PROJECT NO: 3-023

Frictionless Ticketing for Public Transport

Appendix 4: Literature overview

JULY 2022

This research for TfNSW is funded by iMOVE CRC and supported by the Cooperative Research Centres program, an Australian Government initiative.

Centre for Technology Infusion

Appendix 4 Literature Overview

Several technology options are available to deliver frictionless ticketing. In the below tables we evaluate these using factors from an evaluation framework which was created in collaboration with TfNSW. For the complete set of factors, including the non-technical factors, please refer to the main report.

From September to November 2021 articles that support our evaluation criteria have been collected by our team. As frictionless ticketing is an emerging area, direct evidence is still hard to find.

This appendix provides excerpts of academic articles we found that can substantiate the technology gap analysis. We cover the main options, phone (5G), token (UWB), biometrics and wayfinding (SLAM). First, we provide evaluation factors what can be found in terms of academic validation. For evaluation factors that could not be directly validated by academic literature, we have had to use our professional judgement, but these require further research.

We hope that this appendix provides a foundation for current decisions as well as future work.

Contents

Appendix 4 Literature Overview
Contents
Acronyms4
5G8
5G Evaluation criteria8
5G Literature overview11
Ultra-Wide Band
UWB: Evaluation criteria20
UWB: Literature overview
Biometrics
Biometrics: Evaluation criteria44
Biometrics: Literature overview
SLAM
SLAM: Evaluation criteria74
SLAM: Literature overview76

Acronyms

#GPP	3rd Generation Partnership Project			
ACMA	Australian Communications and Media Authority			
AFDO	Australian Federation of Disability Organisations			
AI	Artificial Intelligence			
AoA	Angle-of-Arrival			
AoD	Angle of Departure			
API	Application Programming Interface			
APPs	Australian Privacy Principles			
AR	Augmented reality			
ARK	Autonomy Research Kit			
ARPANSA	Australian Radiation Protection and Nuclear Safety Agency			
ATCS	Advanced Train Control Systems			
BIBO	Be In Be Out			
BICO	Be In. Check out			
BLE	Bluetooth Low Energy			
BPSK	Binary Phase Shift Keying			
BS	Base Station			
CAPEX				
CRP	Customs and Border Protection			
CDF	Car Connectivity Consertium requirements			
cccs	Command Control and Communications Systems			
CCOPS	Command Control and Communications Systems			
CIPO	Community Control Over Police Surveillance			
CIBO	Check in Check out			
CRC	Check-In/Check-Out			
	Cyclic Redundancy Check			
DAFE	Digital/Applog Front End			
DAIL				
	Downlink Downlink Angle of Departure			
DL-AUD	Diffusion of Innovations			
	Data Protection Act			
DFA	Digital Signal Processing			
EER	Equal Error Rate			
ELS				
EIVIE	Electromagnetic energy			
ERIVI	Electromagnetic compatibility and Radio spectrum Matters			
ETSI Standard	European Telecommunications Standards Institute Standard			
FAR	False Acceptance Rate			
FUC	Federal Communications Commission			
	Forward Error Correction			
	Face III VIGEO EVALUATION			
FNIVIK	False Non-Match Kate			
FPGAS	Field-Programmable Gate Arrays			
FP-Node	Floor Plane Node			
FRMCS	Future Railway Mobile Communication System			

FRR	False Rejection Rate	
FRSs	Face Recognition Systems	
FRVT	Face Recognition Vendor Tests	
FTM	Fine-Time-Measurement	
FWG	Functional Working Group	
GDPR	General Data Protection Regulation	
GNSS	Global Navigation Satellite System	
HF	High Frequency	
HRIP Act	Health Records and Information Privacy Act 2002	
laaS	Infrastructure as a Service	
ICNIRP	The International Commission on Non-Ionising Radiation	
ICP	Iterative Closest Point	
IEEE	Institute of Electrical and Electronics Engineers	
LIB	IARPA Janus Benchmarks	
IMU	Inertial Measurement Unit	
InT	Internet of Things	
IPS	Indoor Positioning System	
IR		
	Impulse Radio	
iSime		
	Intelligent Transportation Systems	
ITS		
	Linear Foodback Shift Pogister	
LOKa	Long-Range	
LS	Least Squares	
LIE	Long Term Evolution	
IVIAAS	Modility as a Service	
MAC	Media Access Control	
IVIBOA	Multiband OFDM alliance	
MILLO	Multi-access Edge Computing	
	Multiple-Input Multiple-Output	
M-MIC	Massive Machine-Type Communication	
MN	Moving Networks	
MSK	Minimum-Shift Keying	
MSL	Mining Systems Laboratory	
MT	Maximum-Throughput	
MTA	Metropolitan Transit Authority	
MB	Multiband	
navCOM	Navigational Command	
navMSG	Navigational Message	
NDT	Normal Distributions Transform	
NFC	Near Field Communication	
NG-RAN	Next Generation Radio Access Network	
NIST	National Institute of Standards and Technology	
NLoS	Non-line-of-sight	
NR New radio		
OFDM	Orthogonal frequency division multiplexing	
oGLs	Object-level graphlets	

OOK	On-off Keying			
OPEX	Operating expenses			
OTDOA	Observed time Difference of Arrival			
PaaS	Platforms as a Service			
PAM	Pulse Amplitude Modulation			
PDCN	Physical Disability Council of NSW			
PDoA	Phase-difference-of-Arrival			
PE	Pose Estimation			
POS	Point-of-sale Systems			
PPB	Pilot Parliaments Benchmark			
PPIPA	Privacy and Personal Information Protection Act			
PPM	Pulse Position Modulation			
PR	Pseudo Random			
PRSs	Positioning Reference Signals			
PTC	Positive Train Control			
PWD	People with Disability			
PWM	Pulse Width Modulation			
RAT	Radio Access Technology			
RF	Radio frequency			
RFICs	Radio Frequency Integrated Circuits			
RFID	Radio frequency identification			
RRLT	Redundant Radio Localization and Tracking			
RS	Reference signal			
RSRP	Reference Signal Received Power			
RSS	Received Signal Strength			
RSSI	Received Signal Strength Indicator			
RSU	Road Side Infrastructure/Units			
RTLS	Real-time Locating System			
RTT (1)	Return Travel Time			
RTT (2)	Round-Trip-Timing			
RU	Radio Units			
SaaS	Software as a Service			
SAFD	Scale-aware Face Detection			
SBAS	Space Based Augmentation System			
sGLs	spatial-level graphlets			
SLAM	Simultaneous Location and Mapping			
SON	Self-Optimising Networks			
SRD	Short Range Devices			
SRS	Sounding Reference Signal			
SSLS	Sub-sampling Least Squares			
ТАМ	Technology Acceptance Model			
TDoA	Time-difference of Arrival			
TfNSW	Transport for New South Wales			
TG	Task Groups			
TH-BPSK	Time-Hopping Binary Phase Shift Keying			
TH-PPM	Time-Hopping Pulse Position Modulation			
ToF	Time-of-Flight			
TWR	Two-way Ranging			
UAVs	Unmanned Aerial Vehicles			
UDN	Ultra-Dense Networks			

UE	User Equipment
UGV	Unmanned Ground Vehicle
UHF	Ultra-high frequency
UHF-RFID	Ultra-high frequency radio frequency identification
UL-AOA	Uplink angle-of-arrival
UL-TDOA	Uplink Time Difference of Arrival
U-MTC	Ultra-reliable Machine-Type Communication
URA	Uniform Rectangular Array
URLLC	Ultra-Reliable Low Latency Communications
URS	User Requirements Specification
UTAUT	Unified Theory of Acceptance and Use of Technology
UWB	Ultra-wide band
V2I	Vehicle-to-Infrastructure
V2N	Vehicle-to-Network
V2P	Vehicle-to-Pedestrian
V2V	Vehicle-to-Vehicle
V2X	Vehicle-to-Everything
WAN	Wide Area Networking
WCG	Weighted Centroid Geometric
WHO	World Health Organisation
WiWo	Walk-in/Walk-out
WLAN	Wireless Local Area Network
WM5G	West Midlands 5G
WMM	West Midlands Metro
WPAN	Wireless Personal Area Network

As 5G today isn't available in its form needed to provide micro positioning, this particular use case needs real world testing when the required standards become available over the next few years. Recent studies test the phone as a tool for ticketing, using a combination of 4G, GPS and Bluetooth that receive positive end user feedback. Furthermore, 5G NR (5G New Radio) is tested for indoor positioning and in ITS (Intelligent Transport Systems) studies, in order to develop the configuration, the required algorithms and confirm accuracy.

5G Evaluation criteria

Table 1. Key evaluation requirements- 5G (phone app based)

Key evaluation requirements	
Technology readiness – now vs. emerging	Essential capacities proven in positioning indoors and outdoors [1-4]
Certainty/reliability (e.g., interference)	High level of reliability Resilient to interference and multi-path
Accurate/very low error rates	Outdoor (High-speed) under 4m accuracy [3] Indoor (Low-speed) under 10cm accuracy [4]
Secure- not easy to forge, clone	Secure with end-to-end encryption. Private position data acquisition using 5G NR.
· · · ·	
Use case requirement	Tech solution (Note: there is little academic validation of this us case to date)
Identification	Account numbers can be used for identification. User required to sign in.

Tokenisation /Authentication	Internet Authentication System. Tokenisation can be used in the digital tickets to protect user privacy.
------------------------------	--

Positioning & trip definition:	Phone application uses position data and time for taking decisions and issuing tickets.
Registration in (begin of ticket)	5G NR Rel-16 will feature NR positioning system for indoors and outdoors with high accuracy. It is expected that NR
Registration out (end of ticket)	positioning has a lower battery usage than GNSS and Enhanced Position System (e.g., Google Location), while positioning
Repeat for next leg of trip	accuracy is higher. In phase 2 of 5G system (Rel-17), there will be Enhanced NR positioning that has a significant accuracy
	improvement of under 10 cm.
	For train station: Virtual zones at stations for automatic check in/out
	For Buses: Area inside the bus
	For Taxies: Phone app records travelled distance and elapsed time to calculate the fee
Capacity to process multiple entries	Limited to 5G NR coverage and user capacity of cellular providers. (Le., Cellular capacity could be full, e.g., during New Year
simultaneously (large quantities / high	Eves)
throughput) – unless separate lane	There might be some friction in ticketing and payments, if 5G NR network is not available. A secure local storage can be used on phones during network issues to facilitate the ticketing locally on user phones
Can detect entry in vehicle (as onnosed to	If vehicle boundaries are specified in three dimensions (required algorithms to process positional overlaps in 3D spaces) or a
walking by) Determines with high accuracy	complementary technology is used
which mode of transport has been is being	complementary technology is used
used	
Execute gate open and close 'just in in time' for	More research required in using 5G NR suitability and network latency for just-in-time gated solution.
gated solutions	
Consider gated and non-gated – in a variety of	
use cases: bus, train, tram, ferry, taxi, on	
demand	
Works indoor and outdoor (with and without	Yes, it will work RAT-independent. Also, 5G NR Rel-16 positioning is user privacy friendly. Because the positioning system of
GPS)	users' devices don't' need to transmit any signal to any service providers, such as, cell tower or Google Location. 5G NR Rel-
	15: Support for RAT-independent positioning techniques and Observed Time Difference of Arrival (OTDOA) on LTE carriers.
	5G NR Rel-16: Support native positioning support by introducing RAT-dependent positioning schemes. According to some
	lectures, 5G NR positioning has low latency and high accuracy (under 10cm), however there might be some limits and
	government regulations on latency and accuracy of positioning for commercial use.
cover fixed and variable routes, i.e., cannot rely	res, it can cover a wide variety of transports. Cloud-base or local intelligent can calculate most suitable fare.
buses moneds bike sharing etc	data can be stored on the phone securely for off-time sync, in case of connection loss
High feasibility of installation across all use	Yes, by using services from App Store, Google Store and QR codes
cases	

Low maintenance/Asset Management System	Low Maintenance and no requirement of new infrastructure installation for TfNSW.
(also Resistant to vandalism)	Easy implementation and straight development using Continuous Development (CD) and Continuous Integration (CI)
Risks/concerns?	 Dependent on network roll out by Telco providers. Coverage of 5G network. May require a redundancy option Dependent roll out in end user market In vehicle accuracy Outdoor accuracy when moving

5G Literature overview

Те	ch Type	Reference	Summary	Key Point of Interest
1.	5G standard	3GPP. (2020). Release 17. Retrieved	5G- New Radio standards R17	- 5G NR Positioning Enhancement
		2022, from		- 5G Rel-17 Specifications
		https://www.3gpp.org/release-17		- 5G Rel-17 timeline
				- 5G Rel-17 progress status
2.	5G standard	3GPP. (2020). Release 16. Retrieved	5G- New Radio standards R16	- 5G NR Positioning
		2022, from		- 5G Rel-16 Specifications
		https://www.3gpp.org/release-16		- 5G Rel-16 timeline
				- 5G Rel-16 progress status
3.	5G positioning	Koivisto, M., Hakkarainen, A., Costa, M.,	In this article, the prospects and enabling	We will demonstrate that geometric
	and location	Kela, P., Leppanen, K., & Valkama, M.	technologies for high-efficiency device	location-based beamforming schemes
	aware	(2017). High-Efficiency Device	positioning and location-aware communications	become technically feasible, which can
		Positioning and Location-Aware	in emerging 5G networks are reviewed. We will	offer substantially reduced reference
		Communications in Dense 5G Networks.	first describe some key technical enablers and	symbol overhead compared to classical
		IEEE Communications Magazine, 55(8),	demonstrate by means of realistic ray-tracing	full channel state information (CSI)-
		188 - 195.	and map based evaluations that positioning	based beamforming. At the same time,
			accuracies below one meter can be achieved by	substantial power savings can be
			properly fusing direction and delay related	realized in future wideband 5G
			measurements on the network side, even when	networks where acquiring full CSI calls
			tracking moving devices. We will then discuss	for wideband reference signals while
			the possibilities and opportunities that such	location estimation and tracking can, in
			high-efficiency positioning capabilities can offer,	turn, be accomplished with
			not only for location-based services in general,	narrowband pilots.
			but also for the radio access network itself.	
4.	5G New radio	Sun, B., Tan, B., Wang, W., & Lohan, E. S.	This paper is a pilot study of using 5G uplink	The positioning performance of both
	3D UE	(2021). A Comparative Study of 3D UE	physical layer channel sounding reference	algorithms is evaluated by estimation of
	positioning	Positioning in 5G New Radio with a	signals (SRSs) for 3D user equipment (UE)	the root mean squared error (RMSE)
		Single Station. Sensors, 21(4), 1178.	positioning. The 3D positioning capability is	versus the varying signal-to-noise-ratio

-				
			backed by the uniform rectangular array (URA)	(SNR), the bandwidth, the antenna
			on the base station and by the multiple	array configuration, and multipath
			subcarrier nature of the SRS. In this work, the	scenarios. The simulation results show
			subspace-based joint angle-time estimation and	that the uplink SRS works well for 3D
			statistics-based expectation-maximization (EM)	UE positioning with a single base
			algorithms are investigated with the 3D signal	station, by providing a flexible
			manifold to prove the feasibility of using SRSs	resolution and accuracy for diverse
			for 3D positioning.	application scenarios with the support
				of the phased array and signal
				estimation algorithms at the base
				station.
5.	5G Accurate	Liu, Q., Liang, P., Xia, J., Wang, T., Song,	In this paper, key performance indicators (KPIs)	Cellular vehicle-to-everything (C-V2X) is
	positioning for	M., Xu, X., & Liu, L. (2021). A Highly	for C-V2X positioning have been described	essential in enabling safe, reliable, and
	C-V2X	Accurate Positioning Solution for C-V2X	firstly. Then positioning challenges and	efficient transportation services. It
		Systems. Sensors, 21(4), 1175.	conventional positioning methods for C-V2X are	serves as serve as the foundation for
			reviewed. Afterward, two user equipment (UE)-	vehicles to communicate with each
			based and UE-assisted C-V2X positioning	other and everything around them. One
			architectures are proposed, and key	fundamental element in C-V2X is
			technologies are also described. Lastly, testing	positioning, namely extracting the
			and typical application cases are provided.	vehicle's absolute and relative positions
				concerning other objects such as
				buildings, pedestrians, traffic signs, and
				other vehicles. However, its feasibility
				in enabling vehicular positioning has
				not been fully explored yet.
6.	Wi-Fi, 3G/4G,	Ferreira, M. C., Fontesz, T., Costa, V.,	The Seamless Mobility platform integrates three	Mobile application, called One Ride,
	GPS technology	Dias, T. G., Borges, J. L., & e Cunha, J. F.	main components: (i) mobile payments, (ii)	developed for Android and IOS devices.
	for mobile	(2017). Evaluation of an integrated	route planner, and (iii) social network. The	It uses QR Codes technology combined
	payment, route	mobile payment, route planner and	payment component is based on the pay-as -	with location providers (GPS) and
	planner	social network solution for public	you-go concept with check-in and check-out	wireless communication technologies
			requiring the reading of the corresponding QR	(3G, 4G or Wi-Fi). This application was

	transport. Transportation research	Code station. To test the concept, a mobile	tested by potential users and experts in
	procedia, 24, 189-196.	application, called One Ride, was developed.	both laboratory and real environment.
		This application was tested by users in real	The proposed mobile ticketing system
		environment, in the city of Porto, Portugal.	is based on the pay-as-you-go
			approach. The passenger only needs to
			indicate the entry points in each means
			of transport of a given trip (check-in)
			and the completion of the same (check-
			out). The technologies chosen for the
			check-in/check-out process with the
			mobile phone were the QR Codes
			combined with location providers (GPS)
			and wireless communication
			technologies (3G, 4G or Wi-Fi). The use
			of the QR Codes to perform the
			payment has shown to be one of the
			main challenges to be addressed, since
			lighting conditions, position, and
			distance to the QR Code influences the
			reading process.
7. Wi-Fi, 3G/	4G, Ferreira, M. C., Nóvoa, M. H., & Dias, T.	The proposed system must require the minimum	In public transport services, contactless
GPS	G. (2013, February). A proposal for a	investment cost from the PTOs and travellers'	ticketing and
technolog	ies to mobile ticketing solution for	point-of-view, achieving at the same time the	payment solutions showed an increase
use for me	bile metropolitan area of oporto public	maximum consumer acceptance possible. to	in traveller satisfaction due to its easy
ticketing f	or transport. In International Conference	achieve this goal decisions had to be made	and
public	on Exploring Services Science (pp. 263-	considering the most suitable technologies for	convenient characteristics. The
transport	278). Springer, Berlin, Heidelberg.	the AMP network, which led to Wi-Fi and GPS	electronic ticketing system in AMP is an
		technologies. purchase and validation of tickets	open (ungated) system that required a
		will be made over-the-air, and the GPS	significant technological investment,
		technology will be used to locate the traveller	such as card readers along the
			platforms at each metro station and at

				and have well to be and have dived by the
				each bus vehicle, and handheld devices
				for conductors. in the proposed system,
				the purchase and validation of tickets
				will be made over-the-air, and the GPS
				technology will be used to locate the
				traveller and reduce the number of
				options when it comes to purchase or
				validate a ticket, making the system
				easier to use. According to the usability
				testing results, all users completed all
				tasks successfully.
				Older people and non-technological
				professionals (e.g., lawyers) took more
				time to
				perform the tasks than the others, but
				they all found "easy" or "very easy" to
				perform most of the tasks. Contains a
				table which presents the factors
				Influencing Mobile Payment Adoption.
8.	5G Standard	5G Release 15 (2019).	Official features and information about 5G	- 5G Rel-15 Specifications
		https://www.3gpp.org/release-15	Release 15	- 5G Rel-15 timeline
				- 5G Rel-15 progress status
9.	5G NR indoor	Lu, Y., Koivisto, M., Talvitie, J., Valkama,	This paper presents and formulates two	Based on the conducted complexity
	positioning	M., & Lohan, E. S. (2019, September).	positioning algorithms when the location	analysis, the proposed geometry-based
		EKF-based and geometry-based	uncertainty of the access nodes (ANs) is taken	algorithm is computationally more
		positioning under location uncertainty of	into consideration. The first algorithm is a low-	efficient than the EKF-based algorithm.
		access nodes in indoor environment. In	complexity geometry-based 3D positioning	In addition, the proposed geometry-
		2019 International Conference on	algorithm that utilizes both time-of-arrival and	based positioning method
		Indoor Positioning and Indoor	angle-of-arrival measurements. The second	demonstrates a higher robustness
		Navigation (IPIN) (pp. 1-7). IEEE.	algorithm relies on extended Kalman Filter (EKF)-	against a high location uncertainty of
			based positioning, by mapping the ANs' location	

		uncertainty into the measurement noise	ANs than the considered EKF-based
		statistics.	method.
10. 5G NR vision: NGMN-5G initiative 11. 5G NR vision	Annunziato, A. (2015, May). 5G vision: NGMN-5G initiative. In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring) (pp. 1-5). IEEE. Koripi, M. (2021). 5G Vision and 5G	The fifth generation of mobile technology (5G) is positioned to address the demands and business contexts of 2020 and beyond. It is expected to enable a fully mobile and connected society and to empower socio-economic transformations in countless ways many of which are unimagined today, including those for productivity, sustainability and well- being. Wireless networks offer lots of purposes. In	The demands of a fully mobile and connected society are characterized by the tremendous growth in connectivity and density/volume of traffic, the required multi-layer densification in enabling this, and the broad range of use cases and business models expected. Yet building wireless networks is simply
and standardization	Standardization. Parishodh Journal, 10, 62-66.	many cases, they are made use of as cord replacements, while in various other instances they are actually used to deliver accessibility to business information coming from distant areas. The wireless structure could be constructed for quite a little price contrasted to standard wired options.	partly about saving funds. Through supplying folks in your neighbourhood community along with less costly as well as simpler accessibility to relevant information, they are going to straight profit from what the Net needs to use. The time, as well as attempt conserved through possessing accessibility to the global network of details, translates into wide range on a nearby range, as more work could be done in a lot less opportunity as well as with much less effort.
12. 5G for next generation communication network and services	The 5G Infrastructure Public Private Partnership the next generation of communication networks and services. <u>https://5g-ppp.eu/wp-</u> <u>content/uploads/2015/02/5G-Vision-</u> <u>Brochure-v1.pdf</u>	Future European society and economy will strongly rely on 5G infrastructure. The impact will go far beyond existing wireless access networks with the aim for communication services, reachable everywhere, all the time, and faster.	5G is an opportunity for the European ICT sector which is already well positioned in the global R&D race. 5G technologies will be adopted and deployed globally in alignment with developed and emerging markets' needs.

