Speed Camera Programs: 2019 Annual Review

Author:	Centre for Road Safety
Date:	March 2021
Version:	1.0
Division:	Safety, Environment \& Regulation

Contents

1 Executive summary 5
1.1 How NSW reviews speed cameras 5
1.2 Key findings 6
2 Introduction 11
2.1 The NSW Speed Camera Strategy 11
2.2 Annual review of NSW speed camera programs 11
2.3 The speeding problem 11
2.4 Safety benefits of camera enforcement 12
2.5 Transparent management of NSW speed camera programs 12
3 Types of speed camera programs in NSW 13
3.1 Fixed speed cameras 13
3.2 Red-light speed cameras 13
3.3 Mobile speed cameras 14
3.4 Average speed cameras 14
4 Review Criteria for reviewing speed cameras 15
4.1 Measuring the performance of speed camera programs 15
4.2 Measuring the performance of individual speed cameras 16
5 Data context 17
5.1 Road crash data 17
5.2 Injury severity 17
6 Data parameters 19
6.1 Five years of data 19
6.2 Time periods analysed 19
6.3 Crashes selected for analysis 20
6.4 State-wide crash data 20
6.5 State-wide comparison traffic volume data 20
6.6 State-wide speed survey data 20
6.7 Infringement data 21
7 Review methodology 22
7.1 Fixed speed camera locations 22
7.2 Red-light speed camera locations 25
7.3 Mobile speed camera locations 28
7.4 Average speed enforcement lengths 28
8 Results and discussion 29
8.1 Fixed speed cameras 29
8.2 Red-light speed cameras 32
8.3 Mobile speed cameras 36
8.4 Average speed cameras 36

Appendices

A. NSW fixed speed cameras A1
Most infringing locations
Warning mode locations
High risk locations
B. NSW red-light speed cameras B1
Most infringing locations
C. NSW mobile speed cameras C1
D. NSW heavy vehicle average speed cameras D1

1 Executive summary

The purpose of the annual NSW Speed Camera Review is to monitor speed cameras in NSW to ensure they are having a positive road safety effect. This report was prepared in 2020, using data up until the end of the 2018 calendar year.
The NSW Centre for Road Safety (CRS) has reviewed all NSW speed cameras against the criteria in the NSW Speed Camera Strategy 2012 (the Strategy), culminating in this report. This document is the eighth in a series of annual reports that addresses the recommendation from the 2011 NSW Auditor-General's audit of speed cameras, to provide the community with information about the road safety impact of speed cameras.

This report has identified that overall trauma reductions at fixed, red-light and average speed camera locations have exceeded the trauma reductions observed across NSW since those cameras were installed. In addition, the mobile speed camera program continues to deliver road safety benefits, compared to the period before the program was reintroduced onto NSW roads.
If an individual camera is found not to have a positive road safety effect, CRS will consider alternative road safety measures at the location. The findings from this annual review also guide future speed enforcement priorities.

1.1 How NSW reviews speed cameras

The review criteria for speed camera programs and individual camera locations are provided within the Strategy. Broadly speaking, review recommendations are measured by two key criteria:

- Reduction in casualty crashes and casualties, and
- Reduction in infringement rates.

At least five years of crash and casualty data are required to make an assessment of a camera's safety benefit. The criteria and methodology are outlined within sections 4 and 7 of this review.

1.1.1 Fixed and red-light speed cameras

Most fixed speed cameras, and approximately two-thirds of red-light speed cameras, have now been installed for at least 5 years. As a result, there is sufficient data available to reliably assess road safety benefits, and this review has developed recommendations to retain, monitor or review these cameras. Where there is not yet 5 years of post-installation data available, recommendations have not been made.

1.1.2 Mobile speed cameras

Because mobile speed cameras are designed to generally deter speeding across the road network, and because they move regularly, the annual review examines crash and speed data for the entire state, rather than individual mobile speed camera locations.

1.1.3 Average speed cameras

There are now 21 average speed enforcement lengths where 5 years of data are available, and the program continues to deliver a road safety benefit.
NSW is currently expanding the heavy vehicle average speed camera program to metropolitan areas.

1.2 Key findings

1.2.1 Fixed speed camera program

Program size as at 31 December 2018: 138 cameras at 109 locations ${ }^{1}$
Median camera installation date: 1 May 2003
Overall, there has been a reduction in fatal crashes and casualty crashes at fixed speed camera locations since the cameras were installed, compared with the five year period prior to installation.
Specifically, at fixed speed camera locations there has been a:

- 36 per cent reduction in casualty crashes
- 74 per cent reduction in fatalities
- 41 per cent reduction in injuries.

The reduction in fatalities and injuries represents a saving of $\$ 530$ million to the community.
The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period:

- 18 per cent reduction in casualty crashes
- 35 per cent reduction in fatalities
- 20 per cent reduction in injuries.

It should also be noted, alongside the crash data outlined above, that there has also been a notable increase in traffic volumes. Over the periods that fixed digital speed cameras have been reviewed within this report, there has been a 21 per cent increase in traffic volume across NSW. ${ }^{2}$

NSW Fixed Digital Speed Camera Program

[^0]
Individual Camera Locations

Of the 109 fixed speed camera locations, seven locations operate in warning mode and five locations are high risk sites located in tunnels. Recommendations are not provided for these 12 locations.
For the remaining 97 fixed speed camera locations:

- 77 locations were found to offer continued safety benefits,
- 5 locations were identified for ongoing monitoring in future years,
- 5 locations had insufficient data to review, and
- 10 locations were ineligible for review.

No additional fixed digital speed camera locations were identified for comprehensive review within this current iteration of the annual review of speed cameras, however community consultation will soon commence for a number of fixed digital speed camera locations identified in previous annual reviews.
None of the 10 highest infringing fixed speed camera locations were identified in this review for ongoing monitoring.

1.2.2 Red-light speed camera program

Program size as at 31 December 2018: 200 cameras at 180 intersections
Median camera installation date: 29 July 2011
Overall, there has been a reduction in fatal crashes and serious injury crashes at redlight speed camera locations since the cameras were installed, compared with the five year period prior to installation.

Specifically, at red-light speed camera locations there has been a:

- 23 per cent reduction in fatal and serious injury crashes
- 73 per cent reduction in fatalities
- 24 per cent reduction in serious injuries
- 52 per cent reduction in pedestrian casualties.

The reduction in fatalities and serious injuries represents a saving of $\$ 107$ million to the community.
The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period:

- 10 per cent increase in fatal and serious injury crashes
- 14 per cent reduction in fatalities
- 11 per cent increase in serious injuries
- 30 per cent reduction in pedestrian casualties.

It should also be noted, alongside the crash data outlined above, that there has also been a notable increase in traffic volumes. Over the period that red-light speed
cameras have been reviewed within this report, there has been a 12 per cent increase in traffic volume across NSW. ${ }^{3}$

NSW Red-Light Speed Camera Program

Individual Camera Locations

Of the 180 red-light speed camera locations, 56 locations have not yet been installed for 5 years. Recommendations are not provided for these 56 locations.
For the remaining 124 locations:

- 84 locations were found to offer continued safety benefits,
- 39 locations were identified for ongoing monitoring in future years, and
- 1 location was ineligible for review.

No additional red-light speed camera locations were identified for comprehensive review within this current iteration of the annual review of speed cameras.

