Intended for

John Holland Rail Pty Ltd

Document type

Report

Date

March 2022

CAPTAINS FLAT STATION MASTERS COTTAGE DETAILED SITE INVESTIGATION

CAPTAINS FLAT STATION MASTERS COTTAGE DETAILED SITE INVESTIGATION

Project name Captains Flat Station Masters Cottage - Detailed Site Investigation

Project no. **318001025-T6-P4**Recipient **Michael Hooper**

Document type **Report**

Description This report provides the results of the Detailed Site Investigation (DSI)

undertaken to investigate the nature and extent of contamination in the former Station Masters Cottage adjacent to the former load-out facility and

rail corridor in Captains Flat, NSW.

Ramboll

Level 2, Suite 18 Eastpoint

50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

Revision	Date	Prepared by	Checked by	Approved by	Description
Rev 0	17/01/2022	N McGuire	S Maxwell	F Robinson	For client review
Rev 1	1/03/2022	N McGuire	S Maxwell	F Robinson	For client review

F Robinson CEnvP Certification No. SC400100

CONTENTS

Abbrev	iations	iv
Executi	ve Summary	1
1.	Introduction	3
1.1	Preamble	3
1.2	Background	3
1.3	Objectives	4
1.4	Scope of Work	4
2.	Site Identification	5
2.1	Site Identification	5
2.2	Site Details	5
2.3	Surrounding Land Use	5
3.	Site History	7
4.	Site Condition and Surrounding Environment	8
4.1	Topography and Hydrology	8
4.2	Geology	8
4.3	Hydrogeology	8
4.4	Site Contamination Summary	8
4.5	Air Quality Assessment	9
5.	Preliminary Conceptual Site Model	11
5.1	Environmental Setting	11
5.2	Sources of the Contaminant	11
5.3	Potential Contaminants of Concern	11
5.4	Human and Ecological Receptors	11
5.5	Exposure Pathways	11
6.	Sampling and Analysis Quality Plan	14
6.1	Sampling Plan	15
6.1.1	Soil Sampling	15
6.1.2	Internal Dust Sampling	16
6.1.3	Groundwater Sampling	16
6.1.4	Analytical Schedule	17
7.	Tier 1 Assessment Criteria	18
7.1	Soil	18
7.2	Groundwater	20
7.3	Indoor Dust	23
8.	Quality Assurance and Quality Control	24
8.1	Analytical Schedule	24
8.2	Sampling Methodologies	24
8.2.1	Soil Sampling	25
8.2.2	Groundwater Sampling	25
8.2.3	Interior Dust	26
8.2.4	Paint	27
8.3	Quality Control	28
9.	Results	34
9.1	Soil Results	34

i

9.1.1	Soil Lithology	34
9.1.2	Analytical Results	34
9.2	Groundwater Results	36
9.2.1	Groundwater Gauging Data	36
9.2.2	Water Quality Parameters	36
9.2.3	Analytical Results	36
9.3	Indoor Dust and Paint Results	38
10.	Refined Conceptual Site Model	39
10.1	Environmental Setting	39
10.2	Sources of the Contaminant	39
10.3	Potential Contaminants of Concern	39
10.4	Human and Ecological Receptors	39
10.5	Exposure Pathways	39
11.	Site Characterisation	42
12.	Conclusions and Recommendations	43
13.	Limitations	44
13.1 14.	User Reliance References	44 45
TADI	E OF TABLES	
	Table 2-1: Site Identification	5
	Table 4-1: Air Quality Monitoring Locations	9
	Table 5-1: Exposure Assessment Summary	13
	Table 6-1: Data Quality Objectives	14
	Table 6-2: Proposed Soil Sampling Program	16
	Table 6-3: Analytical Schedule	17
	Fable 7-1: Soil Assessment Criteria – Health and Ecological Investigation	_,
	Levels	19
	Fable 7-2: Soil Health Screening Levels for Vapour Intrusion HSL A/B -	
	Clay	19
	Fable 7-3: Ecological Screening Levels, Management Limits and Direct	
	Contact for Petroleum Hydrocarbons and speciated PAHs in Soil	20
	Fable 7-4: Groundwater Assessment Criteria (mg/L)	21
٦	Γable 7-5: Groundwater Investigation Levels (μg/L)	21
٦	Γable 7-6: Lead Dust Assessment Criteria (μg/m²)	23
٦	Table 8-1: Analytical Schedule	24
٦	Table 8-2 Sampling and Analysis Methodology Assessment	28
٦	Table 8-3 Field and Laboratory QA/QC	30
٦	Table 8-4 QA/QC Assessment	31
٦	Table 9-1: Summary of Soil Exceedances	35
٦	Table 9-2: Summary of Groundwater Results	37
٦	Table 9-3: Summary of lead concentrations relevant to health	
	nvestigation levels	38
٦	Γable 10-1: Exposure Assessment Summary	40

APPENDICES

Appendix 1

Figures

Appendix 2

Photographic Log

Appendix 3

EIL Calculations

Appendix 4

Calibration Certificates

Appendix 5

Analytical Summary Tables

Appendix 6

NATA Accredited Laboratory Reports

Appendix 7

Bore Logs

ABBREVIATIONS

Measures	Description
%	per cent
km	Kilometres
m	Metre
m bgl	Metres below ground level
mg/kg	Milligrams per Kilogram
AHD	Australian Height Datum
CLM Act	NSW Contaminated Land Management Act 1997
Council	Queanbeyan Palerang Council
DP	Deposited Plan
EIL	Ecological Investigation Level
EPA	Environment Protection Authority (NSW)
ESA	Environmental Site Assessment
HIL	Health Investigation Level
JHR	John Holland Rail
Mercury	Inorganic mercury unless noted otherwise
ND	Not Detected
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
рН	A measure of acidity, hydrogen ion activity
fpXRF	Field Portable X-Ray Fluorescence metals analyser
QA/QC	Quality Assurance/Quality Control
RAP	Remedial Action Plan
TfNSW	Transport for NSW

EXECUTIVE SUMMARY

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfNSW) to assess and provide management advice for contamination in the area of a former load-out facility within the Country Regional Network (CRN) at Captains Flat, New South Wales (NSW). This engagement included a detailed site investigation (DSI) for the former Station Masters Cottage at 2 Copper Creek Road, Captains Flat, New South Wales (the site)) which is situated adjacent to the load out facility.

On 25 September 2020 TfNSW notified the NSW EPA of contamination within the rail corridor adjacent the site under section 60 of the CLM Act. On 22 April 2021 the NSW EPA declared the load out facility and surrounding rail corridor (Lot 4425 DP1217100) as significantly contaminated land (Declaration Number: 20211105) and on 25 June 2021 TfNSW submitted a Voluntary Management Proposal (VMP) describing a pathway and schedule for managing contamination from the rail corridor that was approved by the NSW EPA on 13 September 2021 (EPA ref: 20211713).

VMP Stage 1 objectives were to:

01 Assess the nature and extent of contamination at or originating from the site, and impacted residential land bounding the site.

02 Develop an Interim Environmental Management Plan for interim management of risks to offsite receptors from the Contaminants originating from the site

It should be noted that for the purpose of the VMP the rail corridor is the site whereas for the purpose of this report the former station master's cottage at 2 Copper Creek Road, Captains Flat is the site.

Previous assessments within the rail corridor adjacent the site identified high lead concentrations at the boundary of the site and concluded that contamination may extend onto the site (Ramboll 2021a). Previous assessment on site (Ramboll, 2021b) identified high lead in shallow soil and dust within the residence consistent with potential migration of contaminated soils from the adjacent rail corridor and identified potential risks to human health and the environment. As an interim risk mitigation measure, residents were relocated from the site. These previous assessments were prepared to address VMP Objective 01. This DSI was undertaken to determine the degree to which contamination limits the suitability of the site for residential land use.

The scope of work comprised:

- Assessment of the lateral and vertical extent of metals in soil through field portable x-ray Fluorescence (fpXRF)
- Advancement of hand augers to assess potential contaminants associated with the adjacent load-out facility and the historical residential land use.
- Investigation of groundwater upgradient and downgradient of the site to assess contaminant migration from the adjacent rail corridor.
- Investigation of internal dust and paint in buildings on the site to assess the presence of lead and the potential risk from off site contamination and lead-based paints
- Refinement of the existing conceptual site model (CSM)
- Preparation of this report

The key findings of this DSI were:

- Soil contamination was identified onsite. The key contaminant of concern for human health is lead. The key contaminants of concern for ecology are arsenic, lead, nickel and zinc.
- No other contaminants of concern were identified in the soil sampling and the risk of other contaminants is considered to be low based on historical site information.
- Groundwater contamination was identified in the upgradient monitoring well in particular lead concentrations were reported above the drinking water criteria however there are no current groundwater extraction bores nearby the site. Groundwater contamination is not considered to be related to an onsite source.
- Concentrations of indoor dust exceeded the criteria for residential land use in floor and windowsill/shelf samples, residents have been subsequently relocated and items cleaned and validated however the remaining property still presents an exposure risk to future users prior to any remedial works being undertaken.
- There is a potential source pathway receptor linkage for future residential users of the site and on this basis the site is currently considered not suitable for residential land use.

Several potential human receptors were identified including:

- Future residential occupants
- Future intrusive maintenance workers at the site
- · Terrestrial ecology onsite including native fauna

Potential for contaminant migration to and from the site through airborne dust remains as a data gap.

Based on this, Ramboll recommends:

- Preparation and implementation of a remedial action plan (RAP) to address the contamination onsite which consists of lead impacted shallow soils across the site and lead dust within the property.
- Further investigation into the ongoing migration of contamination should be addressed by monitoring air quality at the site during conditions representative of seasonal variability
- Groundwater should not be extracted for beneficial use without a detailed assessment of groundwater quality and potential risks associated with the proposed usage. It is noted that any future use of groundwater would require appropriate assessment for the proposed use and licensing under the *Water Act 1912*.

1. INTRODUCTION

1.1 Preamble

Ramboll Australia Pty Ltd (Ramboll) was engaged by John Holland Rail Pty Limited (JHR) on behalf of Transport for NSW (TfNSW) to assess and provide management advice for contamination in the area of a former load-out facility within the Country Regional Network (CRN) at Captains Flat, New South Wales (NSW). This engagement included a detailed site investigation (DSI) for the former Station Masters Cottage at 2 Copper Creek Road, Captains Flat, New South Wales (the site) located approximately 30 m north of the rail load out facility.

1.2 Background

The site comprises a house and land adjacent the southern terminus of the non-operational Captains Flat to Bungendore rail line and is located adjacent the Lake George (legacy) Mine.

Review of the NSW Department of Resources and Geoscience website¹ provides the following background:

'The Lake George Mine is situated at Captains Flat, approximately 50km south east of Canberra. The mine operated from 1892 until 1962, producing lead, zinc, copper, pyrite, silver and gold.

Extensive rehabilitation work has been conducted since closure to control erosion, improve safety and to control tailings pollution leaving the site. Current and ongoing issues include Acid Mine Drainage (AMD) seepage and heavy metal contaminants leaving the site, with zinc being the primary contaminant of concern.'

The Lake George Mine now forms part of the NSW Government Legacy Mines Program (former Derelict Mines Program).

During mining operations ore concentrates were loaded to rail cars at a loadout facility adjacent to the site. John Holland Rail (JHR), current operator of the CRN, identified the potential for contamination at the site as a result of the adjacent historical load out and mining activities.

On 25 September 2020 TfNSW notified the NSW EPA of contamination within the rail corridor adjacent the site under section 60 of the CLM Act based in part on elevated concentrations of lead on the boundary shared between the rail corridor and the site. On 22 April 2021 the NSW EPA declared the loader and surrounding rail corridor (Lot 4425 DP1217100) as significantly contaminated land (Declaration Number: 20211105) and on 25 June 2021 TfNSW submitted a Voluntary Management Proposal (VMP) describing a pathway and schedule for managing contamination from the rail corridor that was approved by the NSW EPA on 13 September 2021 (EPA ref: 20211713).

VMP Stage 1 objectives were to:

01 Assess the nature and extent of contamination at or originating from the site, and impacted residential land bounding the site.

02 Develop an Interim Environmental Management Plan for interim management of risks to offsite receptors from the Contaminants originating from the site

¹ https://www.resourcesandgeoscience.nsw.gov.au/landholders-and-community/minerals-and-coal/legacy-mines-program/case-studies/captains-flat-lake-george-mine accessed 10 September 2020

The site referenced in the VMP is the rail corridor described as Lot 4425 Deposited Plan (DP) 1217100. For the purpose of this report the former station master's cottage at 2 Copper Creek Road, Captains Flat is the site (refer Figure 2, Appendix 1).

Previous assessments within the rail corridor adjacent the site identified high lead concentrations at the boundary of the site and concluded that contamination may extend onto the site (Ramboll 2021a). Previous assessment on site (Ramboll, 2021b) identified high lead in shallow soil and internal dust consistent with potential migration from the adjacent rail corridor and mine site and identified potential risks to human health and the environment. As an interim risk mitigation measure, residents were relocated from the site.

1.3 Objectives

The objective of this DSI was to determine the extent of contamination on the site occurring from the adjacent rail corridor and assess the suitability of the site for residential use.

1.4 Scope of Work

The scope of work comprised:

- Assessment of the lateral and vertical extent of metals in soil through field portable x-ray Fluorescence (fpXRF)
- Advancement of hand augers to assess potential contaminants associated with the adjacent load-out facility and the historical residential land use.
- Investigation of groundwater upgradient and downgradient of the site to assess contaminant migration from the adjacent rail corridor.
- Investigation of internal dust and paint in buildings on the site to assess the presence of lead and the potential risk from off site contamination and lead-based paints
- Refinement of the existing conceptual site model (CSM)
- Preparation of this report

2. SITE IDENTIFICATION

2.1 Site Identification

Site details are summarised in **Table 2-1.** The site locality is presented in **Figure 1**, **Appendix 1** and site features are presented in **Figure 2a**, **Appendix 1**.

Table 2-1: Site Identification

Information	Description
Street Address:	2 Copper Creek Road, Captains Flat NSW
Identifier:	Lot 1 Deposited Plan (DP) 572636
Site Area:	Approximately 1,380 m ²
Local Government:	Queanbeyan-Palerang Regional Council
Owner:	Private Owner
Current Site Use:	Residential (not currently occupied)

2.2 Site Details

The site is a residential block approximately 1,380 m² comprising the former Station Master's Cottage and a detached garage and shed. The main residence comprises a single-story weatherboard house with brick pier foundations. An outdoor veranda is attached to the rear of the house. The backyard is fully fenced with the front yard and driveway not currently fenced off from the rail corridor.

The site slopes gently towards the north west towards the backyard. The site is serviced by potable water and an onsite septic system is used for wastewater.

The site is also listed as a state heritage item as the Former Station Master's Cottage constructed between 1939 and 1940 and now a private residence.

Photos of the site are presented in **Appendix 2**.

2.3 Surrounding Land Use

The site is located off Copper Creek Road in an area surrounded by land zoned RU1 Primary Production with several surrounding sites Heritage Listed under the Palerang LEP (2014).

Surrounding land use includes:

- North: Copper Creek, Captains Flat Road, Miners Road
- East: Rail corridor, former goods shed, Miners Road, Captains Flat Sewage Treatment Plant, residential community of Captains Flat
- South: Captains Flat Rail Corridor and former Ore Loadout Facility, processing area of the Former Lake George Mine
- West: Captains Flat Rail Corridor, Copper Creek, large lot residential properties

Heritage listings apply to the site and surrounds and include:

- The Captains Flat Railway Precinct including a Goods Shed (leased to the State Emergency Service (SES)) and other remnant rail infrastructure from the southern end of the rail corridor to the north side of the Station
- The Captains Flat Railway Station Group constructed in 1939 and converted into a private home in 1974 (Pryke 1995).
- Lake George Mine including the smelter site, and several related mining and processing sites (near the site)
- Roscommon miners hut constructed in the 19th century (near the site)

3. SITE HISTORY

A review of the historic information related to the adjacent rail corridor (Ramboll, 2021a) found the Station Master's cottage was owned by Crown Lands until the acquisition by the commissioner for Railways in November 1939. The title records show the former Stations Master's Cottage (Lot 1 DP 572636) was divested to private ownership in 1979. The site most recently changed ownership in 2006 from which it's understood the current owners have occupied the site.

A review of the historical aerial photographs (Ramboll, 2021b) shows the site remains relatively unchanged from the 1951 until between 1976-1989 where the detached garage was constructed.

4. SITE CONDITION AND SURROUNDING ENVIRONMENT

4.1 Topography and Hydrology

The site slopes gently down to the north west, the surrounding site topography is characterised by a moderate north facing slope intersected by a moderate – steep gully directing Copper Creek which flows north-east to the Molonglo River. Topographical contours are presented on **Figure 1**, **Appendix 1**.

4.2 Geology

The regional geology of the Captains Flat area is characterised by a well-defined north-south trending graben² (2 to 8 km wide), bounded by two horsts³ at its southern and northern ends. The horsts comprise tightly folded Middle to Upper Silurian felsic pyroclastics, volcanogenic sediments and shales. Faults at the boundaries of these structures have the potential to be preferential pathways for groundwater (GHD, 2018). Review of the Department of Regional NSW interactive GIS portal MinView⁴ indicates the Narongo Fault passes through the site orientated north – south between Copper Creek Road and Copper Creek. Key geological features are presented on **Figure 2**, **Appendix 1**.

4.3 Hydrogeology

A review of the Bureau of Meteorology's National Groundwater Information System (BOM, 2019) indicated that no registered groundwater bores are located within 1 km of the site. The Hydrogeology Map of Australia (Geoscience Australia, 2000) indicates the site is within an area of fractured or fissured aquifers of low to moderate productivity.

Ramboll have installed one monitoring well immediately north of the site (GW10) to inform development of Captains Flat Lead Management Plan (Ramboll, 2021c). This well was advanced adjacent and east of Copper Creek to ten meters below ground level (m bgl) using solid flight auger with standing water level recorded at approximately six m bgl.

4.4 Site Contamination Summary

Results from the environmental site assessment (Ramboll, 2021b) indicated elevated metal concentrations (arsenic and lead) were identified in shallow soils at the site in 29 sampling locations out of a total of 61 measurements. These sampling locations included X-SMC01 – HASMC01 – HA SMC10 and are presented on **Figure 2**, **Appendix 1**. Lead exceedances were limited to the upper 0.2 m and present across the entire site. The highest concentrations of lead were found in X-SMC07 (2,669 ppm) and X-SMC06 (3,042 ppm) on the southern boundary of the site adjacent the rail corridor.

Seven internal dust swab samples were collected including five of floor dust and two of the windowsill/shelf dust. All exceeded the indoor dust criteria for lead. Lead in paint was also identified in an internal sample of peeling paint above the fireplace as a potential contributor to

² A graben is a valley caused by the downward displacement of a section of the earth's crust. These are produced by parallel faults.

³ A horst is a raised block of land bounded by parallel normal faults. Horsts are bits of land which have either been lifted or has remained stationary while the land on either side (graben) have fallen.

⁴ https://minview.geoscience.nsw.gov.au/#/?lon=149.4385&lat=-35.59053&z=18&bm=bm1&l=ge611:n:100,ge610:n:100,ge69:n:100,ge68:n:100,ge67:n:100,ge65:n:100,ge65:n:100,ge65:n:100,ge61:n:100,ge

lead concentrations however it was considered to be insignificant compared to the contribution from the adjacent mine and rail corridor.

The sampling plan, assessment criteria and QA/ QC for previous soil, dust and paint sampling are described in **Sections 6 – 8** of this report as this information has not been previously reported.

During the installation of the adjacent monitoring well (GW10) (Ramboll, 2021d) soil sampling showed elevated lead (1468 ppm) at shallow depth (0 - 0.1 m bgl) and the interface of conglomerate and shale (184 ppm) at 4 m bgl. Lead between these depths ranged from 21 - 28 ppm.

4.5 Air Quality Assessment

An air quality monitoring (AQM) network has been established within Captains Flat targeting metals identified as CoPC from historic mining in the area. The AQM network consists of total suspended particulate (TSP) monitoring using high-volume air samplers (HVAS; Hi-Vol 3000) at five locations around Captains Flat. A meteorological station maintained at one location (MET) to inform movement and dispersion of air. The network was established 22 June 2021 and it is anticipated will run for at least 12 months.

The five monitoring locations are summarised in **Table 4-1**.

Table 4-1: Air Quality Monitoring Locations

ID	Location	Description	Monitoring Technique	Parameters measured
AQM1	Residence, Old Mine Road	Representative of potential impacts to the south-west. Located on elevated terrain relative other selected locations	High-volume air sampler (HVAS) with total suspended particulate (TSP) size selective inlet, measuring for 24-hours every 1 day in 6	Heavy metals in TSP (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn)
	Pasidansa 2	Identified as the nearest	HVAS with TSP inlet, measuring for 24-hours every 1 day in 6	Heavy metals in TSP (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn)
MET Copper Creek identified mini	sensitive receptor to identified mining areas to the north-west	Meteorological Station at 10m and 2m height	10m: wind speed; wind direction. 2m: wind speed; wind direction; temperature; humidity. Ground: rainfall.	
AQM3	Captains Flat former Preschool, 27 Foxlow Street	Identified as a sensitive receptor of interest and representative of potential impacts to the south-east	HVAS with TSP inlet, measuring for 24-hours every 1 day in 6	Heavy metals in TSP (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn)
AQM4	Captains Flat Public School, Montgomery Street	Representative of potentials impacts of the largest community to the north- east	HVAS with TSP inlet, measuring for 24-hours every 1 day in 6	Heavy metals in TSP (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn)
AQM5	Residence, 2 Braidwood Road	Representative of potential impacts to residents downwind of the mine	HVAS with TSP inlet, measuring for 24-hours every 1 day in 6	Heavy metals in TSP (As, Ba, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Mo, Ni, Se, Ti, Zn)

AQM 2 and MET are located at the site and supplement Tier 1 risk assessment with lines of evidence particularly relevant to potential ongoing migration of lead in airborne dust and subsequent human exposure via inhalation and/or deposition on the site.

The following summary describes results from two bi-monthly reports for the June – October monitoring period (Ramboll 2021c – d).

Prevailing winds were observed from the north during June and July, and from the south-west for August to October. Regular rainfall was observed from mid-July to October. Lead concentrations were reported below adopted assessment criteria for human health indicating low risk of contaminant migration via airborne dust over the monitoring period. IT is noted however that meteorological variability may significantly affect movement of airborne dust and that the monitoring period to date does not include hotter drier months when more airborne dust may be expected. Further information is presented in two separate bi-monthly monitoring reports (Ramboll 2021c – d).

5. PRELIMINARY CONCEPTUAL SITE MODEL

A CSM is a qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human and / or ecological) that may be potentially exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is incomplete, and no further assessment is required.

5.1 Environmental Setting

The site is zoned RU1 Primary Production, and the current use of the site is residential. Local receiving waters (Copper Creek and then the Molonglo River) are understood to form part of a drinking water catchment (GHD 2018) and are high potential groundwater dependant ecosystems. The site is also located adjacent rail corridor declared as significantly contaminated and near the Lake George (legacy) mine with known contaminant issues.

5.2 Sources of the Contaminant

The main source of heavy metals was from adjacent rail corridor activities including the historic loading and transport of ore concentrate. An additional source of contamination to the site may be the nearby mine.

TRH, BTEXN, PAH, OCP, OPP and Asbestos are also potential contaminants of concern based on the age of the Station Master's Cottage and the potential for these contaminants to be used historically at the site.

5.3 Potential Contaminants of Concern

Based on the proximity to the rail corridor where historic heavy metal contamination has been identified and based on the site history as use as a residence since the 1940's the potential contaminants of concern at the site include:

- Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene (BTEXN), Polycyclic Aromatic Hydrocarbons (PAH).
- Heavy metals
- Organochlorine Pesticides (OCP) and organophosphate pesticides (OPP)
- Asbestos

To date only heavy metals have been assessed at the site as contaminants that may have potentially originated from the rail corridor.

5.4 Human and Ecological Receptors

Human receptors are considered to include future residential occupants and future intrusive maintenance workers at the site.

Ecological receptors are considered to be terrestrial ecology onsite including native fauna trafficking the site.

5.5 Exposure Pathways

For a receptor to be exposed to a contaminant derived from a site, there should be an exposure pathway linking the source of contamination and the exposed population. An exposure pathway

describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media and
- An exposure route (e.g., ingestion, inhalation) at the point of exposure.

Visible evidence of erosion from the mine to the rail corridor and elevated contaminant concentrations in surface water upstream of the site are evidence indicating contamination may be migrating from the adjacent rail corridor and former mine to the site via sediment, surface water and to a lesser extent through airborne dust.

Exposure routes for the contaminants include:

- Direct contact with contaminated soil
- Inhalation of dust from contaminated soil, airborne dust and indoor dust
- Incidental ingestion of contaminated soil, airborne dust and indoor dust
- Root uptake of contaminants in soil and groundwater
- Groundwater extraction for residential use

An assessment of the SPR linkages for the contamination onsite is summarised in Table 5-1.

Table 5-1: Exposure Assessment Summary

Complete SPR? (Y / N / P)				
Exposure Route	Residential Occupants	Intrusive Maintenance Workers	Onsite Ecology	Justification
Soil				
Direct Contact	Y	Υ	N/A	Lead concentrations in soil were
Inhalation	Υ	Υ	N/A	observed above the adopted health and ecological criteria (lead and arsenic) at the site. Further
Incidental Ingestion	Y	Y	N/A	assessment was required to determine whether other contaminants of concern present a
Root Uptake	N/A	N/A	Υ	risk to future site users.
Groundwater				
Groundwater Extraction for residential use	Р	N/A	N/A	Further assessment of groundwater was required to assess whether concentrations of contaminants in groundwater present an exposure
Root Uptake	N/A	N/A	Р	risk. This occurred through assessment of groundwater within the rail corridor and the site. Groundwater was at a depth of six metres below the site and therefore contact by maintenance workers and ecology was unlikely.
Indoor Dust				
Direct Contact	Y	N/A	N/A	Concentrations of indoor dust exceeded the criteria for residential land use in floor and
Inhalation	Y	N/A	N/A	windowsill/shelf samples. Residents had been subsequently relocated and items cleaned and validated however the remaining property
Incidental Ingestion	Y	N/A	N/A	still presented an exposure risk to future users prior to any remedial works being undertaken.
Airborne Dust				
Inhalation	Р	N/A	N/A	Potential ongoing risk of exposure to lead in airborne dust from the adjacent mine and rail corridor had been identified. Airborne dust and
Incidental Ingestion	Р	N/A	N/A	meteorological data are currently being collected at the site and will provide the basis for the assessment.

6. SAMPLING AND ANALYSIS QUALITY PLAN

To refine the preliminary CSM to appropriately represent exposure risks within the site, both the field and laboratory programs must result in data that is representative of the conditions at the site. Data Quality Objectives (DQOs) have been developed for the tasks to be completed to address data gaps identified in the preliminary CSM. The DQO process is a systematic, seven-step process that defines the criteria that the sampling should satisfy in accordance with the *Guidelines for the NSW Site Auditor Scheme (3rd Edition)* (NSW EPA 2017).

The seven step DQOs process comprises:

- Step 1: State the problem
- Step 2: Identify the decisions/ goal of the study
- Step 3: Identify the information inputs
- Step 4: Define the boundaries of the study
- Step 5: Develop the decision rules or analytical approach
- Step 6: Specify the performance or acceptance criteria
- Step 7: Develop the plan for obtaining data

DQOs applied during previous assessment were not previously reported and so are integrated here. A summary of the seven step DQO process is presented in **Table 6-1**.

Table 6-1: Data Quality Objectives

DQO	Outcome			
Step 1 - State the Problem	Historic metalliferous mining has contaminated Captains Flat. Previous assessments define the impacts in terms of heavy metal contaminants only. Further investigation of other COPC and an assessment of potential groundwater impacts is required. Further assessment is required to characterise the degree and extent of contamination with sufficient detail to inform development of a Detailed Site Investigation.			
Step 2 - Identify the Decisions	Decisions were made to assess: The degree to which contamination limits the suitability of the site for residential land use To determine the degree and extent of contamination in groundwater			
Step 3 - Identify the Inputs to the Decision	Inputs to the decisions will be sourced from: • Historical soil, dust and paint data from previous investigation completed within the site • QA/QC as described in Table 8-4 to assess whether the data collected is of sufficient quality to meet the project objectives • Laboratory analysis for CoPC in soil other than those previously assessed and groundwater at the site • Surveyed groundwater levels from surrounding groundwater monitoring wells.			
Step 4 - Define the Study Boundaries	The boundaries for the assessment are the site boundaries as defined in Figure 1 , Appendix 1 . The assessment will be limited vertically to an indicative depth of 12 m bgl for groundwater targeting shallowest serviceable aquifer or shallowest groundwater observed. The temporal boundaries of the assessment will cover the previous soil investigations and the proposed mobilisation and sampling event for groundwater.			

	The decision rules for this assessment are as follows:
Step 5 - Develop a Decision Rule	 If it is determined that the data generated through this investigation is reliable, complete, comparable, accurate and representative then this information will be used to address the project objectives. If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable, for use in achieving the project objectives, then further investigations may be recommended to reduce uncertainties. If contaminant concentrations exceed assessment criteria described in Section 7 then the degree and extent of exceedances will be considered to determine if further assessment or remediation/management is required Have all identified data gaps been addressed? If data gaps remain that limit capacity to determine the suitability of the site for residential land use or management/remediation requirements then further assessment will be considered.
	The acceptable limits on decision error are as follows:
Step 6 - Specify Limits of Decision Errors	 Intra- and inter-laboratory duplicate sampling density of 5% (1 in 20 samples) 1 rinsate sample per day RPDs below 30% for inorganic analytes. RPDs below 50% for organic analytes. No detections in rinsate samples Laboratories used should be NATA accredited and laboratory certificates should be NATA stamped. NATA Accredited Methods will be used. Holding times for all analytes should be met. PQLs should be below the adopted assessment criteria. Laboratory quality assurance testing should be undertaken at appropriate frequencies. Laboratory Quality Control Results should meet laboratory acceptance limits. If the data received is not in accordance with the defined acceptable limits outlined in Steps 5
	and 6, it may be an estimate or be rejected. Determination of whether this data may be used or if re-sampling is required will be based on the following considerations:
	 Closeness of the result to the guideline concentrations Specific contaminant of concern (e.g., response to carcinogens may be more conservative) The area of site and the potential lateral and vertical extent of questionable information Whether the uncertainty can be effectively incorporated into site management controls.
Step 7 - Optimise the Design for Obtaining Data	Refer to Section 6.1

6.1 Sampling Plan

6.1.1 Soil Sampling

The plan for previous soil sampling included targeted surface sampling along the south-western boundary shared with the rail corridor, systematic surface sampling through the remainder of the property including under the rear deck but excluding other building footprints and systematic sampling to vertically delineate extent of contamination related to the adjacent rail corridor and nearby mine site. The proposed sampling program is designed to address the identified data gaps and inform the assessment of risk to human health and ecology that may limit the suitability of the site for residential land use (i.e.: other contaminants of potential concern). The sampling plan comprised:

- Seven hand augers across the site to a maximum depth of 1.0 m bgl
- Three samples per borehole (0-0.1 m, 0.25 m and 0.5 m) targeting different soil horizons or fill and natural layers and analysing two samples at each location
- One sample per borehole within the fill/topsoil profile for analysis of asbestos (presence/absence).

Seven sampling locations are proposed for a site 1,400 m² in area which meets the minimum sampling density in the *NSW Sampling Design Guidelines* (1995).

The proposed soil sampling is summarised in **Table 6-2**.

Table 6-2: Proposed Soil Sampling Program

Area of Concern	Sample ID's	СоРС	Number of Primary Analyses	Justification
Entire Site	HA_SMC101, HA_SMC102 HA_SMC103, HA_SMC104 HA_SMC105, HA_SMC106 HA_SMC107	TRH, BTEXN, PAH, OCP, OPP, Asbestos (presence/absence)	TRH, BTEXN, PAH, OCP, OPP – 14 Asbestos (presence/absence) – 7	To assess the nature and extent of contamination (if any) from other potential contaminants of concern not previously addressed.

The proposed sampling locations are presented in **Appendix 1, Figure 2**.

6.1.2 Internal Dust Sampling

The plan for previous internal dust sampling included collection of seven swab samples at locations on the floor (SWAB-F-SMC01 – SWAB-F-SMC05), from windowsills (SWAB-WS-SMC01 – SWAB-WS-SMC02 and from bookshelves (SWAB-BS-SMC01 – SWAB-BS-SMC04). Two vacuum samples were additionally collected to replicate floor samples SWAB-F-SMC01 – SWAB-F-SMC02 Sample locations were selected to assess high traffic areas of the house and the detached garage / shed.

6.1.3 Groundwater Sampling

Further groundwater investigations are proposed for the wider rail corridor and the results of the investigation relevant to the site will be included in the DSI. The proposed groundwater monitoring wells include two monitoring wells: one south west and up / cross gradient of the site (GW103) and one onsite (GW101). An existing well (GW10) is located north and down-gradient of the site. Well locations are presented on **Appendix 1**, **Figure 2**. Results from these wells have been included in **Section 9.2**.

6.1.4 Analytical Schedule

The previously completed and proposed analytical schedule is presented in **Table 6-3**.

Table 6-3: Analytical Schedule

Sampling Method	Media	Number of Sampling Points	Analysis - number of primary analyses
FpXRF Sampling (completed in February 2021)	Soil	16 surface soil locations and 10 hand augers	Heavy Metals – 61 (comprising 16 surface XRF measurements and 45 XRF measurements at hand auger borehole)
Swab (completed in February 2021)	Internal Dust	7	• Lead - 7
High-flow cyclonic vacuum (completed in February 2021)	Internal Dust	2	• Lead - 2
Hand Auger Borehole (completed in October 2021)	Soil	7	• TRH, BTEXN, PAH, OCP, OPP - 14 • Asbestos - 7
Low-Flow Sampling (completed in October 2021)	Groundwater	3 (GW10, GW101and GW103)	Heavy Metals - 3

7. TIER 1 ASSESSMENT CRITERIA

Tier 1 assessment criteria relevant to the DSI are presented below.

7.1 Soil

The NEPM (2013) provides health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM (2013) also introduced health-based and ecological screening levels (HSLs and ESLs), management limits and direct contact HSLs for petroleum hydrocarbons.

Based on the proposed ongoing residential use the guidelines adopted for the site are as follows:

- HIL A Health investigation level for residential use including residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools. HIL A has also been adopted for intrusive maintenance workers.
- HSL A/B Health screening levels for low-high density residential. The HSLs can be modified based on the general soil type (sand, silt or clay). In instances where this is unknown the most conservative value is adopted.
- EIL for urban residential and public open space ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESL for urban residential and public open space ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. Fine grained soils were adopted based on the site geology. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.
- HSLs for Direct Contact have been adopted for the direct contact of contaminated soil for residential use.

Table 7-1: Soil Assessment Criteria - Health and Ecological Investigation Levels

Contaminant (mg/kg)	HIL A – Low density residential	EIL – Urban Residential and Public Open Space
Metals		
Arsenic	100	<u>100</u>
Cadmium	20	
Chromium	100	190
Copper	6,000	220
Mercury	40	
Lead	300	<u>1,100</u>
Nickel	400	220
Zinc	7,400	630
PAHs		
Naphthalene		<u>170</u>
Carcinogenic PAH (B(a)P equivalent)	3	
Sum of reported PAH	300	

EIL values based on site-specific EILs derived in the assessment. <u>Underlined</u> values are generic EILs. EIL calculations are presented in **Appendix 3**.

The applicable HSL assessment criteria¹ for petroleum hydrocarbons in soil are presented in **Table 7-2**.

Table 7-2: Soil Health Screening Levels for Vapour Intrusion HSL A/B - Clay

Contaminant (mg/kg)	HSL A/B (Low-High Density Residential)			
	0 - <1m	1m - <2m	2m - <4m	4m+
Toluene	480	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	110	310	NL	NL
Naphthalene	5	NL	NL	NL
Benzene	0.7	1	2	3
TRH (C6-C10) F1 ²	50	90	150	290
TRH (C10-C16) F2 ³	280	NL	NL	NL

NL The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

¹ (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Clay has been adopted based on the site geology.

² To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

Table 7-3 identifies the Ecological Screening Levels, Management Limits and Direct Contact for Petroleum hydrocarbons and speciated PAHs in soil.

Table 7-3: Ecological Screening Levels, Management Limits and Direct Contact for Petroleum Hydrocarbons and speciated PAHs in Soil

Contaminant (mg/kg)	ESLs (fine soil)	Management Limits ¹ (fine soil)	Direct Contact⁴
	Urban Residential / Public Open Space	Urban Residential / Public Open Space	HSL A
F1 TRHC6- C10	180²,³	800	4,400
F2 >TRHC10-C16	120 ^{2,3}	1,000	3,300
F3 >TRHC16-C34	1,300	3,500	4,500
F4 >TRHC34-C40	5,600	10,000	6,300
Benzene	65	-	100
Toluene	105	-	14,000
Ethylbenzene	125	-	4,500
Xylenes	45	-	12,000
Naphthalene	170	-	1,400
B(a)P	72 ⁵	-	-

 $^{^{1}}$ Management limits are applied after consideration of relevant ESLs and HSLs. Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

7.2 Groundwater

The tier 1 assessment criteria adopted for different receptor groups are shown in **Table 7-4**. Note that:

- Australian Drinking Water Guidelines (ADWG) Section 6.3.1 (2011) states that guideline
 values refer to the total amount of the substance present, regardless of its form (e.g., in
 solution or attached to suspended matter) and so analytical results from unfiltered samples
 should be assessed against human health criteria. Similar reasoning is also applicable to
 irrigation and livestock guideline values. However, groundwater samples will be field filtered,
 in accordance with Australian Standards
- ANZG (2018) guidelines for metals in freshwater states that the major toxic effect of metals comes from the dissolved fraction, so it is valid to filter samples (e.g., to 0.45 μm) and compare the filtered concentration against the respective guideline values

³ To obtain F2 subtract naphthalene from the >C10-C16 fraction.

² To obtain F1 subtract the sum of BTEX concentrations from C6-C10 fraction.

³ The ESL is of moderate reliability and all remaining ESLs are of low reliability.

 $^{^{}m 4}$ Direct Contact are applied to surface soils or soils that could result in immediate contact.

⁵ Benzo(a)Pyrene ESL adopted values based on Canadian Council of Ministers of the Environment (CCME) 2008 guidelines developed using a species sensitivity distribution (SSD) for eco-toxicity data from five independent studies involving three soil invertebrate taxa and two plant taxa (14 endpoints) in preference to NEPM low reliability data. Fine grained soil adopted based on the site geology.

Water hardness is identified as a physical parameter for which quantifiable effects correction
factors are defined in the ANZG (2018) guidelines to address the effect of water hardness on
the bioavailability of cadmium, chromium, lead, nickel and zinc to ecology. To define
appropriate hardness correction factors, water hardness will be measured during the
proposed sampling and the ecological screening criteria presented in **Table 7-4** will be
modified accordingly.

Table 7-4: Groundwater Assessment Criteria (mg/L)

Contaminant	Drinking Water (NHMRC 2011) mg/L (or US EPA RSL (for Tap Water))	Human Health - Recreation Screening(mg/L)	ANZG (2018) 95% Protection Freshwater Criteria (mg/L)
Criteria Applied to	Dissolved concentration	Dissolved concentration	Dissolved concentration
Aluminium	(20)	200	0.0008 ^b
Arsenic	0.01 ^a	0.1ª	0.0008
Cadmium	0.002	0.02	0.0002
Chromium	0.05	0.5	0.001
Cobalt	(0.006)	0.06	0.0014
Copper	2	20	0.0014
Iron	(14)	140	-
Lead	0.01	0.1	0.0034
Manganese	0.5	5	1.9
Mercury	0.001	0.01	0.00006
Nickel	0.02	0.2	0.011
Zinc	(6)	60	0.008

blank cell denoted with - indicates no criterion available.

Arsenic guideline based on As (V) for fresh, the lowest of presented guidelines for ANZECC.

NHMRC arsenic guidelines are based on total arsenic.

ANZECC, NEPM and NHMRC guidelines for chromium are based on Cr (VI).

ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.

The groundwater criteria for hydrocarbon contaminants are presented in **Table 7-5**.

Table 7-5: Groundwater Investigation Levels (µg/L)

Analytes	Groundwater HSL A for Vapour Intrusion (2 m – >8m, clay)	95% Fresh Water Protection for Aquatic Ecosystems ^a
Polynuclear Aromatic Hydrocarbons		
Naphthalene ^b	NL	16
Phenanthrene ^c		0.6
Anthracene ^c		0.01
Fluoranthene ^c		1

^a Guideline value for total arsenic.

^b For pH < 6.5

Analytes	Groundwater HSL A for Vapour Intrusion (2 m – >8m, clay)	95% Fresh Water Protection for Aquatic Ecosystems ^a
Benzo(a)pyrene ^c		0.1
BTEXN		
Benzene ^b	5,000	950
Toluene	NL	180
Ethylbenzene	NL	80
meta- & para-Xylene		75
ortho-Xylene		350
Total Xylenes	NL	
Naphthalene ^b		16
Total Recoverable Hydrocarbons		
TRH C6-C10 (F1)	NL	
TRH C10-C16 (F2)	NL	

All results are in µg/L unless stated

Guideline values exist for both meta-xylene and para-xylene as per ANZECC (2000). The guideline value for meta- & para-Xylene guideline has been adopted as the meta-Xylene value from ANZECC (2000) as it is the most conservative of the two quideline values.

The water quality criteria protective of human health adopted for assessment is primarily adopted from Australian Drinking Water guidelines; however, US EPA RSL for tap water is adopted for analytes where no Australian guideline (ADWG) was available. It is considered likely that primary human health exposures will occur via recreational activities. The National Health and Medical Research Council (NHMRC) (2008) suggests that 10-times the ADWG values may provide a conservative estimate of acceptable recreational exposure guidelines values. This approach assumes that recreational activities contribute to 10% of drinking water consumption, which is equivalent to a daily lifetime consumption of about 0.2 L of water. NHMRC (2019) suggests that this approach may not provide realistic site-specific recreational exposure estimate as:

- The method makes no allowance for other exposure routes, such as inhalation and dermal absorption, which may be significant for some chemicals. In the case of heavy metals at the site these exposure routes may be negligible.
- The method does not apply explicit assumptions for rates of accidental water ingestion during recreational water use.
- The method does not provide explicit assumptions regarding patterns of recreational water use. Therefore, it is not possible for communities to assess whether the assumptions apply to realistic patterns of recreational activity at specific sites, which may vary according to location, availability of alternative recreational facilities, and cultural practices.

However, the NHMRC (2011) criteria will be conservatively adopted as a preliminary screening to assess risks of recreational activities in downgradient surface water bodies.

^a Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

^b Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

^c Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

7.3 Indoor Dust

The preliminary screening criteria proposed for the assessment of dust contamination are sourced from the following references:

- USEPA (2020) Protect your family from lead in your home. US Environmental Protection Agency January 2020.
- AS 4361.2-1998 Guide to lead paint management Residential and commercial buildings.

