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	mg/kg	0.5	< 0.5	< 1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5

LOR= Limit of Reporting Concentrations below the LOR noted as <value

Job No: 318000780

Project Name: DSI Addendum

Sample Type:	Surface Water	Surface Water		Surface Water	Surface Water		Surface Water	Surface Water	
Duplicate Type:	Intra-Laborat	tory Duplicate		Intra-Labora	tory Duplicate		Intra-Labora	tory Duplicate	
Lab ID	S19-Au07234	S19-Au07235	1	S19-Au17273	S19-Au17284		S19-Se37061	S19-Se37065	
Sample date:	06-Aug-19	06-Aug-19		13-Aug-19	13-Aug-19		24-Sep-19	24-Sep-19	
Sample ID:	SW04	SW04A]	SW1-UP	D01_130819		SW1_UP	D02_240919	
Project Name:	Tarago SW Monitoring	Tarago SW Monitoring		Tarago SW Monitoring	Tarago SW Monitoring		Tarago SW Monitoring	Tarago SW Monitoring	
Project No:	318000780	318000780	RPD %	318000780	318000780	RPD %	318000780	318000780	RPD %
Sample Location	Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop	
Sampling Method:	Grab Sample	Grab Sample		Grab Sample	Grab Sample		Grab Sample	Grab Sample	
Sample Description:	Stagnant pond, clear to slightly yellow.	Stagnant pond, clear to slightly yellow.		Not Recorded.	Not Recorded.		Clear/slightly brown.	Clear/slightly brown.	

Analyte grouping/Analyte LOR Units

Dissolved and Total Metals											
Aluminium	mg/L	0.05	-	-	NC	-	-	-	-	-	-
Aluminium (filtered)	mg/L	0.05	0.17	0.08	72.0	< 0.05	< 0.05	NC	< 0.05	< 0.05	NC
Arsenic	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Arsenic (filtered)	mg/L	0.001	0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Barium	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Barium (filtered)	mg/L	0.001	0.04	0.04	0.0	0.1	0.1	0.0	0.1	0.1	0.0
Beryllium	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Beryllium (filtered)	mg/L	0.001	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Boron	mg/L	0.05	-	-	-	-	-	-	-	-	-
Boron (filtered)	mg/L	0.05	-	-	-	-	-	-	-	-	-
Cadmium	mg/L	0.0002	-	-	NC	-	-	-	-	-	-
Cadmium (filtered)	mg/L	0.0002	0.0055	0.0056	1.8	< 0.0002	< 0.0002	NC	<0.0002	< 0.0002	NC
Chromium	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Chromium (filtered)	mg/L	0.001	0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Cobalt	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Cobalt (filtered)	mg/L	0.001	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Copper	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Copper (filtered)	mg/L	0.001	0.14	0.15	6.9	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Iron	mg/L	0.05	-	-	NC	-	-	-	-	-	-
Iron (filtered)	mg/L	0.05	0.22	0.14	44.4	< 0.05	< 0.05	NC	< 0.05	< 0.05	NC
Lead	mg/L	0.001	0.013	0.012	8.0	-	-	-	< 0.001	< 0.001	NC
Lead (filtered)	mg/L	0.001	0.008	0.008	0.0	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Manganese	mg/L	0.005	-	-	NC	-	-	-	-	-	-
Manganese (filtered)	mg/L	0.005	0.015	0.014	6.9	< 0.005	< 0.005	NC	<0.005	0.005	NC
Mercury	mg/L	0.0001	-	-	NC	-	-	NC	-	-	-
Mercury (filtered)	mg/L	0.0001	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC
Nickel	mg/L	0.001	-	-	NC	-	-	-	-	-	-
Nickel (filtered)	mg/L	0.001	0.014	0.014	0.0	< 0.001	< 0.001	NC	<0.001	< 0.001	NC
Selenium	mg/L	0.001	-	-	-	-	-	-	-	-	-
Selenium (filtered)	mg/L	0.001	-	-	-	-	-	-	-	-	-
Zinc	mg/L	0.005	-	-	NC	-	-	-	-	-	-
Zinc (filtered)	mg/L	0.005	1.2	1.2	0.0	< 0.005	< 0.005	NC	<0.005	< 0.005	NC

⁻ indicates no criterion available or not analysed

Concentrations below the LOR noted as <value

Grey boxes indicate exceedance or RPD criterion: >30% where results are >10 x LOR

LOR = Limit of Reporting

Table VIII: Surface Water QA Results

Client: John Holland Rail Job No: 318000780

Project Name: DSI Addendum

	Sample Type	e:	Surface Water	Surface Water		Surface Water	Surface Water		Surface Water	Surface Water	
	Duplicate Ty	rpe:	Intra-Laborat	ory Duplicate		Intra-Labora	tory Duplicate		Inter-Labora	tory Duplicate	
	Lab ID		S20-Ja29060	S20-Ja29063		S20-Ap12291	S20-Ap12294		S20-Ap12291	ES2012327001	
	Sample date	:	29-Jan-20	29-Jan-20		2-Apr-20	2-Apr-20		2-Apr-20	2-Apr-20	
	Sample ID:		SW7	D01_290220		SW7	D01_020420		SW7	T01_020420	
	Project Nam		Tarago SW	Tarago SW		Tarago SW	Tarago SW		Tarago SW	Tarago SW	
			Monitoring	Monitoring		Monitoring	Monitoring		Monitoring	Monitoring	
	Project No:		318000780	318000780	RPD %	318000780	318000780	RPD %	318000780	318000780	RPD %
	Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop	
	Sampling Me	ethod:	Grab Sample	Grab Sample		Grab Sample	Grab Sample		Grab Sample	Grab Sample	
	Sample Description:		Silty, from dam, low level water.	Silty, from dam, low level water.		Highly turbid.	Highly turbid.		Highly turbid.	Highly turbid.	
Analyte grouping/Analyte	Units	LOR									
Dissolved and Total Metals											
Aluminium	mg/L	0.05	-	-	-	0.21	0.17	21.1	0.21	0.29	32.0
Aluminium (filtered)	mg/L	0.05	-	-	-	-	-	NC	-	-	-
Arsenic	mg/L	0.001	0.016	0.015	6.5	0.003	0.004	28.6	0.003	0.004	28.6
Arsenic (filtered)	mg/L	0.001	0.011	0.011	0.0	-	-	NC	-	-	-
Barium	mg/L	0.001	-	-	-	0.08	0.08	0.0	0.08	0.076	5.1
Barium (filtered)	mg/L	0.001	-	-	-	-	-	NC	-	-	-
Beryllium	mg/L	0.001	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC
Beryllium (filtered)	mg/L	0.001	< 0.001	< 0.001	NC	-	-	NC	-	-	-
Boron	mg/L	0.05	< 0.05	< 0.05	NC	-	-	-	-	-	-
Boron (filtered)	mg/L	0.05	< 0.05	< 0.05	NC	-	-	-	-	-	-
Cadmium	mg/L	0.0002	0.0016	0.0015	6.5	0.0009	0.0009	0.0	0.0009	0.0009	0.0
Cadmium (filtered)	mg/L	0.0002	0.0005	0.0005	0.0	-	-	NC	-	-	-
Chromium	mg/L	0.001	-	-	-	0.001	< 0.001	NC	0.001	<0.001	NC
Chromium (filtered)	mg/L	0.001	-	-	-	-	-	NC	-	-	-
Cobalt	mg/L	0.001	0.002	0.002	0.0	0.002	0.002	0.0	0.002	0.002	0.0
Cobalt (filtered)	mg/L	0.001	0.002	0.002	0.0	-	-	NC	-	-	-
Copper	mg/L	0.001	0.021	0.019	10.0	0.022	0.018	20.0	0.022	0.020	9.5
Copper (filtered)	mg/L	0.001	0.008	0.009	11.8	-	-	NC	-	-	-
Iron	mg/L	0.05	-	-	-	4.2	4.2	0.0	4.2	4.22	0.5
Iron (filtered)	mg/L	0.05	-	-	-	-	-	NC	-	-	-
Lead	mg/L	0.001	0.04	0.037	7.8	0.02	0.017	16.2	0.02	0.019	5.1
Lead (filtered)	mg/L	0.001	0.017	0.017	0.0	-	-	NC	-	-	-
Manganese	mg/L	0.005	1.1	1.1	0.0	0.41	0.41	0.0	0.41	0.392	4.5
Manganese (filtered)	mg/L	0.005	0.68	0.64	6.1	-	-	NC	-	-	-
Mercury	mg/L	0.0001	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	<0.0001	NC
Mercury (filtered)	mg/L	0.0001	< 0.0001	< 0.0001	NC	-	-	NC	-	-	-
Nickel	mg/L	0.001	0.012	0.012	0.0	0.006	0.005	18.2	0.006	0.005	18.2
Nickel (filtered)	mg/L	0.001	0.009	0.009	0.0	-	-	NC	-	-	-
Selenium	mg/L	0.001	0.001	0.001	0.0	-	-	-	-	-	-
Selenium (filtered)	mg/L	0.001	0.001	< 0.001	NC	-	-	-	-	-	-
Zinc	mg/L	0.005	0.28	0.26	7.4	0.15	0.13	14.3	0.15	0.144	4.1
1		1	i i ——————————————————————————————————	ı — — — — — — — — — — — — — — — — — — —							

9.6

NC

0.079

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

Grey boxes indicate exceedance or RPD criterion: >30% where results are >10 x LOR

mg/L

0.005

0.087

Zinc (filtered)

⁻ indicates no criterion available or not analysed

Table VIII: Surface Water QA Results

Client: John Holland Rail Job No: 318000780

Project Name: DSI Addendum

	Sample Type	e:	Surface Water	Surface Water		Surface Water	Surface Water		Surface Water	Surface Water	
	Duplicate Ty		++	ory Duplicate			tory Duplicate			tory Duplicate	
	Lab ID	/pe.	S20-Au23115	S20-Au23125		S20-Oc25141	S20-Oc25155		S20-Oc25141	ES2036245-001	
	Sample date		11-Aug-20	11-Aug-20		13-Oct-20	13-Oct-20		13-Oct-20	13-Oct-20	
		.	SW1	DUP01		SW1				T1_131020	
	Sample ID:			Tarago SW			D1_131020		SW1 Tarago SW		
	Project Nam	ie:	Tarago SW Monitoring	Monitoring		Tarago SW Monitoring	Tarago SW Monitoring	Mon	Monitoring	Tarago SW Monitoring	
	Project No:		318000780	318000780	RPD %	318000780	318000780		318000780	318000780	RPD %
	Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop		Tarago Rail Loop	Tarago Rail Loop	KI 2 /0	Tarago Rail Loop	Tarago Rail Loop	141 2 70
	<u> </u>					·			·		
	Sampling Mo	ethod:	Grab Sample	Grab Sample		Grab Sample	Grab Sample		Grab Sample	Grab Sample	
						Water flowing,	Water flowing,		Water flowing,	Water flowing,	
			Brown, slightly	Brown, slightly		turbid,	turbid,		turbid,	turbid,	
	Sample Des	cription:	turbid, continuous			yellow/brown,	yellow/brown,		yellow/brown,	yellow/brown,	
			flow.	flow.		water level	water level		water level	water level	
	11					shallow.	shallow.		shallow.	shallow.	
Analyte grouping/Analyte	Units	LOR									
Analyte grouping/Analyte	Onics	LOK									
Dissolved and Total Metals											
Aluminium	mg/L	0.05	0.88	0.83	5.8	0.29	0.12	82.9	0.29	0.61	71.1
Aluminium (filtered)		0.05	0.53	0.54	1.9	< 0.05	< 0.05	NC	< 0.05	<0.01	NC
Arsenic	mg/L	0.001	< 0.001	< 0.001	NC	0.004	0.002	66.7	0.004	0.002	66.7
	mg/L		+								NC
Arsenic (filtered) Barium	mg/L	0.001	< 0.001	< 0.001	NC 0.0	< 0.001	< 0.001	NC 26.1	< 0.001	<0.001	
	mg/L	0.001	0.04	0.04	0.0	0.36	0.25	36.1	0.36	0.276	26.4
Barium (filtered)	mg/L	0.001	0.04	0.04	0.0	0.11	0.11	0.0	0.11	0.091	18.9
Beryllium	mg/L	0.001	< 0.001	< 0.001	NC NC	< 0.001	< 0.001	NC NC	< 0.001	<0.001	NC NC
Beryllium (filtered)	mg/L	0.001	< 0.001	< 0.001	NC NG	< 0.001	< 0.001	NC NC	< 0.001	<0.001	NC NC
Boron	mg/L	0.05	-	-	NC NG	-	-	NC NG	-	-	NC NC
Boron (filtered)	mg/L	0.05	-		NC NG	- 0.0013	0.0011	NC	- 0.0012	0.0024	NC
Cadmium	mg/L	0.0002	< 0.0002	< 0.0002	NC NG	0.0012	0.0011	8.7	0.0012	0.0021	54.5
Cadmium (filtered)	mg/L	0.0002	< 0.0002	0.0003	NC	0.0005	0.0005	0.0	0.0005	0.0004	22.2
Chromium	mg/L	0.001	0.001	0.002	66.7	0.001	< 0.001	NC	0.001	<0.001	NC
Chromium (filtered)	mg/L	0.001	0.001	< 0.001	NC	< 0.001	< 0.001	NC 10.0	< 0.001	<0.001	NC
Cobalt	mg/L	0.001	< 0.001	< 0.001	NC	0.003	0.002	40.0	0.003	0.007	80.0
Cobalt (filtered)	mg/L	0.001	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	< 0.001	<0.001	NC
Copper	mg/L	0.001	0.003	0.003	0.0	0.011	0.009	20.0	0.011	0.014	24.0
Copper (filtered)	mg/L	0.001	0.002	0.003	40.0	0.002	0.002	0.0	0.002	0.001	66.7
Iron	mg/L	0.05	0.91	0.89	2.2	0.85	0.61	32.9	0.85	1.41	49.6
Iron (filtered)	mg/L	0.05	0.34	0.34	0.0	< 0.05	< 0.05	NC	< 0.05	<0.05	NC
Lead	mg/L	0.001	0.001	< 0.001	NC	0.028	0.012	80.0	0.028	0.032	13.3
Lead (filtered)	mg/L	0.001	< 0.001	0.004	NC	< 0.001	< 0.001	NC	< 0.001	<0.001	NC
Manganese	mg/L	0.005	0.024	0.023	4.3	0.28	0.22	24.0	0.28	0.706	86.4
Manganese (filtered)	mg/L	0.005	0.018	0.018	0.0	0.043	0.044	2.3	0.043	0.039	9.8
Mercury	mg/L	0.0001	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	<0.0001	NC
Mercury (filtered)	mg/L	0.0001	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	<0.0001	NC
Nickel	mg/L	0.001	0.002	0.002	0.0	0.001	0.001	0.0	0.001	0.002	66.7
Nickel (filtered)	mg/L	0.001	0.002	0.002	0.0	< 0.001	< 0.001	NC	< 0.001	<0.001	NC
Selenium	mg/L	0.001	-	-	NC	-	-	NC	-	-	NC
Selenium (filtered)	mg/L	0.001	-	-	NC	-	-	NC	-	-	NC
Zinc	mg/L	0.005	0.02	0.017	16.2	0.21	0.18	15.4	0.21	0.32	41.5
7: n = /6:14 = n = d)	//	0.005	0.011	0.045	121.4	0.072	0.074	4.4	0.072	0.063	16.2

121.4

0.073

0.074

1.4

0.062

0.073

16.3

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

Grey boxes indicate exceedance or RPD criterion: >30% where results

mg/L

0.005

0.011

0.045

are >10 x LOR

Zinc (filtered)

⁻ indicates no criterion available or not analysed

Client: John Holland Rail Table IX: Sediment and Soil QA Results

Job No: 318000780

Project Name: DSI Addendum

Sample Typ	e:	Sediment	Sediment		Sediment	Sediment		Sediment	Sediment	
Duplicate T	pe:	Intra-Laborat	Intra-Laboratory Duplicate		Intra-Laboratory Duplicate			Intra-Labora	tory Duplicate	
Lab Sample	number:	M20-Jn34830	M20-Jn34830		S20-Jn26497	M20-Jn34831		S20-Ap12281	S20-Ap12284	1
Sample dat):	25-March-2020	25-March-2020	RPD %	18-March-2020	18-March-2020	RPD %	02-April-2020	02-April-2020	RPD %
Sample ID:		P6_HA5_0.0	P6_HA5_0.0		XBOIDSTW1	XBOIDSTW1		SED7	SED_D01_020420	
Project Nar	e:	DSI Addendum	DSI Addendum		DSI Addendum	DSI Addendum		DSI Addendum	DSI Addendum	
Sampling M	ethod:	Hand Auger	Hand Auger		Direct	Direct		Disposable Bailer	Disposable Bailer	

Analyte grouping/Analyte	Units	LOR									
Miscellaneous											
Moisture Content (dried @ 103°C)	%	1	10	11	_	<u>-</u>	_	_	_	_	_
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	10	-		_	_	_	_	_	_	_
pH (1:5 Aqueous extract at 25°C as rec.)	pH Units	0.1	_	_	_	_	_	_	_	_	_
Sulphur	mg/kg	5	_	_	_	_	_	_	_	_	-
Total Organic Carbon	%	0.1	-	_	_	-	_	_	_	_	_
rotal organic carpon	7.0	0.1									
Metals											
Aluminium	mg/kg	20	-	13000	NC	11000	11000	0.0	5200	8300	45.9
Antimony	mg/kg	10	-	-	-	-	-	-	-	-	-
Arsenic	mg/kg	2	-	18	NC	15	15	0.0	6.4	8.5	28.2
Barium	mg/kg	10	-	140	NC	170	170	0.0	60	90	40.0
Beryllium	mg/kg	2	-	< 2	NC	< 2	< 2	NC	< 2	< 2	NC
Boron	mg/kg	10		-	-	-	-	-	-	-	-
Cadmium	mg/kg	0.4	-	8.1	NC	3.8	3.8	0.0	4.6	8.6	60.6
Chromium	mg/kg	5	-	21	NC	14	14	0.0	8.1	10	21.0
Cobalt	mg/kg	5	-	7.3	NC	5.2	< 5	NC	< 5	< 5	NC
Copper	mg/kg	5	-	610	NC	330	330	0.0	190	300	44.9
Iron	mg/kg	20	-	23000	NC	19000	18000	5.4	7600	9500	22.2
Lead	mg/kg	5	430	800	60.2	730	740	1.4	210	300	35.3
Manganese	mg/kg	5	-	260	NC	450	450	0.0	140	210	40.0
Mercury	mg/kg	0.1	-	< 0.1	NC	< 0.1	< 0.1	NC	< 0.1	< 0.1	NC
Molybdenum	mg/kg	5	-	-	-	-	-	-	-	-	-
Nickel	mg/kg	5	-	15	NC	9.6	9.5	1.0	< 5	6.2	NC
Selenium	mg/kg	2	-	-	-	-	-	-	-	-	-
Tin	mg/kg	10	-	-	-	-	-	-	-	-	-
Vanadium	mg/kg	10	-	-	-	-	-	-	-	-	-
Zinc	mg/kg	5	-	790	NC	580	570	1.7	580	770	28.1

⁻ indicates no criterion available or not analysed LOR = Limit of Reporting

Concentrations below the LOR noted as <value

Grey boxes indicate exceedance or RPD criterion: >30% where results are >10 x LOR

Client: John Holland Rail Table IX: Sediment and Soil QA Results

Job No: 318000780

Project Name: DSI Addendum

	Sample Type	e:	Sediment	Sediment		Soil	Soil		Soil	Soil	
	Duplicate Ty	pe:	Intra-Laborat	ory Duplicate	•	Intra-Laborat	ory Duplicate		Intra-Labora	tory Duplicate	
	Lab Sample	number:	S20-Au23104	S20-Au23114		S20-Au35787	S20-Au35801		S20-Au35797	S20-Au35802	
	Sample date	e:	11-August-2020	11-August-2020	RPD %	19-August-2020	19-August-2020	RPD %	19-August-2020	19-August-2020	RPD %
	Sample ID:		SED1	DUP01		RRE_SP08	RRE_DUP1		RRE_TP08	RRE_DUP2	
	Project Nam		DSI Addendum	DSI Addendum		DSI Addendum	DSI Addendum		DSI Addendum	DSI Addendum	
	Sampling Me	ethod:	Disposable Bailer	Disposable Bailer		Composite Sample	Composite Sample		Composite Sample	Composite Sample	
Analyte grouping/Analyte Units LOR											
Analyte grouping/Analyte	Onics	LOK									
Miscellaneous											
Moisture Content (dried @ 103°C)	%	1	-	-	-	9	10	10.5	14	18	25.0
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	10	-	-	-	1100	1000	9.5	1000	1200	18.2
pH (1:5 Aqueous extract at 25°C as rec.)	pH Units	0.1	-	-	-	4	4	0.0	5.1	5.1	0.0
Sulphur	mg/kg	5	-	-	-	16000	12000	28.6	12000	4200	96.3
Total Organic Carbon	%	0.1	-	-	-	0.7	0.5	33.3	6.5	3.2	68.0
Metals			-								
Aluminium	mg/kg	20	-	-	-	-	-	-	-	-	-
Antimony	mg/kg	10	-	-	-	39	28	32.8	55	29	61.9
Arsenic	mg/kg	2	-	-	-	190	130	37.5	79	60	27.3
Barium	mg/kg	10	-	-	-	-	-	-	-	-	-
Beryllium	mg/kg	2	-	-	-	< 2	< 2	NC	< 2	< 2	NC
Boron	mg/kg	10	-	-	-	< 10	< 10	NC	< 10	< 10	NC
Cadmium	mg/kg	0.4	-	-	-	6	5.6	6.9	170	140	19.4
Chromium	mg/kg	5	-	-	-	77	81	5.1	130	120	8.0
Cobalt	mg/kg	5	-	-	-	10	12	18.2	18	9.6	60.9
Copper	mg/kg	5	-	-	-	1600	1300	20.7	4100	3400	18.7
Iron	mg/kg	20	-	-	-	-	-	-	-	-	-
Lead	mg/kg	5	1700	1000	51.9	19000	9100	70.5	9200	9000	2.2
Manganese	mg/kg	5	-	-	-	710	660	7.3	720	520	32.3
Mercury	mg/kg	0.1	-	-	-	1.6	1	46.2	0.9	0.9	0.0
Molybdenum	mg/kg	5	-	-	-	7.3	5.2	33.6	< 5	5.6	NC
Nickel	mg/kg	5	-	-	-	40	37	7.8	79	61	25.7
Selenium	mg/kg	2	-	-	-	27	18	40.0	15	16	6.5
Tin	mg/kg	10	-	-	-	80	62	25.4	54	53	1.9
Vanadium	mg/kg	10		-	-	89	76	15.8	67	48	33.0
Zinc	mg/kg	5	-	-	-	1300	1400	7.4	12000	8600	33.0

⁻ indicates no criterion available or not analysed LOR = Limit of Reporting

Concentrations below the LOR noted as <value

Grey boxes indicate exceedance or RPD criterion: >30% where results are >10 x LOR

Table IX: Sediment and Soil QA Results

Client: John Holland Rail Job No: 318000780

Project Name: DSI Addendum

	Sample Type:		Sediment	Sediment		Sediment	Sediment				
	Duplicate Ty		Intra-Laborat	ory Duplicate			tory Duplicate				
	Lab Sample		S20-Oc25142	S20-Oc25156		S20-Oc25142	ES2036245002				
	Sample date):	13-October-2020	13-October-2020	RPD %	13-October-2020	13-October-2020	RPD %			
	Sample ID:		SED1	D1_SED_131020		SED1	T1_SED_131020				
	Project Nam Sampling Me		DSI Addendum	DSI Addendum Pond Sampler		DSI Addendum	DSI Addendum Pond Sampler				
	Sampling Me	etnoa: j	Pond Sampler	Pona Sampler		Pond Sampler	Pona Samplei				
Analyte grouping/Analyte	Units	LOR									
Miscellaneous											
	0/										
Moisture Content (dried @ 103°C)	%	1	-	-	-	-	-	-			
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	10	-	-	-	-	-	-			
pH (1:5 Aqueous extract at 25°C as rec.)	pH Units	0.1	-	-	-	-	-	-			
Sulphur	mg/kg	5	-	-	-	-	-	-			
Total Organic Carbon	%	0.1	-	-	-	-	-	-			
Metals							<u> </u>				
Aluminium	mg/kg	20	19000	21000	10.0	19000	13300	35.3			
Antimony	mg/kg	10	-	-	-	-	-	-			
Arsenic	mg/kg	2	9.7	9.4	3.1	9.7	9	7.5			
Barium	mg/kg	10	130	170	26.7	130	120	8.0			
Beryllium	mg/kg	2	< 2	< 2	NC	< 2	<1	NC			
Boron	mg/kg	10	-	-	-	-	-	-			
Cadmium	mg/kg	0.4	7.2	5.6	25.0	7.2	7	2.8			
Chromium	mg/kg	5	21	25	17.4	21	19	10.0			
Cobalt	mg/kg	5	6.9	7.6	9.7	6.9	7	1.4			
Copper	mg/kg	5	190	240	23.3	190	247	26.1			
Iron	mg/kg	20	15000	19000	23.5	15000	14300	4.8			
Lead	mg/kg	5	610	740	19.3	610	634	3.9			
Manganese	mg/kg	5	120	120	0.0	120	117	2.5			
Mercury	mg/kg	0.1	< 0.1	< 0.1	NC	< 0.1	<0.1	NC			
Molybdenum	mg/kg	5	-	-	-	-	-	-			
Nickel	mg/kg	5	13	14	7.4	13	12	8.0			
Selenium	mg/kg	2	-	-	-	-	-	-			
Tin	mg/kg	10	-	-	-	-	-	-			
Vanadium	mg/kg	10	-	-	-	-	-	-			

1100

9.5

1000

1110

10.4

1000

Zinc

- indicates no criterion available or not analysed LOR = Limit of Reporting Concentrations below the LOR noted as <value Grey boxes indicate exceedance or RPD criterion: >30% where results are >10 x LOR

mg/kg

Client: John Holland Rail Job No: 318000780

Project Name: DSI Addendum

	Sample Typ	e:	RINSATE	RINSATE
	Site:		Rail Corridor	Rail Corridor
	Lab Sample	number:	S20-Au35803	S20-Oc25162
	Sample date	e:	19-08-20	13-10-20
	Sample ID:		RRE_RINSATE	RIN_131020
	Project Nam	ne:	DSI Addendum	DSI Addendum
	Sample coll	ected from:	Hand Trowel	Pond Sampler
Analyte grouping/Analyte	Units	LOR		
Metals				
Aluminium	mg/L	0.05	-	< 0.05
Antimony	mg/L	0.005	< 0.005	-
Arsenic	mg/L	0.001	< 0.001	< 0.05
Barium	mg/L	0.001	-	< 0.001
Beryllium	mg/L	0.001	< 0.001	< 0.02
Boron	mg/L	0.05	< 0.05	< 0.001
Cadmium	mg/L	0.0002	< 0.0002	< 0.0002
Chromium	mg/L	0.001	< 0.001	< 0.001
Cobalt	mg/L	0.001	< 0.001	< 0.001
Copper	mg/L	0.001	< 0.001	< 0.001
Iron	mg/L	0.05	-	< 0.05
Lead	mg/L	0.001	< 0.001	< 0.001
Manganese	mg/L	0.005	< 0.005	< 0.005
Mercury	mg/L	0.0001	< 0.0001	< 0.0001
Molybdenum	mg/L	0.005	< 0.005	-
Nickel	mg/L	0.001	< 0.001	< 0.001
Selenium	mg/L	0.001	< 0.001	-
Tin	mg/L	0.005	< 0.005	-
Vanadium	mg/L	0.005	< 0.005	-
Zinc	mg/L	0.005	< 0.005	< 0.005

LOR = Limit of Reporting Concentrations below the LOR noted as <value Client: John Holland Rail Job No: 318000780

Project Name: DSI Addendum

RAMBOLL

UCL Statistics for Uncensored Full

User Selected Options

Date/Time of Computation ProUCL 5.123-Oct-20 1:37:48 PM

Table XI: UCL Calculations

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lead

General Statistics

Total Number of Observations 29

Minimum 21.93 Maximum 1200 SD 302

Coefficient of Variation 0.73

Normal GOF Test

Shapiro Wilk Test Statistic 0.945
5% Shapiro Wilk Critical Value 0.926
Lilliefors Test Statistic 0.0972

