Supplementary Detailed Site Investigation

Australian Rail Track Corporation Limited

Goulburn Roundhouse 12 Braidwood Road, Goulburn NSW 2580

October 2023

Ref. 20025.76 R08v2

Cavvanba Consulting Pty Ltd

4 / 82 Centennial Circuit Byron Bay NSW 2481

t: (02) 6685 7811

ABN: 37 929 679 095

22 / 33 Darling Street Carrington NSW 2294

inbox@cavvanba.com

Report Details

Report:

Supplementary Detailed Site Investigation

Goulburn Roundhouse 12 Braidwood Road, Goulburn New South Wales 2580

Ref: 20025.76 R08

for

Australian Rail Track Corporation Limited

Distribution:

Deliverables	Status	Date	Recipient		
1	20025.76 R08	07/09/2023	Mark Curran – Senior Environment		
	20025.76 R08 v2	31/10/2023	Specialist (Australian Rail Track Corporatio		
1	20025.76 R08 v2	31/10/2023	Cavvanba Project File		
1	20025.76 R08 v2	31/10/2023	Cavvanba Library		

This document was prepared in accordance with the scope of services described in Cavvanba's proposal and our Standard Trading Conditions, and the Limitations in Section 1.4 herein, for the sole use of ARTC, their agents and the relevant regulatory authorities. This document should not be used or copied by other parties without written authorisation from Cavvanba.

consulting

Zac Laughlan Environmental Engineer

Date: 31 October 2023

4 / 82 Centennial Cct Byron Bay NSW 2481 22 / 33 Darling St Carrington NSW 2294

t (02) 6685 7811

inbox@cavvanba.com

K

Drew Wood Principal Environmental Scientist

Date: 31 October 2023

Table of Contents

Execu	utive su	ummary1
1.0	Intro	duction4
1.1	Bac	ckground
1	.1.1	Interim management plan4
1	.1.2	Regulatory status
1.2	Obj	jective5
1.3	Sco	ppe of work5
1.4	Lim	nitations
2.0	Site s	etting8
2.1	Site	e identification and description8
2.2	Sur	rounding land use8
2.3	Site	e history9
2.4	En	/ironmental setting9
2	.4.1	Topography and hydrology9
2	.4.2	Soils and geology 11
2	.4.3	Hydrogeology 11
3.0	Previo	ous environmental investigations
3.1	Ado	ditional environmental site assessment
3.2	Gro	oundwater monitoring event – February 2022 14
3.3	Inte	erim asbestos management 15
3.4	Gri	t blasting media
4.0	Data	quality objectives
5.0	Site i	nvestigation
5.1	Sto	rmwater and drainage investigation17
5.2	Rat	ionale for sampling design
5.3	Me	thodology
5	.3.1	Soil investigation method
5	.3.2	Groundwater and surface water investigation method
5.4	Ass	essment criteria
5	.4.1	Soil
5	.4.2	Water 24
5.5	Lab	ooratory analysis
5.6	Dat	a usability
6.0	Obse	rvations
6.1	Soi	I conditions encountered 27
6.2	Gro	oundwater observations

6.3	Sur	Surface water observations			
6.4	Sto	rmwater and drainage observations	30		
7.0	Analy	tical results	32		
7.1	Soil	l	32		
7.2	Gro	undwater	33		
7.3	Sur	face water	35		
8.0	Discu	ssion	37		
8.1	Soil	l	37		
8.1	1.1	Lead	37		
8.1	1.2	Asbestos in and on soil	38		
8.3	1.3	Ecological	38		
8.3	1.4	Management limits / aesthetic issues	39		
8.2	Gro	undwater	39		
8.2	2.1	Groundwater flow direction	39		
8.2	2.2	Petroleum hydrocarbon contamination	40		
8.2	2.3	Volatile organic compounds	41		
8.2	2.4	Per- and poly-fluoroalkyl substances	41		
8.2	2.5	Heavy metals	42		
8.3	Sto	rmwater and drainage	43		
8.3	3.1	Surface water	43		
9.0	Monit	ored natural attenuation	45		
9.1	Intr	roduction	45		
9.2	Prin	nary lines of evidence – concentration trends	45		
9.2	2.1	LNAPL	45		
9.2	2.2	Dissolved phase	45		
9.3	Sec	condary lines of evidence	47		
9.4	Ter	tiary lines of evidence	55		
10.0	Cor	nceptual site model update	56		
10.1	Sou	Irces of contamination	56		
10.2	Exp	osure and migration pathways	57		
10.3	Rec	eptors	58		
10.4	Cor	nceptual site model summary	58		
11.0	Dat	a gaps update	61		
11.1	Asb	estos management	61		
12.0	Cor	nclusions and recommendations	63		
13.0	Ref	erences	66		

Figures

Figure 1 – Site Location

Figure 2 – Site Layout

Figure 2a – Roundhouse Schematic – 22 Feb 1935

Figure 3a and 3b – Sample Locations

Figure 4 – Hydrogeological Information

Figure 5a and 5b – Asbestos and Lead Exceedances

Tables

Soil

- Table 1: Soil Analytical Summary Sample Description and Analytical Summary
- Table 2: Soil Analytical Summary Heavy Metals (mg/kg)
- Table 3: Soil Analytical Summary TRH and BTEXN (mg/kg)
- Table 4: Soil Analytical Summary PAHs (mg/kg)
- Table 5: Asbestos Analytical Summary
- Table 6: Soil Analytical Summary Quality Control (mg/kg)
- Table 7: Soil Analytical Summary Quality Control (mg/kg)
- Soil Analytical Summary Table Notes

Groundwater and surface water

Table 8: Groundwater Monitoring Well Construction Details

- Table 9: Groundwater Gauging Data
- Table 10: Water Quality Parameters
- Table 11: Water Analytical Summary TRH and BTEXN (µg/L)
- Table 12: Water Analytical Summary Heavy Metals (µg/L)
- Table 13: Water Analytical Summary PAHs (µg/L)
- Table 14: Water Analytical Summary VOCs (µg/L)
- Table 15: Water Analytical Summary PFAS (µg/L)
- Table 16: Groundwater Analytical Summary Natural Attenuation Parameters
- Table 17: Water Analytical Summary Quality Control (µg/L)

Groundwater Analytical Summary Table Notes

Appendices

- Appendix A Stormwater and Drainage
- Appendix B Data Quality Objectives: Planning process Output
- Appendix C Calibration Certificates, Field Forms and Survey Data
- Appendix D Borehole and Testpit Logs
- Appendix E Data Usability Assessment & Background To Data Usability
- Appendix F Photographic Log
- Appendix G Historical Soil and Groundwater Data
- Appendix H Laboratory Analytical Certificates
- Appendix I Asbestos Management Letter (June 2023 Hand-picking Event)

Executive summary

Cavvanba Consulting Pty Ltd was commissioned by Australian Rail Track Corporation Limited (ARTC) to undertake a supplementary detailed site investigation at the Goulburn Roundhouse, located at 12 Braidwood Road, Goulburn, New South Wales 2580 (herein referred to as the site). The site is currently used as a railway museum and actively operated as a Roundhouse by the Goulburn Locomotive Roundhouse Preservation Society Incorporated (GLRPS) and their sub-tenants for storage, restoration and maintenance of locomotives and rolling stock.

The overarching objectives of the works are to re-evaluate and supplement previous investigation data, and address the key issues raised by the Site Auditor and the New South Wales Environment Protection Authority. The proposed works will assist in reducing uncertainties in the assessment of remedial options, and regulation of the site.

To meet the project objectives, the scope of work included a soil, groundwater and surface water investigation at the site, comprising an investigation of soil at 80 locations, the installation of three groundwater monitoring wells, and a groundwater monitoring event of newly installed and existing monitoring wells on-site. Two surface water samples were collected from known roundhouse stormwater capture points on-site. This report also includes the interpretation of the findings of a stormwater and drainage investigation completed by ARTC.

Lead in soil

The distribution of lead contaminated soils based on all available data can be summarised as widespread but discontinuous within the southern and north-western portion of the site. The magnitude of which, varies due to a mosaic of historical activities and progressive infilling that has occurred on-site.

Asbestos containing material is widespread and extends into areas where access was previously obstructed due to the presence of rail-related infrastructure. This includes beneath locomotives and rolling stock on railway lines within the southern portion of the site and in filled areas on the eastern side of the roundhouse (Bays 1 to 15). The presence of asbestos containing material (ACM) on soils exceeds health screening levels for asbestos.

Asbestos containing material was identified in soils within filled areas to the east of the roundhouse and adjacent to the north of the administration building. These were areas where ACM has not been previously identified.

Following the investigation, a hand-picking asbestos management exercise was undertaken (June 2023) in an effort to reduce the hazard from the surface soils. These management measures should be continued in accordance with the interim environmental management plan (IEMP).

Groundwater

Groundwater standing water levels (SWLs) measured in metres below the top of the casing (mBTOC) (approximately flush to surface), ranged from 4.190 m (MW102) in the northeastern portion of the site, to 7.365 m (MW02), in the north-western portion of the site which were reported to have lowered since the 2022 monitoring event with an average decrease of 0.7 m recorded across the site. The measured standing water levels and calculated groundwater elevations indicate groundwater flow is consistent with that previously reported, predominantly flowing in a north-easterly direction. The nature and extent of groundwater contamination can be summarised as follows:

- Light Non-Aqueous Phase Liquid (LNAPL was identified at a measurable thickness of 0.53 m at MW06, an increase of 0.37 m from the previous monitoring event. Its presence is localised, unlikely to represent a vapour intrusion risk and likely associated with residual LNAPL saturation rather than an ongoing source;
- all groundwater samples collected on-site were reported below the adopted health screening levels for vapour intrusion;
- Total Recoverable Hydrocarbon (TRH) concentrations at MW02, adjacent to the refuelling gantry remain low and localised in extent, however are likely to be artificially reduced by the previously identified potable water influence;
- Volatile Organic Compounds (i.e. TCE / DCE) were not detected above the laboratory limit of reporting;
- Sum of perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) were detected in groundwater on-site, at a maximum concentration of 3.05 µg/L, however its presence in groundwater is unlikely to represent an unacceptable risk to ecological receptors off-site; and
- chromium (VI) was detected in groundwater at a maximum concentration of 30 μg/L, and whilst it has not been delineated off-site, is unlikely to represent an unacceptable risk.

Stormwater and drainage

The stormwater and drainage system connects the repair bays within the Roundhouse building to the former effluent treatment plant via underground infrastructure such as the API separator and arrestor pits. Whilst gross contamination has not been identified to be mobilising off-site due to the presence of arrestor pits and API separators, there are some data gaps which remain outstanding.

TRH was detected in surface water on-site, at a maximum concentration of 1,900 μ g/L, and PFOS at a maximum concentration of 0.03 μ g/L. The significance of these exceedances and whether a potential unacceptable risk to ecological receptors off-site remains uncertain based on the current dataset.

Summation

Through the development and continual refinement of the conceptual site model, potentially complete source-pathway-receptor linkages resulting in a potential risk to human health and the environment have been identified which require further monitoring, remediation and/or appropriate management. These are discussed in Table 1, below.

Data Gaps summation	Recommendation
1) Groundwater contamination (TRH, PFAS and chromium)	Preparation of a formal groundwater monitoring plan, and continue with routine groundwater monitoring to:
The varying magnitude and trends of TRH in groundwater within the vicinity of the former diesel refuelling gantry and the Roundhouse where active maintenance is occurring remains a data gap. Additional uncertainty is introduced through the increase in LNAPL thickness at MW06, and potential for TRH rebound at MW02. Additionally, there are uncertainties regarding the source or sources of PFAS and the plume geometry.	 ensure that any changes in contaminant concentrations can be detected; demonstrate plume stability, or otherwise; and ensure the appropriate protection of groundwater human and ecological health. Assess the feasibility of LNAPL removal.
These uncertainties make groundwater remediation decision making premature.	