The dust results are to be presented as lead loadings (μ g lead/m²). Where dust samples are collected by vacuum, the lead loading is calculated using the following equation:

Lead loading (
$$\mu$$
g/m²) =
$$\frac{lead\ concentration\ (mg/kg)\ x\ dust\ sample\ mass\ (g)}{sample\ area\ (m^2)}$$

Where samples are collected by swab, the lead loading is calculated using the following equation:

Lead loading
$$(\mu g/m^2) = \frac{\text{total lead } (\mu g)}{\text{sample area } (m^2)}$$

Assessment criteria adopted for lead dust contamination within the residence are summarised in **Table 7-6.**

Table 7-6: Lead Dust Assessment Criteria (µg/m²)

	Assessment Criteria – Residential Property (µg/m²)
Dust interior – hard floors	108
Dust interior – windowsills and shelves	1,076

8. QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance/quality control (QA/QC) assessment was completed for the field investigations. Sampling methodologies are detailed in **Section 6.1.**

8.1 Analytical Schedule

The analytical schedule for the investigation is shown in **Table 8-1**.

Table 8-1: Analytical Schedule

Sampling Method	Media	Number of Sampling Points	Analysis - number of primary analyses
Hand Auger Borehole	– Soil –	17	• TRH, BTEXN, PAH, OCP, OPP – 14 • Asbestos - 7
Surface XRF		16	Heavy metals – 16
Low-Flow Sampling	Groundwater	2 (GW10 and GW101)	Heavy Metals - 2
Vacuum		2	Total Lead
Swab	Indoor Dust	7	Total Lead
Paint		3	Total Lead

Field and laboratory QC is presented in **Table 8-3**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations and a summary is provided in **Table 8-4**.

8.2 Sampling Methodologies

Ramboll completed the assessment works at the site in general accordance with the NEPM (2013). Guidance that was adopted specific to sampling of each media is described below.

- Soil sampling was completed in general accordance with AS 4482-2005 *Guide to the investigation and sampling of sites with potentially contaminated soil Part 1 Non-volatile and Semi-Volatile Compounds* and *Part 2 Volatile Compounds* (Standards Australia 2005).
- Vacuum sampling of internal dust was completed in general accordance with the Guidance for the sampling and analysis of lead in indoor residential dust for use in the integrated exposure uptake biokinetic (IEUBK) model (US EPA 2008).
- Swab sampling of internal dust sampling was completed in general accordance with US EPA 2009 *Lead Dust Sampling Technician Field Guide* (US EPA 2009).

- Paint sampling was completed in general accordance with AS 4361.2-1998 *Guide to lead* paint management Residential and commercial buildings (Standards Australia 1998).
- Groundwater Sampling was completed in general accordance with AS 5667.11-1998 Guidance on Sampling of Groundwaters (Standards Australia, 1998).

8.2.1 Soil Sampling

The soil assessment comprised a total of 16 surface FpXRF measurements and 17 hand augers within the site. Sample locations are presented on **Figure 2, Appendix 1**.

The first round of investigations comprising 16 surface fpXRF and 10 soil hand augers were conducted over the period 8 February to 3 March 2021 using a ThermoFisher Scientific NitonTM XL3t portable x-ray fluorescence (FpXRF) metal analyser. The instrument in soil mode and data was collected using 60 second dwell. The analyser uses a 50kV x-ray tube which provides sufficient flux to enable separation of spectra lines for highly accurate quantification of elements of interest.

FpXRF measurements were completed by a suitably experienced scientist holding a NSW EPA license required for field based FpXRF testing. Testing was completed in accordance with relevant provisions described in US EPA method 6200 (USEPA 2007).

The FpXRF was used in-situ and measurements were taken by placing the FpXRF directly on the ground surface. The soil surface to be measured was cleared of debris and grass prior to taking the measurement to ensure there was no obstruction. The analyser window was protected and maintained the required contact with the sample surface during measurements. As moisture is known to affect measured concentrations (see uncertainty section), visually dry surfaces were chosen for measurement.

Readings were recorded digitally on the FpXRF unit and are reported as a wet weight and are not directly comparable with the dry weight soil samples and guideline concentration. Duplicate soil samples were collected and sent to a laboratory for analysis to determine the correlation between the FpXRF and laboratory measurements.

Representative soil samples were screened using a portable x-ray fluorescence metal analyser (XRF) and soil samples collected at a minimum of 10% of the locations as field duplicates for laboratory analyses. Samples were collected directly from the hand auger borehole, from undisturbed materials in the centre of the auger where practicable. Samples were collected from each 0.1 m for the top fill layer or where different soil horizons where encountered. Samples were also collected where visual or olfactory evidence of potential contamination were observed.

The second round of investigation comprising soil hand augers was conducted on 27 October 2021 and comprised of seven hand augers to a maximum depth of 1 mbgl and collection of samples for laboratory analysis.

Sample locations are presented on Figure 2, Appendix 1.

8.2.2 Groundwater Sampling

Groundwater monitoring wells were constructed by Stratacore Pty Ltd, a licensed drilling contractor and per the Minimum Construction Requirements for Water Bores in Australia, Fourth Edition, 2020. Construction included:

• 50 mm PVC class 18 factory slotted (0.5mm) well screen

- 50 mm PVC class 18 blank casing
- A push-on end cap at the base of each well
- A top cap suitable for suspension of groundwater level data loggers
- A graded 2 mm gravel pack installed from the base, generally to 0.5 m above the top of the well screen in the annulus between the well screen/casing and the borehole wall.
- An annular seal consisting of at least 0.5 m of 3/8" bentonite chips installed on top of the gravel pack
- A cementitious grout slurry installed on top of the bentonite annular seal to near surface
- Wells were completed on the surface with a surface bentonite seal and a concrete plinth in which a flush mount well cover or monument was set.

Wells were generally installed to screen the top of shallowest aquifer determined based on water strike observed during drilling.

Following installation, the wells were developed/purged to remove disturbed fines toward reestablishing the natural hydraulic flow conditions of the formations which may have been disturbed by well construction, around the immediate vicinity of each well. The wells were left for a minimum of 48 hours to equilibrate prior to collection of groundwater samples. Completed monitoring wells were surveyed by an accredited land surveyor, recording easting, northing, ground elevation and top of casing elevation for all wells.

Groundwater well logs are included in **Appendix 7**.

The following procedures were undertaken for the groundwater sampling program:

- All groundwater monitoring wells were gauged prior to sampling.
- All samples were collected using disposable nitrile rubber gloves changed between locations
- Groundwater was purged using a low-flow peristaltic pump targeting the middle of the screened portion of the aquifer.
- Chemical and physical parameters, including temperature, pH, EC, DO and redox
 potential was measured in the field. Once parameters had stabilised a filtered sample for
 metals analysis was collected from each location, the sample was filtered through a 0.45
 µm syringe filter
- Each sample bottle was clearly labelled with a unique sample name, date and location.
- Samples were analysed for total and dissolved metal(loid)s (Al, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni and Zn).

8.2.3 Interior Dust

Internal dust sampling was completed within the Station Masters Cottage and included sampling via vacuum and swab. Vacuum sampling was limited to floor spaces and included:

- Mark-out of sampling areas using masking tape. Sampling areas of 2 m² were targeted where feasible
- Sampling areas were further divided into 0.5 m² sub-sample areas
- A high-flow cyclonic vacuum was used with plastic barrel and reduced shaft length
- Sampling occurred by running the vacuum in strips to cover each sub-sample area four times back and forth

Swab sampling included:

- Targeted swab sampling of windowsills and hard surface floors.
- Mark-out of sampling areas using masking tape. Sampling areas of 0.09 m² were targeted where feasible. Some exceptions occurred where available surface area was less than 0.09 m² (e.g.: windowsills). In these instances, the maximum available area was sampled.
- Dust sampling was completed wearing single use disposable nitrile gloves and using single
 use sanitary wipes. Dust was collected by making S-shaped motions through the sampling
 area, folding the wipe in half and repeating the process at least three times and until all
 visible dust was removed.

All dust sampling occurred wearing disposable nitrile rubber gloves. Samples were stored in single use zip lock bags labelled with unique identifiers which were cross-referenced with site plans and submitted to the laboratory under chain of custody.

8.2.4 Paint

Where paint was observed to be flaking off the building, the flakes were carefully collected into a resealable bag. If paint was not flaking off, an area of the building determined to not impact on aesthetics to the property, paint was carefully peeled off the building and placed into a resealable plastic bag. The sample bags were clearly labelled with a unique sample name, date and location.

8.3 Quality Control

Table 8-2 Sampling and Analysis Methodology Assessment

Sampling	Sampling Ramboll's Assessment				
Methodology	Soil	Groundwater	Internal Dust	Paint	
Sampling Pattern, Density and Locations	Field portable XRF measurements were collected in general accordance with the sampling plan at: • 16 surface locations within the site • 17 hand augers at multiple depths within the site Soil sampling for other contaminants of concern occurred through seven hand augers at the site. Sampling and analyses for asbestos and other contaminants occurred in accordance with the SAQP. This is considered adequate to assess the extent of contamination within the site.	Groundwater sampling and analyses occurred in accordance with the SAQP. This sampling program is considered adequate to assess offsite contaminant migration via groundwater as representative upgradient and downgradient locations were sampled.	Targeted sampling plans were developed in accordance with the <i>Guidance for the sampling and analysis of lead in indoor residential dust for use in the integrated exposure uptake biokinetic (IEUBK) model (US EPA 2008) and generally included samples from the main entry, a living area, a child's bedroom and a shelf / windowsill. A total of 9 dust swab and vacuum samples were collected from the Station Masters Cottage. This is considered adequate to assess risks associated with internal dust in the residence.</i>	Paint sampling and analyses occurred in accordance with the SAQP and was considered adequate to inform indicative assessment of potential leadbased paints on SES lease area structures.	
Sample Depths	Field portable XRF measurements were collected from soils at various depths until readings were recorded below site criteria (300 mg/kg (Ramboll 2020)) during the February 2021 investigations. Samples were collected in-situ where possible. At least three samples per hand auger were collected for laboratory analysis targeting each soil horizon within the seven soil hand augers undertaken in October 2021.	Groundwater samples were collected from the centre of the screened interval of the monitoring well.	-	-	
Decontamination Procedures	Measurement of blank reference material (silicon dioxide, SiO ₂) was completed prior to the commencement of fieldwork and repeated every 10 samples. This ensured	Measurement of blank reference material (silicon dioxide, SiO ₂) was completed prior to the commencement of fieldwork and repeated every 10 samples. This ensured that cross-	The vacuum was decontaminated using swabs to wipe out the barrel, cyclone and accessible sections of the wand.	The paint scraper was decontaminated between sampling locations by rinsing with Decon®90 solution and potable water.	

Sampling	Ramboll's Assessment			
Methodology	Soil	Groundwater	Internal Dust	Paint
	that cross-contamination of samples was not occurring.	contamination of samples was not occurring.		
	The analyser window was cleaned regularly to prevent cross contamination.	The analyser window was cleaned regularly to prevent cross contamination.		
Sample Storage and Handling	Samples were collected into laboratory supplied bottles dosed with the correct preservative (where applicable). The samples were stored in an ice filled cooler in the field and during transit to the laboratory.			
Chain of Custody	All analytical samples were submitted to the laboratory under chain of custody conditions.			
Calibration of Field Equipment	Field portable XRF measurements were collected using a calibrated instrument (calibration certificates provided in Appendix 4). Field calibration occurred using blank/certified reference materials.	The water quality meter was rented from an equipment hire company. The water quality meter was calibrated prior to hire and the calibration certificate is provided in Appendix 4 .	-	-

Table 8-3 Field and Laboratory QA/QC

Data quality		Ramboll's	s Assessment	
indicator	Soil	Groundwater	Internal Dust	Paint
Field Quality Control Samples	One laboratory QA sample (for TRH, BTEXN, PAH, OCP and OPP analysis) was collected for a total of 14 soil samples at a rate of 7.14% which exceeds the target rate of 5%. 11 laboratory QA samples (for heavy metals analysis) were collected for a total of 61 field portable XRF measurements at a rate of 18.03% which exceeds the target rate of 10%.	One intra-laboratory and one inter-laboratory duplicate sample were collected as part of the groundwater sampling for a total of three primary samples equaling a rate of 33.33% for both intra and inter laboratory duplicates. This exceeds minimum targeted intra and inter-laboratory duplicate densities of 5% and so is considered appropriate.	One QA sample was collected from a swab sample. One rinsate blank sample was collected from the vacuum following decontamination to assist determining whether any cross contamination had occurred.	-
	where concentrations were < 10 For the assessment of XRF	is noted that concentrations close to th 0 x LOR were discounted from assessme / laboratory correlations an acceptance concentration was reported in a duplica conservat	ent. The acceptance criteria for RPDs of criterion of 0.7 was adopted for data to	sample pairs $> 10 \times LOR$ was 30° be considered screening level.
Field Quality Control Results	Intra-laboratory and inter- laboratory duplicate results are presented in Table 8 , Appendix 5 . Relative Percentage Differences (RPDs) were all below the above criterion. The performance of XRF samples within the site was assessed through correlation of XRF results against laboratory duplicates separately for copper, lead and zinc. In summary, the correlation	Intra-laboratory and inter- laboratory duplicate results are presented in Table 9 , Appendix 5 . RPDs were below the criterion except for: • GW103/T01_GW_20211102 for Se 161% The high RPD values are likely the result of instrument error as the primary and duplicate reported similar concentrations. Higher concentrations were observed in the primary and Selenium is not a	Intra-laboratory and inter- laboratory duplicate results are presented in Table 10 , Appendix 5 . Relative Percentage Differences (RPDs) were all below the above criterion. The rinsate blank sample reported no detections of lead above the limit of reporting.	-

Data quality	Ramboll's Assessment					
indicator	Soil	Groundwater	Internal Dust	Paint		
	coefficient (R) was calculated as: R Cu: 0.87 R Pb: 0.95 R Zn: 0.89	contaminant of concern so it was considered acceptable.				
NATA Registered Laboratory and NATA Endorsed Methods	Eurofins and Envirolab were the primary and secondary analytical laboratories, respectively. Laboratory certificates are NATA stamped.					
Analytical Methods	A summary of analytical methods was included in the laboratory certificates. As stated in US EPA Method 6200 (2007), to increase accuracy of the results, the labs were given an indication of likely concentration (0-5000 mg/kg, 5000-10,000 mg/kg and >10,000 mg/kg) to ensure complete digestion could be undertaken.					
Holding Times	Review of the CoC and laboratory certificates indicate that holding times were met.					
Practical Quantitation Limit (PQL)	PQLs for all analytes were below the adopted guideline values.					
Laboratory Quality Control Samples	Laboratory quality assurance testing was undertaken at appropriate frequencies.					
Laboratory Quality Control Results		Results are contained within the labor	atory certificates attached in Appendi x	¢ 6.		

Table 8-4 QA/QC Assessment

	Ramboll's Comments				
Data Quality Indicator	Soil	Groundwater	Internal Dust	Paint	
Completeness: The completeness of the data set was judged by	Hand auger sampling occurred in accordance with the sampling plan.	Groundwater sampling occurred upgradient and downgradient of the site in accordance with the SAQP.	All locations sampled as per the SAQP.	All locations sampled as per the SAQP.	

	Ramboll's Comments				
Data Quality Indicator	Soil	Groundwater	Internal Dust	Paint	
Comparability: Comparability to existing field data was maintained by	The investigation was completed by experienced Ramboll personnel. Field portable XRF measurements were completed using a calibrated instrument. Laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods.	The investigation was completed by experience Ramboll personnel. Laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods.	The field investigation was completed by experienced Ramboll personnel using standard operating procedures. Laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods.	The field investigation was completed by experienced Ramboll personnel using standard operating procedures. Laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods.	
Representativeness: The representativeness of the field data was judged by	In the field, re	epresentativeness was achieved by con	npleting the sampling plans described in	n Section 6.1	
Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random ss. Precision of field data was maintained by	Field portable XRF measurements were collected by an experiment environmental scientist holding a NSW EPA licence required for field based XRF testing. Field portable XRF measurements were collected from soil in-situ (where possible) and measurements were taken by placing the field portable XRF directly on to the soil. As moisture is known to effect measured concentrations, visibly dry surfaces were chosen for measurement. Laboratory quality control results indicate precision was achieved at the primary and secondary laboratory.	Laboratory quality control results indicate precision was achieved at the primary and secondary laboratory.	Laboratory quality control results indicate precision was achieved at the primary and secondary laboratory.	Laboratory quality control results indicate precision was achieved at the primary and secondary laboratory.	

	Ramboll's Comments					
Data Quality Indicator	Soil	Groundwater	Internal Dust	Paint		
Accuracy: Accuracy in the collection of field data was controlled by	Appropriate sampling methodologies utilised and complied with. Field portable XRF works completed in accordance with US EPA 2007, Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment.	Groundwater Sampling was completed in general accordance with AS 5667.11-1998 Guidance on Sampling of Groundwaters (Standards Australia, 1998).	Appropriate sampling methodologies utilised and complied with. Works completed in accordance with the Guidance for the sampling and analysis of lead in indoor residential dust for use in the integrated exposure uptake biokinetic (IEUBK) model (US EPA 2008)	Appropriate sampling methodologies utilised and complied with.		

In general, the DQIs outlined above have been met and Ramboll considers that the data is of suitable quality to meet the project objectives.

9. RESULTS

9.1 Soil Results

9.1.1 Soil Lithology

The soil lithology within the site comprised:

- TOPSOIL: sandy silt: Grey, dry, with grass and roots. Encountered from the surface to between 0.1 m 0.2 m bgl.
- FILL: Gravelly CLAY: Grey-light brown, dry, medium plasticity (dry of plastic limit), soft to firm, coarse gravels (20-60 mm). Encountered below the topsoil to between 0.4 m 0.6 m hal.
- CLAY: Orange-grey, slightly moist, firm-hard, high plasticity, with quartz gravels (10-60 mm). Encountered below the fill layer from between 0.4 m 0.6 m bgl to the depth of termination.

The soil profile logs are provided in **Appendix 7**.

9.1.2 Analytical Results

A tabulated assessment of soil concentrations against Tier 1 assessment criteria is presented as **Appendix 5**. A summary of contaminant concentrations that exceeded Tier 1 assessment criteria is summarised in **Table 9-1**.

Table 9-1: Summary of Soil Exceedances

	Number of Samples	Minimum	Maximum	Mean	No > Health Based Criteria	No > Ecological Criteria
Metals						
Arsenic	61	31	132	61	1	1
Chromium	61	15	43	31	0	0
Copper	61	33	344	96	0	2
Iron	61	4100	29672	9487		
Lead	61	14	3042	433	29	4
Nickel	61	67	67	67	0	0
Zinc	61	32	1890	566	0	25
Asbestos w/w %	7	<0.001%	<0.001%	<0.001 %	0	-
Petroleum Hydrocar	bons					
TRH (F1)	14	<20	<20	<20	0	0
TRH (F2)	14	<50	<50	<50	0	0
TRH (F3)	14	<100	160	160	0	0
TRH (F4)	14	<100	<100	<100	0	0
Polycyclic Aromatic	Hydrocarbons					
Total PAH	14	<0.5	<0.5	<0.5	0	-
Benzo(a)pyrene	14	<0.5	1.2	1.2	-	0
Naphthalene	14	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<>	<lor< th=""><th>0</th><th>0</th></lor<>	0	0
Monocyclic Aromati	ic Hydrocarbon	s				
Benzene	14	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<>	<lor< th=""><th>0</th><th>0</th></lor<>	0	0
Toluene	14	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<>	<lor< th=""><th>0</th><th>0</th></lor<>	0	0
Ethylbenzene	14	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<>	<lor< th=""><th>0</th><th>0</th></lor<>	0	0
Xylene	14	<lor< th=""><th><lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>0</th><th>0</th></lor<></th></lor<>	<lor< th=""><th>0</th><th>0</th></lor<>	0	0

There were no exceedances to the health or ecological criteria for TRH, BTEXN, PAH OCP and OPP.

Twenty nine of 61 lead concentrations and one of 61 arsenic concentrations exceeded the health-based criteria. Within this context lead is considered to be the primary driver of potential risks to human health.

One of 61 arsenic concentrations, two copper concentrations, four lead concentrations and 25 zinc concentrations exceeded the adopted ecological assessment criteria.

Figure 2 presents a summary of the distribution of contaminants exceeding Tier 1 human health assessment criteria on site. Lead exceedances were generally reported across the site with higher concentrations reported on the southern boundary adjacent to the rail corridor. There were no lead exceedances reported beyond 0.2 m across the site.

Concentrations of arsenic, copper, lead and zinc were reported above ecological assessment criteria at multiple locations. The lateral distribution included mainly the southern and western boundaries of the site. The vertical extent of contamination was limited to the upper 0.2 m of soil.

9.2 Groundwater Results

9.2.1 Groundwater Gauging Data

The three nearby wells were gauged on the 2 November 2021 including one existing monitoring well (GW10) and two newly installed monitoring wells (GW101 and GW103). Groundwater elevation across the three monitoring wells ranged from 860.25 m above Australian Height Datum (m AHD) and 861.54 m AHD. A summary of the groundwater gauging data is presented in **Table 10**, **Appendix 5**. Groundwater Elevation contours are shown on **Figure 3**, **Appendix 1**. Based on the contoured water levels, the inferred flow direction was in a north west direction. This flow direction generally correlates with the topography of the site.

9.2.2 Water Quality Parameters

Groundwater quality parameters were measured in the field prior to sampling to ensure collection of water that is representative of the groundwater conditions. The groundwater quality parameters for the two monitoring wells are summarised below:

- pH measurements ranged from 3.98-6.28 pH, , indicating neutral to acidic conditions.
- Electrical conductivity (EC) measurements ranged from 1035 μ S/cm to 2567 μ S/cm, and reported an average of 1759 μ S/cm, indicating fresh to slightly saline groundwater conditions.
- Dissolved oxygen ranged from 1.52 mg/L to 4.04 mg/L, with an average of 2.75 mg/L. medium to high dissolved oxygen levels were generally reported across the site, indicating slightly aerobic conditions.
- Redox potential measurements varied between -96.7 mV to 137.9 mV, indicating predominately reducing conditions.

The groundwater quality parameters reported a freshwater system with neutral to acidic pH, slightly aerobic conditions and redox measurements indicate a slightly reducing environment.

The groundwater quality parameters are presented in **Table 12, Appendix 5**.

9.2.3 Analytical Results

A tabulated assessment of groundwater results against adopted assessment criteria is presented in **Appendix 5** and in summary as **Table 9-2**.

Table 9-2: Summary of Groundwater Results

	Number of Samples	Detections	Minimum	Maximum	Mean	No > health- based recreationa I criteria	No > Ecological 95% Fresh Water Criteria
Metals							
Arsenic (filtered)	3	2	<lor< td=""><td>0.003</td><td>0.003</td><td>0</td><td>0</td></lor<>	0.003	0.003	0	0
Barium (filtered)	3	2	0.030	0.250	0.140	0	N/A
Cadmium (filtered)	3	3	0.004	0.250	0.087	3	3
Chromium (filtered)	3	2	<lor< td=""><td>0.044</td><td>0.024</td><td>0</td><td>2</td></lor<>	0.044	0.024	0	2
Cobalt (filtered)	3	3	0.021	0.490	0.240	0	3
Copper (filtered)	3	3	0.002	1.100	0.404	0	3
Iron (filtered)	3	1	<lor< td=""><td>11.000</td><td>11.000</td><td>1</td><td>N/A</td></lor<>	11.000	11.000	1	N/A
Lead (filtered)	3	2	0.092	0.390	0.241	2	2
Manganes e (filtered)	3	3	0.580	4.100	2.193	3	2
Mercury (filtered)	3	0	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0</td><td>0</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0</td><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td><td>0</td></lor<>	0	0
Molybden um (filtered)	3	0	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0</td><td>0</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0</td><td>0</td></lor<></td></lor<>	<lor< td=""><td>0</td><td>0</td></lor<>	0	0
Nickel (filtered)	3	3	0.082	0.590	0.274	3	3
Selenium (filtered)	3	3	0.002	0.028	0.016	2	2
Tin (filtered)	3	0	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0</td><td>N/A</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0</td><td>N/A</td></lor<></td></lor<>	<lor< td=""><td>0</td><td>N/A</td></lor<>	0	N/A
Titanium (filtered)	3	0	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0</td><td>N/A</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0</td><td>N/A</td></lor<></td></lor<>	<lor< td=""><td>0</td><td>N/A</td></lor<>	0	N/A
Zinc (filtered)	3	3	0.64	75.000	25.880	1	3

Analytical results from groundwater exceeded adopted human health criteria for cadmium at three locations, Iron at one location, lead at two locations, manganese at three locations, nickel at three locations, selenium at two locations and zinc at one location.

Several exceedances of the ecological criteria were observed in the monitoring wells for cadmium, cobalt, copper, lead, Manganese, nickel, selenium and zinc.

Upgradient concentrations of heavy metals were reported to be higher in general than downgradient locations.

9.3 Indoor Dust and Paint Results

A tabulated assessment of paint and internal dust results against relevant criteria is presented as **Table 9-3**. Concentrations shown in BOLD are above the relevant guideline.

Table 9-3: Summary of lead concentrations relevant to health investigation levels

Туре	Guideline	Results			
Dust Interior - Hard floors	108 (μg/m²) ^{1,2}	SWAB-F-SMC01 989	SWAB-F-SMC02	SWAB-F-SMC03 156	
Dust Interior	108 (μg/m²) ^{1,2} 300 (mg/kg) ^{3,4}	V-F-SMC01 326 μg/m² 660 mg/kg	V-F-SMC02 207 μg/m² 510 mg/kg		
– Carpet floors	108 (μg/m²) ^{1,2}	SWAB-F-SMC04	SWAB-F-SMC05		
Dust Interior - Windowsills and Shelves	1076 (μg/m²) ^{1,2}	SWAB-WS-SMC01 3636	SWAB-WS-SMC02 2364		
Exterior Paint	0.1%5	P-SMC01 <0.01	P-SMC02 0.02	P-SMC03 1.5	

¹ USEPA (2020) Protect your family from lead in your home. US Environmental Protection Agency – January 2020

 $Lead\ loading\ (\mu g/m^2) = (lead\ concentration\ (mg/kg)\ x\ dust\ sample\ mass\ (g)\ /\ sample\ area\ (m^2))$

For swab samples, lead loadings were calculated as follows:

Lead loading $(\mu g/m^2)$ = Total lead (μg) / sample area (m^2) .

Table 9-3 presents a comparison of paint and internal dust results against adopted health guidelines. Lead loadings ($\mu g/m^2$) were observed above dust guidelines in five of seven swab samples and both vacuum samples. Lead in paint exceeded criteria definitive of lead-based paints in one of three samples tested, P-SMC03. The sampling of paint is limited however does indicate the presence of lead in paint, and this could contribute to the presence of lead in soil and dust. Further analysis would be required to assess the extent of lead paint at the residence and the contribution of lead to soil concentrations.

² The dust results presented are lead loadings (μg lead/m²). For vacuum samples, lead loadings were calculated as follows:

³ There are no guidelines specific to vacuum samples. Criteria for swab samples and for soil samples have been used as a preliminary screening number to assess whether any further evaluation of dust in carpet is required.

⁴ NEPM (2013) Schedule B1: Guideline on investigation levels for soil and groundwater. National Environment Protection (Assessment of Site Contamination) Measure 1999. Federal Register of Legislative Instruments F2013C00288 (HIL A - Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools). No poultry observed.

⁵ Australian Government Department of the Environment, Lead Alert: the six-step guide to painting your home, 5th Ed. 2016.

10. REFINED CONCEPTUAL SITE MODEL

The CSM was refined from the preliminary CSM presented in **Section 5**. A CSM is a qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human and / or ecological) that may be potentially exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is incomplete, and no further assessment is required.

10.1 Environmental Setting

The site is zoned RU1 Primary Production, and the current use of the site is residential. Local receiving waters (Copper Creek and then the Molonglo River) are understood to form part of a drinking water catchment (GHD 2018) and are high potential groundwater dependant ecosystems. The site is also located adjacent rail corridor declared as significantly contaminated and near the Lake George (legacy) mine with known contaminant issues.

10.2 Sources of the Contaminant

The main source of heavy metals was from adjacent rail corridor activities including the historic loading and transport of ore concentrate. An additional source of contamination to the site may be the nearby mine. Historic practices adjacent the site and observation of highest metal concentrations in surface soils indicate the mechanism of contamination is through surficial deposition with limited top-down migration.

TRH, BTEXN, PAH, OCP, OPP and Asbestos are also potential contaminants of concern based on the site history however have been ruled out based on no reported exceedances to health and ecological criteria.

10.3 Potential Contaminants of Concern

Based on the investigation the remaining potential contaminants of concern include lead above human health criteria and arsenic, copper, lead and zinc above ecological assessment criteria in soils.

Concentrations of a range of metals were identified in groundwater samples near to the site. Concentrations were found to be generally higher at the upgradient location when compared to down gradient wells. When considering the legacy mine site located upgradient of the site, and the comparably low concentrations of metals in soils on site, it is unlikely that the site is a contributor to elevated metals in groundwater.

10.4 Human and Ecological Receptors

Human receptors are considered to include future residential occupants and future intrusive maintenance workers at the site. The site is currently not occupied and therefore there are no current human health receptors on site. Groundwater is not beneficially used for drinking water in the area.

Ecological receptors are considered to be terrestrial ecology onsite including native fauna trafficking the site and off site groundwater receiving environments.

10.5 Exposure Pathways

For a receptor to be exposed to a contaminant derived from a site, there should be an exposure pathway linking the source of contamination and the exposed population. An

exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements (USEPA, 1989):

- A source and mechanism of chemical release
- A retention or transport medium (or media where chemicals are transferred between media)
- A point of potential human contact with the contaminated media and
- An exposure route (e.g., ingestion, inhalation) at the point of exposure.

Visible evidence of erosion from the mine to the rail corridor and elevated contaminant concentrations in surface water upstream of the site are evidence indicating contamination may be migrating from the adjacent rail corridor and former mine to the site via sediment, surface water and to a lesser extent through airborne dust.

Exposure routes for the contaminants include:

- · Direct contact with contaminated soil
- Inhalation of dust from contaminated soil, airborne dust and indoor dust
- Incidental ingestion of contaminated soil, airborne dust and indoor dust
- Root uptake of contaminants in soil and groundwater
- · Groundwater extraction for residential use

An assessment of the SPR linkages for the contamination onsite is summarised in **Table 10-1.**

Table 10-1: Exposure Assessment Summary

_	Complete SPR? (Y / N / P)				
Exposure Route	Residential Occupants	Intrusive Maintenance Workers	Ecology	Justification	
Soil					
Direct Contact	Υ	Υ	N/A	Lead concentrations in soil were observed above the adopted health and ecological criteria at	
Inhalation	Y	Υ	N/A	the site. Therefore, based on lead concentrations alone the contamination may present a	
Incidental Ingestion	Y	Y	N/A	risk to future site users. Concentrations of arsenic,	
Ecological Uptake	N/A	N/A	Υ	copper, lead and zinc were reported above ecological assessment criteria at multiple locations and therefore present a risk to ecological receptors.	
Groundwater					
Groundwater Extraction for Residential Use	Р	N/A	N/A	One exceedance of the drinking water criteria for lead was observed in the upgradient monitoring well. In general, upgradient concentrations were	
Ecological Uptake	N/A	N/A	Р	higher than downgradient concentrations indicating the source is originating from offsite. There is no current residential use of groundwater and groundwater is at a depth of six metres below the site and therefore contact by maintenance workers is unlikely. Ecological uptake of contaminants in groundwater following discharge to receiving	

				surface waters presents a
				potential risk.
Surface Water				
Direct Contact	N/A	N/A	N/A	Surface water exists downgradient of the site in the rail corridor however exposure to human receptors is
Incidental Ingestion	N/A	N/A	N/A	considered unlikely and so complete SPR linkages to human receptors are considered unlikely.
Ecological Uptake	N/A	N/A	Y	SPR Linkages are complete for ecological receptors in Copper Creek and the Molonglo River downstream of the Copper Creek discharge based on the results of the DSI (Ramboll, 2021a)
Indoor Dust				
Direct Contact	Y	N/A	N/A	Concentrations of indoor dust exceeded the criteria for residential land use in floor and windowsill/shelf samples.
Inhalation	Υ	N/A	N/A	Residents have been subsequently relocated and items cleaned and validated however the remaining property
Incidental Ingestion	Υ	N/A	N/A	still presents an exposure risk to future users prior to any remedial works being undertaken.
Airborne Dust				
Inhalation	Р	N/A	N/A	Potential ongoing risk of exposure to lead in airborne
Incidental Ingestion	Р	N/A	N/A	dust from the adjacent mine and rail corridor has been identified.

11. SITE CHARACTERISATION

Lead contamination is throughout the site in surface and near surface soils and in indoor dust within the main residence and detached garage. Concentrations of lead above criteria appear limited to the upper 0.1-0.3 m of soil.

Site investigations identified:

- Concentrations of lead elevated above human health criteria within surface soils generally to less than 0.3 mbgl.
- Concentrations of arsenic, copper, lead and zinc were found above ecological criteria at multiple locations in surface soil samples generally to depths less than 0.1 m bgl.

Metals were also identified in groundwater near to the site. The site is not likely a contributor to the concentrations identified on the basis that concentrations were generally higher upgradient of the site in comparison to down gradient and there is a contaminant source (legacy mine) located upgradient of the site.

Elevated lead concentrations measured in the adjacent rail corridor (Ramboll 2021), visible evidence of erosion from the rail corridor and elevated contaminant concentrations in groundwater upgradient of the site indicate contamination has historically migrated to the site from the rail corridor and/or legacy mine site via airborne dust, soil erosion, and groundwater. No contamination of the site from on site sources was identified.

The following data gaps remain with regards to contamination at the site:

- One groundwater monitoring event was completed therefore information on seasonal variation of contaminants in groundwater is not well understood.
- The migration of contaminants from off site to the site in air and water is not understood.

The elevated soil and dust concentrations identified present a potential risk to residential site users without remediation. Currently the site is unoccupied and is managed under the John Holland Rail Environmental Management System. It is recommended that this management continue (integrating transition to UGL Regional Linx in January 2022) until remediation of the site is completed.

Adopting an average depth of soil contamination of 0.2 m and yard areas (excluding building footprints) of 930 m² an indicative volume of soil requiring remediation is calculated at 185 m^3 .

12. CONCLUSIONS AND RECOMMENDATIONS

On behalf of JHR, Ramboll has completed a DSI in the area of a former load-out facility within the Country Regional Network (CRN) at Captains Flat, New South Wales (NSW). The DSI included a review of historical information and soil, groundwater and dust sampling and analysis for COPCs. The key findings of this DSI were:

- Soil contamination was identified onsite. The key contaminant of concern for human health is lead. The key contaminants of concern for ecology are arsenic, lead, nickel and zinc.
- No other contaminants of concern were identified in the soil sampling and the risk of other contaminants is considered to be low based on information regarding historical site use.
- Groundwater contamination was identified in the upgradient monitoring well in particular lead concentrations were reported above the drinking water criteria however there are no current groundwater extraction bores nearby the site. Groundwater contamination is not considered to be related to an onsite source.
- Concentrations of indoor dust exceeded the criteria for residential land use in floor and windowsill/shelf samples. There is a potential source pathway receptor linkage for residential users of the site and on this basis the site is currently considered not suitable for residential land use.
- Residents have been subsequently relocated and items cleaned and validated however the
 remaining property still presents an exposure risk to future users due to soil lead
 concentrations and the potential for reaccumulation of dust in the residence. Remediation
 of the site is required prior to residential occupation.

Several potential human receptors were identified including:

- Future residential occupants
- Future intrusive maintenance workers at the site
- Terrestrial ecology onsite including native fauna

Potential for contaminant migration through airborne dust remains as a data gap.

Based on this, Ramboll recommends:

- Preparation and implementation of a remedial action plan (RAP) to address the
 contamination onsite which consists of lead impacted shallow soils across the site and
 lead dust within the property.
- Further investigation into the ongoing migration of contamination to the site should be addressed by monitoring air quality at the site during conditions representative of seasonal variability
- Groundwater should not be extracted for beneficial use without a detailed assessment of
 groundwater quality and potential risks associated with the proposed usage. It is noted
 that any future use of groundwater would require appropriate assessment for the
 proposed use and licensing under the Water Act 1912.

13. LIMITATIONS

Ramboll Australia Pty Ltd (Ramboll) prepared this report in accordance with the scope of work as outlined in our proposal to JHR dated 27 August 2021 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment.

Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

13.1 User Reliance

This report has been prepared exclusively for JHR and may not be relied upon by any other person or entity without Ramboll's express written permission.

14. REFERENCES

- ANZECC. (2000). Australia and New Zealand Environment and Conservation Council, Guidelines for Fresh and Marine Water Quality.
- ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. BOM. (2019). Australian Groundwater Explorer.
- DEC. (2007). Department of Environment and Conservation NSW, Guidelines for the Assessment and Management of Groundwater Contamination.
- Department of Environment and Heritage Protection. (2012). *Guidelines for Contaminated Land Professionals.*
- Friebel, E. &. (2011). Health Screening Levels for petroleum hydrocarbons in soil and groundwater. CRC Care Technical Report no.10. Adelaide, Australia: CRC for Contamination Assessment and Remediation of the Environment.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1). NEPC.
- NEPC. (2013). National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.
- NHMRC. (2008). National Health and Medical Research Council Guidelines for Managing Risk in Recreational Waters.
- NHMRC. (2008). National Health and Medical Research Council Guidelines for Managing Risks in Recreational Waters.
- NHMRC. (2018). National Health and Medical Research Council, Australian Drinking Water Guidelines.
- NSW EPA. (2017). Guidelines for the Site Auditor Scheme (3rd Edition).
- OEH. (2020). Guidelines for Consultants Reporting on Contaminated Sites.
- WHO. (2008). World Health Organisation (WHO) Guidelines for Drinking-water Quality, third edition.

Ramboll 2021a, Captains Flat Rail Corridor Detailed Site Investigation

Ramboll 2021b, 2 Copper Creek Road, Captains Flat: Environmental Site Assessment

Ramboll 2021c, Captains Flat Lead Management Plan, Conceptual Site Model, November 2021.

Standards Australia (1998) AS NZS 5667.6-1998 Water quality - Sampling - Guidance on sampling of rivers and streams

Standards Australia (1998) AS NZS 5667.11-1998 Water quality - Sampling - Guidance on Sampling of Groundwaters.

Standards Australia (2005) AS 4482.1—2005 Guide to the investigation and sampling of sites with potentially contaminated soil

Standards Australia (1998) AS4361.2 -1998 - Guide to lead paint management - Residential and commercial buildings.

USEPA (2020) Protect your family from lead in your home. US Environmental Protection Agency – January 2020.

US EPA 2007, Method 6200, Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment

APPENDIX 1 FIGURES

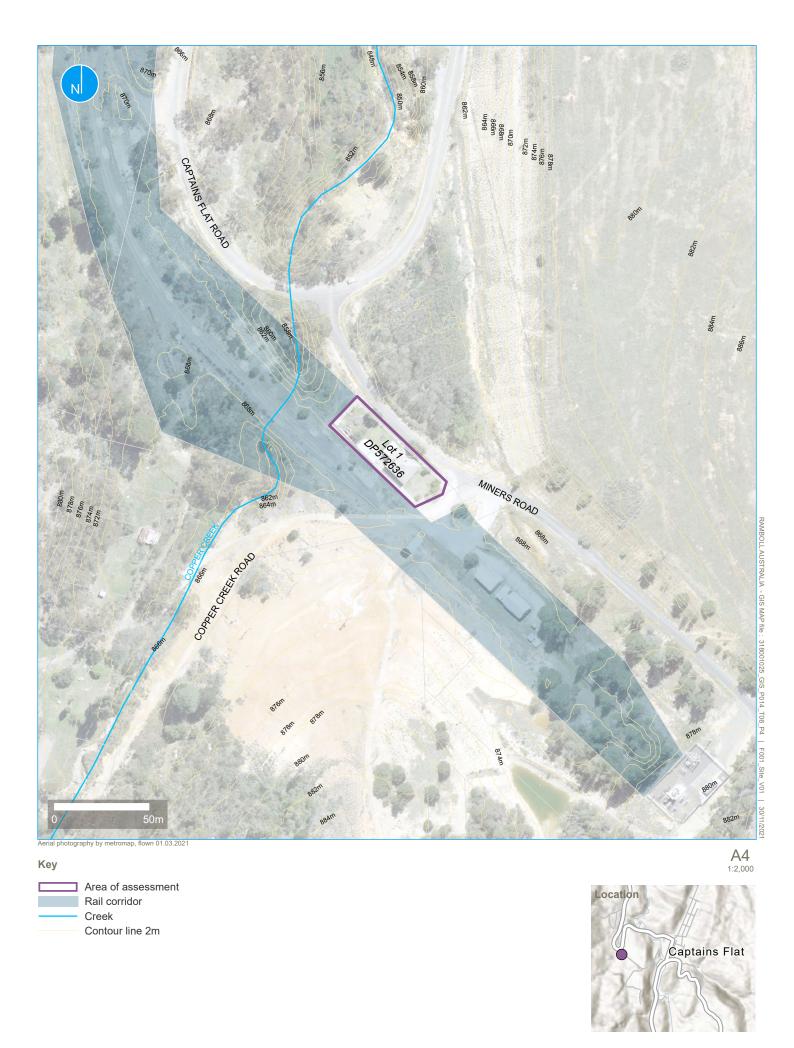
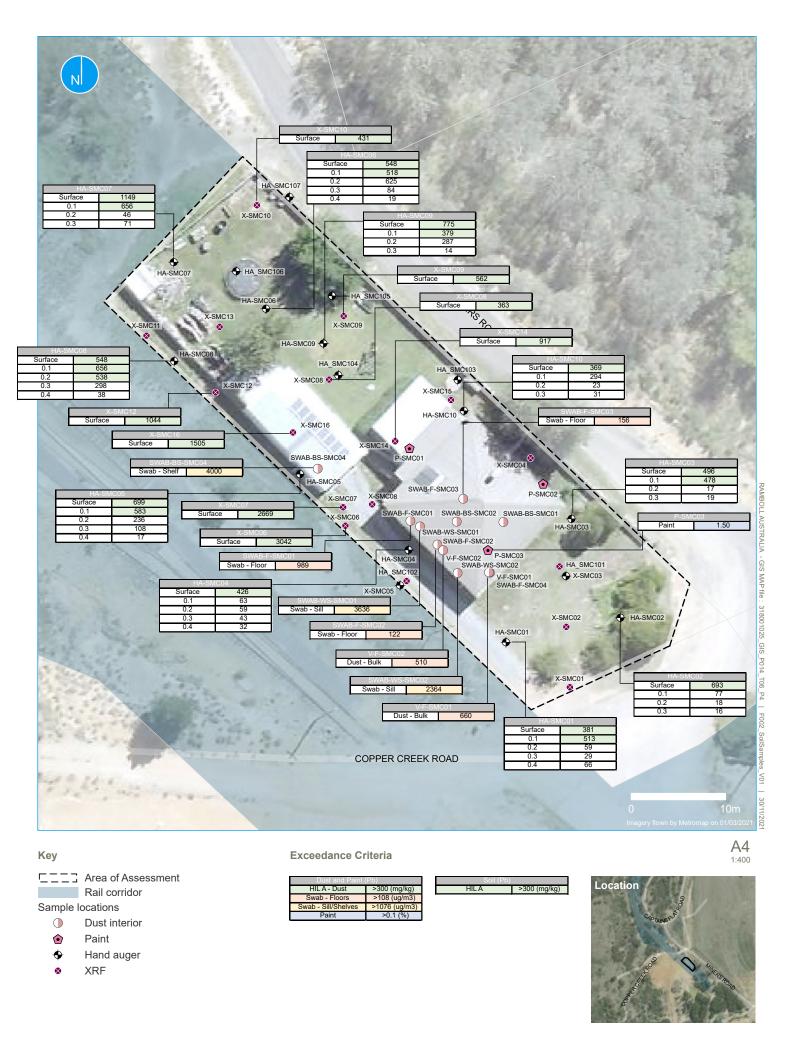



Figure 1 | Site Locality
Detailed Site Investigation : 2 Copper Creek Road, Captains Flat

Figure 2 | **Soil Sampling Locations and Lead Exceedances** Detailed Site Investigation : 2 Copper Creek Road, Captains Flat

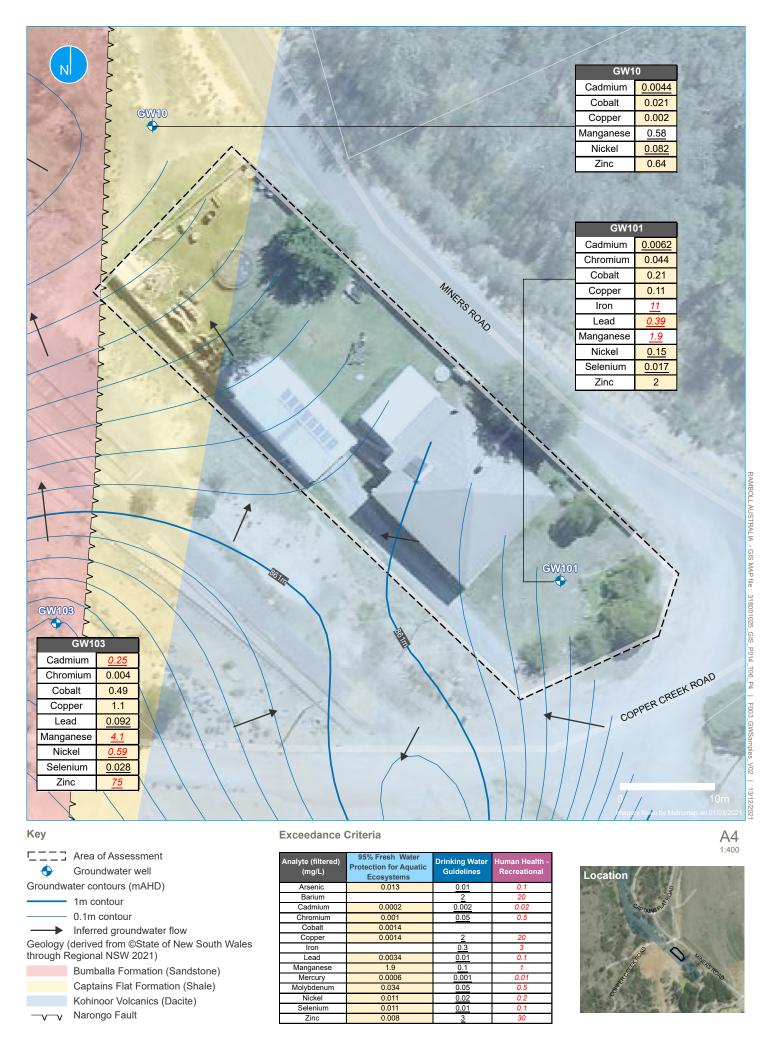


Figure 3 | Groundwater Sampling Locations and Exceedances
Detailed Site Investigation: 2 Copper Creek Road, Captains Flat

APPENDIX 2 PHOTOGRAPHIC LOG

Photograph 1: Station Masters Cottage adjacent to the rail corridor.