5% Lilliefors Critical Value 0.161

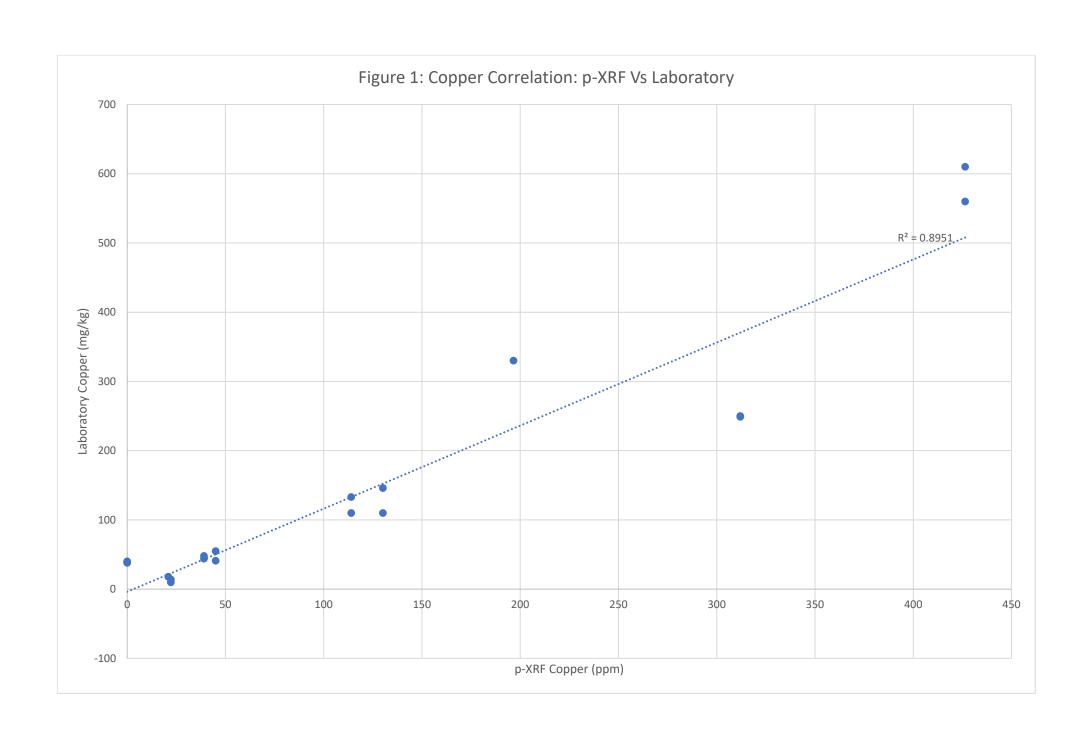
Data appear Normal at 5% Signification

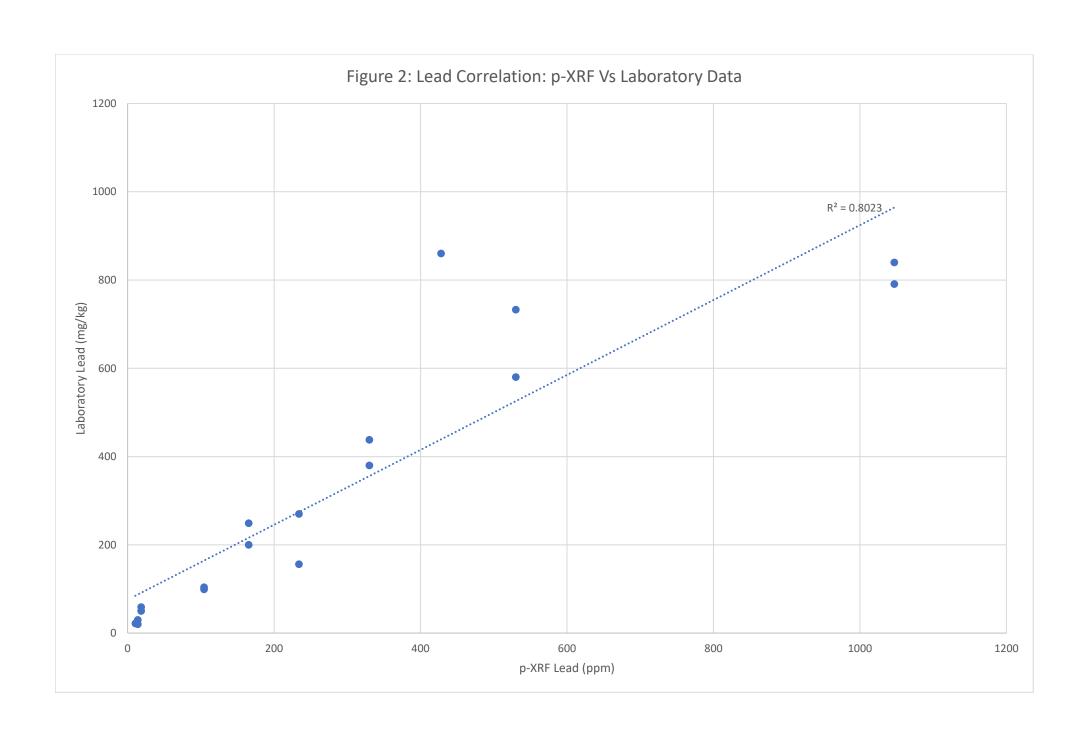
Assuming Normal Distributi

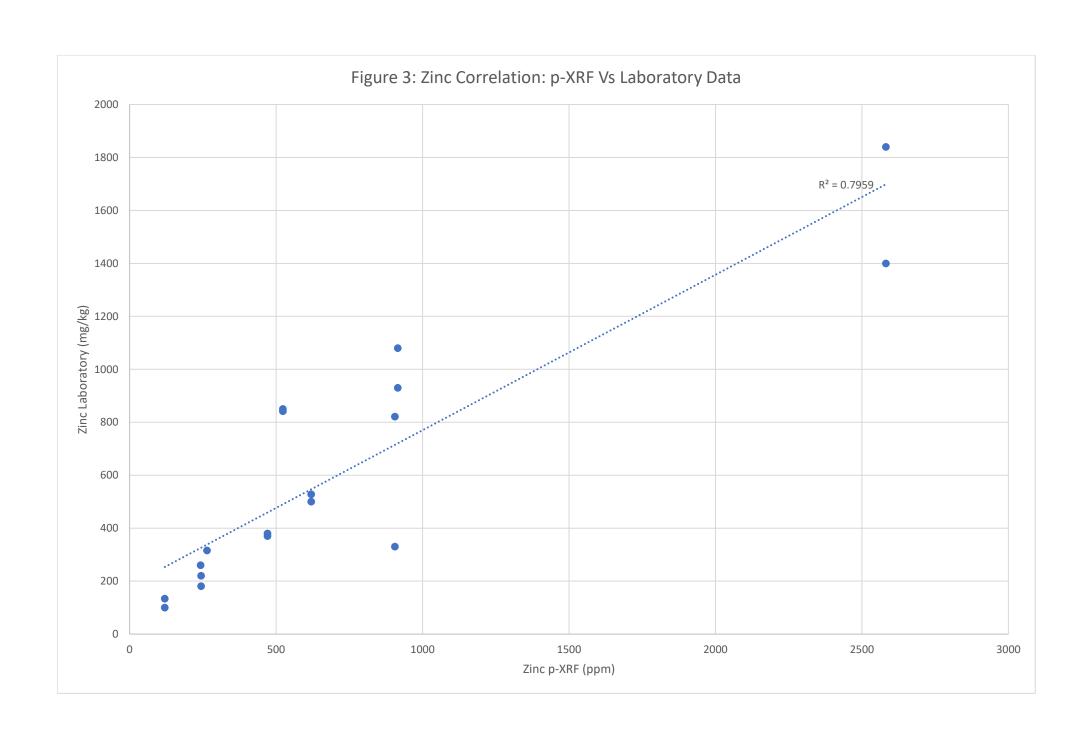
95% Normal UCL

95% Student's-t UCL 509.3

Gamma GOF Test


Client: John Holland Rail Job No: 318000780


Project Name: DSI Addendum


Table XII: XRF QA

XRF I.D	Lab I.d.	Moisture	Copper - XRF	Error	Copper - Lab	Lead - XRF
SED6	D2_SED_131020	29%	0	23.57	40	18.44
SED6	T2_SED_131020	25%	0	23.57	38	18.44
XBOYD001	D3_SED_131020	5%	130.11	23.97	110	165.23
XBOYD001	T3_SED_131020	3%	130.11	23.97	146	165.23
XBOYD002	D4_SED_131020	19%	426.41	32.24	560	530
XBOYD002	T4_SED_131020	21%	426.41	32.24	610	530
P42_HA01_0.0-0.05	D1_S_131020	7%	22.24	22.24	9.7	13.89
P42_HA03_0.0-0.05	D2_S_131020	12%	39.07	15.66	44	104.35
P42_HA06_0.0-0.05	D3_S_131020	9%	196.6	24.23	330	428.06
P42_HA13_0.0-0.05	D1_S_141020	26%	114.02	17.53	110	330.14
P42_HA20_0.0-0.05	D2_S_141020	12%	44.99	17.93	55	234
P42_HA21_0.0-0.05	D3_S_141020	5%	312.03	28.37	250	1046.94
P42_HA01_0.0-0.05	T1_S_131020	10%	22.24	22.24	14	13.89
P42_HA03_0.0-0.05	T2_S_131020	10%	39.07	15.66	48	104.35
P42_HA06_0.2	T3_S_131020	16%	20.87	20.87	18	10.51
P42_HA13_0.0-0.05	T1_S_141020	32%	114.02	17.53	133	330.14
P42_HA20_0.0-0.05	T2_S_141020	17%	44.99	17.93	41	234
P42_HA21_0.0-0.05	T3_S_141020	8%	312.03	28.37	249	1046.94

APPENDIX 5 LABORATORY REPORTS

CHAIN OF CUSTODY RECORD

☐Sydney Laboratory
Unit F3 Bid.F. 16 Mars Rd, Lane Cove West, NSW 2086
02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172
07 3902 4600 ErwinoSampleQLD@eurofins.com

☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9800 EnviroSampleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSampleVic@eurolins.com

poratory Use Only	Eurodine mot	Method of Shipment												Cli	lote ID №	hase Order	al Directions	hone Nk	tact Name		difference 50 G	mpany
Received By	Received By	Courier (#		SED5	SW5	SED4	SW4	SED3	SW3	SED2	SW2	SED1	SW1	Client Sample ID	180813RAMN_1				Stephen Maxwell		50 Gleha Road the Junction	Kallibon
- Contract	Juna)	Total Counts	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	Sampled Date/Time (dd/mm/yy hh:mm)					well			
	0	Hand Delivered	Counts	ဟ	×	w	W	ø	¥	ω	¥	ø	*	Matrix (Solid (S) Water (W))			Änat are requested, ple de must be used to	ars specify "To litract SUITE			Project Name	1000
SYD BN	Syo BN		10	×	×	×	×	×	×	×	×	×	×				Cd, Cr, Co, C				ame	
SYD BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTL DRW	Postal	CT		×		×		×		×		×	Filtered Metal	is (Ai, /	4S, Ва, Ве	, ca, cr, co,	Cu, re, ru), IVIII, ETG	, ru, 211y	Rail Loop Le	
		Name																			Rail Loop Lead Management	
Signature	Signature																					
		S																			EDD Format (ESdat, EQuIS, Custom)	
	The state of the s	Signature																			ш	
Date	Date																				Excel and PDF	
	07-171/11	hand													1	L Plastic		157	Ēm	Em	±a.	
Time	Ime	Date													250 125	3mL Plast 5mL Plast _ Amber (lackwell@	Email for Results	Email for Invoice	Handed over by	
1.	人中														500m Jar (G		ottle DPE) VA Guidelines)	blackwell@ramboll.com	를 (축	smaxw asiapac-ac smaxw		
Report No	leilbeiamie	Time												Sample Comments / Dangerous Goods Hazard Warning	Canada	□3 Day*	□1 Day*	Requirements (belowith the 5 days if multi- ticked) Overnight (9am)*	ibourke@ramboll.com. Turnaround Time (1	smaxwell@ramboll.com asiapac-accounts@ramboll.com smaxwell@ramboll.com	Jake Bourke	
750569	1.43	1.0.1	1											s / Dangerous d Warning		L 5 Day *Surcharges apply }	□2 Day*	ult will be 5 days if myt	ma (TAT)	om.		

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

CHAIN OF CUSTODY RECORD

☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory
Unit 2, 91 Leach Highwey, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8554 5000 EnviroSampleVic@eurofins.com

Laboratory use Unity	Eurofins mgt	Method of Shipment		10 17	9 0		7	6	U ₁		မ	N	3	æ.	Quote ID No	Purchase Order	Special Directions	Phone Na	Contact Name		Address 50	Company
Received By	Received By	Courier (#		T2_SED_131020	D2_SED_131020	T1_SED_131020	T1_131020	D1_SED_131020	D1_13120	SED10	SW10	SED6	SW6	Client Sample ID	180813RAMN_1				Stephen Maxwell		50 Glebe Road the Junction	Ramboll
	lelle +) 0 +	Total Counts	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	13/10/20	Sampled Date/Time (dd/mm/yy hh:mm)					faxwell			Oll
	0	Hand Delivered	unts	တ	w	Ø	W	w	W	တ	8	Ø	W	Matrix (Solid (S) Water (W))	(Note: W	here meta c	Analys fequested, pl-ase must be used to altr	specify "Total	P or "Filteren cing	e i suite	Project Name	Project No.
SAD I BNE	BNB I GAS		10	×	×	×	×	×	×	×	×	×	×				Cd, Cr, Co, Cu,				Name	Z.
SYD BNE MEL PER ADL NTL DRW	SXD BNE MEL PER ADL NTL DRW	Postal	4				×		×		×		×	Filtered Metals	(Al, As	s, Ba, B	e, Cd, Cr, Co, Cu	ı, Fe, Pb,	Mn, Hg,	Ni, Zn)	21	
RIADLINI	RIADLINI	_																			Rail Loop Lead Management	318
L DRW	L DRW	Name																			ad Manage	318000780
Signature	Signature																				ment	
	M																				EDD Format (ESdat, EQuIS, Custom)	Project Manager
		Signature																				
Date	Date																				Excel and PDF	Stephen Maxwell
-1-1-	14/10/20														di i	lastic		19/8	m	m		3
Time	Time	Date													250mL 125mL	. Plastic . Plastic		blackwell	Email for Results	Email for Invoice	Handed over by	Sampler(s)
1.	4:10 CM													4 500	OmL\ OmLPi (Glass	nber GI /OA via FAS Bo or HDI 4964, W	I ttle PE)	blackwell@ramboll.com			צ	Jake Bourke, Thomas Frank
Report Ne	Temperature	Time	A Par	Please forward to ALS		Please forward to ALS	Please forward to ALS							Sample Comm Goods Ha	□other (□3 Day*	□ Overnight (9am)*	Turnaroun Requirements	smaxwell@ramboll.com, jbourke@ramboll.com,	smaxwell@ramboll.com asiapac-accounts@ramboll.com	Jake Bourke	mas Frank
750569	7.841	1.	1	rd to ALS		rd to ALS	rd to ALS							Sample Comments / Dangerous Goods Hazard Warning)	□5 Day	am)* □ 2 Day*	Turnaround Time (TAT) Requirements persut will be 5 days 11 not stoked.	ll.com	M.com mboll.com		

CHAIN OF CUSTODY RECORD

Sydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2066
02 9800 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood PI., Murarrie, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9800 EnviroSampleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSempleVic@eurofins.com

							The same of the sa	2				The state of the s		
	Ramboll	Proje	Project №		318000780		Project Manager	<u> </u>	Stephen maxwell		Sampler(3)	divo		
50 Glebe Road the Junction	unction	Projec	Project Name	Rail Loop	Rail Loop Lead Management		EDD Format (ESdat, EQuIS: Custom)		Excel and PDF	±	Handed over by		Jake Bourke	
Of Clare		ed) SUITE	vli, Zn)	Ni, Zn)						Ē.	Email for Invoice	smaxw asiapac-ac	smaxwell@ramboll.com asiapac-accounts@ramboll.com	om.co
S	Stephen Maxwell	l" or "Filtered		Mn, Hg, I						Ξ)	Email for Results	jbourk	smaxwell@ramboll.com jbourke@ramboll.com	
		pecify "Total		Fe, Pb,						The state of the s	blackwell@	blackwell@ramboll.com	Requirements (befault will be 5 days if not ticked)	ult will be 5 da
		nalyse I please s ed to allow		Co, Cu,								es)	Overnight (9am)*	78
Special Directions		Ai are requested must be use		Cd, Cr, C						The sale		ttle PE) A Guideline	□1 Day*	□2 Day*
		here metals a		, Ba, Be,						Plastic	L Plastic L Plastic Amber Gla	VOA vial PFAS Bo ss or HDF s4964, W	□3 Day*	☐ 5 Day *Surcharges apply
18081	80813RAMN_1	(Note: Wi	Al, As,	(Al, As						11	250m 125m	i00mL. i ar (Gla	Other (
Client Sample ID	Sampled Date/Time (dd/mm/vv	Matrix (Solid (S) Water (W))	tal Metals	ered Metals							2		Sample Comments / Dangerous Goods Hazard Warning	ts / Dang d Warnii
D3 SED 131020	13/10/20	s	×	F										
T3_SED_131020	13/10/20	w	×										Please forward to ALS	o ALS
D4_SED_131020	13/10/20	w	×											
T4_SED_131020	13/10/20	တ	×										Please forward to ALS	b ALS
D5_SED_131020	13/10/20	Ø	×											
T5_SED_131020	13/10/20	w	×										Please forward to ALS	STV of
D6_SED_131020	13/10/20	w	×											
T6_SED_131020	13/10/20	Ø	×										Please forward to ALS	to ALS
RIN_131020	13/10/20	o	×											
	Tot	Total Counts	9											3
Courier (#) 0	☐ Hand Delivered	red	☐ Postal	Name			Signature		1 1	Date	1-1-1	Time	
	Jones	5	Cospo	SYD BNE MEL PER ADL NTL DRW	AL NTL DRW	Signature	1		Date	14/10/20	Time	HILD EN	Temperature	1.43
Laboratory Use Only	8	1	25	SYD BNE MEL PER ADL NTL DRW	NL NTL DRW	Signature	\		Date	_/_/_	Time		Report No	70

Laboratory Use Only Eurofins | mgt **CHAIN OF CUSTODY RECORD** 50 Glebe Road the Junction SED9 SEDS SW8 SED7 SW7 Courier (# **SW9** Received By Received By 180813RAMN_1 Stephen Maxwell Ramboll 12/10/20 12/10/20 12/10/20 12/10/20 12/10/20 12/10/20 Total Counts Hand Delivered ٤ € € S S S Total Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) SYD | BNE | MEL | PER | ADL | NTL | DRW × × × × × × 6 SYD | BNE | MEL | PER | ADL | NTL | DRW Filtered Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) × × ☐ Postal ω Rail Loop Lead Management 318000780 Name ☐ Brisbane Laboratory Signature Signature 07 3902 4600 EnviroSampleQLD@eurofins.com Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 EDD Format (ESdat, EQuIS, Custom) Project Manage Signature Stephen Maxwell Excel and PDF Perth Laboratory Unit 2, 91 Leach Highway, Kewdele WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com Date Date 10/1/11/ Email for Invoice Email for Result Time Date Time Jake Bourke, Thomas Frank Moony asiapac-accounts@ramboll.com Melbourne Laboratory 03 8564 5000 EnviroSampleVic@eurofins.com 2 Kingston Town Close, Cakleigh, ViC 3166 smaxwell@ramboll.com_ smaxwell@ramboll.com jbourke@ramboll.com. □3 Day* ☐1 Day* Overnight (9am)* Other (Jake Bourke Temperature Report No Time rund Time (TAT) □5 Day □2 Day* * Surcharges apply 1.136

Quote ID No

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Submitston of complex to the leberatory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request Sydney Laboratory Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com

Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com

Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com

C	ompany	Rambol	I	Proje	ect №			3180	00780			Project I	Manager			Stephen	Maxwell			Sam	pler(s) Ja	ike Bo	urke, Th	omas Frank	
	Address 5	i0 Glebe Road the Junction		Projec	t Name		Rail	Loop Lea	d Manage	ment		EDD F (ESdat, Cust	EQuIS,			Excel a	nd PDF		ı	Handed	d over	by			Jake Bourke	
				SUITE code	(nZ	li, Zn)													E	mail fo	or Invo	oice	as		axwell@ramboll -accounts@ran	
Co	itact Name	Stephen Ma	xwell	or "Filtered") 19.	fn, Hg, Ni	Mn, Hg, N													E	mail fo	or Res	ults			xwell@ramboll.urke@ramboll.o	
F	hone №			SeS pecify"Total" xt SUTTE pricis	Fe, Pb, ∧	ı, Fe, Pb,														<u>jblac</u>	kwe	ll@ra	mbo	II.com	Turnaround Requirements (Defac	
Spec	al Directions			Analys requested, please s nust be used to attra	Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn)	Filtered Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn)																		- Sacilabia	□Overnight (9am	n)* □ _{2 Day*}
Pure	hase Order			ere metals are	Be,	s, Ba, Be,														astic Plastic	Plastic	200mL Amber Glass	AS Bottle	Jar (Glass or HDPE)	□ _{3 Day*}	□ _{5 Day}
Q	ıote ID №	180813RAMN_1		(Note: Whe	s (Al, As,	als (Al, As													=======================================	IL Plastic 250mL Plas	125mL Plastic	00mL Amber Gla	500mL PFAS E	ar (Glass	□Other (* Surcharges apply
Nº		Client Sample ID	Sampled Date/Time (dd/mm/yy hh:mm)	Matrix (Solid (S) Water (W))	Total Metals (Al, As, Ba,	Filtered Met																2	9	L do		nts / Dangerous ard Warning
1		SED_BRO01	13/10/20	w	×	×																			Please report as	SW_BRO01
2		SED_BRO01	13/10/20	s	×																					
3		SED_BRO02	13/10/20	w	X	×																			Please report as	SW_BRO02
4		SED_BRO02	13/10/20	s	X																					
5		SW1-UP	13/10/20	s	X	×																			Marked incorrectl Please report as	
6		SED1-UP	13/10/20	s	X																					
7																										
8																										
9																										
10																										
			Tota	l Counts	6	3																				
	ethod of hipment	Courier (#) 🗆	Hand Delivered	d	□Po	stal	Na	ame					Sign	ature					D	ate				Time	_:_
	urofins mgt oratory Use Onl	Received By			SYD	BNE MEI	L PER A	ADL NTL	DRW	Sigr	nature					Da	ate	_/_	/	Ti	ime				Temperature	
Lab	ratory Use Uni	Received By			SYD	BNE MEI	L PER /	ADL NTL	DRW	Sigr	nature					Da	ate	/_	/	Ti	ime			_	Report №	

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

#AU04_Enviro_Sample_NSW

From: Jake Bourke <JBOURKE@ramboll.com>
Sent: Thursday, 15 October 2020 11:57 AM

To: #AU04_Enviro_Sample_NSW

Cc: Stephen Maxwell

Subject: RE: Eurofins Sample Receipt Advice - Report 750569 : Site RAIL LOOP LEAD

MANAGEMENT (318000780)

Attachments: 318000780_COC_SWM_October_amended.xlsx

Follow Up Flag: Follow up Flag Status: Flagged

Hi Luca,

Please find attached amended COC for this report number to include analysis for the extra samples (SED_BR001,SED_BR002,SED1_UP). Please note comments on COC for water samples for these sample ID's to be reported as SW_BR001, SW_BR002, and SW1-UP.

There were no samples taken for SW6,SED6,D6_SED_131020 so these have been removed from the amended COC.

Thanks

Kind regards

Jake Bourke

Consultant

D +61 (467) 580473 M +61 467 580 473 jbourke@ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Thursday, 15 October 2020 10:27 AM **To:** Stephen Maxwell <SMAXWELL@ramboll.com>

Cc: Jake Bourke < JBOURKE@ramboll.com>

Subject: Eurofins Sample Receipt Advice - Report 750569: Site RAIL LOOP LEAD MANAGEMENT (318000780)

Dear Valued Client,

Splits sent to ALS for analysis.

SW6,SED6,D6_SED_131020 Not rovd by Lab, analysis cancelled

Rcvd extra samples both water and soil jars logged on HOLD SED_BR001,SED_BR002,SED1_UP

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | Environment Testing Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Luca Dominici Sample Receipt

Eurofins | Environmental Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 02 9900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website:environment.eurofins.com.au

<u>EnviroNote 1098 - Melbourne PFAS Accreditation</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Help us improve! Click here to begin our 2020 Client Survey and be in the draw to win a \$200 gift card of your choice

Click here to report this email as spam.