Table 1: Data gaps summation and recommendations

Cavvanba considers that these uncertainties can be rectified through future routine and planned groundwater monitoring events, and should be undertaken to assist decision making regarding remediation options. It is possible that for TRH, the outcome will be passive remediation such as monitored natural attenuation. The feasibility of LNAPL removal at this stage is unknown.	
2) Site infilling and waste disposal areas Cavvanba considers that the nature and extent of buried waste material within the eastern and southern portion of the site has been established, sufficient to facilitate future remediation and/or management options for this area.	Development of remediation and/or management options to ensure the protection of human and ecological health, focussing on the removal of the potential exposure pathway.
<i>3) Asbestos in and on soil</i> <i>There is adequate information to facilitate</i> <i>future remediation and/or management</i> <i>options for ACM on-site.</i>	Implement interim management measures as per the updated Interim Management Plan (Cavvanba, 2022), and development of remediation and/or management options to ensure the appropriate protection of human health. Consider measures in conjunction with data gap 2.
4) Site history The site has a long and complicated history with over 100 years of heavy industrial activity, and a change in site operations and management from approximately 1989 when the GLRPS acquired the lease. Whilst it is acknowledged that there are inherent uncertainties in the site history, Cavvanba considers that there is sufficient soil and groundwater data and information to support the development of remediation options for the site.	Predominantly reconciled, however consideration should be given to obtaining historical information relating to the potential use of PFAS containing products.
5) Stormwater and drainage Cavvanba's understanding of the stormwater and drainage network on-site has been sufficiently established through the data gathered as part of this investigation. However, uncertainties remain associated with the integrity of the pipework at the southern discharge point, and whether there are resultant soil and groundwater contamination issues. This also includes the chemical composition of stormwater at the discharge point and is particularly relevant given the presence of TRH, and PFAS in excess of the 99% species protection levels.	The railway maintenance bays within the roundhouse <u>must not</u> be used for any chemical / oil collection (no products to ground) until such time that the network is deemed fit for purpose. Surface water sampling within the holding tanks at the discharge point on the eastern side of Braidwood Road (refer to Figure B of Appendix A). Assessment of groundwater conditions within the areas of known integrity issues, being the southern discharge point.

1.0 Introduction

Cavvanba Consulting Pty Ltd (Cavvanba) was commissioned by Australian Rail Track Corporation Limited (ARTC) to undertake a Supplementary Detailed Site Investigation (DSI) at the Goulburn Roundhouse, located at 12 Braidwood Road, Goulburn, New South Wales (NSW) 2580 (herein referred to as the site). The site location is presented on Figure 1.

The scope of work and methodology was consistent with that detailed within Cavvanba's letter proposal titled '*Contaminated land consulting services – Goulburn Roundhouse, 12 Braidwood Road, Goulburn NSW 2580*' submitted to ARTC on 22 February 2023 (Cavvanba Ref: P20025.76.5). This report should be read in its entirety, with specific reference to Cavvanba's *General Limitations*, included as Section 1.4.

1.1 Background

The site has over 100 years of industrial activity having officially opened as an operational railway Roundhouse by the NSW Government Railways in 1918, with railway maintenance activities commencing at the site in approximately 1869. The site has been used to maintain a large portion of the railways fleet of steam locomotives, followed by diesel locomotives being maintained at the site from the 1950's until its closure in 1981. The site is currently used as a railway museum and actively operated as a Roundhouse by the Goulburn Locomotive Roundhouse Preservation Society Incorporated (GLRPS) and their sub-tenants for storage, restoration and maintenance of locomotives and rolling stock. GLRPS opened the Goulburn Rail Heritage Centre at the site in approximately 1989.

Previous contaminated land investigations have identified contamination at the site, primarily being asbestos containing material (ACM) and lead in soil, and petroleum hydrocarbons in groundwater, as listed in Section 1.1.2 below. Cavvanba has been involved in a staged investigation process at the site since 2020, which has included:

- interim environmental management plan, for implementation whilst additional characterisation is undertaken;
- detailed site investigation (DSI) which reviewed previous investigation data, identified data gaps and refined the conceptual site model (CSM) through an investigation of soil and groundwater across the site;
- additional environmental site assessment (Additional ESA) which further refined the CSM through an investigation of soil and groundwater and addressing data gaps previously identified;
- remediation options assessment (ROA) based on the data collected to evaluate options and costs for rendering the site suitable for ongoing commercial / industrial use and what data gaps remain outstanding;
- groundwater monitoring to further assess the nature and magnitude of groundwater contamination; and
- communication, review and liaison with stakeholders including a NSW Environment Protection Authority (EPA) accredited Site Auditor for contaminated land.

This Supplementary DSI is the next stage of the investigation process and has been completed to address data gaps identified by Cavvanba during the additional characterisation, reduce uncertainties in the assessment of remedial options and regulation of the site. It is also to address NSW Environment Protection Authority (EPA) and Site Auditor comments on the investigations and assessments to date.

1.1.1 Interim management plan

The Interim Environmental Management Plan was prepared by Cavvanba in September 2020 to ensure that all practicable steps were taken to minimise the potential risk of exposure to potential asbestos containing material and lead contamination at the site prior to the outcome of the DSI. As required, the plan was then updated in April 2021 and again

in May 2023 based on additional characterisation achieved during subsequent investigations and assessments.

The current interim environmental management plan (IEMP) (Ref. 20025.76 R07) (Cavvanba, May 2023) will be updated for the site following the completion and review of this Supplementary DSI.

The IEMP requires ACM hand-picking events to be undertaken to reduce the ACM hazard on the site. Refer to Section 3.3 for additional detail regarding the events to date.

1.1.2 Regulatory status

The site was declared significantly contaminated land by the NSW EPA on 14 February 2023, and is subject to Declaration Notice No. 20221108, issued under Section 11 of the of the CLM Act. The EPA had reason to believe that the land is significantly contaminated as a result of the historical use of the site as a locomotive storage and maintenance facility and use of fill contaminated with lead. Specifically, the site warrants regulation because of the following:

- Lead contamination in soil on the site is widespread and high concentrations of lead (in order of thousands of mg/kg) have been detected in surface soils (the top 0-0.05m), which presents a potential ingestion and dermal contact risk to onsite workers and occupants.
- Chromium contamination in groundwater is present and has been recorded in downgradient wells on the eastern border of the site. This indicates that chromium in groundwater is potentially migrating offsite, which presents a potential ecological risk.
- Additional contaminants have been detected in the site groundwater in 2022. Further investigation is required to determine the source and risk of these contaminants.

The site is now regulated under an Approved Voluntary Management Proposal (VMP) with the NSW EPA, VMP No. 20231709, dated 6 July 2023. A principal feature of the VMP is the delivery of this Supplementary DSI report prior to 30 November 2023.

1.2 Objective

The overarching objectives of the works are to re-evaluate and supplement previous investigation data, and address the key issues raised by the Site Auditor and the NSW EPA. The proposed works will assist in reducing uncertainties in the assessment of remedial options, and regulation of the site.

1.3 Scope of work

To achieve the objectives outlined above, the following scope of work was prepared based on the requirements of a variety of guidance documents, including, but not limited to the following:

- NSW EPA (2020) Consultants Reporting on Contaminated Land;
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition);
- National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure 1999 (ASC NEPM (2013)) – Schedule B2: Guideline on Site Characterisation (2013); and
- National Chemicals Working Group of the Heads of EPAs (HEPA) (2020) PFAS National Environment Management Plan Version 2.0 - January 2020 (NEMP).

The scope of the investigation included the following activities:

- A review of, and response to Site Auditor comments which guided the completion of the Data Quality Objectives for this supplementary DSI.
- Development of data quality objectives (DQOs) based on the known information inputs, expected site conditions and the project objectives.
- Development of a sampling plan which complemented the DQOs.
- Completion of a site walkover and visual inspection for key features, and to provide for any necessary improvements in the investigation design.
- A review of, and interpretation of updated stormwater and drainage information provided to Cavvanba by ARTC.
- Collection of 48 surface samples using hand tools within the four-foot of existing railway infrastructure and within areas not previously assessed across the site.
- Advancement of 14 boreholes to a maximum depth of 8.0 metres (m) using a combination of hand auger and/or mechanical drilling techniques.
- Advancement of 18 test pits using hand tools within areas not previously assessed across the site.
- Collection and sieving of 10 L samples at all borehole and test pit locations on-site.
- Logging of the lithology at each location by an experienced Cavvanba environmental engineer with soil samples collected for laboratory analysis at various depth intervals until termination.
- Conversion of three boreholes to groundwater monitoring wells.
- Development and purging of newly installed groundwater monitoring wells to enable the collection of groundwater samples considered representative of the surrounding aquifer.
- Gauging and sampling of all newly installed and existing groundwater monitoring wells using low flow sampling techniques.
- Collection of two surface water samples from known roundhouse stormwater capture points.
- Submission of soil, groundwater and surface water samples to a National Association of Testing Authorities (NATA) accredited laboratory for analysis of actual and potential contaminants of concern (COCs).
- Survey of the newly installed groundwater monitoring wells to metres Australian Height Datum (AHD) and eastings and northings by a registered surveyor.
- Preparation of this Supplementary DSI report.

An ACM hand-picking event was undertaken following the abovementioned scope. For completeness, this has been summarised in Section 11.1 of this report and included as Appendix I.

1.4 Limitations

The findings of this report are based on the objectives and scope of work outlined above. Cavvanba performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties or guarantees, express or implied, are made. Subject to the scope of work, Cavvanba's assessment is limited strictly to identifying typical environmental conditions associated with the subject property, and does not include evaluation of any other issues. This report does not comment on any regulatory obligations based on the findings, for which a legal opinion should be sought. This report relates only to the objectives and scope of work stated, and does not relate to any other works undertaken for the Client.

The report and conclusions are based on the information obtained at the time of the assessment. Changes to the subsurface conditions may occur subsequent to the investigation described herein, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

The site history, and associated uses, areas of use, and potential contaminants, were determined based on the activities described in the scope of work. Additional site history information held by the Client, regulatory authorities, or in the public domain, which was not provided to Cavvanba or was not sourced by Cavvanba under the scope of work, may identify additional uses, areas of use and/or potential contaminants. The information sources referenced have been used to determine site history and desktop information regarding local subsurface conditions. While Cavvanba has used reasonable care to avoid reliance on data and information that is inaccurate or unsuitable, Cavvanba is not able to verify the accuracy or completeness of all information and data made available.

Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history, and which may not be expected at the site. The absence of any identified hazardous or toxic materials on the subject property, should not be interpreted as a warranty or guarantee that such materials do not exist on the site. If additional certainty is required, additional site history or desktop studies, or environmental sampling and analysis, should be commissioned.

The results of this assessment are based upon site inspection and fieldwork conducted by Cavvanba personnel and information provided by the Client. All conclusions regarding the property area are the professional opinions of the Cavvanba personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, Cavvanba assumes no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of Cavvanba, or developments resulting from situations outside the scope of this project.

2.0 Site setting

2.1 Site identification and description

The site consists of a single lot, identified as Lot 2 in Deposited Plan (DP) 1002813. The total site area is 46,390 m^2 and is located to the south of the Goulburn central business district, and immediately adjacent to the east of the Main South Railway line.

Access to the site is from Braidwood Road via a sealed asphalt access road in the central portion of the site and the remainder is otherwise unsealed gravel access roads, railway lines or fill material comprising coal and ash. Grass cover is present within the southern and eastern portion with sporadic vegetation and larger trees within isolated areas of the site. A chain link and temporary fence limits unrestricted access to the site from Braidwood Road. The site layout has been presented on Figure 2.

The site identification and land use details are provided below.

Site Owner:	Transport for New South Wales (TfNSW) via Transport Asset Holding Entity (TAHE)
Site Manager:	ARTC
Lessee	GLRPS
Sub-lessee	Various short-term leases
Site Address:	12 Braidwood Road, Goulburn NSW 2580
Legal Property Description:	Lot 2 in DP 1002813
Property area:	Approximately 46,390 m ²
Co-ordinates:	Latitude: -34.773891 Longitude: 149.710899
Local Government Authority:	Goulburn – Mulwaree Council.
Elevation:	Approximately 638 metres (m) Australian Height Datum (AHD).
Landuse – Proposed:	Commercial / Industrial
Zoning:	IN1 – General Industrial

2.2 Surrounding land use

Land use features surrounding the site are summarised below:

North: The railway corridor extends to the north of the site.