Photograph 2: northern portion of the site showing the septic tank.

Photograph 3: Detached shed and backyard of SMC.

Photograph 4: Backyard of former SMC looking west.

Photograph 5: Chicken coop (not in use) and septic tank in the northern portion of the site.

Photograph 6: Sediment accumulating in the detached garage is possible evidence of erosion near the rail corridor boundary.

Title:	Detailed Site Investigation	Approved: SM	Project-Nr.: 318001025	Date: November 2021
Site:	Station Masters Cottage			
Client:	John Holland Rail			RAMBOLL

APPENDIX 3 EIL CALCULATIONS

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged
ACLs
Enter % clay (values from 0 to 100%)
1 Below needed to calculate fresh and aged
ABCs
71200
Measured background concentration
(mg/kg). Leave blank if no measured value
. 3 3/
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate of
background concentration
1.5
or for aged ABCs only
or for aged ABOS only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Outputs			
Land use	Cr III soil-specific EILs		
	(mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	50	70	
Urban residential and open public spaces	100	190	
Commercial and industrial	150	320	

Inputs				
Select contaminant from list below				
Cu				
Below needed to calculate fresh and aged ACLs				
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)				
15				
Enter soil pH (calcium chloride method) (values from 1 to 14)				
6.4				
Enter organic carbon content (%OC) (values from 0 to 50%)				
8.3				
Below needed to calculate fresh and aged ABCs				
Measured background concentration (mg/kg). Leave blank if no measured value				
or for fresh ABCs only				
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 1.5				
or for aged ABCs only				
Enter State (or closest State)				
NSW Enter traffic volume (high or low)				
low				

Outputs				
Land use	Cu soil-specific EILs			
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	60	85		
Urban residential and open public spaces	110	220		
Commercial and industrial	160	310		

Inputs				
Select contaminant from list below				
Ni				
Below needed to calculate fresh and aged ACLs				
Enter cation exchange capacity (silver				
thiourea method) (values from 0 to 100				
cmolc/kg dwt)				
15				
Below needed to calculate fresh and aged ABCs				
Measured background concentration				
(mg/kg). Leave blank if no measured value				
(33)				
or for fresh ABCs only				
Enter iron content (agua regia method)				
(values from 0 to 50%) to obtain estimate of				
background concentration				
1.5				
or for aged ABCs only				
Enter State (or closest State)				
NSW				
Enter traffic volume (high or low)				
low				

Outputs				
Land use	Ni soil-specific EILs			
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	20	40		
Urban residential and open public spaces	75	220		
Commercial and industrial	150	380		

lassida				
Inputs				
Select contaminant from list below				
Zn Below needed to calculate fresh and aged				
ACLs				
Enter cation exchange capacity (silver				
thiourea method) (values from 0 to 100 cmolc/kg dwt)				
15				
Enter soil pH (calcium chloride method) (values from 1 to 14)				
6.4				
Below needed to calculate fresh and aged ABCs				
Measured background concentration				
(mg/kg). Leave blank if no measured value				
or for fresh ABCs only				
Enter iron content (aqua regia method)				
(values from 0 to 50%) to obtain estimate of				
background concentration				
1.5				
or for aged ABCs only				
Enter State (or closest State)				
NSW				
Enter traffic volume (high or low)				
low				

Outputs				
Land use	Zn soil-specific EILs			
	(mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	65	200		
Urban residential and open public spaces	230	630		
Commercial and industrial	350	930		

Inputs
Select contaminant from list below
As
Below needed to calculate fresh and aged ACLs
Below needed to calculate fresh and aged
ABCs
or for fresh ABCs only
or for aged ABCs only

Outputs			
Land use	Arsenic generic EILs		
	(mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	20	40	
Urban residential and open public spaces	50	100	
Commercial and industrial	80	160	

Inputs				
Select contaminant from list below				
Pb				
Below needed to calculate fresh and aged ACLs				
Below needed to calculate fresh and aged ABCs				
or for fresh ABCs only				
or for aged ABCs only				

Outputs			
Land use	Lead generic EILs		
	(mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	110	470	
Urban residential and open public spaces	270	1100	
Commercial and industrial	440	1800	

APPENDIX 4 CALIBRATION CERTIFICATES

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 17K101079

Item	Test	Pass	Comments
Battery	Charge Condition	√	
,	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	✓	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00		355386	pH 9.91
2. pH 7.00		pH 7.00		355072	pH 6.99
3. pH 4.00		pH 4.00		351412	pH 3.95
4. mV		227.4mV		357172/357173	227.7mV
5. EC		2.76mS		350510	2.74mS
6. D.O		0.00ppm		10959	0.03ppm
7. Temp		22.7°C		MultiTherm	23.3°C

Calibrated by: Kylie Rawlings

Calibration date: 27/01/2021

Next calibration due: 26/02/2021

Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No.

18J104319

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	1	Comments
	Fuses	√	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	√	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	√	
Sensor	1. pH	√	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		370064	pH 10.09
2. pH 7.00		pH 7.00		372012	pH 7.10
3. pH 4.00		pH 4.00		367234	pH 3.90
4. mV		231.8mV		365451/370891	231.8mV
5. EC		2.75mS		369734	2.76mS
6. D.O		0.00ppm		1910294760	0.00pm
7. Temp		21.0°C		MultiTherm	20.4°C

Calibrated by:

Darcy Keogh

Calibration date:

29/10/2021

Next calibration due:

28/11/2021

Oil / Water Interface Meter

Instrument

Interface Meter (30M)

Serial No.

483864

Item	Test	Pass	Comments
Battery	Compartment	√	Comments
	Capacity	3/	70
Probe	Cleaned/Decon.	V	
1.0.0.0	Operation	7	
	Operation	*	***************************************
Connectors	Condition	V	
		40	
Tape Check	Cleaned	1	100
	Checked for cuts	1	
Instrument Test	At surface level	√	
	TOTAL SAMPLE AND SERVICE OF THE SERV	*	Parameter Control of the Control of
			A-00 M

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:	Eloise Carro	п
	Lioise Callo	11

Calibration date:

19/10/2021

Next calibration due:

18/12/2021

Instrument

PhoCheck Tiger

Serial No.

T-111087

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			C	
Battery	Charge Condition	V			Commen	IS
	Fuses	V				
	Capacity	V				
	Recharge OK?	V				
Switch/keypad	Operation	V				
Display	Intensity	1		Prof servi		
	Operation	V				
	(segments)					
Grill Filter	Condition	—	·			
	Seal	√				
Pump	Operation	√	-			
	Filter	V.				
	Flow	V				
	Valves, Diaphragm	V				
CB	Condition	V				
Connectors	Condition	√				
Sensor	PID	1	10.6 ev			
			10.0 6			
larms	Beeper	✓	Low	Himb	Toronto.	
	Settings	√	50ppm	High	TWA	STEL
oftware	Version	√	13017111	100ppm		
ata logger	Operation	√				
ownload	Operation					
ther tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

Sensor	Serial no	Calibrati	1 4 11 11				
DID	OCTIAI 110	Calibration gas and concentration	Certified	Gas bottle	Instrument Reading		
PID Lamp		93ppm Isobutylene	NATA	SY361			
		1 -pp is as at yione	INDIA	31301	93.1 ppm		

Gary Needs

Calibrated by:

Calibration date:

25/10/2021

Next calibration due:

23/04/2022

APPENDIX 5 ANALYTICAL SUMMARY TABLES

Client: John Holland Rail Job No:318001025 Project Name: Station Masters Cottasge DSI 25/11/2021 Table 1 SMC XRF Sampling Results

		Sample Type:		Soil																					
	NEPM 2013	Sample ID:		X-SMC01	X-SMC02	X-SMC03	X-SMC04	X-SMC05	X-SMC06	X-SMC07	X-SMC08	X-SMC09	X-SMC10	X-SMC11	X-SMC12	X-SMC13	X-SMC14	X-SMC15	X-SMC16	HA-SMC01_0.0	HA-SMC01_0.1	HA-SMC01_0.2	HA-SMC01_0.3	HA-SMC01_0.4	HA-SMC02_0.0
	HIL A	Sample date:		11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021
	Residential	Project Name:		Captains Flat																					
		Sampling Meth	nod:	XRF																					
						•						•					•		•			•	•		
Analyte grouping/Analyte		Units	LOR																						
Moisure Content																									7
Moisure Content		%																							
Heavy Metals													_								_				/
Arsenic	100	mg/kg	5	< LOD	< LOD	< LOD	68	< LOD	156	< LOD	70	< LOD	56	< LOD	< LOD	< LOD	< LOD								
Chromium	100	mg/kg	2	31	< LOD	< LOD	46	28	< LOD	< LOD	< LOD	42	< LOD	47	< LOD	51									
Copper	6000	mg/kg	5	< LOD	< LOD	39	174	< LOD	407	300	67	93	< LOD	49	100	47	158	< LOD	137	< LOD	112	< LOD	< LOD	< LOD	85
Iron		mg/kg	0.005	13646	9231	5629	16518	8517	25348	17498	8759	10690	11706	5420	6254	8861	15726	5940	23409	12439	13378	5534	6441	35082	15739
Lead	300	mg/kg	5	285	351	254	861	870	3596	3155	430	664	509	221	1234	247	1084	236	1780	450	607	69	34	78	819
Nickel	400	mg/kg	2	< LOD	80	< LOD	< LOD																		
Zinc	7400	mg/kg	5	422	552	334	1580	720	672	1037	655	868	784	339	2235	480	1999	483	1152	657	1109	374	201	139	761

Blank Cell indicates no criterion available

LOD = Limit of Detection

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

Health Investigation Levels for chromium based on chromium (VI)

Concentrations in green box exceed exceed adopted HIL A for residential use

Client: John Holland Rail Job No:318001025 Project Name: Station Masters Cottasge DSI 25/11/2021 Table 1 SMC XRF Sampling Results

			1					1									1			1				
		Sample Typ	e:	Soil																				
	NEPM 2013	Sample ID: Sample date:		HA-SMC02_0.1	HA-SMC02_0.2	HA-SMC02_0.3	HA-SMC03_0.0	HA-SMC03_0.1	HA-SMC03_0.2	HA-SMC03_0.3	HA-SMC04_0.0	HA-SMC04_0.1	HA-SMC04_0.2	HA-SMC04_0.3	HA-SMC04_0.4	HA-SMC05_0.0	HA-SMC05_0.1	HA-SMC05_0.2	HA-SMC05_0.3	HA-SMC05_0.4	HA-SMC06_0.0	HA-SMC06_0.1	HA-SMC06_0.2	HA-SMC06_0.3
				11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021
	Residential	Project Nan	ne:	Captains Flat																				
		Sampling M	ethod:	XRF																				
		•	•	•	•	•	•				•		•	•		•	•		•	•	•			
Analyte grouping/Analyte		Units	LOR																					
Moisure Content																								
Moisure Content		%																						
Heavy Metals																								
Arsenic	100	mg/kg	5	< LOD	< LOD	< LOD	53	< LOD	89	65	< LOD													
Chromium	100	mg/kg	2	30	< LOD	< LOD	18	< LOD	< LOD	< LOD	35	< LOD	< LOD	< LOD	< LOD	43	< LOD	29	< LOD	< LOD				
Copper	6000	mg/kg	5	< LOD	< LOD	< LOD	< LOD	87	< LOD	< LOD	90	< LOD	< LOD	< LOD	< LOD	114	115	65	< LOD	< LOD	61	63	143	< LOD
Iron		mg/kg	0.005	20416	4848	6231	6136	9185	6786	7999	12319	9923	9799	9741	18817	15338	13854	9929	6877	7486	9661	11196	11594	6352
Lead	300	mg/kg	5	91	22	19	586	565	20	22	504	75	70	51	38	827	689	279	128	21	648	613	739	99
Nickel	400	mg/kg	2	< LOD																				
Zinc	7400	mg/kg	5	129	38	< LOD	975	794	155	128	506	54	230	146	314	1238	1452	619	277	81	976	1118	1296	179

Blank Cell indicates no criterion available

LOD = Limit of Detection

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

Health Investigation Levels for chromium based on chromium (VI)

Concentrations in green box exceed exceed adopted HIL A for residential use

Client: John Holland Rail Job No:318001025 Project Name: Station Masters Cottasge DSI 25/11/2021 Table 1 SMC XRF Sampling Results

		Sample Type:	Soil																	
	NEPM 2013	Sample ID:	HA-SMC06 0.4	HA-SMC07 0.0	HA-SMC07 0.1	HA-SMC07 0.2	HA-SMC07 0.3	HA-SMC08 0.0	HA-SMC08 0.1	HA-SMC08 0.2	HA-SMC08 0.3	HA-SMC08 0.4	HA-SMC09 0.0	HA-SMC09 0.1	HA-SMC09 0.2	HA-SMC09 0.3	HA-SMC10 0.0	HA-SMC10 0.1	HA-SMC10 0.2	HA-SMC10_0.3
	HIL A	Sample date:	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021	11/02/2021
	Residential	Project Name:	Captains Flat																	
		Sampling Method:	XRF																	
Analyte grouping/Analyte		Units LOR																		
Moisure Content																				
Noisure Content		%																		
leavy Metals																				
Arsenic	100	mg/kg 5	< LOD	< LOD	80	< LOD	48	< LOD	< LOD	37	< LOD	< LOD	< LOD							
Chromium	100	mg/kg 2	< LOD																	
Copper	6000	mg/kg 5	< LOD	155	129	< LOD	< LOD	90	108	72	78	< LOD	121	107	58	< LOD	89	< LOD	< LOD	< LOD
ron		mg/kg 0.005	11151	17582	14783	7716	7344	8494	13856	11785	11823	7438	11837	9885	8130	6458	12244	9927	7175	10325
ead	300	mg/kg 5	22	1359	775	55	84	648	776	636	353	45	916	448	339	17	436	347	27	37
lickel	400	mg/kg 2	< LOD																	
inc	7400	ma/ka 5	< LOD	973	791	166	144	953	1435	1006	1362	375	1191	703	282	65	892	748	70	79

Blank Cell indicates no criterion available

LOD = Limit of Detection

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

Health Investigation Levels for chromium based on chromium (VI)

Concentrations in green box exceed exceed adopted HIL A for residential use

Table 2: Indoor Dust Results

				Sample T	pe:	Dust											
				Site:		Residence											
	Dust Interior	Dust Interior - Window		Lab Samp	le number:	S21-Fe25654	S21-Fe25655	S21-Fe25656	S21-Fe25657	S21-Fe25658	S21-Fe25659	S21-Fe25660	S21-Fe25661	S21-Fe25670	S21-Fe25662	S21-Fe25663	S21-Fe25664
	- Floors	Sills and	NEPM 2013 HIL A	Sample da	ite:	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021	9/02/2021
	(Residential) ^A		Residential	Sample II):	SWAB-BS-SMC01	SWAB-BS-SMC02	SWAB-BS-SMC03	SWAB-WS-SMC01	SWAB-WS-SMC02	SWAB-F-SMC01	SWAB-F-SMC02	SWAB-F-SMC03	SWAB-F-SMC04	SWAB-F-SMC05	V-F-SMC01	V-F-SMC02
	(Residential)	(Residential) ^A	Residential	Project Na	me:	Captains Flat DSI											
		(Residential)		Sampling	Method:	Swab	Vacuum	Vacuum									
Analyte grouping/Analyte				Units	LOR												
LTM-MET-3040 Metals in Waters,	Soils & Sediments	by ICP-MS															
Lead			300	mg/kg	5											660	510
Total Lead				Total µg	1	64	24	26	200	130	89	11	14	8.2	9.1		
Lead Loading																	
Sample Area				m²	NA	0.09	0.09	0.086	0.055	0.055	0.09	0.09	0.09	0.09	0.09	2	2
Sample Mass				g		-	-	-	-	-	-	-	-	-	-	0.989	0.812
Lead Loading	108	1076		μq/m²	NA	711	267	302	3636	2364	989	122	156	91	101	326	207

LOR = Limit of Reporting
National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).
Concentration in red font and grey box exceed the adopted residential dust criteria
Concentrations in green bold font exceed adopted HIL A for residential use
Concentrations in box exceed the screening value > 2.5 times
Where one or more guideline value is exceeded, the highest guideline exceeded will be highlighted

*USEPA (2020) Protect your family from lead in your home. US Environmental Protection Agency - January 2020.

Client: John Holland Rail Job No: 318001025 Project Name: Stations Masters Cottage DSI

Table 3 Station Masters Cottage Paint Results

5/11/2021				Station Masters Cottage	e Paint Results	
		Sample Typ	pe:	Paint	Paint	Paint
		Site:		Residence	Residence	Residence
	NOW EDA	Lab Sample	e number:	S21-Fe25666	S21-Fe25667	S21-Fe25668
	NSW EPA Lead in Paint	Sample dat	te:	9/02/2021	9/02/2021	9/02/2021
	guideline ^A	Sample ID:		P-SMC01	P-SMC02	P-SMC03
	guideiille	Project Na	me:	Captains Flat DSI	Captains Flat DSI	Captains Flat DS
		Sampling N	1ethod:	Grab	Grab	Grab
Analyte grouping/Analyte		Units	LOR			
Analyte grouping, Analyte		Office	LOR			
E022.5 - ACID EXTRACTABLE MET	TALS IN PAINT by IC	P-MS				
Lead	0.1	%	0.01	< 0.01	0.02	1.5

LOR = Limit of Reporting

Concentration in **red** font and grey box exceed the adopted maximum allowable lead amount in house paint

^ANSW EPA Managing Lead Contamination in Home Maintenance, Renovation and Demolition Practices. A Guide for Councils 2003.

Client: John Holland Rail Job No: 318001025 Project Name: Stations Masters Cottage DSI 25/11/2021

Table 4 Station Masters Cottage - Soil Sampling Resulrs

Part											7															
March Marc									Sample Type:		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Part											HA_SMC101_0.1	HA_SMC101_0.5	QC01	QC02	HA_SMC102_0.2	HA_SMC102_0.5	HA_SMC103_0.15	HA_SMC103_0.55	HA_SMC104_0.1	HA_SMC104_0.5	HA_SMC105_0.1	HA_SMC105_0.4	HA_SMC106_0.1	HA_SMC106_0.5	HA_SMC107_0.1	HA_SMC107_0.6
Part		NEDM 2013 HTL /				Limits																				
Section Sect			vapour Intrusion	(Dublic Occur		Residential/	a D																			
18. 18.			HSL A Sand" U-1m		Space ⁸	Public Open Space	A-	Maintenance	Sampling Method:		HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA
Company Comp								Workers																		
Company Comp																										
Company Comp							-																			
None for first first None	Analyte grouping/Analyte								Units	LOR				ı			ı									
None for first first None	EA055: Moisture Content		+	-	-			-	 							+		-					-			
Marie 19			1	1		1	1	1	%		13	20	21	23	15	28	25	15	5.3	15	30	13	24	11	14	22
Marie 19																										•
Marie 19																										
Property						<u></u>			T. I.																	4
Designation			3	170	+	1	1400	29000																		
Part					1																					
Paper Pape					+																					
Passering																										
Employment	Fluoranthene									0.5				< 0.1												
Company	. ,																									
Employment																										
The problem																										
Separate																										
Discrete Fig. Fig					20																					
Second profession					20																					
Easy of properties and the processors 200	Benzo(g.h.i)perylene										< 0.5	< 0.5	< 0.5	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Emeric (pigner TG (pid LOS) 1	Sum of polycyclic aromatic hydrocarbons	300								0.5																
Secology																										
Table Personant Information Table																										
Control Cont	Benzo(a)pyrene TEQ (LUR)	3							mg/kg	1.2	1.2	1.2	1.2	< 0.5	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Control Cont	Total Betroleum Hydrocarbons																	1								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1				1	ma/ka	10	< 20	< 20	< 20	< 25	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
C15 - C16 Fraction																										
	C15 - C28 Fraction									100	< 50	< 50	< 50	< 100	< 50	< 50	< 50	< 50	< 50	< 50	78	< 50	51	< 50	56	
C10 - C16 Fraction (cum) mg/rg 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 <	C29 - C36 Fraction									100	< 50	< 50	< 50	< 100	< 50	< 50	< 50	< 50	74	< 50	54	< 50	< 50	< 50	< 50	< 50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C10 - C36 Fraction (sum)									50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	97	< 50	132	< 50	51	< 50	56	< 50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ions	1	ı	_	200					. 20	. 20	. 20	. 25	. 20	. 20	. 20	- 20	. 20	. 20	. 20	. 20	. 20	. 20	. 20	. 20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			45		190	/00	4400	82000																		
SCI - C44 Fraction (F3) 300 2500 4500 85000 mg/kg 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100			43		100	1000	3300	62000		10																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					300																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	>C34 - C40 Fraction (F4)				2800						< 100	< 100	< 100		< 100	< 100	< 100		< 100	< 100	< 100	< 100	< 100	< 100	< 100	
SPEXN Service Servic	>C10 - C40 Fraction (sum)									50	< 100	< 100	< 100	< 50	< 100	< 100	< 100	< 100	< 100	< 100	160	< 100	< 100	< 100	< 100	< 100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	>C10 - C16 Fraction minus Naphthalene (F2)		110		120				mg/kg	50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		1									1	1	1		1	1	1	1			
Toluene 160 85 1400 12000 mg/kg 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1				_	F0						.01	.01	-01	-0.2		- 0.1	.01	.01	. 0.1	.01		.01		.01	. 0.1	101
$ \begin{array}{c} \text{Ethylberzene} \\ \text{Ethylberzene} \\ \text{S5} \\ \end{array} \begin{array}{c} 70 \\ \text{4500} \\ \text{85000} \\ 8$																										
meta- & para-Xylene meta- & para-Xylene meta- & para-Xylene co.2 co.2 <t< td=""><td>Tolderic</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Tolderic					1																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			33		,,,		7300	03000																		
Total Xylenes 40 45 1200 13000 mg/kg 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 <																										
Sum of BTEX 9.0.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9			40		45		12000	130000			< 0.3	< 0.3	< 0.3	< 3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Naphthalene 3 170 1400 29000 mg/kg 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5									mg/kg	0.2																
	Naphthalene		3	170			1400	29000	mg/kg	1	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Blank Cell indicates no criterion available
LDD – Limit of Detection
National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).
Health Investigation Levels for chromium based on chromium (vi)
Concentrations in green box exceed acceed adopted Hit A for residential use

			Sample Type:		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample ID:		HA_SMC105_0.1	HA_SMC105_0.25											HA_SMC104_0.1				HA_SMC103_0.15	HA_SMC103_0.4		HA_SMC102_0.2	HA_SMC102_0.35	
	NEPM 2013 HIL A	NEPM 2013 EIL Residential / Public	Sample date: Project Name:		27/10/2021 Captains Flat	27/10/2021 Captains Flat	27/10/2021 Captains Flat	27/10/2021 Captains Flat	28/10/2021 Captains Flat		28/10/2021 Captains Flat		27/10/2021 Captains Flat		27/10/2021 Captains Flat											
	Residential	Open Space	Sampling Method:		HA	HA HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA
			Units	LOR																						
Analyte grouping/Analyte			Units	LOR																					1	
EA055: Moisture Content				•	22	- 10	13				12	22	20		2.0	23		27		24	20			2.4		47
Moisture Content (dried @ 103°C)			%		22	18	13	14	6.7	11	12	23	20	-	3.8	23	6.3	27	6.7	21	20	6	4	3.1	6.5	17
Organochlorine Pesticides																										
4.4'-DDD 4.4'-DDE			mg/kg mg/kg	0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.2	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
4.4'-DDT		180	mg/kg	0.05	0.51	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH Aldrin			mg/kg mg/kg	0.05 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Aldrin and Dieldrin (Total)*	6		mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	50		mg/kg	0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05 < 0.1	< 0.05	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total DDT + DDE + DDD (Total)*	240		mg/kg mg/kg	0.1	1.77	< 0.05	< 0.05	0.21	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1 < 0.05	< 0.05	< 0.1
d-HCH Dieldrin			mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	270		mg/kg mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II			mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate Endrin	10		mg/kg mg/kg	0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Endrin aldehyde			mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05
Endrin ketone g-HCH (Lindane)			mg/kg mg/kg	0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Heptachlor	6		mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide Hexachlorobenzene	10		mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
Methoxychlor	300		mg/kg mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene			mg/kg	0.05	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*			mg/kg mg/kg	0.1	1.77	< 0.1	< 0.1	0.21 < 0.1	< 0.1 < 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	< 0.2 < 0.2	< 0.1
		•				•	•	•	-	•	*	*	•			•	•	•	*	*	-	*	* *		-	
Organophosphate Pesticides Azinphos-methyl			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos Chlorpyrifos	160		mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2
Chlorpyrifos-methyl			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos Demeton-O			mg/kg mg/kg	0.2	< 2 < 0.2	< 2	< 2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2	< 2 < 0.2	< 2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2	< 2 < 0.2
Demeton-S			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon Dichloryos			mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Dimethoate			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton EPN			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ethion			mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop Ethyl parathion			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2
Fenitrothion			mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion Fenthion			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2 < 0.2
Malathion			mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Merphos			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion Mevinphos			mg/kg mg/kg	0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Monocrotophos			mg/kg	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Naled Omethoate	+		mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 2
Phorate			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl Pyrazophos			mg/kg	0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Ronnel			mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	1		mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.2
Tetrachlorvinphos Tokuthion	+		mg/kg mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate			mg/kg	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
			1 1				1	1	1	1	1		1		1		1		1	1	1	1	1		1	

Blank Cell indicates no criterion available

LOD = Limit of Detection

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

Health Investigation Levels for Chromium based on chromium (VI)

Concentrations in green box exceed exceed adopted Hil. A for residential use

Client: John Holland Rail

Table 6
Stations Masters Cottage DSI - Soil Sampling Results - Asbestos

Job No: 318001025 Project Name: Stations Masters Cottage DSI

25/11/2021

DSI - Resi Asbestos Results

RAMBOLL

		Sample Typ	oe:	Building Material	Building Material	Building Material	Soil	Soil	Soil	Soil
	Health	Sample ID:	1	HA_SMC101	HA_SMC102	HA_SMC103	HA_SMC104	HA_SMC105	HA_SMC106	HA_SMC107
	Screening Level -	Sample dat	te:	27/10/2021	28/10/2021	28/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
	Residential A	Project Na	me:	Captains Flat	Captains Flat	Captains Flat	Captains Flat	Captains Flat	Captains Flat	Captains Flat
		Sampling M	1ethod:	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Analyte grouping/Analyte		Units	LOR							
Analyte grouping/Analyte		Units	LOR							
		Units	LOR							
Analyte grouping/Analyte Asbestos Weight of soil		Units	LOR -	251g	446g	188g	140g	296g	102g	476g

Concentrations in orange box exceed adopted asbestos HSL

Client: John Holland Rail

Job No: 318001025

Table 7
Stations Masters Cottage DSI - Groundwater Sampling Results

Project Name: Stations Masters Cottage DSI

Troject Name. Stations Masters Cottage 251							
24/02/2022	95% Fresh			Sample Type:	Water	Water	Water
	Water			Sample ID:	GW101	GW103	GW10
	Protection for	Drinking Water	_	Sample date:	2/11/2021	2/11/2021	2/11/2021
	Aquatic	Guidelines ^B	Recreational ^c	Site:	Captains Flat	Captains Flat	Captains Flat
	Ecosystems A			Sampling Method:	Micropurge	Micropurge	Micropurge
Guidelines	LCOSystems						1

Analyte grouping/Analyte				Units	LOR			
Heavy Metals								
Arsenic (filtered)	0.013	0.01	0.1	mg/L	0.001	0.003	0.002	< 0.001
Barium (filtered)		2	20	mg/L	0.02	0.25	< 0.02	0.03
Cadmium (filtered)	0.0002	0.002	0.02	mg/L	0.0002	0.0062	0.25	0.0044
Chromium (filtered) ^E	0.001	0.05	0.5	mg/L	0.001	0.044	0.004	< 0.001
Cobalt (filtered)	0.0014			mg/L	0.001	0.21	0.49	0.021
Copper (filtered)	0.0014	2	20	mg/L	0.001	0.11	1.1	0.002
Iron (filtered)		0.3	3	mg/L	0.05	11	< 0.05	< 0.05
Lead (filtered)	0.0034	0.01	0.1	mg/L	0.001	0.39	0.092	< 0.001
Manganese (filtered)	1.9	0.1	1	mg/L	0.005	1.9	4.1	0.58
Mercury (filtered)	0.0006	0.001	0.01	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001
Molybdenum (filtered)	0.034	0.05	0.5	mg/L	0.005	< 0.005	< 0.005	< 0.005
Nickel (filtered)	0.011	0.02	0.2	mg/L	0.001	0.15	0.59	0.082
Selenium (filtered)	0.011	0.01	0.1	mg/L	0.001	0.017	0.028	0.002
Tin (filtered)				mg/L	0.005	< 0.005	< 0.005	< 0.005
Titanium (filtered)				mg/L	0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.008	3	30	mg/L	0.005	2	<i>75</i>	0.64

Blank Cell indicates no criterion available

All results are in µg/L unless stated

LOR = Limit of Reporting

Concentrations below the LOR noted as <value

NOC = No observed contamination

C NHMRC 2008, Guidelines for Managing Risks in Recreational Water, National Health and Medical Research Council, Canberra.

^A ANZG 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 2018

⁸ NHMRC 2019, Australian Drinking Water Guidelines (2011) — Updated May 2019, National Health and Medical Research Council, Canberra.

^D Arsenic was based on the lowest criteria of As (III) and As (V) as speciation of arsenic was not measured

 $^{^{\}rm E}$ Based on the Chromium (VI) criteria as more conservative

Client: John Holland Rail Job No: 318001025 Table 8
Station Masters Cottage - Soil Sampling RPDs

ng RPDs

RAMBOLL

Project Name: Stations Masters Cottage DSI			_				
25/11/2021	Sample Type	:	Soil	Soil		Soil	
, ,	Sample date	:	27/10/2021	27/10/2021		27/10/2021	
	Sample ID:		HA_SMC101_0.5	QC01		QC02	
	•						
	Project Nam	e:	Captains Flat DSI	Captains Flat DSI	RPD %	Captains Flat DSI	RPD %
	Project No:		318001025	318001025	KPD 70	318001025	KPD 70
	Sample Loca	tion	Station Master Cottage	Station Master Cottage		Station Master Cottage	
	Sampling Me	thod:	Hand Auger	Hand Auger		Hand Auger	
	Sampling Me	itilou.	Halla Augel	riana Auger		Tidila Augei	
Analysis and units of Analysis	<u> </u>						
Analyte grouping/Analyte	Units	LOR		1			
Polynuclear Aromatic Hydrocarbons							
Naphthalene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Acenaphthylene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Acenaphthene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Fluorene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Phenanthrene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Anthracene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Fluoranthene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Pyrene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Benz(a)anthracene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Chrysene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Benzo(b+j)fluoranthene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.2	< 10 times LOR
Benzo(k)fluoranthene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.2	< 10 times LOR
Benzo(a)pyrene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.05	< 10 times LOR
Indeno(1.2.3.cd)pyrene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Dibenz(a.h)anthracene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Benzo(g.h.i)perylene	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.1	< 10 times LOR
Sum of polycyclic aromatic hydrocarbons	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	-	-
Benzo(a)pyrene TEQ (zero)	mg/kg	0.5	< 0.5	< 0.5	< 10 times LOR	< 0.5	< 10 times LOR
Benzo(a)pyrene TEQ (half LOR)	mg/kg	0.6	0.6	0.6	< 10 times LOR	< 0.5	< 10 times LOR
Benzo(a)pyrene TEQ (LOR)	mg/kg	1.2	1.2	1.2	< 10 times LOR	< 0.5	< 10 times LOR
Total Petroleum Hydrocarbons							
C6 - C9 Fraction	mg/kg	10	< 20	< 20	< 10 times LOR	< 25	< 10 times LOR
C10 - C14 Fraction	mg/kg	50	< 20	< 20	< 10 times LOR	< 50	< 10 times LOR
C15 - C28 Fraction	mg/kg	100	< 50	< 50	< 10 times LOR	< 100	< 10 times LOR
C29 - C36 Fraction	mg/kg	100	< 50	< 50	< 10 times LOR	< 100	< 10 times LOR
C10 - C36 Fraction (sum)	mg/kg	50	< 50	< 50	< 10 times LOR	< 50	< 10 times LOR
Total Recoverable Hydrocarbons - NEPM 2013 I	Fractions						
C6 - C10 Fraction	mg/kg	10	< 20	< 20	< 10 times LOR	< 25	< 10 times LOR
C6 - C10 Fraction minus BTEX (F1)	mg/kg	10	< 20	< 20	< 10 times LOR	< 25	< 10 times LOR
>C10 - C16 Fraction	mg/kg	50	< 50	< 50	< 10 times LOR	< 50	< 10 times LOR
>C16 - C34 Fraction (F3)	mg/kg	100	< 100	< 100	< 10 times LOR	< 100	< 10 times LOR
>C34 - C40 Fraction (F4)	mg/kg	100	< 100	< 100	< 10 times LOR	< 100	< 10 times LOR
>C10 - C40 Fraction (sum)	mg/kg	50	< 100	< 100	< 10 times LOR	< 50	< 10 times LOR
>C10 - C16 Fraction minus Naphthalene (F2)	mg/kg	50	< 50	< 50	< 10 times LOR	< 50	< 10 times LOR
DTEVAL							
BTEXN		0.0	. 0 1	104	. 10.11	100	10.11
Benzene	mg/kg	0.2	< 0.1	< 0.1	< 10 times LOR	< 0.2	< 10 times LOR
Toluene	mg/kg	0.5	< 0.1	< 0.1	< 10 times LOR	< 0.5	< 10 times LOR
Ethylbenzene	mg/kg	0.5	< 0.1	< 0.1	< 10 times LOR	< 1	< 10 times LOR
meta- & para-Xylene	mg/kg	0.5	< 0.2 < 0.1	< 0.2 < 0.1	< 10 times LOR	< 2 < 1	< 10 times LOR
ortho-Xylene Total Xylenes	mg/kg	0.5			< 10 times LOR		< 10 times LOR
Sum of BTEX	mg/kg	0.5	< 0.3	< 0.3	< 10 times LOR	< 3	< 10 times LOR
Naphthalene	mg/kg	0.2	< 0.5	< 0.5	< 10 times LOR	<1	< 10 times LOR
Ivapricialelle	mg/kg	1	< 0.5	< 0.5	< 10 times LOR	<u> </u>	< 10 times LOR

Client: John Holland Rail

Job No: 318001025

Stations Masters Cottage DSI - Groundwater Duplicate RPDs Project Name: Stations Masters Cottage DSI

25/11/2021							
	Sample Type	:	Groundwater	Groundwater		Groundwater	
	Sample date	:	2/11/2021	2/11/2021		2/11/2021	
	Sample ID:		GW103	DO1_GW_20211102		TO1_GW_20211102	
	Project Nam	e:	Captains Flat DSI	Captains Flat DSI		Captains Flat DSI	
	Project No:		318001025	318001025	RPD %	318001025	RPD %
	Sample Loca	tion	Copper Creek	Copper Creek		Copper Creek	
	Sampling Me	thod:	Micropurge	Micropurge		Micropurge	
	Sample Desc	ription:	Clear	Clear		Clear	
Analyte grouping/Analyte	Units	LOR					
Dissolved and Total Metals							
	mg/L	0.001	0.002	0.002	< 10 times LOR	0.002	< 10 times LOR
Arsenic (filtered) ^D Barium (filtered)		0.001	< 0.002	< 0.002	< 10 times LOR	0.002	< 10 times LOR
Cadmium (filtered)	mg/L mg/L	0.002	0.25	0.02	4.08%	0.017	3.92%
Chromium (filtered) ^E	mg/L	0.0002	0.004	0.004	< 10 times LOR	0.004	< 10 times LOR
Cobalt (filtered)	ma/L	0.001	0.004	0.48	2.06%	0.004	2.02%
Copper (filtered)	mg/L	0.001	1.1	1.1	0.00%	1.1	0.00%
Iron (filtered)	mg/L	0.001	< 0.05	< 0.05	< 10 times LOR	0.04	< 10 times LOR
Lead (filtered)	mg/L	0.001	0.092	0.09	2.20%	0.094	2.15%
Manganese (filtered)	mg/L	0.005	4.1	4.1	0.00%	3.7	10.26%
Mercury (filtered)	mg/L	0.0001	< 0.0001	< 0.0001	< 10 times LOR	<0.0005	< 10 times LOR
Molybdenum (filtered)	mg/L	0.005	< 0.005	< 0.005	< 10 times LOR	<0.001	< 10 times LOR
Nickel (filtered)	mg/L	0.001	0.59	0.57	3.45%	0.58	1.71%
Selenium (filtered)	mg/L	0.001	0.028	0.023	19.61%	0.003	161.29%
Tin (filtered)	mg/L	0.005	< 0.005	< 0.005	< 10 times LOR	-	-
Titanium (filtered)	mg/L	0.005	< 0.005	< 0.005	< 10 times LOR	<0.001	< 10 times LOR
Zinc (filtered)	mg/L	0.005	75	82	8.92%	98	26.59%

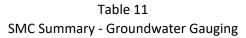
Table 9

RPD Control Limits

Pass - RPD <= 30%

Pass-1 - RPD > 30%, Analysis results < 10 times Detection Limit

Pass-2 - RPD > 30% and RPD <= 50%, Analysis result > 10 times Detection Limit and < 20 times Detection Limit


Exceeds RPD Control Limits

Client: John Holland Rail Job No: 318001025

Project Name: Captains Flat SMC DSI

24/02/2022

Well ID	Easting	Northing	Gauging Date	TOC Elevation	Surface Elevation	Stick-Up	Total Well Depth	SI	WL	Relative Groundwater Elevation
				(m AHD)	(m AHD)		(m btoc)	(m btoc)	(m bgl)	(m AHD)
GW10	720896.718	6058791.975	2/11/2021	867.18	865.97	1.21	10.92	6.93	5.72	860.25
GW101	720939.879	6058743.851	2/11/2021	868.99	869.09	-0.10	12.7	7.61	7.71	861.38
GW103	720886.545	6058739.37	2/11/2021	868.37	867.75	0.63	10.15	6.83	6.20	861.54

Notes

Survey by PHL Surveyors (2021) measured at Top of Casing (TOC).

m = Metres

btoc = Below Top of Casing

SWL = Standing Water Level

TOC = Top of Casing

Easting projection MGA94: Map Grid of Australia 1994

Client: John Holland Rail Job No: 318001025 Project Name: Stations Masters Cottage DSI 25/11/2021

Table 11 Stations Masters Cottage DSI - Groundwater Rinsate

	Sample Type:	Rinsate
	Sample ID:	RO1_GW_20211102
	Sample date:	2/11/2021
	Site:	Captains Flat
_	Sampling Method:	Micropurge
Guidelines		

Analyte grouping/Analyte	Units	LOR	
Heavy Metals			
Arsenic (filtered)	mg/L	0.001	< 0.001
Barium (filtered)	mg/L	0.02	< 0.02
Cadmium (filtered)	mg/L	0.0002	< 0.0002
Chromium (filtered) ^E	mg/L	0.001	< 0.001
Cobalt (filtered)	mg/L	0.001	< 0.001
Copper (filtered)	mg/L	0.001	< 0.001
Iron (filtered)	mg/L	0.05	< 0.05
Lead (filtered)	mg/L	0.001	< 0.001
Manganese (filtered)	mg/L	0.005	< 0.005
Mercury (filtered)	mg/L	0.0001	< 0.0001
Molybdenum (filtered)	mg/L	0.005	< 0.005
Nickel (filtered)	mg/L	0.001	< 0.001
Selenium (filtered)	mg/L	0.001	0.001
Tin (filtered)	mg/L	0.005	< 0.005
Titanium (filtered)	mg/L	0.005	< 0.005
Zinc (filtered)	mg/L	0.005	0.011

Blank Cell indicates no criterion available All results are in $\mu g/L$ unless stated LOR = Limit of Reporting

Concentration seporting

Concentrations below the LOR noted as <value

NOC = No observed contamination

Output

Arsenic was based on the lowest criteria of As (III) and As (V) as speciation of arsenic was not measured

E

Client: John Holland Rail Job No: 318001025 Table 12 SMC Summary - Groundwater Quality