13. 5G research	Osseiran, A., Boccardi, F., Braun, V.,	In this article, we describe the scenarios	METIS is the EU flagship 5G project with
directions from	Kusume, K., Marsch, P., Maternia, M.,	identified for the purpose of driving the 5G	the objective of laving the foundation
METIS project	& Fallgren, M. (2014), Scenarios for 5G	research direction. Furthermore, we give initial	for 5G systems and building consensus
	mobile and wireless communications:	directions for the technology components (e.g.	prior to standardization. The METIS
	the vision of the METIS project IFFF	link level components multinode/multiantenna	overall approach toward 5G builds on
	communications magazine 52(5) 26-35	multi-BAT and multi-laver networks and	the evolution of existing technologies
		spectrum bandling) that will allow the fulfillment	complemented by new radio concents
		of the requirements of the identified 5G	that are designed to meet the new and
		sconarios	challenging requirements of use cases
		scenarios.	today22s radio assess notworks cannot
			today is radio access networks cannot
			support. The integration of these new
			radio concepts, such as massive MIMO,
			ultra dense networks, moving
			networks, and device-to-device, ultra
			reliable, and massive machine
			communications, will allow 5G to
			support the expected increase in
			mobile data volume while broadening
			the range of application domains that
			mobile communications can support
			beyond 2020.
14. 5G dense	Koivisto, M., Hakkarainen, A., Costa, M.,	In this article, the prospects and enabling	In particular, we demonstrate that
network	Kela, P., Leppanen, K., & Valkama, M.	technologies for high-efficiency device	geometric location-based beamforming
positioning and	(2017). High-efficiency device	positioning and location-aware communications	schemes become technically feasible,
location aware	positioning and location-aware	in emerging 5G networks are reviewed. We will	which can offer substantially reduced
	communications in dense 5G networks.	first describe some key technical enablers and	reference symbol overhead compared
	IEEE Communications Magazine, 55(8),	demonstrate by means of realistic ray-tracing	to classic full channel state information
	188-195.	and map based evaluations that positioning	(CSI)-based beamforming. At the same
		accuracies below one meter can be achieved by	time, substantial power savings can be
		properly fusing direction and delay related	realized in future wideband 5G
		measurements on the network side, even when	networks where acquiring full CSI calls

			tracking moving devices. We will then discuss	for wideband reference signals while
			the possibilities and opportunities that such	location estimation and tracking can, in
			high-efficiency positioning capabilities can offer,	turn, be accomplished with
			not only for location-based services in general,	narrowband pilots.
			but also for the radio access network itself.	
15	5. 5G mmW	Rastorgueva-Foi, E., Galinina, O., Costa,	Highly directional millimeter-wave (mmW)	We reproduce a typical 5G mmW
	networking	M., Koivisto, M., Talvitie, J., Andreev, S.,	connectivity - especially in industry-grade	network deployment featuring
	and positioning	& Valkama, M. (2020). Networking and	scenarios with complex and unpredictable	dissimilar device mobility patterns and
		Positioning Co-Design in Multi-	device mobility - requires a certain degree of	assess the performance of the
		Connectivity industrial mmw Systems.	structural redundancy in the network, which can	proposed architecture. In particular, we
		Technology 69(12) 15842-15856	be provided by utilizing multi-connectivity	evaluate the precision of our
			mechanisms. To lower the coordination	positioning and base station orientation
			complexity and overhead of tracking multiple	estimation methods as well as analyze
			directional beams, mmW networks can retrieve	the impact of the proposed scheme on
			and leverage timely positioning information. In	the system-level performance. Our
			this paper, we develop a holistic framework for	numerical results demonstrate that the
			the co-design of networking and positioning in	proposed solution yields highly
			industrial 5G mmW deployments with multi-	accurate position estimates and
			connectivity capabilities. In particular, we	significantly improves the average
			propose a flexible two-stage positioning solution	network spectral efficiency.
			- mindful of information uncertainty - that relies	
			upon the 5G NR system design and can be	
			seamlessly integrated into the mmW cellular	
			infrastructure with reasonable overheads.	
16	5. 5G NR mm		5G new radio (NR) provides new opportunities	We find that when a sufficient number
	wave downlink	Wymeersch, H., Garcia, N., Kim, H.,	for accurate positioning from a single reference	of paths is present, a vehicle can still be
	vehicular	Seco-Granados, G., Kim, S., Wen, F., &	station: large bandwidth combined with multiple	localized thanks to redundancy in the
	positioning	Fröhle, M. (2018, December). 5G mm	antennas, at both the base station and user	geometric constraints. Moreover, the
	wave downlink vehicular positionin	wave downlink vehicular positioning. In	sides, allows for unparalleled angle and delay	5G NR signals enable a vehicle to build
		2018 IEEE Global Communications	resolution. Nevertheless, positioning quality is	up a map of the environment.
		IFFF	affected by multipath and clock biases. We	
1				

		study, in terms of performance bounds and	
		algorithms, the ability to localize a vehicle in the	
		presence of multipath and unknown user clock	
		bias.	
17. 5G NR	Ma, W., Qi, C., & Li, G. Y. (2020). High-	In this paper, we develop two high-resolution	It first estimates the AoD of each
mmWave	resolution channel estimation for	channel estimation schemes based on the	channel path and then searches the
massive MIMO	frequency-selective mmWave massive	estimating signal parameters via the rotational	minimum from the identified mainlobe.
systems	MIMO systems. IEEE Transactions on	invariance techniques (ESPRIT) method for	To guarantee the robust channel
	3529	frequency-selective millimeter wave (mmWave)	estimation performance, we also
	5525.	massive MIMO systems. The first scheme is	develop a hybrid precoding and
		based on two-dimensional ESPRIT (TDE), which	combining matrices design method so
		includes three stages of pilot transmission. This	that the received signal power keeps
		scheme first estimates the angles of arrival	almost the same for any AoA and AoD.
		(AoA) and angles of departure (AoD) and then	Finally, we demonstrate that the
		pairs the AoA and AoD. The other scheme	proposed two schemes outperform the
		reduces the pilot transmission from three stages	existing channel estimation schemes in
		to two stages and therefore reduces the pilot	terms of computational complexity and
		overhead. It is based on one-dimensional ESPRIT	performance.
		and minimum searching (EMS).	
18.5G NR	Hu, C. N., Xu, W. J., Gao, R. Z., Cai, Z. T.,	This study numerically and experimentally	5G Millimeter-Wave for Monopulse
mmWave	Chen, X. Z., Wu, C. C., & Lo, P. (2020,	investigate the use of monopulse tracking	Tracking
tracking	August). Monopulse Tracking Method	algorithm for angle estimation in Channel	
method for	for Angle Estimation in 5G Millimeter-	Sounder system by using a 2×4 millimeterwave	
angle	Wave Channel Sounder. In 2020	(mmWave) antenna module operating at 28	
estimation	International Workshop on	GHz.	
	Electromagnetics: Applications and		
	Student Innovation Competition (iWEM)		
	(pp. 1-2). IEEE.		
19. 5G NR IoT	Ni, J., Lin, X., & Shen, X. S. (2018).	5G network is considered as a key enabler in	Users can efficiently establish
supporting	Efficient and secure service-oriented	meeting continuously increasing demands for	connections with 5G core network and
network slicing	authentication supporting network	the future Internet of Things (IoT) services,	anonymously access IoT services under

	slicing for 5G-enabled IoT. IEEE Journal	including high data rate, numerous devices	their delegation through proper
	on Selected Areas in Communications,	connection, and low service latency. To satisfy	network slices of 5G infrastructure
	36(3), 644-657.	these demands, network slicing and fog	selected by fog nodes based on the
	l l	computing have been envisioned as the	slice/service types of accessing services.
	l l	promising solutions in service-oriented 5G	The privacy-preserving slice selection
	l l	architecture. However, security paradigms	mechanism is introduced to preserve
	l l	enabling authentication and confidentiality of	both configured slice types and
	l l	5G communications for IoT services remain	accessing service types of users. In
	l l	elusive, but indispensable. In this paper, we	addition, session keys are negotiated
	l l	propose an efficient and secure service-oriented	among users, local fogs and IoT servers
	l l	authentication framework supporting network	to guarantee secure access of service
	l l	slicing and fog computing for 5G-enabled IoT	data in fog cache and remote servers
		services.	with low latency. We evaluate the
	l l		performance of the proposed
	l l		framework through simulations to
			demonstrate its efficiency and
			feasibility under 5G infrastructure.

Ultra-Wide Band

This technology is not new but is enjoying a resurgence due to the demand for accurate locationing. Research has been available for several decades focusing on the accuracy and comparing it to alternatives. This has driven the adoption of UWB (Ultra-wide band) in industry applications. Di Benedetto, M. G. (Ed.) published the standard book on UWB back in 2006.

Recent research is focusing on new applications, including transport where payment, positioning and obstacle detection are tested on trains. Recent research focuses on the deployment of UWB in public transport, for instance to assist travellers prior about the bus arrival time, using Bluetooth Low Energy (BLE) UWB beacons to notify the commuters about arriving bus at the bus stop.

Use cases that have been published include obstacle avoidance for people with disability, inflight cockpit communications, people counting and indoor positioning

UWB tokens and end user wearables are adopted by major phone brands and developed by major device manufacturers, but the particular use case of frictionless ticketing for public transport requires further real-world research.

UWB: Evaluation criteria

Table 2. Key evaluation requirements- UWB (wearable tag)

Key evaluation requirements	
Technology readiness – now vs. emerging	Proven in another use case for precision indoor location tracking and RTLS (real-time location system) Commercial products available (Ubisense, decawave, sewio) for indoor location tracking (RTLS) -tested in [1,2]
Certainty/reliability (e.g., interference)	Ultra-reliable
	Resilient to interference and multi-path
Accurate/very low error rates	Accurate, centimetre level (upto 10cm) precision [3, 4]
	Use ToF and AoA technique
	Real-time low latency
Secure– not easy to forge, clone	Secure with PHY level encryption
	Use Time of Flight (ToF), resilient to replay attack

Use case requirement	Tech solution
Identification	Tag Unique Id will be identified and tracked using Anchors (installed on infrastructure)
Tokenisation /Authentication	- The tag location is calculated at installed anchors, tokenisation is done between anchors towards backend
	- Encryption at application level can be implemented

	- Low level (PHY) encryption supported in IEEE 802.15.4z to handle relay attack
Positioning & trip definition:	Suitable for gated scenario to open gates, and automatic detection at ungated scenarios
Registration in (begin of ticket)	- Precise RTLS (real-time location tracking is possible with infrastructure and backend server [4]
Registration out (end of ticket)	- Automatic begin and end of trip possible at entry/exit gates
Repeat for next leg of trip	- Alternative notification can be given via beep or sms
Capacity to process multiple entries	Accuracy and number of tags tracked simultaneously is relative to number and type of anchor configuration:
simultaneously (large quantities / high	Approx. 500 with 4 anchors (Full RTLS mode)
throughput) – unless separate lane	Approx. 50 with 2 anchors
Can detect entry in vehicle (as opposed to	Can detect precision 3D position within the defined area within detection coverage [3]
walking by). Determines with high accuracy	- Can detect tags across walls, so beam angle is important to define coverage area
which mode of transport has been/is being	- UWB anchors on one train/bus should be time synced with each other
used	
Execute gate open and close 'just in in time' for	Just in time gate on/close possible due to precision tracking in 3D [4]
gated solutions	Suitable for gated entry for opening gates with precision tracking
Consider gated and non-gated – in a variety of	Entry/exit areas should be within coverage of installed anchors
use cases: bus, train, tram, ferry, taxi, on	Suitable for train, tram, bus, ferry
demand	
Works indoor and outdoor (with and without	Works anywhere with required fixed installations and connectivity
GPS)	
Cover fixed and variable routes, i.e., cannot rely	Need fixed infrastructure (with power and n/w connectivity) – min 2 anchors required
on fixed infrastructure. Work in taxi's, mini	Train stations – Ok either at gate or in train
buses, mopeds, bike sharing, etc.	Buses – Ok with 2 anchors
	Taxi – Not known yet, bike sharing stand – Not known yet
High feasibility of installation across all use	Range varies from 20m (non-line of sight) to 150m (line of sight) –[4], installation is mandatory for coverage as per
cases	use case either for identification or real-time tracking
Low maintenance/Asset Management System	To be investigated
(also Resistant to vandalism)	
Risks/concerns?	- Connected Anchors installation required

Risks/concerns?	- Connected Anchors installation required
	- Accuracy is determined by number of anchors
	- Minimum 2 anchors for 2D accuracy
	- 3-4 anchors for 3D positional accuracy and tracking

UWB: Literature overview

Т	ech Type	Reference	Summary	Key Point of Interest
1.	UWB	Chantaweesomboon, W., Suwatthikul, C.,	This work presents a performance study on	The difficulties encountered during the
	realtime	Manatrinon, S., Athikulwongse, K.,	location accuracy of DecaWave's TREK1000,	calculation of the tag's location at certain
	locating	Kaemarungsi, K., Ranron, R., & Suksompong,	a two-way ranging RTLS IC evaluation kit.	locations were pointed out. It was also found
	system	P. (2016). On performance study of UWB	Four anchors and one tag were set up as an	that the change in performance of the 2D
		real time locating system. Bangkok,	RTLS deployed in two different indoor areas.	localization of the system when set up with
		Thailand: IEEE.		three and four anchors was insignificant.
				Additionally, the accuracy in the third
				dimension or the height of the tag above the
				ground was found to be less accurate.
2.	UWB	Ruiz, A. R., & Granja, F. S. (2017). Comparing	In this paper, we compare three	The study also includes the analysis of the
	Indoor	Ubisense, BeSpoon, and DecaWave UWB	commercially available UWB systems	estimated azimuth and elevation angles for
	performan	Location Systems: Indoor Performance	(Ubisense, BeSpoon, and DecaWave) under	the Ubisense system, which is the only one
	ce analysis	Analysis. IEEE Transactions on	the same experimental conditions, in order	that incorporates this feature using an array
		Instrumentation and Measurement , 66(8),	to do a critical performance analysis. We	antenna at each sensor. Finally, we analyze
		106 - 2117.	include the characterization of the quality of	the 3-D positioning estimation performance
			the estimated tag-to-sensor distances in an	of the three UWB systems using a Bayesian
			indoor industrial environment.	filter implemented with a particle filter and a
				measurement model that takes into account
				bad range measurements and outliers.
3.	UWB real-	Barbieri, L., Brambilla, M., Pitic, R.,	In this paper, we focus on Bayesian filtering	Experimental results show that, despite the
	time	Trabattoni, A., Mervic, S., & Nicoli, M.	techniques to counterbalance the	harsh environment, accurate localization is
	location	(2020). UWB Real-Time Location Systems for	detrimental effects induced by non line of	possible by fusion of hybrid measurements
	systems	Smart Factory: Augmentation Methods and	sight and dense multipath in a smart factory	and integration of prior information on the
	for smart	Experiments. London, UK: IEEE.	scenario. We first conduct a set of	target dynamics and the industrial
	factory		experimental tests with commercial devices	propagation environment.
			in an industrial facility of Pirelli Tyre S.p.A.	
			located in Milan, Italy. We then use the	
			collected data to design and test	
			augmentation algorithms based on Extended	