Immediately north is the CFCL Australia Rail Services maintenance facility, located within the railway corridor. It is understood that this facility is used for the overhaul, maintenance, modification and painting of locomotives and rolling stock. A number of commercial properties, including an automotive wreckers and engineering depot are located beyond the CFCL site, followed by residential properties.

East: Braidwood Road borders the site to the east followed by a rural residential property and agricultural land.

The Mulwaree River is located approximately 570 metres from the site boundary. An open stormwater drainage channel (located to the northeast of the site) traverses the agricultural land which links surface water drainage from the site to the river. This has been highlighted in Figure 1.

- South: The Hume Highway is located immediately south of the site followed by rural residential properties and agricultural land.
- West: The Main South Railway line borders the site to the west, followed by former railway stockyards within the Goulburn Wheat Yard Sidings railway corridor.

A nursery, a livestock sale yard and agricultural land are located beyond Sloane Street to the west.

An Ampol Truck Stop and fuel depot, and former fuel depot are located to the southwest of the site on Sloane Street.

2.3 Site history

The railway line from Marulan to Goulburn opened on 27 May 1869 and a railway depot was constructed by the NSW Government Railways on the southern outskirts of town at this time. It is understood that this included the construction of the engine shed at the site. The NSW Government Railways opened the Goulburn Roundhouse in 1918, which replaced an earlier locomotive depot and consisted of a 42-road Roundhouse. Both new and old locomotive depots operated simultaneously until 1935. The old depot was demolished in 1941, however Cavvanba understands that this depot was not located on the site.

The Roundhouse was closed in 1981 and leased to the Goulburn City Council for use by a historical society to restore and maintain heritage locomotives, railway vehicles and railway orientated machinery and equipment. A summary of key current and historical site features has been summarised within *Detailed Site Investigation* (Cavvanba, 2021a) and as such, has not been reproduced within this report.

2.4 Environmental setting

2.4.1 Topography and hydrology

The site is situated at approximately 638 m AHD within the Southern Tablelands region of NSW. The site area is relatively flat with the broader area surrounding the site sloping the east and north towards the Mulwaree River. An escarpment is located to the west of the site beyond Sloane Street which is present at an elevation approximately 40 higher than the site.

Surface water on-site is understood to be predominantly uncontrolled and would generally pool on-site and permeate the unsealed ground surface that covers the site, however in moderate – heavy rainfall surface water would follow the local topography and drain towards Braidwood Road away from the rail corridor and eventually into the municipal stormwater system. Cavvanba understands that the municipal stormwater system

discharges to the Mulwaree River via an open stormwater drainage channel located on the eastern side of Braidwood Road, approximately 70 m northeast of the site, and is presented on Figure 1.

More broadly, surface water is expected to flow east eventually discharging to the Mulwaree River approximately 570 m from the site boundary. The Mulwaree River flows into the Wollondilly River, located approximately 3.8 kilometres (km) north of the site.

It is noted that an open drainage line is also located immediately adjacent to the south of the site, as presented on Figure 1. However, based on the orientation and layout of the site, surface water is not anticipated to drain to this area.

Roundhouse stormwater and drainage

Jeffrey and Katauskas Pty Ltd (J&K) was commissioned by the NSW Department of Public Works and Services in 1997 to undertake an Environmental Investigation at the site which included an assessment of the effluent, sewerage and stormwater system at the site. The J&K (1997) drainage figure has been provided as Figure A of Appendix A.

The following key findings were noted by J&K in 1997:

- The site drainage system was likely installed during the construction of the site, which appeared to have been designed to accommodate both effluent and stormwater drainage. The system as a whole has been continuously modified since installation.
- The system was based on the passage of effluent through arrestor pits, which acted as a separator for floating oily contaminants and sediment. Various oil collection devices were installed within the separators, with floating contaminants subsequently collected and drummed for disposal.
- The effluent system was reported to have been modified to accept oily water related to diesel refuelling operations which formed part of three main sections, being the East, Central and West Drainage lines, as presented in Figure A.
- In 1981, the site was closed, and new workshops were constructed. During this time, the Effluent Treatment Plant and a sewage pumping station were installed to accommodate effluent from the new workshops. The Effluent Treatment Plant consisted of a dosing and sedimentation facility together with oil separation equipment and a sludge drying bed. The Effluent Treatment Plant has been decommissioned, with a significant portion of the pipework either removed or disconnected.
- A number of arrestor facilities have been installed at the site, and based on the J&K investigation, only one remained intact, being the API & Differential Separator ('C' on drainage figure) and in apparent working order. This was referred to as the main operational arrestor pit which was fitted with pumps and a differential separator facility. It was reported that at the time of the J&K investigation (1997) Freight Rail Corporation held a licence from the EPA to discharge from the separator into the nearby waterway.
- J&K reported that the entire drainage system was in poor condition and of questionable operation. Significant modification of the system was reported which resulted in partial blockage and potential leaks. Due to the decommissioning of the Effluent Treatment Plant, the remaining system was reported to be of a relatively small capacity for the size of the site, resulting in significant overloading during periods of heavy rainfall.

The nature and fate of stormwater from the Roundhouse building on-site is further discussed as an outcome of this investigation in Section 6.4.

2.4.2 Soils and geology

Soils

Based on a review of the *Atlas of Australian Soils*, soils beneath the site are characterised as Sodosol described as the following:

Sodosol: Undulating to hilly country: chief soils are hard neutral and acid yellow mottled soils (Dy3.42 and Dy3.41) in a general pattern as follows: (i) undulating to hilly slopes of various (Dy) and (Dr) soils, including (Dy3.41), (Dy3.42), (Dy3.2), (Dr2.2), (Dr2.4); (ii) (Dy3.42) and sometimes (Dr3.42) soils in basins which merge with unit Va21 and lower-lying sites generally; and (iii) less frequently (Gn2. 15) and (Gn2.25) soils on gently undulating areas, usually situated between (i) and (ii).

The soil profile observed during the DSI and Additional ESA were reported to consist of fill material which was reported to extend to depths of up to 2.5 m on-site, comprising spent coal ash and/or coal fragments, ACM and other buried waste material. Natural sandy clays and clays were reported to underlay fill material at the site to the maximum depth of investigation, being 10.0 m (Cavvanba, 2021a).

Geology

According to the *Goulburn 1:250,000 Geological Series Sheet 55-12* (Second Edition, 2013), the site is underlain by Cainozoic Aged alluvium consisting of gravels and sands overlying Palaeozoic Aged Gundary beds consisting of sandstone, siltstone volcanic mudstone and lithic-quartz sandstone.

2.4.3 Hydrogeology

According to the groundwater monitoring event completed by Cavvanba in February 2022, groundwater beneath the site was observed to be present within an unconfined water bearing zone in natural clays and sandy clays at depths of between approximately 3.5 m to 6.7 m below ground level. Groundwater was shallowest in the north-eastern portion of the site.

Groundwater elevations indicated that groundwater flow was predominantly in a northerly direction, generally aligning with the general topographic slope of the site and towards the Mulwaree and Wollondilly River.

It is important to note that groundwater flow direction can be influenced locally and regionally by not only surface topography, but recharge and discharge areas, horizontal and vertical inconsistencies in the types, location and orientation of subsurface soils or bedrock, and proximity to water extraction / pumping bores.

Groundwater Bore Search

A total of five registered groundwater bores were located within a 1,000 m radius of the site (Cavvanba, 2021a). Groundwater bore information from these bores has been provided within Table 2.1, below.

Table 2.1: Licensed bore summary

Bore ID	Registered use	Distance from site (m)	Geology	Depth (m)	Standing water level (m)
GW105739	Stock / Domestic Purposes	~195m (South)	Sand / Gravel / Clay	78.00	2.00
GW110381	Recreation (groundwater)	~689m (Northeast)	Gravel / Clay / Siltstone	54.00	5.00
GW064585	Stock / Domestic Purposes	~765m (North)	Clay / Gravel / Shale	15.80	-
GW071524	Monitoring	~887m (North)	Silty Sand / Silty Clay	6.50	5.30
GW102093	Domestic	~907m (Northeast)	Sandy Clay / Gravel / Shale	27.40	0.60

3.0 Previous environmental investigations

A review of previous environmental investigations was completed and summarised as part of the DSI (Cavvanba, 2021a). This was built upon in the most recent investigations reported in the Additional ESA (Cavvanba, 2021d), which is summarised below. Since the ESA in 2021, there has been a groundwater monitoring event completed in February 2022, two asbestos management events, and a waste assessment of grit blasting media. A brief summary of these is also provided below.

Relevant information and the associated data were used to facilitate the DQO process for this Supplementary DSI.

3.1 Additional environmental site assessment

Cavvanba was commissioned by ARTC to undertake an Additional ESA at the site, as reported in *Additional Environmental Site Assessment – Goulburn Roundhouse, 12 Braidwood Road, Goulburn NSW 2580* (Cavvanba, 2021d).

The objectives were to supplement previous investigation data following the DSI, and further understand and delineate contamination associated with the following data gaps:

- the presence and significance of total recoverable hydrocarbons (TRH) in groundwater;
- the nature and extent of site infilling and waste disposal areas;
- the nature and extent of asbestos in and on soils; and
- where achievable, further understand the site history, features and operations to determine whether further investigation is warranted.

The scope of works included the drilling and installation of groundwater monitoring wells at five locations for plume delineation purposes, advancement of thirty test pits to a maximum depth of 2.5 m and gauging and sampling of all newly and existing groundwater monitoring wells.

The following key findings were identified:

TRH in groundwater

- There was no evidence of gross petroleum hydrocarbon contamination observed in soil during the delineation of petroleum hydrocarbon impacts in the vicinity of the former diesel refuelling gantry (MW02).
- Petroleum hydrocarbon concentrations in monitoring well MW02 were reported to be limited in extent, having been delineated by a reduction in dissolved phase concentrations to the north, and absence of detectable petroleum hydrocarbon concentrations in existing and newly installed monitoring well locations located down and cross-hydraulic gradient (MW09 to MW12). However, some uncertainty remained regarding the two orders of magnitude reduction in contaminant concentrations and presence of trihalomethanes in groundwater at MW02.

Site infilling and waste disposal

- Test pit locations were advanced to delineate waste disposal areas previously identified in the DSI.
- Lead was reported to exceed the health investigation level of 1,500 mg/kg at one location, within the known fill area to the east of former workshop / machine shop. Lead concentrations in soil were reported below the adopted health investigation level in all other samples collected from surficial soils and fill material as part of this investigation.

• Asbestos containing material was identified in soil at one test pitting location. Nonfriable asbestos containing material was present within fill material from a depth of 1.7 m within the known fill area adjacent to the former workshop / machine shop in the southern portion of the site. Potential asbestos containing material fragments were not identified within any other test pitting locations advanced as part of the Additional ESA.

Groundwater monitoring

- Evidence of Light Non-Aqueous Phase Liquid (LNAPL) was not observed.
- Groundwater analytical concentrations were reported below the applicable CRC CARE HSLs for vapour intrusion.
- Dissolved phase hydrocarbon impacts were reported to be limited in extent, having been delineated by monitoring wells located within the site boundary.

Through the development and continual refinement of the conceptual site model, potentially complete source-pathway-receptor linkages resulting in a potential risk to human health receptors under a commercial/industrial land use scenario were identified which required further monitoring, remediation and/or appropriate management.

Outstanding data gaps included the following:

- the varying magnitude and trends of TRH in groundwater, particularly surrounding the former refuelling gantry and roundhouse where active maintenance was occurring;
- the integrity of the subterranean waste oil network within the roundhouse; and
- the complicated site history and operational changes on-site, and how this is contributing to on-site soil and groundwater contamination.

3.2 Groundwater monitoring event – February 2022

A groundwater monitoring event was undertaken in February 2022 based on recommendations outlined within the Additional ESA (Cavvanba, 2021d). The primary objective of the works was to re-evaluate groundwater conditions to further assess the nature and magnitude of TRH concentrations in groundwater, and whether further investigation was considered warranted.