ScannedByWebsenseForEurofins

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name:

Stephen Maxwell

Project name:

RAIL LOOP LEAD MANAGEMENT

Project ID:

318000780

Turnaround time: Date/Time received 5 Day Oct 14, 2020 4:10 PM

Eurofins reference

750569

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Splits sent to ALS for analysis.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project Name: RAIL LOOP Project ID: 318000780 Order No.: Report #:

Phone:

Fax:

750569

02 9954 8118 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

																						⊨uro	otins	Ana	aıytı	cal S	serv	ices	war	nage	er : <i>F</i>	andr	ew E	зіаск	Ĺ
		Sai	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271																															
Syd	Iney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Х	Х
Bris	sbane Laborator	y - NATA Site #	20794																															\square	
Per	th Laboratory - I	NATA Site # 237	36																															\square	
May	field Laboratory	/																															Ш		
Ext	ernal Laboratory	/																																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																														
1	SW1	Oct 13, 2020		Water	S20-Oc25141	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Х	
2	SED1	Oct 13, 2020		Soil	S20-Oc25142	Х		Х		Х		Χ		Χ			Х		Х		Х		Χ		Χ		Χ		Χ		Х		Х		Х
3	SW2	Oct 13, 2020		Water	S20-Oc25143	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х		Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	
4	SED2	Oct 13, 2020		Soil	S20-Oc25144	Х		Х		Х		Χ		Χ			Х		Х		Х		Χ		Χ		Χ		Χ		Х		Х		Х
5	SW3	Oct 13, 2020		Water	S20-Oc25145	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х		Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Х	
6	SED3	Oct 13, 2020		Soil	S20-Oc25146	Х		Х		Х		Χ		Χ			Х		Х		Х		Χ		Х		Χ		Χ		Х		Х		Х
7	SW4	Oct 13, 2020		Water	S20-Oc25147	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х		Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	
8	SED4	Oct 13, 2020		Soil	S20-Oc25148	Х		Х		Х		Χ		Χ			Х		Х		Х		Χ		Χ		Χ		Χ		Х		Х		Х
9	SW5	Oct 13, 2020		Water	S20-Oc25149	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ		Х	Х	Х	Х	x	Х	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Х	Х	X	Х	

Project Name:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780

Order No.: Report #:

750569

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager : Andrew Black

																						⊏ur	onne	An	aıytı	cars	Serv	ices	IVIAI	iage	# : P	Mar	ew	Mack	
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mel	bourne Laborato	ory - NATA Site	# 1254 & 142	271																										ı					
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	X	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																								\square	\sqcup	Ш		$\bigsqcup^!$		Ш		
Per	th Laboratory - N	NATA Site # 237	736																								\sqcup	Ш		\sqcup	\bigsqcup'		\square	\Box	_
May	field Laboratory	<u>'</u>																									Ш	Ш		\sqcup	\bigsqcup'		Ш	\longrightarrow	_
Exte	ernal Laboratory		1	1	1																					\sqcup	Ш	Ш		Ш	\bigsqcup		Ш		
10	SED5	Oct 13, 2020		Soil	S20-Oc25150	Х		Х		Х		Х		Χ			Χ		Χ		X		Χ		Χ	\vdash	Х	\sqcup	Х	$\vdash \vdash$	Х		Х	\longrightarrow	Х
11	SW6	Oct 13, 2020		Water	S20-Oc25151											Х										\vdash	Ш	Щ	\vdash	\vdash	\sqcup		\square		
12	SED6	Oct 13, 2020		Soil	S20-Oc25152											Х										\vdash	\sqcup	${igspace}$	\vdash	$\vdash \vdash$	$\vdash \vdash$	\sqcup	\sqcup	.—	_
13	SW10	Oct 13, 2020		Water	S20-Oc25153	X	Х	Х	Х	Х	Χ	Х	Х	Х	Х		Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
14	SED10	Oct 13, 2020		Soil	S20-Oc25154	X		Х		Х		Х		Х			Х		Х		X		Х		Х	\vdash	Х	$\vdash \vdash$	Х	$\vdash \vdash$	Х	\vdash	Х	-	Х
15	 	Oct 13, 2020		Water	S20-Oc25155	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	_
16	D1_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25156	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х		Х		Х
17	D2_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25157	Х		х		х		Х		Х			Х		Х		х		Х		Х		х		Х		Х		х		х
18	D3_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25158	Х		х		х		Х		Х			Х		х		х		х		х		х		х		Х		х		Х

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

750569

02 9954 8118

02 9954 8150

Order No.:

Report #:

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Project ID:

RAIL LOOP LEAD MANAGEMENT

318000780

Furofins Analytical Services Manager · Andrew Black

																				Euro	ofins	s An	alyti	ical	Serv	ices	Maı	nage	er: A	Andr	ew E	Black	Ĺ
	Sample Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melbourne Laborato	ory - NATA Site # 1254 & 14	271																															
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х
Brisbane Laborator	y - NATA Site # 20794																															\Box	
Perth Laboratory - I	NATA Site # 23736																															\square	
Mayfield Laboratory	1																															\square	
External Laboratory																																\square	
19 D4_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25159	х		х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		х		х		Х
20 D5_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25160	х		х		х		Х		Х			Х		х		х		х		Х		Х		Х		х		х		х
21 D6_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25161											Х																			
22 RIN_131020	Oct 13, 2020	Water	S20-Oc25162	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х		Х		
23 SW7	Oct 12, 2020	Water	S20-Oc25163	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	
24 SED7	Oct 12, 2020	Soil	S20-Oc25164	Х		Х		Х		Χ		Χ			Χ		Х		Х		Х		Χ		Χ		Χ		Х		Х		Х
25 SW8	Oct 12, 2020	Water	S20-Oc25165	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ		Χ	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	
26 SED8	Oct 12, 2020	Soil	S20-Oc25166	Х		Х		Х		Х		Χ			Χ		Х		Х		Х		Χ		Χ		Χ		Х		Х	\Box	Х
27 SW9	Oct 12, 2020	Water	S20-Oc25167	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х		Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Х	

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Address:

RAIL LOOP LEAD MANAGEMENT

Project ID:

318000780

Order No.: Report #:

Sydney

750569

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

New Zealand

																								, , , , , ,	a. y					90		Tital			
		Saı	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271																												П			
Syd	ney Laboratory	- NATA Site # 18	8217			Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																																
Pert	h Laboratory - I	NATA Site # 237	36																																
May	field Laboratory	/																																	
Exte	rnal Laboratory	<i>'</i>			_																														
28	SED9	Oct 12, 2020		Soil	S20-Oc25168	Х		Х		Х		Х		Х			Χ		Х		Х		Х		Х		Χ		Х		Х	Ш	Х	$\overline{}$	Х
29	SED_BR001	Oct 12, 2020		Soil	S20-Oc25316	Х		Х		Х		Х		Χ			Χ		Х		Х		Х		Х		Χ		Х		Х	Ш	Х		Х
30	SW_BR001	Oct 12, 2020		Water	S20-Oc25317	Х	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Χ		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	
31	SED_BR002	Oct 12, 2020		Soil	S20-Oc25318	Х		Х		Х		Х		Χ			Χ		Х		Х		Х		Х		Χ		Х		Х	Ш	Х		Х
32	SW_BR002	Oct 12, 2020		Water	S20-Oc25319	Х	Χ	Х	Χ	Х	Χ	Х	Х	Χ	Χ		Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	
33	SED1_UP	Oct 12, 2020		Soil	S20-Oc25320	Х		Х		Х		Х		Χ			Χ		Х		Х		Х		Х		Χ		Х	\sqcup	Х	Ш	Х	ightharpoonup	Х
34	SW1_UP	Oct 12, 2020		Water	S20-Oc25321	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ		Χ	Χ	Χ	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	
Test	Counts					31	13	31	13	31	13	31	13	31	13	3	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	17

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 750569-S

Project name RAIL LOOP LEAD MANAGEMENT

 Project ID
 318000780

 Received Date
 Oct 14, 2020

Client Sample ID Sample Matrix			SED1 Soil	SED2 Soil	SED3 Soil	SED4 Soil
Eurofins Sample No.			S20-Oc25142	S20-Oc25144	S20-Oc25146	S20-Oc25148
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 13, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	20	mg/kg	19000	14000	10000	28000
Arsenic	2	mg/kg	9.7	18	11	5.1
Barium	10	mg/kg	130	110	110	240
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	7.2	6.2	1.8	8.2
Chromium	5	mg/kg	21	22	16	23
Cobalt	5	mg/kg	6.9	11	< 5	5.4
Copper	5	mg/kg	190	320	140	160
Iron	20	mg/kg	15000	24000	19000	18000
Lead	5	mg/kg	610	1000	400	130
Manganese	5	mg/kg	120	640	97	220
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	13	14	8.7	17
Zinc	5	mg/kg	1000	2400	290	840
% Moisture	1	%	44	38	20	27

Client Sample ID			SED5	SED10	D1_SED_13102	D2_SED_13102
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Oc25150	S20-Oc25154	S20-Oc25156	S20-Oc25157
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 13, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	20	mg/kg	7800	13000	21000	5100
Arsenic	2	mg/kg	6.4	4.3	9.4	5.7
Barium	10	mg/kg	98	110	170	53
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	0.5	0.6	5.6	2.1
Chromium	5	mg/kg	14	14	25	11
Cobalt	5	mg/kg	< 5	< 5	7.6	< 5
Copper	5	mg/kg	13	15	240	40
Iron	20	mg/kg	18000	12000	19000	15000
Lead	5	mg/kg	27	26	740	50

Client Sample ID			SED5	SED10	D1_SED_13102	D2_SED_13102
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Oc25150	S20-Oc25154	S20-Oc25156	S20-Oc25157
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 13, 2020
Test/Reference	LOR	Unit				
Heavy Metals		·				
Manganese	5	mg/kg	200	160	120	110
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	7.1	14	< 5
Zinc	5	mg/kg	81	140	1100	850
% Moisture	1	%	21	32	48	29

Client Sample ID Sample Matrix			D3_SED_13102 0 Soil	D4_SED_13102 0 Soil	D5_SED_13102 0 Soil	SED7 Soil
Eurofins Sample No.			S20-Oc25158	S20-Oc25159	S20-Oc25160	S20-Oc25164
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 12, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	20	mg/kg	6300	14000	17000	8100
Arsenic	2	mg/kg	12	15	11	6.3
Barium	10	mg/kg	46	180	200	78
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	2.5	20	11	3.3
Chromium	5	mg/kg	19	13	16	10.0
Cobalt	5	mg/kg	10	12	8.1	< 5
Copper	5	mg/kg	110	560	350	42
Iron	20	mg/kg	23000	16000	22000	8900
Lead	5	mg/kg	200	580	310	180
Manganese	5	mg/kg	380	590	160	61
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	8.0	17	18	< 5
Zinc	5	mg/kg	330	1400	1100	560
% Moisture	1	%	4.5	19	64	32

Client Sample ID Sample Matrix Eurofins Sample No.			SED8 Soil S20-Oc25166	SED9 Soil S20-Oc25168	SED_BR001 Soil S20-Oc25316	SED_BR002 Soil S20-Oc25318
Date Sampled			Oct 12, 2020	Oct 12, 2020	Oct 12, 2020	Oct 12, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	20	mg/kg	16000	3400	10000	20000
Arsenic	2	mg/kg	7.8	16	9.6	34
Barium	10	mg/kg	130	58	84	180
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	45
Chromium	5	mg/kg	16	13	18	21
Cobalt	5	mg/kg	< 5	11	7.5	13
Copper	5	mg/kg	10	12	14	1300
Iron	20	mg/kg	14000	28000	22000	20000

Report Number: 750569-S

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SED8 Soil S20-Oc25166 Oct 12, 2020	SED9 Soil S20-Oc25168 Oct 12, 2020	SED_BR001 Soil S20-Oc25316 Oct 12, 2020	SED_BR002 Soil S20-Oc25318 Oct 12, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	23	23	35	1900
Manganese	5	mg/kg	130	380	310	68
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.2
Nickel	5	mg/kg	7.3	8.9	5.2	54
Zinc	5	mg/kg	70	70	93	8600
% Moisture	1	%	26	17	30	64

Client Sample ID Sample Matrix			SED1_UP Soil
Eurofins Sample No.			S20-Oc25320
Date Sampled			Oct 12, 2020
Test/Reference	LOR	Unit	
Heavy Metals			
Aluminium	20	mg/kg	12000
Arsenic	2	mg/kg	16
Barium	10	mg/kg	49
Beryllium	2	mg/kg	< 2
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	29
Cobalt	5	mg/kg	6.3
Copper	5	mg/kg	12
Iron	20	mg/kg	37000
Lead	5	mg/kg	29
Manganese	5	mg/kg	70
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	8.8
Zinc	5	mg/kg	24
% Moisture	1	%	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Oct 15, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Oct 15, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 750569-S

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780 Order No.: Received: Oct 14, 2020 4:10 PM

Report #: 750569 Due: Oct 21, 2020 Phone: 02 9954 8118 **Priority:** 5 Day

02 9954 8150 **Contact Name:** Stephen Maxwell

Eurofins Analytical Services Manager : Andrew Blac	Eurofins	Analytical	Services	Manager	:	Andrew	Blac	:ŀ
--	----------	------------	----------	---------	---	--------	------	----

																						Eur	OHIII	AII	aıyıı	car	Jei v	ices	IVIAI	iage	;ı . <i>F</i>	Andr	ew d	Hack	
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271																							П	П	\Box						
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site#	20794																																
Pert	h Laboratory - N	NATA Site # 237	36																																
May	field Laboratory	1																																	
Exte	rnal Laboratory	<u>'</u>																											\Box	\sqcup	\square				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																														
1	SW1	Oct 13, 2020		Water	S20-Oc25141	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ		Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	
2	SED1	Oct 13, 2020		Soil	S20-Oc25142	Х		Х		Χ		Х		Χ			Х		Х		Х		Х		Χ		Х	Ш	Х		Х		Х		Х
3	SW2	Oct 13, 2020		Water	S20-Oc25143	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ		Χ	Х	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Х	
4	SED2	Oct 13, 2020		Soil	S20-Oc25144	Х		Х		Χ		Х		Χ			Х		Х		Х		Х		Χ		Х	Ш	Х		Х		Х		Х
5	SW3	Oct 13, 2020		Water	S20-Oc25145	Х	Χ	Х	Х	Χ	Χ	Х	Х	Χ	Χ		Χ	Χ	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	
6	SED3	Oct 13, 2020		Soil	S20-Oc25146	Х		Х		Χ		Х		Χ			Х		Х		Х		Х		Χ		Х		Х	Ш	Х		Х		Х
7	SW4	Oct 13, 2020		Water	S20-Oc25147	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ		Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	
8	SED4	Oct 13, 2020		Soil	S20-Oc25148	Х		Х		Χ		Х		Χ			Х		Х		Х		Х		Χ		Х	Ш	Х	Ш	Х		Х	ightharpoons	Х
9	SW5	Oct 13, 2020		Water	S20-Oc25149	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ		Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	

Project Name:

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove Wes

 NATA # 1261
 Phone : +61 2 8

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780

Order No.: Report #:

750569

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Furofins Analytical Services Manager - Andrew Black

																					Eur	ofins	Ana	alyti	ical	Serv	ices	Mar	nage	r:A	ndre	∍w B	lack	
		Sam	ple Detail		Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborato	ory - NATA Site #	1254 & 14271																															
Sydi	ney Laboratory	- NATA Site # 182	217		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
		y - NATA Site # 2																												\square		\dashv	\perp	
		IATA Site # 2373	6																												\rightarrow	\dashv	\perp	
	field Laboratory																															\dashv	+	_
	rnal Laboratory			1																								\longrightarrow	\rightarrow	-	\rightarrow	\dashv	+	_
10	SED5	Oct 13, 2020	Soil	S20-Oc25150	X		Х		Х		Х		Х			Х		Х		X		Х		Х		Х		Х	\rightarrow	Х	\rightarrow	Х	+	X
11 12	SW6 SED6	Oct 13, 2020	Water Soil	S20-Oc25151		\vdash									X													\rightarrow	\dashv	\dashv	\dashv	+	+	\dashv
13	SW10	Oct 13, 2020 Oct 13, 2020	Water	S20-Oc25152 S20-Oc25153	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	х	х	X	\dashv
14	SED10	Oct 13, 2020	Soil	S20-Oc25154	X		X	^	X	^	X	^	X	^		X	^	X	<u> </u>	X		X	^	X	^	X	^	X	$\stackrel{\wedge}{}$	X	$\stackrel{\wedge}{+}$	X	-	Х
15	D1_13120	Oct 13, 2020	Water	S20-Oc25155	X	Х	X	Х	$\overline{}$	Х	Х	Х	X	Х		X	Х	Х	Х	X	Х	X	х	X	Х	X	Х	X	Х	X	х	-	х	$\stackrel{\sim}{\dashv}$
16	D1_SED_1310 20	· · · · · ·	Soil	S20-Oc25156	X		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		х		Х	\top	х	\neg	x
17	D2_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25157	Х		х		х		х		Х			Х		Х		х		х		Х		х		х		х		х		х
18	D3_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25158	Х		х		х		х		Х			х		х		х		х		Х		Х		х		х		х		Х

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove Wes

 NATA # 1261
 Phone : +61 2 8

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com Site # 1254 & 14271

Ramboll Australia Pty Ltd

North Sydney

NSW 2060

Project Name: RAIL LOOP Project ID: 318000780

Level 3/100 Pacific Highway

RAIL LOOP LEAD MANAGEMENT

Order No.: Report #:

750569

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

																					Eur	otins	s An	aıytı	icai :	Serv	rices	wa	nage	:r : A	Indre	ew E	зіаск	
		Sample De	etail		Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mel	bourne Laborato	ory - NATA Site # 1254	& 14271																															
Syc	Iney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	sbane Laboratory	y - NATA Site # 20794																																
Per	th Laboratory - N	IATA Site # 23736																																
May	field Laboratory	•																																
	ernal Laboratory																													\square	Ш			
19	D4_SED_1310 20		Soil	S20-Oc25159	Х		х		Х		х		Х			Х		Х		Х		Х		Х		Х		Х		Х		х		Х
20	D5_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25160	х		х		х		х		Х			х		х		х		х		х		х		Х		х		х		Х
21	D6_SED_1310 20	Oct 13, 2020	Soil	S20-Oc25161											х																			
22	RIN_131020	Oct 13, 2020	Water	S20-Oc25162	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х		Х		
23	SW7	Oct 12, 2020	Water	S20-Oc25163	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
24	SED7	Oct 12, 2020	Soil	S20-Oc25164	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х		Х		Х
25	SW8	Oct 12, 2020	Water	S20-Oc25165	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	
26	SED8	Oct 12, 2020	Soil	S20-Oc25166	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х	Ш	Х		Х
27	SW9	Oct 12, 2020	Water	S20-Oc25167	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Х	Х	X	Х	Х	

Project Name:

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780

Order No.: Report #:

750569

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Furofins Analytical Services Manager: Andrew Black

																						Eur	otins	Ana	alyti	cai	Serv	ices	Mar	nage	er: A	Andre	∌w B	іаск	
		Sam	nple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborato	ory - NATA Site #	1254 & 142	71																															
Sydi	ney Laboratory	- NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	X
Bris	bane Laborator	y - NATA Site # 2	20794																									ш				ш			
Pert	h Laboratory - N	NATA Site # 2373	6																									ш				ш			
May	field Laboratory	<u> </u>																										ш				ш		\perp	
Exte	rnal Laboratory	,																										ш				ш		\perp	
28	SED9	Oct 12, 2020		Soil	S20-Oc25168	X		Х		Х		Χ		Χ			Х		Χ		X		Х		Χ		Χ	\sqcup	Χ	\square	Х	\sqcup	X	-	Х
29	SED_BR001	Oct 12, 2020		Soil	S20-Oc25316	X		Х		Х		Х		Χ			Х		Χ		Х		Х		Х		Χ	Ш	Χ		Х	Ш	Х	_	Х
30	SW_BR001	Oct 12, 2020		Water	S20-Oc25317	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х		Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	-	Х	
31	SED_BR002	Oct 12, 2020		Soil	S20-Oc25318	X		Х		Х		Χ		Х			Х		Χ		Х		Х	_	Χ		Χ	\sqcup	Χ	\vdash	Х	$\vdash \vdash$	Х	-	X
32	SW_BR002	Oct 12, 2020		Water	S20-Oc25319	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х		Х	Х	Χ	Х	X	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	-	Х	_
33	SED1_UP	Oct 12, 2020		Soil	S20-Oc25320	X		Х		Х		Х		Х			Х		Х		X		Х	_	Х		Χ	$\vdash \vdash$	Х		Х	$\vdash \vdash$	Х	-	X
34	SW1_UP	Oct 12, 2020		Water	S20-Oc25321	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	_	Х	
Test	Counts					31	13	31	13	31	13	31	13	31	13	3	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	17

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Те	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Heavy Metals								
Aluminium			mg/kg	< 20		20	Pass	
Arsenic			mg/kg	< 2		2	Pass	
Barium			mg/kg	< 10		10	Pass	
Beryllium			mg/kg	< 2		2	Pass	
Cadmium			mg/kg	< 0.4		0.4	Pass	
Chromium			mg/kg	< 5		5	Pass	
Cobalt			mg/kg	< 5		5	Pass	
Copper			mg/kg	< 5		5	Pass	
Iron			mg/kg	< 20		20	Pass	
Lead			mg/kg	< 5		5	Pass	
Manganese			mg/kg	< 5		5	Pass	
Mercury			mg/kg	< 0.1		0.1	Pass	
Nickel			mg/kg	< 5		5	Pass	
Zinc			mg/kg	< 5		5	Pass	
LCS - % Recovery								
Heavy Metals								
Aluminium			%	105		80-120	Pass	
Arsenic			%	107		80-120	Pass	
Barium			%	106		80-120	Pass	
Beryllium			%	99		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	102		80-120	Pass	
Cobalt			%	103		80-120	Pass	
Copper			%	101		80-120	Pass	
Iron			%	104		80-120	Pass	
Lead			%	101		80-120	Pass	
Manganese			%	102		80-120	Pass	
Mercury			%	101		80-120	Pass	
Nickel			%	101		80-120	Pass	
Zinc			%	99		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Aluminium	S20-Oc27867	NCP	%	90		75-125	Pass	
Barium	S20-Oc27018	NCP	%	94		75-125	Pass	
Copper	S20-Oc27018	NCP	%	91		75-125	Pass	
Lead	S20-Oc27018	NCP	%	93		75-125	Pass	
Manganese				84		75-125	Pass	
Manganese	S20-Oc20672	NCP	%		i			
Zinc	S20-Oc20672 S20-Oc27018	NCP NCP	% %	87		75-125	Pass	
Zinc		NCP	%			75-125	Pass	
Zinc Spike - % Recovery						75-125	Pass	
Zinc	S20-Oc27018	NCP	%	87			Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic	\$20-Oc27018 \$20-Oc25158	NCP CP	%	87 Result 1		75-125	Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic Beryllium	\$20-Oc27018 \$20-Oc25158 \$20-Oc25158	NCP CP CP	% % %	Result 1 113 109		75-125 75-125	Pass Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic Beryllium Cadmium	\$20-Oc27018 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158	CP CP CP	% % %	Result 1 113 109 125		75-125 75-125 75-125	Pass Pass Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic Beryllium Cadmium Chromium	\$20-Oc27018 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158	CP CP CP CP	% % % %	87 Result 1 113 109 125 106		75-125 75-125 75-125 75-125	Pass Pass Pass Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic Beryllium Cadmium Chromium Cobalt	\$20-Oc27018 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158	CP CP CP CP CP	% % % % %	87 Result 1 113 109 125 106 101		75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass	
Zinc Spike - % Recovery Heavy Metals Arsenic Beryllium Cadmium Chromium	\$20-Oc27018 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158 \$20-Oc25158	CP CP CP CP	% % % %	87 Result 1 113 109 125 106		75-125 75-125 75-125 75-125	Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Oc25142	СР	%	44	50	12	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	S20-Oc25157	CP	mg/kg	5100	4600	11	30%	Pass	
Arsenic	S20-Oc25157	CP	mg/kg	5.7	4.6	21	30%	Pass	
Barium	S20-Oc25157	CP	mg/kg	53	45	16	30%	Pass	
Beryllium	S20-Oc25157	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S20-Oc25157	CP	mg/kg	2.1	1.6	28	30%	Pass	
Chromium	S20-Oc25157	CP	mg/kg	11	10	4.0	30%	Pass	
Cobalt	S20-Oc25157	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S20-Oc25157	СР	mg/kg	40	34	16	30%	Pass	
Iron	S20-Oc25157	CP	mg/kg	15000	11000	27	30%	Pass	
Lead	S20-Oc25157	CP	mg/kg	50	44	14	30%	Pass	
Manganese	S20-Oc25157	СР	mg/kg	110	93	19	30%	Pass	
Mercury	S20-Oc25157	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Oc25157	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S20-Oc25157	CP	mg/kg	850	770	10	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Oc25160	СР	%	64	56	13	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Asim Khan Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 750569-S

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 750569-W

Project name RAIL LOOP LEAD MANAGEMENT

Project ID 318000780

Received Date Oct 14, 2020

Client Sample ID			SW1	SW2	SW3	SW4
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Oc25141	S20-Oc25143	S20-Oc25145	S20-Oc25147
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 13, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	0.05	mg/L	0.29	< 0.05	0.46	0.36
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	0.40	0.28
Arsenic	0.001	mg/L	0.004	< 0.001	0.003	0.003
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	0.002
Barium	0.02	mg/L	0.36	0.11	0.07	0.08
Barium (filtered)	0.02	mg/L	0.11	0.11	0.07	0.08
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0012	0.0007	0.0036	0.019
Cadmium (filtered)	0.0002	mg/L	0.0005	0.0007	0.0033	0.018
Chromium	0.001	mg/L	0.001	< 0.001	0.001	0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
Cobalt	0.001	mg/L	0.003	< 0.001	< 0.001	0.004
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004
Copper	0.001	mg/L	0.011	0.004	0.12	0.19
Copper (filtered)	0.001	mg/L	0.002	0.003	0.10	0.18
Iron	0.05	mg/L	0.85	< 0.05	1.4	1.3
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	1.1	0.89
Lead	0.001	mg/L	0.028	0.004	0.051	0.038
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.023	0.023
Manganese	0.005	mg/L	0.28	0.017	0.042	0.37
Manganese (filtered)	0.005	mg/L	0.043	0.017	0.029	0.38
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.001	< 0.001	0.011	0.038
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	0.011	0.038
Zinc	0.005	mg/L	0.21	0.096	0.74	2.6
Zinc (filtered)	0.005	mg/L	0.073	0.13	0.70	2.5

Client Sample ID			SW5	SW10	D1_13120	RIN_131020
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Oc25149	S20-Oc25153	S20-Oc25155	S20-Oc25162
Date Sampled			Oct 13, 2020	Oct 13, 2020	Oct 13, 2020	Oct 13, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	0.05	mg/L	11	< 0.05	0.12	< 0.05
Aluminium (filtered)	0.05	mg/L	0.28	< 0.05	< 0.05	-
Arsenic	0.001	mg/L	0.005	0.001	0.002	< 0.001
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	-
Barium	0.02	mg/L	0.17	0.10	0.25	< 0.02
Barium (filtered)	0.02	mg/L	0.08	0.11	0.11	-
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Cadmium	0.0002	mg/L	0.0021	< 0.0002	0.0011	< 0.0002
Cadmium (filtered)	0.0002	mg/L	0.0010	< 0.0002	0.0005	-
Chromium	0.001	mg/L	0.011	< 0.001	< 0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Cobalt	0.001	mg/L	0.003	< 0.001	0.002	< 0.001
Cobalt (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	-
Copper	0.001	mg/L	0.074	< 0.001	0.009	< 0.001
Copper (filtered)	0.001	mg/L	0.045	< 0.001	0.002	-
Iron	0.05	mg/L	8.9	0.55	0.61	< 0.05
Iron (filtered)	0.05	mg/L	0.54	0.11	< 0.05	-
Lead	0.001	mg/L	0.031	0.002	0.012	< 0.001
Lead (filtered)	0.001	mg/L	0.007	< 0.001	< 0.001	-
Manganese	0.005	mg/L	0.15	0.089	0.22	< 0.005
Manganese (filtered)	0.005	mg/L	0.090	0.089	0.044	-
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Nickel	0.001	mg/L	0.007	0.001	0.001	< 0.001
Nickel (filtered)	0.001	mg/L	0.003	< 0.001	< 0.001	-
Zinc	0.005	mg/L	0.30	0.013	0.18	< 0.005
Zinc (filtered)	0.005	mg/L	0.14	0.006	0.074	-

Client Sample ID Sample Matrix Eurofins Sample No.			SW7 Water S20-Oc25163	SW8 Water S20-Oc25165	SW9 Water S20-Oc25167	SW_BR001 Water S20-Oc25317
Date Sampled			Oct 12, 2020	Oct 12, 2020	Oct 12, 2020	Oct 12, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	0.05	mg/L	0.33	< 0.05	< 0.05	0.48
Aluminium (filtered)	0.05	mg/L	0.18	< 0.05	< 0.05	0.17
Arsenic	0.001	mg/L	0.005	0.001	0.001	0.003
Arsenic (filtered)	0.001	mg/L	0.004	< 0.001	< 0.001	0.003
Barium	0.02	mg/L	0.05	0.08	0.09	0.05
Barium (filtered)	0.02	mg/L	0.05	0.09	0.09	0.05
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0003	< 0.0002	< 0.0002	0.0002
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.001	< 0.001	< 0.001	0.005
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.004
Cobalt	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Report Number: 750569-W

Client Sample ID Sample Matrix Eurofins Sample No.			SW7 Water S20-Oc25163	SW8 Water S20-Oc25165	SW9 Water S20-Oc25167	SW_BR001 Water S20-Oc25317
Date Sampled			Oct 12, 2020	Oct 12, 2020	Oct 12, 2020	Oct 12, 2020
Test/Reference	LOR	Unit				
Heavy Metals	•					
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.014	< 0.001	< 0.001	0.008
Copper (filtered)	0.001	mg/L	0.013	< 0.001	< 0.001	0.007
Iron	0.05	mg/L	3.0	0.51	0.15	0.43
Iron (filtered)	0.05	mg/L	2.4	0.15	< 0.05	0.16
Lead	0.001	mg/L	0.012	0.001	0.001	0.004
Lead (filtered)	0.001	mg/L	0.009	< 0.001	< 0.001	< 0.001
Manganese	0.005	mg/L	0.063	0.066	0.030	0.086
Manganese (filtered)	0.005	mg/L	0.056	0.064	0.023	0.027
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.003	0.001	0.001	0.003
Nickel (filtered)	0.001	mg/L	0.003	0.001	0.001	0.003
Zinc	0.005	mg/L	0.065	0.009	0.008	0.034
Zinc (filtered)	0.005	mg/L	0.051	0.010	< 0.005	0.015

Client Sample ID			SW_BR002	SW1_UP
Sample Matrix			Water	Water
Eurofins Sample No.			S20-Oc25319	S20-Oc25321
Date Sampled			Oct 12, 2020	Oct 12, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Aluminium	0.05	mg/L	0.38	< 0.05
Aluminium (filtered)	0.05	mg/L	0.16	< 0.05
Arsenic	0.001	mg/L	0.003	< 0.001
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001
Barium	0.02	mg/L	< 0.02	0.10
Barium (filtered)	0.02	mg/L	< 0.02	0.10
Beryllium	0.001	mg/L	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0005	< 0.0002
Cadmium (filtered)	0.0002	mg/L	0.0003	< 0.0002
Chromium	0.001	mg/L	0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001
Cobalt	0.001	mg/L	0.002	< 0.001
Cobalt (filtered)	0.001	mg/L	0.002	< 0.001
Copper	0.001	mg/L	0.016	< 0.001
Copper (filtered)	0.001	mg/L	0.011	< 0.001
Iron	0.05	mg/L	4.0	0.12
Iron (filtered)	0.05	mg/L	2.0	< 0.05
Lead	0.001	mg/L	0.011	0.001
Lead (filtered)	0.001	mg/L	0.005	< 0.001
Manganese	0.005	mg/L	0.20	0.022
Manganese (filtered)	0.005	mg/L	0.19	0.022
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.006	< 0.001
Nickel (filtered)	0.001	mg/L	0.006	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SW_BR002 Water S20-Oc25319 Oct 12, 2020	SW1_UP Water S20-Oc25321 Oct 12, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Zinc	0.005	mg/L	0.051	0.009
Zinc (filtered)	0.005	mg/L	0.034	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Oct 16, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Sydney	Oct 15, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mobil Metals : Metals M15	Sydney	Oct 15, 2020	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Project Name:

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

750569

02 9954 8118

02 9954 8150

Report #:

Phone:

Fax:

Perth
ce 2/91 Leach Highway
Kewdale WA 6105
4600 Phone: +61 8 9251 9600
20794 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd Order No.:

Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780

Due: Oct 21, 2020

Priority: 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Euroniis Analy												aiyu	Car	Jei v	ices	, IVIAI	iage	21 . F	Andi	ew	JIACK														
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	lron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271																							П	П							
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794																								\Box	П							
Pert	h Laboratory - N	NATA Site # 237	36																																
May	field Laboratory	1																																	
Exte	rnal Laboratory	1																																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																														
1	SW1	Oct 13, 2020		Water	S20-Oc25141	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
2	SED1	Oct 13, 2020		Soil	S20-Oc25142	Х		Х		Х		Х		Χ			Х		Х		Х		Х		Χ		Х		Х		Х		Х		Х
3	SW2	Oct 13, 2020		Water	S20-Oc25143	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	
4	SED2	Oct 13, 2020		Soil	S20-Oc25144	Х		Х		Х		Х		Χ			Х		Χ		Х		Х		Х		Х		Х		Х		Х		Х
5	SW3	Oct 13, 2020		Water	S20-Oc25145	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ		Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	
6	SED3	Oct 13, 2020		Soil	S20-Oc25146	Х		Х		Χ		Χ		Χ			Х		Х		Х		Χ		Χ		Х		Χ		Х		Х		Х
7	SW4	Oct 13, 2020		Water	S20-Oc25147	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ		Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	
8	SED4	Oct 13, 2020		Soil	S20-Oc25148	Х		Х		Χ		Χ		Χ			Х		Х		Х		Х		Χ		Х	Ш	Χ	$\bigsqcup^{!}$	Х		Х		Х
9	SW5	Oct 13, 2020		Water	S20-Oc25149	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ		Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Х	

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Due:

New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 14, 2020 4:10 PM

Oct 21, 2020

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

RAIL LOOP LEAD MANAGEMENT

Project ID:

318000780

Order No.: Report #:

750569

Phone: 02 9954 8118 02 9954 8150 Fax:

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

5 Day

																							J	, ,	a. y c.	ou.	. .	1003	iviai	iiage		····	<i>,</i>		
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	lron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	271																										1					
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794																																
Pert	h Laboratory - N	IATA Site # 237	36																																
May	field Laboratory	1																																	
Exte	rnal Laboratory	,																																	
10	SED5	Oct 13, 2020		Soil	S20-Oc25150	Х		Х		Х		Х		Χ			Χ		Х		Х		Χ		Χ		Х		Х		Х		Х		Х
11	SW6	Oct 13, 2020		Water	S20-Oc25151											Χ																			
12	SED6	Oct 13, 2020		Soil	S20-Oc25152											Χ														Ш					
13	SW10	Oct 13, 2020		Water	S20-Oc25153	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ		Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Χ	Х	Х	х	
14	SED10	Oct 13, 2020		Soil	S20-Oc25154	Х		Х		Х		Χ		Χ			Χ		Х		Х		Χ		Χ		Х		Х	ш	Χ		Х		Х
15	D1_13120	Oct 13, 2020		Water	S20-Oc25155	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ		Χ	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Χ	Х	Х	Х	
16	D1_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25156	Х		Х		х		Х		Х			Х		Х		х		Х		Χ		Х		х		Х		х		Х
17	D2_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25157	х		х		х		х		Х			Х		х		х		х		Х		х		х		Х		х		X
18	D3_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25158	х		х		х		Х		Х			Х		Х		х		Х		Χ		Х		х		Х		х		Х

Project Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney

Fax:

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

RAIL LOOP LEAD MANAGEMENT

Project ID: 318000780 Order No.: Received: Oct 14, 2020 4:10 PM

Report #: 750569 Due: Oct 21, 2020 Phone: 02 9954 8118 **Priority:** 5 Day

02 9954 8150 **Contact Name:** Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

																							J	, ,,,,,,,	ury ti	ou.	JC: 1	1000	IVIGI	lage	, . <i>,</i>	TITAL	CW L	Jiuon	
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271																															
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site#	20794																																
Pert	h Laboratory - N	NATA Site # 237	'36																																
May	field Laboratory	1																																	
Exte	rnal Laboratory	,			_																									$\bigsqcup^!$		ļ	Ш	Ш	
19	D4_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25159	х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		х		х		Х
20	D5_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25160	x		х		х		х		х			х		х		Х		х		Х		Х		Х		х		x		х
21	D6_SED_1310 20	Oct 13, 2020		Soil	S20-Oc25161											Х																			
22	RIN_131020	Oct 13, 2020		Water	S20-Oc25162	Х		Х		Х		Х		Х			Х		Х		Х		Х		Х		Х		Х		Х		Х		
23	SW7	Oct 12, 2020		Water	S20-Oc25163	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
24	SED7	Oct 12, 2020		Soil	S20-Oc25164	Х		Х		Χ		Х		Х			Х		Х		Χ		Χ		Х		Χ		Х		Х		Х		Х
25	SW8	Oct 12, 2020		Water	S20-Oc25165	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Х	
26	SED8	Oct 12, 2020		Soil	S20-Oc25166	Х		Х		Χ		Х		Х			Х		Х		Χ		Χ		Х		Χ		Х		Х		Х	\Box	Х
27	SW9	Oct 12, 2020		Water	S20-Oc25167	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х		Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	X	Х	

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

750569

02 9954 8118

02 9954 8150

Order No.:

Report #:

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 21, 2020

Stephen Maxwell

Oct 14, 2020 4:10 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Company Name:

RAIL LOOP LEAD MANAGEMENT

Project ID:

318000780

Furofins Analytical Services Manager: Andrew Black

5 Day

																						Eur	otins	Ana	alyti	cai	Serv	ices	Mar	nage	er: A	Andre	∌w B	іаск	
		Sam	nple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	CANCELLED	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborato	ory - NATA Site #	1254 & 142	71																															
Sydi	ney Laboratory	- NATA Site # 18	217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	X
Bris	bane Laborator	y - NATA Site # 2	20794																									ш				ш		\perp	
Pert	h Laboratory - N	NATA Site # 2373	6																									ш				ш			
May	field Laboratory	<u> </u>																										ш				ш		\perp	
Exte	rnal Laboratory	,																										ш				ш		\perp	
28	SED9	Oct 12, 2020		Soil	S20-Oc25168	X		Х		Х		Х		Χ			Х		Χ		X		Х		Χ		Χ	\sqcup	Χ	\square	Х	\sqcup	Х	-	Х
29	SED_BR001	Oct 12, 2020		Soil	S20-Oc25316	X		Х		Х		Х		Χ			Х		Χ		Х		Х		Х		Χ	Ш	Χ		Х	Ш	Х	_	Х
30	SW_BR001	Oct 12, 2020		Water	S20-Oc25317	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х		Х	Х	Χ	Х	X	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	-	Х	
31	SED_BR002	Oct 12, 2020		Soil	S20-Oc25318	X		Х		Х		Χ		Х			Х		Χ		Х		Х	_	Χ		Χ	\sqcup	Χ	\vdash	Х	$\vdash \vdash$	Х	-	X
32	SW_BR002	Oct 12, 2020		Water	S20-Oc25319	X	Х	Х	Х	Х	Х	Х	Χ	Х	Х		Х	Х	Χ	Х	X	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	-	Х	_
33	SED1_UP	Oct 12, 2020		Soil	S20-Oc25320	X		Х		Х		Х		Х			Х		Х		X		Х	_	Х		Χ	$\vdash \vdash$	Х		Х	$\vdash \vdash$	Х	-	Х
34	SW1_UP	Oct 12, 2020		Water	S20-Oc25321	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	_	Х	
Test	Counts					31	13	31	13	31	13	31	13	31	13	3	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	31	13	17

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Method Blank					
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium	mg/L	< 0.02	0.02	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead (filtered)		< 0.001	0.001	Pass	
·	mg/L	< 0.001	0.001		
Manganese (#iteas d)	mg/L	l		Pass	-
Manganese (filtered)	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	-
Nickel	mg/L	< 0.001	0.001	Pass	-
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Heavy Metals		 			1
Aluminium	%	107	80-120	Pass	-
Aluminium (filtered)	%	98	80-120	Pass	
Arsenic	%	108	80-120	Pass	
Arsenic (filtered)	%	102	80-120	Pass	
Barium	%	102	80-120	Pass	
Barium (filtered)	%	103	80-120	Pass	
Beryllium	%	94	80-120	Pass	
Beryllium (filtered)	%	97	80-120	Pass	
Cadmium	%	106	80-120	Pass	
Cadmium (filtered)	%	101	80-120	Pass	
Chromium	%	103	80-120	Pass	
Chromium (filtered)	%	100	80-120	Pass	
Cobalt	%	100	80-120	Pass	
Cobalt (filtered)	%	102	80-120	Pass	
Copper	%	99	80-120	Pass	
Copper (filtered)	%	100	80-120	Pass	
Iron	%	104	80-120	Pass	
Iron (filtered)	%	101	80-120	Pass	
Lead	%	102	80-120	Pass	
Lead (filtered)	%	102	80-120	Pass	

	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Manganese			%	99			80-120	Pass	
Manganese (filtered)			%	100			80-120	Pass	
Mercury			%	98			80-120	Pass	
Mercury (filtered)			%	106			80-120	Pass	
Nickel			%	102			80-120	Pass	
Nickel (filtered)			%	102			80-120	Pass	
Zinc			%	100			80-120	Pass	
Zinc (filtered)			%	103			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				ı	1		T		
Heavy Metals				Result 1					
Aluminium	S20-Oc25321	CP	%	102			75-125	Pass	
Aluminium (filtered)	S20-Oc25321	CP	%	92			75-125	Pass	
Arsenic	S20-Oc25321	CP	%	110			75-125	Pass	
Arsenic (filtered)	S20-Oc25321	CP	%	100			75-125	Pass	
Barium	S20-Oc25321	CP	%	101			75-125	Pass	
Barium (filtered)	S20-Oc25321	CP	%	86			75-125	Pass	
Beryllium	S20-Oc25321	CP	%	104			75-125	Pass	
Beryllium (filtered)	S20-Oc25321	CP	%	94			75-125	Pass	
Cadmium	S20-Oc25321	CP	%	107			75-125	Pass	
Cadmium (filtered)	S20-Oc25321	CP	%	95			75-125	Pass	
Chromium	S20-Oc25321	CP	%	105			75-125	Pass	
Chromium (filtered)	S20-Oc25321	CP	%	95			75-125	Pass	
Cobalt	S20-Oc25321	CP	%	101			75-125	Pass	
Cobalt (filtered)	S20-Oc25321	CP	%	95			75-125	Pass	
Copper	S20-Oc25321	CP	%	99			75-125	Pass	
Copper (filtered)	S20-Oc25321	CP	%	93			75-125	Pass	
Iron	S20-Oc25321	СР	%	103			75-125	Pass	
Iron (filtered)	S20-Oc25321	СР	%	96			75-125	Pass	
Lead	S20-Oc25321	СР	%	103			75-125	Pass	
Lead (filtered)	S20-Oc25321	СР	%	98			75-125	Pass	
Manganese	S20-Oc25321	СР	%	99			75-125	Pass	
Manganese (filtered)	S20-Oc25321	СР	%	91			75-125	Pass	
Mercury	S20-Oc25321	СР	%	100			75-125	Pass	
Mercury (filtered)	S20-Oc25321	СР	%	105			75-125	Pass	
Nickel	S20-Oc25321	СР	%	100			75-125	Pass	
Nickel (filtered)	S20-Oc25321	СР	%	95			75-125	Pass	
Zinc	S20-Oc25321	СР	%	98			75-125	Pass	
Zinc (filtered)	S20-Oc25321	СР	%	95			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals			1	Result 1	Result 2	RPD			
Aluminium	S20-Oc25141	CP	mg/L	0.29	0.15	63	30%	Fail	Q15
Aluminium (filtered)	S20-Oc25141	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	S20-Oc25141	CP	mg/L	0.004	0.002	59	30%	Fail	Q15
Arsenic (filtered)	S20-Oc25141	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium	S20-Oc25141	CP	mg/L	0.36	0.18	68	30%	Fail	Q02
Barium (filtered)	S20-Oc25141	CP	mg/L	0.11	0.11	2.0	30%	Pass	
Beryllium	S20-Oc25141	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium (filtered)	S20-Oc25141	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S20-Oc25141	CP	mg/L	0.0012	0.0011	15	30%	Pass	
Cadmium (filtered)	S20-Oc25141	CP	mg/L	0.0005	0.0005	4.0	30%	Pass	
Chromium	S20-Oc25141	СР	mg/L	0.001	< 0.001	76	30%	Fail	Q15

Report Number: 750569-W

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium (filtered)	S20-Oc25141	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S20-Oc25141	CP	mg/L	0.003	0.002	49	30%	Fail	Q15
Cobalt (filtered)	S20-Oc25141	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S20-Oc25141	CP	mg/L	0.011	0.006	61	30%	Fail	Q15
Copper (filtered)	S20-Oc25141	CP	mg/L	0.002	0.002	1.0	30%	Pass	
Iron	S20-Oc25141	CP	mg/L	0.85	0.58	37	30%	Fail	Q15
Iron (filtered)	S20-Oc25141	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead	S20-Oc25141	CP	mg/L	0.028	0.015	60	30%	Fail	Q15
Lead (filtered)	S20-Oc25141	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S20-Oc25141	СР	mg/L	0.28	0.18	41	30%	Fail	Q02
Manganese (filtered)	S20-Oc25141	СР	mg/L	0.043	0.044	1.0	30%	Pass	
Mercury	S20-Oc25141	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Mercury (filtered)	S20-Oc25141	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-Oc25141	СР	mg/L	0.001	< 0.001	11	30%	Pass	
Nickel (filtered)	S20-Oc25141	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S20-Oc25141	СР	mg/L	0.21	0.14	39	30%	Fail	Q02
Zinc (filtered)	S20-Oc25141	СР	mg/L	0.073	0.074	2.0	30%	Pass	
Duplicate			J	•	,				
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	S20-Oc25163	СР	mg/L	0.18	0.17	4.0	30%	Pass	
Arsenic (filtered)	S20-Oc25163	СР	mg/L	0.004	0.004	<1	30%	Pass	
Barium (filtered)	S20-Oc25163	СР	mg/L	0.05	0.05	1.0	30%	Pass	
Cadmium (filtered)	S20-Oc25163	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S20-Oc25163	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S20-Oc25163	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S20-Oc25163	СР	mg/L	0.013	0.013	2.0	30%	Pass	
Iron (filtered)	S20-Oc25163	СР	mg/L	2.4	2.4	1.0	30%	Pass	
Lead (filtered)	S20-Oc25163	СР	mg/L	0.009	0.009	<1	30%	Pass	
Manganese (filtered)	S20-Oc25163	СР	mg/L	0.056	0.056	1.0	30%	Pass	
Mercury (filtered)	S20-Oc25163	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S20-Oc25163	СР	mg/L	0.003	0.003	8.0	30%	Pass	
Zinc (filtered)	S20-Oc25163	СР	mg/L	0.051	0.050	3.0	30%	Pass	
Duplicate	•		J						
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	S20-Oc25167	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	S20-Oc25167	СР	mg/L	0.001	0.001	14	30%	Pass	
Barium	S20-Oc25167	СР	mg/L	0.09	0.09	6.0	30%	Pass	
Beryllium	S20-Oc25167	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S20-Oc25167	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Oc25167	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S20-Oc25167	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S20-Oc25167	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	S20-Oc25167	CP	mg/L	0.15	0.14	5.0	30%	Pass	
Lead	S20-Oc25167	CP	mg/L	0.001	< 0.001	23	30%	Pass	
Manganese	S20-Oc25167	CP	mg/L	0.030	0.029	5.0	30%	Pass	
Mercury	S20-Oc25167	CP	mg/L	< 0.0001	< 0.0001	<u> </u>	30%	Pass	
Nickel	S20-Oc25167	CP	mg/L	0.0001	0.0001	7.0	30%	Pass	
			11111/1	i 0.001	ı 0.001 l	7.0	JU70	газэ	ı

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Asim Khan Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 750569-W

CERTIFICATE OF ANALYSIS

Work Order : ES2036245

: RAMBOLL AUSTRALIA PTY LTD

Contact : MR STEVE MAXWELL

Address : EASTPOINT COMPLEX SUITE 19B. LEVEL 2 50 GLEBE ROAD

THE JUNCTION NSW 2291

Telephone

Client

Project : 318000780 Rail Loop Lead Management

Order number

C-O-C number

Sampler : JAKE BOURKE, THOMAS FRANK

Site

Quote number : EN/222

No. of samples received : 6

No. of samples analysed : 6 Page : 1 of 4

> Laboratory : Environmental Division Sydney

Contact : Loren Schiavon

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 15-Oct-2020 14:10

Date Analysis Commenced : 20-Oct-2020

Issue Date : 22-Oct-2020 13:34

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Page : 2 of 4
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1_SED_131020	T2_SED_131020	T3_SED_131020	T4_SED_131020	T5_SED_131020
	Clie	ent sampli	ng date / time	13-Oct-2020 00:00				
Compound	CAS Number	LOR	Unit	ES2036245-002	ES2036245-003	ES2036245-004	ES2036245-005	ES2036245-006
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		1.0	%	46.0	25.0	3.4	21.1	57.9
EG005(ED093)T: Total Metals by ICP-	-AES							
Aluminium	7429-90-5	50	mg/kg	13300	4170	7700	10100	12000
Barium	7440-39-3	10	mg/kg	120	40	50	140	170
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1	<1	<1
Cobalt	7440-48-4	2	mg/kg	7	2	7	20	8
Iron	7439-89-6	50	mg/kg	14300	11200	27700	14700	23400
Manganese	7439-96-5	5	mg/kg	117	136	312	826	138
Arsenic	7440-38-2	5	mg/kg	9	<5	14	14	11
Cadmium	7440-43-9	1	mg/kg	7	2	2	18	9
Chromium	7440-47-3	2	mg/kg	19	8	26	12	15
Copper	7440-50-8	5	mg/kg	247	38	146	610	397
Lead	7439-92-1	5	mg/kg	634	59	249	733	285
Nickel	7440-02-0	2	mg/kg	12	4	12	22	17
Zinc	7440-66-6	5	mg/kg	1110	842	521	1840	1100
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Page : 4 of 4
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	T1_131020	 	
	Cli	ient sampli	ng date / time	13-Oct-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2036245-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	10	μg/L	<10	 	
Arsenic	7440-38-2	1	μg/L	<1	 	
Beryllium	7440-41-7	1	μg/L	<1	 	
Barium	7440-39-3	1	μg/L	91	 	
Cadmium	7440-43-9	0.1	μg/L	0.4	 	
Chromium	7440-47-3	1	μg/L	<1	 	
Copper	7440-50-8	1	μg/L	1	 	
Cobalt	7440-48-4	1	μg/L	<1	 	
Nickel	7440-02-0	1	μg/L	<1	 	
Lead	7439-92-1	1	μg/L	<1	 	
Zinc	7440-66-6	5	μg/L	62	 	
Manganese	7439-96-5	1	μg/L	39	 	
Iron	7439-89-6	50	μg/L	<50	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	10	μg/L	610	 	
Arsenic	7440-38-2	1	μg/L	2	 	
Beryllium	7440-41-7	1	μg/L	<1	 	
Barium	7440-39-3	1	μg/L	276	 	
Cadmium	7440-43-9	0.1	μg/L	2.1	 	
Chromium	7440-47-3	1	μg/L	<1	 	
Copper	7440-50-8	1	μg/L	14	 	
Cobalt	7440-48-4	1	μg/L	7	 	
Nickel	7440-02-0	1	μg/L	2	 	
Lead	7439-92-1	1	μg/L	32	 	
Zinc	7440-66-6	5	μg/L	320	 	
Manganese	7439-96-5	1	μg/L	706	 	
Iron	7439-89-6	50	μg/L	1410	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.1	μg/L	<0.1	 	
EG035T: Total Recoverable Mercury by	/ FIMS					
Mercury	7439-97-6	0.1	μg/L	<0.1	 	

QUALITY CONTROL REPORT

Work Order : ES2036245

: RAMBOLL AUSTRALIA PTY LTD

Contact : MR STEVE MAXWELL

Address : EASTPOINT COMPLEX SUITE 19B. LEVEL 2 50 GLEBE ROAD

THE JUNCTION NSW 2291

Telephone : ----

Client

Project : 318000780 Rail Loop Lead Management

Order number : ----

C-O-C number : ---

Sampler : JAKE BOURKE, THOMAS FRANK

Site : ----

Quote number : EN/222

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Loren Schiavon

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 15-Oct-2020

Date Analysis Commenced : 20-Oct-2020

Issue Date 22-Oct-2020

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 7

Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD

Project : 318000780 Rail Loop Lead Management

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 3317408)							
ES2036168-001	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	1	1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	380	400	5.08	0% - 20%
		EG005T: Chromium	7440-47-3	2	mg/kg	19	22	10.6	0% - 50%
		EG005T: Cobalt	7440-48-4	2	mg/kg	15	20	29.6	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	20	22	11.7	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	9	11	18.7	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	54	53	1.98	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	28	32	14.8	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	1370	1220	12.1	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	420	429	1.96	0% - 20%
		EG005T: Aluminium	7429-90-5	50	mg/kg	17500	18400	5.14	0% - 20%
		EG005T: Iron	7439-89-6	50	mg/kg	46200	50000	8.03	0% - 20%
ES2036247-045	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	20	20	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	35	28	21.2	0% - 50%
		EG005T: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	4	4	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	9	9	0.00	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	25	25	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Aluminium	7429-90-5	50	mg/kg	12700	12600	0.272	0% - 20%

Page : 3 of 7
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD

Project : 318000780 Rail Loop Lead Management

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES (QC	Lot: 3317408) - continued							
ES2036247-045	Anonymous	EG005T: Iron	7439-89-6	50	mg/kg	25800	25400	1.86	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-110°C)	(QC Lot: 3317413)							
ES2036167-002	Anonymous	EA055: Moisture Content		0.1	%	60.6	60.6	0.00	0% - 20%
ES2036247-044	Anonymous	EA055: Moisture Content		0.1	%	9.4	8.9	4.99	No Limit
EG035T: Total Reco	overable Mercury by FIMS ((QC Lot: 3317409)							
ES2036168-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2036247-045	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	Metals by ICP-MS (QC Lot:		07.07.00.000			Original Result	Daphoute Headit	10 5 (70)	recovery Limits (70)
ES2036216-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
20200210 001	, alonymous	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.229	0.229	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.434	0.432	0.585	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.036	0.034	4.55	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	12.8	12.9	0.342	0% - 20%
EW2004678-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.067	0.066	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.609	0.605	0.667	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.09	0.09	0.00	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot: 3317	(230)							
ES2036245-001	T1_131020	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	2.1 μg/L	0.0020	0.00	0% - 20%
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	2 μg/L	0.002	0.00	No Limit

Page : 4 of 7
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD

Project : 318000780 Rail Loop Lead Management

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	Is by ICP-MS (QC Lot:	3317230) - continued							
ES2036245-001	T1_131020	EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	276 μg/L	0.316	13.4	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<1 µg/L	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	7 μg/L	0.006	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	14 μg/L	0.014	0.00	0% - 50%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	32 µg/L	0.032	0.00	0% - 20%
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	706 μg/L	0.698	1.03	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	2 μg/L	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	320 µg/L	0.314	1.90	0% - 20%
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	610 µg/L	0.52	15.4	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1410 μg/L	1.32	6.80	0% - 20%
S2036123-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.041	0.042	3.77	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.001	0.002	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.121	0.123	1.92	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.11	0.11	0.00	0% - 50%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	1.32	1.32	0.00	0% - 20%
G035F: Dissolved	Mercury by FIMS (QC I	Lot: 3317254)							
ES2036259-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
G035T: Total Reco	overable Mercury by Fli	,							-
ES2036219-036	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
.52550215 000	, alonymous	LG0301. Mercury	1 409-91-0	3.0001	1119/1	*0.000 i	10.0001	0.00	140 Limit

Page : 5 of 7
Work Order : ES2036245

EG020A-T: Aluminium

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES((QCLot: 3317408)							
EG005T: Aluminium	7429-90-5	50	mg/kg	<50	15910 mg/kg	86.0	82.0	119
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	100.0	88.0	113
EG005T: Barium	7440-39-3	10	mg/kg	<10	99.3 mg/kg	101	65.0	136
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	0.5 mg/kg	120	70.0	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	94.6	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	111	68.0	132
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	11.2 mg/kg	84.6	83.0	117
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	103	89.0	111
EG005T: Iron	7439-89-6	50	mg/kg	<50	33227 mg/kg	102	89.0	112
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.1 mg/kg	94.3	82.0	119
EG005T: Manganese	7439-96-5	5	mg/kg	<5	590 mg/kg	97.3	83.0	117
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	101	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	82.2	66.0	133
EG035T: Total Recoverable Mercury by FIM	MS (QCLot: 3317409)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.0847 mg/kg	76.3	70.0	105
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCL	Lot: 3317253)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	86.0	80.0	116
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.8	85.0	114
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	91.8	85.0	115
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	85.7	82.0	110
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	85.8	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.9	85.0	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	83.0	82.0	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	83.6	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	85.4	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	86.0	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	85.2	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	85.0	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	88.9	82.0	112
EG020T: Total Metals by ICP-MS (QCLot: 3	317230)							
(4525:10	7400.00.5							

mg/L

< 0.01

0.5 mg/L

97.6

82.0

120

7429-90-5

0.01

Page : 6 of 7
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 3317230) - c	ontinued							
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	100	82.0	114
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	97.6	79.0	119
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	102	84.0	116
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	102	84.0	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	98.7	86.0	116
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	97.4	84.0	116
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	98.2	83.0	118
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	98.0	85.0	115
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	97.7	85.0	113
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.1	84.0	116
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	98.3	79.0	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	102	85.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 3317254)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	83.0	105
EG035T: Total Recoverable Mercury by FIMS (QCLot:	3317244)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	103	77.0	111

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3317408)						
ES2036168-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	101	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	91.5	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	101	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	95.4	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	97.7	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	97.6	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	72.8	66.0	133
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 3317409)						
ES2036168-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	83.2	70.0	130
Sub-Matrix: WATER				Ма	atrix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High

Page : 7 of 7
Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

ub-Matrix: WATER				l M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020F: Dissolve	d Metals by ICP-MS (QCLot: 3317253)						
ES2036216-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	120	70.0	130
		EG020A-F: Beryllium	7440-41-7	1 mg/L	121	70.0	130
		EG020A-F: Barium	7440-39-3	1 mg/L	108	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	110	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	116	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	113	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	112	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	113	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	108	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	108	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	109	70.0	130
G020T: Total Met	tals by ICP-MS (QCLot: 3317230)						
S2036130-076	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	99.6	70.0	130
		EG020A-T: Beryllium	7440-41-7	1 mg/L	99.5	70.0	130
		EG020A-T: Barium	7440-39-3	1 mg/L	99.5	70.0	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	102	70.0	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	103	70.0	130
		EG020A-T: Cobalt	7440-48-4	1 mg/L	99.1	70.0	130
		EG020A-T: Copper	7440-50-8	1 mg/L	101	70.0	130
		EG020A-T: Lead	7439-92-1	1 mg/L	95.9	70.0	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	103	70.0	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.6	70.0	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	99.4	70.0	130
G035F: Dissolve	d Mercury by FIMS (QCLot: 3317254)						
S2036245-001	T1_131020	EG035F: Mercury	7439-97-6	0.01 mg/L	92.3	70.0	130
G035T: Total Re	coverable Mercury by FIMS (QCLot: 3317244)						
S2036245-001	T1 131020	EG035T: Mercury	7439-97-6	0.01 mg/L	87.6	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2036245** Page : 1 of 5

Client : RAMBOLL AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE MAXWELL Telephone : +61 2 8784 8555
Project : 318000780 Rail Loop Lead Management Date Samples Received : 15-Oct-2020

Site :--- Issue Date : 22-Oct-2020
Sampler : JAKE BOURKE, THOMAS FRANK No. of samples received : 6

Order number : --- No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page 2 of 5 ES2036245 Work Order

RAMBOLL AUSTRALIA PTY LTD Client

Project 318000780 Rail Loop Lead Management

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results,

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
T1_SED_131020,	T2_SED_131020,	13-Oct-2020				20-Oct-2020	27-Oct-2020	✓
T3_SED_131020,	T4_SED_131020,							
T5_SED_131020								
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
T1_SED_131020,	T2_SED_131020,	13-Oct-2020	20-Oct-2020	11-Apr-2021	✓	21-Oct-2020	11-Apr-2021	✓
T3_SED_131020,	T4_SED_131020,							
T5_SED_131020								
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
T1_SED_131020,	T2_SED_131020,	13-Oct-2020	20-Oct-2020	10-Nov-2020	✓	22-Oct-2020	10-Nov-2020	✓
T3_SED_131020,	T4_SED_131020,							
T5_SED_131020								

Matrix: WATER Evaluation: x = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Evaluation Date analysed Due for analysis Evaluation

EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)	40.0 4.000					44 4 2024	
T1_131020	13-Oct-2020				20-Oct-2020	11-Apr-2021	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)							
T1_131020	13-Oct-2020	20-Oct-2020	11-Apr-2021	✓	20-Oct-2020	11-Apr-2021	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)							
T1_131020	13-Oct-2020				20-Oct-2020	10-Nov-2020	✓
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)							
T1 131020	13-Oct-2020				20-Oct-2020	10-Nov-2020	✓

Page : 3 of 5 Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summa	ry of Outliers.						
Matrix: SOIL				Evaluation	on: 🗴 = Quality Co	entrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	on: K = Ouglity Co	ntrol from conou	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type				Evaluatio		introl frequency	
Analytical Methods	Method	QC	ount Regular	Actual	Rate (%) Expected	Evaluation	Quality Control Specification
	Wethod	QC .	Redulai	Actual	Expected		
Laboratory Duplicates (DUP) Dissolved Mercury by FIMS	EG035F	1	2	50.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	16	12.50	10.00		NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG020A-F	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
	EG020A-1		20	10.00	10.00	✓	NEF W 2013 B3 & AE3 QC Standard
Laboratory Control Samples (LCS) Dissolved Mercury by FIMS	E00055	1	2	E0.00	E 00		NEDM 2012 D2 9 ALC OC Standard
Dissolved Metals by ICP-MS - Suite A	EG035F	1	16	50.00 6.25	5.00 5.00	√	NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG020A-F	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG035T	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
2	EG020A-T		20	5.00	5.00	✓	NEFW 2013 B3 & ALS QC Standard
Method Blanks (MB)		4		50.00	= 00		NEDM 0040 DO 0 ALO OO Okarahari
Dissolved Mercury by FIMS	EG035F	1	2	50.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5 20	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							AVERNA SOLO DO O ALLO GO OL
Dissolved Mercury by FIMS	EG035F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 5 Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD
Project : 318000780 Rail Loop Lead Management

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).