			Kalman Filter (EKF) and Particle Filter (PF),	
			fusing Time Difference of Arrival (TDoA) and	
			Angle of Arrival (AoA) signals.	
4.	UWB for	University at Albany - SUNY; Center of	In a series of controlled experiments, we	Based on the findings above, we recommend
	intelligent	Technology in Government. (n.d.). Intelligent	evaluated the feasibility of deploying Ultra-	further prototyping of IR-UWB in real-world
	transport	Transportation based UWB. Albany, New	Wide Band (UWB) technology using the	metropolitan public transporation scenarios
	system	York.	following use cases: (1) for determining the	scenarios with objective monitoring and
			location of a train on a track (called ranging	evaluation of results. Our experiments
			in the experiment) and (2) for an electronic	validate the promise of IR-UWB to satisfy the
			payment application, such as a passenger at	use case requirements for ranging and
			a turnstile, to determine the ability to locate	localization, but these need to be further
			individuals within crowds (called localization	tested and affirmed to both extend the
			in the experiment). Both cases were tested	scenarios of our controlled lab and to
			indoors (tunnel) and outdoors (roadway) to	address the cautions noted below.
			evaluate environmental effects.	
5.	UWB real-	Barbieri, L., Brambilla, M., Pitic, R.,	In Industry 4.0, real-time location systems	Smart factory applications require precise
	time	Trabattoni, A., Mervic, S., & Nicoli, M. (2020,	are emerging as a key technology to improve	positioning, as envisioned by Industry 4.0. In
	location	August). UWB real-time location systems for	the efficiency of industrial processes, as they	this paper, we first compared commercial
	system for	smart factory: augmentation methods and	allow to track any assets or material	UWB devices (Ubisense and Sewio), showing
	smart	experiments. In 2020 IEEE 31st Annual	movement and collect data on their usage.	their localization accuracy in an industrial
	factory	International Symposium on Personal,	Ultra Wideband (UWB) systems offer	plant of Pirelli Tyre S.p.A The analysis on
		Indoor and Mobile Radio Communications	unrivalled localization accuracy, but they call	static localization scenarios highlights that
		(pp. 1-7). IEEE.	for augmentation strategies in environments	Ubisense is the most accurate solution,
			with complex propagation conditions such as	providing an error lower than 40 cm in 95%
			plants or factories with high density of	of cases. On the other hand, Sewio reaches
			scattering objects and obstructions. In this	an accuracy of 1.17 m but it has the
			paper, we focus on Bayesian filtering	advantage of a lower price and easier
			techniques to counterbalance the	installation and calibration.
			detrimental effects induced by non-line of	UWB raw data collected by experiments
			sight and dense multipath in a smart factory	have been used to validate Bayesian tracking
			scenario. We first conduct a set of	filters for multipath mitigation. The analysis

			avaarimental tests with commercial devices	focused on evoluating the impact of the ture
			experimental tests with commercial devices	Tocused on evaluating the impact of the type
			in an industrial facility of Pirelli Tyre S.p.A.	of measurements (stand-alone TDoA or a
			located in Milan, Italy. We then use the	combination of TDoA and AoA) as well as of
			collected data to design and test	the type of filter (EKF or PF). In all cases, a
			augmentation algorithms based on Extended	PF-based tracking technique has been shown
			Kalman Filter (EKF) and Particle Filter (PF),	to outperform the EKF one. A combination
			fusing Time Difference of Arrival (TDoA) and	of AoA and TDoA measurements is to be
			Angle of Arrival (AoA) signals. Experimental	preferred in industrial environments to
			results show that, despite the harsh	mitigate the dense multipath propagation.
			environment, accurate localization is	
			possible by fusion of hybrid measurements	
			and integration of prior information on the	
			target dynamics and the industrial	
			propagation environment.	
6.	UWB	Intelligent Transportation based UWB	In a series of controlled experiments, we	For ranging in the tunnel environments, our
	intelligent	Positioning and Connectivity	evaluated the feasibility of deploying Ultra-	results show that in the majority of cases for
	transport	https://www.albany.edu/sine/assets/docs/U	Wide Band (UWB) technology using the	line-of-sight distances of up to 150m (~164
	system	Albany%20UWB%20Study.pdf	following use cases: (1) for determining the	yds or 1/10 mile) between two UWB nodes,
			location of a train on a track (called ranging	the precision was within 10cm (~4in). For
			in the experiment) and (2) for an electronic	non-line-of-sight distances up to 26m
			payment application, such as a passenger at	(~28yds) between two UWB nodes, the
			a turnstile, to determine the ability to locate	precision was
			individuals within crowds (called localization	within 50cm (~20in).
			in the experiment). Both cases were tested	
			indoors (tunnel) and outdoors (roadway) to	
			evaluate environmental effects. The	
			experiments measured for reliability	
			(integrity of signal) and precision (range of	
			error in locating) based on impulsive radio	
			UWB (IR-UWB). Our findings,	

			recommendations, and cautions are	
			summarized below.	
7.	UWB real-	Chantaweesomboon, W., Suwatthikul, C.,	Real time locating systems (RTLS) with	The RTLS evaluation kit tested in this article
	time	Manatrinon, S., Athikulwongse, K.,	centimeter accuracy have recently been	showed a promising potential for micro-
	locating	Kaemarungsi, K., Ranron, R., & Suksompong,	made available for commercial deployment	location applications. However, we found
	system	P. (2016, March). On performance study of	by employing ultra wideband (UWB)	some limitations in the performance of UWB
		UWB real time locating system. In 2016 7th	technology. DecaWave's DW1000 is a	RTLS in both 2D and 3D cases. On average
		International Conference of Information and	commercial UWB integrated circuit that	the 2D accuracy is within the sub-meter
		Communication Technology for Embedded	utilizes time-of-flight (ToF) measurement	level, but the 3D accuracy could be worse up
		Systems (IC-ICTES) (pp. 19-24). IEEE.	technique and two-way-ranging (TWR)	to 3-meter level. A number of guidelines for
			mechanism to accurately estimate the	deploying the UWB RTLS properly to achieve
			distance between an anchor and a tag. With	a good localization performance are pointed
			the distances between the tag and at least	out, such as where the anchors should be
			three anchors, a trilateration algorithm can	installed and the suitable area the tag should
			be applied to estimate the tag's location on	be within. The need to improve location
			the same two-dimensional (2D) plane as the	accuracy along the z-axis is also an important
			anchors. Moreover, if four or more anchors	issue to be investigated further in the future
			are available, the tag's location in three-	
			dimensional space can also be estimated.	
			This work presents a performance study on	
			location accuracy of DecaWave's TREK1000,	
			a two-way ranging RTLS IC evaluation kit.	
			Four anchors and one tag were set up as an	
			RTLS deployed in two different indoor areas.	
			The difficulties encountered during the	
			calculation of the tag's location at certain	
			locations were pointed out. It was also found	
			that the change in performance of the 2D	
			localization of the system when set up with	
			three and four anchors was insignificant.	
			Additionally, the accuracy in the third	

			dimension or the height of the tag above the	
			ground was found to be less accurate	
8.	UWB RFID	Núñez Álvarez, C., & Crespo Cintas, C.	The present project is focused on	This combined location method takes
	combined	(2010). Accuracy evaluation of probabilistic	investigating the achievable accuracy of	advantage of the virtues of each location
	locating	location methods in UWB-RFID systems	classical location methods commonly used in	method and combines information in order
	methods	(Master's thesis, Universitat Politècnica de	wireless and proposing an alternative	to improve the estimation of one target's
		Catalunya).	location method based on combining two of	position when locating in indoor channel.
			them. The first part of the project studies	The second part of the project is devoted to
			the advantages and disadvantages of	analyse and simulate the modified RSS,
			extending Ultra Wideband and	TDOA and Combined location methods,
			Radiofrequency Identification technologies	considering the randomness of a real
			on some classical location methods. As a	multipath fading channel. Results show that
			result of the study and with the goal of	the Combined location method performs
			improving accuracy in indoor radio	always the best accuracy. Specifically in
			propagation channels, the Received Strength	analytical study, the combined location
			Signal-based location method and the Time	method provides a deterministic error of 24
			Difference Of Arrival-based location method	cm which represents an improvement of
			are selected to be combined in the	54% and 15% of the RSS and TDOA
			alternative location method, including the	accuracies respectively. In the simulated
			proper channel models.	study, results show that it is able to improve
				the accuracy up to 46% and 85% of the RSS
				and TDOA respectively in specific evaluated
				points.

9.	UWB realtime locating system localisatio n and identificati on UWB	Porto, S. M. C., Arcidiacono, C., Giummarra, A., Anguzza, U., & Cascone, G. (2014). Localisation and identification performances of a real-time location system based on ultra wide band technology for monitoring and tracking dairy cow behaviour in a semi-open free-stall barn. Computers and Electronics in Agriculture, 108, 221-229.	The objective of this study was to evaluate the localisation and identification performances of a Real-Time Location System (RTLS) based on Ultra Wide Band (UWB) technology within a semi-open free- stall barn since the conditions of the breeding environment were different from that of the 'typical open environment' used by the RTLS producer to test the system and the building characteristics were dissimilar to those of the indoor environments considered in other tests. Each dairy cow was equipped with an active tag applied to one ear and a reference tag was fixed to a pillar of the barn. A video-recording system was installed in the barn to perform the assessment of the RTLS. Top-view camera images of the area of the barn were rectified and synchronised with the RTLS. An operator validated each position of the cow computed by the RTLS by performing cow visual recognition on the camera images. To perform this validation a software specifically designed for the purpose was utilised. It is an automatic and interactive tool which includes selection and control tabs for data management, visualisation and labelling of the images with the aim of computing tag true positions.	It was equal to about 0.11 m with an identification accuracy of nearly 100% for the reference tag, whereas for the tags applied to the cows the average localisation mean error, computed by averaging the localisation mean errors of the tags, was about 0.515 m with an identification accuracy of 98%. At the 90th percentile the average localisation mean error was about 0.967 m for the cows' tags, whereas it was about 0.17 m for the reference tag.
	based	directional passing people counting system	impulse radio ultra-wideband (IR-UWB)	recognition of a person passing through a
	people	based on IR-UWB radar sensors. IEEE	radar sensors for counting multiple people	path are performed considering both
1	counting	Internet of Things Journal, 5(2), 512-522	passing through a passage or a wide door	information of a received signal in each
	Sources 1			

			IR-UWB radar sensors equipped with antennas which have narrow beam width to form two invisible electronic layers in the path. The two electronic layers are used for sensing and direction recognition of multiple people passing by.	radar signals. The proposed counting system is implemented with two radar modules designed using commercial radar ICs and a Raspberry Pi 2 module. We installed the designed modules in the subway station to verify the performance. Based on the installed modules, data were acquired for one week and the counting performance was verified for various time intervals such as 2 minutes, 1 hour, and 1 day. Except for a few cases, we could get counting results with errors less than 10%
11.	UWB inbound and outdound detection of people's movement	Quan, X., Choi, J. W., & Cho, S. H. (2014, January). In-bound/Out-bound detection of people's movements using an IR-UWB radar system. In 2014 International Conference on Electronics, Information and Communications (ICEIC) (pp. 1-2). IEEE.	This paper presents an In-bound/Out-bound detection algorithm of people's movements using an impulse radio ultra-wideband (IR- UWB) radar system. This algorithm is based on a simple threshold crossing (TC) method which has been widely used in UWB field.	This algorithm can detect the people who pass through the gate field. It can be used in gate monitoring to count the number of people in a large room.
12.	UWB counting algorithms for multiple objects	Choi, J. W., Kim, J. H., & Cho, S. H. (2012, September). A counting algorithm for multiple objects using an IR-UWB radar system. In 2012 3rd IEEE international conference on network infrastructure and digital content (pp. 591-595). IEEE.	In this paper, a counting algorithm is proposed based on the signal's local maximum values of power signals and positions. After background subtraction process to eliminate clutter signals, several positions and values of the signal's local maximum values are searched for some prefixed number of frames.	After sufficient values are stored in a buffer, an average of the values is calculated. Among the values, the number of values exceeding the thresholds is counted and stored as 1-st decided targets' number. To improve the performance we vote with some 1-st decided targets' number. We prove this algorithm's performance by some experiments. Simulation results are included experimented in the 6 m by 6 m indoor environment.

13.	UWB	Yuan, Y., Zhao, J., Qiu, C., & Xi, W. (2013).	In this paper, we introduce a low cost crowd	The proposed approach is an iterative
	estimating	Estimating crowd density in an RF-based	density estimating method using wireless	process, which contains three phases: the
	crowd	dynamic environment. IEEE Sensors Journal,	sensor networks. The proposed approach is	training phase, the monitoring phase, and
	density	13(10), 3837-3845.	a device-free crowd counting approach	the calibrating phase. Our experiments are
			without objects carrying any assistive device.	implemented based on TelosB sensor
			It is hard to count objects based on RSS	platform. We also do some large-scale
			measurement, since different number of	simulations to verify the feasibility and the
			mobile people at different positions often	effectiveness of our crowd density
			generates different RSS due to the multipath	estimating approach.
			phenomenon. This paper utilizes the space-	
			time relativity of crowd distribution to	
			reduce the estimation errors.	
14.	UWB	Bartoletti, S., Conti, A., & Win, M. Z. (2017).	Counting people and things (targets) in a	The proposed method is verified via sample-
	counting	Device-free counting via wideband signals.	monitored area, also known as crowd-	level simulations in realistic operating
	system	IEEE Journal on Selected Areas in	counting, enables several applications in	conditions and compared with current
		Communications, 35(5), 1163-1174.	diverse scenarios, including smart building,	solutions.
			intelligent transportation, and public safety.	
			This paper proposes a mathematical	
			framework for the design of device-free	
			counting systems. First, a maximum a	
			posteriori algorithm is developed for	
			counting via wideband signal backscattering	
			by relying on model order selection. Then, a	
			method that relies on low-level features is	
			proposed to lower the computational	
			complexity.	
15.	UWB for	Mahobe, M. (2013). UWB Radio Wireless	Railway is an economical and comfortable	All the channel characteristics show that
	railway	Communication System Design for Railway	mode of transportation for long distances.	UWB systems perform better than the
	tunnels	Tunnels (Doctoral dissertation).	Huge population from all over the world	existing techniques. So to maintain the
			depends on it for their daily routine. We	continuity of data stream we need to install
			evaluated the frequency response, channel	UWB trans-receiver over the specific

			impulse response and path loss for different	interval, in our study it is 15 to 25 meter.
			distances between transmitter and receiver	Since UWB is based on carrier less
			and observed the effect of fading over the	transmission so UWB equipment are less
			channel. Then three standard wave shapes	complex than carrier based transmission, so
			has been tested with the modelled channel.	we can settle for short range with extremely
			It is to observe the phase shift and time	high data rate communication
			delay provided by the considered channel	
			model which behaves as a multipath fading	
			channel with additive white Gaussian noise.	
			To check the quality of reception bit error	
			rate performance has been evaluated for	
			BPSK and OOK modulation techniques.	
16.	UWB	Chawla, R., Dhakate, M., & Chaurasia, S.	With the increase in population, rapid	Traffic congestion, heavy downpour, bus
	system	(2020, February). System and Method for	explode in rate of vehicles has resulted in an	breakdown, accident and day-to-day
	and	Smart Public Transportation System. In 2020	overload on traffic management. Public	problems faced by bus company can delay or
	method	International Conference on Industry 4.0	transportation, being a pivotal role, is the	completely interrupt bus service. Another
	for smart	Technology (14 Tech) (pp. 51-54). IEEE.	most affordable means of transportation.	drawback of the primitive bus system is that
	public		The major impediment of traveling with bus	the safety of passengers has never been
	transport		is the inconsistent arrival time which may be	considered. The current system has always
	system		due to unforeseen circumstances. Even	been ignorant towards specially able people.
			though bus schedule is known, there are a	Thus, all the shortcomings have given the
			number of reasons that bus may not arrive	intuition of developing an IoT enabled
			as expected.	system that will inform the travellers prior
				about the bus arrival time, facilitating
				passengers to plan trips with minimum wait-
				time. This is done by making use of
				Bluetooth Low Energy (BLE) UWB (Ultra
				Wide Band) beacons to notify the
				commuters about arriving bus at the bus
				stop. The proposed system would take into
				consideration the needs of specially-abled

				people and offer service that will help
				improve their overall traveling experience.
17. UWI loca algo	B ating prithms	Shen, C., Wang, C., Zhang, K., Wang, X., & Liu, J. (2019). A time difference of arrival/angle of arrival fusion algorithm with steepest descent algorithm for indoor non- line-of-sight locationing. International Journal of Distributed Sensor Networks, 15(9), 1550147719860354.	In complex indoor propagation environment, the non-line-of-sight error caused by various obstacles brings great error to node positioning. Choosing the appropriate signal transmission methods is important to improve node indoor positioning accuracy. In this research, ultra-wideband technology, as baseband with high theoretical positioning accuracy and real-time performance, is implemented to transmit indoor signals.	The proposed fusion algorithm with ultra- wideband baseband takes advantages from both time difference of arrival and angle of arrival algorithms, combined through the steepest descent algorithm. The non-line-of- sight signal estimation error is iteratively eliminated to achieve effective positioning accuracy. The experimental results indicate that the novel time difference of arrival/angle of arrival fusion algorithm with steepest descent algorithm can largely improve node positioning accuracy and stability.
18. UWI gene intro ons	B eral oducti	Nikookar, H., & Prasad, R. (2008). Introduction to ultra wideband for wireless communications. Springer Science & Business Media.	Compared to traditional carrier-based, Ultra- Wide Band (UWB), or carrier-less, systems implement new paradigms in terms of signal generation and reception. Thus, designing an UWB communication system requires the understanding of how excess bandwidth and very low transmitted powers can be used jointly to provide a reliable radio link. UWB offers systems transceiver potential for very simple implementations.	 Comparison between UWB and traditional narrow-band systems highlights the following features: Large bandwidth enables very fine time-space resolution for accurate location of the UWB nodes and for distributing network time stamps. Very short pulses are effectively counter-fighting the channel effect in very dense multipath environments. Data rate (number of pulses transmitted per bit) can be traded with power emission control and distance coverage. Very low power density leads to low probability of signal detection and

				adds security for all the layers of
				the communication stack.
				Very low power density is obtained through
				radio regulation emission masks; UWB
				systems are suitable for coexistence with
				already deployed narrow-band systems
19.	UWB	Niemelä, V., Haapola, J., Hämäläinen, M., &	This paper presents an updated survey on	The latter standard including the UWB
	survey	linatti, J. (2016). An ultra wideband survey:	research related to ultra wideband (UWB)	specifications was first published in 2007
	papers	Global regulations and impulse radio	communications, particularly that of impulse	and the latest revision dates to 2015. The
		research based on standards. IEEE	radio (IR) technology. In addition to the	focus in this paper is the period from 2007 to
		Communications Surveys & Tutoriais, 19(2),	research, we survey UWB physical layer	2015. Our purpose is to provide an in-depth
		674-690.	specifications of the two existing	survey with a clearly specified topic together
			standards—the IEEE 802.15.6-2012	with the standard specifications and the
			and the IEEE 802.15.4-2015—:as well	related regulatory restrictions. Additionally.
			as the leading global UWB spectrum	the last part of this paper discusses the
			regulatory limitations which have been	possibilities of increasing the current IR-
			undated recently	IIWB data rates to meet increasing future
				demands
20		Zhai C. Zou Z. Zhou O. Mao J. Chen O.	This paper presents a 2 4-GHz radio	The tag, consisting of a commercial 2.4-GHz
20.	bybrid	Tenhunen H & Xu I (2017) $\triangle 2.4$ -GHz	frequency (PE) and ultra wide handwidth	transceiver and a sustemized application
		ISM RF and UWB hybrid RFID real-time	(UNACE) hubrid real time leasting system	transceiver and a customised application-
	KFID real-	locating system for industrial enterprise	(OWB) hybrid real-time locating system	specific integrated circuit (ASIC) UWB
	time	Internet of Things. Enterprise Information	(RTLS) for industrial enterprise internet of	transmitter (1x), is able to achieve up to
	locating	Systems, 11(6), 909-926.	Things (IoT). It employs asymmetric wireless	3 years' battery life at 1600 tags per position
	system for		link, that is, UWB radio is utilised for	update second with 1000 mAh battery in
	IoT		accurate positioning up to 10 cm in critical	one cluster. The time difference of arrival
			sites, whereas 2.4-GHz RF is used for tag	(TDoA)-based positioning experiment at
			control and coarse positioning in non-critical	UWB radio is performed on the designed
			sites. The specified communication protocol	software-defined radio (SDR) platform.
			and the adaptive tag synchronisation rate	
			ensure reliable and deterministic access with	
			a scalable system capacity and avoid	

			unpredictable latency and additional energy	
			consumption of retransmissions due to	
			collisions.	
21.	UWB	Di Benedetto, M. G. (Ed.). (2006). UWB	Ultrawideband (UWB) communication	The aim of this book is to provide an
	general	communication systems: a comprehensive	systems offer an unprecedented opportunity	overview of the state of the art of UWB
	overview	overview.	to impact the future communication world.	systems from theory to applications. Due to
			The enormous available bandwidth, the	the rapid progress of multidisciplinary UWB
			wide scope of the data rate / range trade-	research, such an overview can only be
			off, as well as the potential for very low-cost	achieved by combining the areas of
			operation leading to pervasive usage, all	expertise of several scientists in the field.
			present a unique opportunity for UWB	More than 30 leading UWB researchers and
			systems to impact the way people and	practitioners have contributed to this book
			intelligent machines communicate and	covering the major topics relevant to UWB.
			interact with their environment.	These topics include UWB signal processing,
				UWB channel measurement and modelling,
				higher-layer protocol issues, spatial aspects
				of UWB signalling, UWB regulation and
				standardization, implementation issues, and
				UWB applications as well as positioning. The
				book is targeted at advanced academic
				researchers, wireless designers, and
				graduate students wishing to greatly
				enhance their knowledge of all aspects of
				UWB systems.
22.	UWB peak	Sharma, S., Gupta, A., & Bhatia, V. (2017,	Ultra-wide band (UWB) communication is a	The proposed receiver divides each data
	detection	June). A simple modified peak detection	viable solution for Wireless Sensor Network	symbol frame duration into smaller multiple
	for WSN	based UWB receiver for WSN and IoT	(WSN) and Internet of Things (IoT) due to	time windows. In each time window, peak of
	and IoT	applications. III 2017 IEEE Solit Venicular Technology Conference (VTC Spring) (pp. 1-	low cost and low power requirement.	received signal is detected independently
	application	6). IEEE.	However, UWB transceiver design is more	using threshold comparison. The transmitted
	S		complex due to large bandwidth and precise	signal is detected in a frame by employing
			synchronization requirement. In this paper,	decisions on all multiple time windows. From