The scope of works included groundwater level gauging and sampling at fourteen groundwater monitoring well locations. One sample of LNAPL collected from MW06 was also submitted for fingerprinting analysis.

The following key findings were identified:

- Groundwater standing water levels (SWLs) measured in metres below the top of the casing (mBTOC) (approximately flush to surface), ranged from 3.480 m at MW10 in the north-eastern portion of the site, to 6.711 m at MW02, in the north-western portion of the site. SWLs were reported to have increased since the 2020 monitoring event, with an increase of 2.1 m recorded at well locations MW05 and MW06.
- LNAPL was identified at a thickness of 0.16 m at monitoring well MW06, located adjacent to the Roundhouse building. LNAPL had not previously been detected at the site.
- Based on the hydrocarbon fingerprinting analysis performed, the LNAPL was reported to have a chromatographic profile typical of a mixture of severely biodegraded kerosene and diesel, or possibly degraded light fuel oil. It was further stated that the product was likely from a historic loss and not from a new or fresh release of product into the environment, with an estimated time of between 29 and 47 years.

- All remaining groundwater samples collected on-site were reported below the adopted CRC CARE health screening levels for vapour intrusion. The magnitude of the reported TRH detections were consistent with the groundwater monitoring event completed as part of the ESA (Cavvanba, 2021d).
- Trichloroethene (TCE) and cis-1.2-Dichloroethene (DCE) were detected in groundwater at one monitoring well location (MW12). DCE was reported below the NHMRC (2011) ADWG value of 60 μ g/L. TCE and/or DCE had not previously been detected in groundwater within any of the monitoring wells sampled on-site.
- The presence of dissolved phase petroleum hydrocarbon concentrations in groundwater at MW02 within the vicinity of the former refuelling gantry had reduced by two orders of magnitude since the installation of this monitoring well in 2020. Consistent with the findings of the Additional ESA (Cavvanba, 2021d), petroleum hydrocarbon concentrations at this location were considered to be limited in extent.

The presence of LNAPL within MW06, and TCE and DCE in MW12, both of which had not previously been detected on-site, introduced uncertainties in the current conceptual site model. Whilst an immediate risk to human health and/or the environment was considered unlikely, further investigation, including ongoing groundwater monitoring was recommended to determine the nature and extent of the identified impacts and to ensure the appropriate protection of groundwater human and ecological health.

3.3 Interim asbestos management

Cavvanba was commissioned by ARTC to conduct site inspection and ACM hand-picking exercises at the site in accordance with the requirements of the interim environmental management plan.

A hand-picking exercise was undertaken in February 2022. It was completed within the south-eastern portion of the site only, between the perimeter fence line and Braidwood Road. A total of 30 fragments of potential ACM were identified and removed as part of the works. All fragments were identified within the known fill area to the east of former workshop / machine shop.

At the time of reporting, an additional event has taken place, in June 2023, following the completion of the Supplementary DSI sampling and analysis program. The outcome of this is described in Section 11.1.

3.4 Grit blasting media

Cavvanba was commissioned by ARTC to undertake a waste classification assessment to support the off-site disposal of spent grit blasting media used at the site. The material was stored within the abrasive blasting area, as presented on Figure 2. The following key findings were noted:

- Approximately 35 m³ of grit blasting media was present, being stored within a shedlike enclosure with a concrete base.
- Elevated heavy metal concentrations were present within the material, with the following maximum concentrations reported:
 - lead at 6,400 mg/kg;
 - chromium at 470 mg/kg; and
 - nickel at 210 mg/kg.

4.0 Data quality objectives

Prior to commencement of the intrusive investigation program, Data Quality Objectives (DQOs) were established for the project in line with the requirements and process outlined in NSW EPA (2017) *Guidelines for the NSW Site Auditor Scheme (3rd edition)*.

These DQOs were developed to define the type and quality of data required from the site investigation program to achieve the project objectives outlined in Section 1.2. The DQOs were selected with reference to relevant guidelines published by the NSW EPA, Australian and New Zealand Environment and Conservation Council (ANZECC) and National Environment Protection Council (NEPC), which define minimum data requirements and quality control procedures. These decision rules were developed to refine the objectives of the data collection investigation, to ensure the data collected was representative and provided the necessary data to allow the evaluation of the sites land use suitability and assist in the development of remediation options.

The seven-step DQO approach, as identified in NSW EPA (2017) document, as applied to this assessment, is included as Appendix B.

5.0 Site investigation

The fieldwork program was undertaken in accordance with the DQOs, by Mr Zac Laughlan and Mr Cam Campbell of Cavvanba in April 2023. The fieldwork program comprised of the following:

- test pitting, hand auguring and soil sampling between 18 to 20 April;
- drilling, soil sampling and monitoring well installation on 20 and 21 April; and
- groundwater monitoring event on 26 and 27 April.

5.1 Stormwater and drainage investigation

Aqua Assets Pty Ltd was commissioned by ARTC to complete a stormwater and drainage investigation at the site in conjunction with, and in addition to the investigation works described herein. The works were completed as two separate events, in June and August 2023 and included the use of closed-circuit television (CCTV) pipeline inspections, drainage cleaning (combination water jet / vacuum) and pipeline repairs. The findings of these investigation works completed by ARTC and Aqua Assets were provided to Cavvanba in August 2023.

5.2 Rationale for sampling design

The investigation strategy was designed to further characterise and delineate known contamination areas, and within areas not previously investigated or where there was limited spatial coverage. A visual appraisal of surface soils for the presence / absence of ACM was also completed within the vicinity of each sampling location.. The rationale for the investigation can be summarised as follows:

Soil

• **Railway lines on-site**. A total of seven railway lines are present in the southern portion of the site, which are used as sidings to store locomotives and rolling stock. These railway lines have the ability to combine to form a single rail line which extends from the southern-most portion of the site to the northern portion (and off-site) via the roundhouse and turntable. The railway lines on-site were not previously investigated.

Surface soil sample locations were completed on a linear sampling pattern within the four-foot at an approximate rate of 1 sample per 33 m to appropriately characterise this feature. The exception to this was borehole location BH108, located within the roundhouse which was positioned immediately adjacent to the railway line to target borehole '5' completed by J&K in 1997. A total of 34 surface soil locations and 2 boreholes were completed to target this feature.

• **Southern portion of the site**. Further characterisation within areas of limited spatial coverage and within areas not previously assessed.

A total of eleven test pits were excavated using hand tools within this area.

• **North of the roundhouse**. Further characterisation within an area of limited spatial coverage.

A total of three boreholes and five surface soil locations were completed to further characterise this area.

• **Northern portion of the site**. Further characterisation within an area of limited spatial coverage.

A total of two surface soil locations and five test pits were excavated using hand tools within this area.

• **East of the roundhouse and surrounding the administration building**. Further characterisation within an area of limited spatial coverage.

A total of seven surface soil locations, six boreholes and two test pits were excavated using hand tools within this area.

Groundwater

• **Decommissioned diesel aboveground storage tanks and effluent treatment plant**. Further characterisation within an area of limited spatial coverage.

A total of three groundwater monitoring wells were installed within accessible areas on-site to target these features.

• **Groundwater monitoring event of all existing monitoring wells on-site.** To re-evaluate groundwater conditions underling the site and further assess the nature and magnitude of groundwater contamination.

Surface Water

• **Sub-terranean drainage system and waste oil network.** Two surface water samples were collected from arrestor pits downgradient of the roundhouse.

5.3 Methodology

5.3.1 Soil investigation method

Soil investigation and sampling activities were undertaken in accordance with Cavvanba's fieldwork procedures. Sampling locations are presented on Figure 3a and 3b.

All boreholes were advanced to a maximum depth of 1 m using a hand auger. A mechanical track mounted drilling rig (Christie Rig 27) fitted with a solid flight auger was then used advance groundwater monitoring well locations (MW101 to MW103) to a maximum depth of 8.0 m.

Test pits were advanced using hand tools to a maximum depth of 0.6 m. Test pits were initially excavated using a shovel, to a depth of approximately 0.3 m followed by a 150 mm diameter hand auger to the required depth. The dimensions of each test pit were approximately 0.3 m by 0.5 m in area such that a larger area of the subsurface could be exposed to enable an appropriate visual appraisal of surface and shallow soils. In areas where grass cover was present, the grass was initially removed and inspected prior to further excavation.

The investigation included a visual appraisal of surface and subsoils followed by a quantitative asbestos assessment of fill material. A 10 Litre (L) sample volume was collected at all test pit and borehole locations, which were sieved using a 20 mm and 7 mm sieve, and then visually inspected by spreading the contents of the sample on a plastic liner. All debris was carefully inspected for the potential to be ACM. Any potential ACM was logged and representative samples were collected for laboratory analysis. The immediate surrounding area and full extent of the soil profile was visually inspected for the presence of potential ACM, including building and construction materials or other debris which could indicate the potential presence of ACM within the area.

Soil properties were logged by an appropriately trained and experienced environmental scientist in general accordance with *Australian Standard AS 1726-1993*. Representative

soil samples were collected for laboratory analysis at selected locations, based on visual and/or olfactory evidence of the following:

- multiple layers of fill material;
- changes in the soil profile; and
- potential contamination.

Representative soil samples were collected, to the extent practicable, in accordance with techniques described in *Australian Standard AS4482-2005* (Parts 1 and 2) to maintain the representativeness and integrity of the samples.

Field screening was conducted in accordance with Cavvanba's fieldwork procedures using a calibrated photo-ionisation detector (PID) fitted with a 10.6 eV lamp. Calibration certificates are included as Appendix C. Where practicable, soil samples were collected at the surface, 0.3 m and at 0.5 m intervals or where significant geological changes, or evidence of potential impact was observed, until termination. Soil samples were placed in a "zip-lock" bag, sealed and the resultant headspace was screened for the presence of ionisable volatile compounds. Where the presence of volatiles or other impact was suspected, additional samples were collected.

Soil sampling techniques which minimised the potential for loss of volatiles were utilised. Where the collection of undisturbed samples was not possible, the potential for loss of volatiles was minimised by sampling from larger clods of soil and minimising the duration between sample extraction and placement into the sample container. Representative soil samples were placed directly into the sample containers. Sample jars were sealed and immediately placed in an insulated cooler, on ice, and stored to minimise the potential loss or degradation of volatile compounds. Samples were shipped under chain of custody documentation to the NATA accredited analytical laboratory.

Test pit and borehole reinstatement

Upon completion, all test pits and boreholes were backfilled in reverse order, to the extent practicable, to prevent excessive vertical mixing of potentially contaminated subsurface material. Additionally, the grass surface covering was returned to each location.

Decontamination procedure

All down-hole drilling and sampling equipment were decontaminated by initially removing any residual soil with a stiff brush, followed by washing the equipment with Neutracon $^{\odot}$ / potable water solution.

5.3.2 Groundwater and surface water investigation method

Monitoring well installation

Three soil bores were converted to groundwater monitoring wells in accordance with Cavvanba's fieldwork procedures. The newly installed groundwater monitoring well locations are presented on Figure 3b.

The following methodology was implemented to install groundwater monitoring wells, with well construction detailed presented within the borehole logs, included as Appendix D:

 Monitoring wells were constructed of heavy duty 50mm diameter class 18uPVC with factory slotted screen (0.4mm slots) and well casing. Where practicable, the wells were screened within groundwater bearing strata in accordance with Cavvanba's fieldwork procedures and constructed to allow the potential ingress of non-aqueous phase liquids (NAPLs), if present.

- The well casing and screen were inserted into the borehole. Washed and graded filter sand was poured into the annulus between the well screen and borehole wall, to a level such that sand covered the screened level and extended above the top of the screen.
- Bentonite was then poured on top of the sand and hydrated to effectively seal off the well from surface water or perched / shallow groundwater inflows, and finished with a flush mounted gatic cover or monument.

Monitoring well development

Following monitoring well installation, each monitoring well was developed to remove any fine materials potentially introduced during drilling, and to optimise hydraulic conductivity with the surrounding aquifer. Wells were considered developed when either a minimum of 10 well volumes had been removed or when water quality parameters had stabilised. The removal of water was undertaken using a new disposable bailer dedicated to each location, as noted on the borehole logs.