Project Name: Captains Flat SMC DSI

24/02/2022

Well ID	Gauging Date	Temperature (°C)	рН	EC (µScm-¹)	DO (mg/L)	Eh (mV)	Turbidity (NTU)	TDS (ppm)	Comments
GW10	2/11/2021	15.60	5.86	1,035.00	1.52	-96.70	ı	669.50	turbid, black
GW101	2/11/2021	14.90	6.28	2,567.00	4.04	-62.90	-	1,670.50	turbid, brown
GW103	2/11/2021	14.70	3.98	1,677.00	2.69	137.90	-	1092	turbid, brown

Notes

L = Litre

DO = Dissolved Oxygen

ppm = parts per million

EC = Electrical Conductivity

 $\mu Scm^{-1} = microSiemens per centimetre$

Eh = Redox

mV = milli Volts

NTU = Nephelometric Turbidity Units

APPENDIX 6 NATA ACCREDITED LABORATORY REPORTS

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 281764

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	J Auld
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	318001025, Stations Masters Cottage
Number of Samples	1 Soil
Date samples received	02/11/2021
Date completed instructions received	02/11/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	09/11/2021	
Date of Issue	08/11/2021	
NATA Accreditation Number 290	11. This document shall not be reproduced except in full.	
Accredited for compliance with Is	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Manju Dewendrage, Prep Team Leader Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		281764-1
Your Reference	UNITS	QC02
Date Sampled		27/10/2021
Type of sample		Soil
Date extracted	-	03/11/2021
Date analysed	-	04/11/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	79

svTRH (C10-C40) in Soil		
Our Reference		281764-1
Your Reference	UNITS	QC02
Date Sampled		27/10/2021
Type of sample		Soil
Date extracted	-	03/11/2021
Date analysed	-	04/11/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C10 -C16	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	98

PAHs in Soil		
Our Reference		281764-1
Your Reference	UNITS	QC02
Date Sampled		27/10/2021
Type of sample		Soil
Date extracted	-	03/11/2021
Date analysed	-	05/11/2021
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	96

Moisture		
Our Reference		281764-1
Your Reference	UNITS	QC02
Date Sampled		27/10/2021
Type of sample		Soil
Date prepared	-	03/11/2021
Date analysed	-	04/11/2021
Moisture	%	23

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			03/11/2021	[NT]		[NT]	[NT]	03/11/2021	
Date analysed	-			04/11/2021	[NT]		[NT]	[NT]	04/11/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	88	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	88	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	88	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	88	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	85	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	89	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	81	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	97	[NT]		[NT]	[NT]	99	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]	
Date extracted	-			03/11/2021	[NT]		[NT]	[NT]	03/11/2021		
Date analysed	-			04/11/2021	[NT]		[NT]	[NT]	04/11/2021		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	82		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	97		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	82		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	97		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	109		
Surrogate o-Terphenyl	%		Org-020	99	[NT]		[NT]	[NT]	85		

QUA	ALITY CONTRO	L: PAHs	n Soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]		
Date extracted	-			03/11/2021	[NT]		[NT]	[NT]	03/11/2021			
Date analysed	-			05/11/2021	[NT]		[NT]	[NT]	05/11/2021			
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92			
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85			
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95			
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	110			
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84			
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87			
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	69			
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	88			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-022/025	94	[NT]		[NT]	[NT]	89			

Result Definiti	ons						
NT	Not tested						
NA	Test not required						
INS	nsufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Envirolab Reference: 281764

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Chain of	Custody & Ana	lysis Req	uest Fo	rm					-		 -										٦
					l: 02 9954	8100 (R	amboli)	-		Lai Lai	borato . Name: . Addres	s:	Eu	ırofins Unit 7 7	Fries	Te Fa Ian Close	x:		0 849 NSW,		
	Stations Master	R Contra	60			0:	800	1018		J	ntact Nar	ne:					al Repo		·		
Project Name:	88 W. Harridge	ed-	3~~	Project	Number		31806		<u> </u>		. Ref:						b Quote				J
Sample collecti				 -						Sit	e: Brai	dweed	A	<u>Ca</u>	Oyc	zing	-{\	<u>at</u>]
Cample conecu	ou by.			Sample	Results	to be	returne	ed to:	-Sprage Comb	ell-cos	ij tjärnele	@rembo	ll co n	n; Jauld	@ram	boil.com	SIM	naxi	اعد	Dvamboll con	1
Specifications:								(Tick)		-		_				Analysis					4
1. Urgent TAT required?	(please circle: 24hr 48hr _	days)		STANDARD	\		□ Na		□ N/A	- ₩		(prescence/absagan						П		Remarks & comments	1
2. Fast TAT Guarantee R					J ☐ Yes		O No		□ N/A	-12		18	П	11		11		\prod]
	present in waters to be excluded from	n extractions?			☐ Yes		☐ No		□ N/A	18	i	125						11			
 Special storage requirem Preservation requirem 					Yes Yes		□ No		□ N/A]第	-	્રિષ્ટ	1 1		ı	11	1	11	1		1
6. Other requirements?	Citist				Yes	_	□ No		□ N/A	18	逐	ା ବି	!	11	- 1				ļ		1
	quis / excel / pdf		8. Project Man		₹ Dn Q	^ /h	□ No	<u> </u>	☑ N/A	-[詩]	9	3					- }	П	- [i
	quist axcert per		8. Project Man	ager: Acutal	- Bogdi V		Khangi	tel:	215 202		13	ğ	H	-1-1	- 1	1 1	10	机			
Lab.		1		Me	atrix		Preserva	ition	Container	기 형 [Ø		1	-1-1	- [11	-1I	الجا	-		}
ID	Sample ID	Sampling Date	Sampling Time	soil bio	is visite	fillod	ecid	100 <u>aller</u>		AS Extende	TRH, BTEXN, OAH	Asidestros						end to Envirolab	9		
	HA_SMC105-0.1	27/10	+	X		+-	 -	×177		122		4	4	-			-17	3	ᅙ		
	HA_SWC105_025	W. C			+	╁		쉬ㅡ	Jea	-	×	-	4	+		 			1]
	14A_SMC105-0-4			1	_	 	 -	H	 } -	┨┤	X		, 		-	╀╌╁┷		-	*	· · · · · · · · · · · · · · · · · · ·	1
	HA_SMC106_0.1		 		 	1-	 	 	 	╅	X X	+		+	-	 		-	4		
	HA_SMC106_025					+			+ 1	╅	+	╌┼		-	+	┤ ┤—	┵	1	1.		ļ
	HA_SMC106_ 0.5.				1				1	十 十	X	1-1	+	++	+-	+ + -	\dashv	-	×		}
	HA_SMC101-0.1						1		<u> </u>	1	一	╅	\dashv	++	╅	 	-1-1	+	+	<u> </u>	·
	HA-SACIO1-0.25									11	1	1	-	1		 	_ _	+	$\frac{1}{k}$		
	HA_SMCDI_0.5						11			7	×		\neg	11	╅	 	\dashv	-	1		Envisclab Servi
	HA_SMC107_0.1		_		<u> </u>					\mathbf{T}	1×	-	T		1		\dashv		1	ENVIROLAB	12 Ashley
	HA_SMC107_03 HA_SMC107_06				+		!						1	1. 1	. [1			×	CHOOL C	natswood NSW 20
	114_SMC104_0.1		+			4	$-\!$	4			X			\prod	T		1	1.			Ph: (02) 9910 6
	44_SINC104_0.25		 		- 					14	X	1_1		1	\perp					Job Ma:	
	HA_SMLION_0 5	-	 	+	 -				 - 	\perp	+	1	_ _	1.					ス		281764
	(2CD)		 	+	+	$\vdash \dashv$		-∤	 	+	×	\perp	_	$\perp \perp$				٠.		Date Recolved	2/11/21
$\overline{(i)}$	002	 -	 	\	+		- \	+	5.7	+	\ <u>X</u>	-		1				Y		Time Receivus	
	003		1	~-	T _X	 	- 1		jav rottle	╁	X-		#					<u> </u>		Received By:	THAW
	HA-SMC105	-	1	$\overline{\mathbf{x}}$	+~~	1		X		╂┼┼	×	-	4	+	\perp		┵	◢		Temp/ Cod/A	nblent
	HA_SMC106	- i -	 	~ 	1		- -	+	Mad	╂┼	+	X	-	+	4-4	<u> </u>	+		11	Cooling: Ice/Ic	epack
	HA-CMC101			11	 	 		+1 $+$ 1	 	++	 	Ž	-	╁┼			-1-7	4	1-1	Security:/inta	VBroken/None
	HA_SMC107			11	1	 	-	++-		+	+-	X	+	╁╌┼╌	+	-		+	1-4		
	HA_5mc104	27/10		\ 				文	D5 9	╆┾	+-	숛ㅏ	╁	╁╌┼╌	╂╼┨			+	+		
	HA_SMCOS	28/10			 			11	bad	 -	╫	 2	┰	╁┼	╁┈╁			+	+		
	HA-SMC102	25/10		X.		,		文	508	╅┼	+	 	+	++	╁┪		+	+	╁		
elinquished By:	Jenny Audo	(1	Received b	y:	/ /	7			- () -	Racelyo	d in good co		Yes	/No/NA	Metho	d of Shipmer	<u>. 1 - 1</u>	+	4		
		Date: 214 10/4	Name:	60	1. V				Date: 28/10	Sample:	received ch	illed?	Yes	/No/NA		anment Note		+-			
Ramboli		Time:	of:		LOV				Time: Li fi-	1			L		.t	-					
				157	NOY	ניקריי			········· <i>U //</i>	i			res	/No/NA	Irane	port Co:		1			

ę

· · · · · · · · · · · · · · · · · · ·	_			Tel: 02 9954 8100 (Ramboll)						Laboratory Details Tel: 9900 8490 Lab. Name: Eurofins Fax: Lab. Address: Unit 7 7 Friesian Close SANDGATE, NSW, 2304															
•	Stations Mas	teus Cot	tage					118	OO	ימונ	25	Contact Name: Final Report by:							1						
roject Name:		d		Prol	ect N	umber:					- 13	Lab Ref: Lab Quote No; Site: Braidwood- (000) 4108 + 104								-					
			· · · · · · · · · · · · · · · · · · ·										Site: Braldwoo d-					91/		-					1
ample collecte	ed by: JA	P 44		San	ple R	lesuits (to pe	retur	red t	to:	@PWARTO@rest	recoie	11. fileren	k@u		්රිm; ja	auid@	ramb	ll.com	38	ma	(vel	10	lamboli.com	
pecifications:	· · · · · · · · · · · · · · · · · · ·			ترزنتتر		J		-	(11)	ick)								Ar	alysis	Rec	ues	t			1
Urgent TAT required?	(please circle: 24hr 48hr	days)	يخيس <u>ة</u> ين ي	STAN	DARD	Yes		· 13	No			į		- 4	3			1:3			" "	1		Remarks & comments]
Fast TAT Guarantee R				1.		Yes			No .		□ N/A	-18		- 1	3						2	- [.			-
e any sediment layer (present in waters to be excluded from	extrections?				☐ Yes			No		□ N/A	g	Į.		\$	1 1		1			- 1		1		,
Special storage requir						☐ Yes			No		□ N/A	Ţ₽	1700	? 	꿃	1 1		4 1	-	1	- [1	1		
reservation requirem	ents?	and the second				☐ Yes			No		□ N/A	Jģ.		_	<u>र्ह्ह</u>	11				- 1		1	1		1
Other requirements?					K	Yes	<u>a </u>		No	-	☑ N/A	, i	₽		3	1	1				1	1	1	· ·	1
Report Fonnat: e	quis / excel / pdf		8. Project Man	ager: A	CONT.	विमानुसा । एव	n /	iaxiv	ell	tel:	- Jacobson	۱ <u>.</u>	O/A-10	{ }	%				-	J	1				1
Lab.					Matr	ix ·		Preser		1	Container	Ş			愛	1	.	+1		ı	1,	9	1	(1
-	0]										厦		7	1500000 precent devices ce	1			٠]	-		Sella to Eliminolati	ŀ		1
ID	Sample ID	Sampling Date	Sampling Time	soil	blota		filted	acid	ke	other	(No. & type)	35.	70H	-	8	1 1	- 1				į į				
			1.	İ	}	water	<i>i</i> .	[ı		FAS	9		[1	ł			- {	1		皇	Į.	1
	H48-SMC103_0.15	28/10	1	X	 	5		 	X	;	701	- 1	1/2	تاهست	-	╀╼┼		╅┪	-	-	- 6	<u> </u>	丰	<u> </u>	1
	HA_SMC103_0.4	1 1/10		17		2.12		 	1		1 04			+		1-1	+	1-1	+-		+	<u> </u>	k	· · · · · · · · · · · · · · · · · · ·	1
	HA-SMC103-055	1						1	11				7			╅		+	- 1		+	-	p		1
	HASMC102-0-2			F1.	2			-		·		1	15		\dashv	++	-+	+ +		-+	+.	+			ł
a-2	14A_SMC102_D35			17					H		 		-	` 		171	. -	+++			+	+	k		ł
	HA-SMC102-0-5	28/10		Х					Ш		Jav		15	. 		1-1	+	1-1	+		+	+-	⇑	<u> </u>	1
	QC04	28/10		1		X			X		60HL		. x			1	1	11	1	+	Ť	+	†	· · · · · · · · · · · · · · · · · · ·	1.,
		,				ii							-	_	2-		1.					1		·,	# Z
· · · · · · · · · · · · · · · · · · ·				,														TT	1	1.		- 1		_	1
				' '1				,			Annual Control			_		П				\neg	7				. T
		Section in a							-			\Box											T	· · · · · · · · · · · · · · · · · · ·	' '
 					1					*				1						2000	1	1	2-7		1
<u> </u>	W- ALAC - 173. 222	: :							- 4	Ĺ		J	مر								;				1
	<u> </u>		2	- Y	_ = ==	<u> </u>		-	j			1									1				1
		7					Zay basa	<u> </u>	- -								, i	13			-		- "		
		1		<u>.</u>	. !					- 3		\bot	!					- -		7					
	<u> </u>			and the state of the	(n - d		ee:				*		٠.	_ _						_1_]	· · · · · · · · · · · · · · · · · · ·	
	V	· · · · · · · · · · · · · · · · · · ·	 						-+			-			=	1				_	1		Щ		
***	the second of th											1	+	-1-			1		-		1-	L			!
	 								<u>``</u>						<u>ــاـــ</u>	 -	+		 -	_[`	4	Щ			
	Parameter english	- 12 5 Phase							+			1-1		<u></u>			تتاي	┝┵	1		╄.	Ш			
- 1					-	_=			- 6			╆┼	4	- -	<u> </u>		4.	\sqcup	1-		4	4			
					==-							1-1			- - '	$\vdash \vdash$	_	-	-		4_	\perp			
	** *** *** ***************************	-a			=	- 1				 		1-4	+			- -		-	-			1-1			
Inquished By:	Kenny Aula		Received b	v:		//	لنيت		لب			Receiv	ed in good	pondili	cn?	Yes/No	ONA	Method	of Shipm	ent.	1	\perp			
	SALANDE INVIEW				7		/	-,.			Date: 28/10											j.,		·	
	,	WILMIN	Name:	. cl	t	Thin				L	Date: 25/10	- sample	s receive	u chilled	7	Yes/No	MA	Consign	ment Not	e No.		1		-	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 282234

Client Details	
Client	Ramboll Australia Pty Ltd
Attention	Stephen Maxwell
Address	PO Box 560, North Sydney, NSW, 2060

Sample Details	
Your Reference	318001025, Stations Masters Cottage
Number of Samples	1 Water
Date samples received	08/11/2021
Date completed instructions received	08/11/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details								
Date results requested by	15/11/2021							
Date of Issue	12/11/2021							
NATA Accreditation Number 2901. This document shall not be reproduced except in full.								
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *								

Results Approved By

Giovanni Agosti, Group Technical Manager

Authorised By

Nancy Zhang, Laboratory Manager

All metals in water-dissolved		
Our Reference		282234-1
Your Reference	UNITS	T01_GW_20211 102
Date Sampled		02/11/2021
Type of sample		Water
Date prepared	-	10/11/2021
Date analysed	-	10/11/2021
Arsenic-Dissolved	μg/L	2
Barium-Dissolved	μg/L	17
Cadmium-Dissolved	μg/L	260
Chromium-Dissolved	μg/L	4
Cobalt-Dissolved	μg/L	500
Copper-Dissolved	μg/L	1,100
Iron-Dissolved	μg/L	40
Mercury-Dissolved	μg/L	<0.05
Lead-Dissolved	μg/L	94
Manganese-Dissolved	μg/L	3,700
Molybdenum-Dissolved	μg/L	<1
Nickel-Dissolved	μg/L	580
Selenium-Dissolved	μg/L	3
Titanium-Dissolved	μg/L	<1
Zinc-Dissolved	μg/L	98,000

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.

Envirolab Reference: 282234 Page | 3 of 6

Revision No: R00

QUALITY (CONTROL: All m	etals in w	ater-dissolved			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date prepared	-			10/11/2021	[NT]		[NT]	[NT]	10/11/2021		
Date analysed	-			10/11/2021	[NT]		[NT]	[NT]	10/11/2021		
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103		
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	103		
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99		
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106		
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104		
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	98		
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	112		
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106		
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	97		
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98		
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101		
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106		
Titanium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93		
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101		

Result Definiti	ons						
NT	Not tested						
NA	Test not required						
INS	sufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 282234 Page | 6 of 6 R00

Revision No:

Chain of	Custody & Anal	veis	Pogr	uost Es																		R.A.I) EX	ல்ப
	rm	Tel: (02 9954 8	3100 (R	amboll))				Laboratory Lab. Name: Lab. Address: Contact Name: Lab. Ref;	Detall	Eurofi		Rd, La	ne Cov	e Wes	Final	Report	• •	8490				
Project Name:	END Zasitete	121	5 (0)	tage	Proj	ect N	umber	: B	818	Ö (<u>ک ار</u>	2	5		clain	S 1	fla-	<u> </u>			Lab	Quote I	10:	
Sample collecte	ed by: JA/JAB			· •	San	iple R	esults	to be	returi	ned	to:	jauld@	gramboll.c						l. ('0	m	_			
Specifications:	·				_					(1	Пck)						_		_ A	nalys	is Re	ques		
1. Urgent TAT required?	(please circle: 24hr 48hr	day	rs)		STANI	DARD	X Yes			No		□ N/	/A	5 15 15 15 15 15 15 15 15 15 15 15 15 15	1	1	1			1	1	1	i	
2. Fast TAT Guarantee R	equired? Yes					$\overline{}$	☐ Yes			No				નું કુલ્લું <u>કુ</u>			1		1	1	1			
Is any sediment layer p	resent in waters to be excluded from	extraction	ons?				☐ Yes					□ N/		⊣ <i>ᆴ</i> 컱	1	ł	1	1	i	1			l ,	
 Special storage require 							☐ Yes					N/		189			k -	E	1:23	5 50	1.]		
5. Preservation requirem	ents?						☐ Yes					□ N/		[[]	EF	VIRO	lÀÄ	1	7	P Ash	le: 31			
6. Other requirements?							✓ Yes			No		☑ N/	Α			610er	Į.	Chat	J					
	quis / excel / pdf			8. Project Mana	eger: S	tepl	12N	Max	well		tel:			15 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ولي	o No	1] P	h: (02	9910	\$ (P)	 		
Lab.						Matr	ix		Preser	vatio	n	Co	onteiner	- 12 mg			1	3	9	& Z'	Z\$	t \	gg	ı I
ID	Sample ID	San	npling Date	Sampling Time	soll	błota	wate	filfed	acid	lce	other	(N	io. & type)	Fredund F	Tin	e Re e Re eive	ceive	d:~	100 m	8	1 2:	À	Send to Envirolab	
	GWIOI	3	-/11				X			X		DC-	412	 	Ter	 (4	OIA	noier	lt '	-		-	<u>نې</u>	
	MIOS	\\	Ĭ_				\sqcap	1	\top	竹		1		X	- Co o	ing	ceno	epac	k)	\vdash		\vdash		
Ţ	60/WW							1		11-	 	 		121	Sec	rity	ntac	Brol	en/N	one	- -	-		
	(¿Wjo4]			1	\sqcap	1	T -	H	<u> </u>			1	\neg	+ +	 		† · · · ·	٠٠.٠٠		├─┤		
	CW105			T		1	\sqcap	†	1	Ħ				1	+	 	_	1	!	$\vdash\vdash\vdash$		\vdash	-	-
	in WiO6			1				1		11			 	121-	+-		\vdash	 	 	$\vdash \vdash$			-	
	OIWi		1			T	\sqcap	T^-	1	⇈			 		+-	t	╁	$\vdash \vdash$	+-	\vdash				\dashv
	DC1-(M-30211102			T			11	 		⇈	\vdash		 	* *	+	 		 	\vdash	\vdash	<u> </u>			
	TO1_GW_20211102).		<u> </u>	\vdash	 	_	\vdash	#-	 	_	 	12-1	士		=	\vdash					X	
$\overline{}$	PC1- GW-20211103	2	/11			\vdash	V	+-		忲	 	lo-1	+12	1		1	\vdash	\vdash	\vdash			\vdash	 -	-+
	11.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.					 	 	+	 	⇈	├─	<u> </u>	714	 `\ 	+			\vdash	-		\vdash		·	-
						\vdash		+	1	\vdash	 			-{ 	+-	 	 		-	├─┤				
				 		1		+	 	H	 -	 		- - .	+-		-	 	\vdash	 		$\vdash\vdash$		
	 			 		\vdash	 	 	 -	┢	-				-	 	 	 	\vdash			\vdash	 	
						\vdash		+	 	┢╌	 				+-	 	-	\vdash		, -	 		-+	
	<u> </u>			\vdash		<u> </u>		+	+		- -				┥	-	 					\vdash	\dashv	
						\vdash		$\vdash \vdash$	├	-	├				+	-	<u> </u>	 	┝─┤				\dashv	\dashv
	 					 		 	 		-			╂╼┾┈┼╸	+	-		 -	$\vdash \dashv$					
	ļ			 				 	+	-	 -				- 	 	 	 	┝╌┤				╼┵	
							ı											1				1	- 1	. 1

9

5 Day Surcharges apply Temperature 23.8°C asiapac-accounts@ramboll.com □ ^{2 Day*} smaxwell@ramboll.com Malbourne Laboratory
2 Kingston Town Close, Oaklaigh, VIC 3166
03 8564 5000 EnviroSampleVio@eurofins.c smaxwell@ramboll.com स्टिन्स्ट कुछ सम्प्राद्यक C Overnight (9am)* Report Ne T 3Day ☐ Other (Time ⊏10ay* NM TF 1 00 PM Date Time Time Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com 12/2/21 1/1/-Perth Laboratory Stephen Maxwell Excel and PDF Date Date Signature Brisbane Laboratory
Unit 1, 21 Smallwood Pl., Muramie, OLD 4172
07 3902 4600 EnviroSampleOLD@eurofins.com Signature Signature 1171 318001025 SYD | BNE | MEL | PER | ADL | NTL | DRW SYD BINE | MEL | PER | ADL | NTL | DRW Name Sydney Leboratory
Unit F3 Bd.F, 16 Mars Rd, Lane Cove West, NSW 2086
02 9900 B400 EmiroSampleNSW@eurofins.com d75H 10to1 Postal Hd SIHAN & Hand Delivered CHAIN OF CUSTODY RECORD Sampled Date/Time (dd/mm/yy hh:mm) 12/2/2 **•** Stephen Maxwell Ramboll 180813RAMN_1 50 Glebe Road the Junction Received By Received By Courier (# 6404 Q403 Q408 QACY QAc5 940 QAOI QAOC Eurofins | mgt Laboratory Use Only

Submission of samples to the bloration will be deemed as ecceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Terms and Conditions is available on request

E Sydney Laboratory Unit 73 Bid.F. (6 Marc Rd. Lane Cove Weet, NSW 2066 0.05 SID Follow Perchaption of Project Name Name Name	Stephen Mazwell Stephen Mazwel	Parth Laboratory OLD 4172 Unit 2.91 Leach Highway, Kewidae WA 6105 2 kingson Town Cloce, Caklegh, VIC 3193 0/@esterine.com 08 9251 9500 EnviroSampleVM@esterine.com 03 8546 5000 EnviroSampleVM@esterine.com 03 8546 5000 EnviroSampleVM@esterine.com	Stephen Maxwell Sampler(s)	Excel and PDF Handed over by	Email for Invoice asiapac-accounts@ramboll.com	Email for Results Smaxwell@ramboll.com	Turnaround Time (TAT) Requirements present was to say a consona	Covernight (9am)*	Plastic her Class OA vial or HDPE) set WA Gul	ME PF.	200 5 5 5										Signature Date	
Analyse Sold Name For the State of Mark Rel Lanc Core West, No. 19 19 19 19 19 19 19 19 19 19 19 19 19	Analyse Sold Name For the State of Mark Rel Lanc Core West, No. 19 19 19 19 19 19 19 19 19 19 19 19 19		01025PI	EDD Format (ESdat, EQuIS,		5.5	16/21	n &-	+ 0+ 0	172	L		**		W						Name	
	A COUNTING Stephen Maxwell Stephen Maxwell Stephen Maxwell Stephen Maxwell Stephen Maxwell Stephen Maxwell A COUNTING Total COUNTING Total COUNTING Total COUNTING A COUNTING Total COUNTIN		Project Ne	Project Name	ad turn shot		5)	STORES	Hd V	2		×××××××××××××××××××××××××××××××××××××××	X X X	X X X	XXX	× × ×	× × ×	X	× × × ×	ounts	_	6

Submisson of samples to the abonatory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A control of the Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

5 Day Surcharges apply □ ^{2 Day*} asiapac-accounts@ramboll.com Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com smaxwell@ramboll.com smaxwell@ramboll.com Ovemight (9am)* L/g Day* ☐ Other (□ 1 Day* Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com Perth Laboratory Stephen Maxwell Excel and PDF Brisbane Laboratory Unit 1, 21 Smallwood PI., Murarrie, OLD 4172 07 3902 4600 EnviroSampleOLD@eurofins.com EDD Format (ESdat, EQuIS, 7041 Sultur ASLP + 8metals 7211 + 8metals 318001025 Sydney Laboratory
Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com S metals S CHAIN OF CUSTODY RECORD campled Date/Time (dd/mmlyy hh:mm) (2/2/0) 12/2/11 Stephen Maxwell Ramboli ABN 50 005 085 521 180813RAMN_1 50 Glebe Road the Junction 0450 9421 Q419 Q418 urchase Order Address Phone Nº 2⁰52

Submission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Terms and Conditions is available on request Eurofins Environment Testing Australia Pty Ltd trading as Eurofins I mgt

23 8°C

Temperature Report Ne

LOCAM

12.2.21 1/1/

> Date Oste

Time

Date Time Time

Signature

Signature

SYD BNE | MEL | PER | ADL | NTL | DRW SYD | BNE | MEL | PER | ADL | NTL | DRW

Name

Postal

) Hand Delivered

Courier (#

Received By Received By

Eurofins | mgt

E Sydney Laboratory
Unit F3 Bid.F, 16 Mars Rd, Lane Cove West, NSW 2096
02 9900 84400 ErviroSampleNSW@eurofins com

CHAIN OF CUSTODY RECORD

4

Brisbane Laboratory Unit 1, 21 Smallwood Pl., Murarie, QLD 4172 07 3902 4800 EnviroSampleOLD@eurofins.com

Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9500 EnviroSampleWA@eurofins.com Perth Laboratory

Melbourne Laboratory
2 Kingston Town Ckose, Oakleigh, VIC 3166
03 8554 5000 EnviroSampleVrc@eurofins.com

5 Day Surcharges apply asiapac-accounts@ramboll.com ☐ 2 Day* Turnaround Time (TAT) smaxwell@ramboll.com smaxwell@ramboll.com Overnight (9am)* □ 1 Day* Ct & Day ☐ Other (Time Date Stephen Maxwell Excel and PDF Signature EDD Format (ESdat, EQuIS. Project Manager 318001025 21454 + 8 metels 5 Nаme Postal Project Name Hand Delivered **Ω**, 12/2/1 Stephen Maxwell Ramboll 180813RAMN_1 50 Glebe Road the Junction ☐ Courier (# 2840 QA25 9430 9479 9740 9478 427

urchase Order

Date Submission of samples to the laboratory will be deemed as acceptance of Euroffins I mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins I mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins I mgt Signature SYD | BNE | MEL | PER | ADL | NTL | DRW Received By

Temperature Report Ne

10001

Time

カカカ 1/1/-

Date

Signature

SYD J BNE I MEL I PER I ADL I NTL I DRW

Received By

Eurofins | mgt Laboratory Use Only

Time

5.3166 urofins.com			.com	bell-com	٠٠٠٠٠١١٠٥٥١	Time (TAT) fivili be 5 days if not licked)	1)**	□ ^{2 Day*}	∑ 5 Day	(data sabina once	ts / Dangerous rd Warning								od by			25.00	3598 44
Melbourne Laboratory 2 Kingston Town Close, Oakleigh, VIG 3166 03 8594 5000 EmiroSampleVic@eurofins com			smaxwell@ramboll.com asiapac-accounts@ramboll.com	tiftankeran-bell-com	mmeguinde rasubollicon	Turnaround Time (TAT) Requirements (persolf with be 5 as yes if not hose			[S Day*	☐ Other (Sample Comments / Dangerous Goods Hazard Warning			i i				3	please formand to Envirolab.	THE RESERVE TO SERVE THE PERSON NAMED IN COLUMN TO SERVE THE PERSO	Time	Temperature	Report Ne
Melbour 2 Kingsto 03 8564 5					Mark		(sautie	DbE) gotge	8 SA=	40mL Y 19 JmOt 19 Sesi 19 Agy											120021	LODA	1
NA 6105 eurofins.com	Sampler(s)	Handed over by	Email for Invoice	Email for Results					tasl9.	շբըար	50										Date	Time	Time
Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9800 EnviroSampleWA@eurofins.com	lla.	ш			3. ₁																43	12,2,21	7)-/-
Perth Unit 2, 9	Stephen Maxwell	Excel and PDF					-716														Amy A	Date	Date
LD 4172 geurofins.com								i e			N P										Signature	1	
Brisbane Laboratory Unit 1, 21 Smallwood Pt., Muranie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com	Project Manager	EDD Format (ESdat, EQuIS,																			الإ	1	
Brisbane Laboratory Unit 1, 21 Smallwood Pt., 07 3902 4600 EmiroSa	-		Ŕ																		J. FRANK	Signature	Signature
SW 2066 com	318001025]			V					If												Мате	NTL DRW	NTL DRW
Sydney Laboratory Unit F3 Bld F, 16 Mars Rd, Lane Cove West, NSW 2096 02 9900 8400 EnviroSampleNSW@eurofins.com			,	· γ		1089	(919	S	p	to	O,	8	×	X	×	×	X	×	×		Postal	SYD, BNE MEL PER ADL NTL DRW	SYD BNE MEL PER ADL NTL DRW
oratory 16 Mars Rd, Lar EnviroSample	100	· 553-4	post 6	M. P.) 7	0	1 :3	4:	15	MC	Cati	X	X	X	X	X	X	×	×		ı.	BNE MEL	BNE MEL
Sydney Laboratory Unit F3 Bld F, 16 Mars F 02 9900 8400 Enviros	Project N≘	Project Name		ł		sto		1	-	√ √	9	X	X	X	X	X	X	X	X		ered	(No.	axo
	4	å	9.17.17m sbc	Parins (Pari	13° o "Elo	sos Ajeur	seki ,balsaupa e ot band	i ww. Pailen	n eterW	-(6N)	Matrix (Solid (S) Water (W))	3	_							nts	Hand Delivered		i
ECORD											Sampled Date/Time (dd/mm/yy I	12/10/01						(>	Total Counts	~	18	1
ODY R	Ramboll		5	Stephen Maxwell						-		2										I	
CHAIN OF CUSTODY RECORD	œ	CO Plate Daniel Alex	Toline and month and and	Steph						180813RAMN_1	Client Sample ID	_	7	~~	4-	6	9	38	~SW		Courier (#	Received By	Received By
CHAI	Company	Appropri	1979	Contact Name	The State of the S	Phone Ne	Special Directions		Purchase Order	Quote ID Ne	S. Cife	SWOI	Z SWO Z	5 WO 3	4 SWO 4	SOMS	SWOG	@AOI_SW	10 QA02-5W		Method of Shipment	Eurofins mgt	Laboratory Use Only

Submission of samples to the laboratory will be deemed as acceptance of Eurofins I mgt Standard Terms and Conditions unless agreed otherwise. A repty of Eurofins I mgt Standard Terms and Conditions is available on major

CHAIN OF CUS	CHAIN OF CUSTODY RECORD	Sydney Laboratory Unit F3 Bld.F, 16 Mars R 02 9900 8400 EnviroS	Sydney Laboratory Unit F3 Bld.F, 16 Mars Rd, Lane Cove West, NSW 2066 02 9900 8400 EnviroSampleNSW@euroIns.com	fest, NSW 2066 Irofins.com	Brisbane Laboratory Unit 1, 21 Smallwood Pl., 07 3902 4600 EnviroSa	Brisbane Laboratory Unit 1, 21 Smallwood PI., Murartie, QLD 4172 07 3302 4600 EnviroSample/QLD@eurofins.com		Perth Laboratory Unit 2, 91 Leach Highway, Kewdale WA 6105 08 9251 9600 ErwiroSample/WA@eurofins.com	ale WA 6105 A@eurofins.com	Melbourn 2 Kingston 03 8564 500		36 ns.com
Company	Ramboll	Project Ne		318000780	<u>.</u>	Project Manager	Stephen Maxwell	well	Sampler(s)			
Address 50 Glaba Road the Lunction	reflore	Project Name				EDD Format (ESdat, EQuIS,	Excel and PDF	DF.	Handed over by	A		
e 1		top in spo							Email for Invoice		smaxwell@ramboll.com asiapac-accounts@ramboll.com	oll.com
Contact Name Step	Stephen Maxwell	a ar sag ("bann f' ai " gnà							Email for Results		tifreink@ramboll.com smaxwell@ramboll.com Moranire@rampoll.com	m m - mos oc
Phone Ne		saevien Pond silve Saevien	-				e e Me		1000		Turnaround Time (TAT) Requirements parativated	e (TAT) be 5 days ((not (leked)
Special Directions		err best	tauh lateTe							(səujleç	C Overnight (9am)*	
Purchase Order		ar agreem and							piser	As Bottle (390H m	□ ¹ bay* □	□ ^{2 Day} " □ 5 Day
Quote ID Ne 180813RAMN_1	4MN_1	er soul							619 J1 9 JM82 9 JM82 1 JM82 JM	OML VO Glass o		* Surcharges apply
Ne: Client Sample ID	Sampled DateFrine Ma (ddfmmlyy (s) hk:mm)	Matrix (Solid (S) Water (V))		1 1.				4.3		1009 1009	Sample Comments / Dangerous Goods Hazard Warning	Dangerous /arning
SEDOI	10/01/1	S	*									
2 SED02			×									
SEDOS			X									
, SEDOY			X									
SEDOS			×									
SEDOG			×									
· DRAINOT	-5		×									
□ ©AO1_SED	>	>	×									
	Total Counts										THE REAL PROPERTY.	
Method of Courier (#	H _] (Hand Delivered	[Postal	Name	T-FRANK	Signature	ure A	T	Date	12/20/21	Time	
Eurofins mgt	TR	NI COLS	SYD BNE MEL PER ADL NTL DRW	DE NTL DRW	Signature	1	Dete	12.22	Time	NOOPH	Temperature 23	Co
Received By		NB I CAS	SYD BNE MEL PER ADL NTL DRW	OL NTL DRW	Signature		Date	1/1/-	Time		Report Ne	23766

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.

Eurofins Environment Testing Australia Pby Ltd trading as Eurofins | mgt

5 Day Surcharges apply Report Ne 773650 Sample Comments / Dangero Goods Hazard Warning asiapac-accounts@ramboll.com \Box 2 Day* 2 Kingston Town Clase, Oakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com smaxwell@ramboll.com smaxwell@ramboll.com ONU, Tolob. Overnight (9am)* Temperature Melbourne Laboratory ₹ Day ☐ Other (Time □ 1 Day* 100 PM Time Time Date Unit 2, 91 Leach Highway, Kewdale WA 5105 08 9251 9600 EnviroSampleWA@eurofins.com 12.21 Perth Laboratory Stephen Maxwell **Excel and PDF** Date Deade Signature Unit 1, 21 Smallwood PI, Murarrie, QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com 96 FE/ (EC /PH) TCC/96 C/34 Brisbane Laboratory 5142m8+175H Signature JOHN SOLFOL 318000780 SYD) BNE I MEL (PER I ADL I NTL I DRW SYD | BNE | MEL | PER | ADL | NTL | DRW Name DH'EC Sydney Laboratory
Unit F3 Bid F, 16 Mars Rd, Lane Cove West, NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com × × X Postal) 😿 Hand Delivered ~ 12/20/01 M 12/20/01 **Total Counts** 12/20/01 CHAIN OF CUSTODY RECORD 14-54108-01 # Stephen Maxwell Ramboli 44-54CB-0.5 180813RAMN_1 50 Glebe Road the Junction CANTSED Received By Received By Client Sample ID Courier (# Ro2 Eurofins | mgt Laboratory Use Only ecial Direction Quote ID Ne urchase Orde Contact Nam Company 490

Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Child Special Control of the Cove We Site # 1254 & 14271

Unit F3 Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name: Project name: Project ID:

Stephen Maxwell Not provided 318001025-1

Turnaround time:

3 Day Feb 12, 2021 1:00 PM

Date/Time received **Eurofins reference**

773658

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples QA02, QA03, QA06, QA17, QA22, QA02_SED (1x jar each) and QA02_SW (1x unpreserved inorganics, 1x filtered and 1x filtered metals bottles) forwarded to Envirolab.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Project ID:

Address:

318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #		Х																
Pert	h Laboratory - I	aboratory - NATA Site # 23736																		
May	field Laboratory	/																		
Exte	rnal Laboratory	/		•																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	QA01	Feb 09, 2021		Soil	S21-Fe25590		Х			Х	Х				Х			Х		
2	QA03	Feb 09, 2021		Soil	S21-Fe25591		Х			Х	Х				Х			Х		
3	QA05	Feb 09, 2021		Soil	S21-Fe25592		Х			Х	Х				Х			Х		
4	QA07	Feb 09, 2021	S21-Fe25593		Х			Х	Х				Х			Х				
5	QA08	Feb 09, 2021	S21-Fe25594		Х			Х	Х				Х			Х				
6	QA09	Feb 09, 2021	S21-Fe25595		Х			Х	Х				Х			Х				
7	QA10	Feb 09, 2021	S21-Fe25596		Х			Х	Х				Х			Х				
8	QA11	Feb 09, 2021		Soil	S21-Fe25597		Х			Х	Х				Х			Х		
9	QA12	Feb 10, 2021		Soil	S21-Fe25598		Х			Х	Х				Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		Sam	ple Detail		% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborat	ory - NATA Site #	1254 & 14271				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 182	217			X			Х			Х	Х	Х	Х	Х	Х	Х	Х
		ry - NATA Site # 20			Х													L	\sqcup
Pert	h Laboratory -	NATA Site # 23736	3															L	\sqcup
	field Laborator																	<u> </u>	\sqcup
	rnal Laborator																		\sqcup
10	QA13	Feb 10, 2021	Soil	S21-Fe25599		X			Х	Х				Х			X		\sqcup
11	QA14	Feb 10, 2021	Soil	S21-Fe25600		X			Х	Х				Х			X		\sqcup
12	QA15	Feb 10, 2021	Soil	S21-Fe25601		X			Х	Х				Х			Х		
13	QA16	Feb 10, 2021	Soil	S21-Fe25602		X			Х	Х				Х			Х		-
14	QA18	Feb 10, 2021	Soil	S21-Fe25603		X			Х	Х				X			Х		
15	QA19	Feb 10, 2021	Soil	S21-Fe25604		X			Х	Х				Х			X		
16	QA20	Feb 10, 2021	Soil	S21-Fe25605		X			Х	Х				Х			Х		
17	QA21	Feb 10, 2021	Soil	S21-Fe25606		X			Х	Х				Х			X		
18	QA23	Feb 11, 2021	Soil	S21-Fe25607		X			Х	Х				Х			Х		
19	QA24	Feb 11, 2021	Soil	S21-Fe25608		X			Х	Х				Х			Х		
20	QA25	Feb 11, 2021	Soil	S21-Fe25609		Х			Х	Х				Х			Х	<u> </u>	

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Company Name:

Project ID: 318001025-1 Order No.: Received: Feb 12, 2021 1:00 PM

Report #: 773658 Due: Feb 17, 2021 Phone: 02 9954 8118 **Priority:** 3 Day

02 9954 8150 **Contact Name:** Stephen Maxwell Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sample l	Detail		% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	bourne Laborat	ory - NATA Site # 125	4 & 14271				Х	Х		Х	Х					Х	Χ	Χ	
		- NATA Site # 18217				X			Х			Х	Х	Х	Х	Х	Х	Х	X
		ry - NATA Site # 20794			Х														\vdash
		NATA Site # 23736																	\vdash
_	field Laborator																		\vdash
	ernal Laborator																		\vdash
21	QA26	Feb 11, 2021	Soil	S21-Fe25610		X			Х	Х				Х			Х		
22	QA27	Feb 11, 2021	Soil	S21-Fe25611		X			Х	Х				Х			Х		
23	QA28	Feb 11, 2021	Soil	S21-Fe25612		X			Х	Х				Х			Х		\sqcup
24	QA29	Feb 11, 2021	Soil	S21-Fe25613		X			Х	Х				Х			Х		\sqcup
25	QA30	Feb 11, 2021	Soil	S21-Fe25614		X			Х	Х				Х			Χ		
26	QA31	Feb 11, 2021	Soil	S21-Fe25615		Х			Х	Х				Х			Х		
27	QA32	Feb 11, 2021	Soil	S21-Fe25616		Х			Х	Х				Х			Х		
28	QA33	Feb 11, 2021	Soil	S21-Fe25617		Х			Х	Х				Х			Х		
29	SW01	Feb 10, 2021	Water	S21-Fe25618										Х	Х				X
30	SW02	Feb 10, 2021	Water	S21-Fe25619										Х	Х				X
31	SW03	Feb 10, 2021	Water	S21-Fe25620										Х	Х				Х

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х														
Pert	h Laboratory - I	NATA Site # 237	736																	
May	field Laboratory	y																		
Exte	rnal Laboratory	у																		
32	SW04	Feb 10, 2021		Water	S21-Fe25621										Х	Х				Х
33	SW05	Feb 10, 2021		Water	S21-Fe25622										Х	Х				Х
34	SW06	Feb 10, 2021		Water	S21-Fe25623										Х	Х				Х
35	QA01_SW	Feb 10, 2021		Water	S21-Fe25624										Х	Х				Х
36	SED01	Feb 10, 2021		Soil	S21-Fe25625										Х			Х		
37	SED02	Feb 10, 2021		Soil	S21-Fe25626										Х			Х		
38	SED03	Feb 10, 2021		Soil	S21-Fe25627										Х			Х		
39	SED04	Feb 10, 2021		Soil	S21-Fe25628										Х			Х		
40	SED05	Feb 10, 2021		Soil	S21-Fe25629										Х			Х		
41	SED06	Feb 10, 2021		Soil	S21-Fe25630										Х			Х		
42	DRAIN01	Feb 10, 2021		Soil	S21-Fe25631										Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road 4
Penrose, Auckland 1061 F
Phone: +64 9 526 45 51 F
IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