-				-
			we propose a simple peak detection based	simulation, it is observed that the proposed
			non-coherent UWB receiver, suitable for low	receiver outperforms existing non-coherent
			data rate WSN and IoT based applications.	receivers. The performance analysis of the
				proposed receiver is carried out by using
				time hopping pulse position modulation (TH-
				PPM) UWB signal in additive white Gaussian
				noise (AWGN), multipath communication
				using the existing IEEE 802.15.4a standard.
23.	UWB	Meissner, P., Gigl, T., & Witrisal, K. (2010,	We present a novel UWB indoor localization	The statistical model for the ranging to the
	positioning	September). UWB sequential Monte Carlo	concept that performs the position	virtual anchor's accounts for several
	using	positioning using virtual anchors. In 2010	estimation with a set of virtual anchor	imperfections, which lead to multimodal and
	virtual	International Conference on Indoor	nodes, generated from a single physical	heavy-tailed measurement distributions. We
	anchors	Fositioning and indoor Navigation (pp. 1-10).	anchor and floor plan information. Using	show how modified versions of the Kalman
			range estimates to the virtual anchors, we	filter as well as a particle filter can account
			perform multilateration to estimate the	for these imperfections and yield accurate
			position of an agent. Previous work has	and robust position estimates. In a typical
			shown the general applicability of this	indoor pedestrian motion scenario, we can
			concept. In this contribution, we use a	achieve an accuracy of about 45 cm for 90%
			moving agent to exploit the correlation in	of the estimates.
			successive positions using state-space	
			concepts. A motion model for the agent and	
			the measurement likelihood function allow	
			for the use of the powerful framework of	
			Bayesian state estimation. With this concept,	
			we can propagate prior information on the	
			agent position from one time step to the	
			next.	
24.	UWB	Molisch, A. F. (2009). Ultra-wide-band	Understanding ultra-wide-band (UWB)	If the absolute bandwidth is large, the shape
	propagatio	propagation channels. Proceedings of the	propagation channels is a prerequisite for	of the impulse responses as well as the
	n channels	IEEE, 97(2), 353-371.	UWB system design as well as	fading statistics change. This paper also
			communication-theoretic and information-	describes methods for measuring UWB

			theoretic investigations. This paper surveys the fundamental properties of UWB channels, pointing out the differences to conventional channels. If the relative bandwidth is large, the propagation processes, and therefore path loss and shadowing, become frequency-dependent, and the well-known wide-sense stationary uncorrelated scattering model is not applicable anymore.	channels and extracting channel parameters. Throughout this paper, the relationship between channel properties and other areas of UWB research are pointed out.
25.	UWB based non- line-of- sight identificati on in harsh environme nts	Silva, B., & Hancke, G. P. (2016). IR-UWB- based non-line-of-sight identification in harsh environments: Principles and challenges. IEEE Transactions on Industrial Informatics, 12(3), 1188-1195.	Impulse radio ultrawideband ranging has recently received significant attention due to the high accuracy it can achieve. Although most research efforts have focused on ranging in indoor and outdoor environments, other environments such as harsh industrial environments introduce unique challenges. This paper discusses the impact of propagation characteristics of harsh industrial environments on ranging accuracy, and also discusses principles and challenges of non-line-of-sight identification in industrial scenarios.	To illustrate these challenges, a measurement campaign using 802.15.4a radios was conducted in a Heavy Machines Laboratory. The results show that the non- line-of-sight condition can be accurately identified if adequate models for such an environment are used.
26.	UWB monopole antenna for automotiv e communic ations	Alsath, M. G. N., & Kanagasabai, M. (2015). Compact UWB monopole antenna for automotive communications. IEEE Transactions on Antennas and Propagation, 63(9), 4204-4208.	This communication presents a bandwidth- enhanced, compact, monopole antenna with modified ground plane for modern automotive ultra wide-band (UWB) applications. The proposed antenna has hybrid geometry and is constructed using half circular ring and half square ring. The ground plane of the fundamental radiator is	The designed antenna covers 3.1–10.9 GHz frequency spectrum with VSWR≤2 . This antenna can be conveniently placed inside the shark fin housing or it can be printed along with the existing print circuit board (PCB) electronics nullifying the need for dedicated location for in-car communications. Furthermore, a simple

		curved and defected to improve the VSWR	two-port multiple input multiple output	
		bandwidth. An extended ground stub is	(MIMO) antenna is constructed and its	
		added to further enhance the bandwidth to	diversity performance is estimated. The	
		suit the modern automotive requirements.	prototype is fabricated and tested for	
			impedance and radiation characteristics.	
27. UWB localizatio n of semi- autonomo us floor	Čelan, V., Stančić, I., & Musić, J. (2017). Ultra wideband assisted localization of semi- autonomous floor scrubber. Journal of Communications Software and Systems, 13(2), 109-119.	The paper describes the design and features	Analysis is performed in terms of localization	
		of the novel semi-autonomous floor	accuracy and reliability as well as associated	
		scrubber add-on module, used for cleaning	advantages and disadvantages. Obtained	
		large indoor spaces. Module is designed in	results demonstrated that inclusion of UWB	
		such a manner that it can be easily attached	subsystem, despite its price and accuracy (20	
scrubber		and detached from scrubber machine and	cm in ideal, line of sight, conditions), based	
		that additional sensors can be introduced if	on behaviour switching yields more reliable	
		needed. The paper focuses on the	and accurate results in open spaces (up to 25	
		localization capabilities of the machine in	times in position and 2 times in orientation)	
		several sensor setups with emphasis on the	and that its accuracy can be further	
		use of ultra wideband (UWB) real-time	improved with inclusion of wheel encoder	
		localization system (RTLS). It also proposes	data.	
		fusion of sensor data from several sources		
		including novel use of wheel encoder's data		
		in UWB setup.		
28. UWB application s in public transport	Skrebtsov, A., Burnic, A., Xu, D., Waadt, A., & Jung, P. (2011, March). UWB applications in public transport. In 2011 International Conference on Communications, Computing and Control Applications (CCCA) (pp. 1-4). IEEE.	Wireless connectivity will become an	Implementation of wireless technology for	
		integral component of the aircraft cabin in	the in-cabin connection allows achieving	
		the near future. For the planning of the	higher cabin layout flexibility, design costs	
		reliable network a detail analysis of the	and overall weight reduction. Moreover,	
		coverage is required. This paper observes	new generation services, like high-definition	
		the coverage in an aircraft cabin for an	video or high-speed internet access can	
		OFDM UWB system based on the ECMA-368	provided to the passengers. To improve the	
		standard. For this purpose, based on real	flexibility and simplicity of future cabin	
		measurement in an airplane cabin mock-up,	layouts at a sustained high safety, security	
		a Saleh-Valenzuela channel model and a	and reliability of the communication	
		path-loss model are presented. These	services, improved protocol and network	
_				
-----	--	---	--	--
			models are used to obtain the block error	architectures are required. One of the first
			rates and the throughput in an in-cabin	candidates is ultra-wideband (UWB) radio.
			environment. In the near future, radio	
			communications will be deployed in aircraft	
			for cabin management functions, intra crew	
			communications and logistics tasks as well as	
			safety, security and entertainment tasks.	
			Nowadays, GSM (Global System for Mobile	
			Communications) and W-LAN (Wireless Local	
			Area Network) networks are already	
			deployed for passenger services.	
29.	. UWB	Minoli, D., & Occhiogrosso, B. (2018,	Ultrawideband (UWB) technology provides	The expectation in the industry is that e-
	technology	September). Ultrawideband (UWB)	relatively high throughput at short distances	health applications that entail Body Area
	for smart	technology for smart cities IoT applications.	by utilizing low-power pulse transmission as	Networks, Smart City applications dealing
	cities IoT	In 2018 IEEE international smart cities	a coexisting radio service in the C/X-band	with autonomous vehicles and precise
	application	conference (ISC2) (pp. 1-8). IEEE.	portion of the electromagnetic spectrum.	location, Positive Train Control in the
	s		This paper aims at validating the suitability	context of rail transportation, and other near
			of UWB technology for emerging Internet of	field communications will become prevalent
			Things (IoT) applications.	in the near future. This review article
				provides a description of UWB technology in
				the IoT environment, as well assessing its
				technical limitations.
30.	. UWB	Arias-de-Reyna, E., & Mengali, U. (2013). A	In this paper a method for ultra-wideband	In an UWB indoor environment, however,
	localizatio	maximum likelihood UWB localization	(UWB) localization for indoor applications is	the DP may be blocked by thick walls or
	n algorithm exploiting knowledge of the service area layout. Wireless personal	proposed. Beacons at known locations	metallic obstacles, giving rise to large range	
		exchange signals with a tag to the purpose of	errors. Several methods are available to	
	exploiting	communications, 69(4), 1413-1426.	estimating its position from range	mitigate this problem, exploiting different
	knowledge		measurements. These measurements are	degrees of prior information. Techniques
	of the		accurate only when the ray corresponding to	exploiting range error models or based on
	service		the direct path (DP) from tag to beacon is	traditional fingerprinting lead to better
			strong enough.	results than methods that do not require any
1				

	area layout			prior knowledge. We propose a new method that combines the maximum likelihood principle with range error models and special fingerprints. Its performance, assessed by simulation and compared to other techniques, is shown to be superior to traditional fingerprinting in the presence of environmental changes.
31.	UWB localizatio n system for indoor robot navigation	Krishnan, S., Sharma, P., Guoping, Z., & Woon, O. H. (2007, September). A UWB based localization system for indoor robot navigation. In 2007 IEEE International Conference on Ultra-Wideband (pp. 77-82). IEEE.	For robots to become more popular for domestic applications, the short comings of current indoor navigation technologies have to be overcome. In this paper, we propose the use of UWB-IR for indoor robot navigation. Various parts of an actual implementation of a UWB-IR based robot navigation system such as system architecture, RF sub-system design, antennas and localization algorithms are discussed.	It is shown that by properly addressing the various issues, a localization error of less than 25 cm can be achieved at all points within a realistic indoor localization space.
32.	UWB modulatio n and multiple access	Cui, S. (2011). Modulation and multiple access techniques for ultra-wideband communication systems. Cleveland State University.	Two new energy detection (ED) Ultra- Wideband (UWB) systems are proposed in this dissertation. The first one is an ED UWB system based on pulse width modulation (PWM). The bit error rate (BER) performance of this ED PWM system is slightly worse than ED pulse position modulation (PPM) system in additive white Gaussian noise (AWGN) channels.	When a GFSK system is compared to a PWM system, it will always achieve approximately 2 dB improvement in AWGN channels, multipath channels, and in the presence synchronization errors. However, a PWM system uses lower-order derivatives of the Gaussian pulse to transmit signal, and this leads to a simple pulse generator. In this dissertation, an optimal threshold is applied to improve PPM system performance. The research results show that the application of an optimal threshold can effectively mitigate

				the effect of CMI and synchronization errors and achieve performance improvement. Finally, the multiple access schemes are discussed, and time hopping is chosen as the multiple access scheme for PWM and GFSK systems.
33.	UWB indoor positioning	Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors, 16(5), 707.	In recent years, indoor positioning has emerged as a critical function in many end- user applications, including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals.	Ultra-Wide Band (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.
34.	UWB general review	McKeown, D., & Siwiak, K. (2005). Ultra- wideband radio technology. John Wiley & Sons.	Ultra-wideband (UWB) has been among the most controversial technologies of modern times. Its applications seem endless, its capabilities miraculous and yet it is so poorly understood. In this volume, the authors combine talents to de-mystify ultra- wideband radio and explain it in language that is accessible to non-technologists as well as technologists. They contrast UWB with conventional radio technology so that fundamental, technically accurate information devoid of specific technical and analytical details is accessible for marketing managers, business developers, engineering	Discusses the applications of UWB in terms of the unique properties and advantages of UWB Provides simple high level, conceptual discussions of UWB followed with more detailed, scientific, mathematical, engineering focused explanations Presents a global perspective by tracing UWB throughout the history of radio, providing a modern basis for the re-

			managers, technology managers, potential investors, financial analysts, executive recruiters, technical writers, and technologists from other fields. The authors also include enough specific technical and engineering information about UWB, for the seasoned technologists, engineers, scientists and academicians who need to understand the topic at an entry level.	emergence of the technology and for the current regulatory and standards activities Features insights into the reasons why the technology developed the way it did Explains the key advantages of UWB, including its bandwidth, potential simplicity and huge system capacity
35. UW apı s ir tra	WB plication n public ansport	Bovelli, S., Leipold, F., & Fischer, W. (2009, March). Applications of high and low data rate UWB technology in public transportation. In 2009 6th Workshop on Positioning, Navigation and Communication (pp. 283-284). IEEE.	This abstract describes a series of possible applications of the ultra-wide band wireless technology in public transportation environment. Application scenarios for both the high data rate technology based on WiMedia and the low data rate technology based on impulse radio are presented, indicating the specific advantages provided by UWB in comparison to other narrow band wireless standards.	The work is performed in the EUWB ICT project to enable the introduction of the UWB wireless communication for the described application and is encompassed with a UWB demonstrator that is finally described.
36. Ind Pos for dis	door isitioning r sability	Mirza, R., Tehseen, A., & Kumar, A. J. (2012, March). An indoor navigation approach to aid the physically disabled people. In 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET) (pp. 979-983). IEEE.	Physical disability becomes a major obstacle in the lives of physically challenged people and they are deprived of performing even their day-to-day activities without anybody's aid. One of the common problems they face is navigating their own home. So we proposed a system which aids such people to navigate their home or any indoor environment with all ease. Using this system not only can they reach any desired room in their home, but they could also reach to the	We provide an obstacle avoidance technique suitable for this type of navigation which detects dynamic obstacles present in the real time environment. This proposed system can be of immense use to various physically disabled people and thus making their lives easy without any external aid.

_				
			commonly used places inside a room such as	
			sofa, television, refrigerator, or any such	
			commonly used places using voice	
			commands.	
37.	UWB	Zhang, K., Shen, C., Gao, Q., Zheng, L., Wang,	A new ship indoor accurate positioning system	The hardware design of system label / micro
	indoor H., & Li, Z. (2018). Precise positioning system	was proposed. Firstly, the UWB ship indoor	base station was completed. Then, based on	
	positioning	of ship interior based on UWB ultra	positioning system of power module, MCU	the UWB localization algorithm, the time
		Wideband technology. Journal of Coastal	module, UWB module and chip selection of	difference of arrival (TDOA) improved algorithm
		Nesearch, (85 (10085)), 508-512.	memory module were given.	using reference tags auxiliary information was
				proposed. The software design process of
				system label / micro base station was
				completed. Experimental result shows that this
				system has high positioning accuracy. and the
				low time delay of receipt signal.
38.	Infrared	Sikdar, A., Zheng, Y. F., & Xuan, D. (2015,	Infrared sensors have been widely used in	A platform fitted with 3 infrared sensors is
	sensors	sensors May). An iterative clustering algorithm for indoor classification of object motion direction using infrared concertary. In 2015 JEEE	the field of robotics. This is primarily	used to record distance measures at
	indoor		because these low cost and low power	intervals of 100ms. A histogram based
	positioning	Using infrared sensor array. In 2015 IEEE	devices have a fast response rate that	iterative clustering algorithm segments data
		for Practical Robot Applications (TePRA) (pp.	enhances realtime robotic systems.	into clusters, from which extracted features
		1-6). IEEE.	However, the use of these sensors in this	are fed to a classification algorithm to
			field has been largely limited to proximity	classify the motion direction. Experimental
			estimation and obstacle avoidance. In this	results validate the theory that these low
			paper, we attempt to extend the use of	cost infrared sensors can be successfully
			these sensors from just distance	used to classify motion direction of a person
			measurement to classification of direction of	in real time.
			motion of a moving object or person in front	
			of these sensors.	
39.	Indoor	Song, Z., Jiang, G., & Huang, C. (2011, May).	This paper investigates some key	Location-aware service is one of the most
	positioning	A survey on indoor positioning technologies.	technologies and algorithms of indoor	important parts of the internet of things.
	survey	In International conference on theoretical	positioning and analyses their advantages	And how to obtain the location information
	and mathematical foundations of computer	and disadvantages in the terms of the	is the key point of location-aware service.	

		science (pp. 198-206). Springer, Berlin,	positioning range, accuracy, and cost. Finally,	
		Heidelberg.	some issues need to be resolved in future	
			are discussed.	
40.	Indoor	Svalastog, M. S. (2007). Indoor positioning-	This thesis is about Location Based	With distributed and pervasive intelligence,
	positioning	technologies, services and architectures	Computing Systems (LBCS), with emphasis	ITSp clearly impose some stringent
	general (Master's thesis).	on their underlying positioning systems. The	requirements on the information exchange	
	review		first part of the thesis introduces a three-	among all entities within the ITSp, in terms
			layered reference model for discussing LBCS	of the information availability, reliability,
			and gives background information on	fidelity, and timeliness. These requirements,
			positioning systems in general—	together with the high mobility of vehicles
			components, designs, properties, and	and the highly variable network topology,
			techniques. It also includes an overview of	make the communications and networking
			existing systems for indoor positioning. The	for ITSp very challenging. This article will
			second part of the thesis introduces a case	introduce the concept of ITSp and analyse
			study, which consists of two parts. One is an	possible communication technology
			in-depth overview of a specific Location	candidates for ITSp. Further discussions will
			Based Service (LBS) called a mobile	also be provided at the end of this article.
			electronic tour guide, a service typically	
			implemented on hand-held devices which	
			are given to visitors at different exhibitions	
			as a means for enhancing their experience of	
			it.	
41.	Indoor	Al-Ammar, M. A., Alhadhrami, S., Al-Salman,	The user location information represents a	Unlike previous studies and surveys, our
	positioning	A., Alarifi, A., Al-Khalifa, H. S., Alnafessah, A., & Alsaleh, M. (2014, October). Comparative survey of indoor positioning technologies, techniques, and algorithms. In 2014	core dimension as understanding user	survey present new taxonomies, review
	general		context is a prerequisite for providing	some major recent advances, and argue on
	review		human-centered services that generally	the area open problems and future
		International Conference on Cyberworlds	improve quality of life. In comparison with	potential. We believe this paper would spur
	(pp. 24	(pp. 245-252). IEEE.	outdoor environments, sensing location	further exploration by the research
			information in indoor environments requires	community of this challenging problem
			a higher precision and is a more challenging	space.
			task due in part to the expected various	

	objects (such as walls and people) that	
	reflect and disperse signals. In this paper, we	
	survey the related work in the field of indoor	
	positioning by providing a comparative	
	analysis of the state-of-the-art technologies,	
	techniques, and algorithms.	

Biometrics

Biometrics is an area that is well researched. The literature is for a large part focused on performance measures, for instance, given the recent appearance of masks in public transport, research has been focused on face recognition while wearing masks. Literature also focuses on the evaluation of advanced biometrics information such as iris, voice and vein recognition which have been introduced for more secure identification purpose.

Quite a large number of publications focus on biometrics in transport use case. Technically, this technology is one of the more mature use cases. Please see our regulatory review report, that high lights the more sensitive ethical and regulatory issues surrounding the use of biometrics in public transport.

More research is required in for user acceptance, fair evasion control and performance in very crowded, unstructured areas.