Monitoring well construction details are presented within the borehole logs in Appendix D.

Groundwater and surface water sampling protocol

Groundwater purging and sampling was conducted on 26 and 27 April 2023, by Mr Zac Laughlan of Cavvanba. Prior to purging, wells were gauged with an interface probe to assess the depth of groundwater across the site, and presence / absence of NAPL. Groundwater samples were collected directly from single use High Density Polyethylene (HDPE) bladders and tubing using low flow sampling techniques in accordance with *Cavvanba Fieldwork Procedures for Groundwater sampling*.

Field parameters, including pH, redox potential (Eh), dissolved oxygen (DO), electrical conductivity (EC) and temperature were measured using a water quality meter (HAN 98194-4M), which was calibrated prior to use.

The surface water sample was collected as a grab sample directly from the stormwater arrestor pits on-site.

During sample collection and equipment decontamination, disposable nitrile gloves were used to prevent dermal contact with water. Samples were collected directly from dedicated tubing and placed into appropriately preserved, laboratory prepared sample containers. Groundwater samples collected for metals were filtered in the field using a 45-micron minisart filter. All surface water samples collected for metals were unfiltered (i.e. total metals). The containers were filled to minimise headspace, before being sealed and appropriately labelled. Labels included the following information:

- sample identification number;
- sampler;
- job number; and
- date of collection.

Samples were sealed and immediately placed on ice in a cooler to minimise potential for degradation of the sample. Samples were shipped under chain of custody documentation to the NATA accredited analytical laboratory.

Groundwater and surface water field forms, including calibration records are included as Appendix C. Groundwater monitoring well installation details are included within the borehole logs, included as Appendix D.

Per- and poly-fluoroalkyl substances (PFAS)

No Teflon containing, or Teflon coated sample equipment or clothing was used / worn during sampling. Prior to sampling, hands were washed with soap and rinsed thoroughly in tap water before donning a clean, new pair of disposable nitrile gloves for each sample collected.

Survey

The location and relative level (AHD) of each newly installed groundwater monitoring well was surveyed by a registered surveyor from Road and Civil Surveys (RCS) on 27 April 2023. The elevation of the highest point of the top of the uPVC well casing was surveyed to facilitate appropriate groundwater elevation calculations and groundwater flow direction interpretations. Groundwater monitoring well elevations and location details are presented in Tables 8 and 9. Survey data has been provided within Appendix C.

5.4 Assessment criteria

The adopted Tier 1 assessment criteria have been sourced from guidelines made or approved under the *Contaminated Land Management Act (1997)*, and were based on a review of the following reference documents:

- ASC NEPM (2013) Schedule B1: Investigation Levels For Soil and Groundwater (2013).
- CRC Care Technical Report no. 10 Health screening level for petroleum hydrocarbon in soil and groundwater Part 2: Application Document (CRC Care, 2011).
- National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines (Updated March 2021) (NHMRC (2011) ADWG).
- PFAS National Environmental Management Plan Version 2.0 January 2020 (PFAS NEMP) (Heads of EPAs Australia and New Zealand (HEPA), 2020).

In September 2011, CRC CARE published published technical report No. 10, *Health Screening Levels for petroleum hydrocarbons in soil and groundwater*. This document provides HSLs for human exposure to volatile organic compounds based upon the site-specific soil compositions of the potential vapour pathway in conjunction with classifications of receptor land-uses to more accurately assess risk to potential receptors. These HSLs have been applied to the data collected during these investigations with the following considerations:

- The general land use in the immediate vicinity of the area where contamination has been identified is commercial/industrial (on-site).
- The natural lithology encountered throughout the investigation was primarily clay. However, for conservative purposes and given the presence of fill material, a sand geology has been adopted.
- Depth to groundwater within monitoring wells sampled across the site during the current and previous rounds of monitoring has ranged between be 3.5 m and 8.3 m.

5.4.1 Soil

In accordance with the ASC NEPM (2013), health investigation levels are scientifically based, generic assessment criteria designed to be used in the first stage of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario. For soil,

the appropriate and adopted criteria are based on the ASC NEPM (2013), in particular the health investigation levels (HILs), environmental investigation levels (EILs), environmental screening levels (ESLs) and health screening levels (HSLs) applicable for commercial/industrial land use scenarios.

These land use scenarios make generic estimates of potential human exposure to soil contaminants, scientifically based assumptions are made about the environment, human behaviour, the physicochemical characteristics of contaminants, and the fate and transport of contaminants in soil, within each of the land use categories. The HILs are derived by integrating these exposure estimates with toxicity reference values, that is, tolerable daily intakes, acceptable daily intakes and reference doses, to estimate the soil concentration of a substance that will prevent exceedance of the toxicity reference value under the defined scenario. The toxicity reference values are generally based on the known most sensitive significant toxicological effect. It is acknowledged that the dominant users of commercial/industrial sites are adult employees, who are largely involved in office-based activities or light indoor industrial activities, and the outdoor areas are largely covered by hardstand with some limited areas of landscaping or lawns and facilities. Opportunities for direct access to soil by employees using these facilities are likely to be minimal, but there may be potential for employees to inhale, ingest or come into dermal contact with dust particulates derived from soil on-site.

Health screening levels

HSLs for commercial/industrial space (HSL-D) and intrusive maintenance workers were adopted. This screening criterion is designed to assess the potential risk to human health via inhalation of petroleum compounds. Direct contact criteria for petroleum hydrocarbons available through CRC CARE (2011) was applied to the upper two metres of the soil profile where a pathway may be present.

Ecological screening and investigation levels

The ASC NEPM (2013) ecological investigation levels (EILs) and ecological screening levels (ESLs) for commercial/industrial sites are appropriate for the assessment of risks to ecological receptors. The EILs are numerical limits that are designed to protect soil and terrestrial flora and fauna (including pets and wildlife) and soil microbial processes from experiencing substantial deleterious effects caused by contamination. The ASC NEPM (2013) provides EILs for aged and fresh contamination for metal constituents including nickel, chromium, copper, zinc and lead. For the purposes of EIL derivation, a constituent incorporated in soil for at least two years was considered to be aged. Given the site has been operational since approximately the early 1900's, any identified impacts are likely to be primarily related to aged contamination. Therefore, EILs for aged contamination have been adopted.

Commercial and industrial land, particularly in long-established industrial areas, is often heavily contaminated by past activities or fill material used to level the area. In these cases, jurisdictions may determine that HILs are the most appropriate soil quality criteria and that EILs are not applicable. In many cases, the only generic ecological value for this land use will be 'transitory wildlife' (ASC NEPM, 2013). Based on this, the site-specific parameters (i.e. soil pH and cation exchange capacity) from the previous DSI (Cavvanba, 2021a) were not taken into consideration when deriving site specific criteria for assessment of fill material during this investigation. A more conservative approach was undertaken through the use of the generic EILs for commercial/industrial sites utilising reference values for typical Australian soils, based on ASC NEPM (2013). This includes the following soil characteristics:

- pH of 6;
- clay content of 10%;
- cation exchange capacity of 10 cmol/kg; and
- organic carbon content of 1%.

The ambient background concentrations (ABCs) have not been calculated for the site, and have been assumed to be zero. This approach has been deemed appropriate to assess the potential risk to ecological receptors during remediation and ongoing management of the site.

Aesthetic considerations for petroleum hydrocarbons – management limits

Petroleum hydrocarbon data collected during this investigation was also screened against petroleum hydrocarbon management limits (management limits) according to ASC NEPM (2013). The management limits are designed to protect against fire and/or explosion hazards, effects of hydrocarbons on buried infrastructure and the formation of NAPL. These criteria are not used for risk assessment purposes, however, are taken into consideration when determining if issues exist on site which may require management. Management limits have been included to avoid or minimise these potential effects.

Asbestos

An appropriate assessment of asbestos is undertaken in stages, with the first stage being an assessment of the type and condition of the asbestos or ACM. Once this has been established, a health screening level can be applied to the relevant type of asbestos, which is further discussed below.

The ASC NEPM (2013) summarises typical asbestos contamination into three groups, being:

- **ACM** is asbestos containing materials, bonded in a matrix such as cladding, fencing or vinyl tiles, that will not pass through as 7 mm x 7 mm sieve. ACM can usually be detected visually.
- **FA** is fibrous asbestos, including friable or severely weathered ACM. FA can usually be detected visually.
- **AF** is asbestos fines, including free fibres, small FA bundles, and ACMs that can pass through a 7 mm x 7mm sieve.

The assessment of non-friable ACM is the recommended method to address total asbestos contamination where friable asbestos (FA) and asbestos fines (AF) derived from non-friable ACM are not likely to be significant. Non-friable ACM in good condition usually presents a low risk to human health. If the main form of asbestos is ACM, an assessment for free fibres is not warranted where:

- < 10% of the total ACM is significantly damaged (ACM pieces less than 7 mm x 7 mm are noted); or
- ACM cannot be crushed/crumbled with hand pressure.

The ASC NEPM (NEPC, 2013) states that for non-friable asbestos cement fragments in reasonably good condition, it can be assumed that the distribution of any co-located asbestos fines associated with ACM is likely to be less than 10% of the total material present. In these cases, it can then be assumed that asbestos fines impacts are trivial and unlikely to exceed 0.001 % w/w asbestos across the soil profile, and therefore not present an unacceptable risk of airborne asbestos fibres, and not require sampling for asbestos fines.

Health screening levels for non-friable ACM are provided in ASC NEPM (NEPC, 2013), which have been summarised in Table 5.1, below.

	Health Screening Level (weight/weight)				
Form of asbestos	Residential A	Residential B	Recreational C	Commercial/ Industrial D	
Bonded ACM	0.01%	0.04%	0.02%	0.05%	
FA and AF (friable asbestos)	0.001%				
All forms of asbestos	No visible asbestos for surface soil (top 10 cm should be free of all visible asbestos)				

Table 5.1: Health screening levels for asbestos contamination in soil

For this site, the Commercial/Industrial D criteria of 0.05% is applicable given the current land use scenario. At these concentrations, non-friable ACM is unlikely to generate elevated levels of airborne fibres, however it is acknowledged that some non-friable fragments may remain intermixed within the soil.

5.4.2 Water

The assessment criteria adopted for groundwater have been classified according to the CRC CARE criteria and compared to the appropriate HSLs. The CRC CARE (2011) Part 2: *Application document* states that the selection of the appropriate soil category is significant for volatile chemicals, as it can affect the rate of vapour transport and hence the value of the HSLs for vapour inhalation. Determining which soil classification applies at a site may be established by grain size analysis, or by visual observation. In order to screen groundwater results against relevant criteria, Cavvanba adopted a visual observation approach to determine the appropriate soil category. In general, the dominant category of the soil overlying the source of contamination is clay. However, for conservative purposes and given the presence of fill material, the adopted HSLs were based on a sand geology, and an arbitrary depth to groundwater of between 2 to 4 m.

The NHMRC (2011) ADWG and *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (http://www.waterquality.gov.au/anz-guidelines as accessed 5 August 2021) (ANZG 2018) provides assessment criteria for the protection of drinking water and freshwater environments, respectively. This criterion has been adopted as Tier 1 criteria with their applicability further discussed in Section 8.0.

In accordance with ANZG (2018), a level of protection is defined as the degree of protection afforded to a water body based on its ecosystem condition (current or desired health status of an ecosystem relative to the degree of human disturbance. The level of protection informs the acceptable water / sediment quality for a waterway. There are three recognised categories of current or desired ecosystem condition in the water quality guidelines, the level of protection corresponds to the following ecosystem condition categories:

- high conservation or ecological value systems;
- slightly to moderately disturbed systems; and
- highly disturbed systems.

The general policy nationally is that the level of protection applied to most waterways is the protection of 95% of freshwater species. A lower level of 80% protection may apply to 'highly disturbed' systems, however, the 80% protection level may only be considered as a short-term measure (e.g. a maximum of five years in many cases), with the aim of eventually restoring it to the 95% status. It is not acceptable to allow poor environmental management to continue beyond the short term. A 95% species protection levels is to be applied for slightly to moderately-disturbed ecosystems (most urban catchments), and the 99% species protection levels for pristine or vulnerable ecosystems, or where the contaminants are intractable (e.g. bioaccumulative).