5150 Contact Nan

Received: Feb 12, 2021 1:00 PM **Due:** Feb 17, 2021

Priority: 3 Day
Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sample I			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborat	ory - NATA Site # 125	4 & 14271				Х	Х		X	X					Х	X	Х	$\perp \perp \mid$
		- NATA Site # 18217				X			Х			Х	Х	X	Х	Х	X	Х	X
		ry - NATA Site # 20794	ļ.		Х														$\perp \perp \mid$
Pert	h Laboratory -	NATA Site # 23736																	$\perp \perp \mid$
_	field Laborator																		\perp
Exte	rnal Laborator	у																	\sqcup
43	QA01_SED	Feb 10, 2021	Soil	S21-Fe25632										X			X		\sqcup
44	R01	Feb 10, 2021	Water	S21-Fe25633										X					\sqcup
45	R02	Feb 10, 2021	Water	S21-Fe25634										X					$\perp \perp \mid$
46	HA- SMC08_0.1	Feb 11, 2021	Soil	S21-Fe25635	Х		Х	Х			Х					Х		Х	
47	HA- SMC08_0.5	Feb 11, 2021	Soil	S21-Fe25636	Х		Х	Х			Х					Х		Х	
48	QA03	Feb 09, 2021	AUS Leachate	S21-Fe25637								Х		Х					
49	QA05	Feb 09, 2021	AUS Leachate	S21-Fe25638								Х		Х					
50	QA18	Feb 10, 2021	AUS Leachate	S21-Fe25639								Х		Х					
51	QA19	Feb 10, 2021	AUS Leachate	S21-Fe25640								Х		Х					

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Company Name: Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Project ID: 318001025-1 Order No.: Report #:

Sydney

773658

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

		San	nple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	oourne Laborato	ory - NATA Site #				Х	Х		Х	Х					Х	Х	Х			
Syd	ney Laboratory	- NATA Site # 18	3217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # 2	20794			Х													<u> </u>	
Pert	h Laboratory - N	NATA Site # 2373	36																!	
May	field Laboratory	1																		
Exte	rnal Laboratory																			
52	QA03	Feb 09, 2021		US Leachate	S21-Fe25641									Х	Х					
53	QA05	Feb 09, 2021		US Leachate	S21-Fe25642									Х	Х					
54	QA18	Feb 10, 2021		US Leachate	S21-Fe25643									Х	Х					
55	QA19	Feb 10, 2021		US Leachate	S21-Fe25644									Х	Х					
Tes	Counts					2	28	2	30	30	28	2	4	4	53	7	38	38	2	7

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 773658-L

Project name

Project ID 318001025-1

Received Date Feb 12, 2021

Client Sample ID Sample Matrix Eurofins Sample No.			QA03 AUS Leachate S21-Fe25637	QA05 AUS Leachate S21-Fe25638	QA18 AUS Leachate S21-Fe25639	QA19 AUS Leachate S21-Fe25640
Date Sampled			Feb 09, 2021	Feb 09, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	0.01	mg/L	0.01	0.01	0.02	< 0.01
Cadmium	0.0002	mg/L	0.0052	0.0013	0.0010	0.023
Chromium	0.001	mg/L	0.014	0.011	0.015	0.013
Copper	0.001	mg/L	0.071	0.039	0.13	0.048
Lead	0.001	mg/L	0.83	0.21	0.98	0.47
Mercury	0.0001	mg/L	0.0003	< 0.0001	0.0001	0.0002
Nickel	0.001	mg/L	0.003	0.005	0.004	0.002
Zinc	0.005	mg/L	1.6	0.29	1.4	8.7
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	6.1	5.3	5.0	5.8
pH (Leachate fluid)	0.1	pH Units	5.5	5.5	5.5	5.5
pH (off)	0.1	pH Units	6.3	5.7	6.4	6.4

Client Sample ID Sample Matrix Eurofins Sample No.			QA03 US Leachate S21-Fe25641	QA05 US Leachate S21-Fe25642	QA18 US Leachate S21-Fe25643	QA19 US Leachate S21-Fe25644
Date Sampled			Feb 09, 2021	Feb 09, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	0.01	mg/L	0.02	0.02	< 0.01	0.03
Cadmium	0.005	mg/L	0.12	0.046	0.023	1.2
Chromium	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Copper	0.05	mg/L	0.24	0.50	0.25	0.27
Lead	0.01	mg/L	0.12	0.11	4.0	0.82
Mercury	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Nickel	0.01	mg/L	0.02	0.02	0.01	0.02
Zinc	0.05	mg/L	37	16	22	540
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	5.9	5.1	4.9	5.9
pH (off)	0.1	pH Units	5.4	5.1	5.1	5.7
pH (USA HCl addition)	0.1	pH Units	1.9	1.9	1.9	1.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Sydney	Feb 17, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
AUS Leaching Procedure	Sydney	Feb 13, 2021	7 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
USA Leaching Procedure	Sydney	Feb 13, 2021	14 Days

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

Rolleston, Christchurch 7675 Phone: 0800 856 450

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1 Order No.: Report #:

Phone:

Fax:

773658

02 9954 8118

02 9954 8150

Received: Feb 12, 2021 1:00 PM Due: Feb 17, 2021

Priority: 3 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

New Zealand

		Sa	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Χ	Χ	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х														
Pert	h Laboratory - N	NATA Site # 237	'36																	
May	field Laboratory	/																		
Exte	rnal Laboratory	<u>'</u>																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	QA01	Feb 09, 2021		Soil	S21-Fe25590		Х			Х	Х				Х			Х		
2	QA03	Feb 09, 2021		Soil	S21-Fe25591		Х			Х	Х				Х			Х		
3	QA05	Feb 09, 2021		Soil	S21-Fe25592		Х			Х	Х				Х			Х		
4	QA07	Feb 09, 2021		Soil	S21-Fe25593		Х			Х	Х				Х			Х		
5	QA08	Feb 09, 2021	S21-Fe25594		Х			Х	Х				Х			Х				
6	QA09	Feb 09, 2021		Soil	S21-Fe25595		Х			Х	Х				Х			Х		
7	QA10	Feb 09, 2021		Soil	S21-Fe25596		Х			Х	Х				Х			Х		
8	QA11	Feb 09, 2021		Soil	S21-Fe25597		Х			Х	Х				Х			Х		
9	QA12	Feb 10, 2021		Soil	S21-Fe25598		Х			Х	Х				Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Fax:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

 Order No.:
 Received:
 Feb 12, 2021 1:00 PM

 Report #:
 773658
 Due:
 Feb 17, 2021

 Phone:
 02 9954 8118
 Priority:
 3 Day

02 9954 8150 Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		San	nple Detail		% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborate	ory - NATA Site #	1254 & 14271				Х	Х		Х	Х					Х	Х	Х	
		- NATA Site # 18				Х			Х			Х	Х	X	Х	Х	Х	Х	Х
		y - NATA Site # 2			Х														
		NATA Site # 2373	6																
	field Laboratory																		
	rnal Laboratory	<u> </u>								-			-						
10	QA13	Feb 10, 2021	Soil	S21-Fe25599		X			Х	Х				X			Х		
11	QA14	Feb 10, 2021	Soil	S21-Fe25600		X			Х	Х				X			Х		
12	QA15	Feb 10, 2021	Soil	S21-Fe25601		X		_	Х	Х				X			Х		
13	QA16	Feb 10, 2021	Soil	S21-Fe25602		X			Х	Х				X			Х		
14	QA18	Feb 10, 2021	Soil	S21-Fe25603		X			Х	Х				X			Х		
15	QA19	Feb 10, 2021	Soil	S21-Fe25604		Х			Х	Х				X			Х		
16	QA20	Feb 10, 2021	Soil	S21-Fe25605		X			Х	Х				X			Х		
17	QA21	Feb 10, 2021	Soil	S21-Fe25606		Х			Х	Х				X			Х		
18	QA23	Feb 11, 2021	Soil	S21-Fe25607		Х			Х	Х				Х			Х		
19	QA24	Feb 11, 2021	Soil	S21-Fe25608		Х			Х	Х				Х			Х		
20	QA25	Feb 11, 2021	Soil	S21-Fe25609		Х			Х	Х				Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Project ID:

Address:

318001025-1

Order No.: Report #:

Phone:

773658

Fax:

02 9954 8118 02 9954 8150 Priority:

Received:

Due:

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sai	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
		ory - NATA Site		271				Х	Х		Х	Х					Х	Х	Х	
		- NATA Site # 1					X			Х			X	Х	X	Х	Х	Х	Х	Х
		y - NATA Site #				Х														
		NATA Site # 237	36																	\vdash
	field Laboratory																			\vdash
	ernal Laboratory	1		1																\vdash
21	QA26	Feb 11, 2021		Soil	S21-Fe25610		X			Х	Х				X			Х		\vdash
22	QA27	Feb 11, 2021		Soil	S21-Fe25611		X			X	Х				X			Х		\vdash
23	QA28	Feb 11, 2021		Soil	S21-Fe25612		X			X	X				X			Х		
24	QA29	Feb 11, 2021		Soil	S21-Fe25613		X			Х	Х				X			Х		
25	QA30	Feb 11, 2021		Soil	S21-Fe25614		Х			Х	Х				X			Х		
26	QA31	Feb 11, 2021		Soil	S21-Fe25615		X			Х	Х				X			Х		\square
27	QA32	Feb 11, 2021		Soil	S21-Fe25616		Х			Х	Х				X			Х		
28	QA33	Feb 11, 2021		Soil	S21-Fe25617		Х			Х	Х				X			Х		\sqcup
29	SW01	Feb 10, 2021		Water	S21-Fe25618										X	Х				Х
30	SW02	Feb 10, 2021		Water	S21-Fe25619										X	Х				Х
31	SW03	Feb 10, 2021		Water	S21-Fe25620										Х	Х				Χ

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road 4
Penrose, Auckland 1061 R
Phone: +64 9 526 45 51 P
IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

																		u	Omi	Allaly
		Sar	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	oourne Laborat	ory - NATA Site	# 1254 & 142	271				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 18	3217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Χ
Bris	bane Laborator	y - NATA Site # :	20794			Х														
Pert	h Laboratory -	NATA Site # 237	36																	
May	field Laborator	у																		
Exte	rnal Laborator	у																		
32	SW04	Feb 10, 2021		Water	S21-Fe25621										Х	Х			<u> </u>	Х
33	SW05	Feb 10, 2021		Water	S21-Fe25622										Х	Х				Х
34	SW06	Feb 10, 2021		Water	S21-Fe25623										Х	Х				Х
35	QA01_SW	Feb 10, 2021		Water	S21-Fe25624										Х	Х				Х
36	SED01	Feb 10, 2021		Soil	S21-Fe25625										Х			Х		
37	SED02	Feb 10, 2021		Soil	S21-Fe25626										Х			Х		
38	SED03	Feb 10, 2021		Soil	S21-Fe25627										Х			Х		
39	SED04	Feb 10, 2021		Soil	S21-Fe25628										Х			Х	<u> </u>	
40	SED05	Feb 10, 2021		Soil	S21-Fe25629										Х			Х	<u> </u>	
41	SED06	Feb 10, 2021		Soil	S21-Fe25630										Х			Х	<u> </u>	
42	DRAIN01	Feb 10, 2021		Soil	S21-Fe25631										Х			Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261 Phone : +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager : Andrew Black

																			, .
		Sam	nple Detail		% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	oourne Laborat	ory - NATA Site#	1254 & 14271				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 18	217			Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	ry - NATA Site # 2	20794		Х														
Pert	h Laboratory - I	NATA Site # 2373	6																
May	field Laborator	у																<u> </u>	
	rnal Laboratory	_		i e													Щ	ļ	
43	QA01_SED	Feb 10, 2021	Soil	S21-Fe25632										Х			X	<u> </u>	
44	R01	Feb 10, 2021	Water	S21-Fe25633										Х			Щ	↓	_
45	R02	Feb 10, 2021	Water	S21-Fe25634										X				<u> </u>	1
46	HA- SMC08_0.1	Feb 11, 2021	Soil	S21-Fe25635	Х		Х	Х			Х					Х		Х	
47	HA- SMC08_0.5	Feb 11, 2021	Soil	S21-Fe25636	Х		Х	Х			Х					Х		х	
48	QA03	Feb 09, 2021	AUS Leachate	S21-Fe25637								Х		Х				<u> </u>	
49	QA05	Feb 09, 2021	AUS Leachate	S21-Fe25638								Х		Х				<u> </u>	\sqcup
50	QA18	Feb 10, 2021	AUS Leachate	S21-Fe25639								Х		Х				<u> </u>	
51	QA19	Feb 10, 2021	AUS Leachate	S21-Fe25640								Х		X					

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: R

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71				Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х														
Pert	h Laboratory - N	NATA Site # 237	36																	
May	field Laboratory	1																		
Exte	rnal Laboratory	<u>'</u>																		
52	QA03	Feb 09, 2021		US Leachate	S21-Fe25641									Х	Х					
53	QA05	Feb 09, 2021		US Leachate	S21-Fe25642									Х	Х					
54	QA18	Feb 10, 2021		US Leachate	S21-Fe25643									Х	Х					
55	QA19 Feb 10, 2021 US Leachate S21-Fe256		S21-Fe25644									Х	Х							
Tes	Counts					2	28	2	30	30	28	2	4	4	53	7	38	38	2	7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

т	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	88			80-120	Pass	
Cadmium			%	89			80-120	Pass	
Chromium			%	88			80-120	Pass	
Copper			%	87			80-120	Pass	
Lead			%	92			80-120	Pass	
Mercury			%	90			80-120	Pass	
Nickel			%	88			80-120	Pass	
Zinc			%	88			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							1		
Heavy Metals				Result 1					
Zinc	S21-Fe23191	NCP	%	111			75-125	Pass	
Spike - % Recovery							1		
Heavy Metals		1		Result 1					
Arsenic	S21-Fe25640	CP	%	84			75-125	Pass	
Cadmium	S21-Fe25640	CP	%	86			75-125	Pass	
Chromium	S21-Fe25640	CP	%	82			75-125	Pass	
Copper	S21-Fe25640	CP	%	80			75-125	Pass	
Lead	S21-Fe25640	CP	%	88			75-125	Pass	
Mercury	S21-Fe25640	CP	%	84			75-125	Pass	
Nickel	S21-Fe25640	CP	%	82			75-125	Pass	
Spike - % Recovery							<u> </u>		
Heavy Metals		1 1		Result 1					
Arsenic	S21-Fe25644	CP	%	93			75-125	Pass	
Chromium	S21-Fe25644	CP	%	87			75-125	Pass	
Copper	S21-Fe25644	CP	%	86			75-125	Pass	
Lead	S21-Fe25644	CP	%	98			75-125	Pass	
Mercury	S21-Fe25644	CP	%	98			75-125	Pass	
Nickel	S21-Fe25644	CP	%	85			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Fe25637	CP	mg/L	0.01	0.01	8.0	30%	Pass	
Cadmium	S21-Fe25637	CP	mg/L	0.0052	0.0063	18	30%	Pass	
Chromium	S21-Fe25637	CP	mg/L	0.014	0.015	9.0	30%	Pass	
Copper	S21-Fe25637	CP	mg/L	0.071	0.084	17	30%	Pass	
Lead	S21-Fe25637	CP	mg/L	0.83	1.00	18	30%	Pass	
Mercury	S21-Fe25637	CP	mg/L	0.0003	0.0003	19	30%	Pass	
Nickel	S21-Fe25637	CP	mg/L	0.003	0.003	19	30%	Pass	
	S21-Fe25637	СР	mg/L	1.6	1.9	17	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Fe25641	СР	mg/L	0.02	0.02	4.0	30%	Pass	
Cadmium	S21-Fe25641	CP	mg/L	0.12	0.12	1.0	30%	Pass	
Chromium	S21-Fe25641	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Copper	S21-Fe25641	CP	mg/L	0.24	0.23	5.0	30%	Pass	
Lead	S21-Fe25641	CP	mg/L	0.12	0.12	2.0	30%	Pass	
Mercury	S21-Fe25641	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel	S21-Fe25641	СР	mg/L	0.02	0.02	4.0	30%	Pass	
Zinc	S21-Fe25641	СР	mg/L	37	37	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Fe25643	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cadmium	S21-Fe25643	СР	mg/L	0.023	0.023	4.0	30%	Pass	
Chromium	S21-Fe25643	СР	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Copper	S21-Fe25643	CP	mg/L	0.25	0.24	2.0	30%	Pass	
Lead	S21-Fe25643	СР	mg/L	4.0	4.1	<1	30%	Pass	
Mercury	S21-Fe25643	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	•
Nickel	S21-Fe25643	СР	mg/L	0.01	< 0.01	66	30%	Fail	Q15
Zinc	S21-Fe25643	СР	mg/L	22	21	2.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Analytical Services Manager
John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 773658-S

Project name

Project ID 318001025-1

Received Date Feb 12, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	QA01 Soil S21-Fe25590 Feb 09, 2021	QA03 Soil S21-Fe25591 Feb 09, 2021	QA05 Soil S21-Fe25592 Feb 09, 2021	QA07 Soil S21-Fe25593 Feb 09, 2021
Testiveletiete	LOI	Offic				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	92	60	340	36
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.7	6.6	5.0	7.0
Sulphur	5	mg/kg	1300	7900	2500	1800
% Moisture	1	%	15	21	9.9	17
Heavy Metals						
Arsenic	2	mg/kg	4.5	120	93	58
Cadmium	0.4	mg/kg	0.7	37	21	22
Chromium	5	mg/kg	16	48	31	17
Copper	5	mg/kg	12	1200	650	560
Lead	5	mg/kg	49	3900	3700	1400
Mercury	0.1	mg/kg	< 0.1	1.2	0.8	1.0
Nickel	5	mg/kg	9.8	52	31	14
Zinc	5	mg/kg	150	9200	5200	4000

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	QA08 Soil S21-Fe25594 Feb 09, 2021	QA09 Soil S21-Fe25595 Feb 09, 2021	QA10 Soil S21-Fe25596 Feb 09, 2021	QA11 Soil S21-Fe25597 Feb 09, 2021
	-					
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	140	57	86	52
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.4	6.6	6.1	6.4
Sulphur	5	mg/kg	290	720	2000	1800
% Moisture	1	%	8.7	18	33	31
Heavy Metals						
Arsenic	2	mg/kg	13	69	40	110
Cadmium	0.4	mg/kg	2.0	25	21	11
Chromium	5	mg/kg	19	22	34	21
Copper	5	mg/kg	48	910	380	480
Lead	5	mg/kg	110	3200	3100	2300
Mercury	0.1	mg/kg	< 0.1	1.8	0.6	0.4
Nickel	5	mg/kg	17	25	11	33
Zinc	5	mg/kg	450	5600	3100	1500

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			QA12 Soil S21-Fe25598 Feb 10, 2021	QA13 Soil S21-Fe25599 Feb 10, 2021	QA14 Soil S21-Fe25600 Feb 10, 2021	QA15 Soil S21-Fe25601 Feb 10, 2021
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	21	18	22	54
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.2	5.7	4.9	7.3
Sulphur	5	mg/kg	670	390	180	770
% Moisture	1	%	14	1.7	8.6	12
Heavy Metals						
Arsenic	2	mg/kg	71	14	11	10
Cadmium	0.4	mg/kg	3.0	1.5	1.5	0.5
Chromium	5	mg/kg	20	20	22	15
Copper	5	mg/kg	640	98	44	40
Lead	5	mg/kg	4700	430	270	230
Mercury	0.1	mg/kg	2.3	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	22	20	10	11
Zinc	5	mg/kg	1400	400	260	690

Client Sample ID Sample Matrix Eurofins Sample No.			QA16 Soil S21-Fe25602	QA18 Soil S21-Fe25603	QA19 Soil S21-Fe25604	QA20 Soil S21-Fe25605
Date Sampled			Feb 10, 2021	Feb 10, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit		,	,	,
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	120	75	87	340
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0	5.9	6.9	4.3
Sulphur	5	mg/kg	820	4200	8200	440
% Moisture	1	%	11	2.2	18	3.8
Heavy Metals						
Arsenic	2	mg/kg	22	44	150	9.5
Cadmium	0.4	mg/kg	1.2	7.5	270	4.2
Chromium	5	mg/kg	28	12	25	9.9
Copper	5	mg/kg	130	1500	630	50
Lead	5	mg/kg	1200	4500	2400	110
Mercury	0.1	mg/kg	< 0.1	< 0.1	1.5	< 0.1
Nickel	5	mg/kg	15	8.7	18	< 5
Zinc	5	mg/kg	690	29000	100000	1200

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	QA21 Soil S21-Fe25606 Feb 10, 2021	QA23 Soil S21-Fe25607 Feb 11, 2021	QA24 Soil S21-Fe25608 Feb 11, 2021	QA25 Soil S21-Fe25609 Feb 11, 2021
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	17	80	130	120
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.0	6.3	5.7	5.7
Sulphur	5	mg/kg	200	650	640	940
% Moisture	1	%	17	4.8	29	29

Client Sample ID Sample Matrix			QA21 Soil	QA23 Soil	QA24 Soil	QA25 Soil
Eurofins Sample No.			S21-Fe25606	S21-Fe25607	S21-Fe25608	S21-Fe25609
Date Sampled			Feb 10, 2021	Feb 11, 2021	Feb 11, 2021	Feb 11, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	22	21	14	12
Cadmium	0.4	mg/kg	4.3	4.6	2.3	2.2
Chromium	5	mg/kg	36	12	20	18
Copper	5	mg/kg	73	170	85	89
Lead	5	mg/kg	350	950	600	650
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	6.8	15	10
Zinc	5	mg/kg	1700	1600	870	850

Client Sample ID Sample Matrix			QA26 Soil	QA27 Soil	QA28 Soil	QA29 Soil
Eurofins Sample No.			S21-Fe25610	S21-Fe25611	S21-Fe25612	S21-Fe25613
Date Sampled			Feb 11, 2021	Feb 11, 2021	Feb 11, 2021	Feb 11, 2021
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	500	< 10	25	21
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.4	6.3	5.9	6.5
Sulphur	5	mg/kg	2000	49	780	200
% Moisture	1	%	1.9	10	17	15
Heavy Metals						
Arsenic	2	mg/kg	22	6.0	16	11
Cadmium	0.4	mg/kg	3.2	< 0.4	3.7	2.2
Chromium	5	mg/kg	29	6.9	11	13
Copper	5	mg/kg	160	22	140	89
Lead	5	mg/kg	1600	66	750	430
Mercury	0.1	mg/kg	0.2	< 0.1	< 0.1	0.1
Nickel	5	mg/kg	9.5	< 5	5.5	5.6
Zinc	5	mg/kg	1300	96	820	920

Client Sample ID			QA30	QA31	QA32	QA33
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Fe25614	S21-Fe25615	S21-Fe25616	S21-Fe25617
Date Sampled			Feb 11, 2021	Feb 11, 2021	Feb 11, 2021	Feb 11, 2021
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	21	220	15	56
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.5	5.2	6.0	6.9
Sulphur	5	mg/kg	170	760	140	590
% Moisture	1	%	15	19	12	17
Heavy Metals						
Arsenic	2	mg/kg	11	19	8.8	45
Cadmium	0.4	mg/kg	2.5	3.0	1.5	2.1
Chromium	5	mg/kg	18	15	12	20
Copper	5	mg/kg	90	150	89	89
Lead	5	mg/kg	400	1200	380	520
Mercury	0.1	mg/kg	0.1	0.2	< 0.1	0.4

Client Sample ID			QA30	QA31	QA32	QA33
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Fe25614	S21-Fe25615	S21-Fe25616	S21-Fe25617
Date Sampled			Feb 11, 2021	Feb 11, 2021	Feb 11, 2021	Feb 11, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel	5	mg/kg	21	10	< 5	6.3
Zinc	5	mg/kg	970	1100	370	1000

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	SED01 Soil S21-Fe25625 Feb 10, 2021	SED02 Soil S21-Fe25626 Feb 10, 2021	SED03 Soil S21-Fe25627 Feb 10, 2021	SED04 Soil S21-Fe25628 Feb 10, 2021
% Moisture	1	%	26	40	9.4	25
Heavy Metals						
Arsenic	2	mg/kg	65	44	16	21
Cadmium	0.4	mg/kg	0.8	0.5	0.8	0.5
Chromium	5	mg/kg	9.0	15	23	21
Copper	5	mg/kg	210	210	100	55
Lead	5	mg/kg	1100	1100	590	670
Mercury	0.1	mg/kg	0.2	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	12	8.3
Zinc	5	mg/kg	800	600	3800	490

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	SED05 Soil S21-Fe25629 Feb 10, 2021	SED06 Soil S21-Fe25630 Feb 10, 2021	DRAIN01 Soil S21-Fe25631 Feb 10, 2021	QA01_SED Soil S21-Fe25632 Feb 10, 2021
% Moisture	1	%	9.2	18	3.6	10
Heavy Metals						
Arsenic	2	mg/kg	18	24	25	9.6
Cadmium	0.4	mg/kg	0.9	2.2	1.9	0.4
Chromium	5	mg/kg	19	21	22	11
Copper	5	mg/kg	68	80	150	26
Lead	5	mg/kg	780	1000	1500	250
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2	< 0.1
Nickel	5	mg/kg	8.5	9.5	7.1	< 5
Zinc	5	mg/kg	470	910	920	440

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			HA-SMC08_0.1 Soil S21-Fe25635 Feb 11, 2021	HA-SMC08_0.5 Soil S21-Fe25636 Feb 11, 2021
Test/Reference	LOR	Unit		
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	550	30
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.4	7.0
% Moisture	1	%	27	1.3
% Clay	1	%	< 1	9.0
Total Organic Carbon	0.1	%	8.3	0.2
Heavy Metals				
Iron (%)	0.01	%	1.5	1.1
Cation Exchange Capacity				
Cation Exchange Capacity	0.05	meq/100g	15	7.3

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Conductivity (1:5 aqueous extract at 25°C as rec.)	Testing Site Melbourne	Extracted Feb 13, 2021	Holding Time 7 Days
- Method: LTM-INO-4030 Conductivity	Mallagara	Fab 45 0004	400 Davis
Cation Exchange Capacity - Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage	Melbourne	Feb 15, 2021	180 Days
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Feb 13, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE Sulphur	Melbourne	Feb 16, 2021	7 Days
- Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES % Clay	Brisbane	Feb 15, 2021	14 Days
- Method: LTM-GEN-7040			,
Total Organic Carbon - Method: LTM-INO-4060 Total Organic Carbon in water and soil	Melbourne	Feb 15, 2021	28 Days
Metals M8	Sydney	Feb 13, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS Heavy Metals	Melbourne	Feb 13, 2021	180 Days
Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MSMoisture	Melbourne	Feb 12, 2021	14 Days

- Method: LTM-GEN-7080 Moisture

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261
 Phone : +61 2 **

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

Phone:

Fax:

773658

02 9954 8118

02 9954 8150

Received: Feb 12, 2021 1:00 PM **Due:** Feb 17, 2021

Priority: 3 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail						% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melbourne Laboratory - NATA Site # 1254 & 14271								Х	Х		Х	Х					Х	Х	Х	
Sydı	Sydney Laboratory - NATA Site # 18217									Х			Х	Х	Х	Х	Х	Х	Х	X
Bris	bane Laborator	y - NATA Site #	20794			Х														
Pert	h Laboratory - N	NATA Site # 237	736																	
May	field Laboratory	<u> </u>																		
Exte	rnal Laboratory	1																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	QA01	Feb 09, 2021		Soil	S21-Fe25590		Х			Х	Х				Х			Х		
2	QA03	Feb 09, 2021		Soil	S21-Fe25591		Х			Х	Х				Х			Х		
3	QA05	Feb 09, 2021		Soil	S21-Fe25592		Х			Х	Х				Х			Х		
4	QA07	Feb 09, 2021		Soil	S21-Fe25593		Х			Х	Х				Х			Х		
5	QA08	Feb 09, 2021		Soil	S21-Fe25594		Х			Х	Х				Х			Х		
6	QA09	Feb 09, 2021		Soil	S21-Fe25595		Х			Х	Х				Х			Х		
7	QA10	Feb 09, 2021		Soil	S21-Fe25596		Х			Х	Х				Х			Х		
8							Х			Х	Х				Х			Х		
9	QA12	S21-Fe25598		Х			Х	Х				Х			Х					

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

INON

Project Name:

Address:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	oourne Laborat				Х	Х		Х	Х					Х	Х	Х			
Syd	Sydney Laboratory - NATA Site # 18217								Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	ry - NATA Site #	20794		Х														
Pert	h Laboratory -	NATA Site # 237	36																
May	field Laborator	у																	
Exte	rnal Laborator	_																	
10	QA13	Feb 10, 2021	Soil	S21-Fe25599		X			Х	Х				Х			Х		
11	QA14	Feb 10, 2021	Soil	S21-Fe25600		X			Х	Х				Х			Х		-
12	QA15	Feb 10, 2021	Soil	S21-Fe25601		Х			Х	Х				Х			Х		
13	QA16	Feb 10, 2021	Soil	S21-Fe25602		Х			Х	Х				Х			Х		
14	QA18	Feb 10, 2021	Soil	S21-Fe25603		Х			Х	Х				Х			Х		-
15	QA19	Feb 10, 2021	Soil	S21-Fe25604		X			Х	Х				Х			Х		
16	QA20	Feb 10, 2021	Soil	S21-Fe25605		Х			Х	Х				Х			Х		
17	QA21	Feb 10, 2021	Soil	S21-Fe25606		X			Х	Х				Х			Х		
18						Х			Х	Х				Х			Х		
19						Х			Х	Х				Х			Х		\square
20	0 QA25 Feb 11, 2021 Soil S21-Fe256								Х	Х				Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261
Phone : +61 2 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

Fax:

773658

Phone: 02 9954 8118

02 9954 8150

Received: Feb 12, 2021 1:00 PM **Due:** Feb 17, 2021

Priority: 3 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
	oourne Laborat				Х	Х		Х	Х					Х	Х	Х			
	ney Laboratory		X	Х			Х			Х	Х	Х	Х	Х	Х	Х	Х		
	Brisbane Laboratory - NATA Site # 20794																		
		NATA Site # 23736																	
	field Laboratory																		\vdash
	ernal Laboratory	<u> </u>		T															\vdash
21	QA26	Feb 11, 2021	Soil	S21-Fe25610		X			Х	Х				Х			Х		\vdash
22	QA27	Feb 11, 2021	Soil	S21-Fe25611		X			X	Х				Х			Х		\vdash
23	QA28	Feb 11, 2021	Soil	S21-Fe25612		X			Х	Х				Х			Х		\vdash
24	QA29	Feb 11, 2021	Soil	S21-Fe25613		Х			Х	Х				Х			Х		\vdash
25	QA30	Feb 11, 2021	Soil	S21-Fe25614		Х			Х	Х				Х			Х		
26	QA31	Feb 11, 2021	Soil	S21-Fe25615		X			Х	Х				Х			Х		\vdash
	27 QA32 Feb 11, 2021 Soil S21-Fe25616								Х	Х				Х			Х		\vdash
28 QA33 Feb 11, 2021 Soil S21-Fe25617						Х			Х	Х				Х			Х		\vdash
29														Х	Х				Х
30														Х	Х				Х
31	SW03	S21-Fe25620										Х	Х				Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Project ID: 318001025-1 Order No.: Report #:

773658

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

Sample Detail					% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness	
Melbourne Laboratory - NATA Site # 1254 & 14271								Х	Х		Х	Х					Х	X	Х	\sqcup
	Sydney Laboratory - NATA Site # 18217						X			Х			Х	Х	Х	Х	Х	Х	Х	X
		y - NATA Site #				Х														
		NATA Site # 237	36																	\square
May	field Laboratory	У																		
Exte	rnal Laboratory	1																		
32	SW04	Feb 10, 2021		Water	S21-Fe25621										Х	Х				Х
33	SW05	Feb 10, 2021		Water	S21-Fe25622										Х	Х				Х
34	SW06	Feb 10, 2021		Water	S21-Fe25623										Х	Х				Х
35	QA01_SW	Feb 10, 2021		Water	S21-Fe25624										Х	Х				Х
36	SED01	Feb 10, 2021		Soil	S21-Fe25625										Х			Х		\square
37	SED02	Feb 10, 2021		Soil	S21-Fe25626										Х			Х		
38	SED03	Feb 10, 2021		Soil	S21-Fe25627										Х			Х		
39	SED04	Feb 10, 2021		Soil	S21-Fe25628										Х			Х		
40 SED05 Feb 10, 2021 Soil S21-Fe25629														Х			Х			
41	41 SED06 Feb 10, 2021 Soil S21-Fe25630														Х			Х		
42	42 DRAIN01 Feb 10, 2021 Soil S21-Fe2563														Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Due:

 Auckland
 Ch

 35 O'Rorke Road
 43

 Penrose, Auckland 1061
 Ro

 Phone: +64 9 526 45 51
 Phr

 IANZ # 1327
 IAN

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Ra

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Contact Name:

3 Day Stephen Maxwell

Feb 17, 2021

Feb 12, 2021 1:00 PM

Eurofins Analytical Services Manager: Andrew Black

Sample Detail							Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melbourne Laboratory - NATA Site # 1254 & 14271								Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #				Х														
		NATA Site # 237	36																	
	field Laboratory																			
External Laboratory																				
43	QA01_SED	Feb 10, 2021		Soil	S21-Fe25632										Х			Х		
44	R01	Feb 10, 2021		Water	S21-Fe25633										Х					\sqcup
45	R02	Feb 10, 2021		Water	S21-Fe25634										Х					
46	HA- SMC08_0.1	Feb 11, 2021		Soil	S21-Fe25635	Х		Х	х			Х					Х		х	
47	HA- SMC08_0.5	Feb 11, 2021		Soil	S21-Fe25636	Х		Х	Х			Х					Х		Х	
48	QA03	Feb 09, 2021		AUS Leachate	S21-Fe25637								Х		Х					
49	QA05	Feb 09, 2021		AUS Leachate	S21-Fe25638								Х		Х					
50	QA18	Feb 10, 2021		AUS Leachate	S21-Fe25639								Х		Х					
51	QA19	Feb 10, 2021		AUS Leachate	S21-Fe25640								Х		Х					

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Project ID:

318001025-1

Order No.:

Report #:

773658

Phone: 02 9954 8118 Fax:

02 9954 8150

Received: Feb 12, 2021 1:00 PM Due:

New Zealand

Feb 17, 2021 Priority: 3 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail						% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborate	ory - NATA Site # 1	1254 & 14271					Х	Χ		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 182	17				Х			Х			Х	Χ	Х	Х	Х	Х	Х	X
Brisbane Laboratory - NATA Site # 20794																				
Pert	Perth Laboratory - NATA Site # 23736																			
May	Mayfield Laboratory																			
External Laboratory																				
52	QA03	Feb 09, 2021	US L	Leachate	S21-Fe25641									Х	Х					
53	QA05	Feb 09, 2021	US L	Leachate	S21-Fe25642									Х	Х					
54	QA18	Feb 10, 2021	US L	Leachate	S21-Fe25643									Х	Х					
55	QA19	Feb 10, 2021	US L	Leachate	S21-Fe25644									Х	Х					
Test Counts							28	2	30	30	28	2	4	4	53	7	38	38	2	7

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10		10	Pass	
Sulphur			mg/kg	< 5		5	Pass	
Total Organic Carbon			%	< 0.1		0.1	Pass	
Method Blank								
Heavy Metals								
Arsenic			mg/kg	< 2		2	Pass	
Cadmium			mg/kg	< 0.4		0.4	Pass	
Chromium			mg/kg	< 5		5	Pass	
Copper			mg/kg	< 5		5	Pass	
Lead			mg/kg	< 5		5	Pass	
Mercury			mg/kg	< 0.1		0.1	Pass	
Nickel			mg/kg	< 5		5	Pass	
Zinc			mg/kg	< 5		5	Pass	
Method Blank								
Cation Exchange Capacity								
Cation Exchange Capacity			meg/100g	< 0.05		0.05	Pass	
LCS - % Recovery								
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	96		70-130	Pass	
Total Organic Carbon	,		%	104		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	102		80-120	Pass	
Cadmium			%	101		80-120	Pass	
Chromium			%	100		80-120	Pass	
Copper			%	100		80-120	Pass	
Lead			%	97		80-120	Pass	
Mercury			%	98		80-120	Pass	
Nickel			%	102		80-120	Pass	
Zinc			%	100		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S21-Fe25591	CP	%	100		75-125	Pass	
Cadmium	S21-Fe25591	СР	%	105		75-125	Pass	
Chromium	S21-Fe25591	СР	%	87		75-125	Pass	
Lead	S21-Fe25591	СР	%	82		75-125	Pass	
Mercury	S21-Fe25591	СР	%	105		75-125	Pass	
Nickel	S21-Fe25591	СР	%	84		75-125	Pass	
Zinc	S21-Fe25591	CP	%	114		75-125	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S21-Fe25611	СР	%	119		75-125	Pass	
Cadmium	S21-Fe25611	CP	%	122		75-125	Pass	
Spike - % Recovery					·			
Heavy Metals				Result 1				

Report Number: 773658-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Fe25590	СР	uS/cm	92	110	20	30%	Pass	
pH (1:5 Aqueous extract at 25°C as	004 5-05500	0.0	-1111-76	7.7	7.7	D	000/	D	
rec.)	S21-Fe25590	CP	pH Units	7.7	7.7	Pass	30%	Pass	
Sulphur	S21-Fe25590	CP	mg/kg	1300	1200	1.0	30%	Pass	
% Moisture	S21-Fe25590	CP	%	15	19	24	30%	Pass	
Duplicate Heavy Matela				Dec. It 4	Dec. 40	DDD			
Heavy Metals	CO4 F-05500	CD		Result 1	Result 2	RPD	200/	F-:1	045
Arsenic	S21-Fe25590	CP	mg/kg	4.5	6.3	34	30%	Fail	Q15
Cadmium	S21-Fe25590	CP	mg/kg	0.7	0.6	12	30%	Pass	045
Chromium	S21-Fe25590	CP	mg/kg	16	25	40	30%	Fail	Q15
Copper	S21-Fe25590	CP	mg/kg	12	17	34	30%	Fail	Q15
Lead	S21-Fe25590	CP CP	mg/kg	49	48	3.0	30%	Pass	
Mercury	S21-Fe25590		mg/kg	< 0.1	< 0.1	<1	30%	Pass	045
Nickel	S21-Fe25590	CP	mg/kg	9.8	14	34	30%	Fail	Q15
Zinc	S21-Fe25590	CP	mg/kg	150	160	12	30%	Pass	
Duplicate				D 11.4		DDD	T		
Conductivity (4.5 acres on autor at				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Fe25600	СР	uS/cm	22	23	8.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Fe25600	СР	pH Units	4.9	4.9	Pass	30%	Pass	
Sulphur	S21-Fe25600	CP	mg/kg	180	220	20	30%	Pass	
% Moisture	S21-Fe25600	CP	%	8.6	8.3	3.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-Fe25610	СР	uS/cm	500	480	3.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-Fe25610	СР	pH Units	7.4	7.5	Pass	30%	Pass	
% Moisture	S21-Fe25610	СР	%	1.9	2.1	8.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Fe25610	СР	mg/kg	22	23	6.0	30%	Pass	
Cadmium	S21-Fe25610	СР	mg/kg	3.2	3.3	2.0	30%	Pass	
Chromium	S21-Fe25610	СР	mg/kg	29	29	2.0	30%	Pass	
Copper	S21-Fe25610	СР	mg/kg	160	190	16	30%	Pass	
Lead	S21-Fe25610	СР	mg/kg	1600	1700	4.0	30%	Pass	
Mercury	S21-Fe25610	СР	mg/kg	0.2	0.2	2.0	30%	Pass	
Nickel	S21-Fe25610	СР	mg/kg	9.5	9.3	3.0	30%	Pass	
Zinc	S21-Fe25610	СР	mg/kg	1300	2000	38	30%	Fail	Q02
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Fe25617	СР	mg/kg	45	59	26	30%	Pass	
Cadmium	S21-Fe25617	СР	mg/kg	2.1	2.3	6.0	30%	Pass	
Chromium	S21-Fe25617	СР	mg/kg	20	18	10	30%	Pass	
Copper	S21-Fe25617	CP	mg/kg	89	95	6.0	30%	Pass	
Lead	S21-Fe25617	CP	mg/kg	520	550	5.0	30%	Pass	
Mercury	S21-Fe25617	CP	mg/kg	0.4	0.3	11	30%	Pass	
Nickel	S21-Fe25617	CP	mg/kg	6.3	6.3	1.0	30%	Pass	
Zinc	S21-Fe25617	CP	mg/kg	1000	1300	22	30%	Pass	
Duplicate			פיים.						
•				Result 1	Result 2	RPD			
% Moisture	S21-Fe25627	СР	%	9.4	9.9	6.0	30%	Pass	

Report Number: 773658-S

Duplicate													
Result 1 Result 2 RPD													
% Moisture	S21-Fe25635	CP	%	27	28	4.0	30%	Pass					
Total Organic Carbon	S21-Fe13324	NCP	%	1.8	1.6	8.0	30%	Pass					
Duplicate													
Cation Exchange Capacity Result 1 Result 2 RPD													
Cation Exchange Capacity	S21-Fe08539	NCP	meq/100g	16	17	7.0	30%	Pass					

Report Number: 773658-S

Comments

Sample Integrity

Custody Seals Intact (if used)

Altempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black
Analytical Services Manager
Charl Du Preez
Senior Analyst-Inorganic (NSW)
Emily Rosenberg
Senior Analyst-Metal (VIC)
John Nguyen
Senior Analyst-Metal (NSW)
Jonathon Angell
Senior Analyst-Inorganic (QLD)
Scott Beddoes
Senior Analyst-Inorganic (VIC)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Stephen Maxwell

Report 773658-W

Project name

Project ID 318001025-1

Received Date Feb 12, 2021

Client Sample ID			SW01	SW02	SW03	SW04
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Fe25618	S21-Fe25619	S21-Fe25620	S21-Fe25621
Date Sampled			Feb 10, 2021	Feb 10, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit				
Hardness mg equivalent CaCO3/L	1	mg/L	690	560	28	47
Alkali Metals						
Calcium	0.5	mg/L	120	100	3.2	6.9
Magnesium	0.5	mg/L	92	75	4.8	7.4
Potassium	0.5	mg/L	1.5	1.9	1.3	1.6
Sodium	0.5	mg/L	83	66	14	14
Heavy Metals						
Arsenic	0.001	mg/L	< 0.001	< 0.001	0.002	< 0.001
Arsenic (filtered)	0.001	mg/L	0.001	0.001	0.002	0.002
Cadmium	0.0002	mg/L	0.032	0.024	0.0014	0.0057
Cadmium (filtered)	0.0002	mg/L	0.028	0.023	0.0014	0.0051
Chromium	0.001	mg/L	< 0.001	< 0.001	0.002	0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002	< 0.001
Copper	0.001	mg/L	0.20	0.15	0.045	0.040
Copper (filtered)	0.001	mg/L	0.16	0.13	0.039	0.036
Lead	0.001	mg/L	0.35	0.41	0.075	0.22
Lead (filtered)	0.001	mg/L	0.26	0.34	0.052	0.16
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.013	0.017	0.005	0.010
Nickel (filtered)	0.001	mg/L	0.010	0.015	0.004	0.009
Zinc	0.005	mg/L	18	27	0.73	2.5
Zinc (filtered)	0.005	mg/L	15	23	0.66	2.3