Biometrics: Evaluation criteria

Table 3. Key evaluation requirements- Biometrics (facial recognition)

Key requirements	
Technology readiness – now vs. emerging	Facial recognition: commercially available, and used by major operator [1]
Certainty/reliability (e.g., interference)	High-level certainty and reliability without microwave and radiation interference affect
Accurate/very low error rates	Facial recognition: 861.Ideally 99.97% [2]
	available with face mask. 132 out of 275 vendors has less than 0.8% error rate. [3]
Secure– not easy to forge, clone	The possibility to clone or forge people's face information is as low as 0.[3]

Use case requirements (Facial recognition)	
Identification	Facial recognition : Artificial Intelligence and facial recognition algorithms with a state-of-the-art optical set combining 2D, 3D, and infra-red cameras (infra-red cameras can capture image even in a dark environment) [4,5]

Tokenisation /Authentication	Facial recognition stores images on a secure server and communication is encrypted using SSL to avoid attacks or traffic sniffing [6]
Positioning & trip definition: Registration in (begin of ticket) Registration out (end of ticket) Repeat for next leg of trip	Track passenger's position via back-end middleware using biometric scanner position and check- in/check-out timestamp [7]
Capacity to process multiple entries simultaneously (large quantities / high throughput) – unless separate lane	To be confirmed: Facial recognition: Multiple faces can be scanned simultaneously. (Around 20 people). It supports high throughput passengers.[7]
Can detect entry in vehicle (as opposed to walking by). Determines with high accuracy which mode of transport has been/is being used	Can detect the entry for train station via fixed facial recognition devices. On bus/taxi/tram, portable facial recognition devices may be required to detect the entry of vehicle In the future, apps on mobile phone supporting facial recognition will be promising to simplify the check-in.
Execute gate open and close 'just in in time' for gated solutions Consider gated and non-gated – in a variety of use cases: bus, train, tram, ferry, taxi, on demand	Gate will open and close automatically when authentication process is completed in train station. China introduced biometric facial recognition tech on train and railway station in Beijing Railway station.[1] Portable biometrics devices may be required on bus/taxi/tram. To install biometrics devices on each bus/taxi/tram stop will increase the cost.
Works indoor and outdoor (with and without GPS)	Yes, works indoor and outdoor
Cover fixed and variable routes, i.e., cannot rely on fixed infrastructure. Work in taxi's, minibuses, mopeds, bike sharing, etc.	More research required
High feasibility of installation across all use cases	No, most use cases focus on gate management
Low maintenance/Asset Management System (also Resistant to vandalism)	More research required

Risks/concerns?	- Adoption/Privacy issues
	- High demands on security
	- Installation cost

Table 4. Key evaluation requirements- Biometrics (others)

Key requirement	
Technology readiness – now vs. emerging	 Voice recognition: Proven in 1. Web based applications, 2. Interactive Voice Response based banking and health systems. 3.Audio signatures for digital documents.[8] Fingerprint: Mature technology proven in access control system and border management. [8] Vein recognition: Palm vein authentication is a vein feature authentication biometric technology. Mature technology proven in banking, access control, hospital identification. [8] Commercial products not available for public transport
Certainty/reliability (e.g., interference)	High level certainty and reliability without the interference from communication radios.
Accurate/very low error rates	 Voice recognition: Google boasted a 95% word accuracy rate for U.S. English, the highest out of all the voice-assistants currently out there.[9] FAR (False acceptance rate) is 2% and FRR (False rejection rate) is 10%.[8] Fingerprint: The best system was accurate 98.6 percent of the time on single-finger tests, 99.6 percent of the time on two-finger tests, and 99.9 percent of the time for tests involving four or more fingers. These accuracies were obtained for a false positive rate of 0.01 percent [10]. FAR is 2% and FRR is 2%. [8] Vein recognition: Vein recognition had a false acceptance rate of less than 0.00008% and a false rejection rate of 0.01% [8,11]
Secure- not easy to forge, clone	This depends on the deployment, but it can be highly secure.[8]

Use case requirements	Tech solution
Identification	Fingerprint: Verifies 4 fingerprints in less than 1 second, through a fully touchless hand wave gesture.[12] Voice recognition: the voice biometric system captures a new speech sample, creates a template from the sample, and compares it against the enrolment template.[8]
	Vein recognition: Vein recognition, known as vascular biometrics, refers to technology that measures parts of a subject's circulatory system which is as unique as a fingerprint. High resolution cameras using infrared or near infrared light are used to acquire the pattern of the vein.[8]

Tokenisation /Authentication	Fingerprint : A privacy-compliant fingerprint recognition system based on homomorphic encryption that may connect to access control system on cloud or local server [13] Voice recognition : Can be analysed and encrypted by applying algorithm on network server for tokenisation and authentication process. [14]
	authentication process
Positioning & trip definition:	1. Track passenger's position and each stop of the trips via biometric scanner position and check-
Registration in (begin of ticket)	in/check-out timestamp.
Registration out (end of ticket)	2. Voice Alert System that can navigate disability people location and help them take the bus.[15]
Repeat for next leg of trip	
Capacity to process multiple entries	Voice/Fingerprint/Vein recognition: only one person's voice/fingerprint/vein is detected at one time.
simultaneously (large quantities / high throughput)	
– unless separate lane	
Can detect entry in vehicle (as opposed to walking	It will be practical in the near future to detect the entry for train station / bus entry / tram entry if the
by). Determines with high accuracy which mode of	biometrics devices scan the passengers' biometrics information when they get on/off.
transport has been/is being used	
Execute gate open and close 'just in in time' for	Gate will open and close automatically when authentication process is completed in the train station.
gated solutions	Handheld biometrics devices will be required for passengers to check in and check out on taxi, bus, and
Consider gated and non-gated – in a variety of use	tram.
cases: bus, train, tram, ferry, taxi, on demand	Apps on mobile phone supporting biometrics authentications will be very promising in the future.
Works indoor and outdoor (with and without GPS)	Yes, works indoor and outdoor. No dependency of GPS location.
Cover fixed and variable routes, i.e., cannot rely on	More research required
fixed infrastructure. Work in taxi's, mini buses,	
mopeds, bike sharing, etc.	
High feasibility of installation across all use cases	Better than facial, but requires console in each vehicle
Low maintenance/Asset Management System (also	More research required
Resistant to vandalism)	

Risks/concerns?	- Privacy and regulatory issue	
	- Installation cost	

Biometrics: Literature overview

Т	ech Type	Reference	Summary	Key Point of Interest
1.	Biometric - Facial	Pascu, L. (2020). Face biometrics deployed for train	The current status of face biometrics deployed for	-China introduces biometric facial -
	Recognition	station security in Asia, Germans pushback on public	train station security in Asia and Germans pushback	recognition tech on train, railway station
		surveillance. Retrieved 2022, from	on public surveillance	-India installs facial recognition at train
		https://www.biometricupdate.com/202001/face-		station
		biometrics-deployed-for-train-station-security-in-		-Germans refuse automatic facial
		asia-germans-pushback-on-public-surveillance		recognition in public places
2.	Biometric - Facial	CSIS. (2020). How Accurate are Facial Recognition	Introduce the facial recognition, the principle, the	In ideal conditions, facial recognition
	Recognition	Systems – and Why Does It Matter? Retrieved 2022,	accuracy, and risk management.	systems can have near-perfect accuracy.
		from https://www.csis.org/blogs/technology-policy-		Verification algorithms used to match
		blog/how-accurate-are-facial-recognition-		subjects to clear reference images (like a
		systems-%E2%80%93-and-why-does-it-matter		passport photo or mugshot) can achieve
				accuracy scores as high as 99.97% on
				standard assessments like NIST's Facial
				Recognition Vendor Test (FRVT). This is
				comparable to the best results of iris
				scanners.
3.	Biometric - Facial	Lewis, J. A., & Crumpler, W. (2021). Questions about	We reviewed the most salient of these concerns for	First conclusion is that to reduce concerns
	Recognition	Facial Recognition. Washington, D.C., United States.	accuracy and for their implications for policymaking,	about facial recognition, Congress needs
			and came to several conclusions. Risk from the use	to pass effective privacy legislation to
			of facial recognition technology is best managed by	govern digital technologies. Facial
			implementing rules and safeguards appropriate for	recognition requires access to personally
			each case. We must be careful to ensure that any	identifiable information (PII). A second
			new rules are not based on information that is	conclusion is that improvements in facial
			incorrect or outdated. Technological change is not	recognition technology, especially in how
			going to stop and the use of artificial intelligence in	algorithms are developed and trained,
			applications like facial recognition will continue to	will continue to reduce the risks of error
			grow. We do not want to continue the precedent of	and bias.
			allowing unregulated use of technology—the	

			internet's effects on privacy and security show the	
			risk of a laissez faire approach—but we also want to	
			avoid overregulation, since this is a proven way to	
			stop innovation and give technological advantage to	
			other countries.	
4.	Biometric - Facial	IDEMIA. (2021). Idemia Visionpass Facial Recognition.	Introduce IDEMIA's VisionPass facial recognition	In this product, IDEMIA associated its
	Recognition	Retrieved 2022, from	access control device.	latest advances in Artificial Intelligence
		https://www.aranasecurity.com/products/idemia-		and facial recognition algorithms with a
		visionpass-face-recognition/		state-of-the-art optical set combining 2D,
				3D and infra-red cameras in order to
				meet the expectations of the most
				demanding clients.
5.	Biometric - Facial	Ghiass, R. S., Arandjelovic, O., Bendada, H., &	Automatic face recognition (AFR) is an area with	Systems based on visible spectrum
	Recognition	Maldague, X. (2013). Infrared Face Recognition: A	immense practical potential which includes a wide	images continue to face challenges in the
		Literature Review. International Joint Conference on	range of commercial and law enforcement	presence of illumination, pose and
		Neural Networks.	applications, and it continues to be one of the most	expression changes, as well as facial
			active research areas of computer vision. Even after	disguises, all of which can significantly
			over three decades of intense research, the state-of-	decrease their accuracy. Amongst various
			the-art in AFR continues to improve, benefiting from	approaches which have been proposed in
			advances in a range of different fields including	an attempt to overcome these
			image processing, pattern recognition, computer	limitations, the use of infrared (IR)
			graphics and physiology.	imaging has emerged as a particularly
				promising research direction. This paper
				presents a comprehensive and timely
				review of the literature on this subject.
6.	Biometric - Facial	SolidPass. (2021). Facial Recognition, Authentication	Introduce Facial Recognition, Authentication and	OATH Compliant Time-synchronized
	Recognition	and Mobile Security Token. Retrieved 2022, from	Mobile Security Token. SolidPass supports facial	Tokens
		http://www.solidpass.com/authentication-	recognition as an added layer of authentication and	As a member of the Initiative for Open
		methods/facial-recognition-authentication.html	security. Facial recognition is a form of biometric	Authentication, SolidPass tokens are built
			authentication. SolidPass harnesses the advanced	OATH compliant. SolidPass uses the
				standards-based strong two-factor

			camera canabilities of the latest smartphones to	authentication HOTP algorithm endorsed
			nerform facial recognition	by OATH providing compatibility with
				third-party software
				Fasy integration of SolidPass into existing
				IT back-ends and support of various
				architectures
				The authentication server is OS
				independent and supports Linux (tested
				on most distributions like Redbat Ubuntu
				and Novell Suse) Microsoft Windows
				Server (NT 2003 XP) Sun Solaris and all
				operating systems that support
				enterprise Java.
7.	Biometric –	Thales Group. (2021). New ABC eGates: smaller	The new Thales Gemalto ABC eGates combine	Automation of the border control process
	General review	footprint, modular design and faster passenger	expertise in document verification, passenger	with state-of-the-art passenger
		processing. Retrieved 2022, from	biometric authentication with an optimized and	authentication software leveraging
		https://www.thalesgroup.com/en/markets/digital-	modular hardware solution to automate border	biometric data contained in the ePassport
		identity-and-security/government/eborder/egates	control.	and captured live at the gate,
			They provide greater flexibility with regards to the	Reduced waiting times and passengers
			airport floor and passenger flow management and	carrying out the checks themselves in just
			process passengers faster.	a few seconds, allowing for greater
			Now you can deliver a smoother passenger journey	empowerment and more dwell time in a
			and facilitate entry and exit management.	duty-free area,
				Flexibility in terms of hardware design
				and process management for the benefit
				of both airports and border authorities.
8.	Biometric –	T.Sabhanayagam, Venkatesan, D. V., &	This paper presents an overview to various	The current research trends have shown
	General review	Senthamaraikannan, D. K. (2018). A Comprehensive	biometric systems, their applications, limitations	the prospect of using Brain waves and
		Survey on Various Biometric Systems. International	and the different type of biometrics recognition	ECG as biometric identification. The
			systems.	current research indicates that the

	Journal of Applied Engineering Research, 13(5), 2276-		identification of human is more effective
	2297.		and far more challenging. Various journal
			and international conferences research
			papers have been studied and summarize
			the progress in the direction of cost-
			effective and an innovative manner.
9. Biometric -	Summa Linguae. (2021). A Complete Guide to Speech		Here are a few key areas
Speech	Recognition Technology. Retrieved 2022, from	History of Speech Recognition Technology	1. Mobile app voice integration
Recognition	https://summalinguae.com/language-	How Does Voice Recognition Work?	Integrating voice-tech into mobile apps
	technology/guide-to-speech-recognition-technology/	How do companies build speech recognition	has become a hot trend and will remain
		technology?	so because speech is a natural user
		How Voice Assistants Bring Speech Recognition into	interface (NUI).
		Everyday Life	2. Individualized experiences
		Where else is speech recognition technology	Voice assistants will also continue to offer
		prevalent?	more individualized experiences as they
		Speech Recognition Technology: The Focus Moving	get better at differentiating between
		Forward	voices.
		Collect Better Data	3. Smart displays
10. Biometric –	Thakkar, D. (2021). How Accurate are today's	Performance and security offered by today's	The study clearly shows that today's
Fingerprint	Fingerprint Scanners? Limitations, Errors and Their	fingerprint scanners are highly depended on their	fingerprint scanners have reached a point
Recognition	Effect on the Accuracy. Retrieved 2022, from	matching accuracy and ability to keep errors under	where their accuracy can be more than
	https://www.bayometric.com/how-accurate-are-	control. If fingerprint recognition devices fail to	99 percent, provided you use high-quality
	todays-fingerprint-scanners/	maintain optimum matching accuracy and error	scanners.
		control mechanism, they will become more of a	
		problem than a solution.	
11. Biometric – Vein	Fujitsu. (2021). Palm Vein Pattern Authentication	This paper introduces palm vein authentication. This	International standardization of biometric
Recognition	Technology. Tokyo Japan.	technology is highly secure because it uses	authentication technology is now in
		information contained within the body and is also	progress,
		highly accurate because the pattern of veins in the	
		palm is complex and unique to each individual.	

		Moreover, its contactless feature gives it a hygienic	centred on ISO/ITC JTC1/SC37. Items
		advantage over other biometric authentication	targeted for standardization include
		technologies. This paper also describes some	application
		examples of financial solutions and product	interfaces, personal data formats,
		applications for the general market that have been	methods for evaluating authentication
		developed based on this technology.	accuracy, and
			guidelines for applying this technology to
			various solutions. Japan has its own
			national
			committee for this technology and has
			established the Biometrics Security
			Consortium
			(BSC). Both of these organizations aim to
			standardize the implementation of
			biometric
			authentication technology in Japan.
12. Biometric –	IDEMIA. (2021). Contactless fingerprint. Retrieved	Two versions of the MorphoWave [™] contactless	
Fingerprint	2022, from https://www.idemia.com/contactless-	fingerprint scanner are available:	
	fingerprint	MorphoWave [™] XP: an extended Performance	
		biometric reader for the most demanding projects;	
		up to 100K user records in 1:n mode, up to 60	
		people per minute, with a large color tactile screen	
		for user interaction, and time and attendances use	
		cases	
		MorphoWave [™] SP: all of the essentials of	
		MorphoWave technology with a Simplified Profile	
		up to 10K user records, and a simplified user	
		interface via multicolor LED indicators	
13. Biometric –	Barni, M., Bianchi, T., Catalano, D., Raimondo, M. D.,	In this paper we propose a novel complete	The demonstrator has been fully
Fingerprint	Labati, R. D., Failla, P., Scotti, F. (2010). A privacy-	demonstrator based on a distributed biométrie	implemented and tested in real
	compliant fingerprint recognition system based on	system that is capable to protect the privacy of the	applicative conditions. Experimental

		homomorphic encryption and Eingercode templates	individuals by exploiting cryptosystems. The	results show that this method is feasible
		Washington DC USA: IEE	implemented system computes the matching task in	in the appear where the privacy of the data
		Washington, DC, USA: IEEE.	Implemented system computes the matching task in	in the cases where the privacy of the data
			the encrypted domain by exploiting homomorphic	is more important than the accuracy of
			encryption and using Fingercode templates. The	the system and the obtained
			paper describes the design methodology of the	computational time is satisfactory.
			demonstrator and the obtained results. T	
14.	Biometric –	Misra, C., & Hota, M. K. (2018). Hybrid Technique for	This paper denotes and computes a simple	the original voice is encrypted using that
	Voice	Voice Recognition, Encryption and Analysis Using	algorithm to recognize voice using pitch making	password to get the encrypted voice.
	Recognition	MATLAB. Chennai, India: IEEE.	technique and also provides a hybrid technique to	
			encrypt voice using scanned patterns recognition	
			with the help of an alphanumeric password.	
15.	Biometric –	Patil, K. V. (2018). VOICE ALERT SYSTEM FOR EASY	A desirable strategy to deal with such issues is to	The main advantage of this device is to
	Voice	NAVIGATION OF BLINDS USING ZIGBEE AND GPS.	shift more people from personal vehicles to public	provide bus alerting system for easy
	Recognition	Maharashtra, India. Retrieved 2022, from	transport by providing better service (comfort,	navigation i.e., the user gets the voices
		http://ijiit.logicinside.net/archive/volume%206/issue	convenience and so on). The scope of this proposed	which pronounce the bus details along
		%201/V6I1P01.pdf	system is to use speech recognition system for user	with destination alerts.
			selected destination entry, and voice module for	
			making announcements about the arrival details.	
			The performance of the proposed system is found to	
			be promising and expected to be valuable in the	
			development of advanced public transportation	
			systems (APTS) in India.	
16.	Biometric - Facial	Ciftci, O., Choi, E. K. C., & Berezina, K. (2021). Let's	The biometric identification technology is tested in	FRS is more secure type of authorization.
	Recognition	face it: are customers ready for facial recognition	QSR (Quick Service Restaurants). Provides a study on	Security can be violated by system's error
	0	technology at quick-service restaurants? International	people's willingness for adoption of this technology	or an attacker. Trust in FRS is the belief
		Journal of Hospitality Management, 95, 102941.	from two perspective:	that all components have integrity and
			A) Loyalty Program Accounts	are reliable. Security measures should be
			B) Payment Account Authorization by extending	complaint with biometric data privacy
			UTAUT	protection laws Thus reliable biometric
			with additional factors such as customers personal	system should be designed to enhance
			innovation, privacy concern, perceived security, and	system should be designed to enhance

			trust in the system. Integration of FRS with POS.	the security and privacy of user that
			Organised combination of hardware, software,	increase the trust in system.
			databases, network that retrieves, transforms,	
			stores, and distributes information	
17.	Biometric - Facial	Zhang, W. K., & Kang, M. J. (2019). Factors affecting	FRS technology detects and describes the feature	FRS has advantage of user friendliness or
	Recognition	the use of facial-recognition payment: an example of	vectors contactless. Major advantage of accessibility	non-intrusiveness. 3D recognition
		Chinese consumers. Lee Access, 7, 154360-154374.	and flexibility. Are more secure. The level of security	technology provides relatively reliable
			has direct effect on consumers intent to use.	identification and can handle wide variety
			Consumers are worried about personal privacy.	of facial expressions. Soft biometric can
				be combined with FRS to improve
				accuracy.
18.	Biometric - Facial	Han, S., Hu, J., Li, W., Zhao, S., Chen, M., Xu, P., & Luo,	Study examined the processes of facial structure and	The emotional concepts were recognized
	Recognition	Y. (2021). From structure to concepts: The two stages	emotional concepts in facial expression recognition.	faster than emotional faces. Study
		of facial expression recognition. Neuropsychologia,	Repetition-priming paradigm in combination with	suggests that facial expression
		150, 107700.	event-related potentials (ERP) to examine	recognition consists of two stages from
			neurocognitive processing stages of facial	geometrical structure of faces to
			expression perception. Results revealed neural	emotional concepts of facial expression.
			mechanisms underlying processes from physical	
			structure to emotional concepts.	
19.	Biometric - Facial	Patel, K., Han, H., & Jain, A. K. (2016). Secure face	Security against the face spoofing attacks requires	Approach is effective in cross-database
	Recognition	unlock: Spoof detection on smartphones. IEEE	increased attention. An efficient face spoof	and intra-database testing scenarios.
		transactions on information forensics and security,	detection system is developed. Experimental results	
		11(10), 2268-2283.	on public domain databases. Spoofing attacks can be	
			easily launched. More robust spoof detection	
			models can be built which make use of temporal	
			and contextual information included in multiple	
			video frames.	
20.	Biometric -	Rathgeb, C., & Uhl, A. (2011). A survey on biometric	Talks about biometric encryption using key binding.	Cancellable biometric transforms are
	General	cryptosystems and cancelable biometrics. EURASIP	The algorithm is summarized in a patent. Algorithm	designed in a way that it should be
		journal on information security, 2011(1), 1-25.	also applicable to other biometrics. Has few issues	computationally hard to recover the
			and challenges. TRANSFORMATION AND	original biometric data. The technique