1.2.3 Mobile speed camera program

Program size as at 31 Dec 2018: 7,000 hrs of enforcement / month at 1,024 locations
Annual speed survey data indicate that the mobile speed camera program continues to deliver road safety benefits, compared to results prior to the reintroduction of the mobile speed camera program in 2010.

The speed survey results show that there has been a decrease in the proportion of light vehicles exceeding the speed limit over the last 10 years, for all speed zones. When comparing the 2018 results against the 2017 results there has been a decrease in the percentage of light vehicles exceeding the speed limit by up to 10 km / h in all speed zones except in the $40 \mathrm{~km} / \mathrm{h}$ school zone, $50 \mathrm{~km} / \mathrm{h}, 70 \mathrm{~km} / \mathrm{h}, 80$ km / h and $90 \mathrm{~km} / \mathrm{h}$ zones. The percentage of vehicles exceeding the speed limit by 10 km / h or more has decreased in all speed zones except in the $40 \mathrm{~km} / \mathrm{h}, 60 \mathrm{~km} / \mathrm{h}$ and 80 km/h zones.

The speed survey results also indicate that there is a reduced proportion of heavy vehicles exceeding the speed limit over the last 10 years; but while this is true for

[^1]most speed zones, it is not the case for exceeding the speed limit by $10 \mathrm{~km} / \mathrm{h}$ or more in $60 \mathrm{~km} / \mathrm{h}$ zones.

In 2018 there were a total of 25,552 infringements issued from mobile speed camera enforcement resulting in $\$ 5.3$ million of fines. The total number of mobile speed camera infringements issued in 2018 increased by 20 per cent compared to 2017.

Over 99 per cent of vehicles passing mobile speed cameras are not infringed for speeding, and this high rate of compliance has remained consistent since 2010 when the program was reintroduced in NSW.

The mobile speed camera program continues to deliver road safety benefits when compared to the most recent period without the program in operation, and there has been a 15 per cent increase in traffic volume across NSW since the mobile speed camera program was reintroduced in 2010.4

1.2.4 Average speed camera program

Program size as at 31 December 2018: 25 lengths

Median camera installation date: 16 December 2011
Overall, there has been a reduction in fatal crashes and casualty crashes involving a heavy vehicle on NSW average speed enforcement lengths since those lengths were installed, compared with the five year period prior to installation.
Across heavy vehicle average speed enforcement lengths, there has been a:

- 27 per cent reduction in casualty crashes involving a heavy vehicle
- 45 per cent reduction in fatalities from crashes involving heavy vehicles
- 10 per cent reduction in serious injuries from crashes involving heavy vehicles.

The reduction in fatalities and serious injuries represents a saving of $\$ 144$ million to the community.

The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period for crashes involving heavy vehicles:

- 10 per cent reduction in casualty crashes involving a heavy vehicle
- 18 per cent reduction in fatalities from crashes involving heavy vehicles
- 21 per cent increase in serious injuries from crashes involving heavy vehicles.

It should also be noted, alongside the crash data outlined above, that there has been a notable increase in heavy vehicle traffic volumes. Over the periods that average speed enforcement lengths have been reviewed within this report, there has been a 13 per cent increase in heavy vehicle volumes across NSW. ${ }^{5}$

NSW is currently expanding the heavy vehicle average speed camera program to metropolitan areas, and CRS will continue to monitor the program.

[^2]NSW Heavy Vehicle Average Speed Camera Program

2 Introduction

2.1 The NSW Speed Camera Strategy

The NSW Speed Camera Strategy (the Strategy) provides an integrated framework for speed enforcement in NSW, and aims to improve the transparency of NSW speed camera programs. The Strategy was developed in consultation with the NSW Police Force and NRMA Motoring and Services, and reinforces the Government's commitment to reducing fatalities and serious injuries on NSW roads.
The NSW Auditor-General has found that speed cameras change driver behaviour and improve road safety. ${ }^{6}$ The Auditor-General also recommended that speed camera performance information be regularly made available to the public. One of the key actions in the Strategy is therefore an annual review of speed camera programs against defined criteria.

2.2 Annual review of NSW speed camera programs

This annual review monitors automated speed enforcement in NSW. This includes fixed speed cameras, red-light speed cameras, mobile speed cameras and average speed cameras. However, this does not include the speed enforcement conducted by the NSW Police Force.

This report was prepared in early 2020, using data up until the end of the 2018 calendar year. Detailed analysis for NSW speed camera locations is provided within Appendices A - D of this report.
However, detailed analysis is not included for fixed speed cameras operating in warning mode. ${ }^{7}$ Crash and infringement data is instead provided for these cameras, within Appendix A. Detailed analysis is also not included for fixed speed cameras at five high risk tunnel locations. Speed cameras were generally installed at these locations when the tunnel was constructed, and therefore no pre-installation data are available for analysis.

Based on the findings of the annual review, cameras which are not delivering the expected road safety benefits will be more comprehensively investigated. These comprehensive investigations may result in the removal and relocation of the camera.
The findings from the annual review also inform future speed enforcement operations, and address NRMA Motoring \& Services' request for an assessment of all high infringing speed camera locations.

2.3 The speeding problem

Speeding, which encompasses excessive speed (driving above the speed limit) or inappropriate speed (driving too fast for the prevailing conditions), is unquestionably recognised as a major contributing factor in both the number and severity of crashes in NSW.

[^3]Speeding increases the risk of having a crash, and increases the risk of death or serious injury in the event of a crash. Studies of survival and impact speed show that small increases in travel speed can result in large increases in braking distances and impact speed, resulting in both an increased risk of a crash and a more severe outcome. This is especially the case for crashes with less protected road users such as pedestrians and cyclists.

2.4 Safety benefits of camera enforcement

Speed camera enforcement is an important road safety initiative with proven road safety benefits, and is a commonly employed method of speed enforcement in many best practice road safety jurisdictions worldwide. Speed enforcement helps to reduce the incidences of speeding on our roads, which in turn reduces the risk of crashes and reduces the likelihood of death or serious injuries in the event of a crash.
Speed enforcement activities aim to reduce speeding by increasing the perceived likelihood of being caught and punished. Speed cameras generally tend to detect an initial high number of infringements followed by a rapid and sustained decrease in infringements as drivers modify their behaviour. This is also reflected by a reduction in crashes over that time.

Appendix A contains graphs of the infringement trends for individual NSW fixed speed camera locations.

2.5 Transparent management of NSW speed camera programs

2.5.1 Speed camera locations are available to drivers

All speed cameras in NSW are signposted and mobile speed camera vehicles are clearly marked.
The NSW Centre for Road Safety website (http://roadsafety.transport.nsw.gov.au) lists all speed camera locations in NSW, allowing members of the public to find the locations of all fixed, red-light and mobile speed cameras, and the positions of all average speed camera zones.

Members of the public are also able to nominate locations for speed cameras via the safer roads website (www.saferroadsnsw.com.au).

2.5.2 Speed camera revenue directly funds road safety initiatives

All fines from speed and red light cameras are paid into the Community Road Safety Fund. This funds road safety initiatives including engineering works, enhanced enforcement by the NSW Police Force, public education campaigns and community grants.
Speeding fines issued by police are not paid into the Community Road Safety Fund.