Water hardness

Increases in water hardness reduce the toxicity of some metals. The hardness corrections used in the ANZECC & ARMCANZ (2000) guidelines followed those used by the United States Environmental Protection Agency. All toxicity test endpoint values were adjusted to a standard hardness value of 30 mg CaCO₃/L, which was considered appropriate for the generally soft waters present in Australia and New Zealand. These corrections were largely based on acute toxicity data for fish but were being applied to modify guideline values based on chronic toxicity data. Hardness has a significant influence on the toxicity, with chromium (III) being more toxic in soft water. If the water being examined has a hardness greater than 30 mg CaCO₃/L, then it is appropriate to modify the default guideline value for that hardness.

Table 3.4.3 and Table 3.4.4 within the ANZECC & ARMCANZ (2000) guidelines provide hardness-dependent algorithms and approximate factors for modifying trigger values for select metals; cadmium, chromium (III), lead, nickel and zinc. Where applicable, these hardness-dependent algorithms have been applied to the adopted ecological screening criteria.

PFAS

For PFAS, the *PFAS National Environmental Management Plan Version 2.0 – January 2020* (PFAS NEMP) (Heads of EPAs Australia and New Zealand (HEPA), 2020) provides the necessary information on establishment of an action level for generic uses.

For groundwater and surface water, the drinking water quality (Australian Government Department of Health, 2019) and recreational water quality (NHMRC, 2019) guideline values have been adopted for assessment against human health. The freshwater 99% species protection – high conservation value systems have been adopted for assessment of ecological water quality (Canadian Federal Environment Quality Guidelines, 2018). The application of this criterion will be used in decision making and incorporated into the conceptual site model.

The available criteria consists of perfluorooctane sulfonate (PFOS), Perfluorooctanesulfonic acid (PFOA), perfluorohexane sulfonate (PFHxS), and sum of PFOS and PFHxS.

5.5 Laboratory analysis

Soil, groundwater and surface water samples were collected and analysed for a range of the following potential and known COCs, and chemical attributes:

- total recoverable hydrocarbons (TRH);
- benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN);
- polycyclic aromatic hydrocarbons (PAHs);
- heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn);
- volatile organic compounds (VOCs);
- organochlorine and organophosphate pesticides (OCPs and OPPs);
- per-and polyfluoroalkyl substances (PFAS);
- chromium (III) and chromium (VI);
- hardness;
- natural attenuation parameters, including nitrate, sulfate, ferrous iron, methane and manganese; and
- asbestos (presence / absence).

5.6 Data usability

A background to data usability is provided in Appendix E. All site work was completed in accordance with Cavvanba's fieldwork procedures, including a QA/QC program.

A data usability assessment has been performed for the sampling undertaken during this investigation, as summarised in Appendix E and includes the following:

- summary of field quality assurance/quality control;
- field quality control soil samples summary; and
- summary of laboratory quality assurance/quality control.

Overall, the data usability assessment shows that the data is of suitable quality to support the conclusions made in this report.

6.0 Observations

6.1 Soil conditions encountered

Detailed descriptions of the site geology are presented in Table 1 and within the borehole and test pit logs, included as Appendix D. A photographic log is provided as Appendix F.

The key field observations made during the soil investigation in April 2023 are outlined below. Asbestos observations are relevant to the site condition prior to the interim asbestos management event described in Section 3.3 and Section 11.1:

- The generalised soil profile observed within the surface samples, boreholes and test pits advanced across the site consisted of a black sandy gravel / ash fill material of varying thicknesses to an approximate depth of 0.5 metres overlying natural silty / sandy clays as presented in Photograph 11.
- The soil profile observed during the advancement of groundwater monitoring wells MW101 to MW103 in the northern portion of the site, consisted of a light brown sandy gravel fill material to a maximum depth of 0.9 m (MW101), underlain by a natural silty / sandy clay to the maximum depth of investigation of 8.0 m as presented in Photograph 18.
- Anthropogenic material, including ash, glass, plastic, concrete, bricks, tiles, rubber and metal were observed in fill material in the majority of locations across the site.
- PID field screening provides a semi-quantitative indication of the potential presence of petroleum hydrocarbons in soil. PID field screening results were reported at a maximum concentration of 3.5 parts per million (ppm) (isobutylene equivalent) within fill material collected at surface sample location SS105. Petroleum hydrocarbon staining, consistent with oil and grease, was present within the fourfoot of the railway lines in the southern and north-western portions of the site as presented on Photograph 13. These stains appeared superficial and did not appear to extend below the immediate ground surface. This is conservatively estimated to be less than 0.2 m depth.
- A slight petroleum hydrocarbon (diesel-like) odour was noted within surface fill material during the advancement of groundwater monitoring well MW103, corresponding to a PID field screening concentration of 1.2 ppm. Petroleum hydrocarbon odours or staining were not identified beyond a depth of 0.6 m at MW103 and during the advancement of the remaining groundwater monitoring wells.
- Potential ACM was identified to be widespread <u>on soils</u> within areas previously identified during the DSI and Additional ESA. However, was also observed to extend into the following areas as presented on Figures 5a and 5b:
 - isolated fragments within the four-foot of railway lines in the southern portion of the site;
 - high frequency of ACM within the location of the former maintenance pits and sub-terranean waste oil line, being Bays 1 to 15 which were observed to have been filled; and
 - isolated fragments within the area immediately surrounding and to the east of Building 8.
- Potential ACM was identified <u>in soils</u> as part of this Supplementary DSI at the following locations:
 - TP109, comprising a single fragment weighing 13.6 grams, located immediately to the southwest of the roundhouse from a depth of 0.0 – 0.1 m;

- TP113, comprising multiple ACM fragments (< 10) intermixed within ash fill material, located within the filled area immediately to the east of the roundhouse from a depth of 0.4 m 0.5 m; and
- BH104, comprising layered ACM sheeting, located immediately adjacent to the north of the administration building from a depth of 0.4 m to the maximum depth of investigation.
- Friable asbestos was not identified.

6.2 Groundwater observations

All newly installed groundwater monitoring wells were developed following their installation on 21 April 2023. To enable sub-surface conditions to stabilise and groundwater levels to equilibrate, all newly installed monitoring wells were sampled more than 5 days following well installation and development on 26 and 27 April 2023. The newly installed wells were sampled along with the existing monitoring well network.

Groundwater gauging results and field quality parameters are presented in Table 9 and 10, respectively.

The key observations made during the groundwater investigation are outlined below, and where applicable, a comparison has been made to the most recent February 2022 groundwater monitoring event:

- Groundwater strike during installation of wells MW101 to MW103 was encountered at a similar depth of 6.5 m to 7.0 m within visibly saturated natural clays.
- Resultant standing water levels (SWLs) ranged from 4.190 m below ground level within MW102 in the north-eastern portion of the site, to 7.365 m within MW02, in the north-western portion of the site.
- Groundwater SWLs in pre-existing wells were reported to have lowered by an average 0.7 m since the 2022 monitoring event, as presented on the groundwater hydrograph included as Figure 6.1, below.
- MW08 located within the south-eastern portion of the site was dry during this round of monitoring.
- LNAPL was observed within MW06 with a measured thickness of 0.53 m. The LNAPL was reported as dark black in colour with a strong hydrocarbon / oil odour. The thickness has increased by approximately 0.37 m from the February 2022 monitoring event.
- Purged water during sampling was observed to vary from being clear to slightly cloudy. A slight hydrocarbon odour and sheen was detected during sampling at MW02.
- Groundwater electrical conductivity ranged from 668 µScm⁻¹ at MW06 to 2,032 µScm⁻¹ at MW102. The corresponding salinity was calculated to range between 0.428 ‰ at MW06 and 1.300 ‰ at MW102 indicating a freshwater to estuarine ecosystem (<0.5 ‰ freshwater; ≥0.5 to <25‰ estuarine) (Warne et al., 2018). Groundwater EC generally increased across the site when compared to the February 2022 monitoring round.
- Groundwater pH ranged from 6.00 at MW12 to 8.86 at W2, indicating neutral to slightly alkaline conditions which is generally consistent with the previous round of monitoring.

Figure 6.1: Groundwater standing water level hydrograph

Note: Excludes monitoring well data from wells W1 to W3 from 1997 (J&K, 1997).

6.3 Surface water observations

Surface water sampling locations are presented on Figure 3a and 3b. Surface water field quality parameters are presented in Table 10 and within field forms, included as Appendix C.

The key observations made during the surface water investigation are outlined below:

- Two surface water samples were collected from the arrestor pits downgradient of the roundhouse.
- Surface water appeared stagnant and was not flowing at the time of sampling.
- Electrical conductivity was measured to be 279 μ S cm⁻¹ at SW01 and 393 μ Scm⁻¹ at SW02. The corresponding salinity was calculated to be 0.179 ‰ and 0.252 ‰ indicating a freshwater environment (<0.5 ‰ freshwater; ≥0.5 to <25‰ estuarine) (Warne et al., 2018). This is consistent with that expected from stormwater.
- Surface water pH was measured at 7.29 at SW01 and 7.62 at SW02 indicating neutral conditions.
- Sediment accumulation was present in the base of the stormwater pit at sample location, SW02 as presented in Photograph 26.
- Surface water was generally observed to be clear to slightly cloudy. No hydrocarbon odours were observed at the time of sampling. A slight sheen was noted to be present at SW02 as presented on Photograph 26.

6.4 Stormwater and drainage observations

The stormwater and drainage investigation was completed by Aqua Assets under the guidance and direction of ARTC. Updated stormwater drainage plans (Figure B) and waste tracking documentation have been provided by ARTC and included within Appendix A. The following information was provided to Cavvanba by ARTC:

- The northern and southern arrestor pits were constructed of concrete and appeared to have been retrofitted to the existing stormwater system. Their construction appeared to be more modern than the remainder of the stormwater pits.
- All other identified stormwater pits were observed to be constructed of bricks and mortar. The integrity of most pits appeared to be in sound condition. One pit was observed to be damaged and is located immediately north of the northern arrestor pit.
- Stormwater from the site was observed to discharge off-site to the east via the belowground pipework at the following locations:
 - Northern discharge point: exits the site to the north of the former effluent treatment plant and former sewerage pumping station prior to intersecting Braidwood Road and discharge to the open stormwater drainage channel located on the eastern side of Braidwood Road as presented on Figure B; and
 - Southern discharge point: south of the administration building towards Braidwood Road as presented on Figure B.

Northern discharge point

- The northern discharge point receives stormwater runoff from the entire site, including the roundhouse. The roundhouse stormwater and subterranean waste oil network is interconnected and is further categorised as follows:
 - Central drainage line: Receives stormwater and locomotive maintenance wastes via the subterranean waste oil network from railway maintenance bays 34 to 42 which were operational at the time of the investigation;
 - West drainage line: Receives stormwater only from railway maintenance bays
 22 to 33 which are currently unused and partially filled with concrete; and
 - East drainage line: Receives stormwater and locomotive maintenance wastes via the subterranean waste oil network from railway maintenance bays 16 to 21 which were operational at the time of the investigation.
- Railway maintenance bays 1 to 15 were observed to have been filled within unknown fill material, including ACM (as discussed in Section 6.1). The pipework from this area previously discharged east towards the eastern drainage line, however was observed to be blocked at the time of the investigation.
- Stormwater and locomotive maintenance wastes from railway maintenance bays 34 to 42 discharges east towards the northern arrestor pit (and eastern drainage line), being surface water sample location SW02.
- Stormwater and locomotive maintenance wastes from railway maintenance bays 16 to 21 discharges east towards the southern arrestor pit, being surface water sample location SW01. Discharge from the southern arrestor pit was understood to be to the north, towards the northern arrestor pit as the pipework from this pit to the east (via the southern discharge point) was observed to be blocked at the time of the investigation.
- Stormwater via the west drainage line discharges from the roundhouse to the west into the railway corridor. It is understood that this reconnects at the northern discharge point, however this could not be confirmed.
- All stormwater and wastes from the operational railway maintenance bays discharge from the site via either the southern or northern arrestor pits, and the API separator in the northern portion of the site.
- ARTC observed evidence of oil within the base of six stormwater drainage pits within the eastern drainage line at the time of the investigation. These pits have been presented on Figure B.
- Approximately 2,000 litres of oily sludge was removed from the southern arrestor pit on 8 August 2023. However, despite the oily sludge present, there was no odour / sheen observed during sampling by Cavvanba (SW01). ARTC noted that the oily sludge was solidified, and required a combination of vacuum truck and approximately 2,000 L of high pressure water to assist with dislodging the material.
- There was no evidence of oily sludge accumulation within the northern arrestor pit. However, there was a slight sheen observed on the surface of the water during sampling by Cavvanba (SW02).
- Approximately 5,000 litres of oily sludge was removed from the API separator on 21 June 2023. The API separator contained the oily sludge in the entry (initial) compartment. There was no evidence of hydrocarbon product within the second compartment, nor within the subsequent stormwater drainage pit downgradient of the API separator. An additional oil skimmer system (decommissioned) was observed within the decommissioned effluent treatment plant that now acts as a stormwater drainage pit. There was no evidence of hydrocarbon products within this system.
- Despite the presence of oily sludge within the abovementioned API separator and arrestor pit, there was no evidence of petroleum hydrocarbon odours or sheens noted by ARTC on water present within the holding tanks (4 x over / under separators) located on the eastern side of Braidwood Road prior to discharge to the open stormwater drainage channel.