Page : 5 of 5 Work Order : ES2036245

Client : RAMBOLL AUSTRALIA PTY LTD

Project : 318000780 Rail Loop Lead Management

Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure
			used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM Schedule B(3)

je fof t Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Submission of samples to the laboratory will be deemed as addeptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request 10 œ . 7 (J) 2 N. Purchase Order pecial Direction Contact Name Quote ID Ne Company Phone No Address Courier (# Client Sample ID 50 Glebe Road the Junction SED5 SED4 SW5 SWA SED3 SW3 880 SW2 SED S¥. 180813RAMN_1 Stephen Maxwell Ramboll 13/10/20 13/10/20 13/10/20 Sampled Date/Time (dd/mmlyy hh:mm) 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 Total Counts Hand Delivered (S) Water (W) Matrix (Solid S € s ۶ S ۶ ≨ တ € Analyses Project Name Project No □Sydney Laboratory
Unit F3 Bld.F. 16 Mars Rd. Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com 5 × × × × × × × × × × Total Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) □ Postal O, × × × × X Filtered Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Rail Loop Lead Management Name 318000780 07 3902 4600 EnviroSampleQLD@eurofins.com EDD Format (ESdat, EQuIS, Custom) Project Manager Signature Stephen Maxwell JUSTIN 15/10/20 Excel and PDF Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com 1L Plastic Email for Result Email for invoice Handed over by Date 250mL Plastic Sampler(s) 125mL Płastic 200mL Amber Glass Telephone: + 61-2-8784 8555 Sydney **Environmental Division** 40mL VOA vial 23.4.6 Jake Bourke, Thomas Frank Work Order Reference 500ml. PFAS Bottle asiapac-accounts@ramboll.com Jar (Glass or HDPE) 03 8564 5000 EnviroSampleVio@eurofins.com 2 Kingston Town Close, Oakleigh, VIC 3166 smaxwell@ramboll.com, ibourke@ramboll.com, smaxwell@ramboll.com Olhar (Asbestos AS4964, WA Guidelines) □3 Day* . □1 Day* □ Other (Sample Comments / Dangerous Goods Hazard Warning Overnight (9am)* Requirements (Default will be 5 days if not slaked) Jake Bourke Time Turnaround Time (TAT) □5 Day □2 Day* Surcharges apply

CHAIN OF CUSTODY RECORD

☐ Brisbane Laboratory

Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172

Melbourne Laboratory

10

در

T2_SED_131020

Method of Shipment

Courier (#

9

D2_SED_131020

دم

T1_SED_131020

T1_131020

6

D1_SED_131020

C)

D1_13120

4

SED10

e.s

SW10

SED6

SW6

蕎

Client Sample ID

Special Directions

Contact Name

Stephen Maxwel

Email for Results Email for Invoice

asiapac-accounts@ramboll.com

smaxwell@ramboll.com, smaxwell@ramboll.com

jbourke@ramboll.com,

250mL Plastic 125mL Plastic 200mL Amber Glass 40mL VOA vial

500mL PFAS Bottle

Jar (Glass or HDPE)

Sample Comments / Dangerous Goods Hazard Warning

(Asbestos AS4964, WA Guidelines)

□5 Day □2 Day*

Surcharges apply

□1 Day* □3 Day* □other (

Overnight (9am)*

Requirements (Default will be 5 days if not taked)

Turnaround Time (TAT)

Handed over by

Jake Bourke

Sampler(s)

Jake Bourke, Thomas Frank

☐ Melbourne Laboratory

2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com

Address

50 Glebe Road the Junction

Phone No

Purchase Order

Quote ID Ne

180813RAMN_1

Company

Ramboll

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Submission of samples to the laboratory will be deemed as adceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Terms and Conditions is available on request MISSOF 15/10/20 6.40pm

Date

Albana Sina

Time

Please forward to ALS

Please forward to ALS

Please forward to ALS

CHAIN OF CUSTODY RECORD 13/10/20 Sampled Date/Time (dd/mm/yy th:mm) 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 13/10/20 **Total Counts** ☐ Hand Delivered (S) Water (W) Matrix (Soli Ø S Ś € s ₹ Ś ₹ S \$ (Note: Where metals are reques code must be Project Name Project Na ☐Sydney Laboratory 5 × × × × × × × × × × Total Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Postal -× × × Filtered Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Rail Loop Lead Management Name 318000780 Brisbane Laboratory 07 3902 4600 EnviroSampleQLD@eurofins.com Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172 EDD Format (ESdat, EQuIS, Custom) Project Manager Signature Stephen Maxweil Excel and PDF Unit 2. 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviraSampleWA@eurofins.com

Summission or earnings to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd. trading as Eurofins | mgt

Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Company	Ramboll		Project Ne	el Na			318000780	780		Project Manager		Stephen Maxwell	axwell		Sampler(s)		Jake Bourke, Thomas Frank	mas Frank	
Address	50 Glebe Road the Junction		Project Name	Name		RailLo	op Lead	Rail Loop Lead Management		EDD Format (ESdat, EQuIS, Custom)		Excel and PDF	POF		Handed over by			Jake Bourke	
			d') SUITE	li, Zn)	Ni, Zn)										Email for Invoice		smax	smaxwell@ramboll.com	II.com
Contact Name	Stephen Maxwell	Well	if or "Filter ong.	in, Hg,	Mn, Hg		٠.	-					-		Email for Results		smax	smaxwell@ramboll.com,	l.com.
Phone No			es specify 'Total act SUITE prin	Fe, Pb, M	, Fe, Pb, I												bour	ibourke@ramboll.com, Turnaround Time (Requirements meaning	Viamboll.com. Turnaround Time (TAT)
Special Directions		İ	Analys requested, please ust be used to atin	, Cr, Co, Cu,	d, Cr, Co, Cu								.				ines)	Overnight (9am)*	Helad) Overnight (9am)*
Purchase Order			re metals a code	a, Be, C	3a, Be,			·							stic stic	vial		l lay	2 Day*
Quote ID Ne	180813RAMN_1		(Note Whe	AI, As, B	(Al, As, I										1L Plasti OmL Pla 5mL Pla	L Amber mL VOA IL PFAS		13 Day	*Surcharges apply
No	Client Sample ID	Sampled Date/Time (dd/mm/yy	Matrix (Solid (S) Water (W))	otal Metals (ered Metals	-									25 12	40	Other (Asbesto	Sample Comments / Dangerous	nts / Dangerous
4	D3_SED_131020	13/10/20	S	×															
¥	T3_SED_131020	13/10/20	Ø	×														Please forward to ALS	to ALS
۵	D4_SED_131020	13/10/20	တ	×									1						
٠ د	T4_SED_131020	13/10/20	G	×														Please forward to ALS	lo ALS
Ġ.	D5_SED_131020	13/10/20	S	×															
9	T5_SED_131020	13/10/20	S	×										-				Please forward to ALS	D ALS
7	D6_SED_131020	13/10/20	w	×															
	76_SED_131020 5 ℃	13/10/20	6	×														Please forward to ALS	o ALS
	RIN_131020	13/10/20	Ø	×															
0																			
		Total Counts	nts	9															
Method of Shipment	☐ Courier (#) 🗆 на	Hand Delivered		□ Postal		Name) [Signature		\ \ -	\	Date			Time	1.
	distant a							A Section of the sect	N. III.			\$.B							
miceion of complete to	the abouton will be deserted as	7																- 177	The same of the sa

CHAIN OF CUSTODY RECORD

Sydney Laboratory
Unit F3 Bd.F, 16 Mars Rd, Lane Cove West, NSW 2065
02 9900 9400 EnviroSempleNSW@eurotins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pt. Murarrie, QLD 4172
07 3902 4900 EnvircSampleQLD@eurofine.com

☐ Perth Laboratory
Unil 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSampleVic@eurofins.com

<u>.</u> Submission of samples to the laboratory will be deemed as abceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

Standard Terms and Conditions is available on request.

Standard To Standard Terms and Conditions is available on request. 10 9 8 6 4 3 2 Method of Shipment Ň Purchase Order pecial Directions Quote ID No Contact Name Phone No Address Courier (# Client Sample ID 50 Glebe Road the Junction SED9 6/AS SED8 8WS SED SW7 180813RAMN_1 Stephen Maxwell Ramboli Sampled Date/Time (dd/mm/yy hh:rnm) 12/10/20 12/10/20 12/10/20 12/10/20 12/10/20 12/10/20 Total Counts ☐ Hand Delivered (S) Water (W) Matrix (Solid € S € Ś € Analyses (Note: Where metals are requested, please specify "Total" or "Filtered") SUITE code must be used to attract SUITE pricing. Project Name Project Ne × × × × × × Total Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) ☐ Postal w × X × Filtered Metals (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Rail Loop Lead Management Name 318000780 Spiriting. 07 3902 4600 EnviroSampleQLD@eurofins.com EDD Format (ESdat, EQuIS, Custom) roject Manager Signature Stephen Maxwell Excel and PDF 08 9251 9600 EnviroSampleWA@eurofins.com Unit 2, 91 Leach Highway, Kewdale WA 6105 1L Plastic Email for Results Email for Invoice Handed over by Date 250mL Plastic Sampler(s) 200mL Amber Glass 40mL VOA vial Jake Bourke, Thomas Frank 500mL PFAS Bottle asiapac-accounts@ramboll.com Jar (Glass or HDPE) 03 8564 5000 EnviroSampleVio@eurofins.com 2 Kingston Town Close, Oakleigh, VIC 3166 smaxwell@ramboll.com, smaxwell@ramboll.com Other (Asbestos AS4964, WA Guidelines) bourke@ramboll.com □3 Day* □1 Day* □other (Overnight (9am)* Sample Comments / Dangerous Turnaround Time (TAT)
Requirements (testault will be 5 days if not taked) Time Jake Bourke Goods Hazard Warning □5 Day □2 Day* * Surcharges apply

CHAIN OF CUSTODY RECORD

Brisbane Laboratory

Unit 1, 21 Smallwood Pl., Murarne, QLD 4172

Perth Laboratory

☐ Melbourne Laboratory

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Submission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Terms and Conditions is available on request

Suite 18, Level 2 The Junction NSW SED1-UP Courier (# Received By SEDS SEDS SED7 SED6 SEDS SEDA SED3 SEDS SED1 0421 330 255 Jordyn Kirsch Ramboli Lellon 11/08/20 11/08/20 11/08/20 10/8/20 11/8/20 10/8/20 11/8/20 11/8/20 11/8/20 11/8/20 50 Glebe Road Hand Delivered S S co S Ø ç S G ço S BNE | MEL | PER | ADL | NTL | DRW × × × SYD | BNE | MEL | PER | ADL | NTL | DRW ð × × × × × × × Total Lead (mg/kg) Toal Metals M13 (Ai, As, Ba, Be, Cd, Cr3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) ☐ Postal Dissolved Metals M13 (Al, As, Ba, Be, Cd, Cr3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Surface Water Monitoring 318000780 Name Signature Signature EDD Format (ESdat, EQuIS, Custom) Signature S. Maxwell Date Date 08 9251 9600 EnviroSampleWA@eurofins.com F18/20 Time Time Date SC and JK 1126 AM smaxwell@ramboll.com smaxwell@ramboll.com jkirsch@ramboll.com 6 --_ □3 Day* □1 Day* Please dry out and then analyse in Other (Overnight (9am)* Turnaround Time (TAT) Requirements (befault will be 5 days (In Please dry out and then analyse in Please dry out and then analyse in Temperature Jordyn Kirsch Report Ne Time mg/kg. 738163 14.5° ⊡_{5 Day} □2 Day*

CHAIN OF CUSTODY RECORD

Sydney Laboratory
Unit F3 Bld F, 16 Mars Rd, Lane Cove West, NSW 2086
02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood PI, Murarrie, QLD 4172
07 3902 4900 EnviroSampleOLD@eurofins.com

Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105

☐ Meibourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSampleVir@eurofins.com

CHAIN OF CUSTODY RECORD

☐ Sydney Laboratory
Unit F3 Bld.F., 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 — ErwiroSerrpleNSW@eurofins.com

Brisbane Laboratory
Unit 1, 21 Smelhwood Pl., Murerrie, QLD 4172
07 3902 4800 EnvireSampreOLD@eurofins.com

Perth Laboratory
Unit 2, 91 Leach Highway, Kewdole WA 6105
08 9251 9600 EnviroSempleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 EnviroSampleVic@eurofins.com

Laboratory Use O	Eurofins mgt	Method of Shipment		10	107		7	6	сп		ч	ы		æ	Quote ID Nii	Purchase Order	Special Directions	Phone Na	Contact Name		Address	
nly Received By	Received By	C Courier (#		SW8	SW7	SW6	SW5	SW4	SW3	SW2	SW1_UP	SW1	DUP01	Client Sample ID				2	Jor		Suite 18, Level 2 The Junction NSW	
	Leve	J (W	Total Counts	10/8/20	11/8/20	11/8/20	11/8/20	11/8/20	11/8/20	11/8/20	11/8/20	11/8/20	11/8/20	Sampled Date/Time (dd/mmbyy ht/mm)				0421 330 255	Jordyn Kirsch		50 Glebe Road	
	0	Hand Delivered	ounts	*	*	8	8	8	*	*	8	*	w	Matrix (Soli (S) Water (W	Prists	When To	Ana Stave wa mind Stablemark care	yses.	i e	-1467	100000	H
l avs	(SA)	8.	_										×				al Lead (mg/ko		2,000		Project Name	
BNE MEL	BNE } MEL	[Postal	9	×	×	×	×	×	×	×	×	×		Toal Metals M			Zn)					Ī
PER AD	PER AD	<u>a</u>	9	×	×	×	×	×	×	×	×	×		Dissolved Me	tals M1		s, Ba, Be, Cd, Hg, Ni, Zn)	Cr3, Co, (Cu, Fe, P	b, Mn,	Surfac	
SYD BNE MEL PER ADL NTL DRW	(SY) BNE MEL PER ADL NTL DRW	Name																			Surface Water Monitoring	
Signature	Signature																				ring	
(M)																			EDD Format (ESdnt, EQuIS, Custom)	
	V	Signature																				
Date	Date																					
//_	17/80/20	11																				
Time	Time	Date												45.33	250mL 125mL	lastic Plastic Plastic		Co	Email for Results	Email for Invoice	Handed over by	
-	11:26 AM													50	40mL \ 0mL Pl (Glass	nber Gla /OA vial FAS Bot s or HDF 4964, WA	lle PE)	Containers	sma: jkirs		પ	
Report Na	Temperature	Time	Sale of										Please dry out a		C Other (□ 3 Day*	C Overnight (9am)*	Turnaround Time (TAT) Requirements instant will be 5 days if not	smaxwell@ramboll.com jkirsch@ramboll.com	smaxwell@ramboll.com	Jordyn Kirsch	
73816	ilus C	ŀ											Please dry out and then analyse in mg/kg.	Sample Comments / Dangerous Goods Hazard Warning)	☐ 5 Day	Jam)*	Turnaround Time (TAT) rements paradow= 5e 6 days10 not ticks	oll.com l.com	oll.com		

55

CHAIN OF CUSTODY RECORD

☐ Sydinay Laboratory
Unit F3 Bid. F. 16 Mars Rd, Lene Cove West, NSW 2058
02 5500 8400 EnviroSampleNSW@eurofins.com

Brisbane Laboratory
Unit 1, 21 Smallwood Pt, Murame, CLD 4172
07 3902 4500 EnviroSempleOLD@eurolins.com

 Perth

 ALD 4172
 Unit 2, 5

 Beurolins com
 08 9251

Perth Laboratory

Lint 2, 91 Loach Highway, Kewidale WA 5105

08 9251 9900 EnviroSampleWA@eurofins.com

Melbourne Laboratory
2 Kingston Town Close, Claideigh, VIC 3166
03 8564 5000 EmuroSampleVic@eurofins.com

Laboratory Use Only	Eurofins mgt	Method of Shipment		ā	in in	9	7	(9)	<u> </u>	u	2	10		Circle ID Na	Punchase Order	Special Directions	Phone Ma	Contact Name		Address	
infy Received By	Received By	Courier (#									DUP01	SW9	Client Sample ID				5	2		Suite 18, Level 2 50 Glebe Road Junction NSW	
2	Jana	,	Total								11/8/20	10/08/20	Sampled Date/Time (dd/mm/yy hh:mm)				0421 330 255	Jordyn Kirsch		The	
	0	Hand Delivered	Total Counts								W	W	Matrīx (Solid (S) Water (V))	Vicin State	telaks miliowed	Analynes d please section	ital or 'F	SVITE #	ide musi bo		
l axs	8	8.													Tota! Lead (mg/kg)				Project Name	
NE MEL	ME MET	Postal	2								×	×	Toal Metals M								
PER ADL	PER ADL		2								×	×	Dissorted motals	III 10 (ru, ru,	Da, De, Va,	010, 00, 00, 1	o, i b, iiii	1, 119, 111,	21)	Surface	
SYD BNE MEL PER ADL NTL DRW	SW BWE MEL PER ADL NTL DRW	Name																		Surface Water Monitoring	
Signature	Signature																			ring	
1	1)																		EDD Format (ESdat, EQuIS, Custom)	
		Signature																			
Deta	Date																				
	2/30/21	,																			
Time	O Time	Date											20	1L Plastic 250mL Plas 125mL Plas	tic tic		ဂ္ဂ	mail for Results	Email for Invoice	Handed over by	
	Milban	<u></u>											51 Ja	OmL Amber (40mL VOA) OmL PFAS E Ir (Glass or H estos AS4964,)	vial Bottle DPE)		Containers			¥	
Report No	Temperature	Time											Sample Comm Goods Hax	□ other (□ 3 Day*	Overnight (9am)* L 1 Day*	Turnaroun Requirements	smaxwell@ramboll.com jkirsch@ramboll.com	smaxwell@ramboll.com	Jordyn Kirsch	
13816	J. S.M.	ļ.											Sample Comments / Dangerous Goods Hazard Warring		□ 5 Day □ uncharges apply	am)* 2 Day*	Turnaround Time (TAT) Requirements to that will be a days if not licked)	oll.com	oll.com		

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name:

Stephen Maxwell

Project name:

SURFACE WATER MONITORING

Project ID:

318000780

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Aug 17, 2020 11:26 AM

738163

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 24, 2020

Stephen Maxwell

Aug 17, 2020 11:26 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: SURFACE WATER MONITORING

Project ID: 318000780 Order No.: Report #:

Sydney

738163

Phone: 02 9954 8118 02 9954 8150 Fax:

5 Day

																					Ει	ırofi	ns A	naly	tical	Ser	vice	s Ma	ınag	er:	Andr	ew F	3lacl	k
		Sai	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271																									\Box			\Box		
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794																													Ш		
Pert	h Laboratory - N	IATA Site # 237	36																									oxdot	igsqcut			Ш		
New	castle Laborato	ry																										$\bigsqcup^{!}$	Ш		igsqcup	ш		
Exte	rnal Laboratory			•	1																							╙-	Ш	<u> </u>	igsqcup	Ш		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																													
1	SED1	Aug 11, 2020		Soil	S20-Au23104																			Χ										Х
2	SED1-UP	Aug 11, 2020		Soil	S20-Au23105																			Χ								Ш		Х
3	SED2	Aug 11, 2020		Soil	S20-Au23106																			Χ								ш		Х
4	SED3	Aug 11, 2020		Soil	S20-Au23107																			Χ				<u> </u>			igsqcup	Ш		Х
5	SED4	Aug 11, 2020		Soil	S20-Au23108																			Χ				<u> </u>			Ш	ш	\square	Х
6	SED5	Aug 11, 2020		Soil	S20-Au23109																			Χ				<u> </u>			Ш	ш	\square	Х
7	SED6	Aug 11, 2020		Soil	S20-Au23110																			Χ				<u>—</u> !			\bigsqcup	Ш		Х
8	SED7	Aug 11, 2020		Soil	S20-Au23111																			Χ				<u> </u>	Ш		Ш	Ш		Х
9	SED8	Aug 10, 2020		Soil	S20-Au23112																			Χ				لــــا	لــــا			Ш		Χ

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

New Zealand

Auckland
35 O'Rorke Road
Penrose, Auckland 1061
Phone: +64 9 526 45 51
IANZ # 1327

Aug 24, 2020

Stephen Maxwell

Aug 17, 2020 11:26 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: SURFACE WATER MONITORING

Project ID: 318000780

Order No.: Report #:

738163 02 9954 8118

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Furofins Analytical Services Manager - Andrew Black

5 Day

																				EL	irotii	ns A	naıy	tical	Ser	vice	s Ma	ınag	er : /	Andr	ew E	Black	
		Sar	mple Detail		Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mel	bourne Laborate	ory - NATA Site	# 1254 & 14271																													\Box	
Syd	ney Laboratory	- NATA Site # 18	8217		Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																														_
Peri	· · · · · · · · · · · · · · · · · · ·	NATA Site # 237							ļ																								_
10	SED9	Aug 10, 2020	Soil	S20-Au23113																			Χ										Х
11	DUP01	Aug 11, 2020	Soil	S20-Au23114																			Χ										Х
12	SW1	Aug 11, 2020	Water	S20-Au23115	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	_
13	SW1_UP	Aug 11, 2020	Water	S20-Au23116	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	
14	SW2	Aug 11, 2020	Water	S20-Au23117	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	
15	SW3	Aug 11, 2020	Water	S20-Au23118	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	_
16	SW4	Aug 11, 2020	Water	S20-Au23119	X	X	X	X	Х	X	X	Х	Х	Х	X	X	Х	X	X	Х	X	X	Х	Х	X	X	Х	Х	Х	X	Х	X	-
17	SW5	Aug 11, 2020	Water	S20-Au23120	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	X	-
18	SW6	Aug 11, 2020	Water	S20-Au23121	X	X	X	X	X	X	X	X	Х	X	X	X	Х	Х	X	X	X	X	X	X	X	X	Х	Х	Х	X	Х	X	\dashv
19	SW7	Aug 11, 2020	Water	S20-Au23122	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	-
20	SW8	Aug 10, 2020	Water	S20-Au23123	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	\dashv
21	SW9	Aug 10, 2020	Water	S20-Au23124	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	\dashv
22	DUP01	Aug 11, 2020	Water	S20-Au23125	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name: SURFACE WATER MONITORING

Project ID: 318000780 Order No.:

Report #: 738163 Phone: 02 9954 8118 Fax:

02 9954 8150 Stephen Maxwell **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

5 Day

New Zealand

Aug 17, 2020 11:26 AM

Aug 24, 2020

Sample Detail	Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																													
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Brisbane Laboratory - NATA Site # 20794																													
Perth Laboratory - NATA Site # 23736																													
Test Counts	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	22	11	11	11	11	11	11	11	11	11	11

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 738163-S

Project name SURFACE WATER MONITORING

Project ID 318000780

Received Date Aug 17, 2020

Client Sample ID			SED1	SED1-UP	SED2	SED3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au23104	S20-Au23105	S20-Au23106	S20-Au23107
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	1700	23	340	630

Client Sample ID			SED4	SED5	SED6	SED7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au23108	S20-Au23109	S20-Au23110	S20-Au23111
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	5	mg/kg	1600	24	290	56

Client Sample ID			SED8	SED9	DUP01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Au23112	S20-Au23113	S20-Au23114
Date Sampled			Aug 10, 2020	Aug 10, 2020	Aug 11, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Lead	5	mg/kg	15	24	1000

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy MetalsSydneyAug 19, 2020180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

North Sydney

NSW 2060

Project Name:

Company Name:

Address:

SURFACE WATER MONITORING

Level 3/100 Pacific Highway

Project ID: 318000780 Order No.: Received: Aug 17, 2020 11:26 AM

Report #: 738163 Due: Aug 24, 2020 Phone: 02 9954 8118 **Priority:** 5 Day

02 9954 8150 Fax: **Contact Name:** Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper (micros)	Copper (filtered)	non (mered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
		ory - NATA Site		71																					\perp					<u> </u>			
		- NATA Site # 1				Х	Х	X	Х	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	x >	()	X)	< x	: X	(X	X	X	Х	X	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																						_					└	<u></u> —'		,
Pert	h Laboratory - N	NATA Site # 237	36																											<u> </u>	<u></u> —'		
New	castle Laborato	ory																												<u> </u>	<u></u>	igsquare	
Exte	rnal Laboratory																																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																												
1	SED1	Aug 11, 2020		Soil	S20-Au23104)	<									Х
2	SED1-UP	Aug 11, 2020		Soil	S20-Au23105)	<									Х
3	SED2	Aug 11, 2020		Soil	S20-Au23106)	<									Х
4	SED3	Aug 11, 2020		Soil	S20-Au23107)	<									Х
5	SED4	Aug 11, 2020		Soil	S20-Au23108)	<									X
6	SED5	Aug 11, 2020		Soil	S20-Au23109)	<									Х
7	SED6	Aug 11, 2020		Soil	S20-Au23110)	<									Х
8	SED7	Aug 11, 2020		Soil	S20-Au23111)	<									Х
9	SED8	Aug 10, 2020		Soil	S20-Au23112)	(Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 24, 2020