Client Sample ID			SW05	SW06	QA01_SW	R01
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Fe25622	S21-Fe25623	S21-Fe25624	S21-Fe25633
Date Sampled			Feb 10, 2021	Feb 10, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit				
Hardness mg equivalent CaCO3/L	1	mg/L	70	71	71	-

Client Sample ID			SW05	SW06	QA01_SW	R01
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Fe25622	S21-Fe25623	S21-Fe25624	S21-Fe25633
Date Sampled			Feb 10, 2021	Feb 10, 2021	Feb 10, 2021	Feb 10, 2021
Test/Reference	LOR	Unit				
Alkali Metals						
Calcium	0.5	mg/L	12	11	12	-
Magnesium	0.5	mg/L	9.8	10	10	-
Potassium	0.5	mg/L	1.8	1.8	1.8	-
Sodium	0.5	mg/L	15	16	15	-
Heavy Metals						
Arsenic	0.001	mg/L	0.001	0.001	0.001	< 0.001
Arsenic (filtered)	0.001	mg/L	0.002	0.002	0.002	-
Cadmium	0.0002	mg/L	0.012	0.0093	0.012	< 0.0002
Cadmium (filtered)	0.0002	mg/L	0.011	0.0092	0.010	-
Chromium	0.001	mg/L	0.001	0.001	0.002	< 0.001
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	0.001	-
Copper	0.001	mg/L	0.049	0.042	0.052	< 0.001
Copper (filtered)	0.001	mg/L	0.039	0.036	0.038	-
Lead	0.001	mg/L	0.25	0.17	0.27	0.001
Lead (filtered)	0.001	mg/L	0.13	0.12	0.13	-
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Nickel	0.001	mg/L	0.015	0.014	0.015	< 0.001
Nickel (filtered)	0.001	mg/L	0.013	0.013	0.012	-
Zinc	0.005	mg/L	3.8	3.3	3.9	< 0.005
Zinc (filtered)	0.005	mg/L	3.5	3.3	3.5	-

Client Sample ID Sample Matrix Eurofine Sample No.			R02 Water S21-Fe25634
Eurofins Sample No. Date Sampled			Feb 10, 2021
Test/Reference Heavy Metals	LOR	Unit	Feb 10, 2021
Arsenic	0.001	ma/l	< 0.001
Cadmium	0.001	mg/L mg/L	< 0.001
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	0.005
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	0.008

Report Number: 773658-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B11D: Na/K/Ca/Mg and Hardness			
Hardness mg equivalent CaCO3/L	Sydney	Feb 16, 2021	28 Days
- Method: E020.1 Hardness in water			
Alkali Metals	Sydney	Feb 16, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8	Sydney	Feb 16, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8 filtered	Sydney	Feb 12, 2021	28 Days

Report Number: 773658-W

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

Phone:

Fax:

773658

02 9954 8118 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

3 Day

	Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melk	elbourne Laboratory - NATA Site # 1254 & 14271							Х	Х		Х	Х					Х	Х	Х	
Sydi	ney Laboratory	- NATA Site # 1	8217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794			Х														
Pert	h Laboratory - N	NATA Site # 237	36																	
May	field Laboratory	1																		
Exte	rnal Laboratory	<u>.</u>			_															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	QA01	Feb 09, 2021		Soil	S21-Fe25590		Х			Х	Х				Х			Х		
2	QA03	Feb 09, 2021		Soil	S21-Fe25591		Х			Х	Х				Х			Х		
3	QA05	Feb 09, 2021		Soil	S21-Fe25592		Х			Х	Х				Х			Х		
4	QA07	Feb 09, 2021		Soil	S21-Fe25593		Х			Х	Х				Х			Х		
5	QA08	Feb 09, 2021		Soil	S21-Fe25594		X			Х	Х				Х			Х		
6							X			Х	Х				Х			Х		
7	<u> </u>						X			Х	Х				Х			Х		
8							X			Х	Х				Х			Х		
9	QA12 Feb 10, 2021 Soil S21-Fe2559						X			Х	Х				Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

3 Day

	Sample Detail					Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
	ourne Laborat				Х	Х		Х	X					Х	Х	Х	1		
		- NATA Site # 1				X			Х			Х	Х	Х	Х	Х	X	X	X
		y - NATA Site #			X														\vdash
		NATA Site # 237	36																\vdash
	field Laboratory																		+
	rnal Laboratory	' 1 1	0-1	004 5:05500		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		+
10	QA13	Feb 10, 2021	Soil	S21-Fe25599		X			X	X				X			X		\vdash
11	QA14	Feb 10, 2021	Soil	S21-Fe25600		X			X	X				X			X		\vdash
12	QA15 QA16	Feb 10, 2021	Soil Soil	S21-Fe25601		X			X	X				X			X		+-+
14	QA18	Feb 10, 2021 Feb 10, 2021	Soil	S21-Fe25602 S21-Fe25603		X			X	X				X			X		+
15	QA19	Feb 10, 2021 Feb 10, 2021	Soil	S21-Fe25603 S21-Fe25604		X		-	X	X				X			X		+
16	QA20	Feb 10, 2021	Soil	S21-Fe25605		X			X	X				X			X		+-+
17	QA21	Feb 10, 2021	Soil	S21-Fe25606		X			X	X				X			X		\vdash
18	 					X			X	X				X			X		+
19	<u> </u>					X			X	X				X			X		+
20	QA25 Feb 11, 2021 Soil S21-Fe2560					X			X	X				X			X		\Box

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1 Order No.:

Fax:

773658

Report #: Phone: 02 9954 8118

02 9954 8150

Received: Feb 12, 2021 1:00 PM Due: Feb 17, 2021

Priority: 3 Day

Stephen Maxwell **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

	Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
	lbourne Laboratory - NATA Site # 1254 & 14271 dney Laboratory - NATA Site # 18217							Х	Х		Х	Х					Х	Х	Х	
							X			Х			Х	Х	X	Х	Х	Х	Х	X
		y - NATA Site #				Х														
		NATA Site # 237	36																	\vdash
	field Laboratory																			\vdash
	ernal Laboratory	1		1																\vdash
21	QA26	Feb 11, 2021		Soil	S21-Fe25610		X			Х	Х				X			Х		\vdash
22	QA27	Feb 11, 2021		Soil	S21-Fe25611		X			X	Х				X			Х		\vdash
23	QA28	Feb 11, 2021		Soil	S21-Fe25612		X			Х	Х				X			Х		
24	QA29	Feb 11, 2021		Soil	S21-Fe25613		X			Х	Х				X			Х		
25	QA30	Feb 11, 2021		Soil	S21-Fe25614		Х			Х	Х				X			Х		
26	QA31	Feb 11, 2021		Soil	S21-Fe25615		X			Х	Х				X			Х		\square
27	QA32	Feb 11, 2021		Soil	S21-Fe25616		Х			Х	Х				X			Х		
28	QA33	Feb 11, 2021		Soil	S21-Fe25617		Х			Х	Х				X			Х		\sqcup
29															X	Х				Х
30															X	Х				Х
31	SW03 Feb 10, 2021 Water S21-Fe256														Х	Х				Χ

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone: +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

 Auckland
 Christo

 35 O'Rorke Road
 43 Detr

 Penrose, Auckland 1061
 Rollest

 Phone : +64 9 526 45 51
 Phone

 IANZ # 1327
 IANZ #

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

3 Day

	Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	bourne Laboratory - NATA Site # 1254 & 14271							Х	Х		Х	Х					Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	3217				Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794			Х														
Pert	h Laboratory - I	NATA Site # 237	36																	
May	field Laboratory	/																		
Exte	rnal Laboratory	/																		
32	SW04	Feb 10, 2021		Water	S21-Fe25621										Х	Х			L	Х
33	SW05	Feb 10, 2021		Water	S21-Fe25622										Х	Х			L	Х
34	SW06	Feb 10, 2021		Water	S21-Fe25623										Х	Х			L	Х
35	QA01_SW	Feb 10, 2021		Water	S21-Fe25624										Х	Х			L	Х
36	SED01	Feb 10, 2021		Soil	S21-Fe25625										Х			Х	L	
37	SED02	Feb 10, 2021		Soil	S21-Fe25626										Х			Х	L	
38					S21-Fe25627										Х			X	<u> </u>	
39					S21-Fe25628										Х			Х		
40															Х			Х		
41															Х			Х		
42	DRAIN01 Feb 10, 2021 Soil S21-Fe2563														Х			Х		

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 12, 2021 1:00 PM

Feb 17, 2021

Stephen Maxwell

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Company Name:

Address:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

3 Day

			mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271				Х	Х		Х	X					Х	Х	Х	\sqcup
_		- NATA Site # 1					Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #				Х														
		NATA Site # 237	36																	
_	field Laboratory																			
Exte	rnal Laboratory	<u>'</u>		_	Г															
43	QA01_SED	Feb 10, 2021		Soil	S21-Fe25632										Х			Х		
44	R01	Feb 10, 2021		Water	S21-Fe25633										Х					
45	R02	Feb 10, 2021		Water	S21-Fe25634										Х					
46	HA- SMC08_0.1	Feb 11, 2021		Soil	S21-Fe25635	Х		Х	Х			Х					Х		Х	
47	HA- SMC08_0.5	Feb 11, 2021		Soil	S21-Fe25636	Х		Χ	х			х					Χ		Х	
48	QA03	Feb 09, 2021		AUS Leachate	S21-Fe25637								Х		Х					
49	QA05	Feb 09, 2021		AUS Leachate	S21-Fe25638								Х		Х					
50	QA18	Feb 10, 2021		AUS Leachate	S21-Fe25639								Х		Х					
51	QA19	Feb 10, 2021		AUS Leachate	S21-Fe25640								Х		Х					

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 17, 2021

Stephen Maxwell

3 Day

Eurofins Analytical Services Manager: Andrew Black

Feb 12, 2021 1:00 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

NSW 2060

Project Name:

Address:

Company Name:

Project ID: 318001025-1

Order No.: Report #:

773658

Phone: 02 9954 8118 **Fax:** 02 9954 8150

		Sa	mple Detail			% Clay	Conductivity (1:5 aqueous extract at 25°C as rec.)	Iron (%)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphur	Total Organic Carbon	AUS Leaching Procedure	USA Leaching Procedure	Metals M8	Metals M8 filtered	Moisture Set	Moisture Set	Cation Exchange Capacity	Eurofins Suite B11D: Na/K/Ca/Mg and Hardness
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71				Х	Х		Х	Х					Х	Х	Х	
Syd	ydney Laboratory - NATA Site # 18217						Х			Х			Х	Х	Х	Х	Х	Х	Х	Х
Bris	risbane Laboratory - NATA Site # 20794																			
Pert	erth Laboratory - NATA Site # 23736																			
May	layfield Laboratory																			
Exte	ternal Laboratory																			
52	QA03	Feb 09, 2021		US Leachate	S21-Fe25641									Х	Х					
53	QA05	Feb 09, 2021		US Leachate	S21-Fe25642									Х	Х					
54	QA18	Feb 10, 2021		US Leachate	S21-Fe25643									Х	Х					
55	QA19	Feb 10, 2021		US Leachate	S21-Fe25644									Х	Х					
Test	Counts					2	28	2	30	30	28	2	4	4	53	7	38	38	2	7

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Alkali Metals					
Calcium	%	99	80-120	Pass	
Magnesium	%	105	80-120	Pass	
Potassium	%	97	80-120	Pass	
Sodium	%	104	80-120	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	96	80-120	Pass	
Arsenic (filtered)	%	89	80-120	Pass	
Cadmium	%	102	80-120	Pass	
Cadmium (filtered)	%	93	80-120	Pass	
Chromium	%	105	80-120	Pass	
Chromium (filtered)	%	91	80-120	Pass	
Copper	%	102	80-120	Pass	
Copper (filtered)	%	90	80-120	Pass	
Lead	%	108	80-120	Pass	
Lead (filtered)	%	91	80-120	Pass	
Mercury	%	118	80-120	Pass	
Mercury (filtered)	%	98	80-120	Pass	
Nickel	%	105	80-120	Pass	
Nickel (filtered)	%	91	80-120	Pass	
Zinc	%	99	80-120	Pass	
Zinc (filtered)	%	117	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	S21-Fe21192	NCP	%	99			75-125	Pass	
Magnesium	S21-Fe21192	NCP	%	97			75-125	Pass	
Potassium	S21-Fe21192	NCP	%	92			75-125	Pass	
Sodium	S21-Fe21192	NCP	%	95			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Fe21192	NCP	%	96			75-125	Pass	
Arsenic (filtered)	S21-Fe20669	NCP	%	87			75-125	Pass	
Cadmium	S21-Fe21192	NCP	%	99			75-125	Pass	
Cadmium (filtered)	S21-Fe20669	NCP	%	87			75-125	Pass	
Chromium	S21-Fe21192	NCP	%	101			75-125	Pass	
Chromium (filtered)	S21-Fe20669	NCP	%	83			75-125	Pass	
Copper	S21-Fe21192	NCP	%	99			75-125	Pass	
Copper (filtered)	S21-Fe20669	NCP	%	81			75-125	Pass	
Lead	S21-Fe21192	NCP	%	103			75-125	Pass	
Lead (filtered)	S21-Fe20669	NCP	%	85			75-125	Pass	
Mercury	S21-Fe21192	NCP	%	115			75-125	Pass	
Mercury (filtered)	S21-Fe20669	NCP	%	88			75-125	Pass	
Nickel	S21-Fe21192	NCP	%	101			75-125	Pass	
Nickel (filtered)	S21-Fe20669	NCP	%	82			75-125	Pass	
Zinc	S21-Fe21192	NCP	%	97			75-125	Pass	
Zinc (filtered)	S21-Fe20669	NCP	%	83			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	•								
•				Result 1	Result 2	RPD			
Hardness mg equivalent CaCO3/L	S21-Fe25848	NCP	mg/L	270	250	6.0	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	S21-Fe25848	NCP	mg/L	73	64	13	30%	D	
Magnesium	S21-Fe25848	NOD						Pass	
Potassium		NCP	mg/L	21	23	6.0	30%	Pass	
	S21-Fe25848			21 73		6.0	30% 30%		
Sodium	S21-Fe25848 S21-Fe25848	NCP NCP	mg/L		23			Pass	
Sodium Duplicate		NCP		73	23 77	6.0	30%	Pass Pass	
		NCP	mg/L	73	23 77	6.0	30%	Pass Pass	
Duplicate		NCP NCP	mg/L mg/L	73 dil543 Result 1	23 77 dil582 Result 2	6.0 7.0 RPD	30%	Pass Pass Pass	
Duplicate Heavy Metals Arsenic	S21-Fe25848	NCP NCP	mg/L mg/L mg/L	73 dil543 Result 1 0.002	23 77 dil582 Result 2 0.002	6.0 7.0 RPD 10	30% 30% 30%	Pass Pass	
Duplicate Heavy Metals	S21-Fe25848 S21-Fe25848	NCP NCP NCP	mg/L mg/L mg/L mg/L	73 dil543 Result 1	23 77 dil582 Result 2 0.002 0.003	6.0 7.0 RPD	30%	Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium	S21-Fe25848 S21-Fe25848 S21-Fe30856 S21-Fe25848	NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002	23 77 dil582 Result 2 0.002 0.003 < 0.0002	6.0 7.0 RPD 10 2.0 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 < 0.0002	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002	6.0 7.0 RPD 10 2.0 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium	S21-Fe25848 S21-Fe25848 S21-Fe30856 S21-Fe25848 S21-Fe30856 S21-Fe25848	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 < 0.0002 0.001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002	6.0 7.0 RPD 10 2.0 <1 <1 7.0	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 < 0.0002 0.001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 0.002 < 0.001	6.0 7.0 RPD 10 2.0 <1 <1 7.0	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe30856	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 < 0.0002 0.001 < 0.001 0.10	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.0001 0.11	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 <0.0002 <0.0002 0.001 <0.001 0.10 0.003	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 < 0.0001 < 0.001 0.003 0.002	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003 0.003	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead Lead (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe30856	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 <0.0002 <0.0001 <0.001 0.10 0.003 0.002 0.001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003 0.003 0.003	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0 52	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead Lead (filtered) Mercury	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 0.001 < 0.001 0.10 0.003 0.002 0.001 < 0.001 < 0.001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003 0.003 0.002 < 0.0001	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0 52 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead Lead (filtered) Mercury Mercury (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 <0.0002 <0.0001 <0.001 0.10 0.003 0.002 0.001 <0.0001 <0.0001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003 0.003 0.002 < 0.0001 < 0.0001	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0 52 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead Lead (filtered) Mercury Mercury (filtered) Nickel	\$21-Fe25848 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856 \$21-Fe30856	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 < 0.0002 0.001 < 0.001 0.10 0.003 0.002 0.001 < 0.0001 < 0.0001 0.0001 0.0001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0001 0.11 0.003 0.003 0.002 < 0.0001 < 0.0001 0.007	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0 52 <1 <1 6.0	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Duplicate Heavy Metals Arsenic Arsenic (filtered) Cadmium Cadmium (filtered) Chromium Chromium (filtered) Copper Copper (filtered) Lead Lead (filtered) Mercury Mercury (filtered)	\$21-Fe25848 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856 \$21-Fe25848 \$21-Fe30856	NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	73 dil543 Result 1 0.002 0.003 <0.0002 <0.0001 <0.001 0.10 0.003 0.002 0.001 <0.0001 <0.0001	23 77 dil582 Result 2 0.002 0.003 < 0.0002 < 0.0002 < 0.001 0.11 0.003 0.003 0.002 < 0.0001 < 0.0001	6.0 7.0 RPD 10 2.0 <1 <1 7.0 <1 5.0 2.0 2.0 52 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Analytical Services Manager
John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 773658-W

Page: of 2

RAMBOLL

Lab. Address: Contact Name: Lab. Ref: Contact Name: Analys Anal	X X X X X X X X X X X X X X X X X X X
Accordance Acc	X X X X X X X X X X X X X X X X X X X
Decided Number Deci	
Section Sect	
Ball-Marillementable Desirations of Land Advances Land Report 1981 Ball-Marillementable Desirations of Land Report 1981 Ball-Marillementable Desirations o	
Semiple D	
Ball-Maillemen Angles (Arthur Representation of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Sample Results to be returned to: Appropriate theory of the project Number: Appropriate theory of the proj	
Samulation Sam	
Real Mark Compact Manager Compact Compact Manager Compact Manager Compact Manager Compact Manager Compact Manager Compact Manager Compact Co	
Bab Male Burner St. December Control Number: 233004295 Lab. Red Lab. And Control Number: 233004295 Lab. Red Lab	
Babhalleacasha-Bardwood— Project Number:	
Ball Market Cortage Project Number: 21999999999999999999999999999999999999	
Babhalaterassableridwood— Project Number:	
Bab Andrews Described Name Costs and Record Name Find Report by Lab Andrews	
Shakes Maskers College Balandalises Shakes College Project Number: 318999994 Site: Bealdwood 2 Cardons: Unit 7 February College Ambolizon is Sample Results to be returned to: 39999994 Site: Bealdwood 2 Cardons is Cardons in Sample Results to be returned to: 3999999999999999999999999999999999999	
Sembler Discontinues Described Project Number: 31890/25 Contact Name: Final Report by: Fina	
Shakes Maskers Chade Removed	
Stations Inactors Ball Marilleting Sharper (Children) Ball Marilleting Sharper (Children) Ball Marilleting Sharper (Children) Ball Marilleting Sharper (Children) Sample Results to be returned to: _aperaprofessable (State Bandolloom); Final Report by:	
Stations Masters Chage Williams Shallowed - Project Number: 38804294 Site: Bealdwood & Contact Name: Lab Course to Be deby: Stations Shallowed Age of the Contact Name: First Region by: Lab Ref. Stations of the sections of the sections from extractions? The sequence of the sections from extractions? The sequence of the sections from extractions? The sequence of the sections of the sections from extractions? The sequence of the	
Stations Masters Charles Ball Maritimes Substance Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close SubtoGATE, NSW. 29 Control (Number: 338904294 Site: Strain Close	
Stations Masters Cathage Readers Desidewood	
Shakes Masters Cottage Bathalises Masters Bathalises Masters Bathalises Masters Bathalises Masters Bathalises Masters Bathalises Masters Bathalises Cose SANDGATE, NSW, 29 Contact Name: Frail Report by: Sample Results to be returned to: Sample Results to be returned to: Aproper No. Inch	
Shakes Masters Andrews	
Statutions Masteurs Charles (Cotage) 88. Masteurs Englandwood— Project Number: 31830/P294 Sample Results to be returned to: apwaged@eamboll.com; Site: Braidwood 2 Cantain Report by: Lab. Ref: Statution by: Required? Yes	
Should Masters Context Masters Close SANDGATE, NSW, 28 88 Masters Sandada Close SANDGATE, NSW, 28 88 Masters Sandada Close SANDGATE, NSW, 28 Fried Report by: Sample Results to be returned to: apmaps Sandada Close SANDGATE, NSW, 28 Trick) Sample Results to be returned to: apmaps Sandada Close SANDGATE, NSW, 28 Trick)	
Statutions Masteurs Charage Project Number: 388001025 Lab. Address: Unit 7 Friesian Close SANDGATE, NSW, 23 Contact Name: Final Report by: Lab Quote No: La	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Sample Results to be returned to:apwage@emboll.com; \$ (Tick) Contact Name: Lab. Address: Contact Name: Contact Name: Enal Report by: Lab. Ref: Lab. Address: Contact Name: Enal Report by: Lab. Ref: Lab. Ref: Lab. Contact Name: Enal Report by: Lab. Ref:	
Lab. Address: Lab. Address	TRH, E Asidesta
Stations Masters (attack) Regular Stations Substitute Stations Stations Substitute Stations Substitute Stations Substitute Stations Substitute Stations	TE.
Stations Masters (attage) Required? Yes Trick) Lab. Address: Lab. Address: Lab. Address: Lab. Address: Conlact Name: Conlact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Address: Conlact Name: Final Report by: Lab. Ref: Address: Final Report by: Lab. Ref:	XV,
Sections Masteurs (a) 440 Project Number: 31830/1294 Site: Braidwood Contact Name: Unit 77 Frieslan Close SANDGATE, NSW, 23/1830/1294 Contact Name: Final Report by: Ba M/allace St. Braidwood	P,
Lab. Address: Unit 7 7 Friesian Close SANDGATE, NSW, 23/ Project Number: 318301294 Site: Braidwood 2 Contact Name: Lab Quote No:	АJ
Lab. Address: Unit 7 7 Friesian Close SANDGATE, NSW, 23/ Contact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. Ref: Lab. Ref: Lab. Quote No: Final Report by: Lab. Ref: Lab. R	1
Lab. Address: Project Number: 38301294 Sample Results to be returned to: apwaged@remboll.com; tjfrank@remboll.com; 2 marks Contact Name Site: Braidwood 2	
Lab. Address: Lab. Address: Unit 77 Friesian Close SANDGATE, NSW, 23/ Contact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Ref: Lab. Quote No: Site: Braidwood 2 Contact Name: Lab. Quote No: Site: Braidwood 2 Contact Name: Lab. Quote No: Analysis Request STANDARD 1 Yes 1 NO 1 N/A	
Lab. Address: Unit 77 Friesian Close SANDGATE, NSW, 23/ Contact Name: Final Report by: Lab. Ref: Lab. Quote No: Sample Results to be returned to: _apwaqs@camboll.com; jfrank@ramboll.com; j Synoxwell @ Analysis Request	
Lab. Address: Unit 7 Friesian Close SANDGATE, NSW, 2304 Contact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Ref: Lab. Report by: Lab. Ref: Lab. Ref: Lab. Review Lab Quote No: Sample Results to be returned to: _apwagra@camboll.com; fitrank@vamboll.com; Simoxwell@vaynboll.com	Analysis Request
Lab. Address: Unit 77 Friesian Close SANDGATE, NSW, 2304 Contact Name: Final Report by: Lab. Ref: Lab. Address: Unit 77 Friesian Close SANDGATE, NSW, 2304 Contact Name: Final Report by: Lab. Ref: Lab. Ref: Lab. Report by: Lab. Ref: Lab. Address: Unit 77 Friesian Close SANDGATE, NSW, 2304 Site: Braidwood 2 Contact No. 1 (2) Sample Results to be returned to: apwage@cambolk.com; sitrank@vambolk.com; s	STACKWED BYRKYNDON
Stations Masters Cottage 3,800,025 Lab. Address: 88. Wallace St. Braidweed Project Number: 318301294 Site: Braidweed 2	Canada II Dank
Stations Masters Cottage 3,800,1025 Lab. Address: Lab. Address: Lab. Address: Lab. Ref:	aidweed & Commission
Lab. Address: Contact Name:	
Lab. Address:	lame:
Eurofine Fax:	ъ.
Laboratory Details Tel: SGOD RAGO	Tpl·
Tel: 02 9954 8100 (Ramboll)	powadłod N/A N

_	
)	Page:
5	Ö
2	6.
5	0
•	1
?	

RAMBOLL

		Transport Co:	Yes/No/NA			H	121	1		1 X	ENROYEN	Weo	of:	Time:			of: Ramboll
		Cansignment Note No.	Yes/No/NA	lled?	Samples received chilled?		Date: 18/10	D	/	}	1	d	Name:	MAKE	D	-	
		Method of Shipment	Yes/No/NA		/ed in good condition?	Receive	1					by:	Received by:		NMA	Mode	Kelinquisned By:
									Н	2	Н			9	-		
						#			1	+	4						
						+				-							
										\parallel	\sqcup						
						+				4							
											-						
						+					-						
			-			+			+	1	4						
						+			+	1	-						
						+				-	1						
									H	1	-						
														1			
			-	1	×		5	×	1	×				24/10		0	
	7			1	×		NO.		+	-		×		28/10	6	SM	
	X		-	1		+			+	-		-		1	0	3	
					×>				1	1				1		1	
	_		-	1	<					1		+			270 2012	COLUMNS TH	
	0			1	>		000	د-	+			-		100	1	44_SMC 103	
	1		1	1	X	-	141	X	+			×		04/0	750 201	HAR SWIDS	
	end to Envir			50es	TRH,	PFAS Extend	(No. & type)	ice other	filted acid	vate.	biota	sol sol	Sampling Time	Sampling Date	Sample ID	Sam	ō
	olab			os(BT		Container	Preservation	Prese		Matrix						Lab.
				pi	EX	"	9954 6100	√e 1 tel:	maxue!	pay regmiger voard		nager: A	8. Project Manager: Ann			equis / excel / par	7
				%U	/\j		√ N/A	No	_	Yes		3					107
				evic	É	AS	□ N/A	No		Yes						ients?	5. Preservation requirements?
				efa	1/1	Sta	□ N/A	□ No		☐ Yes						irements?	4. Special storage requirements?
				ibr	1	inda	□ N/A	No		Yes		(extractions?	o be excluded from e	present in waters to	3. Is any sedfinent layer present in waters to be excluded from extractions?
				æ		nd L	□ N/A	□ No		Yes						Required? Yes	2. Fast TAT Guarantee Required? Yes
Kemarks & comment				NG		evel	□ N/A	No		Yes	ARD	STANDARD		days)	24hr 48hr	ш	1. Urgent TAT required? (please circle:
	equest	Analysis Request		e		Т		(Tick)				1					Specifications:
mbattiliom; jauld@ramboll.com Smokvel@vambol.(017)	Smouvelle	gramboll.com	om; jauld@	1 8	n. yfranka	DON-COD	-apwadro@ranabouccopu-ijfrank@	rned to:	sample Results to be returned to:	Suits to	Die Kei) par			K	Cu by.	cumple conceased by.
	121	1 CAILS	Car	11:			5				;	,			×	ad hw.	Sample collect
	12+	- 1		wood	Site: Braidwood-	<u>s</u>		318001201	318	nber:	Project Number:	Proj	(1	88 Wallace St Braidwood	88 Wallace	Project Name:
	Lab Quote No:	Lab Q			Lab. Ref:	Lat	4	31800102	N				Hage	6	us Masters	yati ans	
2004	Report hy:	Final Report by:		;¥ .	Contact Name:	င္ပ)		1	
	NICOTE NEW	Fax:	111		Lab. Name:	<u> </u>		J	Tel: 02 9954 8100 (Ramboll)	9954 810	Tel: 02						
ŏ	9900 8490	Tel:	"	y Details	aboratory Details	[I					
												orm	uest F	/sis Keq	/ & Analy	Custody	chain of custody & Analysis Request Form
											l	١				-	2

From: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>

Sent: Tuesday, 2 November 2021 12:58 PM **To:** Andrew Black <AndrewBlack@eurofins.com>

Subject: Fw: Eurofins Sample Receipt Advice - Report 836638 : Site STATIONS MASTERS COTTAGE

CAPTAINS FLAT (318001025)

Hi Andrew,

Are we able to do PAH on spike, blank and lab spike?

Kind regards, Nathan

Sample Receipt Officer

Eurofins | Environment Testing
Unit F3, Parkview Building
16 Mars Road
LANE COVE WEST NSW 2066
AUSTRALIA

Grace Tuckwell

From: Jenny Auld <JAULD@ramboll.com>
Sent: Tuesday, 2 November 2021 7:26 PM

To: #AU04_Enviro_Sample_NSW; Stephen Maxwell

Subject: Re: Eurofins Sample Receipt Advice - Report 836638 : Site STATIONS MASTERS

COTTAGE CAPTAINS FLAT (318001025)

Follow Up Flag: Follow up Flag Status: Flagged

EXTERNAL EMAIL*

Sorry Nathan, just BTEXN and TRH then.

Apologies for the confusion.

Thanks, Jenny Auld

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, November 2, 2021 1:01:21 PM **To:** Stephen Maxwell <smaxwell@ramboll.com>

Cc: Jenny Auld <jauld@ramboll.com>

Subject: Eurofins Sample Receipt Advice - Report 836638 : Site STATIONS MASTERS COTTAGE CAPTAINS FLAT

(318001025)

Dear Valued Client,

PAH not possible on Spikes and Blanks.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | Environment Testing Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Nathan Corr Sample Receipt

Eurofins | Environmental Testing

Unit F3, Parkview Building 16 Mars Road

LANE COVE WEST NSW 2066

AUSTRALIA

Phone: +61 02 9900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website:environment.eurofins.com.au

EnviroNote 1117 - Urban Runoff Mortality Syndrome 6-PPD quinone & HMMM EnviroNote 1115 - Eurofins SYDNEY Laboratory is now NATA accredited for PFAS

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3, Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

Eurofins Environment Testing NZ Limited

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name:

Stephen Maxwell

Project name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Oct 28, 2021 4:00 PM

836638

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melk	ourne Laborate	ory - NATA # 12	61 Site # 125	4										
Sydi	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4										
	field Laboratory)										
	h Laboratory - N		te # 2370											
	ernal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No00326			Х	Х	Х	Х			
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No00327		Х							
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No00328			Х	х	Х	Х			
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No00329			Х	х	Х	Х			
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No00330		х							
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No00331			Х	Х	Х	Х			

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

estos - AS4964

Χ

S21-No00332

S21-No00333

S21-No00334

S21-No00335

S21-No00336

S21-No00337

Χ

Χ

Χ

Χ

Х

Χ

Х

Х

Sydney

Brisbane Unit F3. Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Contact Name:

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 28, 2021 4:00 PM Nov 4, 2021

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Sample Detail

Level 3/100 Pacific Highway North Sydney

NSW 2060

Melbourne Laboratory - NATA # 1261 Site # 1254

Brisbane Laboratory - NATA # 1261 Site # 20794 Mayfield Laboratory - NATA # 1261 Site # 25079 Perth Laboratory - NATA # 2377 Site # 2370

Oct 27, 2021

Oct 27, 2021

Oct 27, 2021

Oct 27, 2021

Sydney Laboratory - NATA # 1261 Site # 18217

Project Name:

External Laboratory 0.5

HA SMC101

HA_SMC101_

HA_SMC101_

HA_SMC107_

HA SMC107 Oct 27, 2021

HA_SMC107_ Oct 27, 2021

 $0.2\bar{5}$

0.5

0.1

0.6

11

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Soil

Soil

Soil

Soil

Soil

Soil

Project ID: 318001025 Order No.: Report #:

Phone:

ycyclic Aromatic Hydrocarbons

Fax:

Ĕ

836638

02 9954 8118

Recoverable Hydrocarbons

isture Set

Χ

Χ Χ

Χ

Χ Χ

Χ Χ

Χ

Χ

Х

Χ

Χ

Χ

Χ

Χ

Χ

02 9954 8150

EXN and Volatile TRH EXN and Volatile TRH **Eurofins Analytical Services Manager: Andrew Black**

5 Dav

As	H	Po	ВТ	Mo	Tot	вт	вт	

Melbourne 6 Monterey Road

ABN: 50 005 085 521

Sydney Unit F3. Building F Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 Phone: +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

14

15

16

17

18

19

20

0.1

0.25

0.5 QC01

QC03

HA_SMC104_

HA_SMC104_

HA SMC104

HA SMC105

HA_SMC106

HA_SMC101

HA_SMC107

Oct 27, 2021

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Soil

Water

Project ID: 318001025 Order No.: Report #:

Phone:

Χ Χ Χ

Χ Χ Χ

Χ Χ Χ

Χ Χ

Χ

Χ

Χ

Χ

Χ

Fax:

836638

Х

Χ

Х

Х

02 9954 8118

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Dav

Sample Detail	Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794								
Mayfield Laboratory - NATA # 1261 Site # 25079								
Perth Laboratory - NATA # 2377 Site # 2370								
External Laboratory								

S21-No00338

S21-No00339

S21-No00340

S21-No00341

S21-No00342

S21-No00343

S21-No00344

S21-No00345

S21-No00346

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Phone:

Fax:

836638

02 9954 8118

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator			ļ									
	field Laboratory												
_	h Laboratory - N												
	ernal Laboratory												
22	HA_SMC104	Oct 27, 2021		Soil	S21-No00347	Х							
23	HA_SMC103	Oct 28, 2021		Soil	S21-No00348	Х							
24	HA_SMC102	Oct 28, 2021		Soil	S21-No00349	Х							
25	HA_SMC103_ 0.15	Oct 28, 2021		Soil	S21-No00350			Х	Х	Х	Х		
26	HA_SMC103_ 0.4	Oct 28, 2021		Soil	S21-No00351		Х						
27	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No00352			Х	Х	Х	Х		
28	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No00353			Х	Х	Х	Х		
29	HA_SMC102_	Oct 27, 2021		Soil	S21-No00354		Х						

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Phone:

Fax:

836638

02 9954 8118

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

			imple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborato			4									
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator												
	field Laboratory												
	h Laboratory - N		te # 2370										
Exte	rnal Laboratory	1	1										
	0.35												
30	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No00355			Х	Х	Х	Х		
31	QC04	Oct 27, 2021		Water	S21-No00356			Х	Х		Х		
32	TRIP BLANK	Oct 27, 2021		Soil	S21-No00833		Х						
33	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00834		Х						
34	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00835		Х						
35	TRIP BLANK	Oct 27, 2021		Soil	S21-No00836							Х	
36	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00837								Х
37	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00838								х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Fax:

836638

Phone: 02 9954 8118 02 9954 8150

Received: Oct 28, 2021 4:00 PM Due: Nov 4, 2021

Priority: 5 Day

Stephen Maxwell **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794								
Mayfield Laboratory - NATA # 1261 Site # 25079								
Perth Laboratory - NATA # 2377 Site # 2370								
External Laboratory								
Test Counts	7	10	17	17	15	17	1	2

Certificate of Analysis

Environment Testing

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway **North Sydney NSW 2060**

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Stephen Maxwell Attention: 836638-AID Report

STATIONS MASTERS COTTAGE CAPTAINS FLAT **Project Name**

Project ID 318001025 **Received Date** Oct 28, 2021 **Date Reported** Nov 10, 2021

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres**

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

Date Reported: Nov 10, 2021

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 836638-AID

Project Name STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID 318001025

Date Sampled Oct 27, 2021 to Oct 28, 2021

Report 836638-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Result	
HA_SMC105	21-No00343	Oct 27, 2021	Approximate Sample 296g Sample consisted of: Brown fine-grained clayey soil and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC106	21-No00344	Oct 27, 2021	Approximate Sample 102g Sample consisted of: Brown fine-grained soil, charcoal and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC101	21-No00345	Oct 27, 2021	Approximate Sample 251g Sample consisted of: Brown fine-grained clayey soil	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC107	21-No00346	Oct 27, 2021	Approximate Sample 476g Sample consisted of: Brown fine-grained clayey soil, charcoal and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC104	21-No00347	Oct 27, 2021	Approximate Sample 140g Sample consisted of: Brown fine-grained clayey soil and charcoal	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC103	21-No00348	Oct 28, 2021	Approximate Sample 188g Sample consisted of: Brown fine-grained clayey soil, charcoal and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
HA_SMC102	21-No00349	Oct 28, 2021	Approximate Sample 446g Sample consisted of: Brown fine-grained clayey soil and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Date Reported: Nov 10, 2021

Environment Testing

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyNov 01, 2021Indefinite

Page 3 of 10

Report Number: 836638-AID

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 Perth 46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450

IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

318001025

Order No.: Report #:

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail								Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborato												
Sydney Laboratory - NATA # 1261 Site # 18217								Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794													
May	field Laboratory	- NATA # 1261	Site # 25079	1									
	h Laboratory - N		e # 2370										
	rnal Laboratory			1	1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No00326			Х	х	х	Х		
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No00327		Х						
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No00328			Х	х	Х	Х		
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No00329			Х	х	Х	Х		
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No00330		Х						
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No00331			Х	Х	Х	Х		

Page 4 of 10

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Fax:

836638

Phone: 02 9954 8118 02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail							HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254													
Syd	Sydney Laboratory - NATA # 1261 Site # 18217						Х	Х	Х	Х	Х	Х	Х
	bane Laborator	-											
	field Laboratory												
	h Laboratory - N		te # 2370										\square
Exte	ernal Laboratory	1	1										
_	0.5	0.107.0001		0 - 11	004 N 00000								\vdash
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No00332			Х	Х	Х	Х		
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No00333		Х						
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No00334			Х	Х	Х	Х		
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No00335			Х	Х	Х	Х		
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No00336		Х						
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No00337			х	х	х	х		

Page 5 of 10

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland

IANZ # 1327

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Phone:

Fax:

836638

02 9954 8118

02 9954 8150

5 Day

Eurofins Analytical Services Manager: Andrew Black

Sample Detail								Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melk	Melbourne Laboratory - NATA # 1261 Site # 1254												
Sydney Laboratory - NATA # 1261 Site # 18217							Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794													
_	field Laboratory												
	h Laboratory - N		e # 2370										
	rnal Laboratory			_									
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No00338			Х	Х	Х	Х		
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No00339		х						
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No00340			Х	Х	Х	х		
16	QC01	Oct 27, 2021		Soil	S21-No00341			Х	Х	Х	Х		
17	QC03	Oct 27, 2021		Water	S21-No00342			Х	Х		Х		
18	HA_SMC105	Oct 27, 2021		Soil	S21-No00343	Х							
19	HA_SMC106	Oct 27, 2021		Soil	S21-No00344	Х							
20	HA_SMC101	Oct 27, 2021		Soil	S21-No00345	Х							
21	HA_SMC107	Oct 27, 2021		Soil	S21-No00346	Х							

Page 6 of 10

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

NZBN: 9429046024954 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638 02 9954 8118

Phone: 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

Sample Detail								Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254													
Sydney Laboratory - NATA # 1261 Site # 18217						Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794													
May	field Laboratory	[,] - NATA # 1261	Site # 25079										
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370										
Exte	rnal Laboratory	1											
22	HA_SMC104	Oct 27, 2021		Soil	S21-No00347	Х							
23	HA_SMC103	Oct 28, 2021		Soil	S21-No00348	Х							
24	HA_SMC102	Oct 28, 2021		Soil	S21-No00349	Х							
25	HA_SMC103_ 0.15	Oct 28, 2021		Soil	S21-No00350			Х	Х	Х	Х		
26	HA_SMC103_ 0.4	Oct 28, 2021		Soil	S21-No00351		Х						
27	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No00352			Х	Х	Х	Х		
28	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No00353			Х	Х	Х	Х		
29	HA_SMC102_	Oct 27, 2021		Soil	S21-No00354		Х						

Page 7 of 10

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954

Nov 4, 2021

Stephen Maxwell

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

Phone:

Fax:

836638

02 9954 8118

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail					Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	ВТЕХ	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melbourne Laboratory - NATA # 1261 Site # 1254													
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126 ²	1 Site # 20794	ı									
May	field Laboratory	- NATA # 1261	Site # 25079										
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370										
Exte	rnal Laboratory												
	0.35												
30	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No00355			Х	х	Х	Х		
31	QC04	Oct 27, 2021		Water	S21-No00356			Х	Х		Х		
32	TRIP BLANK Oct 27, 2021 Soil S21-No00833			Х									
33	TRIP SPIKE Oct 27, 2021 Soil S21-No00834			Х									
34											Х		
35 TRIP SPIKE Oct 27, 2021 Soil S21-No00837											Х		
Test	Counts					7	9	17	17	15	17	1	1

Page 8 of 10

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated.
- 3 Samples were analysed on an 'as received' basis
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- Information identified on this report with the colour orange indicates sections of the report not covered by the laboratory's scope of NATA accreditation.
- 6 This report replaces any interim results previously issued.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) % w/w:

F/fld

Airborne fibre filter loading as Fibres (N) per Fields counted (n)
Airborne fibre reported concentration as Fibres per millillitre of air drawn over the sampler membrane (C) F/mL

g, kg Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)

Concentration in grams per kilogram g/kg L, mL

Volume, e.g. of air as measured in AFM ($\mathbf{V} = \mathbf{r} \times \mathbf{t}$)

L/min Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) min

Time (t), e.g. of air sample collection period

Calculations

Airborne Fibre Concentration: $C = \underline{} \times \underline{} \times \underline{} \times \underline{} \times \underline{} = K \times \underline{} \times \underline{} \times \underline{}$

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times PA)}{}$

Weighted Average (of asbestos): $\%_W = \sum_{\nu} \frac{(m \times P_A)_A}{\nu}$

Terms

Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P_A). %ashestos

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm

AF Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g. by the MFM.

Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.

AS Australian Standard.

Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.

coc Chain of Custody

Compliant Indicates the item has been assessed against the relevant criteria, e.g. NATA SAC_07.

Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos, Identified in accordance with AS 4964-2004 Crocidolite

Sample is dried by heating prior to analysis.

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become FA

frible with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre ID Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile. Amosite (Grunerite) or Crocidolite asbestos.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability **HSG248** UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).

UK HSE HSG264, Asbestos: The Survey Guide (2012) **HSG264**

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR Limit of Reporting.

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].

N/A Not Applicable. Indicates a result or assessment is not required or applicable to that item National Association of Testing Authorities, Australia NATA

NEPM (also ASC NEPM) National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).

Organic Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

PLM Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.

SAC 0 Specific Accreditation Criteria: ISO/IEC 17025 Application Document, Life Sciences - Annex, Asbestos sampling and testing. SMF Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004

SRA

Weighted Average

Trace Analysis Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.

Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos. LIME

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

> Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA) Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

Date Reported: Nov 10, 2021 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 836638-AID

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Bennel Jiri Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Stephen Maxwell

Report 836638-S

Project name STATIONS MASTERS COTTAGE CAPTAINS FLAT

 Project ID
 318001025

 Received Date
 Oct 28, 2021

Client Sample ID			HA_SMC105_0	HA_SMC105_0	HA_SMC106_0	HA_SMC106_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No00326	S21-No00328	S21-No00329	S21-No00331
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	78	< 50	51	< 50
TRH C29-C36	50	mg/kg	54	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	132	< 50	51	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	160	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	160	< 100	< 100	< 100
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	82	95	80	104
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			HA_SMC105_0	HA_SMC105_0	HA_SMC106_0	HA_SMC106_0 .5 Soil	
Sample Matrix			Soil	Soil	Soil		
Eurofins Sample No.			S21-No00326	S21-No00328	S21-No00329	S21-No00331	
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	75	76	77	77	
p-Terphenyl-d14 (surr.)	1	%	73	81	79	78	
% Moisture	1	%	30	13	24	11	

Client Sample ID					HA_SMC107_0	
Sample Matrix			Soil	.5 Soil	Soil	.6 Soil
Eurofins Sample No.			S21-No00332	S21-No00334	S21-No00335	S21-No00337
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		T				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	56	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	56	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	106	53	77	102
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			HA_SMC101_0	HA_SMC101_0	HA_SMC107_0	HA_SMC107_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No00332	S21-No00334	S21-No00335	S21-No00337
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	78	62	74	77
p-Terphenyl-d14 (surr.)	1	%	81	68	78	81
% Moisture	1	%	13	20	14	22

Client Sample ID			HA_SMC104_0	HA_SMC104_0 .5	QC01	HA_SMC103_0 .15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No00338	S21-No00340	S21-No00341	S21-No00350
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 28, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	23	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	74	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	97	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	76	74	83	84

Client Sample ID			.1	HA_SMC104_0 .5	QC01	HA_SMC103_0 .15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No00338	S21-No00340	S21-No00341	S21-No00350
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 28, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	114	76	79	75
p-Terphenyl-d14 (surr.)	1	%	98	81	80	79
% Moisture	1	%	5.3	15	21	25

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			HA_SMC103_0 .55 Soil S21-No00352 Oct 27, 2021	HA_SMC102_0 .2 Soil S21-No00353 Oct 27, 2021	HA_SMC102_0 .5 Soil S21-No00355 Oct 27, 2021	TRIP BLANK Soil S21-No00836 Oct 27, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-

Client Sample ID			HA_SMC103_0 .55	HA_SMC102_0	HA_SMC102_0 .5	TRIP BLANK	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-No00352	S21-No00353	S21-No00355	S21-No00836	
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	
Test/Reference	LOR	Unit					
ВТЕХ	•	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg			< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	60	52	83	115	
Polycyclic Aromatic Hydrocarbons		_					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-	
2-Fluorobiphenyl (surr.)	1	%	70	67	82	-	
p-Terphenyl-d14 (surr.)	1	%	74	77	85	-	
% Moisture	1	%	15	15	28	-	

Client Sample ID Sample Matrix			TRIP SPIKE Soil S21-No00837
Eurofins Sample No.			
Date Sampled			Oct 27, 2021
Test/Reference	LOR	Unit	
TRH C6-C10	1	%	91
Total Recoverable Hydrocarbons			
Naphthalene	1	%	89
TRH C6-C9	1	%	91

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TRIP SPIKE Soil S21-No00837 Oct 27, 2021
Test/Reference	LOR	Unit	
втех			
Benzene	1	%	91
Ethylbenzene	1	%	92
m&p-Xylenes	1	%	91
o-Xylene	1	%	92
Toluene	1	%	92
Xylenes - Total	1	%	91
4-Bromofluorobenzene (surr.)	1	%	107

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 08, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 08, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Nov 05, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 08, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 08, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Nov 08, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Moisture	Sydney	Nov 01, 2021	14 Days

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland

Nov 4, 2021

Stephen Maxwell

5 Day

Oct 28, 2021 4:00 PM

Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborato			4									
	ney Laboratory bane Laborator			4		X	Х	Х	Х	Х	Х	Х	Х
	field Laboratory	•											
	h Laboratory - N												
	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No00326			Х	х	Χ	Х		
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No00327		Х						
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No00328			Х	Х	Х	Х		
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No00329			Х	Х	Х	Х		
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No00330		Х						
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No00331			Х	Х	Х	Х		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

Address:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4									
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 20794	4									
May	field Laboratory	[,] - NATA # 1261	Site # 25079	l .									
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370										
Exte	rnal Laboratory		,		_								
	0.5												
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No00332			Х	Х	Х	Х		
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No00333		х						
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No00334			Х	х	Х	Х		
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No00335			Х	Х	Х	Х		
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No00336		Х						
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No00337			Х	Х	Х	Х		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 35 O'Rorke Road

Penrose, Auckland 1061

Phone: +64 9 526 45 51

Nov 4, 2021

IANZ # 1327

Auckland

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

Address:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

Phone:

836638 02 9954 8118

02 9954 8150 Fax:

Contact Name: Stephen Maxwell

Perth

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborato	_•		4									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator												\vdash
_	field Laboratory			<u> </u>									\vdash
	h Laboratory - N		te # 2370										\vdash
	rnal Laboratory			ı									\vdash
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No00338			Х	Х	Х	Х		
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No00339		х						
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No00340			Х	х	Х	х		
16	QC01	Oct 27, 2021		Soil	S21-No00341			Х	Х	Х	Х		
17	QC03	Oct 27, 2021		Water	S21-No00342			Х	Х		Х		
18	HA_SMC105	Oct 27, 2021		Soil	S21-No00343	Х							
19	HA_SMC106	Oct 27, 2021		Soil	S21-No00344	Х							
20	HA_SMC101	Oct 27, 2021		Soil	S21-No00345	Х							Ш
21	HA_SMC107	Oct 27, 2021		Soil	S21-No00346	Х							

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney

NSW 2060

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project Name: Project ID:

318001025

Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	X	Х
	bane Laborator	•											
May	field Laboratory	/ - NATA # 1261	Site # 25079										
	h Laboratory - N		te # 2370										
Exte	rnal Laboratory		T	1									
22	HA_SMC104	Oct 27, 2021		Soil	S21-No00347	Х							
23	HA_SMC103	Oct 28, 2021		Soil	S21-No00348	Х							
24	HA_SMC102	Oct 28, 2021		Soil	S21-No00349	Х							
25	HA_SMC103_ 0.15	Oct 28, 2021		Soil	S21-No00350			Х	Х	Х	Х		
26	HA_SMC103_ 0.4	Oct 28, 2021		Soil	S21-No00351		х						
27	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No00352			Х	Х	Х	Х		
28	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No00353			Х	х	Х	Х		
29	HA_SMC102_	Oct 27, 2021		Soil	S21-No00354		Х						

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Phone:

Fax:

836638

02 9954 8118

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

		Sa	ımple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	X	Х
	bane Laborator	•											
	field Laboratory												
	h Laboratory - N		te # 2370										
Exte	rnal Laboratory	1											
	0.35												
30	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No00355			Х	Х	Х	Х		
31	QC04	Oct 27, 2021		Water	S21-No00356			Х	Х		Х		
32	TRIP BLANK	Oct 27, 2021		Soil	S21-No00833		Х						
33	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00834		Х						
34	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00835		Х						
35	TRIP BLANK	Oct 27, 2021		Soil	S21-No00836							Х	
36	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00837								Х
37	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00838								Х

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

Oct 28, 2021 4:00 PM

NZBN: 9429046024954 35 O'Rorke Road

Nov 4, 2021

Stephen Maxwell

Auckland

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ramboll Australia Pty Ltd

> Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794								
Mayfield Laboratory - NATA # 1261 Site # 25079								
Perth Laboratory - NATA # 2377 Site # 2370								
External Laboratory								
Test Counts	7	10	17	17	15	17	1	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	1 3 3				
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	Ilig/kg	< 0.5	0.5	1 033	
Polycyclic Aromatic Hydrocarbons		Τ			
Acenaphthene	ma/ka	< 0.5	0.5	Pass	
•	mg/kg				
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery		1		ı	
Total Recoverable Hydrocarbons	1				
TRH C6-C9	%	76	70-130	Pass	
TRH C10-C14	%	92	70-130	Pass	
Naphthalene	%	91	70-130	Pass	
TRH C6-C10	%	73	70-130	Pass	
TRH >C10-C16	%	91	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	96	70-130	Pass	
Toluene	%	87	70-130	Pass	
Ethylbenzene	%	87	70-130	Pass	
m&p-Xylenes	%	88	70-130	Pass	
o-Xylene	%	87	70-130	Pass	
Xylenes - Total*	%	88	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	3						
Acenaphthene			%	78	70-130	Pass	
Acenaphthylene			%	84	70-130	Pass	
Anthracene			%	73	70-130	Pass	
Benz(a)anthracene			%	73	70-130	Pass	
Benzo(a)pyrene			%	81	70-130	Pass	
Benzo(b&j)fluoranthene			%	82	70-130	Pass	
Benzo(g.h.i)perylene			%	88	70-130	Pass	
Benzo(k)fluoranthene			%	76	70-130	Pass	
Chrysene			%	80	70-130	Pass	
Dibenz(a.h)anthracene			%	84	70-130	Pass	
Fluoranthene			%	74	70-130	Pass	
Fluorene			%	82	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	125	70-130	Pass	
Naphthalene			%	75	70-130	Pass	
Phenanthrene			%	82	70-130	Pass	
Pyrene			%	75	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits		Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons				Result 1			
TRH C10-C14	N21-Oc63421	NCP	%	111	70-130	Pass	
TRH >C10-C16	N21-Oc63421	NCP	%	107	70-130	Pass	
Spike - % Recovery						•	
Polycyclic Aromatic Hydrocarbons	i			Result 1			
Acenaphthene	S21-Oc54571	NCP	%	81	70-130	Pass	
Acenaphthylene	S21-Oc54571	NCP	%	85	70-130	Pass	
Benzo(a)pyrene	S21-Oc54571	NCP	%	75	70-130	Pass	
Benzo(g.h.i)perylene	S21-Oc54571	NCP	%	81	70-130	Pass	
Benzo(k)fluoranthene	S21-No05627	NCP	%	85	70-130	Pass	
Chrysene	S21-Oc54571	NCP	%	76	70-130	Pass	
Dibenz(a.h)anthracene	S21-Oc54571	NCP	%	79	70-130	Pass	
Fluoranthene	S21-Oc54571	NCP	%	75	70-130	Pass	
Fluorene	S21-Oc54571	NCP	%	81	70-130	Pass	
Naphthalene	S21-Oc54571	NCP	%	77	70-130	Pass	
Phenanthrene	S21-Oc54571	NCP	%	77	70-130	Pass	
Pyrene	S21-Oc54571	NCP	%	75	70-130	Pass	
Spike - % Recovery	021 0004071	1101	70	,,,	70 100	1 455	
Total Recoverable Hydrocarbons				Result 1			
TRH C6-C9	S21-No00334	СР	%	87	70-130	Pass	
Naphthalene	S21-No00334	CP	%	106	70-130	Pass	
TRH C6-C10	S21-No00334	CP	%	87	70-130	Pass	
Spike - % Recovery	02111000004	, Oi	/0		70-130	1 433	
BTEX				Result 1			
Benzene	S21-No00334	СР	%	80	70-130	Pass	
Toluene	S21-No00334	CP	%	87	70-130	Pass	
Ethylbenzene	S21-No00334	CP	%	89	70-130	Pass	
m&p-Xylenes	S21-No00334	CP	%	88	70-130	Pass	
o-Xylene	S21-No00334	CP	%	89	70-130	Pass	
Xylenes - Total*	S21-N000334 S21-N000334	CP	%	89	70-130	Pass	
Spike - % Recovery	321-110000334	UF	/0		/0-130	Fa55	
				Pacult 1			
Polycyclic Aromatic Hydrocarbons		CD	0/	Result 1	70.400	Door	
Anthracene	S21-No00334	CP	%	75	70-130	Pass	
Benz(a)anthracene	S21-No00334	CP	%	77	70-130	Pass	L

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	S21-No00334	СР	%	71			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-No00334	СР	%	73			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		, ccacc							0000
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-No08061	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-No08061	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-No08061	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-No08061	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-No08061	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-No08061	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>						
				Result 1	Result 2	RPD			
% Moisture	S21-No00328	СР	%	13	13	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-No00332	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-No00332	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-No00332	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			<u> </u>						
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S21-No00332	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-No00332	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-No00332	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-No00332	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-No00332	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-No00332	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-No00350	СР	%	25	24	3.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-No00355	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-No00355	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S21-No00355	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-No00355	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-No00355	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-No00355	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-No00355	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-No00355	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-No00355	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate												
Polycyclic Aromatic Hydrocarbons Result 1 Result 2 RPD												
Dibenz(a.h)anthracene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				
Fluoranthene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				
Fluorene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				
Indeno(1.2.3-cd)pyrene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				
Naphthalene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				
Phenanthrene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	·			
Pyrene	S21-No00355	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass				

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Stephen Maxwell

Report 836638-W

Project name STATIONS MASTERS COTTAGE CAPTAINS FLAT

 Project ID
 318001025

 Received Date
 Oct 28, 2021

Client Sample ID			QC03	QC04
Sample Matrix			Water	Water
Eurofins Sample No.			S21-No00342	S21-No00356
Date Sampled			Oct 27, 2021	Oct 27, 2021
·	LOR	Unit	001 21, 2021	001 21, 2021
Test/Reference Total Recoverable Hydrocarbons	LOR	Unit		
TRH C6-C9	0.02	ma/l	< 0.02	< 0.02
TRH C10-C14	0.02	mg/L mg/L	< 0.02	< 0.02
TRH C15-C28	0.03	mg/L	< 0.03	0.03
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.11	< 0.01
TRH C6-C10	0.01			< 0.01
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	
• •		mg/L	< 0.02	< 0.02
TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)**** TRH >C16-C34	0.05	mg/L mg/L	< 0.05 < 0.1	< 0.05 < 0.1
TRH >C10-C34 TRH >C34-C40	0.1		< 0.1	< 0.1
	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)* BTEX	0.1	mg/L	< 0.1	< 0.1
Benzene	0.004	/1	. 0. 004	0.004
	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene m&p-Xylenes	0.001	mg/L mg/L	< 0.001 < 0.002	< 0.001 < 0.002
o-Xylene	0.002		< 0.002	< 0.002
Xylenes - Total*	0.001	mg/L	< 0.001	< 0.001
	1	mg/L %	109	107
4-Bromofluorobenzene (surr.) Polycyclic Aromatic Hydrocarbons		70	109	107
	0.001	ma/l	- 0.001	z 0 001
Acenaphthene Acenaphthylene	0.001	mg/L	< 0.001 < 0.001	< 0.001 < 0.001
Anthracene	0.001	mg/L mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			QC03 Water S21-No00342 Oct 27, 2021	QC04 Water S21-No00356 Oct 27, 2021
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Naphthalene	0.001	mg/L	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	75	62
p-Terphenyl-d14 (surr.)	1	%	125	106

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 01, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 01, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 02, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Nov 02, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Due: Nov 4, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborato			4			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_	ney Laboratory			1		Х	Х	Х	Х	Х	X	Х	Х
	field Laboratory												
	h Laboratory - N												
	rnal Laboratory				_								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No00326			Х	х	Х	х		
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No00327		Х						
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No00328			Х	Х	Х	Х		
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No00329			Х	Х	Х	Х		
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No00330		Х						
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No00331			Х	Х	Х	Х		

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Oct 28, 2021 4:00 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

IANZ # 1327

Nov 4, 2021

Stephen Maxwell

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	oourne Laborato	_•		4									
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator												
	field Laboratory												\vdash
	h Laboratory - N		te # 2370										\vdash
Exte	ernal Laboratory	l I	Γ	ı									\vdash
_	0.5												\vdash
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No00332			Х	Х	Х	Х		
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No00333		Х						
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No00334			х	х	Х	Х		
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No00335			Х	Х	Х	Х		
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No00336		Х						
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No00337			Х	Х	Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Phone: +61 8 6253 4444

IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Received: Oct 28, 2021 4:00 PM

Due: Nov 4, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	ВТЕХ	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA # 12	61 Site # 125	4									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4									
May	field Laboratory	[,] - NATA # 1261	Site # 25079										
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370										
Exte	rnal Laboratory	1											
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No00338			Х	Х	Х	Х		
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No00339		Х						
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No00340			Х	Х	Х	Х		
16	QC01	Oct 27, 2021		Soil	S21-No00341			Х	Х	Х	Х		
17	QC03	Oct 27, 2021		Water	S21-No00342			Х	Х		Х		
18	HA_SMC105	Oct 27, 2021		Soil	S21-No00343	Х							
19	HA_SMC106	Oct 27, 2021		Soil	S21-No00344	Х							
20	HA_SMC101	Oct 27, 2021		Soil	S21-No00345	Х							
21	HA_SMC107	Oct 27, 2021		Soil	S21-No00346	Х							

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51

Nov 4, 2021

Stephen Maxwell

Oct 28, 2021 4:00 PM

IANZ # 1327

5 Day

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Address:

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Reco	BTEXN a	BTEXN
	: Hydrocarbons			Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Х	Х	Х	Х	Х	Х	Х
	х	х	х	х		
Х						
	х	Х	Х	Х		
	х	Х	Х	Х		
Х						
	×	X X X X X X X X X X				

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

836638

Phone: 02 9954 8118 Fax:

02 9954 8150

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 28, 2021 4:00 PM

Nov 4, 2021

Stephen Maxwell

			mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4									
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA # 126	1 Site # 20794	4									
May	ield Laboratory	[,] - NATA # 1261	Site # 25079	1									
Pert	h Laboratory - N	NATA # 2377 Si	te # 2370										
Exte	rnal Laboratory			1									
	0.35												
30	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No00355			Х	Х	Х	Х		
31	QC04	Oct 27, 2021		Water	S21-No00356			Х	Х		Х		
32	TRIP BLANK	Oct 27, 2021		Soil	S21-No00833		Х						
33	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00834		Х						
34	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00835		Х						
35	TRIP BLANK	Oct 27, 2021		Soil	S21-No00836							Х	
36	TRIP SPIKE	Oct 27, 2021		Soil	S21-No00837								Х
37	TRIP SPIKE LAB	Oct 27, 2021		Soil	S21-No00838								Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney NSW 2060

Project Name:

STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #:

836638

Phone: 02 9954 8118 02 9954 8150 Fax:

Received: Oct 28, 2021 4:00 PM

Due: Nov 4, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	втех	Moisture Set	Total Recoverable Hydrocarbons	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794								
Mayfield Laboratory - NATA # 1261 Site # 25079								
Perth Laboratory - NATA # 2377 Site # 2370								
External Laboratory								
Test Counts	7	10	17	17	15	17	1	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066

ABN: 50:005-085-521 Telephone: +61:2 9900-8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	82	70-130	Pass	
TRH C10-C14	%	115	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	82	70-130	Pass	
TRH >C10-C16	%	111	70-130	Pass	
LCS - % Recovery					
ВТЕХ					
Benzene	%	92	70-130	Pass	
Toluene	%	94	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	92	70-130	Pass	
o-Xylene	%	91	70-130	Pass	
Xylenes - Total*	%	92	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbons	5								
Acenaphthene			%	86			70-130	Pass	
Acenaphthylene			%	88			70-130	Pass	
Anthracene			%	97			70-130	Pass	
Benz(a)anthracene			%	87			70-130	Pass	
Benzo(a)pyrene			%	86			70-130	Pass	
Benzo(b&j)fluoranthene			%	93			70-130	Pass	
Benzo(g.h.i)perylene			%	81			70-130	Pass	
Benzo(k)fluoranthene			%	83			70-130	Pass	
Chrysene			%	86			70-130	Pass	
Dibenz(a.h)anthracene			%	89			70-130	Pass	
Fluoranthene			%	101			70-130	Pass	
Fluorene			%	90			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	89			70-130	Pass	
Naphthalene			%	83			70-130	Pass	
Phenanthrene			%	92			70-130	Pass	
Pyrene			%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	<u> </u>	<u>'</u>					•		
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Oc61078	NCP	%	92			70-130	Pass	
TRH C10-C14	S21-No02272	NCP	%	74			70-130	Pass	
Naphthalene	S21-Oc61078	NCP	%	90			70-130	Pass	
TRH C6-C10	S21-Oc61078	NCP	%	91			70-130	Pass	
TRH >C10-C16	S21-No02272	NCP	%	86			70-130	Pass	
Spike - % Recovery	02111002272	1101	70				70 100	1 400	
BTEX				Result 1					
Benzene	S21-Oc61078	NCP	%	92			70-130	Pass	
Toluene	S21-Oc61078	NCP	%	96			70-130	Pass	
Ethylbenzene	S21-Oc61078	NCP	%	97			70-130	Pass	
m&p-Xylenes	S21-Oc61078	NCP	%	99			70-130	Pass	
o-Xylene	S21-Oc61078	NCP	%	98			70-130	Pass	
Xylenes - Total*	S21-Oc61078	NCP	// //////////////////////////////////	99			70-130	Pass	
Spike - % Recovery	021-0001070	1101	70] 33			70 130	1 433	
Polycyclic Aromatic Hydrocarbons	•			Result 1					
Acenaphthylene	S21-No02650	NCP	%	72			70-130	Pass	
Anthracene	S21-No02650	NCP	%	76			70-130	Pass	
Fluoranthene	S21-No02650	NCP	%	81			70-130	Pass	
Fluorene	S21-No02650	NCP	// //////////////////////////////////	74			70-130	Pass	
Phenanthrene	S21-No02650	NCP	// //////////////////////////////////	78			70-130	Pass	
Pyrene	S21-No02650	NCP	// //////////////////////////////////	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc61079	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S21-No02423	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-No02423	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-No02423	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
		NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
	1 5/1-()ch111/4					~ I	0070	1 433	l
Naphthalene	S21-Oc61079						30%	Pacc	
Naphthalene TRH C6-C10	S21-Oc61079	NCP	mg/L	< 0.02	< 0.02	<1	30% 30%	Pass	
Naphthalene							30% 30% 30%	Pass Pass Pass	

Duplicate				I				_	
BTEX		1		Result 1	Result 2	RPD			
Benzene	S21-Oc61079	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Oc61079	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Oc61079	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Oc61079	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S21-Oc61079	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-Oc61079	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarl	bons			Result 1	Result 2	RPD			
Acenaphthene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S21-No16558	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

rage: or j																			77 10	<u>Z</u>	RAMBO
Chain of C	Chain of Custody & Analysis Request Form	sis Requ	est For	3																	
					Tel: 02 9954 8100 (Ramboll)	9954 81	00 (Rar	mboll .				Laboratory Details						Te:	7	9	9900 849
											k 1 S S	Lab. Address:	Eurofins 6/16 Ma	eurofins	Rd L	o) eur	ve We	Fax:	× ×	n	
												Contact Name:						E :	ıal Rep	Final Report by:	
Designat Name	>		ı				>					Lab. Ref:		ŀ				La	Lab Quote No:	e No:	
Project Name:	Stations Post	5	Hage	Project Number:	Nun	ber:	0	1800	0	6	50	Site: (ap	ip ains	HOH	.1-						
Sample collected by:	ed by: JA/JAIS		(Sample Results to be returned to:	Res	ults t	o be r	eturn	ē		jauld@ramboll.com [*]		Smarwell@ramboil. (on	MRY	ode	il. (c	3				
Specifications:))_				(Tick)	E		<u>}</u>		1			Analysis Request	/sis F	₹equ	est	
1. Urgent TAT required? (please circle:	(please circle: 24hr 48hr	days)		STANDARD	4	řes		S □	8		□ N/A	2				_			-		
2. Fast TAT Guarantee Required? Yes)	□Yes		No No	8			5			-				_		_
3. Is any sediment layer p	Is any sediment layer present in waters to be excluded from extractions?	xtractions?				☐ Yes		□ No	8			(A)	_		-	_	-	_	_		
4. Special storage requirements?	ements?					□Yes		□ No	8			, K									
o. Preservation requirements?	ents:/					Yes		S S	8			As						_	-	_	
7. Report Format: e	equis / excel / pdf		8. Project Manager: ()	3	<u> </u>	_ E	MOX Wie	A/a CNO	8	<u>e</u>	N/A	also Pb,	,					_			
Lab.					Matrix			Preservation	vation		Container	7) e 2, H	_							ab	
ō	Sample ID	Sampling Date	Sampling Time	soil	biota	WOY C	filted	acid	БĠ	other	(No. & type)	Hzavy (o.cu. Fo Ti, Zn)								end to Envirol	
	GWIOI	2/11			Н	\times			×	Ц	00412	×		1		+	+	+	+	s	+
JI W	SWICK			L	+				F	L		×		H	T		1	-	-	-	
	40 M				-	1				1	-	()	1	+		+	\dagger	+	+	+	+
	CANIOS											*)		1	+	+	+	+	+	+	+
	C/M106				-							*		H	H	H		H	H	H	H
	DOI_(W-2021110.5			1	+	1			1	_	-	< ×		T	+	+				+	+
		,									-	*/	1	1	1	1	#	#	1	X	
	ROL- GW-20211102	2/11		-		×			×	Ш	240	×		H	-	H	\Box	\forall		1 4	H
					+					1			+	\dagger			+	+		+	+
7				_	H				\vdash	Ц								H	H	\vdash	
				1	+				I	L			ļ	T	t	T	1	+	+	+	+
				\downarrow	+				1	80				+			+	+		+	
					H	Ц			Н	Ш					\Box	H	\forall	\forall	+	H	H
				+	+	\perp			+	\perp				\dagger	\top	+	+	+	+	+	+
																	,				

HOLD

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3, Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 40017 in smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 40017 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

Eurofins Environment Testing NZ Limited

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name: Contact name: Project name:

Project ID:

Ramboll Australia Pty Ltd Albert Juhasz (Uni SA) CAPTAINS FLAT 318001025

Turnaround time: 5 Day

Nov 3, 2021 10:20 AM Date/Time received

Eurofins reference 838109

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Albert Juhasz (Uni SA) - albert.juhasz@unisa.edu.au.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450

IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

CAPTAINS FLAT

Project ID:

Address:

318001025

Order No.: Report #:

Eurofins Environment Testing Australia Pty Ltd

838109

Phone: 02 9954 8118

02 9954 8150 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Nov 3, 2021 10:20 AM

Albert Juhasz (Uni SA)

Nov 10, 2021

		Sa	mple Detail			Barium	Cobalt	Iron	Manganese	Molybdenum	Selenium	Tin	Metals M8
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4									
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 2079	1									
May	field Laboratory	- NATA # 1261	Site # 25079										
	h Laboratory - N		e # 2370										
Exte	rnal Laboratory	,			_								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	GW101	Nov 02, 2021		Water	S21-No11241	Х	Х	Х	Х	Х	Х	Х	Х
2	GW102	Nov 02, 2021		Water	S21-No11242	Х	Х	Х	Х	Х	Х	Х	Х
3	3 GW103 Nov 02, 2021 Water S21-No11243					Х	Х	Х	Х	Х	Х	Х	Х
4	GW104	Nov 02, 2021		Water	S21-No11244	Х	Х	Х	Х	Х	Х	Х	Х
5	GW105	Nov 02, 2021		Water	S21-No11245	Х	Х	Х	Х	Х	Х	Х	Х
6	GW106	Nov 02, 2021		Water	S21-No11246	Х	Х	Х	Х	Х	Х	Х	Х
7	GW10	Nov 02, 2021		Water	S21-No11247	Х	Х	Х	Х	Х	Х	Х	Х
8	DO1_GW_202 11102	Nov 02, 2021		Water	S21-No11248	х	х	Х	х	Х	Х	Х	х

Melbourne 6 Monterey Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Unit F3, Building F Dandenong South VIC 3175 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

NZBN: 9429046024954

Nov 3, 2021 10:20 AM

Albert Juhasz (Uni SA)

Nov 10, 2021

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

CAPTAINS FLAT

Project ID:

318001025

RO1_GW_202 Nov 02, 2021

11102

Test Counts

Order No.: Report #:

Phone:

838109

02 9954 8118

Χ Χ Χ

02 9954 8150 Fax:

Ba CC Iro Ma Mo Se Ba

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail	arium	obalt .	on	anganese	olybdenum	ylenium	n	etals M8
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794								
Mayfield Laboratory - NATA # 1261 Site # 25079								
Perth Laboratory - NATA # 2377 Site # 2370								
External Laboratory								

S21-No11249

Χ

9

Χ Χ Χ Χ

Water

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Stephen Maxwell

 Report
 838109-W-V2

 Project name
 CAPTAINS FLAT

 Project ID
 318001025

 Received Date
 Nov 03, 2021

Client Sample ID Sample Matrix			GW102 Water	GW103 Water	GW101 Water	GW104 Water
Eurofins Sample No.			S21-No11241	S21-No11242	S21-No11243	S21-No11244
•						
Date Sampled			Nov 02, 2021	Nov 02, 2021	Nov 02, 2021	Nov 02, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.002	0.003	< 0.001
Barium (filtered)	0.02	mg/L	0.03	< 0.02	0.25	0.04
Cadmium (filtered)	0.0002	mg/L	0.017	0.25	0.0062	0.0027
Chromium (filtered)	0.001	mg/L	< 0.001	0.004	0.044	< 0.001
Cobalt (filtered)	0.001	mg/L	0.066	0.49	0.21	0.049
Copper (filtered)	0.001	mg/L	0.012	1.1	0.11	0.002
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	11	0.32
Lead (filtered)	0.001	mg/L	0.61	0.092	0.39	0.002
Manganese (filtered)	0.005	mg/L	0.95	4.1	1.9	0.87
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Molybdenum (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nickel (filtered)	0.001	mg/L	0.051	0.59	0.15	0.039
Selenium (filtered)	0.001	mg/L	0.011	0.028	0.017	0.006
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Titanium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	13	75	2.0	0.47

Client Sample ID Sample Matrix			GW105 Water	GW106 Water	GW10 Water	DO1_GW_2021 1102 Water
Eurofins Sample No.			S21-No11245	S21-No11246	S21-No11247	S21-No11248
Date Sampled			Nov 02, 2021	Nov 02, 2021	Nov 02, 2021	Nov 02, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Barium (filtered)	0.02	mg/L	0.03	0.04	0.03	< 0.02
Cadmium (filtered)	0.0002	mg/L	< 0.0002	0.0034	0.0044	0.24
Chromium (filtered)	0.001	mg/L	0.031	< 0.001	< 0.001	0.004
Cobalt (filtered)	0.001	mg/L	< 0.001	0.015	0.021	0.48
Copper (filtered)	0.001	mg/L	0.002	0.002	0.002	1.1
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001	0.003	< 0.001	0.090
Manganese (filtered)	0.005	mg/L	< 0.005	2.8	0.58	4.1
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001

Client Sample ID			GW105	GW106	GW10	DO1_GW_2021 1102
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-No11245	S21-No11246	S21-No11247	S21-No11248
Date Sampled			Nov 02, 2021	Nov 02, 2021	Nov 02, 2021	Nov 02, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Molybdenum (filtered)	0.005	mg/L	0.014	< 0.005	< 0.005	< 0.005
Nickel (filtered)	0.001	mg/L	< 0.001	0.032	0.082	0.57
Selenium (filtered)	0.001	mg/L	0.005	0.005	0.002	0.023
Tin (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Titanium (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc (filtered)	0.005	mg/L	< 0.005	0.96	0.64	82

Client Sample ID			RO1_GW_2021 1102
Sample Matrix			Water
Eurofins Sample No.			S21-No11249
Date Sampled			Nov 02, 2021
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.001
Barium (filtered)	0.02	mg/L	< 0.02
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Iron (filtered)	0.05	mg/L	< 0.05
Lead (filtered)	0.001	mg/L	< 0.001
Manganese (filtered)	0.005	mg/L	< 0.005
Mercury (filtered)	0.0001	mg/L	< 0.0001
Molybdenum (filtered)	0.005	mg/L	< 0.005
Nickel (filtered)	0.001	mg/L	< 0.001
Selenium (filtered)	0.001	mg/L	0.001
Tin (filtered)	0.005	mg/L	< 0.005
Titanium (filtered)	0.005	mg/L	< 0.005
Zinc (filtered)	0.005	mg/L	0.011

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8 filtered	Sydney	Nov 10, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Sydney	Nov 10, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

CAPTAINS FLAT

Project ID:

Address:

318001025

Order No.: Report #:

838109

Phone: 02 9954 8118 02 9954 8150 Fax:

Received: Nov 3, 2021 10:20 AM Due:

Nov 10, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Barium (filtered)	Cobalt (filtered)	Iron (filtered)	Manganese (filtered)	Molybdenum (filtered)	Selenium (filtered)	Tin (filtered)	Titanium (filtered)	Metals M8 filtered
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4										
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794	4										
May	field Laboratory	- NATA # 1261	Site # 25079	ı										
Pert	h Laboratory - N	NATA # 2377 Sit	e # 2370											
Exte	rnal Laboratory			1	_									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	GW102	Nov 02, 2021		Water	S21-No11241	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	GW103	Nov 02, 2021		Water	S21-No11242	Х	Х	Х	Х	Х	Х	Х	Х	Х
3	3 GW101 Nov 02, 2021 Water S21-No11243				Х	Х	Х	Х	Х	Х	Х	Х	Χ	
4	GW104	Nov 02, 2021		Water	S21-No11244	Х	Х	Х	Х	Х	Х	Х	Х	Χ
5	GW105	Nov 02, 2021		Water	S21-No11245	Х	Х	Х	Х	Х	Х	Х	Х	Χ
6	GW106	Nov 02, 2021		Water	S21-No11246	Х	Х	Х	Χ	Х	Х	Х	Х	Х
7	GW10	Nov 02, 2021		Water	S21-No11247	Х	Х	Х	Х	Х	Х	Х	Х	Χ
8	DO1_GW_202 11102	Nov 02, 2021		Water	S21-No11248	х	X	х	Х	х	х	х	х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

> > Nov 10, 2021

Stephen Maxwell

Nov 3, 2021 10:20 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

Address:

CAPTAINS FLAT

318001025

Order No.: Report #:

838109

Phone: 02 9954 8118 02 9954 8150 Fax:

Due:

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Eurofins Analytical Services Manager: Andrew Black

5 Day

Sample Detail			Barium (filtered)	Cobalt (filtered)	Iron (filtered)	Manganese (filtered)	Molybdenum (filtered)	Selenium (filtered)	Tin (filtered)	Titanium (filtered)	Metals M8 filtered
Melbourne Laboratory - NATA # 1261 Site # 1254											
Sydney Laboratory - NATA # 1261 Site # 18217			Х	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х
Brisbane Laboratory - NATA # 1261 Site # 20794											
Mayfield Laboratory - NATA # 1261 Site # 25079											
Perth Laboratory - NATA # 2377 Site # 2370											
External Laboratory											
9 RO1_GW_202 Nov 02, 2021 Wa	Vater S	S21-No11249	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test Counts			9	9	9	9	9	9	9	9	9

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Te	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						_		
Heavy Metals								
Arsenic (filtered)			mg/L	< 0.001		0.001	Pass	
Barium (filtered)			mg/L	< 0.02		0.02	Pass	
Cadmium (filtered)			mg/L	< 0.0002		0.0002	Pass	
Chromium (filtered)			mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)			mg/L	< 0.001		0.001	Pass	
Copper (filtered)			mg/L	< 0.001		0.001	Pass	
Iron (filtered)			mg/L	< 0.05		0.05	Pass	
Lead (filtered)			mg/L	< 0.001		0.001	Pass	
Manganese (filtered)			mg/L	< 0.005		0.005	Pass	
Mercury (filtered)			mg/L	< 0.0001		0.0001	Pass	
Molybdenum (filtered)			mg/L	< 0.005		0.005	Pass	
Nickel (filtered)			mg/L	< 0.001		0.001	Pass	
Selenium (filtered)			mg/L	< 0.001		0.001	Pass	
Tin (filtered)			mg/L	< 0.005		0.005	Pass	
Titanium (filtered)			mg/L	< 0.005		0.005	Pass	
Zinc (filtered)			mg/L	< 0.005		0.005	Pass	
LCS - % Recovery			J		,			
Heavy Metals								
Arsenic (filtered)			%	105		80-120	Pass	
Barium (filtered)			%	103		80-120	Pass	
Cadmium (filtered)			%	105		80-120	Pass	
Chromium (filtered)			%	108		80-120	Pass	
Cobalt (filtered)			%	106		80-120	Pass	
Copper (filtered)			%	105		80-120	Pass	
Iron (filtered)			%	104		80-120	Pass	
Lead (filtered)			%	104		80-120	Pass	
Manganese (filtered)			%	105		80-120	Pass	
Mercury (filtered)			%	104		80-120	Pass	
Molybdenum (filtered)			%	106		80-120	Pass	
Nickel (filtered)			%	105		80-120	Pass	
Selenium (filtered)			%	103		80-120	Pass	
Tin (filtered)			%	103		80-120	Pass	
Titanium (filtered)			%	103		80-120	Pass	
Zinc (filtered)			%	107		80-120	Pass	
,		04		104			Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Limits	Code
Spike - % Recovery				Docult 4		1		
Heavy Metals	004 N=44050	NOD	0/	Result 1		75.405	Dar -	
Arsenic (filtered)	S21-No11653	NCP	%	100		75-125	Pass	
Barium (filtered)	S21-No11653	NCP	%	95		75-125	Pass	
Cadmium (filtered)	S21-No11653	NCP	%	96		75-125	Pass	
Chromium (filtered)	S21-No11653	NCP	%	97		75-125	Pass	
Cobalt (filtered)	S21-No11653	NCP	%	95		75-125	Pass	
Copper (filtered)	S21-No11653	NCP	%	94		75-125	Pass	
Iron (filtered)	S21-No12726	NCP	%	96		75-125	Pass	
Lead (filtered)	S21-No11653	NCP	%	92		75-125	Pass	
Manganese (filtered)	S21-No11653	NCP	%	88		75-125	Pass	
Mercury (filtered)	S21-No11653	NCP	%	95		75-125	Pass	
Molybdenum (filtered)	S21-No11653	NCP	%	103		75-125	Pass	
Nickel (filtered)	S21-No11653	NCP	%	93		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Selenium (filtered)	S21-No11653	NCP	%	102			75-125	Pass	
Tin (filtered)	S21-No11653	NCP	%	100			75-125	Pass	
Titanium (filtered)	S21-No11653	NCP	%	98			75-125	Pass	
Zinc (filtered)	S21-No11653	NCP	%	92			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S21-No11248	CP	mg/L	0.002	0.002	2.0	30%	Pass	
Barium (filtered)	S21-No11248	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Cadmium (filtered)	S21-No11248	CP	mg/L	0.24	0.25	2.0	30%	Pass	
Chromium (filtered)	S21-No11248	CP	mg/L	0.004	0.004	<1	30%	Pass	
Cobalt (filtered)	S21-No11248	CP	mg/L	0.48	0.48	<1	30%	Pass	
Copper (filtered)	S21-No11248	CP	mg/L	1.1	1.1	1.0	30%	Pass	
Iron (filtered)	S21-No11248	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Lead (filtered)	S21-No11248	CP	mg/L	0.090	0.091	1.0	30%	Pass	
Manganese (filtered)	S21-No11248	CP	mg/L	4.1	4.1	<1	30%	Pass	
Mercury (filtered)	S21-No11248	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Molybdenum (filtered)	S21-No11248	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Nickel (filtered)	S21-No11248	CP	mg/L	0.57	0.57	1.0	30%	Pass	
Selenium (filtered)	S21-No11248	СР	mg/L	0.023	0.024	4.0	30%	Pass	
Tin (filtered)	S21-No11248	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Titanium (filtered)	S21-No11248	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Zinc (filtered)	S21-No11248	СР	mg/L	82	80	3.0	30%	Pass	

Comments

V2 - New version created to amend sample IDs for samples S21-No11241 - 243.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Emma Beesley Analytical Services Manager
John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

5 DAY TAT ADDITIONAL ANALYSIS: FW: Eurofins Test Results, Invoice - Report 836638 : Site STATIONS MASTERS COTTAGE CAPTAINS FLAT (318001025)

Andrew Black < Andrew Black@eurofins.com>

Wed 11/10/2021 3:48 PM

To: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>

Additional analysis on 5 day TAT thanks team

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing

Unit 7 7 Friesian Close SANDGATE, NSW, 2304 AUSTRALIA

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

For sample receipt enquiries (eg. SRAs, changes to analysis) please contact <u>EnvirosampleNSW@eurofins.com</u> or 02 9900 8421 (7am – 9pm).

For despatch enquiries (eg. courier bookings, bottle orders) please contact <u>AU04 Despatch SYD@eurofins.com</u> or 0488 400 929 (8am – 4pm).

Email: AndrewBlack@eurofins.com

Website: eurofins.com.au/environmental-testing

From: Stephen Maxwell <SMAXWELL@ramboll.com> Sent: Wednesday, 10 November 2021 3:44 PM To: Andrew Black <AndrewBlack@eurofins.com>

Cc: Jenny Auld <JAULD@ramboll.com>

Subject: RE: Eurofins Test Results, Invoice - Report 836638 : Site STATIONS MASTERS COTTAGE CAPTAINS FLAT

(318001025)

EXTERNAL EMAIL*

Thanks Andrew

Can we additionally analyse OCP and OPP on all samples (except the spike and blank) under this work order?