		ALLIGNMENT OF TRANSFORMED TEMPELATES HAVE	enhances the privacy and security of
		TO BE OPTIMIZED.	biometric systems providing reliable
			authentication. Issue of alignment
			significantly effects recognition
			performance. Standardization on
			biometric template protection is currently
			under work in ISO/IEC FCD 24745.
21. Biometric - Facial	Elloumi, W., Cauchois, C., & Pasqual, C. (2021). Will	The article focuses on use of FRS in retail stores. A	Better depth accuracy is achieved by use
Recognition	face recognition revolutionise the shopping	review of technological options and challenges are	of 3d cameras.3D cameras require more
	experience?. Biometric Technology Today, 2021(3), 8-	provided.	space and are costlier than 2D
	11.		counterparts and use manufacture
			specific protocol. The way the company
			plans to enrol users has a strong impact
			on hardware choices. A customer can do
			it at home via smartphone, can also enrol
			at POS using dedicated hardware which
			offers more possibilities like 3D template.
			Identification requires centralized
			database to store templates; it presents
			high level risk and is complicated to setup
			with respect to privacy regulations. The
			main question should no longer be "Do
			we want to use facial recognition?", but
			"How do we want to use this technology.
22. Biometric - Facial	Bisogni, C., Cascone, L., Dugelay, J. L., & Pero, C.	The use of Deep Neural Network (DNN) techniques	The application field is face recognition.
Recognition	(2021). Adversarial attacks through architectures and	offers fast prediction with high accuracy. However,	The attacks performed are based on fast
	spectra in face recognition. Pattern Recognition	they can be attacked and fooled. The study provides	gradient sign method. Cross spectral
	Letters, 147, 55-62.	the way to fool the technique by moving from one	attack can be used to fool major DNN
		spectrum to another. The analysis can be used to	techniques.
		implement counterattack measures.	

23.	Biometric - Facial	FRVT Face Mask Effects	FVRT test result with Covid-19 face mask	Different vendors facial recognition
	Recognition	https://pages.nist.gov/frvt/html/frvt facemask.html		accuracy with face mask
24.	Biometric - Facial	Questions about Facial Recognition 2021	improvements in facial recognition technology,	In ideal conditions, facial recognition
	Recognition	https://www.csis.org/analysis/questions-about-facial-	especially in how algorithms are developed and	systems have extremely high accuracy. As
		recognition	trained, will continue to reduce the risks of error	of December 2020, the best face
			and bias. Like all new technologies, continued	identification algorithm has an error rate
			improvement reduces risk, and concerns based on	of just 0.1 percent. This degree of
			how facial recognition technology worked even a	accuracy requires consistency in the
			few years ago are now out of date. To help improve	images' lighting and positioning and
			public understanding of facial recognition, we have	ensuring that the facial features of the
			reviewed the following questions to address some	subjects are clearly visible and not
			of the leading concerns.	obscured.
				In real-world deployments, accuracy rates
				can be much lower. NIST's 2017 Face in
				Video Evaluation (FIVE) tested algorithms'
				performance when applied to video
				captured in settings like airport boarding
				gates and sports venues. The test found
				that when using footage of individuals
				walking through a sporting venue—a
				challenging environment where it is
				difficult to capture clear images of the
				subjects—the algorithms being tested
				had accuracies ranging between 36
				percent and 87 percent, depending on
				camera placement.
25.	Biometric - Facial	Omoyiola, B. O. (2018). Overview of biometric and	The field of biometrics is a branch of IT that is	Security has become a major issue
	Recognition	facial recognition techniques. IOSR journal of	growing rapidly. The technologies are automated	globally and in order to manage the
		computer engineering (IOSRJCE), 20(4), 1-5.	mechanisms of identifying an individual based on	security challenges and reduce the
			their biological and behavioural characteristics.	security risks in the world, biometric
			This chapter focuses on the biometric systems, facial	systems such as face detection and

		detection and facial recognition, and evaluation of	recognition systems have been built.
		different face recognition methods.	These systems are capable of providing
			biometric security, crime prevention and
			video surveillance services because of
			their inbuilt verification and identification
			canabilities. This has become possible due
			to technological advancement in the
			fields of automated face analysis
			machine learning and pattern
			reasonition. In the paper, we review
			recognition. In the paper, we review
			some biometric and facial recognition
			techniques.
26. Biometric - Facial	Face biometrics deployed for train station security in	Beijing station adopted facial recognition for	Beijing Railway Station has deployed
Recognition	Asia, Germans pushback on public surveillance 2020	ticketing	facial recognition in 30 self-service ticket
	https://www.biometricupdate.com/202001/face-		checking machines to reduce processing
	biometrics-deployed-for-train-station-security-in-		times during the 40-day Spring Festival,
	asia-germans-pushback-on-public-surveillance		according to Beijing International. The
			institution expects more than 8.34 million
			passengers will use the service.
27. Biometric - Facial	IDEMIA VISIONPASS™ FACIAL RECOGNITION 2021	Facial recognition product from the best vendor -	Technical solution of facial recognition -In
Recognition	https://www.aranasecurity.com/products/idemia-	IDEMIA in 2021(it is proved by CSIS organization).	this product, IDEMIA associated its latest
	visionpass-face-recognition/	The product has the following features: true	advances in Artificial Intelligence and
		security. VisionPass incorporates IDEMIA's latest	facial recognition algorithms with a state-
		spoof detection mechanisms and is capable of	of-the-art optical set combining 2D, 3D
		coping with face changes (change of haircut, glasses,	and infra-red cameras. Can be deployed
		helmet, etc.).2. easy deployment. VisionPass can be	at any location: indoor or outdoor.
		deployed at any location: indoor or outdoor. In	VisionPass provides both a high level of
		addition to biometrics, it natively supports Prox,	security and real user convenience.
		iClass, MIFARE, DESFire cards and PIN codes. 3.	
		unique performance. Thanks to the association of a	
		state-of-the-art optical set combining 2D/3D/IR	

		cameras with IDEMIA's latest advances in AI and	
		image processing. VisionPass provides both a high	
		level of security and real user convenience.	
28. Biometric - Facial	Ghiass, R. S., Arandjelović, O., Bendada, H., &	Automatic face recognition (AFR) is an area with	Technical solution of facial recognition -
Recognition	Maldague, X. (2013, August). Infrared face	immense practical potential which includes a wide	The use of IR imaging for AFR, as an
	recognition: a literature review. In The 2013	range of commercial and law enforcement	alternative to visual spectrum-based
	International Joint Conference on Neural Networks	applications, and it continues to be one of the most	approaches, has attracted substantial
	(IJCNN) (pp. 1-10). IEEE.	active research areas of computer vision. Even after	research and commercial attention as a
		over three decades of intense research, the state-of-	modality which could facilitate greater
		the-art in AFR continues to improve, benefiting from	robustness to illumination and facial
		advances in a range of different fields including	expression changes, facial disguises and
		image processing, pattern recognition, computer	dark environments.
		graphics and physiology. However, systems based	
		on visible spectrum images continue to face	
		challenges in the presence of illumination, pose and	
		expression changes, as well as facial disguises, all of	
		which can significantly decrease their accuracy.	
		Amongst various approaches which have been	
		proposed in an attempt to overcome these	
		limitations, the use of infrared (IR) imaging has	
		emerged as a particularly promising research	
		direction. This paper presents a comprehensive and	
		timely review of the literature on this subject.	
29. Biometric - Facial	New ABC eGates: smaller footprint, modular design	The new Thales Gemalto ABC eGates combine	Automation of the border control process
Recognition	and faster passenger processing 2021	expertise in document verification, passenger	with state-of-the-art passenger
	https://www.thalesgroup.com/en/markets/digital-	biometric authentication with an optimized and	authentication software leveraging
	identity-and-security/government/eborder/egates	modular hardware solution to automate border	biometric data contained in the ePassport
		control.	and captured live at the gate,
			Reduced waiting times and passengers
		They provide greater flexibility with regards to the	carrying out the checks themselves in just
			a few seconds, allowing for greater

		airport floor and passenger flow management and	empowerment and more dwell time in a
		process passengers faster.	duty-free area,
			Flexibility in terms of hardware design
			and process management for the benefit
			of both airports and border authorities.
30. Biometric - Facial	Facial Recognition, Authentication and Mobile	SolidPass supports facial recognition as an added	uses the standards-based strong two-
Recognition	Security Token 2021	layer of authentication and security. Facial	factor authentication HOTP algorithm
	http://www.solidpass.com/authentication-	recognition is a form of biometric authentication.	endorsed by OATH, Easy integration of
	methods/facial-recognition-authentication.html	SolidPass harnesses the advanced camera	SolidPass into existing IT back-ends,
		capabilities of the latest smartphones to perform	RADIUS Server Support, LDAP support,
		facial recognition.	SOAP/Webservices,Microsoft IAG 2007
			SSL VPN, BlackBerry Enterprise Server
			(BES) support, Citrix Secure Access
			Gateway Cisco VPN, SOA architecture
31. Biometric - Facial	How Accurate are Facial Recognition Systems – and	Accuracy performance of facial recognition	Facial recognition has improved
Recognition	Why Does It Matter? (2020).		dramatically in only a few years. As of
	https://www.csis.org/blogs/technology-policy-		April 2020, the best face identification
	blog/how-accurate-are-facial-recognition-systems-		algorithm has an error rate of just 0.08%
	%E2%80%93-and-why-does-it-matter		compared to 4.1% for the leading
			algorithm in 2014, according to tests by
			the National Institute of Standards and
			Technology (NIST).
32. Biometric - Facial	Ciftci, O., Choi, E. K. C., & Berezina, K. (2021). Let's	This study aims to provide an integrated model that	The results showed that perceived
Recognition	face it: are customers ready for facial recognition	examines the determinants of customer intention to	performance expectancy, social influence,
	technology at quick-service restaurants?.	use facial recognition systems (FRS) in quick-service	and trust in the system significantly and
	International Journal of Hospitality Management, 95,	restaurants (QSRs). An extended model built based	positively affect customer intention to
	102,941.	on the unified theory of acceptance and use of	use FRS to access loyalty and payment
		technology (UTAUT) was tested via structural	accounts. Furthermore, customer hedonic
		equation modeling (SEM) using data collected from	motivation had a positive effect on the
		a sample of 558 QSR customers.	intention to use FRS for authorization to

				their loyalty accounts, but no effect on the intention to use this technology for payment account authorization. The developed model would be helpful to managers for making a decision of utilizing FRS in QSRs and promoting the technology among customers.
33	. Biometric - Facial Recognition	Zhang, L., Li, X., Nie, L., Yang, Y., & Xia, Y. (2015). Weakly supervised human fixations prediction. IEEE transactions on cybernetics, 46(1), 258-269.	This paper proposes weakly supervised fixations prediction, which leverages image labels to improve accuracy of human fixations prediction. The proposed model hierarchically discovers objects as well as their spatial configurations.	Starting from the raw image pixels, we sample superpixels in an image, thereby seamless object descriptors termed object-level graphlets (oGLs) are generated by random walking on the superpixel mosaic. Then, a manifold embedding algorithm is proposed to encode image labels into oGLs, and the response map of each prespecified object is computed accordingly.
34	. Biometric - Facial Recognition	Akhtar, Z., & Rattani, A. (2017). A face in any form: new challenges and opportunities for face recognition technology. Computer, 50(4), 80-90	Despite new technologies that make face detection and recognition more sophisticated, long-recognized problems in security, privacy, and accuracy persist. Refining this technology and introducing it into new domains will require solving these problems through focused interdisciplinary efforts among developers, researchers, and policymakers	Reveals significant progress over the past two decades as well as unresolved issues related to accuracy, security, and user privacy. We are confident that, with time and focused interdisciplinary research and development, face recognition will reach its full potential in a wide range of application domains.
35	. Biometric - Facial Recognition	Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., & Samaras, D. (2017). Neural face editing with intrinsic image disentangling. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5541-5550).	Traditional face editing methods often require a number of sophisticated and task specific algorithms to be applied one after the other a process that is tedious, fragile, and computationally intensive. In this paper, we propose an end-to-end generative adversarial network that infers a face-specific	We show that this network can be trained on "in-the-wild" images by incorporating an in-network physically-based image formation module and appropriate loss functions. Our disentangling latent representation allows for semantically

		disentangled representation of intrinsic face	relevant edits, where one aspect of facial
		properties, including shape (i.e. normals), albedo,	appearance can be manipulated while
		and lighting, and an alpha matte.	keeping orthogonal properties fixed, and
			we demonstrate its use for a number of
			facial ed
36. Biometric - Facial	Hao, Z., Liu, Y., Qin, H., Yan, J., Li, X., & Hu, X. (2017).	Convolutional neural network (CNN) based face	Since the faces will be approximately in
Recognition	IEEE Conference on Computer Vision and Pattern	detectors are inefficient in handling faces of diverse	uniform scale after zoom, they can be
	Recognition (pp. 6186-6195).	scales. They rely on either fitting a large single	detected accurately even with much
		model to faces across a large scale range or multi-	smaller CNN. Actually, more than 99% of
		scale testing. Both are computationally expensive.	the faces in AFW can be covered with less
		We propose Scale-aware Face Detector (SAFD) to	than two zooms per image. Extensive
		handle scale explicitly using CNN, and achieve better	experiments on FDDB, MALF and AFW
		performance with less computation cost. Prior to	show advantages of SAFD
		detection, an efficient CNN predicts the scale	
		distribution histogram of the faces. Then the scale	
		histogram guides the zoom-in and zoom-out of the	
		image.	
37. Biometric - Facial	Hu, P., & Ramanan, D. (2017). Finding tiny faces. In	Though tremendous strides have been made in	We show that context is crucial, and
Recognition	Proceedings of the IEEE conference on computer	object recognition, one of the remaining open	define templates that make use of
	vision and pattern recognition (pp. 951-959).	challenges is detecting small objects. We explore	massively-large receptive fields (where
		three aspects of the problem in the context of	99% of the template extends beyond the
		finding small faces: the role of scale invariance,	object of interest). Finally, we explore the
		image resolution, and contextual reasoning. While	role of scale in pre-trained deep
		most recognition approaches aim to be scale-	networks, providing ways to extrapolate
		invariant, the cues for recognizing a 3px tall face are	networks tuned for limited scales to
		fundamentally different than those for recognizing a	rather extreme ranges. We demonstrate
		300px tall face. We take a different approach and	state-of-the-art results on massively-
		train separate detectors for different scales. To	benchmarked face datasets (FDDB and
		maintain efficiency, detectors are trained in a multi-	WIDER FACE). In particular, when
		task fashion: they make use of features extracted	compared to prior art on WIDER FACE,
		from multiple layers of single (deep) feature	our results reduce error by a factor of 2

			hierarchy. While training detectors for large objects	(our models produce an AP of 82% while
			is straightforward, the crucial challenge remains	prior art ranges from 29-64%).
			training detectors for small objects.	
38.	Biometric - Facial	Zhang, L., Li, X., Nie, L., Yang, Y., & Xia, Y. (2015).	This paper proposes weakly supervised fixations	Starting from the raw image pixels, we
	Recognition	Weakly supervised human fixations prediction. IEEE	prediction, which leverages image labels to improve	sample superpixels in an image, thereby
		transactions on cybernetics, 46(1), 258-269.	accuracy of human fixations prediction. The	seamless object descriptors termed
			proposed model hierarchically discovers objects as	object-level graphlets (oGLs) are
			well as their spatial configurations.	generated by random walking on the
				superpixel mosaic. Then, a manifold
				embedding algorithm is proposed to
				encode image labels into oGLs, and the
				response map of each prespecified object
				is computed accordingly.
39.	Biometric - Facial	Zhang, L., Gao, Y., Zimmermann, R., Tian, Q., & Li, X.	Propose a new photo aesthetics evaluation	Experimental results show that: 1) the
	Recognition	(2014). Fusion of multichannel local and global	framework, focusing on learning the image	visualized graphlets explicitly capture the
		structural cues for photo aesthetics evaluation. IEEE	descriptors that characterize local and global	aesthetically arranged atomic regions; 2)
		Transactions on Image Processing, 23(3), 1419-1429.	structural aesthetics from multiple visual channels.	the proposed approach generalizes and
			In particular, to describe the spatial structure of the	improves four prominent aesthetic rules;
			image local regions, we construct graphlets small-	and 3) our approach significantly
			sized connected graphs by connecting spatially	outperforms state-of-the-art algorithms
			adjacent atomic regions.	in photo aesthetics prediction.
40.	Biometric - Facial	Zhang, W. K., & Kang, M. J. (2019). Factors affecting	The purpose of this study is to explore the factors	Results in this paper shows that the
	Recognition	the use of facial-recognition payment: an example of	influencing consumers' willingness to use facial-	safety, security, visibility and social image
		Chinese consumers. IEEE Access, 7, 154360-154374.	recognition payment systems. This study has	will affect consumers' intent to use the
			social image as the feature variables of the facial-	system. It can also influence consumers'
			recognition payment system.	intent to use through perceived
				usefulness.
41.	Biometric - Facial	Abate, A. F., Nappi, M., Riccio, D., & Sabatino, G.	This paper provides an "ex cursus" of recent face	Biometrics represents a valid alternative
	Recognition	(2007). 2D and 3D face recognition: A survey. Pattern	recognition research trends in 2D imagery and 3D	but they suffer of drawbacks as well. Iris
		recognition letters, 28(14), 1885-1906.	model based algorithms. To simplify comparisons	scanning, for example, is very reliable but
			across different approaches, tables containing	too intrusive; fingerprints are socially

		different collection of noremotors (such as input	accorted but not applicable to non
		different collection of parameters (such as input	accepted, but not applicable to non-
		size, recognition rate, number of addressed	consentient people. On the other hand,
		problems) are provided.	face recognition represents a good
			compromise between what's socially
			acceptable and what's reliable, even
			when operating under controlled
			conditions.
42. Biometric - Facial	Crumpler, James A. Lewis and William (2021).	We reviewed the most salient of these concerns for	Improvements in facial recognition
Recognition	Questions about Facial Recognition. https://csis-	accuracy and for their implications for policymaking,	technology, especially in how algorithms
	website-prod.s3.amazonaws.com/s3fs-	and came to several conclusions. Our first	are developed and trained, will continue
	public/publication/210203_Lewis_Facial_Recognition	conclusion is that to reduce concerns about facial	to reduce the risks of error and bias. Like
	_1.pdf	recognition, Congress needs to pass effective	all new technologies, continued
		privacy legislation to govern digital technologies.	improvement reduces risk, and concerns
			based on how facial recognition
			technology worked even a few years ago
			are now out of date.
43. Biometric - Facial		Today, facial recognition is a prevalent though	Facial recognition is one of the most
Recognition	Elloumi, W., Cauchois, C., & Pasqual, C. (2021). Will	controversial technology. It has become established	adopted biometric modalities that's now
	face recognition revolutionise the shopping	as the most natural means of biometric	being used for many and varied use-
	experience?. Biometric Technology Today, 2021(3), 8-	identification, as it doesn't require any contact or	cases, such as in payments or loyalty
	11.	physical interaction by the end user – a feature that	experiences.
		has become even more important during the	
		coronavirus pandemic.	
44. Biometric - Facial	Omoyiola, B. O. (2018). Overview of biometric and		Security has become a major issue
Recognition	facial recognition techniques. IOSR journal of	In the paper, we review some biometric and facial	globally and in order to manage the
	computer engineering (IOSRJCE), 20(4), 1-5.	recognition techniques.	security challenges and reduce the
			security risks in the world, biometric
			systems such as face detection and
			recognition systems have been built.
			These systems are capable of providing
			biometric security, crime prevention and