3 Types of speed camera programs in NSW

Speed cameras are automated speed enforcement tools that supplement enforcement conducted by the NSW Police Force.

The NSW Police Force routinely nominates locations to be considered for automated speed enforcement, as cameras can operate in locations that may be difficult for police to enforce. Members of the public are also able to nominate locations for speed cameras, via the NSW safer roads website at www.saferroadsnsw.com.au.
Table 1 shows the four types of speed cameras used in NSW.
Table 1: Types of speed camera enforcement in NSW

Speed cameras used in NSW			
Camera Type	Main purpose	Introduced	Program Size (as at 31 Dec 2018)
Fixed speed cameras	Location specific, to address black spot / high risk locations	1997	138 cameras at 109 locations
Red-light speed cameras	Location specific, to address high risk intersections	2009	200 cameras at 180 intersections.
Mobile speed cameras	General network deterrence	Re-introduced in 2010. (This program was first introduced in 1991, but ceased operation in Dec 2008)	1,024 locations, 7,000 hours of enforcement/month
Average speed cameras	Route enforcement (for heavy vehicles only)	2010	25 lengths

3.1 Fixed speed cameras

Fixed speed cameras are located at road lengths where there is a demonstrated crash history or a high crash risk. These cameras detect and deter speeding at a specific location on the road network.

3.2 Red-light speed cameras

Red-light speed cameras are installed at signalised intersections where drivers are vulnerable to right angle crashes and there is an elevated risk of a pedestrian crash. These cameras detect and deter both speeding and red-light running, both of which can result in severe injuries even in lower speed crashes.

[^4]
3.3 Mobile speed cameras

Mobile speed cameras are moved around the road network at various times and locations. This means drivers are less able to predict where enforcement will occur, and so are more likely to comply with the speed limit more often.
This report was prepared in 2020, using data up until the end of the 2018 calendar year. During the period of the review, mobile speed cameras operated from highly visible vehicles, with enforcement conducted by private contractors managed by Transport for NSW. The prevailing speed limit was displayed on several warning signs.

The benefit of mobile speed cameras in reducing speeding is not limited to mobile speed camera locations or the time the camera is located there; they produce a sustained change in driver behaviour by increasing the real and perceived likelihood that speeding can be enforced anywhere at any time.

3.4 Average speed cameras

The NSW average speed camera program addresses heavy vehicle speeding along travel routes with a demonstrated history of heavy vehicle crashes and/or speeding. The program targets heavy vehicles because they are over-represented in crashes on known heavy vehicle routes.
Average speed enforcement works by measuring the amount of time it takes a heavy vehicle to travel between points and then calculating the average speed of the vehicle. If the vehicle's average speed is faster than the speed limit for the length of road, the driver will be infringed for speeding.

4 Review Criteria for reviewing speed cameras

Speed cameras are used in NSW to reduce the number of people killed and injured in crashes.

The following sections outline the criteria that guide the review of speed camera performance in NSW.

4.1 Measuring the performance of speed camera programs

Table 2: Criteria for measuring the performance of speed camera programs

Program	Measure of Performance		
Fixed speed camera program	Reduction in vehicles speeding at fixed speed camera locations		
	Reduced frequency or severity of crashes at fixed speed camera locations		
Red-light speed camera program	Reduction in frequency and severity of crashes at enforced intersections		
Reduction in frequency and severity of crashes at all signalised intersections (due to deterrent effect across the network)			
	Reduction in road trauma across the entire road network		
	Reduction in speed-related crashes across the entire road network		
	Reduction in speeding across the entire road network		
Average speed camera program	Reduction in heavy vehicle speeding on enforcement lengths		Reduction in the frequency and severity of heavy vehicle crashes on
:---			
enforcement lengths			

Results for the above are presented in Section 8.

4.2 Measuring the performance of individual speed cameras

Table 3: Criteria for measuring the performance of individual speed cameras

Camera Type	Performance data	Measure of performance
Fixed speed cameras	Speeds	Reduction in vehicles speeding within 500 metres of the camera
	Crash data	Increase in compliance at camera location and/or reduction in infringement rates
	Risk	Reduction in casualties and crashes within 500 metres of the camera
Red-light speed cameras	Compliance data	Reduction in risk at the location (for example low level of speeding and/or crashes in tunnels)
Crash data	Reduction in vehicles exceeding speed limit at the intersection	
and/or reduction in infringement rates		

Results for the above are presented in Appendices A - D.

5 Data context

5.1 Road crash data

The crash statistics recorded by Transport for NSW in the CRS crash recording database, CrashLink, are confined to those crashes which conform to the national guidelines for reporting and classifying road vehicle crashes ${ }^{9}$, based on the following criteria:

- The crash was reported to the Police,
- The crash occurred on a road open to the public,
- The crash involved at least one moving road vehicle, and
- The crash involved at least one person being killed or injured or at least one motor vehicle being towed away.
The method of reporting tow away crash data changed in October 2014, and as such is no longer comparable to the before period. As a result, this review has focussed on casualty, fatal and serious injury crashes, compared to some of the reviews completed in previous years. This is further discussed in section 7.

In 2019, there was a change to the methodology used by NSW Health to define a serious injury. This change would result in a significant reduction in the number of serious injury crashes compared with previous years. Transport for NSW determined that the most appropriate course of action was to adopt the new serious injury definition for all crash records dating back to 2005.
This change has impacted significantly on certain findings in this report compared with previous reviews, most notably the findings related to the red-light speed camera program.

5.2 Injury severity

Crash data is presented by severity of injury, and defined as follows:

- Fatality: a person who dies within thirty days from injuries received in a road traffic crash.
- Serious injury: a person identified in CrashLink (casualty or driver or rider) who is matched to a hospital admission record on the same day or on the day after a crash and did not die within 30 days of the crash, and is admitted with at least one injury diagnosis; or linked to an iCare (Lifetime Care) participant record.
- Moderate injury: a person identified in CrashLink (casualty or driver or rider) who is matched to an emergency department attendance record on the same day or on the day after a crash but was not killed or not subsequently admitted to hospital; or a previously defined Minor/Other or No Injury CrashLink record matched to a SIRA CTP record with a MAIS score of 2 (Moderate) or higher.
- Minor / Other injury: a person identified as an injury in CrashLink who is not matched to a hospital admission record or emergency department attendance

[^5]record; or a previously defined No Injury CrashLink record matched to a SIRA CTP record with an MAIS score of 1 (Minor).

- Injury - Severity uncategorised: a person identified as an injury in CrashLink prior to 2005 for which data linkage with health records is not available.
- Casualty: any person killed or injured because of a crash.
- Casualty crash: a crash that results in at least one person killed or injured.

Crash data reported from 2005 onwards includes additional detail regarding injury severity, and are categorised as:

- Serious Injury,
- Moderate Injury,
- Minor / Other Injury.

Prior to 2005, crash data was not matched to hospital admissions or emergency department presentations, so all non-fatal injuries prior to 2005 were uncategorised with respect to the severity of injury.

5.2.1.1 Updated serious injury definition

In previous years, NSW defined a serious injury to be an injury from a crash which resulted in a hospital admission.
Under the current definition, a serious injury is defined as:

- A person matched to a hospital admission that identifies an injury,
or
- A person that has a SIRA icare (Lifetime Care) claim.