Stephen Maxwell

Aug 17, 2020 11:26 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Address:

SURFACE WATER MONITORING

Project ID:

318000780

Order No.: Report #:

Phone:

738163 02 9954 8118

02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

																=(aron	ns A	maiy	tica	Ser	vice	S IVI	anag	er:	Anai	ew	Віаск	
Sample Detail	Aldmillium	Aluminium (liiterea)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																													
Sydney Laboratory - NATA Site # 18217)	()	()	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794																													
Perth Laboratory - NATA Site # 23736																													
10 SED9 Aug 10, 2020 Soil S20-Au231	13																		Χ										Х
11 DUP01 Aug 11, 2020 Soil S20-Au231	14																		Χ										Х
12 SW1 Aug 11, 2020 Water S20-Au231	15	()	()	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	
13 SW1_UP Aug 11, 2020 Water S20-Au231	16	()	()	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	
14 SW2 Aug 11, 2020 Water S20-Au231	17	()	()	X	X	X	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	
15 SW3 Aug 11, 2020 Water S20-Au231	18	()	()	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	
16 SW4 Aug 11, 2020 Water S20-Au231	19	()	()	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	
17 SW5 Aug 11, 2020 Water S20-Au231.	20 >	()	()	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	
18 SW6 Aug 11, 2020 Water S20-Au231.	21)	()	()	(X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	
19 SW7 Aug 11, 2020 Water S20-Au231.	22)	()	()	(X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	
20 SW8 Aug 10, 2020 Water S20-Au231.	23)	()	()	(X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	
21 SW9 Aug 10, 2020 Water S20-Au231.	24)	()	()	(X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Χ	Х	Х	
22 DUP01 Aug 11, 2020 Water S20-Au231.	25)	()	()	(X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Newcastle
4/52 Industrial Drive
Mayfield East NSW 2304
PO Box 60 Wickham 2293
Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd Orde

Site # 1254 & 14271

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Address:

SURFACE WATER MONITORING

Project ID: 318000780

Order No.: Report #:

738163

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Received: Aug 17, 2020 11:26 AM **Due:** Aug 24, 2020

Priority: 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																													
Sydney Laboratory - NATA Site # 18217	Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х
Brisbane Laboratory - NATA Site # 20794																													
Perth Laboratory - NATA Site # 23736																													
Test Counts	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	22	11	11	11	11	11	11	11	11	11	11

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	110			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S20-Au28829	NCP	%	98			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Au28674	NCP	mg/kg	< 5	6.2	57	30%	Fail	Q15

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Andrew Black Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 738163-W

Project name SURFACE WATER MONITORING

Project ID 318000780

Received Date Aug 17, 2020

Client Sample ID			SW1	SW1_UP	SW2	SW3
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Au23115	S20-Au23116	S20-Au23117	S20-Au23118
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	0.05	mg/L	0.88	0.85	0.95	0.61
Aluminium (filtered)	0.05	mg/L	0.53	0.45	0.47	0.69
Arsenic	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium	0.02	mg/L	0.04	0.05	0.05	0.05
Barium (filtered)	0.02	mg/L	0.04	0.04	0.04	0.05
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	0.0011
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	0.0010
Chromium	0.001	mg/L	0.001	0.002	0.002	0.001
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	0.001
Cobalt	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.003	0.002	0.004	0.018
Copper (filtered)	0.001	mg/L	0.002	0.002	0.003	0.016
Iron	0.05	mg/L	0.91	0.93	1.0	0.60
Iron (filtered)	0.05	mg/L	0.34	0.30	0.31	0.46
Lead	0.001	mg/L	0.001	< 0.001	0.003	0.011
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.009
Manganese	0.005	mg/L	0.024	0.026	0.043	0.017
Manganese (filtered)	0.005	mg/L	0.018	0.020	0.015	0.014
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.002	0.002	0.002	0.002
Nickel (filtered)	0.001	mg/L	0.002	0.002	0.002	0.002
Zinc	0.005	mg/L	0.020	0.011	0.028	0.22
Zinc (filtered)	0.005	mg/L	0.011	0.008	0.020	0.20

Client Sample ID			SW4	SW5	SW6	SW7
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Au23119	S20-Au23120	S20-Au23121	S20-Au23122
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Aluminium	0.05	mg/L	0.59	1.8	1.8	1.7
Aluminium (filtered)	0.05	mg/L	0.63	3.2	2.4	0.95
Arsenic	0.001	mg/L	< 0.001	0.001	0.002	0.003
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	0.001	0.001
Barium	0.02	mg/L	0.05	0.03	0.06	0.04
Barium (filtered)	0.02	mg/L	0.04	0.03	0.05	0.03
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0030	0.0009	0.0072	0.0014
Cadmium (filtered)	0.0002	mg/L	0.0029	0.0009	0.0063	0.0010
Chromium	0.001	mg/L	0.001	0.003	0.003	0.002
Chromium (filtered)	0.001	mg/L	< 0.001	0.003	0.003	0.002
Cobalt	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.040	0.019	0.10	0.027
Copper (filtered)	0.001	mg/L	0.035	0.016	0.088	0.019
Iron	0.05	mg/L	0.57	1.5	1.4	1.8
Iron (filtered)	0.05	mg/L	0.47	1.4	1.1	0.57
Lead	0.001	mg/L	0.015	0.010	0.022	0.025
Lead (filtered)	0.001	mg/L	0.011	0.006	0.013	0.005
Manganese	0.005	mg/L	0.045	0.012	0.018	0.032
Manganese (filtered)	0.005	mg/L	0.041	0.008	0.013	0.028
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.006	0.002	0.029	0.003
Nickel (filtered)	0.001	mg/L	0.006	0.002	0.026	0.003
Zinc	0.005	mg/L	0.56	0.11	0.90	0.36
Zinc (filtered)	0.005	mg/L	0.50	0.094	0.79	0.26

Client Sample ID			SW8	SW9	DUP01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-Au23123	S20-Au23124	S20-Au23125
Date Sampled			Aug 10, 2020	Aug 10, 2020	Aug 11, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Aluminium	0.05	mg/L	0.72	0.53	0.83
Aluminium (filtered)	0.05	mg/L	0.41	0.35	0.54
Arsenic	0.001	mg/L	< 0.001	< 0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Barium	0.02	mg/L	0.02	0.02	0.04
Barium (filtered)	0.02	mg/L	0.02	0.02	0.04
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0003	0.0004	< 0.0002
Cadmium (filtered)	0.0002	mg/L	0.0002	0.0004	0.0003
Chromium	0.001	mg/L	0.001	0.002	0.002
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	< 0.001	< 0.001

Client Sample ID Sample Matrix			SW8 Water	SW9 Water	DUP01 Water
Eurofins Sample No.			S20-Au23123	S20-Au23124	S20-Au23125
Date Sampled			Aug 10, 2020	Aug 10, 2020	Aug 11, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.008	0.010	0.003
Copper (filtered)	0.001	mg/L	0.007	0.008	0.003
Iron	0.05	mg/L	0.76	0.60	0.89
Iron (filtered)	0.05	mg/L	0.31	0.29	0.34
Lead	0.001	mg/L	0.002	0.002	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.004
Manganese	0.005	mg/L	0.035	0.041	0.023
Manganese (filtered)	0.005	mg/L	0.028	0.036	0.018
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.002	0.002	0.002
Nickel (filtered)	0.001	mg/L	0.002	0.002	0.002
Zinc	0.005	mg/L	0.12	0.16	0.017
Zinc (filtered)	0.005	mg/L	0.10	0.14	0.045

Page 3 of 12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Aug 18, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Sydney	Aug 17, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Mobil Metals : Metals M15	Sydney	Aug 17, 2020	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Company Name:

Project Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

738163

02 9954 8118

02 9954 8150

Order No.:

Report #:

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

North Sydney

NSW 2060

SURFACE WATER MONITORING

Level 3/100 Pacific Highway

Project ID: 318000780 Received: Aug 17, 2020 11:26 AM

Due: Aug 24, 2020 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

																						41 011		iiuiy	tioui	00.	V100	5 1110	inag		Allui		J1401	`
		Sa	mple Detail			Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271																													П	
		- NATA Site # 1				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794																														i	
Per	h Laboratory - I	NATA Site # 237	36																														i	
Nev	castle Laborato	ory																															i	
Exte	ernal Laboratory	/			_																												i	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																													
1	SED1	Aug 11, 2020		Soil	S20-Au23104																			Χ									i	Х
2	SED1-UP	Aug 11, 2020		Soil	S20-Au23105																			Χ							$oxed{oxed}$			Х
3	SED2	Aug 11, 2020		Soil	S20-Au23106																			Χ							$oxed{oxed}$			Х
4	SED3	Aug 11, 2020		Soil	S20-Au23107																			Χ					<u> </u>					Х
5	SED4	Aug 11, 2020		Soil	S20-Au23108																			Χ			<u> </u>		<u> </u>		Ш			Х
6	SED5	Aug 11, 2020		Soil	S20-Au23109																			Χ			$\bigsqcup^!$		<u> </u>		Ш		\sqcup	Х
7	SED6	Aug 11, 2020		Soil	S20-Au23110																			Χ			<u> </u>		<u> </u>				\longrightarrow	Х
8	SED7	Aug 11, 2020		Soil	S20-Au23111																			Χ			$\bigsqcup^!$		<u> </u>		Ш		\sqcup	Х
9	SED8	Aug 10, 2020		Soil	S20-Au23112																			Χ					<u> </u>			Ш	i	Χ

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Auckland 35 O'Rorke Road 4
Penrose, Auckland 1061 R
Phone : +64 9 526 45 51 P
IANZ # 1327

Aug 17, 2020 11:26 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

SURFACE WATER MONITORING

Project ID:

318000780

Order No.: Report #:

Phone:

738163 02 9954 8118

Fax: 02 9954 8150

 Due:
 Aug 24, 2020

 Priority:
 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

																							iiui	tiou		VICE	5 1110	iiiug	OI	Alla		Jiuoi	`
		Sample Det	tail		Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melk	ourne Laborate	ory - NATA Site # 1254 8	k 14271																													ı	
Syd	ney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 20794																															
Pert	h Laboratory - N	NATA Site # 23736																													Ш		
10	SED9	Aug 10, 2020	Soil	S20-Au23113																			Χ								Ш	ı	Х
11	DUP01	Aug 11, 2020	Soil	S20-Au23114																			Χ								Ш		Х
12	SW1	Aug 11, 2020	Water	S20-Au23115	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	
13	SW1_UP	Aug 11, 2020	Water	S20-Au23116	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	
14	SW2	Aug 11, 2020	Water	S20-Au23117	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	
15	SW3	Aug 11, 2020	Water	S20-Au23118	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	
16	SW4	Aug 11, 2020	Water	S20-Au23119	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	
17	SW5	Aug 11, 2020	Water	S20-Au23120	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	Χ	
18	SW6	Aug 11, 2020	Water	S20-Au23121	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	
19	SW7	Aug 11, 2020	Water	S20-Au23122	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	
20	SW8	Aug 10, 2020	Water	S20-Au23123	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Х	
21	SW9	Aug 10, 2020	Water	S20-Au23124	Х	 	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	
22	DUP01	Aug 11, 2020	Water	S20-Au23125	Х	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Х	

Company Name:

Project Name:

Address:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

SURFACE WATER MONITORING

Project ID: 318000780

Order No.: Received: Aug 17, 2020 11:26 AM

 Report #:
 738163
 Due:
 Aug 24, 2020

 Phone:
 02 9954 8118
 Priority:
 5 Day

Fax: 02 9954 8150 Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager : Andrew Black

																_	u. 0		···u·	,u			0	ug	٠	Alla	• • • •	J.40.	•
Sample Detail	Aluminium	Aluminium (filtered)	Arsenic	Arsenic (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Cobalt	Cobalt (filtered)	Copper	Copper (filtered)	Iron	Iron (filtered)	Lead	Lead (filtered)	Manganese	Manganese (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc	Zinc (filtered)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																													
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794																													
Perth Laboratory - NATA Site # 23736																													
Test Counts	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	22	11	11	11	11	11	11	11	11	11	11

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Heavy Metals					
Aluminium	mg/L	< 0.05	0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05	0.05	Pass	
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Barium	mg/L	< 0.02	0.02	Pass	
Barium (filtered)	mg/L	< 0.02	0.02	Pass	
Beryllium	mg/L	< 0.001	0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Cobalt	mg/L	< 0.001	0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Iron	mg/L	< 0.05	0.05	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.001	0.001	Pass	
		1	0.005	Pass	
Manganese (filtered)	mg/L	< 0.005 < 0.0001	0.003	Pass	
Mercury (filtered)	mg/L	0.0001	0.0001		
Mercury (filtered)	mg/L			Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		T		I	
Heavy Metals					
Aluminium	%	99	80-120	Pass	
Aluminium (filtered)	%	95	80-120	Pass	
Arsenic	%	99	80-120	Pass	
Arsenic (filtered)	%	99	80-120	Pass	
Barium	%	100	80-120	Pass	
Barium (filtered)	%	99	80-120	Pass	
Beryllium	%	90	80-120	Pass	
Beryllium (filtered)	%	90	80-120	Pass	
Cadmium	%	103	80-120	Pass	
Cadmium (filtered)	%	97	80-120	Pass	
Chromium	%	99	80-120	Pass	
Chromium (filtered)	%	96	80-120	Pass	
Cobalt	%	99	80-120	Pass	
Cobalt (filtered)	%	96	80-120	Pass	
Copper	%	96	80-120	Pass	
Copper (filtered)	%	94	80-120	Pass	
Iron	%	101	80-120	Pass	
Iron (filtered)	%	95	80-120	Pass	
Lead	%	100	80-120	Pass	
Lead (filtered)	%	98	80-120	Pass	

1	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Manganese			%	99			80-120	Pass	
Manganese (filtered)			%	96			80-120	Pass	
Mercury			%	108			80-120	Pass	
Mercury (filtered)			%	97			80-120	Pass	
Nickel			%	98			80-120	Pass	
Nickel (filtered)			%	95			80-120	Pass	
Zinc			%	95			80-120	Pass	
Zinc (filtered)			%	97			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals		1		Result 1					
Aluminium	S20-Au25371	NCP	%	103			75-125	Pass	
Arsenic	S20-Au25371	NCP	%	99			75-125	Pass	
Barium	S20-Au25371	NCP	%	114			75-125	Pass	
Beryllium	S20-Au25371	NCP	%	85			75-125	Pass	
Cadmium	S20-Au25371	NCP	%	97			75-125	Pass	
Chromium	S20-Au25371	NCP	%	88			75-125	Pass	
Cobalt	S20-Au25371	NCP	%	86			75-125	Pass	
Copper	S20-Au25371	NCP	%	83			75-125	Pass	
Iron	S20-Au25371	NCP	%	106			75-125	Pass	
Lead	S20-Au25371	NCP	%	89			75-125	Pass	
Manganese	S20-Au25371	NCP	%	99			75-125	Pass	
Mercury	S20-Au25371	NCP	%	100			75-125	Pass	
Nickel	S20-Au25371	NCP	%	84			75-125	Pass	
Zinc	S20-Au25371	NCP	%	79			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Aluminium (filtered)	S20-Au23125	СР	%	86			75-125	Pass	
Arsenic (filtered)	S20-Au23125	СР	%	97			75-125	Pass	
Barium (filtered)	S20-Au23125	СР	%	94			75-125	Pass	
Beryllium (filtered)	S20-Au23125	СР	%	93			75-125	Pass	
Cadmium (filtered)	S20-Au23125	СР	%	98			75-125	Pass	
Chromium (filtered)	S20-Au23125	СР	%	96			75-125	Pass	
Cobalt (filtered)	S20-Au23125	СР	%	96			75-125	Pass	
Copper (filtered)	S20-Au23125	СР	%	94			75-125	Pass	
Iron (filtered)	S20-Au23125	CP	%	91			75-125	Pass	
Lead (filtered)	S20-Au23125	CP	%	96			75-125	Pass	
Manganese (filtered)	S20-Au23125	CP	%	95			75-125	Pass	
Mercury (filtered)	S20-Au23125	CP	%	108			75-125	Pass	
Nickel (filtered)	S20-Au23125	CP	%	96			75-125	Pass	
Zinc (filtered)	S20-Au23125	CP	%	89			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	S20-Au24999	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Aluminium (filtered)	S20-Au23115	CP	mg/L	0.53	0.51	3.0	30%	Pass	
Arsenic	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Arsenic (filtered)	S20-Au23115	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium	S20-Au24999	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Barium (filtered)	S20-Au23115	СР	mg/L	0.04	0.04	2.0	30%	Pass	
Beryllium	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium (filtered)	S20-Au23115	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S20-Au24999	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		•							
Heavy Metals				Result 1	Result 2	RPD			
Cadmium (filtered)	S20-Au23115	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chromium (filtered)	S20-Au23115	CP	mg/L	0.001	< 0.001	23	30%	Pass	
Cobalt	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S20-Au23115	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S20-Au23115	CP	mg/L	0.002	0.002	<1	30%	Pass	
Iron	S20-Au24999	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Iron (filtered)	S20-Au23115	CP	mg/L	0.34	0.32	4.0	30%	Pass	
Lead	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S20-Au23115	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S20-Au24999	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Manganese (filtered)	S20-Au23115	CP	mg/L	0.018	0.018	<1	30%	Pass	
Mercury	S20-Au24999	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Mercury (filtered)	S20-Au23115	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-Au24999	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel (filtered)	S20-Au23115	CP	mg/L	0.002	0.002	3.0	30%	Pass	
Zinc	S20-Au24999	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	S20-Au23115	СР	mg/L	0.011	0.011	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Andrew Black Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt Eurofins | mgt Laboratory Use Only П LO_TP03_1.6m LO_TP02_1.1m Courier (# Received By Received By Steve Cadman 0423 583 538 19/08/20 19/08/20 00 S SYD | BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW N × × Total Lead (mg/kg) Toal Metals M13 (Al, As, Ba, Be, Cd, Cr3, Co, Cu, Fe, Pb, Mn, Hg, Ni, Zn) Postal Name Signature Signature Date Date Time Time Date

e,

CHAIN OF CUSTODY RECORD

Brisbane Laboratory
Unit 1, 21 Smellwcod Pt, Muranie, QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com

SC and TF

Steve Cadman

smaxwell@ramboll.com smaxwell@ramboll.com jkirsch@ramboll.com

C Overnight (9am)*

☐ 2 Day*
☐ 5 Day
*Surcharges apply

□ 1 Day*
□ 3 Day*
□ Other(

XRF measurement 0 - 5000 mg/kg Pb
XRF measurement 0 - 5000 mg/kg Pb

318000780

Ramboll

Suite 18, Level 2 The Junction NSW

50 Glebe Road

hbybet A

MOON

Temperature

Ime

ਰ →

-

-

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name: Project name: Project ID:

Stephen Maxwell 318000780 318000780

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Aug 21, 2020 3:40 PM

739494

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Company Name:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: 318000780 Project ID: 318000780 Order No.: Report #:

Sydney

739494

Phone: 02 9954 8118 02 9954 8150 Fax:

Received: Aug 21, 2020 3:40 PM Due: Aug 28, 2020

Priority: 5 Day

Stephen Maxwell **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

		Sal	mple Detail			Lead	Moisture Set							
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71										
	Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794													
Brisk	Brisbane Laboratory - NATA Site # 20794													
Perth	Laboratory - N	IATA Site # 237	36											
	castle Laborato	•												
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	LO_TP02_1.1 M	Aug 19, 2020		Soil	S20-Au35842	Х	х							
2	LO_TP03_1.6 M	Aug 19, 2020		Soil	S20-Au35843	х	х							
Test	Counts					2	2							

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

 Report
 739494-S

 Project name
 318000780

 Project ID
 318000780

 Received Date
 Aug 21, 2020

Client Sample ID			LO_TP02_1.1M	LO_TP03_1.6M
Sample Matrix			Soil	Soil
Eurofins Sample No.			S20-Au35842	S20-Au35843
Date Sampled			Aug 19, 2020	Aug 19, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Lead	5	mg/kg	5700	3000
% Moisture	1	%	8.7	8.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Aug 25, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Aug 24, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 739494-S

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Contact Name:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name: Project ID:

Address:

318000780 318000780 Order No.: Report #:

739494

Brisbane

Murarrie QLD 4172

Phone: 02 9954 8118 02 9954 8150 Fax:

Received: Aug 21, 2020 3:40 PM

Due: Aug 28, 2020 **Priority:** 5 Day

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Lead	Moisture Set						
	ourne Laborato			71									
	ey Laboratory					Х	X						
Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736													
			36										
	castle Laborato	•											
	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	LO_TP02_1.1 M	Aug 19, 2020		Soil	S20-Au35842	Х	Х						
2	LO_TP03_1.6 M	Aug 19, 2020		Soil	S20-Au35843	Х	Х						
Test	Counts					2	2						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 739494-S

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	94			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S20-Au40455	NCP	%	116			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Au35825	NCP	mg/kg	470	770	49	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Au35830	NCP	%	6.0	6.3	5.0	30%	Pass	

Report Number: 739494-S

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Andrew Black Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY RECORD

Sydney Laboratory
Unit F3 Bit.F, 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172
07 3902 4500 EnviroSampleQLD@eurofins.com

☐ Perth Laboratory
Unit 2, 91 Leach Highway, Kewdale WA 6105
08 9251 9600 EnviroSempleWA@eurofins.com

☐ Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8584 5000 EnviroSampleVic@eurofins.com

Address S	Suite 18, Level 2 The Junction NSW	50 Glebe Road	100	t Name					EDD Format (ESdat, EQuIS, Custom)				Handed over by	JY	Steve Cadman	
			d" } \$VITE			Hg,				Ę.: 1			Email for invoice		smaxwell@ramboll.com	ll.com
Contact Name	Stev	Steve Cadman	or "Filtered	ntent		b, Mn,							Email for Results		smaxwell@ramboll.com	II.com
Phone №	042:	0423 583 538	specify "Total"			Cu, Cr, P n,						Į,	აე	Containers	Turneround Time Requirements pelaut wil	Turnaround Time (TAT) Requirements (belault will be 5 days if not
Special Directions			Analyse quested, please t be used to attra	ivity, moi:	nic carbo	Cd, Co, C Sn, V, Z	sulfer							ines)	Overnight (9am)*	am)*
			ils are requ code must t			e, B, C li, Se,	total s	Ā				Ų.		tle °E)	□1Day*	□2 Day*
Purchase Order			nere metal co			As, Be Mo, N					4		Plastic Plastic	per Gla DA vial AS Bott or HDP 164, WA	☐3 Day*	☑5 Day
Quote ID Ne			(Note: Wi	lectric		; Sb,						1L Pla	50mL 25mL)mL V(nL PF <i>)</i> Glass (Other (" Surcharges apply
₹	Client Sample ID	Sampled Date/Time (dd/mm/yy hh:mm)	Matrix (Solid (S) Water (W))	pH, e		metal(loid)s								40 500r	Sample Commo Goods Haz	Sample Comments / Dangerous Goods Hazard Warning
4	RRE_SP01	19/08/20	w	×	×	×	×		- 1					4	XRF measure	XRF measurements not recorded
2	RRE_SP02	19/08/20	S	×	×	×	×							4	XRF measurer	XRF measurements not recorded
ω	RRE_SP03	19/08/20	Ø	×	×	×	×					J. VI		-1	XRF measurer	XRF measurements not recorded
	RRE_SP04	19/08/20	S	×	×	×	×						8 H J B-X	_	XRF measurer	XRF measurements not recorded
5	RRE_SP05	19/08/20	S	×	×	×	×							a .	XRF measurer	XRF measurements not recorded
6	RRE_SP06	19/08/20	co	×	×	×	×							1	XRF measurer	XRF measurements not recorded
7	RRE_SP07	19/08/20	s	×	×	×	×							-	XRF measurer	XRF measurements not recorded
03	RRE_SP08	19/08/20	S	×	×	×	×							-	XRF measurer	XRF measurements not recorded
9	RRE_SP09	19/08/20	w	×	×	×	×							-	XRF measurer	XRF measurements not recorded
10	RRE_SP10	19/08/20	w	×	×	×	×							1	XRF measurer	XRF measurements not recorded
		Total Counts	unts	10	10	6	10	-26						10		
Method of Shipment	Courier (#	,) D F	Hand Delivered		Postal	<u> </u>	Name			Signature			Date		Time	<u> </u>
Eurofins mgt	Received By	Lua !		Sal B	NE MEL	PER AD	SYD BNE MEL PER ADL NTL DRW	Signature	D	- Common of the	Date	2/00/20	Time	3/40EM	Temperature	13.5%
Laboratory Use Only	Received By			SYD B	NE MEL	PER AD	SYD BNE MEL PER ADL NTL DRW	Signature	Julie		Date		Time			77.87.7

5

CHAIN OF CUSTODY RECORD

☐ Sydney Laboratory
Unit F3 Bld.F. 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins com

Brisbane Laboratory
Unit 1, 21 Smellwood PI, Murarrie, QLD 4172
07 3902 4800 EnviroSampleQLD@eurofins.c

Perth Laboratory
Unit 2, 91 Laach Highway, Kewdale WA 6105
08 9251 9600 EnviroSampleVA@eurofins.co

☐ Melbourne Laboratory

2 Kingston Town Close, Oakleigh, VIC 3186

03 8564 5000 EnviroSampleVic@eurofins.