4	5. Biometric - Facial Recognition	Moriuchi, Emi. (2021). An empirical study of consumers' intention to use biometric facial recognition as a payment method. Psychology & Marketing. 38. 10.1002/mar.21495.	The study investigated antecedents that affect consumers' trust of, attitude toward, and usage of a biometric payment system. Based on the results from Study 1, Study 2 was conducted by introducing two shopping modalities in the study.	video surveillance services because of their inbuilt verification and identification capabilities. This has become possible due to technological advancement in the fields of automated face analysis, machine learning and pattern recognition. The results show that consumers would rather use a biometric payment system in stores than online. Between the two modalities, consumers' trust and attitude toward the technology have a stronger mediating role for online than in-store toward their intention to use. In addition, self-efficacy consistently moderates the antecedents (performance expectation and perceived risk) and their intention to use.
4	6. Biometric - Facial Recognition	Grother, P. J., Ngan, M. L., & Hanaoka, K. K. (2018). Ongoing face recognition vendor test (frvt) part 2: Identification.	This report updates and extends NIST Interagency Report 8238, documenting performance of new face recognition algorithms submitted for evaluation to NIST in November 2018. The algorithms implement one-to-many identification of faces appearing in two- dimensional images. Three datasets were used - the primary dataset is comprised of 26.6 mil- lion reasonably well-controlled live portrait photos of 12.3 million individuals. Three smaller datasets containing more unconstrained photos are also used: 200 thousand side-view images; 3.2 million	The report will be useful for comparison of face recognition algorithms and assessment of absolute capability. There is an additional appendix to this NISTIR, which contains individual reporting for each algorithm submitted to FRVT 1:N.

			webcam images; 2.5 million photojournalism and	
			amateur photographer photos.	
47.	Biometric - Voice	The Complete Guide to Speech Recognition	This report takes a brief look at the history of speech	Key findings: Mobile app voice
	Recognition	Technology 2020	recognition technology, start with how it works and	integration,
		https://summalinguae.com/language-	some devices that make use of it. Then we'll	Individualized experiences,
		technology/guide-to-speech-recognition-technology/	examine what might be just around the corner.	Smart displays
		1		
		:~:text=In%202017%2C%20Google%20boasted%20a,f		
		all%20below%20the%205%25%20threshold.		
48.	Biometric - Voice	Patil, K. V. (2018). Voice alert system for easy	How voice alert system helps disability people to	Navigate blind people's locations and plan
	Recognition	navigation of blinds using zigbee and GPS.	take the bus. This device use speech recognition	their trip by their voice automatically use
			system for user selected destination entry, and	speech recognition system for user
			voice module for making announcements about the	selected destination entry, the
			arrival details. The performance of the proposed	performance of the proposed system is
			system is found to be promising and expected to be	promising
			valuable in the development of advanced public	
			transportation systems (APTS) in India.	
49.	Biometric - Voice	Misra, C., & Hota, M. K. (2018, April). Hybrid	With the development of wireless and	How the voice is encrypted in order to get
	Recognition	technique for voice recognition, encryption and	communication, there has also been development in	the encrypted voice. Simple algorithm to
		analysis using MATLAB. In 2018 International	voice recognition and voice encryption techniques	use pitch making techniques. Hybrid
		Conference on Communication and Signal Processing	to provide security to users. This paper denotes and	technique to encrypt voice using scanned
		(ICCSP) (pp. 0200-0203). IEEE.	computes a simple algorithm to recognize voice	patterns. Original voice is encrypted using
			using pitch making technique and also provides a	that password to get the encrypted voice
			hybrid technique to encrypt voice using scanned	
			patterns recognition with the help of an	
			alphanumeric password.	
50.	Biometric -	How Accurate are today's Fingerprint Scanners?	It demonstrates how accurate today's fingerprint	This delicate balance of convenience and
	Fingerprint	Limitations, Errors and Their Effect on the Accuracy	scanners are, its limitations, errors and their effect	security is highly dependent on
	Recognition	2021 https://www.bayometric.com	on the accuracy. Today, fingerprint scanners enjoy	fingerprint matching accuracy. Several
			widespread popularity and growing rate of	studies have shown that modern
			deployment sin all sorts of applications. One of the	fingerprint recognition systems are highly

		reasons of the growing penetration of fingerprint	accurate. The best system was accurate
		recognition devices is that they have been able to	98.6 percent of the time on single-finger
		maintain the delicate balance between the	tests, 99.6 percent of the time on two-
		convenience and the security. However, there are	finger tests, and 99.9 percent of the time
		still several issues, errors and limitations that this	for tests involving four or more fingers.
		technology has to deal with. There are still	These accuracies were obtained for a
		challenges and limitations in terms of technology,	false positive rate of 0.01 percent
		population coverage and security, however, most	
		these challenges can be and will be addressed at	
		some point in future.	
51. Biometric -	Barni, M., Bianchi, T., Catalano, D., Di Raimondo, M.,	The privacy protection of the biometric data is an	Distributed biometric system that is
Fingerprint	Labati, R. D., Failla, P., & Scotti, F. (2010,	important research topic, especially in the case of	capable to protect the privacy of the
Recognition	September). A privacy-compliant fingerprint	distributed biometric systems. In this scenario, it is	individuals by exploiting cryptosystems.
	recognition system based on homomorphic	very important to guarantee that biometric data	Biométrie matching should not learn
	encryption and fingercode templates. In 2010 Fourth	cannot be steeled by anyone, and that the biometric	anything on the database. Propose
	IEEE International Conference on Biometrics: Theory,	clients are unable to gather any information	complete demonstrator based on a
	Applications and Systems (BTAS) (pp. 1-7). IEEE.	different from the single user	distributed biométrie system that is
		verification/identification. In a biométrie system	capable to protect the privacy of the
		with high level of privacy compliance, also the server	individuals by exploiting cryptosystems.
		that processes the biométrie matching should not	Computes the matching task in the
		learn anything on the database and it should be	encrypted domain by exploiting
		impossible for the server to exploit the resulting	homomorphic encryption and using
		matching values in order to extract any knowledge	Fingercode templates. Experimental
		about the user presence or behaviour. Within this	results show that this method is feasible
		conceptual framework, in this paper we propose a	in the cases where the privacy of the data
		novel complete demonstrator based on a	is more important than the accuracy of
		distributed biométrie system that is capable to	the system and the obtained
		protect the privacy of the individuals by exploiting	computational time is satisfactory.
		cryptosystems. The implemented system computes	
		the matching task in the encrypted domain by	
		exploiting homomorphic encryption and using	

		Fingercode templates. The paper describes the	
		design methodology of the demonstrator and the	
		obtained results. The demonstrator has been fully	
		implemented and tested in real applicative	
		conditions. Experimental results show that this	
		method is feasible in the cases where the privacy of	
		the data is more important than the accuracy of the	
		system and the obtained computational time is	
		satisfactory.	
52. Biometric -	Contactless fingerprint (2021).	contactless fingerprint technical solution	IDEMIA's MorphoWave™ contactless
Fingerprint	https://www.idemia.com/contactless-fingerprint		fingerprint solution scans and verifies 4
Recognition			fingerprints in less than 1 second, through
			a fully touchless hand wave gesture.
			Thanks to the simplicity of this gesture,
			the throughput can reach up to 50 people
			per minute.
53. Biometric - Iris	Rajasekar, Vani & J, Premalatha & Sathya, K (2020).	The proposed study uses 2D Gabor filter approach	The result analysis witnessed that the
Recognition	Enhanced Biometric Recognition for Secure	for perfect feature extraction in iris preprocessing.	prime objective of the research such as
	Authentication using Iris Preprocessing and Hyper	Light weight cryptographic scheme called HECC was	lesser false acceptance rate, lesser false
	Elliptic Curve Cryptography. 10.21203/rs.2.23196/v1.	employed to encrypt the iris template to avoid	rejection rate, maximum accuracy of
		intentional attack by the intruders. The benchmark	99.74%, maximum true acceptance rate
		CASIA Iris V-4 and IITD Iris datasets were used in the	of 100%, and minimal recognition time of
		proposed approach for experimental analysis.	3 seconds has been achieved. Also, it has
			been identified that the proposed study
			outperforms other existing well-known
			techniques.
54. Biometric - Palm	Palm Vein Pattern	Contactless palm vein authentication technology is	Fujitsu has developed a contactless palm
Recognition	Authentication Technology (2021).	being incorporated into various financial solution	vein pattern authentication technology
	https://www.fujitsu.com/	products for use in public places. This paper	that uses vascular patterns as personal
		introduces palm vein authentication technology and	identification data. Vein recognition
		some examples of its application to financial	technology is secure because the

			solutions. It then describes PalmSecure, an	authentication data exists inside the body
			authentication product that Fujitsu has developed	and is therefore very difficult to forge. It
			for the general market, and the company's key	is also highly accurate — in testing using
			milestones in an effort to standardize PalmSecure	140,000 palm profiles of 70,000
			for biometric authentication	individuals, it had a false acceptance rate
				of less than 0.00008% and a false
				rejection rate of 0.01%.
5	5. Biometric -Social	Jain, A. K., & Kumar, A. (2012). Biometric recognition:	Presents an overview of biometrics, some of the	The design and suitability of biometric
	acceptance	an overview. Second generation biometrics: The	emerging biometric technologies and their	technology for person identification
		ethical, legal and social context, 49-79.	limitations, and examines future challenges	depends on the application requirements.
				These requirements are typically specified
				in terms of identification accuracy,
				throughput, user acceptance, system
				security, robustness, and return on
				investment. The next generation
				biometric technology must overcome
				many hurdles and challenges to improve
				the recognition accuracy. These include
				ability to handle poor quality and
				incomplete data, achieve scalability to
				accommodate hundreds of millions of
				users, ensure interoperability, and
				protect user privacy while reducing
				system cost and enhancing system
				integrity.
5	6. Biometric -End	Miltgen, C. L., Popovič, A., & Oliveira, T. (2013).	Propose an integrated approach of end-user	We first confirm the influence of
	user acceptance	Determinants of end-user acceptance of biometrics:	acceptance of biometric system.	renowned technology acceptance
		Integrating the "Big 3" of technology acceptance with	The model is based on TAM, DOI and UTAUT along	variables such as compatibility, perceived
		privacy context. Decision support systems, 56, 103-	with trust-privacy literature.	usefulness, facilitating conditions on
		114.	Technology adoption theory is extended by adding	biometrics systems acceptance and
			the potential recommendation power.	further recommendation. Second, prior

			factors such as concern for privacy, trust in the technology, and innovativeness also prove to have an influence. Third, unless innovativeness,
			the most important drivers to explain biometrics acceptance and recommendation are not from the traditional adoption models (TAM, DOI,
			and UTAUT) but from the trust and privacy literature (trust in technology and perceived risk).
57. Biometric – General	Shaikh, S. A., & Rabaiotti, J. R. (2010). Characteristic trade-offs in designing large-scale biometric-based identity management systems. Journal of Network and Computer Applications, 33(3), 342-351.	Biometric-based <u>identity management systems</u> are deemed to be the new solution to address the challenges of global security and citizenship. While such systems do prove effective, the nature of <u>biometric technology</u> , the costs involved, and increasing threats to theft and loss of data bring with it a variety of other considerations that cannot be ignored. We approach such systems from the perspective of large-scale high-volume public deployments.	We find that various characteristics of such deployments present a trade-off, where emphasis on one undermines the other. Such characteristic trade-off spaces are described and explored in this paper. The ultimate contribution lies in the understanding of such trade-off spaces for the purposes of optimal design of such systems. We use our approach to analyse the recently launched Identity Card scheme in the United Kingdom.
58. Biometric – General review	Biometrics: Driven by Standardized Authentication, Adopted by Consumers 2020 <u>https://www.paymentsjournal.com/by-2024-how-</u> <u>many-smartphone-owners-will-use-biometrics/</u>	Mercator market research indicates biometric use is increasing even as consumers adopt a greater variety of methods choosing among fingerprint, facial recognition, and voice recognition. Biometrics are important because they utilize new mobile security hardware and software to revamp authentication, lower the risk of fraud, address the mandates of the European Union's revised Payment	The statistics of range of facial recognition to phones. By 2024, Mercator forecasts that 66% of smartphone owners will use biometrics for authentication. Currently, Mercator estimates that 41% of smartphone owners are using biometrics. Just one year ago, in 2019 only 27% of consumers used biometrics to authenticate. Although fingerprint

		Services Directive (PSD2), and induce changes in	readers remain the top option for
		consumer behaviour.	authentication, an increasing percentage
			of users are reporting facial and voice
			recognition. Voice recognition increased
			to 20% of biometric authentication in the
			last year – up from 11% in 2019. Facial
			recognition jumped to nearly 30% of
			biometric authentication, up from 11% in
			2019. Phone brands play a big role in
			dictating authentication methods, with
			Android and iPhone owners clearly
			emerging as more likely to use voice and
			facial recognition.
59. Biometric –	Hollnagel, J., & Fook, A. (2019). The Future of Fare	Presents Automated Fare Collection Practices.	Presents various Mobile and Biometric
General review	Media in Automated Fare Collection Systems for	Challenges and opportunities of new fare media.	enabled Payment Technologies used in
	Urban Mobility in the Latin America and Caribbean	Technologies and changemakers.	transportation. Discusses the factors to
	Region.		consider when deciding on a new fare
			media.
60. Biometric –	Gudavalli, M., Raju, S. V., Babu, A. V., & Kumar, D. S.	Studies have demonstrated that multimodal	One of the methods to overcome these
General review	(2012, March). Multimodal BiometricsSources,	biometric systems can achieve better performance	problems is to make use of multimodal
	Architecture and Fusion Techniques: An Overview. In	compared with Unimodal systems. We discuss here	biometric authentication systems, which
	2012 International Symposium on Biometrics and	different multimodal sources, multimodal	combine information from multiple
	Security Technologies (pp. 27-34). IEEE.	architectures & different fusion techniques used in	modalities to arrive at a decision.
		multimodal biometric systems.	Multimodal biometric systems are those
			which utilize, or capability of utilizing,
			more than one physiological or behavioral
			characteristic for enrolment, verification,
			or identification.
61. Biometric –	Pai, C. K., Wang, T. W., Chen, S. H., & Cai, K. Y. (2018).	For biometric systems, the security of data can be	It showed that the perceived security of
General review	Empirical study on Chinese tourists' perceived trust	violated as a result of a system error when it may	FRS in hotels has a positive influence on
		identify one person as another one or using fake	trust in technology (Pai, 2018).

	and intention to use biometric technology. Asia	biometric or attacked by a hacker. Perceived	
	Pacific Journal of Tourism Research, 23(9), 880-895.	security was shown to affect several factors,	
		including consumer trust in technology. There are	
		significant positive direct and indirect effects of	
		perceived security on customer behaviour	
		intentions to use biometric technologies.	
62. Biometric –	Rajasekar, V., Predić, B., Saracevic, M., Elhoseny, M.,	This paper proposes an enhanced multimodal	Experiments with different biometric
General review	Karabasevic, D., Stanujkic, D., & Jayapaul, P. (2022).	biometric technique for a smart city that is based on	environments reveal significant
	Enhanced multimodal biometric recognition approach	score-level fusion. Specifically, the proposed	improvements over existing strategies.
	for smart cities based on an optimized fuzzy genetic	approach provides a solution to the existing	The result analysis shows that the
	algorithm. Scientific Reports, 12(1), 1-11.	challenges by providing a multimodal fusion	proposed approach provides better
		technique with an optimized fuzzy genetic algorithm	performance in terms of the false
		providing enhanced performance.	acceptance rate, false rejection rate,
			equal error rate, precision, recall, and
			accuracy. The proposed scheme provides
			a higher accuracy rate of 99.88% and a
			lower equal error rate of 0.18%. The vital
			part of this approach is the inclusion of a
			fuzzy strategy with soft computing
			techniques known as an optimized fuzzy
			genetic algorithm.
63. Biometric –	Millett, L. I., & Pato, J. N. (2010). Biometric	Biometric recognitionthe automated recognition of	Biometric recognition has been applied to
General review	recognition: Challenges and opportunities. National	individuals based on their behavioural and biological	identification of criminals, patient
	Academies Press.	characteristicis promoted to help identify	tracking in medical informatics, and the
		terrorists, provide better control of access to	personalization of social services, among
		physical facilities and financial accounts, and	other things. In spite of substantial effort,
		increase the efficiency of access to services and their	however, there remain unresolved
		utilization.	questions about the effectiveness and
			management of systems for biometric
			recognition, as well as the

			appropriateness and societal impact of their use.
64. Biometric – General review	Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.	In this paper, we (1) review user acceptance literature and discuss eight prominent models, (2) empirically compare the eight models and their extensions, (3) formulate a unified model that integrates elements across the eight models, and (4) empirically validate the unified model.	The paper makes several recommendations for future research including developing a deeper understanding of the dynamic influences studied here, refining measurement of the core constructs used in UTAUT, and understanding the organizational outcomes associated with new technology use.
65. Biometric – General review	Mordini, E., & Tzovaras, D. (Eds.). (2012). Second generation biometrics: The ethical, legal and social context (Vol. 11). Springer Science & Business Media.	One of the first books on second generation biometrics and the first on ethical, social and privacy implication of them. Includes chapters from neuroscientists, psychologists, psychiatrists, jurists, social scientists, philosophers, ethicists, as well as technologists	ethical, social and privacy implication of biometrics
66. Biometric – General review	Unar, J. A., Seng, W. C., & Abbasi, A. (2014). A review of biometric technology along with trends and prospects. Pattern recognition, 47(8), 2673-2688.	An extensive review of biometric technology is presented here. Besides the mono-modal systems, the article also discusses multi-modal biometric systems along with their architecture and information fusion levels.	The paper along with the exemplary evidences highlights the potential for biometric technology, market value and prospects.
67. Biometric – General review	Unar, J. A., Seng, W. C., & Abbasi, A. (2014). A review of biometric technology along with trends and prospects. Pattern recognition, 47(8), 2673-2688.	The automated FRS computes 2D or 3D features. 3D based recognition is new trend which rectifies problems in 2D. However, they cannot guarantee reliable identification in presence of artifacts. Artifacts have significant impact on accuracy. In	To make FRS robust researchers have proposed recognition based on facial thermograph. Few studies have claimed to provide better accuracy in terms of detection, localization, and segmentation. Challenges include sensitivity to
		addition, the expensive imaging hardware also limits	illumination, ageing, presence of
-----------------	--	---	---
		the use.	occlusions. Iris recognition is very
			prominent due to non-invasive image
			acquisition and clear visibility at a
			distance. Multi-modal based techniques
			offer better accuracy and security.
68. Biometric –	Zhang, L., Gao, Y., Hong, C., Feng, Y., Zhu, J., & Cai, D.	In computer vision and multimedia analysis, it is	Therefore, we construct a feature
General review	(2013). Feature correlation hypergraph: exploiting	common to use multiple features (or multimodal	correlation hypergraph (FCH) to model
	high-order potentials for multimodal recognition. IEEE	features) to represent an object. For example, to	the high-order relations among
	transactions on cybernetics, 44(8), 1408-1419.	well characterize a natural scene image, we typically	multimodal features. Finally, a clustering
		extract a set of visual features to represent its	algorithm is performed on FCH to group
		colour, texture, and shape. However, it is	the original multimodal features into a set
		challenging to integrate multimodal features	of partitions. Moreover, a multiclass
		optimally. Since they are usually high-order	boosting strategy is developed to obtain a
		correlated, e.g., the histogram of gradient (HOG),	strong classifier by combining the weak
		bag of scale invariant feature transform descriptors,	classifiers learned from each partition.
		and wavelets are closely related because they	The experimental results on seven
		collaboratively reflect the image texture.	popular datasets show the effectiveness
		Nevertheless, the existing algorithms fail to capture	of our approach.
		the high-order correlation among multimodal	
		features. To solve this problem, we present a new	
		multimodal feature integration framework.	
		Particularly, we first define a new measure to	
		capture the high-order correlation among the	
		multimodal features, which can be deemed as a	
		direct extension of the previous binary correlation.	