This has decreased the number of serious injuries per year due to the removal of hospital admissions for reasons other than injury.
In addition, further investigation and linkage of hospital data has improved the identification of serious injuries, and refreshed some data, as outlined below.

5.2.1.2 Inclusion of additional moderate injuries

The Centre for Road Safety has identified a number of people injured in crashes that did not report to police as having been injured at the time of the crash, but have subsequently made a claim for an injury. These records were identified within Compulsory Third Party (CTP) insurance claims.
Additional records of people injured in a crash were also identified within the NSW Government's emergency department presentation records.
As a result, a number of moderate injuries have been added into CrashLink for people that were previously recorded as not injured. This had the effect of increasing the numbers of moderate and minor injuries for years 2005 to 2013 (when compared to the totals reported in some previous years).

6 Data parameters

6.1 Five years of data

Typically, at least five years of data are required to make an assessment of a camera's performance. ${ }^{10}$

As some camera locations or lengths have been operational for less than five years, the data for these locations are insufficient to reliably assess performance.
Preliminary observations have instead been provided for these locations.

6.2 Time periods analysed

Data for the period before the installation of the camera (the "before" period) has been compared against data after the camera's commencement date (the "after" period, when warning letters and then infringements are issued).
To assess the current performance of the speed camera, the most recent five calendar year period (i.e. 2014-2018) is selected as the "after" period.

6.2.1 Pre-installation periods

For fixed, red-light and average speed camera programs, the five year "before" period ends three months prior to the "commencement date." This is to ensure that the "before" period does not capture the "pre-installation period" when behavioural changes may result from the presence of not-yet operational camera housing.
However, it should be noted that a significant portion of the red-light speed camera locations previously featured a wet-film red-light camera. (The wet-film red-light program preceded the red-light speed camera program). 84 of the 200 red-light speed camera locations previously featured a wet-film red-light camera.
Wet-film red-light cameras were operational for different periods of time, requiring there to be camera housing (poles and camera boxes) at the roadside at these locations. As a result, "before" data for a significant number of red-light speed cameras may have been impacted by drivers' perceptions that there was camera enforcement in place at these locations. It can be assumed that this would have improved drivers' compliance at these locations, compared to other sites where there were no camera housings in place.

6.2.2 Warning mode periods

Fixed and red-light speed cameras generally operate in warning mode for a onemonth period after the "commencement date". A one-month warning mode period also applied for mobile speed cameras when the program was introduced, but has not been applied since then.
NSW average speed camera lengths generally operate in warning mode for a twomonth period after the "commencement date".

[^6]Figure 1: Before, After and Warning Mode periods

NSW Fixed, Red-Light and Point-to-point Speed Cameras

6.3 Crashes selected for analysis

When reviewing fixed, red-light and average speed cameras, crash data were examined at individual speed camera locations.
When reviewing mobile speed cameras, crash data were examined for the entire state, due to the nature of mobile speed cameras and their purpose of creating a general deterrence effect across the NSW road network.

6.4 State-wide crash data

State-wide crash data is provided to compare the crash outcomes at fixed and redlight speed camera locations against the rates of change observed across NSW.

6.5 State-wide comparison traffic volume data

The Australian Bureau of Infrastructure, Transport and Regional Economics publishes the yearbook of Australian Infrastructure Statistics each year. ${ }^{11}$
NSW state-wide measures of vehicle kilometres travelled (VKT) as calculated for the yearbook are the basis of the state-wide vehicle volumes cited within this report.

6.6 State-wide speed survey data

Vehicle speeds were assessed state-wide via the CRS annual speed survey program. In 2018, speed surveys for the CRS annual speed survey program were conducted at 171 NSW locations, including a range of roads with a range of speed limits, to gather current information about the speeding behaviour of both light vehicle drivers and heavy vehicle drivers.
The surveys measure free travel speeds, with a headway of four seconds. That is, only the speeds of vehicles that are unimpeded by other traffic are measured. Therefore the survey provides a measure of the speed that drivers choose to travel rather than a measure of traffic congestion.

[^7]Speed surveys are not undertaken at specific speed camera enforcement locations. Because of this, this report instead uses infringement data at camera locations as a proxy for speed data.

6.7 Infringement data

Infringement data analysed in this report include penalty notices from July 2002 onwards. No earlier infringement data are available.

All fines from speed cameras are directed to the Community Road Safety Fund to pay for road safety programs across the state. Infringement data for red-light speed cameras, fixed speed cameras and mobile speed cameras are publicly available through the Revenue NSW website (http://www.revenue.nsw.gov.au/info/statistics).

7 Review methodology

7.1 Fixed speed camera locations

7.1.1 Fixed speed cameras analysed

While at the end of 2018 there were 109 fixed speed camera locations across NSW, road safety benefits were only assessed in detail for 97 fixed speed camera locations within this report.
12 fixed speed camera locations were excluded, as follows:

- Seven locations are currently operating in warning mode. ${ }^{12}$ This report includes information on crashes, warning letters and infringements at these locations within Appendix A (sections A4 \& A5).
- Five locations are located in tunnels (and were sometimes referred to in the review as "high risk" locations). These cameras were generally installed when the tunnel was constructed, therefore no pre-installation data are available. Post installation crash and infringement data for these locations is presented at section A6.

The 98 fixed speed camera locations analysed in this report have been operational for the following periods:

Table 4: Operational duration of NSW fixed speed cameras

NSW fixed speed cameras		
Operational for 5 years or more:		
Operational for less than 5 years:		5 locations
	Total:	$\mathbf{9 7}$ locations

7.1.2 Road length analysed for each camera

Crash data were typically examined within 500 metres either side of fixed speed cameras.

For fixed speed cameras located within a school zone, crash data were examined from patch-to-patch (i.e. the length of road designated as a school zone, as identified by the start and end $40 \mathrm{~km} / \mathrm{h}$ patches marked on the road).
For locations with more than one camera in operation (where cameras are less than 100 metres apart), the crash analysis length was for 500 metres either side of the mid-point of the two cameras.
One fixed speed camera location - the M1 Princes Motorway (formerly the F6, Southern Freeway) Gwynneville - had two cameras operating approximately 1,000 metres apart and infringing in different directions. Within this report, the two cameras were listed as separate locations for the directions they enforce.

[^8]
7.1.3 Recommendations

This report considered "before" and "after" crash analysis, and whether the fixed speed camera location has previously been comprehensively reviewed, to develop recommendations as follows:

Table 5: Developing recommendations for fixed speed cameras

Recommendation	Trigger	Outcome
Review	Major roadworks have been undertaken at the location or	TfNSW will undertake a comprehensive review of the camera location.
	There has been a statistically significant increase ${ }^{13}$ in the number of casualty crashes, and the camera has not been reviewed in the last 5 years.	
Retain and monitor	There has been an increase in the number of casualty crashes, but it is not a statistically significant result.	The camera will continue to be used at the location. The location will also be flagged for ongoing monitoring in future reviews.
Retain	There has been no increase in casualty crashes or	The camera will continue to be used at the location.
	There has been an increase in the number of casualty crashes, but it is not a statistically significant result, and the location has been reviewed within the last 5 years or	
	There has been a statistically significant increase ${ }^{14}$ in the number of casualty crashes, but the location has been reviewed within the last 5 years.	
Insufficient data	There is less than 5 years of 'after' data available.	The camera will be assessed once 5 years of "after" data is available.
Ineligible	There is a review currently underway at the location, or	TfNSW will complete the comprehensive review.
	The camera has been removed.	Nil.