Time	Dake		4	Signature	NTL DRW	PER ADL	SYD BNE MEL PER ADL NTL DRW	SYDI	1		Received By	Laboratory Use Only Received By SYD BME MEL PER ADL MTL DRW Signature
B042	Date 24/50		R	Signature	NTL DRW	PER ADL	BI BNE MEL PER ADL NTL DRW	(3	0	Leuc	Received By	Eurofins mgt
	,	Signature)		Name		[Postal	řed,	Hand Delivered	7) [Courier (#	Method of Shipment
					7	10 10	10	5	ounts	Total Counts		
					^	×	×	×	65	19/08/20	RRE_TP10	10
					^	×	×	×	w	19/08/20	RRE_TP09	10
					^	×	×	×	ø	19/08/20	RRE_TP08	CO.
					^	×	×	×	Ø	19/08/20	RRE_TP07	7
100					^	×	×	×	os.	19/08/20	RRE_TP06	6
					^	×	×	×	co	19/08/20	RRE_TP05	G.
					^	×	×	×	65	19/08/20	RRE_TP04	4
		W			×	×	×	×	တ	19/08/20	RRE_TP03	e
					×	×	×	×	S	19/08/20	RRE_TP02	150
					×	×	×	×	co.	19/08/20	RRE_TP01	20
						metal(loid)			Matrix (Solid (S) Water (W))	Sampled Date/Time (dd/mm/yy hh:mm)	Client Sample ID	₹
						s; Sb,			tho:			Quote ID No
			L			As, Be			W			Purchase Order
					total sulfer	i, Se, Sn, V	organic car	ode must be use	Ana las are requested code must be use			Special Directions
						o, Cu, Cr, ', Zn,			lyces	0423 583 538	04:	Phone Ng
						, Pb, M				Steve Cadman	Ste	Contact Name
						n, Hg,						
			EDD Format (ESdat, EQuIS, Custom)					Project Name	1	50 Glebe Road	Sufts 18, Level 2 The Junction NSW	Address
		4	Project Manager		318000780			Project Ne		Ramboll		Company
1010							2					

CHAIN OF CUSTODY RECORD

Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Murarrie, QLD 4172
07 3902 4800 EnviroSampleQLD@eurofins.com

Perth Laboratory
Unit 2, 91 Leach Highway, Keweble WA 6105
08 9251 9800 EnviroSampleVA@eurofins.com

Melbourne Laboratory
2 Kingston Town Close, Oakleigh, VIC 3166
03 8564 5000 ErwiroSampleVic@eurofins.com

Received By SYD BNE MEL PER ADL NTL DRW Signature	Eurofine mgt	Method of Shipment		10	***	i deci	1	g.	4	u	12	-	*	Quote ID №	Purchase Order	Special Directions	Phone No	Contact Name		Address	
Received By		Courier (#	STATE OF						RRE_RINSATE1	RRE_DUP2	RRE_DUP1	RRE_TRIP1	Client Sample ID			J,	04:	Ster		Suite 18, Level 2 The Junction NSW	
	Luc	7)	Total Counts						11/8/20	11/8/20	11/8/20	11/08/20	Sampled Date/Time (dd/mm/yy				0423 583 538	Steve Cadman		50 Glebe Road	
^	0	Hand Delivered	มกใร			i			*	w	co	ø	Matrix (Solid (S) Water (W))	(Note	Where met	Analy als are requested, p code must be used	/SeS clease specify * to attract SUIT	'Total' or "F E pricing.	illered")	Project Name	
SYD BN	SAD BN		ω							×	×	×	p⊦	ł, elec		enductivity,		conter	nt	t Name	
E MEL PI	E MEL PI	Postal	3 4							×	×	×	metal(I	loid)s:		organic ca Be, B, Cd,		Cr. Pb	. Mn.		
SYD BNE MEL PER ADL NTL DRW	SYD) BINE MEL PER ADL MTL DRW		#						×	×	×	×		N.	Hg, Mo	, Ni, Se, Sr total suffer	ı, V, Zn,		H		
ALT I DEM	ALL I DEM	Name								DI A	^	^				iotal sullei	V				
Signature	Signature														-78						
1																				EDD (ESdat	
1																				EDD Format (ESdat, EQui'S, Custom)	
		Signature																			
Date	Date																				
111	24/2/2	?																			
Time	Time	Date												250m	Plastic L Plastic L Plastic			Email for Results	Email for Invoice	Handed over by	
	5140 BM	_/_/										l e	5 Ja	40mL 00mL F ar (Glas	mber GI VOA via PFAS Bo ss or HDR	l itje	Containers			r by	
Report Na	Temperature	Time								XRF measu	XRF measurecorded	Pease send to ALS				Overnight (9am)*	Turnaroı Requirements	smaxwell@ramboll.com ikirsch@ramboll.com	smaxwell@ramboll.com	Steve Cadman	
207656	122 0	 	S. Lander							XRF measurements not recorded	XRF measurements not recorded	d to ALS	Sample Comments / Dangerous Goods Hazard Warning	**Quircharges apply)	□ 5 Day	(9am)" 2 Day"	Turnaround Time {TAT} Requirements (Default will be 5 days. If not the kis	oll.com	oll.com	5	

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name: Project name: Project ID:

Stephen Maxwell 318000780 318000780

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Aug 21, 2020 3:40 PM

739488

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Sample RRE_TRIP1 forwarded to ALS for analysis

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

Address:

318000780 318000780 Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

																		Eur	OIIIIS	Allai	yticai	Serv	ces i	nanaç	jei. F	Midre	w blac
		Sai	mple Detail			Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Mel	bourne Laborat	ory - NATA Site	# 1254 & 142	271																		Χ		Х			
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х
Bris	sbane Laborator	y - NATA Site #	20794																								
Per	rth Laboratory - NATA Site # 23736																										
Nev	vcastle Laborate	ory																									
Exte	ernal Laborator	у			_																						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																						
1	RRE_SP01	Aug 19, 2020		Soil	S20-Au35780	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	RRE_SP02	Aug 19, 2020		Soil	S20-Au35781	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	RRE_SP03	Aug 19, 2020		Soil	S20-Au35782	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	RRE_SP04	Aug 19, 2020		Soil	S20-Au35783	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5	RRE_SP05	Aug 19, 2020		Soil	S20-Au35784	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6	RRE_SP06	Aug 19, 2020		Soil	S20-Au35785	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
7	RRE_SP07	Aug 19, 2020		Soil	S20-Au35786	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х
8	RRE_SP08	Aug 19, 2020		Soil	S20-Au35787	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х
9	RRE_SP09	Aug 19, 2020		Soil	S20-Au35788	X	X	Х	X	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Χ	Χ	Х	Х	Х	X	X

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: R

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

Address:

318000780 318000780 Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		_								_												
Sample Detail	Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																	Х		Х			
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Χ		Х	Х	Х
Brisbane Laboratory - NATA Site # 20794																						
Perth Laboratory - NATA Site # 23736																						
10 RRE_SP10 Aug 19, 2020 Soil S20-Au35789	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
11 RRE_TP01 Aug 19, 2020 Soil S20-Au35790	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х
12 RRE_TP02 Aug 19, 2020 Soil S20-Au35791	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х
13 RRE_TP03 Aug 19, 2020 Soil S20-Au35792	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
14 RRE_TP04 Aug 19, 2020 Soil S20-Au35793	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
15 RRE_TP05 Aug 19, 2020 Soil S20-Au35794	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
16 RRE_TP06 Aug 19, 2020 Soil S20-Au35795	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
17 RRE_TP07 Aug 19, 2020 Soil S20-Au35796	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
18 RRE_TP08 Aug 19, 2020 Soil S20-Au35797	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
19 RRE_TP09 Aug 19, 2020 Soil S20-Au35798	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
20 RRE_TP10 Aug 19, 2020 Soil S20-Au35799	X	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
21 RRE_DUP1 Aug 11, 2020 Soil S20-Au35801	X	X	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
22 RRE_DUP2 Aug 11, 2020 Soil S20-Au35802	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name: Project ID:

Company Name:

318000780 318000780 Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

Annimory Sample Detail S																							
Sydney Laboratory - NATA Site # 18217 X	Sample Detail	Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	(1:5 aqueous extract at 25°C	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	Aqueous extract at 25°C as	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Brisbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 23736 Value	Melbourne Laboratory - NATA Site # 1254 & 14271																	Х		Х			
Perth Laboratory - NATA Site # 23736 23 RRE_RINSAT Rug 11, 2020 Water \$20-Au35803 X	Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х
23 RRE_RINSAT Aug 11, 2020 Water S20-Au35803 x x x x x x x x x x x x x x x x x x x	Brisbane Laboratory - NATA Site # 20794																					i	
	·																						
Test Counts 23 23 23 23 23 23 23 23 23 23 23 23 23	23 RRE_RINSAT Aug 11, 2020 Water S20-Au35803	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х		Х		Х		Х	х	
1	Test Counts	23	23	23	23	23	23	23	22	23	23	23	23	23	23	22	23	22	23	22	23	23	22

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

 Report
 739488-S

 Project name
 318000780

 Project ID
 318000780

 Received Date
 Aug 21, 2020

Client Sample ID			RRE_SP01	RRE_SP02	RRE_SP03	RRE_SP04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au35780	S20-Au35781	S20-Au35782	S20-Au35783
Date Sampled			Aug 19, 2020	Aug 19, 2020	Aug 19, 2020	Aug 19, 2020
Test/Reference	LOR	Unit				
		T				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	170	540	91	970
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		4.3	8.3	6.4
Total Organic Carbon	0.1	%	0.5	0.6	1.8	1.2
Sulphur	5	mg/kg	910	4300	460	14000
% Moisture	1	%	6.4	7.1	7.0	6.1
Heavy Metals						
Antimony	10	mg/kg	< 10	19	24	23
Arsenic	2	mg/kg	21	70	48	130
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	2.9	7.0	1.8	10
Chromium	5	mg/kg	25	59	24	60
Cobalt	5	mg/kg	7.4	14	30	8.3
Copper	5	mg/kg	510	960	450	2100
Lead	5	mg/kg	2600	5900	1300	5300
Manganese	5	mg/kg	340	640	520	550
Mercury	0.1	mg/kg	0.2	0.5	0.2	0.7
Molybdenum	5	mg/kg	< 5	< 5	< 5	6.7
Nickel	5	mg/kg	10	29	18	32
Selenium	2	mg/kg	4.3	9.5	< 2	19
Tin	10	mg/kg	15	30	23	49
Vanadium	10	mg/kg	52	64	58	64
Zinc	5	mg/kg	550	1700	2100	1400

Client Sample ID			RRE_SP05	RRE_SP06	RRE_SP07	RRE_SP08
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au35784	S20-Au35785	S20-Au35786	S20-Au35787
Date Sampled			Aug 19, 2020	Aug 19, 2020	Aug 19, 2020	Aug 19, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	620	1100	970	1100
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.4	4.4	5.3	4.0
Total Organic Carbon	0.1	%	1.5	0.5	2.3	0.7
Sulphur	5	mg/kg	3900	11000	8600	16000
% Moisture	1	%	5.3	6.3	8.1	9.0
Heavy Metals	•	•				
Antimony	10	mg/kg	31	23	25	39
Arsenic	2	mg/kg	190	150	130	190
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	8.2	25	10	6.0
Chromium	5	mg/kg	58	130	79	77
Cobalt	5	mg/kg	11	14	12	10
Copper	5	mg/kg	1700	2200	1900	1600
Lead	5	mg/kg	7000	5200	6800	19000
Manganese	5	mg/kg	630	970	680	710
Mercury	0.1	mg/kg	1.2	1.2	1.1	1.6
Molybdenum	5	mg/kg	8.5	5.8	6.4	7.3
Nickel	5	mg/kg	22	45	75	40
Selenium	2	mg/kg	23	18	17	27
Tin	10	mg/kg	190	140	120	80
Vanadium	10	mg/kg	78	77	69	89
Zinc	5	mg/kg	1500	2800	1500	1300

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	RRE_SP09 Soil S20-Au35788 Aug 19, 2020	RRE_SP10 Soil S20-Au35789 Aug 19, 2020	RRE_TP01 Soil S20-Au35790 Aug 19, 2020	RRE_TP02 Soil S20-Au35791 Aug 19, 2020
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	410	730	33	53
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.4	4.2	6.7	6.1
Total Organic Carbon	0.1	%	< 0.1	0.5	0.3	0.3
Sulphur	5	mg/kg	5900	4100	79	260
% Moisture	1	%	7.9	9.5	4.3	6.1
Heavy Metals						
Antimony	10	mg/kg	10	32	< 10	< 10
Arsenic	2	mg/kg	49	170	15	14
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	3.3	4.6	5.5	7.3
Chromium	5	mg/kg	37	71	31	12
Cobalt	5	mg/kg	8.4	11	7.5	< 5
Copper	5	mg/kg	700	1200	490	280
Lead	5	mg/kg	4100	7300	570	820
Manganese	5	mg/kg	540	1100	420	530
Mercury	0.1	mg/kg	0.4	0.6	0.2	0.1
Molybdenum	5	mg/kg	5.4	< 5	< 5	5.3

Report Number: 739488-S

Client Sample ID				RRE_SP09	RRE_SP10	RRE_TP01	RRE_TP02
Sample Matrix				Soil	Soil	Soil	Soil
Eurofins Sample No.				S20-Au35788	S20-Au35789	S20-Au35790	S20-Au35791
Date Sampled				Aug 19, 2020	Aug 19, 2020	Aug 19, 2020	Aug 19, 2020
Test/Reference	L	_OR	Unit				
Heavy Metals							
Nickel		5	mg/kg	18	28	12	22
Selenium		2	mg/kg	8.1	15	< 2	< 2
Tin		10	mg/kg	28	47	< 10	11
Vanadium		10	mg/kg	34	93	76	30
Zinc		5	mg/kg	1100	1300	810	770

Client Sample ID Sample Matrix			RRE_TP03 Soil	RRE_TP04 Soil	RRE_TP05 Soil	RRE_TP06 Soil
Eurofins Sample No.			S20-Au35792	S20-Au35793	S20-Au35794	S20-Au35795
Date Sampled			Aug 19, 2020	Aug 19, 2020	Aug 19, 2020	Aug 19, 2020
Test/Reference	LOR	Unit				
0 1 11 11 11 15 15 15 15 15 15 15 15 15 1	10	T 0/	200	050	202	000
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	220	250	620	300
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		5.2	4.2	6.5
Total Organic Carbon	0.1	%	1.4	1.5	2.2	0.4
Sulphur	5	mg/kg	2200	1700	3600	450
% Moisture	1	%	14	7.6	10	9.3
Heavy Metals						
Antimony	10	mg/kg	18	< 10	11	< 10
Arsenic	2	mg/kg	130	25	77	31
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	9.6	5.5	3.5	8.0
Chromium	5	mg/kg	24	15	34	12
Cobalt	5	mg/kg	< 5	< 5	< 5	< 5
Copper	5	mg/kg	1200	670	830	240
Lead	5	mg/kg	8700	1600	4000	230
Manganese	5	mg/kg	150	150	230	70
Mercury	0.1	mg/kg	2.9	0.5	0.3	< 0.1
Molybdenum	5	mg/kg	12	10	12	20
Nickel	5	mg/kg	85	11	11	< 5
Selenium	2	mg/kg	23	3.9	7.7	2.9
Tin	10	mg/kg	400	24	13	< 10
Vanadium	10	mg/kg	58	43	69	53
Zinc	5	mg/kg	1500	1100	600	1100

Client Sample ID			RRE_TP07	RRE_TP08	RRE_TP09	RRE_TP10
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au35796	S20-Au35797	S20-Au35798	S20-Au35799
Date Sampled			Aug 19, 2020	Aug 19, 2020	Aug 19, 2020	Aug 19, 2020
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	74	1000	29	38
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.7	5.1	5.0	5.0
Total Organic Carbon	0.1	%	2.7	6.5	1.9	2.0
Sulphur	5	mg/kg	2900	12000	3400	2000
% Moisture	1	%	11	14	13	9.3
Heavy Metals						
Antimony	10	mg/kg	< 10	55	14	18
Arsenic	2	mg/kg	40	79	52	66
Beryllium	2	mg/kg	< 2	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10	< 10
Cadmium	0.4	mg/kg	4.0	170	2.4	2.5
Chromium	5	mg/kg	52	130	19	19
Cobalt	5	mg/kg	8.2	18	< 5	< 5
Copper	5	mg/kg	580	4100	1200	1300
Lead	5	mg/kg	1600	9200	4400	5300
Manganese	5	mg/kg	690	720	170	220
Mercury	0.1	mg/kg	0.2	0.9	0.4	0.4
Molybdenum	5	mg/kg	< 5	< 5	9.5	11
Nickel	5	mg/kg	19	79	8.9	8.1
Selenium	2	mg/kg	2.8	15	12	14
Tin	10	mg/kg	10	54	34	38
Vanadium	10	mg/kg	45	67	50	72
Zinc	5	mg/kg	1300	12000	570	580

Client Sample ID Sample Matrix Eurofins Sample No.			RRE_DUP1 Soil S20-Au35801	RRE_DUP2 Soil S20-Au35802
Date Sampled			Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit		
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	1000	1200
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.0	5.1
Total Organic Carbon	0.1	%	0.5	3.2
Sulphur	5	mg/kg	12000	4200
% Moisture	1	%	10	18
Heavy Metals				
Antimony	10	mg/kg	28	29
Arsenic	2	mg/kg	130	60
Beryllium	2	mg/kg	< 2	< 2
Boron	10	mg/kg	< 10	< 10
Cadmium	0.4	mg/kg	5.6	140
Chromium	5	mg/kg	81	120
Cobalt	5	mg/kg	12	9.6
Copper	5	mg/kg	1300	3400
Lead	5	mg/kg	9100	9000
Manganese	5	mg/kg	660	520
Mercury	0.1	mg/kg	1.0	0.9
Molybdenum	5	mg/kg	5.2	5.6

Client Sample ID			RRE_DUP1	RRE_DUP2
Sample Matrix			Soil	Soil
Eurofins Sample No.			S20-Au35801	S20-Au35802
Date Sampled			Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Nickel	5	mg/kg	37	61
Selenium	2	mg/kg	18	16
Tin	10	mg/kg	62	53
Vanadium	10	mg/kg	76	48
Zinc	5	mg/kg	1400	8600

Report Number: 739488-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Aug 26, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Aug 26, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Aug 27, 2020	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Sulphur	Melbourne	Aug 27, 2020	7 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES			
Heavy Metals	Sydney	Aug 26, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Aug 24, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 739488-S

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Sydney

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 21, 2020 3:40 PM

Aug 28, 2020

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: 318000780 Project ID: 318000780 Order No.: Report #:

739488

Brisbane

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

																		Eur	otins	Anai	ytıcal	Serv	ices i	viana	ger : A	Andre	w Bia	3CK
		Sa	mple Detail			Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set	
Mell	bourne Laborate	ory - NATA Site	# 1254 & 142	271																		Х		Х				
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	
Bris	bane Laborator	y - NATA Site#	20794																									
Pert	h Laboratory - I	NATA Site # 237	736																									
New	castle Laborato	ory																							<u> </u>	igsquare	<u> </u>	
Exte	rnal Laboratory	/		_																					<u> </u>	igsquare	<u> </u>	1
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																							
1	RRE_SP01	Aug 19, 2020		Soil	S20-Au35780	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
2	RRE_SP02	Aug 19, 2020		Soil	S20-Au35781	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
3	RRE_SP03	Aug 19, 2020		Soil	S20-Au35782	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
4	RRE_SP04	Aug 19, 2020		Soil	S20-Au35783	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
5	RRE_SP05	Aug 19, 2020		Soil	S20-Au35784	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
6	RRE_SP06	Aug 19, 2020		Soil	S20-Au35785	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
7	RRE_SP07	Aug 19, 2020		Soil	S20-Au35786	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1
8	RRE_SP08	Aug 19, 2020		Soil	S20-Au35787	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	4
9	RRE_SP09	Aug 19, 2020		Soil	S20-Au35788	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove Wes

 NATA # 1261
 Phone : +61 2 8

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: 318000780 **Project ID:** 318000780

Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

																Eu	rofins	Anal	ytical	Serv	ices N	/lanaç	jer : A	undre	w Blac
	Sample	Detail		Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Melbourne Labo	oratory - NATA Site # 125	54 & 14271																		Х		Х	i		
Sydney Laborat	ory - NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х
Brisbane Labor	atory - NATA Site # 2079	4																							
Perth Laborator	y - NATA Site # 23736																						ш		
10 RRE_SP10	Aug 19, 2020	Soil	S20-Au35789	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
11 RRE_TP01	Aug 19, 2020	Soil	S20-Au35790	Х	X	Х	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
12 RRE_TP02	2 Aug 19, 2020	Soil	S20-Au35791	Х	X	Х	Х	Х	X	X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
13 RRE_TP03		Soil	S20-Au35792	Х	X	Х	Х	Х	X	X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
14 RRE_TP04		Soil	S20-Au35793	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
15 RRE_TP05		Soil	S20-Au35794	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
16 RRE_TP06		Soil	S20-Au35795	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
17 RRE_TP07		Soil	S20-Au35796	Х	X	Х	Х	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
18 RRE_TP08		Soil	S20-Au35797	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
19 RRE_TP09		Soil	S20-Au35798	X	X	Х	Х	Х	X	X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	X
20 RRE_TP10		Soil	S20-Au35799	X	X	Х	Х	Х	X	X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	X
21 RRE_DUP		Soil	S20-Au35801	Х	X	Х	Х	Х	X	X	Х	Х	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	X
22 RRE_DUP	2 Aug 11, 2020	Soil	S20-Au35802	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х

Address:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name: 318000780 **Project ID:** 318000780

Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Received: Aug 21, 2020 3:40 PM **Due:** Aug 28, 2020

Priority: 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

													Lui	Oiiiis	Allai	yticai	OCIV	1003 1	viaita	gc: . /	Allul C	W Dia	C.
Sample Detail	Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set	
Melbourne Laboratory - NATA Site # 1254 & 14271																	Х		Х				
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	i
Brisbane Laboratory - NATA Site # 20794																							i
Perth Laboratory - NATA Site # 23736																							i
23 RRE_RINSAT Aug 11, 2020 Water S20-Au35803	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х		Х		Х		Х	Х		ı
Test Counts	23	23	23	23	23	23	23	22	23	23	23	23	23	23	22	23	22	23	22	23	23	22	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/k: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10		10	Pass	
Total Organic Carbon			%	< 0.1		0.1	Pass	
Method Blank								
Heavy Metals								
Antimony			mg/kg	< 10		10	Pass	
Arsenic			mg/kg	< 2		2	Pass	
Beryllium			mg/kg	< 2		2	Pass	
Boron			mg/kg	< 10		10	Pass	
Cadmium			mg/kg	< 0.4		0.4	Pass	
Chromium			mg/kg	< 5		5	Pass	
Cobalt			mg/kg	< 5		5	Pass	
Copper			mg/kg	< 5		5	Pass	
Lead			mg/kg	< 5		5	Pass	
Manganese			mg/kg	< 5		5	Pass	
Mercury			mg/kg	< 0.1		0.1	Pass	
Molybdenum			mg/kg	< 5		5	Pass	
Nickel			mg/kg	< 5		5	Pass	
Selenium			mg/kg	< 2		2	Pass	
Tin			mg/kg	< 10		10	Pass	
Vanadium			mg/kg	< 10		10	Pass	
Zinc			mg/kg	< 5		5	Pass	
LCS - % Recovery							1 3.33	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	96		70-130	Pass	
Total Organic Carbon			%	105		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Antimony			%	115		80-120	Pass	
Arsenic			%	116		80-120	Pass	
Beryllium			%	98		80-120	Pass	
Boron			%	101		80-120	Pass	
Cadmium			%	105		80-120	Pass	
Chromium			%	113		80-120	Pass	
Cobalt			%	110		80-120	Pass	
Copper			%	106		80-120	Pass	
Lead			%	110		80-120	Pass	
Manganese			%	111		80-120	Pass	
Mercury			%	102		80-120	Pass	
Molybdenum			%	117		80-120	Pass	
Nickel			%	107		80-120	Pass	
Selenium			%	107		80-120	Pass	
Tin			%	114		80-120	Pass	
Vanadium			%	114		80-120	Pass	
Zinc			%	93		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Boron	S20-Au35514	NCP	%	97		75-125	Pass	
Cadmium	S20-Au42199	NCP	%	107		75-125	Pass	
Copper	S20-Au42199	NCP	%	105		75-125	Pass	
• • •				 	t	+		

Report Number: 739488-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Zinc	S20-Au42199	NCP	%	114			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Antimony	S20-Au35786	CP	%	102			75-125	Pass	
Arsenic	S20-Au35786	CP	%	115			75-125	Pass	
Beryllium	S20-Au35786	CP	%	121			75-125	Pass	
Chromium	S20-Au35786	CP	%	105			75-125	Pass	
Cobalt	S20-Au35786	CP	%	106			75-125	Pass	
Mercury	S20-Au35786	СР	%	100			75-125	Pass	
Molybdenum	S20-Au35786	СР	%	108			75-125	Pass	
Nickel	S20-Au35786	СР	%	93			75-125	Pass	
Selenium	S20-Au35786	СР	%	93			75-125	Pass	
Vanadium	S20-Au35786	СР	%	97			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Manganese	S20-Au35826	NCP	%	98			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Sulphur	S20-Au36069	NCP	mg/kg	26	25	3.0	30%	Pass	
% Moisture	S20-Au35780	СР	%	6.4	6.2	4.0	30%	Pass	
Duplicate				<u> </u>					
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Au35785	СР	mg/kg	23	28	19	30%	Pass	
Arsenic	S20-Au35785	СР	mg/kg	150	180	19	30%	Pass	
Beryllium	S20-Au35785	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	S20-Au35785	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	S20-Au35785	СР	mg/kg	25	17	36	30%	Fail	Q15
Chromium	S20-Au35785	СР	mg/kg	130	130	<1	30%	Pass	
Cobalt	S20-Au35785	СР	mg/kg	14	11	19	30%	Pass	
Copper	S20-Au35785	СР	mg/kg	2200	2500	10	30%	Pass	
Lead	S20-Au35785	СР	mg/kg	5200	6500	22	30%	Pass	
Manganese	S20-Au35785	СР	mg/kg	970	840	13	30%	Pass	
Mercury	S20-Au35785	СР	mg/kg	1.2	1.4	18	30%	Pass	
Molybdenum	S20-Au35785	СР	mg/kg	5.8	6.1	4.0	30%	Pass	
Nickel	S20-Au35785	СР	mg/kg	45	35	24	30%	Pass	
Selenium	S20-Au35785	СР	mg/kg	18	22	21	30%	Pass	
Tin	S20-Au35785	СР	mg/kg	140	170	21	30%	Pass	
Vanadium	S20-Au35785	СР	mg/kg	77	70	10	30%	Pass	
Zinc	S20-Au35785	СР	mg/kg	2800	2300	19	30%	Pass	
Duplicate	,								
•				Result 1	Result 2	RPD			
Total Organic Carbon	S20-Au35787	СР	%	0.7	1.0	44	30%	Fail	Q15
Duplicate									
•				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-Au35788	СР	uS/cm	410	420	2.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	1	СР	pH Units	4.4	4.4	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Au35790	СР	%	4.3	5.7	29	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Au35795	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Au35795	СР	mg/kg	31	20	40	30%	Fail	Q15
Beryllium	S20-Au35795	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	S20-Au35795	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	S20-Au35795	CP	mg/kg	8.0	3.8	71	30%	Fail	Q15
Chromium	S20-Au35795	CP	mg/kg	12	13	11	30%	Pass	
Cobalt	S20-Au35795	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S20-Au35795	СР	mg/kg	240	300	22	30%	Pass	
Lead	S20-Au35795	СР	mg/kg	230	220	7.0	30%	Pass	
Manganese	S20-Au35795	CP	mg/kg	70	89	24	30%	Pass	
Mercury	S20-Au35795	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	S20-Au35795	СР	mg/kg	20	15	27	30%	Pass	
Nickel	S20-Au35795	СР	mg/kg	< 5	5.7	27	30%	Pass	
Selenium	S20-Au35795	CP	mg/kg	2.9	2.9	1.0	30%	Pass	
Tin	S20-Au35795	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Vanadium	S20-Au35795	CP	mg/kg	53	55	4.0	30%	Pass	
Zinc	S20-Au35795	CP	mg/kg	1100	1500	29	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Organic Carbon	S20-Au35797	CP	%	6.5	5.6	16	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S20-Au35798	СР	uS/cm	29	25	14	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S20-Au35798	СР	pH Units	5.0	5.0	Pass	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Au35801	CP	%	10	11	9.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Andrew Black Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)
Gabriele Cordero Senior Analyst-Metal (NSW)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 739488-S

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

 Report
 739488-W

 Project name
 318000780

 Project ID
 318000780

 Received Date
 Aug 21, 2020

Client Sample ID			RRE_RINSATE
Sample Matrix			Water
Eurofins Sample No.			S20-Au35803
Date Sampled			Aug 11, 2020
Test/Reference	LOR	Unit	
Heavy Metals			
Antimony	0.005	mg/L	< 0.005
Arsenic	0.001	mg/L	< 0.001
Beryllium	0.001	mg/L	< 0.001
Boron	0.05	mg/L	< 0.05
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Cobalt	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Manganese	0.005	mg/L	< 0.005
Mercury	0.0001	mg/L	< 0.0001
Molybdenum	0.005	mg/L	< 0.005
Nickel	0.001	mg/L	< 0.001
Selenium	0.001	mg/L	< 0.001
Tin	0.005	mg/L	< 0.005
Vanadium	0.005	mg/L	< 0.005
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy MetalsSydneyAug 25, 2020180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 739488-W

Address:

Environment Testing

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: 318000780 **Project ID:** 318000780

Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

954 8150 Contact Name:

Eurofins Analytical Services Manager: Andrew Black

5 Day

												Eur	rofins	Anal	ytical	Serv	ices N	<i>l</i> lanaç	ger: A	Andre	w Black						
		Sa	mple Detail			Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271																		Х		Х			
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	X
Bris	bane Laborator	y - NATA Site #	20794																								
Pert	h Laboratory - N	NATA Site # 237	36																								
New	castle Laborato	ory																								<u> </u>	\sqcup
Exte	rnal Laboratory				ı																					<u>'</u>	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																						
1	RRE_SP01	Aug 19, 2020		Soil	S20-Au35780	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	RRE_SP02	Aug 19, 2020		Soil	S20-Au35781	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
3	RRE_SP03	Aug 19, 2020		Soil	S20-Au35782	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	RRE_SP04	Aug 19, 2020		Soil	S20-Au35783	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5	RRE_SP05	Aug 19, 2020		Soil	S20-Au35784	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6	RRE_SP06	Aug 19, 2020		Soil	S20-Au35785	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
7	RRE_SP07	Aug 19, 2020		Soil	S20-Au35786	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
8	RRE_SP08	Aug 19, 2020		Soil	S20-Au35787	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
9	RRE_SP09	Aug 19, 2020		Soil	S20-Au35788	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Contact Name:

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 28, 2020

Stephen Maxwell

Aug 21, 2020 3:40 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

Address:

318000780 318000780 Order No.:

Sydney

Report #: 739488

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail	Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271																	Х		Х			
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	X
Brisbane Laboratory - NATA Site # 20794																						\vdash
Perth Laboratory - NATA Site # 23736 10 RRE_SP10 Aug 19, 2020 Soil S20-Au35789	Х	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
11 RRE_TP01 Aug 19, 2020 Soil S20-Au35790	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
12 RRE_TP02 Aug 19, 2020 Soil S20-Au35791	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
13 RRE_TP03 Aug 19, 2020 Soil S20-Au35792	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
14 RRE_TP04 Aug 19, 2020 Soil S20-Au35793	Х	Х	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X
15 RRE_TP05 Aug 19, 2020 Soil S20-Au35794	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
16 RRE_TP06 Aug 19, 2020 Soil S20-Au35795	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
17 RRE_TP07 Aug 19, 2020 Soil S20-Au35796	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
18 RRE_TP08 Aug 19, 2020 Soil S20-Au35797	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
19 RRE_TP09 Aug 19, 2020 Soil S20-Au35798	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20 RRE_TP10 Aug 19, 2020 Soil S20-Au35799	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
21 RRE_DUP1 Aug 11, 2020 Soil S20-Au35801	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
22 RRE_DUP2 Aug 11, 2020 Soil S20-Au35802	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х

Address:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

 Auckland
 Christ

 35 O'Rorke Road
 43 De

 Penrose, Auckland 1061
 Rolles

 Phone : +64 9 526 45 51
 Phone

 IANZ # 1327
 IANZ * 1327

Aug 21, 2020 3:40 PM

Aug 28, 2020

Stephen Maxwell

5 Day

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: 318000780

Order No.: Report #:

739488

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Project ID: 318000780													Euı	rofins	Anal	ytical	Serv	ices l	Vlanaç	ger:	Andre	ew Bla	ıck
Sample Detail	Antimony	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Conductivity (1:5 aqueous extract at 25°C as rec.)	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract at 25°C as rec.)	Selenium	Sulphur	Tin	Total Organic Carbon	Vanadium	Zinc	Moisture Set	
Melbourne Laboratory - NATA Site # 1254 & 14271																	Х		Х				
Sydney Laboratory - NATA Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	1
Brisbane Laboratory - NATA Site # 20794																						<u> </u>	1
Perth Laboratory - NATA Site # 23736																							1
23 RRE_RINSAT Aug 11, 2020 Water S20-Au35803	Х	х	Х	х	Х	Х	х		Х	х	Х	Х	Х	Х		х		х		Х	х		
Test Counts	23	23	23	23	23	23	23	22	23	23	23	23	23	23	22	23	22	23	22	23	23	22	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Heavy Metals								
Antimony			mg/L	< 0.005		0.005	Pass	
Arsenic			mg/L	< 0.001		0.001	Pass	
Beryllium			mg/L	< 0.001		0.001	Pass	
Boron			mg/L	< 0.05		0.05	Pass	
Cadmium			mg/L	< 0.0002		0.0002	Pass	
Chromium			mg/L	< 0.001		0.001	Pass	
Cobalt			mg/L	< 0.001		0.001	Pass	
Copper			mg/L	< 0.001		0.001	Pass	
Lead			mg/L	< 0.001		0.001	Pass	
Manganese			mg/L	< 0.005		0.005	Pass	
Mercury			mg/L	< 0.0001		0.0001	Pass	
Molybdenum			mg/L	< 0.005		0.005	Pass	
Nickel			mg/L	< 0.001		0.001	Pass	
Selenium			mg/L	< 0.001		0.001	Pass	
Tin			mg/L	< 0.005		0.005	Pass	
Vanadium			mg/L	< 0.005		0.005	Pass	
Zinc			mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			J		'			
Heavy Metals								
Antimony			%	110		80-120	Pass	
Arsenic			%	112		80-120	Pass	
Beryllium			%	99		80-120	Pass	
Boron			%	105		80-120	Pass	
Cadmium			%	110		80-120	Pass	
Chromium			%	105		80-120	Pass	
Cobalt			%	103		80-120	Pass	
Copper			%	106		80-120	Pass	
Lead			%	110		80-120	Pass	
Manganese			%	106		80-120	Pass	
Mercury			%	112		80-120	Pass	
Molybdenum			%	117		80-120	Pass	
Nickel			%	105		80-120	Pass	
Selenium			%	115		80-120	Pass	
Tin			%	108		80-120	Pass	
Vanadium			%	110		80-120	Pass	
Zinc			%	105		80-120	Pass	
		04	70	103		1		Ouglifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals		,		Result 1				
Antimony	S20-Au31948	NCP	%	99		75-125	Pass	
Arsenic	S20-Au31948	NCP	%	117		75-125	Pass	
Beryllium	S20-Au31948	NCP	%	93		75-125	Pass	
Boron	S20-Au31948	NCP	%	114		75-125	Pass	
Cadmium	S20-Au31948	NCP	%	114		75-125	Pass	
Chromium	S20-Au31948	NCP	%	114		75-125	Pass	
Cobalt	S20-Au31948	NCP	%	112		75-125	Pass	
Copper	S20-Au31948	NCP	%	112		75-125	Pass	
Lead	S20-Au31948	NCP	%	110		75-125	Pass	
Manganese	S20-Au31948	NCP	%	122		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Mercury	S20-Au31948	NCP	%	111			75-125	Pass	
Molybdenum	S20-Au31948	NCP	%	115			75-125	Pass	
Nickel	S20-Au31948	NCP	%	109			75-125	Pass	
Selenium	S20-Au31948	NCP	%	105			75-125	Pass	
Vanadium	S20-Au31948	NCP	%	119			75-125	Pass	
Zinc	S20-Au31948	NCP	%	109			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Arsenic	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	S20-Au35803	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Cadmium	S20-Au35803	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S20-Au35803	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Selenium	S20-Au35803	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tin	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vanadium	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc	S20-Au35803	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Page 8 of 9

Report Number: 739488-W

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Andrew Black Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 739488-W

APPENDIX 6 EIL CALCULATIONS

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged
ACLs
Enter % clay (values from 0 to 100%)
13
Below needed to calculate fresh and aged
ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
Enter traine volume (mgm or low)
low

Outputs									
Land use	Cr III soil-s	pecific EILs							
	(mg contaminant	/kg dry soil)							
	Fresh	Aged							
National parks and areas of high conservation value	#NUM!	150							
Urban residential and open public spaces	#NUM!	440							
Commercial and industrial	#NUM!	730							

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
15
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.9
Enter organic carbon content (%OC) (values from 0 to 50%)
2.2
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value
Measured background concentration (mg/kg). Leave blank if no measured value
ABCs Measured background concentration
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration or for aged ABCs only

Outputs									
Land use	Cu soil-sp	ecific EILs							
	(mg contaminant	/kg dry soil)							
	Fresh	Aged							
National parks and areas of high conservation value	#NUM!	75							
Urban residential and open public spaces	#NUM!	200							
Commercial and industrial	#NUM!	280							

Inputs		
Select contaminant from list below		
Ni		
Below needed to calculate fresh and aged		
ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100		
cmolc/kg dwt)	11 0 10 100	
omeromy and,		
15		
Relow needed to calculate from	hans has dee	
Below needed to calculate fre	esh and aged	
	esh and aged	
ABCs	_	
ABCs Measured background conce	ntration	
ABCs	ntration	
Measured background conce (mg/kg). Leave blank if no me	ntration	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	

Outputs		
Land use	Ni soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	40
Urban residential and open public spaces	#NUM!	220
Commercial and industrial	#NUM!	380

Inputs		
Select contaminant from list below		
Pb		
Below needed to calculate fresh and aged ACLs		
ACLS		
Below needed to calculate fresh and aged		
ABCs		
for for the ABO and		
or for fresh ABCs only		
or for aged ABCs only		
or for aged ABCs only		
or for aged ABCs only		
or for aged ABCs only		
or for aged ABCs only		
or for aged ABCs only		
or for aged ABCs only		

Outputs		
Land use	Lead generic EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	110	470
Urban residential and open public spaces	270	1100
Commercial and industrial	440	1800

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
15
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.9
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)

Outputs		
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	160
Urban residential and open public spaces	#NUM!	450
Commercial and industrial	#NUM!	650

Inputs		
Select contaminant from list below		
Cr_III		
Below needed to calculate fresh and aged		
ACLs		
Enter % clay (values from 0 to 100%)		
13		
Below needed to calculate fresh and aged		
ABCs		
Measured background concentration		
(mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method)		
(values from 0 to 50%) to obtain estimate		
of background concentration		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		
Enter traine volume (mgm or low)		
low		

Outputs		
Land use	Cr III soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	150
Urban residential and open public spaces	#NUM!	440
Commercial and industrial	#NUM!	730

Inputs	
Select contaminant from list below	
Below needed to calculate fresh and aged	
ACLs	
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)	
15	
Enter soil pH (calcium chloride method) (values from 1 to 14)	
5.4	
Enter organic carbon content (%OC) (values from 0 to 50%)	
2.5	
Below needed to calculate fresh and aged ABCs	
Measured background concentration (mg/kg). Leave blank if no measured value	
or for fresh ABCs only	
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration	
or for aged ABCs only	
Enter State (or closest State)	
NSW	
Enter traffic volume (high or low)	

Outputs		
Land use	Cu soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	60
Urban residential and open public spaces	#NUM!	140
Commercial and industrial	#NUM!	190

Inputs		
Select contaminant from list below		
Ni		
Below needed to calculate fresh and aged		
ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100		
cmolc/kg dwt)	11 0 10 100	
omeromy and,		
15		
Relow needed to calculate from	hans has dee	
Below needed to calculate fre	esh and aged	
	esh and aged	
ABCs	_	
ABCs Measured background conce	ntration	
ABCs	ntration	
Measured background conce (mg/kg). Leave blank if no me	ntration	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	

Outputs		
Land use	Ni soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	40
Urban residential and open public spaces	#NUM!	220
Commercial and industrial	#NUM!	380

Inputs	
Select contaminant from list below	
Zn	
Below needed to calculate fresh and aged ACLs	
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)	
15	
Enter soil pH (calcium chloride method) (values from 1 to 14)	
5.4	
Below needed to calculate fresh and aged ABCs	
Measured background concentration (mg/kg). Leave blank if no measured value	
or for fresh ABCs only	
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration	
or for aged ABCs only	
Enter State (or closest State)	
NSW	
Enter traffic volume (high or low)	

Outputs		
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	130
Urban residential and open public spaces	#NUM!	330
Commercial and industrial	#NUM!	470

Inputs		
Select contaminant from list below		
Cr_III		
Below needed to calculate fresh and aged		
ACLs		
Enter % clay (values from 0 to 100%)		
8.5		
Below needed to calculate fresh and aged		
ABCs		
Measured background concentration		
(mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method)		
(values from 0 to 50%) to obtain estimate of background concentration		
or background concentration		
or for aged ABCs only		
Enter State (or closest State)		
,		
NSW		
Enter traffic volume (high or low)		
low		
1411		

Outputs		
Land use	Cr III soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	130
Urban residential and open public spaces	#NUM!	380
Commercial and industrial	#NUM!	640

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
10
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.2
Enter organic carbon content (%OC) (values from 0 to 50%)
0.8
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)

Outputs		
Land use	Cu soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	45
Urban residential and open public spaces	#NUM!	100
Commercial and industrial	#NUM!	140

Inputs		
Select contaminant from list below		
Ni		
Below needed to calculate fresh and aged ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)		
10		
Below needed to calculate fresh and aged ABCs		
Measured background concentration (mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		
low		

Outputs		
Land use	Ni soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	35
Urban residential and open public spaces	#NUM!	170
Commercial and industrial	#NUM!	290

Inputs	
Select contaminant from list below	
Zn	
Below needed to calculate fresh and aged ACLs	
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)	
10	
Enter soil pH (calcium chloride method) (values from 1 to 14)	
5.2	
Below needed to calculate fresh and aged	
Measured background concentration (mg/kg). Leave blank if no measured value	
or for fresh ABCs only	
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration	
or for aged ABCs only	
Enter State (or closest State)	
NSW	
Enter traffic volume (high or low)	

Outputs		
Land use	Zn soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	120
Urban residential and open public spaces	#NUM!	290
Commercial and industrial	#NUM!	410

Inputs		
Select contaminant from list below		
Cr_III		
Below needed to calculate fresh and aged		
ACLs		
Enter % clay (values from 0 to 100%)		
18		
Below needed to calculate fresh and aged		
ABCs		
Measured background concentration		
(mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method)		
(values from 0 to 50%) to obtain estimate		
of background concentration		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		
low		

Outputs		
Land use	Cr III soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	160
Urban residential and open public spaces	#NUM!	490
Commercial and industrial	#NUM!	810

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
15
Enter soil pH (calcium chloride method) (values from 1 to 14)
4.7
Enter organic carbon content (%OC) (values from 0 to 50%)
1.3
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)

Outputs		
Land use	Cu soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	40
Urban residential and open public spaces	#NUM!	85
Commercial and industrial	#NUM!	120

Inputs		
Select contaminant from list below		
Ni		
Below needed to calculate fre	esh and aged	
7.0_0		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100		
cmolc/kg dwt)	11 0 10 100	
omeromy and		
15		
Relow needed to calculate free	hans has dee	
Below needed to calculate fre	esh and aged	
	esh and aged	
ABCs	_	
ABCs Measured background conce	ntration	
ABCs	ntration	
Measured background conce (mg/kg). Leave blank if no me	ntration	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only	ntration easured value a method)	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	
Measured background conce (mg/kg). Leave blank if no me or for fresh ABCs only Enter iron content (aqua regia (values from 0 to 50%) to obta of background concentration or for aged ABCs only Enter State (or closest State)	ntration easured value a method) ain estimate	

Outputs		
Land use	Ni soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	40
Urban residential and open public spaces	#NUM!	220
Commercial and industrial	#NUM!	380

Inputs		
Select contaminant from list below		
Zn		
Below needed to calculate fresh and aged ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)		
15		
Enter soil pH (calcium chloride method) (values from 1 to 14)		
4.7		
Below needed to calculate fresh and aged ABCs		
Measured background concentration (mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		

Outputs		
Land use	Zn soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	110
Urban residential and open public spaces	#NUM!	220
Commercial and industrial	#NUM!	300

Oalast asstancia aut franc list balanc
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged ACLs
ACLS
Enter % clay (values from 0 to 100%)
7.5
Below needed to calculate fresh and aged ABCs
ADOS
Measured background concentration
Measured background concentration (mg/kg). Leave blank if no measured value
(mg/kg). Leave blank if no measured value
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration or for aged ABCs only
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration or for aged ABCs only Enter State (or closest State) NSW
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration or for aged ABCs only Enter State (or closest State)

Outputs		
Land use	Cr III soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	120
Urban residential and open public spaces	#NUM!	370
Commercial and industrial	#NUM!	610

Inputs		
Select contaminant from list below		
Cu Below needed to calculate fresh and aged		
ACLs		
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)		
9		
Enter soil pH (calcium chloride method) (values from 1 to 14)		
4.9		
Enter organic carbon content (%OC) (values from 0 to 50%)		
2.1		
Below needed to calculate fresh and aged ABCs		
Measured background concentration (mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (aqua regia method)		
(values from 0 to 50%) to obtain estimate		
of background concentration		
or for aged ABCs only		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		

Outputs		
Land use	Cu soil-specific EILs	
	(mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	#NUM!	45
Urban residential and open public spaces	#NUM!	100
Commercial and industrial	#NUM!	140

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
9
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Outputs				
Land use	Ni soil-specific EILs			
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	#NUM!	25		
Urban residential and open public spaces	#NUM!	140		
Commercial and industrial	#NUM!	230		

Inputs
Select contaminant from list below
Zn Below needed to calculate fresh and aged
ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
9
Enter soil pH (calcium chloride method) (values from 1 to 14)
4.9
Below needed to calculate fresh and aged
ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)

Outputs			
Land use	Zn soil-specific EILs		
	(mg contaminant	/kg dry soil)	
	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	110	
Urban residential and open public spaces	#NUM!	250	
Commercial and industrial	#NUM!	340	

Client: John Holland Rail Job No: 318000780

Summary of EILs

RAMBOLL

Project Name: Tarago Loop Lead Management

25-09-20

		SS94	SS95	SS101	SS112	D03_230919	
Contaminant	Units		Calculated EIL Value				Average
Chromium	mg/kg	440	440	380	490	370	424
Copper	mg/kg	200	140	100	85	100	125
Lead	mg/kg	1100	1100	1100	1100	1100	1100
Nickel	mg/kg	220	220	170	220	140	194
Zinc	mg/kg	450	330	290	220	250	308

APPENDIX 7 PHOTOGRAPHIC LOG

Photograph 1: Location of SW1_UP / SED1_UP. Sampled 13 October 2020. Water flowing.

Photograph 2: Location of SW1 / SED1. Sampled 13 October 2020. Water flowing.

Photograph 3: Location of SW2 /SED2. Sampled 13 October 2020. Water flowing.

Photograph 4: Location of SW3 / SED3. Sampled 13 October 2020. Water flowing.

Photograph 5: Location of SW4 / SED4. Sampled 13 October 2020. Water flowing.

Photograph 6: Location of SW5 / SED5. Sampled 13 October 2020. Water not flowing.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			
Client:	John Holland Rail			RAMBOLL

Photograph 7: Location of SW6 / SED6. Sampled 13 October 2020. No water present.

Photograph 8: Location of SW7 / SED7. Sampled 13 October 2020. Not flowing.

Photograph 9: Location of SW10 / SED10. Sampled 13 October2020. Water flowing.

Photograph 10: Location of XBOYD001, XRF measurement of sediment within drainage swale adjacent Boyd Street. No water present.

Photograph 11: Location of XBOYD002, XRF measurement of sediment within drainage swale adjacent Boyd Street. No water present.

Photograph 12: Location of XBOYD003, XRF measurement of sediment within drainage swale adjacent culvert on corner of Boyd Street and Braidwood Road. No water present.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Photograph 13: Location of BR_SED1, XRF measurement of sediment within drain line adjacent Braidwood Road, south of Wallace Street. No water present.

Photograph 14: Location of BR_SED2, XRF measurement of sediment within drain line adjacent Braidwood Road, south of Wallace Street. No water present.

Photograph 15: Location of XBRAID001, XRF measurement of sediment within drainage line west side of Braidwood Road, adjacent school. No water present.

Photograph 16: Location of XBRAID002, XRF measurement of sediment within drainage line west side of Braidwood Road, adjacent school.

Photograph 17: Location of XBRAID003, XRF measurement of sediment within drainage line west side of Braidwood Road, adjacent school. No water present.

Photograph 18: Location of XBRAID004, XRF measurement of sediment within drainage line west side of Braidwood Road. No water present.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Photograph 19: Location of SW_BR001 / SED_BR001. Water not flowing Sampled 13 October 2020. Water not flowing.

Photograph 20: Location of SW_BR002 / SED_BR002. Sampled 13 October 2020. Water flowing but shallow.

Photograph 21: Location of XP6001, XRF measurement of sediment within ephemeral creek bed north of sports ground. No water present.

Photograph 22: Location of XP6002, XRF measurement of sediment within ephemeral creek bed north of sports ground. No water present.

Photograph 23: Location of XP6003, XRF measurement of sediment within ephemeral creek bed north of sports ground. Some water pockets $% \left\{ 1,2,\ldots,n\right\}$ present.

Photograph 24: Location of XP6004, XRF measurement of sediment within ephemeral creek bed north east of sports ground. No water present.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			
Client:	John Holland Rail			RAMBOLL

Photograph 25: Location of XP6005, XRF measurement of sediment within ephemeral creek bed north east of sports ground. No water present.

Photograph 26: Test pit LO_TP01 located within the footprint of the former Loadout Facility. Sampled 19 August 2020.

Photograph 27: Test pit LO_TP01 terminated at 1.3 mbgl, refusal on boulder.

Photograph 28: Test pit LO_TP02 located within the footprint of the former Loadout Facility. Sampled 19 August 2020.

Photograph 29: Test pit LO_TP02 terminated at 1.5 mbgl.

Photograph 30: Test pit LO_TP03 located within the footprint of the former Loadout Facility . Sampled 19 August 2020.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Testpit 31: Test pit LO_TP03 terminated at 1.7 mbgl.

Photograph 32: Test pit LO_TP04 located within the footprint of the former Loadout Facility. Sampled 19 August 2020.

Photograph 33: Test pit LO_TP04 terminated at 0.8 mbgl due to refusal on concrete slab.

Photograph 34: Test pit LO_TP05 located within the footprint of the former Loadout Facility. Sampled 19 August 2020.

Photograph 35: Test pit LO_TP06 located within the footprint of the former Loadout Complex. Sampled 19 August 2020.

Photograph 36: Test pit LO_TP06 terminated at 1.5 mbgl.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			
Client:	John Holland Rail			RAMBOLL

Photograph 37: Composite sample RRE_TP01 collected from shallow test pit adjacent the northern portion of the rail formation. Sample collected 19 August 2020.

Photograph 38: Composite sample RRE_TP02 collected from shallow test pit adjacent the northern portion of the rail formation. Sample collected 19 August 2020.

Photograph 39: Composite sample RRE_TP03 collected from shallow test pit adjacent northern portion of the rail formation. Sample collected 19 August 2020.

Photograph 40: Composite sample RRE_TP04 collected from shallow soil adjacent the rail formation. Sample collected 19 August 2020.

Photograph 41: Composite sample RRE_TP05 collected from shallow soil adjacent the rail formation. Sample collected 19 August 2020.

Photograph 42: Composite sample RRE_TP06 collected from shallow test pit adjacent the rail formation. Sample collected 19 August 2020.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Photograph 43: Composite sample RRE_TP07 collected from shallow test pit within the rail corridor. Sample collected 19 August 2020.

Photograph 44: Composite sample RRE_TP08 collected from shallow test pit adjacent the central portion of the rail formation. Sample collected 19August 2020.

Photograph 45: Composite sample RRE_TP09 collected from shallow test pit adjacent the southern portion of the rail formation. Sample collected 19 August 2020.

Photograph 46: Composite sample RRE_TP10 collected from shallow soils adjacent the southern portion of the rail formation. Sample collected 19 August 2020.

Photograph 47: Composite sample RRE_SP01 collected from the southern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 48: Composite sample RRE_SP02 collected from the eastern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Photograph 49: Composite sample RRE_SP03 collected from the eastern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 50: Composite sample RRE_SP04 collected from the eastern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 51: Composite sample RRE_SP05 collected from the eastern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 52: Composite sample RRE_SP06 collected from the eastern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 53: Composite sample RRE_SP07 collected from the northern face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 54: Composite sample RRE_SP08 collected from the western face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			

Photograph 55: Composite sample RRE_SP09 collected from the western face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Photograph 56: Composite sample RRE_SP10 collected from the western face of onsite stockpile comprising fouled ballast impacted by ore concentrate. Sample collected 19 August 2020.

Title:	Detailed Site Investigation Addendum	Approved: SM	Project-Nr.: 318000780	Date: November 2020
Site:	Tarago Rail and Tarago Area			
Client:	John Holland Rail			RAMBOLL

APPENDIX 8 TESTPIT LOGS

BOREHOLE NUMBER LO_TP01 PAGE 1 OF 1

		ohn Ho						
					COMPLETED 19/8/20			entrate loadout complex building foo
					COMPLETED 19/0/20			
Method	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ription	Samples Tests Remarks	Additional Observations
					FILL; Gravelly CLAY, orange-brown, high plastic	city, wet, firm fine gravels	LO_IP01_0.0, XRF 31ppm	
		-			FILL; Gravelly CLAY, dark brown, low plasticity,	medium-coarse gravels, medium		
		- 0 <u>.5</u> - -			grained sands, moist		LO_TP01_0.5, XRF 96ppm LO_TP01_1.0, XRF 50ppm	
		- 1. <u>5</u>			Borehole LO_TP01 terminated at 1.3m		LO_TP01_1.3, XRF 58ppm	
		2.0	-					

BOREHOLE NUMBER LO_TP02

PAGE 1 OF 1

				lland F					
						780		entrate loadout complex building foo	
						COMPLETED19/8/20			
			0.5 >	(2.0M			_ LOGGED BY _TF		CHECKED BY SM
NOT	ES								<u> </u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	on	Samples Tests Remarks	Additional Observations
		()	- - 0 <u>.5</u>			FILL; Gravelly CLAY, orange-brown, high plasticity	wet, firm fine gravels	LO_TP02_0.0, XRF 176ppm	
			1. <u>0</u>					LO_TP02_0.9, XRF 11ppm LO_TP02_1.1, XRF 16ppm	
			- - 1.5			CLAY; orange, high plasticity, firm, dry, minor gravi	el (natural/reworked natural)	LO TP02_1.3, XRF 6,900ppm (approx.) LO_TP02_1.35 XRF 85ppm LO_TP02_1.4, XRF 83ppm	n j,
			<u>1.5</u>			Borehole LO_TP02 terminated at 1.5m			

BOREHOLE NUMBER LO_TP03

PAGE 1 OF 1

CLIENT _John Holland Rail PROJECT NUMBER _318000780									entrate loadout complex building foc
						COMPLETED19/8/20			
NOTI									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ription	Samples Tests Remarks	Additional Observations
			0.5			FILL; Gravelly CLAY; brown, high plasticity, medium-oglass, rubble, plastic, ballast etc. present		LO_TP03_0.2 LO_TP03_0.9, XRF 158ppm	
			1. <u>5</u>					LO_TP03_1.5, XRF 1748ppm LO_TP03_1.6, XRF 3662ppm	
			-			Borehole LO_TP03 terminated at 1.7m		LO_TP03_1.7, XRF 117ppm	

BOREHOLE NUMBER LO_TP04 PAGE 1 OF 1

				lland F					
						780 COMPLETED 19/8/20			
DRILLING CONTRACTOR							SLOPE _90°		BEARING
		ZE _					LOGGED BY IF		CHECKED BY SM
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly CLAY, orange-brown, high plast	icity, wet, firm fine gravels		
			_						
			_					LO_TP04_0.28 XRF 18ppm	3,
			0.5						
			0.0						
			_						
			-	\$ \$ (\		Gravelly SAND; brown, medium grained, medi	um-coarse gravels, dry, compact/dense	LO_TP04_0.7 XRF 199ppm	,
			_	<u> </u>		Borehole LO_TP04 terminated at 0.8m			
			-						
			1. <u>0</u>						
			-						
			_						
			-						
			_						
			1. <u>5</u>						
			-						
			2.0						

BOREHOLE NUMBER LO_TP05

PAGE 1 OF 1

PROJECT NUMBER 318000780										
						COMPLETED _19/8/20				
NOTI			0.5 /	< ∠.UIVI			LOGGED BY _IF		CHECKED BY SIM	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations	
						FILL; Gravelly CLAY, orange-brown, high plasticit	y, wet, firm fine gravels			
			- - 0. <u>5</u>			Gravelly SAND; brown, medium grained, medium observed contamination Sandy GRAVEL; grey-brown, medium-coarse, medium plastics, metal, wire, glass)		LO_TP05_0.3, XRF 90ppm		
			- - 1. <u>0</u>					LO_TP05_0.7, XRF 883ppm LO_TP05_0.85, XRF 605ppm		
			-					LO_TP05_1.1, XRF 150ppm (approx.)		
			1.5					LO_TP05_1.4, XRF 8ppm		
			- - -			Borehole LO_TP05 terminated at 1.5m				

BOREHOLE NUMBER LO_TP06

PAGE 1 OF 1

					80	go Rail Loop Former ore conc	entrate loadout complex building	
DATE STARTED 19/8/20 COMPLETED 19/8/20 R.L. SURFACE								
DLE	SIZE	0.5 >	(2.0M			LOGGED BY TF		CHECKED BY SM
TE	:S	 					<u> </u>	
Water	RL (m)		Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations
		_			FILL; Gravelly CLAY, orange-brown, high plasticity,	wet, firm fine gravels	LO_TP06_0.05 XRF 14ppm	3,
		_						
		0. <u>5</u>			Clayey SAND; white-grey, fine dense/hard, concrete	e fragments (likely former surface)	LO_TP06_0.5, XRF nd	,
		_				,	LO_TP06_0.7, XRF 273ppm	,
		1 <u>.0</u>						
					Borehole LO_TP06 terminated at 1.2m		LO_TP06_1.2, XRF 31ppm	,
		_						
		1. <u>5</u>						
		_						
		_						
		_						