Southern discharge point

- The southern discharge point receives stormwater and locomotive maintenance wastes via the subterranean waste oil network from railway maintenance bays 16 to 21 which were operational at the time of the investigation. Stormwater and wastes from this area discharge to the southern arrestor pit.
- The pipework from the southern arrestor pit to the east was observed to be completely blocked with silt at the time of the investigation. The attempt to unblock this passage resulted in the discharge of high-pressure water to the ground surface, meaning there is the potential that there are integrity issues associated with the pipework in this area.
- Based on this, there was no evidence of off-site stormwater migration from this point and it is understood that stormwater and wastes discharge from the southern arrestor pit, north via the northern arrestor pit. There is the potential that stormwater migration from this location was otherwise discharging to soils.

7.0 Analytical results

7.1 Soil

Soil analytical results were compared to the relevant screening criteria as described in Section 5.4. The analytical results for this supplementary DSI have been summarised by contaminant in Table 7.1, below, and in their entirety in Tables 2 to 5. Laboratory certificates are presented in Appendix H.

	Health criteria	Ecological criteria	al Analytical data			
Analyte	HIL / HSL (mg/kg)	EILs/ESLs (mg/kg)	No. samples analysed	Max' (mg/kg)	Meets screening criteria?	No. above human health criteria
Metals						
Arsenic	3,000	<u>160</u>		<u>282</u>	<u>No</u>	0
Cadmium	900	-		20	Yes	0
Chromium	3,600	680		284	Yes	0
Copper	240,000	<u>310</u>	05	<u>2,280</u>	<u>No</u>	0
Lead	1,500	<u>1,800</u>	65	<u>2,260</u>	<u>No</u>	2
Nickel	6,000	290		77	Yes	0
Zinc	400,000	<u>750</u>		<u>2,520</u>	<u>No</u>	0
Mercury	730/180	-		0.2	Yes	0
TRH and BTEXN						
Benzene	31	75		<0.2	Yes	0
Toluene	99,000	135		<0.5	Yes	0
Ethylbenzene	27,000	165		<0.5	Yes	0
Xylenes	81,000	180		<0.5	Yes	0
Naphthalene	29,000	370		<0.5	Yes	0
F1 TRH C ₆ -C ₁₀	260 ¹	215	85	<10	Yes	0
F2 TRH >C ₁₀ - C ₁₆	1,000 ³	<u>170</u>		<u>250</u>	<u>No</u>	0
F3 TRH >C ₁₆ - C ₃₄	3,500 ³	<u>1,700</u>		<u>5,540</u>	<u>No</u>	0
F4 TRH >C ₃₄ - C ₄₀	10,000 ³	3,300		1,820	Yes	0
PAHs and Phenols						
B(a)P TEQ	40	-		1.3	Yes	0
B(a)P	-	1.4	85	1.0	Yes	0
Total (PAHs)	4,000	-		15.3	Yes	0
Asbestos	Asbestos					
Asbestos	Detect	Asbestos	5	-	No	-

Table notes:

- = not detected above the limit of reporting (LOR) / no applicable assessment criteria.

Refer to Tables 2 – 5 for a complete list of screening criteria.

1 – Health screening levels for commercial land use (sand soils), 0m to <1m. Exceedance is shown in **bold.**

2 – Health investigation levels for commercial landuse. Exceedance is shown in **bold**.

3 – Management Limits coarse soil – exceedance is shown in *italic*.

4– Ecological screening and investigation levels for commercial/industrial landuse. Exceedance is shown as <u>underline.</u>

Exceedances of the adopted soil assessment criteria were limited to the following:

- TRH F3 (>C₁₆-C₃₄) in excess of the adopted ecological screening levels in fill material at three locations (SS105, SS106 and SS125), with maximum concentration of 5,540 mg/kg;
- TRH F3 (>C₁₆-C₃₄) in excess of the adopted management limits in surface fill material at SS105 with a reported concentration of 5,540 mg/kg;
- lead in excess of the health investigation level and ecological investigation level in fill material at two locations (SS110 and BH108_0.3-0.4), with maximum concentration of 2,260 mg/kg;
- arsenic in excess of the adopted ecological investigation level in fill material at two locations (SS112 and TP104_0.0-0.1), with a maximum concentration of 282 mg/kg;
- copper in excess of the adopted ecological investigation level in fill material at twenty locations, with a maximum concentration of 2,280 mg/kg;
- zinc in excess of the adopted ecological investigation level in fill material at eleven locations, with a maximum concentration of 2,520 mg/kg; and
- the widespread presence of ACM on the surface of the site as presented on Figures 5a and 5b.

7.2 Groundwater

Groundwater analytical results were screened against the relevant criteria as described in Section 5.4. The analytical results have been summarised by contaminant in Table 7.2, below, and in their entirety in Tables 11 to 15. Laboratory certificates are presented in Appendix H. Historical groundwater analytical data has been included as Appendix G.

Angluta	Health criteria	Ecological criteria	Analytical data			
Analyte	ADWG / HSL D (µg/L)	ANZG (µg/L)	Samples analysed	Max' (µg/L)	Meets criteria?	No. above human health criteria
Metals						
Arsenic	10	13		7	Yes	0
Cadmium	2	0.2 / 0.97 ³		<0.1	Yes	0
Chromium		<u>1</u>		<u>26</u>	<u>No</u>	0
Trivalent Chromium	50	3.3 / 14.1 ³	15	<10	Yes	0
Hexavalent Chromium		<u>1</u>		<u>30</u>	<u>No</u>	0
Copper	2,000	<u>1.4</u>		<u>4</u>	<u>No</u>	0
Lead	10	3.4 / 32.2 ³		<1	Yes	0
Nickel	20	11 / 49.5 ³		2	Yes	0
Zinc	-	<u>8</u> / 36.0 ³		<u>11</u>	<u>No</u>	0
Mercury	1	0.06		<0.1	Yes	0
TRH and BTEXN						
Benzene	1 / 5,000	950		<1	Yes	0
Toluene	800 / NL	180		<2	Yes	0
Ethylbenzene	300 / NL	80	15	<2	Yes	0
Xylenes	600 / NL	75	15	<2	Yes	0
Naphthalene	-	16		<2	Yes	-
F1 TRH C6-C10	6,000	-		<20	Yes	0

Table 7.2: Groundwater analytical summary

Analista	Health criteria	Ecological criteria		Analytical data			
Andiyte	ADWG / HSL D (µg/L)	ANZG (µg/L)	Samples analysed	Max' (µg/L)	Meets criteria?	No. above human health criteria	
F2 TRH >C ₁₀ - C ₁₆	NL	-		740	Yes	-	
F3 TRH >C ₁₆ – C ₃₄	NL	-		1,560	Yes	-	
F4 TRH >C ₃₄ – C ₄₀	NL	-		2,300	Yes	-	
PAHs							
B(a)P	0.01	0.1		<0.5	Yes	0	
Phenanthrene	-	0.6	15	<1	Yes	-	
Total (PAHs)	-	-		<0.5	Yes	-	
VOCs							
Cis-1,2- dichloroethene	60	-		<5	Yes	0	
1,2- dichloroethane	-	1,900	15	<5	Yes	-	
Vinyl chloride	0.3	-	15	<50	Yes	0	
Chlorobenzene	300	55		<50	Yes	0	
Chloroform	-	370		<5	Yes	-	
PFAS							
PFOS	0.07 / 2	<u>0.00023</u>		<u>2.16</u>	<u>No</u>	2	
PFHxS	0.07 / 2	-		0.89	No	2	
Sum of PFOS & PFHxS	0.07 / 2	-	15	3.05	No	3	
PFOA	0.56 / 10	19		0.04	Yes	0	

Table notes:

- = no applicable assessment criteria.

Refer to Tables 11 – 15 for a complete list of screening criteria.

1. Drinking water criteria: Australian Government Department of Health, 2019.

2. Ecological criteria: ANZG – 95% protection of species – freshwater (µg/L)

3. Modified DGV based on an average water hardness of 176 mg $CaCO_3/L$ calculated from all sampled wells **Bold**/*italic*/<u>underline</u> = criterion exceedance.

It is acknowledged that the LOR for vinyl chloride (VC) is greater than two orders of magnitude than the criterion (i.e. 50 ug/L vs 0.3 ug/L). It is highlighted that other VOCs have not been detected, including those known to be precursors to VC such as Trichloroethene at an LOR of 5 ug/L, and therefore it has been treated as a non-detect.

All groundwater samples collected on-site were reported below the adopted CRC CARE HSLs for vapour intrusion.

Exceedances of the adopted groundwater assessment criteria (with consideration given to the water hardness adjustment) were limited to the following:

- total chromium in excess of the adopted 95% species protection levels at nine locations, with maximum concentration of 26 µg/L (W2);
- hexavalent chromium in excess of the 95% species protection levels at three locations, with a maximum reported concentration of 30 μg/L (W2);
- copper in excess of the 95% species protection levels at three locations, with a maximum concentration of 4 µg/L (W3);
- PFOS in excess of the adopted human health criteria at two locations, with a maximum concentration of 3.05 µg/L (MW05);

- PFHxS in excess of the adopted human health criteria at two locations, with a maximum concentration of 0.89 µg/L (MW05);
- sum of PFOS & PFHxS in excess of the adopted human health criteria at three locations, with a maximum concentration of 2.16 µg/L (MW05); and
- PFOS in excess of the 99% species protection levels at three locations, with maximum concentration of 2.16 μg/L (MW05).

7.3 Surface water

Surface water analytical results were screened against the relevant criteria as described in Section 5.4. The analytical results have been summarised by contaminant in Table 7.2, below, and in their entirety in Tables 11 to 15. Laboratory certificates are presented in Appendix H.