[^9]
7.1.4 Comprehensive reviews

Where required, comprehensive reviews will be undertaken as per the process in previous years. Depending on the findings of each comprehensive review, the fixed speed camera may be removed, and road safety treatments implemented to address any identified road safety risks. These treatments may involve improved signage, road works, traffic facilities, speed zoning reviews and targeted communications.
The Centre for Road Safety has recently completed reviews at:

- Berry - Princes Highway, between Kangaroo Valley Road and Victoria Street
- Foxground - Princes Highway, between Foxground Road and Broughton Creek
Both of these fixed speed camera locations were decommissioned on the basis that the road environments have changed significantly since the completion of the Berry Bypass, which has relocated many traffic movements onto the newly opened section of the Princes Highway.
Transport for NSW is continuing a program of comprehensive speed camera reviews at the following locations, and will soon commence a program of community consultation:
- Hungry Head - Giinagay Way (formerly the Pacific Highway), between Boundary Road and Ballards Road
- Valla Beach - Giinagay Way (formerly the Pacific Highway), between Valla Beach Road and Oyster Creek
- Bomaderry - Bolong Road, between Beinda Street and Coomea Street
- Brogo - Princes Highway, between Pioneer Close and Brogo River
- Burringbar - Tweed Valley Way, between Blakeneys Road and Cooradilla Road
- North Narrabeen - Pittwater Road, between Garden Street and Namona Street (School Zone)
- Queanbeyan - Lanyon Drive, between Tompsitt Drive and Hoover Road
- Rydalmere - Victoria Road, between Park Road and John Road (School Zone)
- Hartley - Great Western Highway, between Mid Hartley Road and Blackmans Creek
- Terrigal - Terrigal Drive, between Brunswick Road and Bellbird Avenue (School Zone)
- Moore Park - ANZAC Parade at Lang Road (RLSC location).

7.1.5 Additional technical notes

Additional technical notes for the analysis of fixed speed cameras:

1. The commencement date listed for each location refers to the date that the fixed speed camera commenced infringement (or warning mode) at that location. For locations where more than one fixed speed camera is in operation, the date listed refers to the date that the first camera started infringing at that location, unless otherwise specified.

Additional technical notes for the analysis of fixed speed cameras:

2. For each location, the "before" and "after" periods vary depending on the date the camera commenced infringement, and exclude the three-month period directly before the commencement date.
For each location, the "before" period was defined as the five-year period up to three months prior to the "commencement date" (when infringements commence). The "after" period was defined as the most recent five-year calendar period (2014-2018).
3. In instances when there was less than five years of "before" data, the "before" period was adjusted so that it represented an equivalent five-year period.
4. The percentage reduction for crashes and casualties are based on the annual averages in crashes and casualties at each location in the "before" period and the "after" period. This allows an approximate comparison to be made between the five-year "before" period and the most recent five calendar year "after" period (2014-2018).
5. The estimated casualty cost for the "before" period and the most recent five calendar year "after" period was calculated using the willingness to pay methodology, which reflects the accumulated value the NSW community is willing to pay or forgo in exchange for a reduction in the probability of crash related injuries and road crash deaths on NSW roads.
The casualty costs used were based on the costs for the weighted average of urban and non-urban fatal and injury reductions, as follows:

* \$7,752,786 per fatality,
* $\$ 495,874$ per serious injury,
* \$77,472 per moderate or minor/other injury, and
* $\$ 216,079$ per uncategorised injury.

6. For each fixed speed camera location, a test of significance of the observed change in casualty crashes was conducted using the conditional method. ${ }^{15}$
This approach compared the number of casualty crashes in the "after" period with the conditional distribution of the casualty crashes in the "after" period given the total casualty crashes in both the "before" and "after" periods.
7. Data for the crash analysis have not been ranked and are presented alphabetically according to the location description of the camera location.

7.2 Red-light speed camera locations

7.2.1 Red-light speed cameras analysed

At the end of 2018, there were 200 red-light speed cameras in total, operating at 180 intersections around Sydney, Newcastle and Wollongong. 19 intersections featured two or more cameras.

All red-light speed camera intersections were analysed in this report, and they have been operational for the following periods:

[^10]| Operational for 5 years or more: | | 124 |
| :--- | :---: | :---: |
| Operational for less than 5 years: | | 56 |
| | Total: | $\mathbf{1 8 0}$ |

7.2.2 Road length analysed for each camera

Crash data were examined within 10 metres of each intersection with a red-light speed camera.

7.2.3 Analysis of specific crash types

In addition to total casualties at each location, pedestrian casualties were specifically examined given the greater exposure of pedestrians at signalised intersections and the higher likelihood of severe casualty outcomes for this group due to their lack of protection in a crash.
Data were also examined for adjacent, right-through and rear-end casualty crashes, as these are the crash types that typically occur at intersections. Adjacent and rightthrough crashes are often more severe as drivers and passengers are not as protected from side impact crashes, with low-speed side impact crashes potentially resulting in severe injuries. The frequency and severity of these crash types are expected to reduce at intersections enforced by red-light speed cameras.

Red-light speed cameras are intended to counteract the potential increase in rear-end crashes by also enforcing speed, as it is easier for drivers to brake in time to avoid a rear-end collision when they are driving at lower speeds.

7.2.4 Recommendations

This is the fourth year that sufficient data has been available to assess individual redlight speed camera locations.

This review considered "before" and "after" crash analysis to develop these recommendations. No red-light speed camera locations have previously been reviewed, so this was not a factor in developing recommendations.
Table 6 (overleaf) outlines the process for developing recommendations for red-light speed camera locations.

Table 6: Developing recommendations for red-light speed cameras

Recommendation	Trigger	Outcome
Review	There has been a statistically significant increase ${ }^{16}$ in the number of fatal and serious injury crashes.	TfNSW will undertake a comprehensive review of the camera location.
Retain and monitor	There has been an increase in the number of fatal and serious injury crashes but it is not a statistically significant result.	The camera will continue to be used at the location. The location will also be flagged for ongoing monitoring in future reviews.
Retain	There has been no increase in fatal and serious injury crashes.	The camera will continue to be used at the location.
Insufficient data	There is less than 5 years of 'after' data available.	The camera will be assessed once 5 years of "after" data is available.
Ineligible	There is a review currently underway at the location	TfNSW will complete the comprehensive review.