Kind regards

Stephen Maxwell

Lead Consultant

D +61 478658194 M +61 478658194

smaxwell@ramboll.com

Ramboll Australia Pty Ltd. ACN 095 437 442

ABN 49 095 437 442

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Ramboll Australia Pty Ltd

Contact name:

Stephen Maxwell

Project name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: Turnaround time: 318001025 5 Day

Date/Time received

Nov 10, 2021 3:44 PM

Eurofins reference

841026

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

Phone:

Fax:

Eurofins Environment Testing Australia Pty Ltd

841026

02 9954 8118

02 9954 8150

Received: Nov 10, 2021 3:44 PM Due: Nov 17, 2021

Priority: 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

NZBN: 9429046024954

			mple Detail			Suite B14: OCP/OPP	Moisture Set
Melbourne Laboratory - NATA # 1261 Site # 1254							
Sydney Laboratory - NATA # 1261 Site # 18217 Brisbane Laboratory - NATA # 1261 Site # 20794							
	ield Laboratory						
	h Laboratory - N						
	rnal Laboratory		C # 2510				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No33631	Х	Х
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No33632	Х	х
3 HA_SMC105_ Oct 27, 2021 Soil S21-No33633							
4 HA_SMC106_ Oct 27, 2021 Soil S21-No33634							
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No33635	Х	х
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No33636	Х	Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ramboll Australia Pty Ltd Address:

Level 3/100 Pacific Highway

North Sydney

NSW 2060

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project Name: Project ID:

318001025

Order No.: Report #:

Phone:

Fax:

Sydney

841026

02 9954 8118

02 9954 8150

Received: Nov 10, 2021 3:44 PM

Due: Nov 17, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4			
	ney Laboratory					Х	Х
	bane Laboratory						
	field Laboratory						
	h Laboratory - N		te # 2370				
Exte	rnal Laboratory						
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No33637	Х	Х
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No33638	Х	Х
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No33639	Х	х
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No33640	Х	х
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No33641	Х	х
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No33642	Х	х

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Phone: +64 9 526 45 51

Nov 17, 2021

Stephen Maxwell

Nov 10, 2021 3:44 PM

Auckland

IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

Phone:

Fax:

841026

02 9954 8118

02 9954 8150

5 Day

Euronns Analytical Services Manager : Andrew Bia	CK

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set
Melbourne Laboratory - NATA # 1261 Site # 1254							
	ney Laboratory					Х	Х
Bris	bane Laboratory	y - NATA # 1261	Site # 20794				
May	ield Laboratory	- NATA # 1261	Site # 25079				
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370				
Exte	rnal Laboratory						
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No33643	Х	Х
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No33644	х	х
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No33645	Х	х
16	QC01	Oct 27, 2021		Soil	S21-No33646	Х	Х
17	QC03	Oct 27, 2021		Water	S21-No33647	Х	
18	HA_SMC103_ 0.15	Oct 27, 2021		Soil	S21-No33655	Х	х
19	HA_SMC103_ 0.4	Oct 27, 2021		Soil	S21-No33656	х	х

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney

Order No.:

Report #:

Phone:

Fax:

Sui

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

841026

02 9954 8118

02 9954 8150

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Nov 17, 2021

Stephen Maxwell

5 Day

Eurofins Analytical Services Manager: Andrew Black

Nov 10, 2021 3:44 PM

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

Address:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Melbourne Laboratory - NATA # 1261 Site # 1254

	te B14: OCP/OPP	sture Set	
Sample Detail			

IVICII	Journe Laborate	// y - 14/1/1/1/1/1/2	OT OILC # 125	7			
Sydney Laboratory - NATA # 1261 Site # 18217							Х
Bris	bane Laborator	y - NATA # 126 ⁻	1 Site # 20794	1			
May	field Laboratory	- NATA # 1261	Site # 25079				
Perth Laboratory - NATA # 2377 Site # 2370							
External Laboratory							
20	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No33657	х	Х
21	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No33658	х	Х
22 HA_SMC102_ Oct 27, 2021 Soil S21-No33659					х	Х	
23	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No33660	Х	Х
24 QC04 Oct 27, 2021 Water S21-No33661						Х	
Test Counts						24	22

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Stephen Maxwell

Report 841026-S

Project name ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID 318001025

Received Date Nov 10, 2021

Client Sample ID			HA_SMC105_0	HA_SMC105_0	HA_SMC105_0	HA_SMC106_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33631	S21-No33632	S21-No33633	S21-No33634
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	0.06	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	1.2	< 0.05	< 0.05	0.15
4.4'-DDT	0.05	mg/kg	0.51	< 0.05	< 0.05	0.06
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	1.77	< 0.05	< 0.05	0.21
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	1.77	< 0.1	< 0.1	0.21
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	94	103	113	90
Tetrachloro-m-xylene (surr.)	1	%	90	97	97	101
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			HA_SMC105_0	HA_SMC105_0	HA_SMC105_0	HA_SMC106_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33631	S21-No33632	S21-No33633	S21-No33634
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	-	1				
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	91	93	95	85
		1				
% Moisture	1	%	22	18	13	14

Client Sample ID			HA_SMC106_0 .25	HA_SMC106_0	HA_SMC101_0	HA_SMC101_0 .25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33635	S21-No33636	S21-No33637	S21-No33638
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			HA_SMC106_0 .25	HA_SMC106_0 .5	HA_SMC101_0 .1	HA_SMC101_0 .25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33635	S21-No33636	S21-No33637	S21-No33638
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit			00121,2021	00121,2021
Organochlorine Pesticides	LON	Offic				
Endosulfan II	0.05	ma/ka	4 O OF	4 O OF	- 0.05	- 0.0F
Endosulfan sulphate	0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
•		mg/kg				
Endrin Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05
	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg		< 0.05	< 0.05	
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene Mathagashlar	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	130	112	104	108
Tetrachloro-m-xylene (surr.)	1	%	98	95	94	97
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
			, \ \ \-	~ U.Z	~ U.C	, \ \ \-

Client Sample ID			HA_SMC106_0	HA_SMC106_0	HA_SMC101_0	HA_SMC101_0 .25
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33635	S21-No33636	S21-No33637	S21-No33638
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	107	97	96	97
% Moisture	1	%	6.7	11	12	23

Client Sample ID			HA_SMC101_0	HA_SMC107_0	HA_SMC107_0	HA_SMC107_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33639	S21-No33640	S21-No33641	S21-No33642
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides	·					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.2	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.2	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.2	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	112	137	110	72
Tetrachloro-m-xylene (surr.)	1	%	101	104	98	73
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2

Client Sample ID			HA_SMC101_0	HA_SMC107_0	HA_SMC107_0	HA_SMC107_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33639	S21-No33640	S21-No33641	S21-No33642
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	<u> </u>					
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	119	136	92	76
% Moisture	1	%	20	_	3.8	23

Client Sample ID			HA_SMC104_0	HA_SMC104_0 .25	HA_SMC104_0	QC01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33643	S21-No33644	S21-No33645	S21-No33646
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

011 / 0 1 1 15			HA_SMC104_0	HA_SMC104_0	HA SMC104 0	
Client Sample ID			.1	.25	.5	QC01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33643	S21-No33644	S21-No33645	S21-No33646
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides		1				
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene Mathagashlar	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor Tayanhana	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)* Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05 < 0.1	< 0.05 < 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	82	106	103	110
Tetrachloro-m-xylene (surr.)	1	%	112	104	95	97
Organophosphorus Pesticides	<u> </u>	70	112	104	95	97
Azinphos-methyl	0.2	m a/l.a	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			HA_SMC104_0 .1	HA_SMC104_0 .25	HA_SMC104_0 .5	QC01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33643	S21-No33644	S21-No33645	S21-No33646
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	85	111	90	98
% Moisture	1	%	6.3	27	6.7	21

Client Sample ID			HA_SMC103_0 .15	HA_SMC103_0 .4	HA_SMC103_0 .55	HA_SMC102_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33655	S21-No33656	S21-No33657	S21-No33658
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	122	100	105	134
Tetrachloro-m-xylene (surr.)	1	%	96	96	95	103
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			HA_SMC103_0	HA_SMC103_0	HA_SMC103_0	HA_SMC102_0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-No33655	S21-No33656	S21-No33657	S21-No33658
Date Sampled			Oct 27, 2021	Oct 27, 2021	Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	105	102	92	122
% Moisture	1	%	20	6.0	4.0	3.1

Client Sample ID			HA_SMC102_0 .35	HA_SMC102_0 .5
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-No33659	S21-No33660
Date Sampled			Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05

Client Sample ID			HA_SMC102_0	HA_SMC102_0
Sample Matrix			.35 Soil	.5 Soil
Eurofins Sample No.			S21-No33659	S21-No33660
Date Sampled			Oct 27, 2021	Oct 27, 2021
·	1.00	l lait	OCI 21, 2021	OCI 27, 2021
Test/Reference	LOR	Unit		
Organochlorine Pesticides	0.05	T "	0.05	0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphata	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05 0.05	mg/kg	< 0.05 < 0.2	< 0.05 < 0.05
Endrin ketone	0.05	mg/kg mg/kg	< 0.2	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.1
Dibutylchlorendate (surr.)	1	%	99	117
Tetrachloro-m-xylene (surr.)	1	%	85	100
Organophosphorus Pesticides	ļ			
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID			HA_SMC102_0 .35	HA_SMC102_0 .5
Sample Matrix			Soil	Soil
Eurofins Sample No.			S21-No33659	S21-No33660
Date Sampled			Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	89	99
% Moisture	1	%	6.5	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Sydney	Nov 18, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Nov 18, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
% Moisture	Sydney	Nov 15, 2021	14 Days

- Method: LTM-GEN-7080 Moisture

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Report #:

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Contact Name:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Stephen Maxwell

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Address:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney

NSW 2060

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project Name: Project ID:

318001025

Order No.: 841026

Phone: 02 9954 8118 Fax:

02 9954 8150

Received: Nov 10, 2021 3:44 PM Due:

Nov 17, 2021 **Priority:** 5 Day

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4			
Sydr	ney Laboratory	- NATA # 1261 S	Site # 18217			Х	Х
Brisl	oane Laborator	y - NATA # 1261	Site # 2079	4			
_	ield Laboratory)			
	n Laboratory - N		e # 2370				
	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No33631	Х	х
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No33632	х	х
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No33633	х	х
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No33634	х	х
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No33635	х	х
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No33636	Х	Х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ramboll Australia Pty Ltd

> Level 3/100 Pacific Highway North Sydney

NSW 2060

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project Name: Project ID:

Address:

318001025

Order No.: Report #:

Phone:

Fax:

841026

02 9954 8118 02 9954 8150 Due: Nov 17, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

NZBN: 9429046024954

Nov 10, 2021 3:44 PM

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4			
Sydney Laboratory - NATA # 1261 Site # 18217							
Bris	bane Laboratory	y - NATA # 126	1 Site # 20794	ı			
	ield Laboratory						
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370				
Exte	rnal Laboratory	· 					
	0.5						
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No33637	Х	Х
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No33638	Х	Х
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No33639	х	х
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No33640	Х	х
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No33641	Х	Х
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No33642	Х	х

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland

IANZ # 1327

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Project Name:

Project ID:

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney NSW 2060

318001025

Order No.: Report #: Phone:

Fax:

841026 02 9954 8118

02 9954 8150

Received: Nov 10, 2021 3:44 PM

Due: Nov 17, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

	ojeot ID.	010001020					
		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4			
Sydı	ney Laboratory	- NATA # 1261 \$	Site # 18217			Х	Х
Bris	bane Laborator	y - NATA # 1261	1 Site # 2079	4			
May	field Laboratory	- NATA # 1261	Site # 25079	1			
Pert	h Laboratory - N	NATA # 2377 Sit	te # 2370				
Exte	rnal Laboratory	,					
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No33643	х	х
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No33644	х	х
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No33645	Х	х
16	QC01	Oct 27, 2021		Soil	S21-No33646	Х	Х
17	QC03	Oct 27, 2021		Water	S21-No33647	Х	
18	HA_SMC103_ 0.15	Oct 27, 2021		Soil	S21-No33655	Х	х
19	HA_SMC103_ 0.4	Oct 27, 2021		Soil	S21-No33656	х	х

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025

Order No.: Report #:

Phone:

Fax:

841026

02 9954 8150

02 9954 8118

Received: Nov 10, 2021 3:44 PM

Due: Nov 17, 2021 **Priority:** 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Sample Detail							
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4			
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х
Bris	bane Laborator	y - NATA # 126 ⁻	1 Site # 20794	,			
May	field Laboratory	- NATA # 1261	Site # 25079				
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370				
Exte	rnal Laboratory						
20	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No33657	Х	Х
21	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No33658	х	х
22	HA_SMC102_ 0.35	Oct 27, 2021		Soil	S21-No33659	Х	х
23	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No33660	Х	х
24	QC04	Oct 27, 2021		Water	S21-No33661	Х	
Test	Counts					24	22

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - SurrogateThe addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.05	Pass	
Method Blank	IIIg/kg	< 0.5	0.5	1 ass	
Organophosphorus Pesticides				T	
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton		< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	1	0.2	Pass	
	mg/kg	< 0.2	0.2	Pass	
Ethoprop Thu parathian	mg/kg	< 0.2			
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Pirimiphos-methyl			mg/kg	< 0.2	0.2	Pass	
Pyrazophos			mg/kg	< 0.2	0.2	Pass	
Ronnel			mg/kg	< 0.2	0.2	Pass	
Terbufos			mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos			mg/kg	< 0.2	0.2	Pass	
Tokuthion			mg/kg	< 0.2	0.2	Pass	
Trichloronate			mg/kg	< 0.2	0.2	Pass	
LCS - % Recovery						•	
Organochlorine Pesticides							
Chlordanes - Total			%	107	70-130	Pass	
4.4'-DDD			%	98	70-130	Pass	
4.4'-DDE			%	112	70-130	Pass	
4.4'-DDT			%	85	70-130	Pass	
a-HCH			%	96	70-130	Pass	
Aldrin			%	107	70-130	Pass	
b-HCH			%	100	70-130	Pass	
d-HCH			%	98	70-130	Pass	
Dieldrin			%	108	70-130	Pass	
Endosulfan I			%	104	70-130	Pass	
Endosulfan II			%	92	70-130	Pass	
Endosulfan sulphate			%	92	70-130	Pass	
Endrin			%	108	70-130	Pass	
Endrin aldehyde			%	95	70-130	Pass	-
Endrin alderryde Endrin ketone			%	95	70-130	Pass	
				104	70-130	Pass	
g-HCH (Lindane)			% %	104	70-130	Pass	
Heptachlor							
Heptachlor epoxide			%	105	70-130	Pass	+
Hexachlorobenzene			%	105	70-130	Pass	+
Methoxychlor			%	83	70-130	Pass	
LCS - % Recovery						T	
Organophosphorus Pesticides			0/	440	70.400	-	
Diazinon			%	112	70-130	Pass	
Dimethoate			%	86	70-130	Pass	
Ethion			%	99	70-130	Pass	
Fenitrothion			%	108	70-130	Pass	
Methyl parathion			%	114	70-130	Pass	-
Mevinphos			%	103	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Organochlorine Pesticides				Result 1		1	
Heptachlor	S21-No26992	NCP	%	111	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Endrin aldehyde	S21-No24117	NCP	%	71	70-130	Pass	
Methoxychlor	S21-No20287	NCP	%	80	70-130	Pass	
Spike - % Recovery							
Organophosphorus Pesticides	_			Result 1		<u> </u>	
Dimethoate	S21-No24117	NCP	%	88	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S21-No33660	CP	%	98	70-130	Pass	
Chiordanes - rotai					1	1	1
4.4'-DDD	S21-No33660	CP	%	113	70-130	Pass	
	S21-No33660 S21-No33660	CP CP	% %	113 103	70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
a-HCH	S21-No33660	СР	%	92			70-130	Pass	
Aldrin	S21-No33660	CP	%	95			70-130	Pass	
b-HCH	S21-No33660	CP	%	95			70-130	Pass	
d-HCH	S21-No33660	СР	%	91			70-130	Pass	
Dieldrin	S21-No33660	СР	%	97			70-130	Pass	
Endosulfan I	S21-No33660	СР	%	93			70-130	Pass	
Endosulfan II	S21-No33660	СР	%	92			70-130	Pass	
Endosulfan sulphate	S21-No33660	СР	%	76			70-130	Pass	
Endrin	S21-No33660	СР	%	90			70-130	Pass	
Endrin ketone	S21-No33660	CP	%	90			70-130	Pass	
g-HCH (Lindane)	S21-No33660	CP	%	94			70-130	Pass	
Heptachlor epoxide	S21-No33660	CP	%	101			70-130	Pass	
Hexachlorobenzene	S21-No33660	CP	%	100			70-130	Pass	
Spike - % Recovery	02111033000	<u> </u>	70	100			70-130	1 433	
Organophosphorus Pesticides				Result 1					
Diazinon	S21-No33660	СР	%	83			70-130	Pass	
	S21-N033660 S21-N033660	CP		130					
Ethion	S21-No33660 S21-No33660	CP	%	130			70-130	Pass	
Fenitrothion			%				70-130	Pass	
Methyl parathion	S21-No33660	CP	%	128			70-130	Pass	
Mevinphos	S21-No33660	CP	%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-No26993	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-No26993	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-No26993	NCP		< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-No26993	NCP	mg/kg			<1	30%		
		INCE	mg/kg	< 0.5	< 0.5	< 1	30%	Pass	
Duplicate	02111020333								l
	G21-14020333			Result 1	Result 2	RPD			
Duplicate Organophosphorus Pesticides		NCP	ma/ka	1			30%	Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl	S21-No26993	NCP NCP	mg/kg ma/ka	< 0.2	< 0.2	<1	30%	Pass Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl Bolstar	S21-No26993 S21-No26993	NCP	mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30%	Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl Bolstar Chlorfenvinphos	S21-No26993 S21-No26993 S21-No26993	NCP NCP	mg/kg mg/kg	< 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2	<1 <1 <1	30% 30%	Pass Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl Bolstar Chlorfenvinphos Chlorpyrifos	\$21-No26993 \$21-No26993 \$21-No26993 \$21-No26993	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl Bolstar Chlorfenvinphos Chlorpyrifos Chlorpyrifos-methyl	\$21-No26993 \$21-No26993 \$21-No26993 \$21-No26993 \$21-No26993	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Duplicate Organophosphorus Pesticides Azinphos-methyl Bolstar Chlorfenvinphos Chlorpyrifos	\$21-No26993 \$21-No26993 \$21-No26993 \$21-No26993	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2 < 0.2 < 0.2	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	

Duplicate									
Organophosphorus Pestici	des			Result 1	Result 2	RPD			
Diazinon	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-No26993	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-No26993	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-No26993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-No33631	CP	%	22	20	5.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-No33641	CP	%	3.8	2.8	29	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S21-No33659	СР	%	6.5	5.5	17	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Andrew Black Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson
General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Ramboll Environ Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Stephen Maxwell

Report 841026-W

Project name ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID 318001025

Received Date Nov 10, 2021

Client Sample ID			QC03	QC04
Sample Matrix			Water	Water
Eurofins Sample No.			S21-No33647	S21-No33661
Date Sampled			Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	Q09INT	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	94	105
Organophosphorus Pesticides				
Azinphos-methyl	0.002	mg/L	< 0.002	< 0.002
Bolstar	0.002	mg/L	< 0.002	< 0.002
Chlorfenvinphos	0.02	mg/L	< 0.02	< 0.02
Chlorpyrifos	0.002	mg/L	< 0.002	< 0.002
Chlorpyrifos-methyl	0.002	mg/L	< 0.002	< 0.002
Coumaphos	0.02	mg/L	< 0.02	< 0.02
Demeton-S	0.002	mg/L	< 0.002	< 0.002

Client Sample ID			QC03	QC04
Sample Matrix			Water	Water
Eurofins Sample No.			S21-No33647	S21-No33661
Date Sampled			Oct 27, 2021	Oct 27, 2021
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Demeton-O	0.002	mg/L	< 0.002	< 0.002
Diazinon	0.002	mg/L	< 0.002	< 0.002
Dichlorvos	0.002	mg/L	< 0.002	< 0.002
Dimethoate	0.002	mg/L	< 0.002	< 0.002
Disulfoton	0.002	mg/L	< 0.002	< 0.002
EPN	0.002	mg/L	< 0.002	< 0.002
Ethion	0.002	mg/L	< 0.002	< 0.002
Ethoprop	0.002	mg/L	< 0.002	< 0.002
Ethyl parathion	0.002	mg/L	< 0.002	< 0.002
Fenitrothion	0.002	mg/L	< 0.002	< 0.002
Fensulfothion	0.002	mg/L	< 0.002	< 0.002
Fenthion	0.002	mg/L	< 0.002	< 0.002
Malathion	0.002	mg/L	< 0.002	< 0.002
Merphos	0.002	mg/L	< 0.002	< 0.002
Methyl parathion	0.002	mg/L	< 0.002	< 0.002
Mevinphos	0.002	mg/L	< 0.002	< 0.002
Monocrotophos	0.002	mg/L	< 0.002	< 0.002
Naled	0.002	mg/L	< 0.002	< 0.002
Omethoate	0.02	mg/L	< 0.02	< 0.02
Phorate	0.002	mg/L	< 0.002	< 0.002
Pirimiphos-methyl	0.02	mg/L	< 0.02	< 0.02
Pyrazophos	0.002	mg/L	< 0.002	< 0.002
Ronnel	0.002	mg/L	< 0.002	< 0.002
Terbufos	0.002	mg/L	< 0.002	< 0.002
Tetrachlorvinphos	0.002	mg/L	< 0.002	< 0.002
Tokuthion	0.002	mg/L	< 0.002	< 0.002
Trichloronate	0.002	mg/L	< 0.002	< 0.002
Triphenylphosphate (surr.)	1	%	Q09INT	Q09INT

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Sydney	Nov 18, 2021	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Nov 18, 2021	7 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Phone:

Fax:

ပ္က 🙎

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

02 9954 8118

02 9954 8150

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway North Sydney

NSW 2060

Project Name: Project ID:

Address:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

318001025

Order No.: Received: Nov 10, 2021 3:44 PM Report #: 841026 Due: Nov 17, 2021

Priority: 5 Day **Contact Name:** Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			uite B14: OCP/OPP	loisture Set
		ory - NATA # 12		4			
		- NATA # 1261 : v - NATA # 1261		4		Х	X
		y - NATA # 1261 / - NATA # 1261					
		NATA # 2377 Sit		•			
	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	HA_SMC105_ 0.1	Oct 27, 2021		Soil	S21-No33631	х	х
2	HA_SMC105_ 0.25	Oct 27, 2021		Soil	S21-No33632	х	х
3	HA_SMC105_ 0.4	Oct 27, 2021		Soil	S21-No33633	х	х
4	HA_SMC106_ 0.1	Oct 27, 2021		Soil	S21-No33634	х	х
5	HA_SMC106_ 0.25	Oct 27, 2021		Soil	S21-No33635	х	х
6	HA_SMC106_	Oct 27, 2021		Soil	S21-No33636	Х	Х

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID:

318001025

Order No.: Report #:

Phone:

Fax:

841026

02 9954 8118

02 9954 8150

Received: Nov 10, 2021 3:44 PM Due: Nov 17, 2021

Priority: 5 Day

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

Molh	nourno Laborate		mple Detail	4		Suite B14: OCP/OPP	Moisture Set	
Melbourne Laboratory - NATA # 1261 Site # 1254 Sydney Laboratory - NATA # 1261 Site # 18217								
Brisbane Laboratory - NATA # 1261 Site # 20794								
	field Laboratory							
	h Laboratory - N		te # 2370					
Exte	rnal Laboratory							
	0.5							
7	HA_SMC101_ 0.1	Oct 27, 2021		Soil	S21-No33637	Х	Х	
8	HA_SMC101_ 0.25	Oct 27, 2021		Soil	S21-No33638	х	Х	
9	HA_SMC101_ 0.5	Oct 27, 2021		Soil	S21-No33639	х	Х	
10	HA_SMC107_ 0.1	Oct 27, 2021		Soil	S21-No33640	х	Х	
11	HA_SMC107_ 0.3	Oct 27, 2021		Soil	S21-No33641	х	Х	
12	HA_SMC107_ 0.6	Oct 27, 2021		Soil	S21-No33642	х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ramboll Australia Pty Ltd

Address: Level 3/100 Pacific Highway

North Sydney

NSW 2060

Project Name:

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025 Order No.: Report #: Phone:

Fax:

841026

02 9954 8118 02 9954 8150

Due: **Priority:** Nov 10, 2021 3:44 PM

Nov 17, 2021 5 Day

IANZ # 1327

Contact Name: Stephen Maxwell

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set		
Melbourne Laboratory - NATA # 1261 Site # 1254									
Sydney Laboratory - NATA # 1261 Site # 18217									
Bris	bane Laborator	y - NATA # 1261	1 Site # 20794	1					
May	field Laboratory	- NATA # 1261	Site # 25079						
Pert	h Laboratory - N	IATA # 2377 Sit	te # 2370						
Exte	rnal Laboratory		<u> </u>		•				
13	HA_SMC104_ 0.1	Oct 27, 2021		Soil	S21-No33643	Х	Х		
14	HA_SMC104_ 0.25	Oct 27, 2021		Soil	S21-No33644	Х	х		
15	HA_SMC104_ 0.5	Oct 27, 2021		Soil	S21-No33645	Х	х		
16	QC01	Oct 27, 2021		Soil	S21-No33646	Х	Х		
17	QC03	Oct 27, 2021		Water	S21-No33647	Х			
18	HA_SMC103_ 0.15	Oct 27, 2021		Soil	S21-No33655	Х	х		
19	HA_SMC103_ 0.4	Oct 27, 2021		Soil	S21-No33656	Х	х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Order No.:

Report #:

Phone:

Fax:

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

841026

02 9954 8118

02 9954 8150

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Nov 17, 2021

Stephen Maxwell

5 Day

NZBN: 9429046024954

Nov 10, 2021 3:44 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Project Name:

Company Name: Ramboll Australia Pty Ltd

Level 3/100 Pacific Highway

North Sydney

NSW 2060

ADDITIONAL: STATIONS MASTERS COTTAGE CAPTAINS FLAT

Project ID: 318001025

Eurofins Analytical Services Manager: Andrew Black

Due:

		Sa	mple Detail			Suite B14: OCP/OPP	Moisture Set	
Melbourne Laboratory - NATA # 1261 Site # 1254								
Sydney Laboratory - NATA # 1261 Site # 18217								
Brisl	oane Laboratory	y - NATA # 1261	Site # 20794					
May	ield Laboratory	- NATA # 1261	Site # 25079					
Perti	n Laboratory - N	IATA # 2377 Sit	e # 2370					
Exte	rnal Laboratory							
20	HA_SMC103_ 0.55	Oct 27, 2021		Soil	S21-No33657	Х	Х	
21	HA_SMC102_ 0.2	Oct 27, 2021		Soil	S21-No33658	Х	х	
22 HA_SMC102_ Oct 27, 2021 Soil S21-No33659							х	
23	HA_SMC102_ 0.5	Oct 27, 2021		Soil	S21-No33660	Χ	х	
24	QC04	Oct 27, 2021		Water	S21-No33661	Χ		
Test	Counts					24	22	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank	IIIg/L	< 0.003	0.003	Fass	
Organophosphorus Pesticides					
Azinphos-methyl	mg/L	< 0.002	0.002	Pass	
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorfenvinphos	mg/L	< 0.02	0.02	Pass	
Chlorpyrifos	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.02	0.02	Pass	
Demeton-S	mg/L	< 0.002	0.002	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon		< 0.002	0.002	Pass	
	mg/L				
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
EPN	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Ethyl parathion	mg/L	< 0.002	0.002	Pass	
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
Malathion	mg/L	< 0.002	0.002	Pass	
Merphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Monocrotophos	mg/L	< 0.002	0.002	Pass	
Naled	mg/L	< 0.002	0.002	Pass	
Omethoate	mg/L	< 0.02	0.02	Pass	
Phorate	mg/L	< 0.002	0.002	Pass	

Pirimiphos-methyl Pyrazophos Ronnel Terbufos Tetrachlorvinphos Tokuthion Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE			mg/L mg/L mg/L mg/L	< 0.02 < 0.002 < 0.002			0.02 0.002	Pass	
Ronnel Terbufos Tetrachlorvinphos Tokuthion Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD			mg/L mg/L				0 003	D	1
Terbufos Tetrachlorvinphos Tokuthion Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD			mg/L	< 0.002			0.002	Pass	
Tetrachlorvinphos Tokuthion Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD				- 5.002			0.002	Pass	
Tokuthion Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD			/-	< 0.002			0.002	Pass	
Trichloronate LCS - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD			mg/L	< 0.002			0.002	Pass	
Chlordanes - Total 4.4'-DDD			mg/L	< 0.002			0.002	Pass	
Organochlorine Pesticides Chlordanes - Total 4.4'-DDD			mg/L	< 0.002			0.002	Pass	
Chlordanes - Total 4.4'-DDD									
4.4'-DDD									
			%	84			70-130	Pass	
4.4'-DDE			%	87			70-130	Pass	
4.4 -DDL			%	83			70-130	Pass	
4.4'-DDT			%	106			70-130	Pass	
a-HCH			%	77			70-130	Pass	
Aldrin			%	80			70-130	Pass	
b-HCH			%	87			70-130	Pass	
d-HCH			%	78			70-130	Pass	
Dieldrin			%	85			70-130	Pass	
Endosulfan I			%	82			70-130	Pass	
Endosulfan II			%	84			70-130	Pass	
Endosulfan sulphate			%	93			70-130	Pass	
Endrin			%	119			70-130	Pass	
Endrin aldehyde			%	93			70-130	Pass	
Endrin ketone			%	93			70-130	Pass	
g-HCH (Lindane)			%	87			70-130	Pass	
Heptachlor			%	97			70-130	Pass	
Heptachlor epoxide	%	86			70-130	Pass			
Hexachlorobenzene			%	74			70-130	Pass	
Methoxychlor			%	111			70-130	Pass	
LCS - % Recovery			70	111			70-130	1 433	
Organophosphorus Pesticides									
Diazinon			%	89			70-130	Pass	
Dimethoate			%	95			70-130	Pass	
Ethion			%	111			70-130	Pass	
Fenitrothion			%	99			70-130	Pass	
Methyl parathion			%	108			70-130	Pass	
Mevinphos			%	107			70-130	Pass	
		QA	%					Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Acceptance Limits	Limits	Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin Supriate	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin ketone	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	S21-No44834	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Duplicate							·		
Organophosphorus Pesticides	s			Result 1	Result 2	RPD			
Azinphos-methyl	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	S21-No44834	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos-methyl	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	S21-No44834	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-S	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Demeton-O	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dimethoate	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethoprop	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethyl parathion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Malathion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	S21-No44834	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phorate	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	S21-No44834	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Terbufos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	S21-No44834	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Authorised by:

Andrew Black Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX 7 BORE LOGS

PRO.	JEC	CT NU	JMBE	R 3	180010	025	PROJECT LOCATION _	Station Masters	Cottage
						COMPLETED 27-10-21			
						ratacore			
HOLE	E S	IZE	100r	nm			LOGGED BY _JA		CHECKED BY
NOTE	ES							1	
Method	water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
SFA					FILL	TOPSOIL w/ grass on surface			NOC
				\bowtie					
			_		FILL	GRAVELLY CLAY, brown, dry, soft-firm, coal	rse grained gravels, moderate	HA_SMC101_0	0.1 NOC
				\bowtie		plasticity, rootlets	<u>-</u> .		
				\bowtie					
			_						
				\bowtie				HA_SMC101_0	25
				\bowtie				HA_SWICTOT_0	.25
			_						
				\bowtie					
				\bowtie					
			-		NAT	GRAVELLY CLAY, brown-orange w/ minor g	rey mottles, dry, firm-hard, coarse	-	NOC
						grained gravels (~10mm), high plasticity	, , ,,		
			0.5					ПУ СРИСТОТ О	5
			0 <u>.5</u>					HA_SMC101_0 QC01, QC02	.C.
_	-					Borehole HA_SMC101 terminated at 0.7m		1	
						BOISHOR TIA_ONIO TO LEHRIMARED ALO./MI			
			-						
			-						
			1.0						

		ohn Hol			725			Cottage
					025			
					COMPLETED _28-10-21			
						LOGGED BY JA		CHECKED BY
NOTE	<u> </u>							
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	no	Samples Tests Remarks	Additional Observations
HA				FILL	TOPSOIL w/ grass on surface GRAVELLY CLAY, brown, dry, soft, coarse grain	ned gravels (20-50mm) low	· HA_SMC102_0.	NOC
		0.5		FILL	GRAVELLY CLAY, brown, dry, soft, coarse grain plasticity, rootlets GRAVELLY CLAY, brown/orange, dry, moderate coarse-medium grained		HA_SMC102_0.:	³⁵ NOC
		_		NAT	CLAY, orange, slightly moist, high plasticity, hard fine grained, more consistent	l, w/ quartz gravels (~10-60mm),	HA_SMC102_0	NOC
		_			Borehole HA_SMC102 terminated at 0.75m			

SKOTECT &	ohn Hollan IUMBER		025		aptains Flat N Station Masters Cottage			
			COMPLETED 28-10-21					
OTES								
Water (3) Water (3)	Debth Craphic Log	Classification Symbol	Material Descr	ription	Samples Tests Remarks	Additional Observations		
AH			TOPSOIL w/ grass on surface GRAVELLY CLAY, brown, slightly moist, mod	derate plasticity, soft-firm, coarse	- HA_SMC103_0.	NOC		
			grained gravels (20-30mm), rootlets					
	0.5	FILL	GRAVELLY CLAY, grey/light brown, dry, firm moderate plasticity, rootlets		HA_SMC103_0.	4 Organic odour		
		NAT	CLAY, orange/grey, fine grained, minor grave slightly moist, firm-hard, rootlets	els (10-20mm), high plasticity,		NOC		
			Borehole HA_SMC103 terminated at 0.9m					

	 hn Hol			025			Cottage
				COMPLETED _27-10-21			
	_10011				LOGGED BT _JA		CHECKED BI
Method Water	Depth	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Additional Observations
HH	` /			TOPSOIL w/ grass on surface GRAVELLY CLAY, brown, dry, rootlets, coars low-moderate plasticity, rootlets, firm	e grained gravels (~10-20mm),	HA_SMC104_0	NOC
	0 <u>.5</u>			GRAVELLY CLAY, brown/grey, dry, coarse-m low-medium plastcity, rootlets, firm		HA_SMC104_0.	
	_		NAT	CLAY, light grey w/ minor orange mottles, mo firm-hard, high plascitiy	re consistent, fine grained, dry,		NOC
	_			Borehole HA_SMC104 terminated at 0.8m			

PRC	OJEC	T NL				025		OCATION Station Masters Cottage			
DAT DRII	TE ST	TART	ED _	27-10 ACTO)-21 R	COMPLETED 27-10-21	R.L. SURFACE SLOPE 90°		DATUMBEARING 90°		
			100m				LOGGED BY _JA		CHECKED BY		
0	ater		Depth (m)	Graphic Log	Classification Symbol	Material Descri	iption	Samples Tests Remarks	Additional Observations		
HA Me	Wa		0.5			GRAVELLY SANDY CLAY, BROWN/GREY, or plasticity, rootlets, soft CLAY, grey/orange, dry, firm-hard, fine graine gravels (~10mm) at 0.7m becoming more orange, firm, medium	d, rootlets, high plasticity, minor	HA_SMC105_0 HA_SMC105_0	NOC .25		

BOREHOLE / TEST PIT BORELOGS GINT.GPJ GINT STD AUSTRALIA.GDT 22-11-21

BOREHOLE NUMBER HA_SMC106 PAGE 1 OF 1

ENT	Jo	hn Ho	lland l	Rail		PROJECT NAME Capta	ains Flat	
JΕ	CT N	UMBE	R _3′	180010	025	PROJECT LOCATION _S	Station Masters C	Cottage
ΈS	TAR	TED	27-10)-21	COMPLETED 27-10-21	R.L. SURFACE	Γ	DATUM
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
		-			GRAVELLY CLAY, brown, dry, rootlets, coarse of low-moderate plasticity, rootlets, firm		HA_SMC106_0.2	NOC 5 NOC
		0 <u>.5</u>		NAT	CLAY, light grey w/ minor orange mottles, more firm-hard, high plascitiy Borehole HA_SMC106 terminated at 0.7m	consistent, fine grained, dry,	HA_SMC106_0.	NOC
	E S LLII IIPI E S	E STAR LLING CO JIPMENT E SIZE	E STARTED LLING CONTRUMENT HALE SIZE 1000 (m) Per la	TE STARTED 27-10 LLING CONTRACTO JIPMENT HA LE SIZE 100mm TES RL Depth (m) Depth (m)	E STARTED 27-10-21 LLING CONTRACTOR	ESTARTED 27-10-21 COMPLETED 27-10-21 LLING CONTRACTOR JUPMENT HA LE SIZE 100mm TES RL Depth (m) (m) FILL TOPSOIL w/ grass on surface FILL GRAVELLY CLAY, brown, dry, rootlets, coarse of low-moderate plasticity, rootlets, firm FILL GRAVELLY CLAY, brown/grey, dry, coarse-med low-medium plastcity, rootlets, firm NAT CLAY, light grey w/ minor orange mottles, more of firm-hard, high plascity	E STARTED _27-10-21	E STARTED 27-10-21 COMPLETED 27-10-21 R.L. SURFACE SLOPE 90° E FILL ING CONTRACTOR SLOPE 90° E FILE SIZE 100mm LOGGED BY JA COMPLETED 27-10-21 R.L. SURFACE SLOPE 90° E FILE SIZE 100mm LOGGED BY JA COMPLETED STARTS OF

				lland l		025			Cottage
						COMPLETED _27-10-21			
			1001						CHECKED BY
Method	Water		Depth	hic Log	Classification Symbol	Material Descr		Samples Tests Remarks	Additional Observations
	Š	(m)	(m)			TOPSOIL w/ gross on surface			NOC
HA		FILL GRAVELLY CLAY, brown/grey, dry, low-moderat (porcelain fragments), coarse grained gravels, so		erate plasticity, rootlets, rubbish , soft-firm	HA_SMC107_0	NOC			
			0 <u>.5</u>		NAT	CLAY, brown/light grey, dry, moderate plastic grained gravels at 0.65m becoming orange, high plascticity, fit consistent		HA_SMC107_0	NOC
			_			Borehole HA_SMC107 terminated at 0.85m			
			1.0						

R	A	M	В	d	L	L
•		•				

										Corridor Investigation
DA DR EQ HO	TE S ILLI UIPI	STARTE NG CON MENT _ SIZE	D 2 NTRAC SFA	7-10-2 CTOR	21 Stra	tacore	COMPLETED 27-10-21	R.L. SURFACE		
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations
SFA				-		FILL	SILTY CLAY, brown, becoming red- moist	orown,		NOC
				1 1 -		NAT	CLAY, Residual, red-brown and brown, medium plasticity, ock fragments, moist harder drilling 1.5-2.0 mbgl			
				2		NAT	EXTREMELY WEATHERED DACIT	F vellow/tan_some quartz		
				3	(NAT	fragments, moist, rock fragments, b crystalline, non laminar, some quart	own, very fine grained,		
			7	4	(
				<u>5</u>	X X X X X X X X X X X X X X X X X X X					
				6	(X) (X X (X) (X X		harder drilling at 6 mbgl			
				7 -	(
			1	8	(
				9	(X) (X X (X X (X X (X X		very hard at 9.5 mbgl			

PAGE 2 OF 2

R	AMBOLL		PA
CLIENT	John Holland Rail	PROJECT NAME	Captains Flat Rail Corridor Investigation

 PROJECT NUMBER
 318001025
 PROJECT LOCATION
 Rail Corridor

 DATE STARTED
 27-10-21
 COMPLETED
 27-10-21
 R.L. SURFACE
 DATUM

 DRILLING CONTRACTOR
 Stratacore
 SLOPE
 90°
 BEARING
 90°

 EQUIPMENT
 SFA
 HOLE LOCATION

 HOLE SIZE
 LOGGED BY
 SC
 CHECKED BY
 NM

HOLE SIZE	SFA		HOLE LOCATION CHECKED BY NM			HECKED BY NM
NOTES						
Method Water Details	RL Depth	Graphic Log	Material Desc	pription	Samples Tests Remarks	Additional Observations
Petalis Petalis Petalis	(m) (m) — — — — — — — — — — — — — — — — — — —	X X X X X X X X X X X X X X X X X X X				

RAMBŒLL				
KAMBOLL	D	M	$\mathbf{R} \mathcal{O}_{\mathbf{A}}$	
		7 11 1		

DATE STARTED 26-10-21 COMPLETED 26-10-21 R.L. SURFACE DATUM DRILLING CONTRACTOR SLOPE 90° BEARING 90° EQUIPMENT SFA, AH HOLE LOCATION HOLE SIZE LOGGED BY SC CHECKED BY NM NOTES Samples	CLIENT John Holland Rail PROJECT NUMBER 318001025										
FILL GRAVELLY SAND CLAY, red-brown, low plasticity, rock fragments, fine sand, dry-moist, shalley. NAT CLAY, red brown, medium plasticity, some rock fragments (quartz), moist, shalley. NAT 2 TATEMELY WEATHERED SHALE, hard layer at 1.5m, red brown, fragments of shalle (green-grey), fine grained laminate Auger refusal at 2.3 mbgl Quartz chips at 3 mbgl Quartz chips at 3 mbgl EXTREMELY-HIGHLY WEATHERED SHALE, with fine sandstone interbeds and quartz venis, dry, some clay becoming moist at 6.5 mbgl making water below ~7 mbgl Ballow Auger reduced at 6.5 mbgl making water below ~7 mbgl	DATE STARTED _26-10-21 COMPLETED _26-10-21 DRILLING CONTRACTOR EQUIPMENT _SFA, AH HOLE SIZE						R.L. SURFACE				
The sand, dry-moles NAT CLAY, red brown, medium plasticity, some rock fregments (quartz), molest, shaley EXTREMELY WEATHERED SHALE, hard layer at 1.5m, red brown, fregments of shale (green-grey), fine grained laminate Auger refusal at 2.3 mbgl Quartz chips at 3 mbgl ATTREMELY-HIGHLY WEATHERED SHALE, with fine sandstone interbeds and quartz veins, dry, some clay becoming moist at 6.5 mbgl making water below ~7 mbgl	Method Water						cription	Tests	Additional Observations		
becoming moist at 6.5 mbgl making water below ~7 mbgl	SFA		- - 1 - - - 2 3 - - - - - - - - - - - - - - -		NAT NAT	CLAY, red brown, medium plasticity, so moist, shaley EXTREMELY WEATHERED SHALE, brown, fragments of shale (green-grey Auger refusal at 2.3 mbgl Quartz chips at 3 mbgl	ome rock fragments (quartz), hard layer at 1.5m, red //), fine grained laminate		NOC		
Control Cont			- - - 7 - - - 8			making water below ~7 mbgl					

	Λ	M	de		
1		TATE OF	U	_	_

'K(UJĖ	CIN	IUMB	EK	3180	JU119	<u>3</u>		PROJECT LOCATION C	aptains Flat, N	OVV
DATE STARTED 9/6/21 COMPLETED 9/6/21							COMPLETED 9/6/21	R.L. SURFACE 865.981	DATUM _ m mAHD		
DRILLING CONTRACTOR Stratacore Pty Ltd EQUIPMENT Hand Auger, Solid Flight Auger						Stra	tacore	Pty Ltd	SLOPE 90°		BEARING
						, Solid	Flight	Auger	HOLE LOCATION _720896	6.58E,6058791	.96N
Ю	LE S	SIZE	0.1	m					LOGGED BY TJF		CHECKED BY SM
10.	TES	<u> </u>									
Method Water Water In Street In Stre				Depth (m)	Graphic Log	Classification Symbol	Material Desi	Samples Tests Remarks	Additional Observations		
								FILL; gravelly CLAY, dark brown, high pa	· /	GW10_0.0, XR 1468ppm	
								Sandy CLAY; natural, brown, high plastici minor gravels, firm	ty, moist, medium grained sands,	GW10_0.1, XR 21ppm GW10_0.2, XR	
										28ppm	
			M					CLAY; natural, red-brown, high plasticity,	firm, moist, minor gravels and	GW10_0.3, XR 27ppm	
				<u>16</u> 5	1			sands		GW10_0.4, XR 21ppm	
										GW10_0.5, XR 27ppm	
								DEDDOOK was a last		GW10_1.0, XR 23ppm	KF
								BEDROCK; natural, red-brown, conglome	erate		
					_						
			Nº	<u>86</u> 4	2					GW10_2.0, XR	RF
										27ppm	
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	363	3						
					_						
		7.4	7,4		_			SHALE; natural, grey			
					-			or IALE, riatural, grey			
				362	4					GW10_4.0, XR 184ppm	RF
					-					тотррпп	
					-						
					-						
					-						
			: <u>8</u>	<u>8</u> 61	5						
					-						
					_						
					-						
			<u> 8</u>		-						
	<u>¥</u>		: 8	<u>8</u> 60	6						
	SWLI				-						
		[· ·			-						
					-						
					-						
			_ ∴ <u></u> ε	359	7						
		ľ∷≣	 ::		-						
] ::		_						
		:: <u> </u>]∷		_						
- 1		ı. ∵⊢	⊣ . ˈ}					1			i e

PAGE 2 OF 2

	Λ	M	de		
1		TATE OF	U	_	_

BOREHOLE / TEST PIT 318001193 CAPTAINS FLAT JUNE 2021.GPJ GINT STD AUSTRALIA.GDT 19/8/21

	PROJECT NUMBER 318001193 PROJECT NUMBER 318001193 PROJECT LOCATION Captains Flat Lead Management Plan PROJECT LOCATION Captains Flat, NSW										
DR EQ	LLII	NG CON	ITRAC Hand	CTOR Auger,	Strate Solid	tacore Flight	COMPLETED _9/6/21 Pty Ltd Auger	SLOPE 90° HOLE LOCATION 72089	6.58E,6058791	BEARING .96N	
NO	TES										
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations	
			857 856 854 853	9 10 10 11 1 12 - 15 - 15			Borehole GW10 terminated at 10m				