SLAM

Simultaneous localization and mapping (SLAM) creates a map of the surroundings, using lidars, cameras or other sensors, and simultaneously determines the position of the device in it. Mainly used in robotics and for autonomous vehicles, this technology is now being developed for wayfinding solutions for blind people. Ticketing capability could be integrated in SLAM empowered devices. The literature indicates that this technology has come a long way, but is not yet mature for this use case, as much of the attention is still on the algorithms.

SLAM: Evaluation criteria

Table 5. Key evaluation requirements- SLAM

Key requirements	
Technology readiness – now vs. emerging	Essential capabilities proven such as: Precision positioning and wayfinding in indoors: This information can be used for calculating the fares Augmented Reality (AR): this technology can be used for assisting passengers' payments and navigations
Certainty/reliability (e.g., interference)	Indoors: High level of certainty and reliability. Medium outdoor accuracy of 5m [1] High indoor accuracy under 10 cm [2] without the interference from communication radios.
Accurate/very low error rates	Very high accuracy in positioning in sub centimetres using fiducial markers. Without fiducial markers or very far from the markers positioning accuracy will drops to 5m [1]
Secure- not easy to forge, clone	Secure with end-to-end encryption. Private position data acquisition using fiducial markers.

Use case requirements	Tech solution
Identification	Account Number can be used for identification

Tokenisation /Authentication	Internet authentications and Tokenisation can be used in the digital tickets to protect user privacy.
Positioning & trip definition:	SLAM uses precision position data and time for taking decisions and issuing tickets. Fiducial markers can be used to
Registration in (begin of ticket)	improve SLAM positioning accuracy significantly, also fiducial markers can provide more information about the place or
Registration out (end of ticket)	vehicle.
Repeat for next leg of trip	Fiducial markers provide information about the vehicle to the SLAM and SLAM can detect be-in/be-out automatically.
	This information will be sent to a backend for calculating fares
Capacity to process multiple entries	Large quantity. All queries are sent to cloud for processing and cloud
simultaneously (large quantities / high	
throughput) – unless separate lane	
Can detect entry in vehicle (as opposed to	SLAM can read the information on the fiducial markers – similar to QR codes – to detect be-in/be-out to gates and
walking by). Determines with high accuracy	most vehicles. However, required beacons and fiducial markers to be installed in the PT areas.
which mode of transport has been/is being used	
Execute gate open and close 'just in in time' for	Required more research for just in time for gated solution.
gated solutions	Position accuracy is good for gates, however network latency can be issue.
Consider gated and non-gated – in a variety of	
use cases: bus, train, tram, ferry, taxi, on demand	
Works indoor and outdoor (with and without	Yes
GPS)	
Cover fixed and variable routes, i.e., cannot rely	It can cover a wide variety of transports. By automatically scanning QR codes and fiducial markers
on fixed infrastructure. Work in taxi's, mini	
buses, mopeds, bike sharing, etc.	
High feasibility of installation across all use cases	Requires more research
Low maintenance (Asset Management System	Paguiros routino undatos for mans, howover 2 rd party companios, such as Google, can be used
(also Posistant to vandalism)	requires routine updates for maps, nowever 5 party companies, such as doogle, call be used
Risks/concerns?	SLAM is more suitable for indoor spaces and GNSS can be used for outdoor spaces
	3 rd Party cloud services are required for SLAM algorithms, and it may be a risk for user privacy.

SLAM: Literature overview

Tech Type	Reference	Summary	Key Point of Interest
 SLAM positioning algorithm based on smart phone 	ZUN NIU, X. Z. (2020). A Continuous Positioning Algorithm Based on RTK and VI- SLAM With Smartphones. Beijing China.	Our study mainly aims to confirm the feasibility of continuous positioning based on RTK and VI-SLAM with the Xiaomi MI 8. An application is developed to execute the functions, including logging images, measurements of IMU, and GPS measurements in Receiver INdependent EXchange (RINEX) format with the Xiaomi MI 8. The performances of RTK with and without the assistance of VI-SLAM are assessed respectively in the urban area.	The experimental results demonstrate that the combination of RTK and VI-SLAM based on smartphones can effectively provide continuous positioning results. We believe our application will facilitate research and development in relation to positioning algorithms.
2. SLAM indoor mapping technologies	Chen, Y., Tang, J., Jiang, C., Zhu, L., Lehtomäki, M., Kaartinen, H., Chen, R. (2018). The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies. Sensors, 18(10), 3228.	In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved	The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing.

			algorithm developed by the Finnish	
			Geospatial Research Institute (FGI).	
3.	SLAM	Niu, Z., Zhao, X., Sun, J., Tao, L., & Zhu, B.	The navigation technology has developed	SLAM can effectively make up the drawbacks of RTK as
	positioning	(2020). A continuous positioning algorithm	rapidly and immensely over the past few	it utilizes no more information than the images. SLAM
	algorithm	based on RTK and VI-SLAM with smartphones.	decades. Among the multiple navigation	can also be combined with the Inertial Measurement
		IEEE Access, 8, 185638-185650.	technologies, the representative and	Unit (IMU) called Visual-Inertial SLAM (VI-SLAM,) with
			promising techniques are Real-time	the improvement of accuracy and robustness.
			Kinematic (RTK) technique and	Therefore, our study mainly aims to confirm the
			Simultaneous Localization and Mapping	feasibility of continuous positioning based on RTK and
			(SLAM). RTK can provide real-time	VI-SLAM with the Xiaomi MI 8. An application is
			positioning results with high accuracy,	developed to execute the functions, including logging
			while SLAM can not only locate the user	images, measurements of IMU, and GPS
			but also construct a map of the new	measurements in Receiver INdependent EXchange
			ambient. The first smartphone, the	(RINEX) format with the Xiaomi MI 8. The
			Xiaomi MI 8, equipped with the dual-	performances of RTK with and without the assistance
			frequency Global Navigation Satellite	of VI-SLAM are assessed respectively in the urban
			System (GNSS), hit the market in May	area. The experimental results demonstrate that the
			2018, providing valid carrier-phase	combination of RTK and VI-SLAM based on
			measurements for RTK owe to the	smartphones can effectively provide continuous
			developer option of "Force full GNSS	positioning results. We believe our application will
			measurements." Nevertheless, RTK	facilitate research and development in relation to
			underperforms in urban areas as the	positioning algorithms. Readers have access to this
			buildings and trees can block the satellite	application at
			signals. RTK cannot even provide	https://github.com/Nronaldo/CIGRLogger.
			positioning results when the GNSS outage	
			happens.	
4.	SLAM indoor	Röger, C., & Timpf, S. (2018). Indoor mapping	This paper introduces a low-cost	Basically, there is a need only to map the boundaries
	mapping	for human navigation–a low-cost SLAM	Simultaneous Localization And Mapping	of spaces and to highlight walkable places and areas of
		solution.	(SLAM) implementation for generating	potential decisions. The SLAM system presented here
			geodata for human-navigable maps. In	consists of an Arduino-based robot and controlling
			contrast to prevalent thinking, we	SLAMTerminal software. A case study conducted at

			maintain that navigation by people who	the University of Augsburg, Germany shows that the
			are not mobility-impaired does not need	proposed SLAM implementation is capable of
			accurate maps down to millimetres or	producing a map suitable for helping pedestrians to
			even centimetres.	navigate.
5.	SLAM - D*	Labbe, M., & Michaud, F. (2014, September).	For large-scale and long-term	The proposed graph-based SLAM system uses a
	algorithm for	Online global loop closure detection for large-	simultaneous localization and mapping	memory management approach that only consider
	robot	2014 IEEE/RSI International Conference on	(SLAM), a robot has to deal with	portions of the map to satisfy online processing
	positioning	Intelligent Robots and Systems (pp. 2661-	unknown initial positioning caused by	requirements. The approach is tested and
		2666). IEEE.	either the kidnapped robot problem or	demonstrated using five indoor mapping sessions of a
			multi-session mapping. This paper	building using a robot equipped with a laser
			addresses these problems by tying the	rangefinder and a Kinect.
			SLAM system with a global loop closure	
			detection approach, which intrinsically	
			handles these situations. However, online	
			processing for global loop closure	
			detection approaches is generally	
			influenced by the size of the	
			environment.	
6.	SLAM multi-	McDonald, J., Kaess, M., Cadena, C., Neira, J.,	This paper describes a system for	Our work employs incremental Smoothing and
	session visual	& Leonard, J. J. (2011). 6-DOF multi-session	performing multi-session visual mapping	Mapping (iSAM) as the underlying SLAM state
	mapping in	visual SLAM using anchor nodes.	in large-scale environments. Multi-	estimator and uses an improved appearance-based
	large-scale		session mapping considers the problem	method for detecting loop closures within single
	environments		of combining the results of multiple	mapping sessions and across multiple sessions. To
			Simultaneous Localisation and Mapping	stitch together pose graph maps from multiple visual
			(SLAM) missions performed repeatedly	mapping sessions, we employ spatial separator
			over time in the same environment. The	variables, called anchor nodes, to link together
			goal is to robustly combine multiple maps	multiple relative pose graphs. We provide
			in a common metrical coordinate system,	experimental results for multi-session visual mapping
			with consistent estimates of uncertainty.	in the MIT Stata Center, demonstrating key
				capabilities that will serve as a foundation for future
				work in large-scale persistent visual mapping.

7.	SLAM -	Murillo, A. C., Gutiérrez-Gómez, D., Rituerto,	Autonomous navigation and recognition	The presented approach benefits from using wearable
	Omnidirectional	A., Puig, L., & Guerrero, J. J. (2012, June).	of the environment are fundamental	sensors to improve visual odometry results with true
	wearable	Wearable omnidirectional vision system for	abilities for people extensively studied in	scaled solution. The wide field of view of catadioptric
	system	personal localization and guidance. In 2012	computer vision and robotics fields.	vision system used makes features last longer in the
		IEEE computer society conference on	Expansion of low cost wearable sensing	field of view and allows more compact location
		computer vision and pattern recognition	provides interesting opportunities for	representation which facilitates topological place
		workshops (pp. 8-14). IEEE.	assistance systems that augment people	recognition. Experiments in this paper show promising
			navigation and recognition capabilities.	ego-localization results in realistic settings, providing
			This work presents our wearable	good true scaled visual odometry estimation and
			omnidirectional vision system and a novel	recognition of indoor regions.
			two-phase localization approach running	
			on it. It runs state-of-the-art real time	
			visual odometry adapted to catadioptric	
			images augmented with topological-	
			semantic information.	
8.	SLAM - Indoor	Kunhoth, J., Karkar, A., Al-Maadeed, S., & Al-	Navigation systems help users access	This article provides a comprehensive summary of
	positioning and	Ali, A. (2020). Indoor positioning and	unfamiliar environments. Current	evolution in indoor navigation and indoor positioning
	wayfinding	wayfinding systems: a survey. Human-centric	technological advancements enable users	technologies. In particular, the paper reviews different
		Computing and information Sciences, 10(1),	to encapsulate these systems in handheld	computer vision-based indoor navigation and
			devices, which effectively increases the	positioning systems along with indoor scene
			popularity of navigation systems and the	recognition methods that can aid the indoor
			number of users. In indoor environments,	navigation. Navigation and positioning systems that
			lack of Global Positioning System (GPS)	utilize pedestrian dead reckoning (PDR) methods and
			signals and line of sight with orbiting	various communication technologies, such as Wi-Fi,
			satellites makes navigation more	Radio Frequency Identification (RFID) visible light,
			challenging compared to outdoor	Bluetooth and ultra-wide band (UWB), are detailed as
			environments. Radio frequency (RF)	well. Moreover, this article investigates and contrasts
			signals, computer vision, and sensor-	the different navigation systems in each category.
			based solutions are more suitable for	Various evaluation criteria for indoor navigation
			tracking the users in indoor	systems are proposed in this work. The article
			environments.	

				concludes with a brief insight into future directions in
				indoor positioning and navigation systems.
9.	SLAM - Human- device interaction	Zhang, H., & Ye, C. (2017). An indoor wayfinding system based on geometric features aided graph SLAM for the visually impaired. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(9), 1592-1604.	This paper presents a 6-degree of freedom (DOF) pose estimation (PE) method and an indoor wayfinding system based on the method for the visually impaired. The PE method involves two- graph simultaneous localization and mapping (SLAM) processes to reduce the accumulative pose error of the device. In the first step, the floor plane is extracted from the 3-D camera's point cloud and added as a landmark node into the graph for 6-DOF SLAM to reduce roll, pitch, and Z errors. In the second step, the wall lines are extracted and incorporated into the graph for 3-DOF SLAM to reduce X, Y, and yaw errors.	The method reduces the 6-DOF pose error and results in more accurate pose with less computational time than the state-of-the-art planar SLAM methods. Based on the PE method, a wayfinding system is developed for navigating a visually impaired person in an indoor environment. The system uses the estimated pose and floor plan to locate the device user in a building and guides the user by announcing the points of interest and navigational commands through a speech interface. Experimental results validate the effectiveness of the PE method and demonstrate that the system may substantially ease an indoor navigation task.
10.	SLAM - Loop Closure technique	Sprickerhof, J., Nüchter, A., Lingemann, K., & Hertzberg, J. (2011). A heuristic loop closing technique for large-scale 6d slam. Automatika, 52(3), 199-222.	This paper presents a novel heuristic for correcting scan pose estimations after loop closing in SLAM using 3D laser scans. Contrary to state-of-the-art approaches, the built SLAM graph is sparse, and optimization is done without any iteration between the SLAM front and back end, yielding a highly efficient loop closing method.	Several experiments were carried out in an urban environment and evaluated against ground truth. The results are compared to other state of the art algorithms, proving the high quality, yet achieved faster by an order of magnitude.

11. SLAM -	Mur-Artal, R., Montiel, J. M. M., & Tardos, J.	This paper presents ORB-SLAM, a feature-	. A survival of the fittest strategy that selects the
Navigation	D. (2015). ORB-SLAM: a versatile and accurate	based monocular simultaneous	points and keyframes of the reconstruction leads to
system	monocular SLAM system. IEEE transactions on	localization and mapping (SLAM) system	excellent robustness and generates a compact and
	robotics, 31(5), 1147-1163.	that operates in real time, in small and	trackable map that only grows if the scene content
		large indoor and outdoor environments.	changes, allowing lifelong operation. We present an
		The system is robust to severe motion	exhaustive evaluation in 27 sequences from the most
		clutter, allows wide baseline loop closing	popular datasets. ORB-SLAM achieves unprecedented
		and relocalization, and includes full	performance with respect to other state-of-the-art
		automatic initialization. Building on	monocular SLAM approaches. For the benefit of the
		excellent algorithms of recent years, we	community, we make the source code public.
		designed from scratch a novel system	
		that uses the same features for all SLAM	
		tasks: tracking, mapping, relocalization,	
		and loop closing	
12. SLAM -	Luces, J. V. S., Promsutipong, K., & Hirata, Y.	In this research we propose a method to	Typical Fingerprinting methods are affected by
navigation	(2020, January). Indoor Wayfinding for an	enable the device to navigate toward the	infrastructural changes which alter the profile of RSSI
system indoor	Electric Wheelchair Based on Wi-Fi	user upon request by using onboard	values at each location. Therefore, we propose that
wayfinding for	Fingerprinting Localization. In 2020 IEEE/SICE	sensors and the existing Wi-Fi	the map is constantly updated while the device moves
an electric	International Symposium on System	infrastructure. Specifically, we create a	in order to avoid errors due to changes in the
wheelchair	Integration (SII) (pp. 513-518). IEEE.	map with the Received Signal Strength	infrastructure. Through experiments we confirmed
		Indicator (RSSI) of existing Wi-Fi access	that the device could locate the position where the
		points (using a method called	request originated with an error of 2.612 m, and it was
		Fingerprinting). When a user requests an	able to navigate towards it.
		assistive device, the RSSI values at the	
		user's position are sent to it, and the	
		device determines the rough position of	
		the user using a KNN algorithm.	
13. SLAM obstacle	Marcin Zukowski1, Krzysztof Matus1, Dawid	In the paper a solution proposal for	Considering the robot size, a common approach for
detection	Kamienski2, Miroslaw Kondratiuk2, Leszek	indoor navigation and obstacle detection	mobile robots utilizing single 2D laser scanner or
	Ambroziak2, and Barbara Kuc2, SLAM and	problem in hospital environment for a	RGB+Depth camera is not applicable as vertical field of
		humanoid that is 150 cm tall was	view of scans is too narrow to detect all obstacles. We

	obstacle detection for tall autonomous robotic medical assistant AIP Conference Proceedings 2029, 020085 (2018); https://doi.org/10.1063/1.5066547	presented. As a medical assistant, the robot is expected to autonomously move between hospital rooms with extra care about people safety. The overview of	proposed a hybrid system combining laser scanner, multiple cameras and distance sensors. The hardware architecture and software design in Robot Operating System (ROS) were presented. The
		existing solutions was made, mostly focused on Simultaneous Localization and Mapping (SLAM) applications including human-aware algorithms.	
14. SLAM - Outdoor Localisation	Liu, R., Zhang, J., Chen, S., & Arth, C. (2019, October). Towards SLAM-based outdoor localization using poor GPS and 2.5 D building models. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 1-7). IEEE.	In this paper, we address the topic of outdoor localization and tracking using monocular camera setups with poor GPS priors. We leverage 2.5D building maps, which are freely available from open- source databases such as OpenStreetMap. The main contributions of our work are a fast initialization method and a non-linear optimization scheme.	The initialization upgrades a visual SLAM reconstruction with an absolute scale. The non-linear optimization uses the 2.5D building model footprint, which further improves the tracking accuracy and the scale estimation. A pose optimization step relates the vision-based camera pose estimation from SLAM to the position information received through GPS, in order to fix the common problem of drift. We evaluate our approach on a set of challenging scenarios. The experimental results show that our approach achieves improved accuracy and robustness with an advantage in run-time over previous setups.

Centre for Technology Infusion:

Erik van Vulpen, Mithlesh Meena, Aidin Bervan, Shuo Ding, Anupam Anusoni Caitlin Cen, John Seymour, Jerry Chow, Prof. Aniruddha Desai

La Trobe Law School

Hon Prof Ann Wardrop, Adjunct Prof David Wishart Prof Louis de Koker

In collaboration with TfNSW:

Aisha Danjani Damian Woodbridge Eloise Murphy Julie Prendergast Kate Watts Kurt Brissett Mark Patterson Matthew Jones Michael Kane Paula Gleeson Rob Van Der Zalm Sherri Fields Stephanie Manning Stuart Donohue

Virginie Vernin

and iMOVE

Emilie Alexandre Renae Leeson

Thank you

AFDO

Physical Disability Council of NSW

Blind Citizens Australia Deaf Society **Deafness Forum** Guide Dogs NSW ACT NSW Council for Intellectual Disability Paraguad People with Disability Australia Physical Disability NSW Spinal Cord Injuries Australia Stroke Recovery Association Vision Australia Airport Link – Sydney's Airport Train Transdev Australasia Sydney Metro Sydney Trains Transdev, operator of Sydney Ferries

And all People with Disability who participated in our workshops