7.2.5 Additional technical notes

Additional technical notes for the analysis of red-light speed cameras

1. To identify crashes at each intersection, CRS initially examined crashes geo-coded to be within 200 metres of the traffic signals. Crashes were then assigned to the enforced intersection if they occurred within, or up to 10 metres from, the intersection.
2. These crashes were attributed to the relevant intersection by taking into account the geo-coding as well as the street name, identifying feature(s), and intersection type.
3. Where unclear, the correct location of the crash was confirmed or inferred from the original police report.
4. The commencement of the warning letter period was listed for each camera. For the analysis of intersections with two cameras, the "after" period was based on the earlier of the two commencement dates.
5. Data for each crash type (adjacent, right- and rear-end) was reported based on Road User Movement (RUM) codes. RUM codes describe the first impact that occurred during the crash. Adjacent crashes are indicated by RUM code 10; Right-crashes are coded 21 and rear-end crashes are coded 30. More information on RUM codes can be found in the Definition and notes to support road crash data at http://roadsafety.transport.nsw.gov.au/downloads/definitions-notes.pdf
6. The improvement rates for crashes and casualties were based on the annual averages in crashes and casualties at each location before and after the cameras were installed. This allowed an approximate comparison to be made between the five year "before" period and the available data for the "after" period until December 2018 (which is less than five years for a number of red-light speed camera locations).
[^11]Additional technical notes for the analysis of red-light speed cameras
7. The estimated casualty cost for the "before" period and the most recent five calendar year "after" period was calculated using the willingness to pay methodology, which reflects the accumulated value the NSW community is willing to pay or forgo in exchange for a reduction in the probability of crash related injuries and road crash deaths on NSW roads. The casualty costs used were based on the costs for the urban fatal and injury reductions, as follows:

* $\$ 7,425,549$ per fatality,
* \$445,526 per serious injury,
* $\$ 68,550$ per moderate or minor/other injury.

8. Crash data were not ranked and were presented alphabetically by suburb of the camera location.

7.3 Mobile speed camera locations

7.3.1 Road lengths analysed

The entire NSW road network was analysed to review the general deterrence effect of the mobile speed camera program.

7.3.2 Program structure and periods of enforcement

The mobile speed camera program delivered 7,000 enforcement hours per month at 1,024 locations.

7.4 Average speed enforcement lengths

7.4.1 \quad Average speed enforcement lengths analysed

The average speed camera program only targets heavy vehicles. The program includes 25 enforcement lengths ranging from $7-94 \mathrm{~km}$, and includes most major NSW highways. Enforcement lengths were installed over the following years:

Year		installed
2010	2	(5 years of crash data is available for these lengths)
2011	14	
2012	4	
2013	1	
2014	3	(Less than 5 years of crash data is available for the lengths)
2015	1	
2016	0	
2017	0	
2018	0	
Total:	25	

As for previous years, heavy vehicle crash and infringement data are presented to facilitate analysis of the current impact of individual average speed enforcement lengths.

8 Results and discussion

This review has found that speed cameras are continuing to improve road safety in NSW. Results from the fixed, red-light, mobile and average speed camera programs show that drivers are changing their behaviour, which overall is resulting in a reduction in crashes and casualties at camera locations and across the road network. NSW's four speed camera programs are individually considered below.

8.1 Fixed speed cameras

Program size as at 31 December 2018: 138 cameras at 109 locations ${ }^{17}$
Median camera installation date: 1 May 2003
The analysis of individual fixed speed camera locations is available at Appendix A.
Overall, there has been a reduction in fatal crashes and casualty crashes at fixed speed camera locations since the cameras were installed, compared with the five year period prior to installation.
Specifically, at fixed speed camera locations there has been a:

- 36 per cent reduction in casualty crashes
- 74 per cent reduction in fatalities
- 41 per cent reduction in injuries.

The reduction in fatalities and injuries represents a saving of $\$ 530$ million to the community.

The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period:

- 18 per cent reduction in casualty crashes
- 35 per cent reduction in fatalities
- 20 per cent reduction in injuries.

It should also be noted, alongside the crash data discussed above, that there has also been a notable increase in traffic volumes. Over the periods that fixed digital speed cameras have been reviewed within this report, there has been a 21 per cent increase in traffic volume across NSW. ${ }^{18}$

8.1.1 Individual fixed speed camera locations

Analysis within Appendix A has identified the following findings for individual camera locations:

[^12]Table 7: Fixed speed camera locations status

Camera Status:	Number of Cameras	
Insufficient data	A more comprehensive analysis over a longer time period is required before drawing any conclusions.	5
Ineligible	The camera has been removed or a review is currently underway	10
5 years of "after" data is available for the camera.	Retain	Retain and monitor

The following table identifies fixed speed cameras with notable reductions in casualty crashes:

Table 8: Top performing fixed speed cameras

Location	Casualty crashes		Change in casualty crashes	\% change
	Before	After		
New England Highway, Tenterfield	6	0	$\downarrow 6$	$\downarrow 100$
Hinterland Way, Ewingsdale	14	1	$\downarrow 13$	\downarrow 92.9\%
Kingsway, Miranda (school zone)	14	2	$\downarrow 12$	\downarrow 85.7\%
Greystanes Road, Greystanes	13	2	$\downarrow 11$	\downarrow 84.6\%
Princes Highway, Bulli	26	6	$\downarrow 20$	$\downarrow 76.9 \%$

8.1.2 Fixed speed cameras identified to review / monitor

CRS has identified five camera locations that recorded an increase in casualty crashes. These increases were not statistically significant and the locations will be monitored in future years.
This is the third year in a row that Bonnyrigg (Elizabeth Drive) has been identified for additional monitoring and the second year in a row that Bonnyrigg (Cabramatta Road) has been identified for additional monitoring.

Table 9: Key crash data for identified fixed speed cameras

	Pre-Installation						Post-Installation					
		\mathscr{y} 0						y 0				
$\begin{gathered} \text { Bonnyrigg } \\ \text { (Cabramatta } \\ \text { Road) } \\ \hline \end{gathered}$	10	3	6	2	4	4	9	0	5	0	3	2
Bonnyrigg (Elizabeth Drive)	16	2	11	1	8	8	3	0	2	0	0	1
Lochinvar	6	0	2	0	3	3	3	0	0	1	0	0
Nords Wharf	8	3	5	0	9	9	2	3	2	0	2	2
Rankin Park	9	9	9	2	8	8	6	4	5	0	4	1
Total	49	17	33	5	32	32	23	7	14	1	9	6
				ercen	age c	nge:	$\downarrow 53 \%$	$\downarrow 59 \%$	$\downarrow 58 \%$	$\downarrow 80 \%$	$\downarrow 72 \%$	$\downarrow 81 \%$

8.1.2.1 Bonnyrigg (Cabramatta Road)

Casualty crashes at the Bonnyrigg (Cabramatta Road) fixed digital speed camera location rose from 25 in the five years prior to installation of the camera, to 27 in the most recent five years (to the end of 2018). This is not a statistically significant outcome.

However, despite the rise in the overall number of casualty crashes, the crash types most likely to be improved by the presence of a fixed speed camera have improved over these periods. Speeding has also fallen by approximately 87 per cent at this location.

These outcomes represent a substantial road safety gain - particularly considering that vehicle volumes have risen by an estimated 16 per cent at this location since the camera was installed in 2007.

8.1.2.2 Bonnyrigg (Elizabeth Drive)

Casualty crashes at the Bonnyrigg (Elizabeth Drive) fixed digital speed camera location rose from 12 in the four years prior to installation of the camera, to 18 in the most recent five years (to the end of 2018). This is not a statistically significant outcome.
However, despite the rise in the overall number of casualty crashes, the crash types likely to be improved by the presence of a fixed speed camera have improved over these periods. Speeding has also fallen by approximately 66 per cent at this location.

These outcomes represent a substantial road safety gain - particularly considering that vehicle volumes have risen by an estimated 29 per cent at this location since the camera was installed in the year 2000.

8.1.2.3 Lochinvar

Casualty crashes at the Lochinvar fixed digital speed camera location rose from three in the four years prior to installation of the camera, to four in the most recent five years (to the end of 2018). This is not a statistically significant outcome.
However, despite the rise in the overall number of casualty crashes, the crash types most likely to be improved by the presence of a fixed speed camera have improved or remained constant over these periods. Speeding has also fallen by approximately 81 per cent at this location.
These outcomes represent a substantial road safety gain - particularly considering that vehicle volumes have risen by an estimated 29 per cent at this location since the camera was installed in 2000.

8.1.2.4 Nords Wharf

Casualty crashes at the Nords Wharf fixed digital speed camera location rose from two in the five years prior to installation of the camera, to three in the most recent five years (to the end of 2018). This is not a statistically significant outcome.

However, despite the rise in the overall number of casualty crashes, the crash types most likely to be improved by the presence of a fixed speed camera have improved or remained constant over these periods. Speeding has also fallen by approximately 94 per cent at this location.
These outcomes represent a substantial road safety gain - particularly considering that vehicle volumes have risen by an estimated 25 per cent at this location since the camera was installed in 2003.

8.1.2.5 Rankin Park

This location was previously comprehensively reviewed and was retained after being determined to be contributing a road safety benefit.
Casualty crashes at the Rankin Park fixed digital speed camera location rose from three in the five years prior to installation of the camera, to nine in the most recent five years (to the end of 2018). This is not a statistically significant outcome.
However, despite the rise in the overall number of casualty crashes, the crash types most likely to be improved by the presence of a fixed speed camera have improved over these periods. Speeding has also fallen by approximately 93 per cent at this location.

These outcomes represent a substantial road safety gain - particularly considering that vehicle volumes have risen by an estimated 24 per cent at this location since the camera was installed in 2003.

8.2 Red-light speed cameras

Program size as at 31 December 2018: 200 cameras at 180 intersections
Median camera installation date: 29 July 2011
The analysis of red-light speed camera locations is available at Appendix B.
Overall, there has been a reduction in fatal crashes and serious injury crashes at redlight speed camera locations since the cameras were installed, compared with the five year period prior to installation.

Specifically, at red-light speed camera locations there has been a:

- 23 per cent reduction in fatal and serious injury crashes
- 73 per cent reduction in fatalities
- 24 per cent reduction in serious injuries
- 52 per cent reduction in pedestrian casualties.

The reduction in fatalities and serious injuries represents a saving of $\$ 107$ million to the community.

The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period:

- 10 per cent increase in fatal and serious injury crashes
- 14 per cent reduction in fatalities
- 11 per cent increase in serious injuries
- 30 per cent reduction in pedestrian casualties.

It should also be noted, alongside the crash data discussed above, that there has also been a notable increase in traffic volumes. Over the period that red-light speed cameras have been reviewed within this report, there has been a 12 per cent increase in traffic volume across NSW. ${ }^{19}$

8.2.1 Individual red-light speed camera locations

Analysis within Appendix B identifies the following findings for individual camera locations:

Table 10: Red-light speed camera location status

	Camera Status:	Number of Fixed Speed Cameras
Insufficient data	A more comprehensive analysis over a longer time period is required before drawing any further conclusions.	56
	Retain	Retain and monitor

The following table identifies red-light speed cameras with notable reductions in fatal / serious injury crashes:

[^13]Table 11: Top performing red-light speed cameras

Location	$\begin{array}{c}\text { Fatal / Serious } \\ \text { Injury crashes } \\ \text { After }\end{array}$		$\begin{array}{c}\text { Change in } \\ \text { FSI crashes }\end{array}$	\% change
	Before	A	0	$\downarrow 6$

8.2.2 Red-light speed cameras identified to retain / monitor

39 locations recorded an increase in fatal and serious injury crashes, none of which were statistically significant increases. This figure was noticeably higher than the previous year in which there were 18 locations which recorded an increase in fatal and serious injury crashes. This was a result of the change in the serious injury definition discussed in Section 5.1. The 39 locations will be monitored closely in future years.

Four of the 39 locations have been identified for monitoring for at least the past 3 years now. Additional analysis has been completed for these locations as outlined below.

Table 12: Key crash data for identified red-light speed cameras

	Pre-Installation				Post-Installation			
Milperra - Newbridge Road at Henry Lawson Drive	1	1	3	8	0	2	2	20
North Ryde - Wicks Road at Epping Road	0	1	0	9	0	1	1	10
Petersham - Gordon Street at New Canterbury Road	1	2	3	2	2	2	1	3
South Penrith - Parker Street at Jamison Road	1	2	7	3	0	1	3	2
3 6 13 22 Percentage change:					2	6	7	35
					$\downarrow 33 \%$	Nil.	$\downarrow 46 \%$	$\uparrow 59 \%$

8.2.2.1 Milperra (Newbridge Road at Henry Lawson Drive)

Fatal and serious injury crashes have increased from 1 such crash in the five years prior to the installation of the camera, to 5 such crashes in the most recent five calendar years to the end of 2018. This is not a statistically significant outcome.

Two of crash types likely to be improved by the presence of a red-light speed camera (pedestrian casualties and right through crashes) have improved at this location, while two others (adjacent and rear-end casualty crashes) have worsened. Red-light running and speeding have also fallen by approximately 99 per cent and 100 per cent at this location.

Overall, these outcomes represent a substantial road safety gain, particularly considering that traffic volumes have grown by an estimated 14 per cent at this location since the camera was installed in 2010.

8.2.2.2 North Ryde (Wicks Road at Epping Road)

Fatal and serious injury crashes have increased from 1 such crash in the five years prior to the installation of the camera, to 6 such crashes in the most recent five calendar years to the end of 2018. This is not a statistically significant outcome.
There have been no pedestrian casualty crashes since in the last 5 years and adjacent casualty crashes have remained flat. Right through and rear-end casualty crashes have worsened. Red-light running and speeding have fallen by approximately 93 per cent and approximately 96 per cent respectively at this location.

Overall, these outcomes represent a road safety gain, particularly considering that traffic volumes have grown by an estimated 13 per cent at this location since the camera was installed in 2010.

8.2.2.3 Petersham (Gordon Street at New Canterbury Road)

There has been an increase in fatal and serious injury crashes at this location, from zero such crashes in the five years prior to the installation of the camera to 1 such crashes in the most recent five calendar years to the end of 2018. This is not a statistically significant outcome.
Right-through casualty crashes have improved at this location, while two others (pedestrian casualties and rear end casualty crashes) have worsened. The number of adjacent casualty crashes has remained constant. Red-light running has also fallen by approximately 94 per cent at this location, but speeding cannot be enforced at this location for technical reasons.

Overall, these outcomes represent a road safety gain, particularly considering that traffic volumes have grown by an estimated 14 per cent at this location since the camera was installed in 2010.

8.2.2.4 South Penrith - Parker Street at Jamison Road

There has only been a small increase in fatal and serious injury crashes at this location, from 1 such crash in the five years prior to the installation of the camera to 2 such crashes in the most recent five calendar years to the end of 2018. This is not a statistically significant outcome.

However, despite the rise in the overall number of casualty crashes, the crash types likely to be improved by the presence of a red-light speed camera have improved. Both red-light running and speeding have also fallen by approximately 100 per cent at this location.

Overall, these outcomes represent a road safety gain, particularly considering that traffic volumes have grown by an estimated 13 per cent at this location since the camera was installed in 2010.

8.3 Mobile speed cameras

The analysis of the mobile speed camera program is available at Appendix C. There were 347 fatalities on NSW roads in 2018. This was a reduction on the 2017 figure (380) and was significantly below the 2009 figure of 453 (prior to the reintroduction of mobile speed cameras in 2010).
The NSW fatality rate per 100,000 population was 4.3 in 2018. This was lower than the 2017 figure and remains significantly below the 2009 figure of 6.4.
Annual speed survey data indicate that the mobile speed camera program continues to deliver road safety benefits, compared to results prior to the reintroduction of the mobile speed camera program.

8.3.1 Light vehicles

NSW speed survey data for the last nine years shows a reduced proportion of light vehicles exceeding the speed limit, across most speed zones.

Comparing the 2018 speed survey results against those from 2017, there is also a decreased proportion of light vehicles exceeding the speed limit, for all speed zones except for in the $40 \mathrm{~km} / \mathrm{h}$ school zone, $50 \mathrm{~km} / \mathrm{h}, 70 \mathrm{~km} / \mathrm{h}, 80 \mathrm{~km} / \mathrm{h}$ and $90 \mathrm{~km} / \mathrm{h}$ zones. The percentage of vehicles exceeding the speed limit by $10 \mathrm{~km} / \mathrm{h}$ or more has decreased in all speed zones except in the $40 \mathrm{~km} / \mathrm{h}, 60 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$.

8.3.2 Heavy vehicles

The speed survey results also indicate that there has been a decrease in the proportion of heavy vehicles exceeding the speed limit over the last 10 years; but while this is true for most speed zones, it is not the case for exceeding the speed limit by $10 \mathrm{~km} / \mathrm{h}$ or more in $60 \mathrm{~km} / \mathrm{h}$ zones.

8.3.3 Infringements

In 2018 there were a total of 25,552 infringements issued from mobile speed camera enforcement resulting in $\$ 5.3$ million of fines. The cost of conducting the mobile speed camera program in 2018 was $\$ 14.6$ million.
The total number of mobile speed camera infringements issued in 2018 increased by 20 per cent compared to 2017.

8.3.4 Vehicle compliance rate

In 2018 the compliance rate was 99.9%. This high rate of compliance has remained consistent since 2010 when the program was reintroduced.
Overall, the trend in road fatalities, infringements and annual speed survey data demonstrates that the mobile speed camera program has delivered road safety benefits over the years since the program was re-introduced in 2010.

8.4 Average speed cameras

The analysis of the average speed camera program is available at Appendix \mathbf{D}.

8.4.1 Crash Data

Overall, there has been a reduction in fatal crashes and casualty crashes involving a heavy vehicle on NSW average speed enforcement lengths since those lengths were installed, compared with the five year period prior to installation.

Across heavy vehicle average speed camera lengths, there has been a:

- 27 per cent reduction in casualty crashes involving a heavy vehicle
- 45 per cent reduction in fatalities from crashes involving heavy vehicles
- 10 per cent reduction in serious injuries from crashes involving heavy vehicles.

The reduction in fatalities and serious injuries represents a saving of $\$ 144$ million to the community.
The trauma reductions at camera locations compare to the following rates of change observed across NSW over the same period for crashes involving heavy vehicles:

- 10 per cent reduction in casualty crashes involving a heavy vehicle
- 18 per cent reduction in fatalities from crashes involving heavy vehicles
- 21 per cent increase in serious injuries from crashes involving heavy vehicles.

It should also be noted, alongside the crash data discussed above, that there has also been a notable increase in heavy vehicle traffic volumes. Over the period that heavy vehicle average speed enforcement lengths have been reviewed within this report, there has been a 13 per cent increase in heavy vehicle volume across NSW. ${ }^{20}$

8.4.2 Infringement Data

A total of 2,055 speeding infringements, resulting in total fines of $\$ 932,271$, were issued at NSW average speed camera lengths in 2018.

Overall, there has been a reduction in fatal crashes and casualty crashes involving a heavy vehicle on NSW average speed enforcement lengths since those lengths were installed, compared with the five year period prior to installation.
This represents a particularly notable road safety improvement when compared to NSW heavy vehicle volumes, which have risen 13 per cent over the same period. ${ }^{21}$
NSW is currently expanding the heavy vehicle average speed camera program to metropolitan areas, and CRS will continue to monitor the program.

[^14]
[^0]: ${ }^{1}$ Of the 109 fixed speed camera locations, seven locations operate in warning mode and five locations are high risk sites located in tunnels. Recommendations are not provided for these warning mode and high risk locations.
 ${ }^{2}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^1]: ${ }^{3}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^2]: ${ }^{4}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE
 ${ }^{5}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^3]: ${ }^{6}$ https://www.audit.nsw.gov.au/ArticleDocuments/200/Improving Road Safety Media Release.pdf.aspx?Embed=Y
 ${ }^{7}$ For speed cameras operating in warning mode, warning letters are issued to motorists detected speeding, unless they exceed the speed limit by more than $30 \mathrm{~km} / \mathrm{h}$, in which case a court attendance notice is issued and drivers face significant penalties. A three-strikes system also applies, where if a registered operator of a vehicle is issued two warning letters from the one warning mode camera, an infringement will be issued for a third offence and any further offences at that location.

[^4]: ${ }^{8}$ Of the 109 fixed speed camera locations, seven locations operate in warning mode and five locations are high risk sites located in tunnels. Recommendations are not provided for these warning mode and high risk locations.

[^5]: ${ }^{9}$ More information about how crash data is processed in NSW is available online at www.roadsafety.transport.nsw.gov.au.

[^6]: ${ }^{10}$ Austroads (2009). Guide to Road Safety Part 8: Treatment of Crash Locations. Publication No. AGRS08/09.

[^7]: ${ }^{11}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^8]: ${ }^{12}$ For speed cameras operating in warning mode, warning letters are issued to motorists detected speeding, unless they exceed the speed limit by more than $30 \mathrm{~km} / \mathrm{h}$, in which case a court attendance notice is issued and drivers face significant penalties.
 A three-strikes system also applies, where if a registered operator of a vehicle is issued two warning letters from the one camera location, an infringement will be issued for a third offence and any further offences at that location.

[^9]: ${ }^{13}$ A p-value of 0.05 has been applied to determine statistical significance
 ${ }^{14} \mathrm{~A} p$-value of 0.05 has been applied to determine statistical significance

[^10]: ${ }^{15}$ Przyborowski, J., Wilenski, H., 1940. Homogeneity of results in testing samples from Poisson series. Biometrika 31, 313-323.

[^11]: ${ }^{16}$ A p-value of 0.05 has been applied to determine statistical significance

[^12]: ${ }^{17}$ Of the 109 fixed speed camera locations, seven locations operate in warning mode and five locations are high risk sites located in tunnels. Recommendations are not provided for these warning mode and high risk locations.
 ${ }^{18}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^13]: ${ }^{19}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

[^14]: ${ }^{20}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE
 ${ }^{21}$ Estimates for Vehicle Kilometres Travelled (VKT) estimated in Yearbook 2019: Australian Infrastructure Statistics, Statistical Report, BITRE