Applyto	Health criteria	Ecological criteria		Analytical data		
Analyte	ADWG (µg/L)	ANZG (µg/L)	Samples analysed	Max' (µg/L)	Meets criteria?	No. above human health criteria
Metals						
Arsenic	10	13		<1	Yes	0
Cadmium	2	<u>0.2</u>		<u>1</u>	<u>No</u>	0
Chromium	50	<u>1</u>		<u>3</u>	<u>No</u>	0
Copper	2,000	<u>1.4</u>		<u>38</u>	<u>No</u>	0
Lead	10	<u>3.4</u>	2	<u>14</u>	<u>No</u>	0
Nickel	20	11		2	Yes	0
Zinc	-	<u>8</u>		<u>11</u>	<u>No</u>	0
Mercury	1	0.06		<0.1	Yes	0
TRH and BTEXN						
Benzene	1	950		<1	Yes	0
Toluene	800	180		<2	Yes	0
Ethylbenzene	300	80		<2	Yes	0
Xylenes	600	75		<2	Yes	0
Naphthalene	-	16		<2	Yes	-
F1 TRH C6-C10	-	-	2	<20	Yes	0
F2 TRH >C10-C16	-	-		430	Yes	-
F3 TRH >C ₁₆ - C ₃₄	-	-		1,900	Yes	-
F4 TRH >C ₃₄ – C ₄₀	NL	-		640	Yes	-
PAHs						
B(a)P	0.01	0.11		<0.5	Yes	0
Phenanthrene	-	0.6	2	<1	Yes	-
Total (PAHs)	-	-		<0.5	Yes	-
VOCs						
Cis-1,2- dichloroethene	60	-		<5	Yes	0
1,2- dichloroethane	-	1,900	2	<5	Yes	-

Table 7.3: Surface water analytical summary

Australia	Health criteria	Ecological criteria	Analytical data			
Analyte	ADWG (µg/L)	ANZG (µg/L)	Samples analysed	Max' (µg/L)	Meets criteria?	No. above human health criteria
Vinyl chloride	0.3	-		<50	Yes	0
Chlorobenzene	300	55		<50	Yes	0
Chloroform	-	370		<5	Yes	-
PFAS						
PFOS	0.07 / 2	<u>0.00023</u>		<u>0.03</u>	<u>No</u>	0
PFHxS	0.07 / 2	-		0.03	<u>Yes</u>	0
Sum of PFOS & PFHxS	0.07 / 2	-	2	0.05	Yes	0
PFOA	0.56 / 10	19		<0.01	Yes	0

Table notes:

- = no applicable assessment criteria.

Refer to Tables 11 – 15 for a complete list of screening criteria.

1. Drinking water criteria: Australian Government Department of Health, 2019.

2. Ecological criteria: ANZG – 95% protection of species – freshwater (μ g/L)

Bold/*italic*/<u>underline</u> = criterion exceedance.

Exceedances of the adopted assessment criteria were limited to the following:

- cadmium, chromium, copper, lead, nickel and zinc in excess of the 95% species protection levels at SW02;
- zinc in excess of the 95% species protection levels at SW01; and
- PFOS in excess of the 99% species protection levels at SW02.

TRH was reported at a maximum concentration of 1,900 μ g/L (F3 >C₁₆ - C₃₄) at SW02 (>C₁₀ - C₄₀ concentration of 2,970 μ g/L), which correspond to field observations of a slight sheen at this location.

8.0 Discussion

8.1 Soil

This supplementary detailed site investigation involved an intrusive soil investigation and analytical sampling at 80 locations across the site to supplement previous investigation data, address data gaps identified by Cavvanba and reduce uncertainties in the assessment of remedial options and regulation of the site.

Exceedances of the human health commercial/industrial criteria were limited to lead and asbestos only. Ecological investigation / screening level exceedances were identified for TRH and metals within fill material at select locations. TRH F3 ($>C_{16}-C_{34}$) was also identified to exceed the adopted management limits in surface fill material at one location. The significance of these exceedances are discussed below, and where individual constituents are not discussed, there were no exceedances reported.

8.1.1 Lead

Lead was reported to exceed the adopted human health commercial/industrial criteria of 1,500 mg/kg at two locations with a maximum reported concentration of 2,260 mg/kg:

- Surface soil sample location SS110, located in the four-foot within the southern portion of the site with a reported concentration of 2,260 mg/kg.
- BH108 with a reported concentration of 1,910 mg/kg. BH108 is positioned immediately adjacent to the railway line to target borehole '5' where a lead concentration of 43,000 mg/kg was previously reported by J&K in 1997. Cavvanba understands that since then, this area was repaved by GLRPS with imported material including the central portion of the roundhouse, gravel access road and vehicle parking areas. The borelog at BH108 describes material at the surface to 0.2 m depth being a light brown sandy gravel and the lead concentration in this material was reported at 28 mg/kg. This supports the observation of repaving. However, the underlying dark brown sandy gravel is presumably the material previously tested by J&K in 1997, but lead concentrations were reportedly lower than previous, at 1,910 mg/kg. The lack of reproducibility is not unusual in investigations over 20 years apart, and it is possible that the previous detect by J&K are limited in extent, or the material has been moved during the repaving process. There is no documented remediation, therefore the area should remain an area requiring management.
- The extent of lead contaminated soils through data collected from this, and previous investigations can be summarised as widespread, but discontinuous within the southern and north-western portion of the site. The magnitude of which varies, due to a mosaic of historical activities and progressive infilling. Based on Cavvanba's understanding of historical railway-related operations on-site and within the Goulburn railway precinct, the presence of lead is likely associated with a combination of contamination sources, including the following:
 - historical burning of redundant timber railway carriages, which were known to contain lead-based paint and lead flashing;
 - the reuse of grit blasting media, and the associated process of grit blasting within uncontrolled areas of the site;
 - the deposition (through deterioration / mechanical disturbance) of lead-based paint to the ground surface; and
 - ash fill material which, in certain circumstances, is known to contain elevated lead concentrations, however there is no clear correlation between the presence of ash and elevated lead concentrations.

8.1.2 Asbestos in and on soil

A total of eight representative fragments of ACM were collected and analysed across the multiple locations where ACM was observed, both on the surface and within the subsurface fill material. Asbestos was detected by the laboratory in all fragments analysed. Therefore, it should be assumed that all similar material observed across the site is ACM. Friable ACM was not identified.

The ACM presence on soils was identified to be widespread within areas previously identified, however was also observed to extend into the following areas as presented on Figures 5a and 5b:

- isolated fragments within the four-foot of railway lines in the southern portion of the site;
- a high frequency of ACM beneath locomotives and rolling stock within the location of the former maintenance pits and sub-terranean waste oil line, being Bays 1 to 15; and
- isolated fragments within the area immediately surrounding and to the east of Building 8.

ACM was identified in soils at the following three locations:

- a single fragment at TP109, located immediately to the southwest of the roundhouse from a depth of 0.0 – 0.1 m;
- multiple fragments (<10) at TP113, located within the filled area immediately to the east of the roundhouse from a depth of 0.4 m 0.5 m; and
- layered sheeting at BH104, located immediately adjacent to the north of the administration building from a depth of 0.4 m to the maximum depth of investigation.

The identification of high frequency ACM on surface soil beneath locomotives and rolling stock within Bays 1 to 15 of the Roundhouse is, in Cavvanba's opinion, an indication that the maintenance pits within the portion have been filled with uncontrolled fill material. The use of uncontrolled fill containing ACM is consistent with that observed in the southern portion of the site and therefore, it should be assumed that ACM is present throughout fill material in this area.

The distribution of ACM can be summarised as widespread in and on soil within the southern and north-western portion of the site, and can generally be attributed to areas where historical filling has occurred and/or where known ACM buildings and structures have been demolished. The sporadic and unexplained nature of ACM in soils in some areas of the site (i.e. at BH104 from a depth of 0.4 m) indicates a risk of ACM being present within areas where known filling has occurred, and should therefore be managed accordingly. This also applies to the central portion of the roundhouse, gravel access road and vehicle parking areas which have been repaved with imported material by GLPRS, and likely provide a barrier to potential ACM fragments which may be present within underlying fill materials within this area. Management is currently guided by the IEMP, and routine hand-picking events are taking place to reduce the hazard. Refer to Section 3.3 and 11.1 for management events and discussion.

8.1.3 Ecological

Arsenic, copper, zinc and TRH F3 (>C₁₆-C₃₄) were reported to exceed the adopted ecological investigation levels within fill material at multiple locations advanced across the site. Cavvanba notes that the higher concentration samples were collected from the fourfoot of the railway lines in the southern portion of the site, which is linear railway corridor that is highly disturbed and is purposely phytotoxic to preserve the integrity of the railway line. These are a possible result of historical herbicide and pesticide application to the rail line and accumulation over time. There are also isolated EIL exceedances within other areas of the site, however these are most likely to be attributed to fill material rather than pesticide/herbicide application. The significance of these exceedances should therefore be considered in conjunction with health investigation level exceedances, and where isolated

exceedances are reported, they are unlikely to represent an unacceptable risk to ecological receptors on-site.

Whilst EIL exceedances are unlikely to drive remediation actions on this site, there is a relationship to be considered between phytotoxicity of metals in soils and ACM in soils. This manifests where phytotoxic conditions could result in a reduction of grass cover in areas where management of ACM in soils relies on the presence of grass cover to minimise erosion and dust generation. This relationship is not obvious at this stage, however it is plausible that other future stresses such as drought will strongly exacerbate metal phytotoxicity, and should therefore be considered in the IEMP.

8.1.4 Management limits / aesthetic issues

TRH F3 (>C₁₆-C₃₄) concentrations in soil were reported to exceed the adopted management limits at one surface sample location SS105 (5,540 mg/kg), within the four-foot railway tracks in the south-eastern corner of the site. The reported exceedance was attributed to oil and grease staining, which was evident at this location, and was observed to be present at isolated locations throughout the four-foot within the southern portion of the site. The staining identified throughout this area is common within railway siding areas where localised oil, fuel and/or grease deposits are present as a result of locomotives standing for long periods of time. Field observations at the time of sampling indicate that the staining is limited to surface soils only, being less than 0.2 m, however no analytical testing was undertaken to validate this observation.

Whilst the localised presence and magnitude of the reported concentrations are not considered to indicate the presence of LNAPL (CCME, 2008) or a potential risk of hazardous atmospheres, they do represent aesthetic issues that require appropriate management.

8.2 Groundwater

This supplementary detailed site investigation included the advancement of three boreholes and subsequent conversion to groundwater monitoring wells within accessible locations in the northern portion of the site, targeting the decommissioned diesel aboveground storage tanks and effluent treatment plant. The newly installed monitoring wells are considered to be adequate to intercept contamination as a result of these former contamination sources, if present.

The following discussion combines the information from these new monitoring wells with a complete groundwater monitoring event of the existing well network.

8.2.1 Groundwater flow direction

The measured standing water levels and calculated groundwater elevations indicate groundwater flow is consistent with that previously reported, predominantly flowing in a north-easterly direction, and aligning with the topographic slope of the site. However, there is localised variation in flows due to groundwater mounding which is likely associated with variable subsurface permeabilities from historical filling and on-site infrastructure. This is particularly relevant surrounding monitoring well MW12. Hydrogeological information has been presented on Figure 4.

It is acknowledged that a single arrow is not sufficient to illustrate groundwater flow on large sites and/or hydrogeologically complex sites. Piezometric contours measured at the site are presented on Figure 4, and are based on a contour interval of 0.1 m. On larger sites and in complex hydrogeological situations, contouring can be conducted using numerical models (i.e. using computerised kriging) where artificial detail can be introduced, particularly in under-sampled areas and at the edge of data coverage which can detract from actual conditions. However, the single arrow and inferred flow direction to the north-

east is appropriate based on the data points available at the time, and additional data is unlikely to materially affect this interpretation.

8.2.2 Petroleum hydrocarbon contamination

All groundwater samples collected on-site were reported below the adopted CRC CARE HSLs for vapour intrusion.

Based on the presence and distribution of petroleum hydrocarbon detections in groundwater through data gathered from this and previous monitoring events, there are two known and independent contamination source areas, referred to as locomotive maintenance bays and former diesel refuelling gantry. These are further discussed below.

Locomotive maintenance bays

LNAPL was identified at a measured thickness of 0.53 m in monitoring well MW06, located adjacent to the Roundhouse building. This was an increase of 0.37 m from the previous monitoring event completed in February 2022. This monitoring well was installed in 2020, targeted towards the Roundhouse Building maintenance pits, engine shed and subterranean waste oil line and is within an area where active locomotive maintenance is occurring (railway bays 16 to 21).

The hydrocarbon fingerprinting analysis completed in February 2022 reported the LNAPL had a chromatographic profile typical of a mixture of severely biodegraded kerosene and diesel, or possibly degraded light fuel oil with a carbon range of C_{11} up to C_{22} . There were no other petroleum products detected in the sample and the degree of degradation had an estimated time in the environment of between 29 and 47 years.

LNAPL has not been identified in any of the remaining groundwater wells across the site since monitoring in August 2020, and the absence of detectable dissolved phase hydrocarbons within groundwater monitoring wells cross – and down-gradient from this location indicates that the impact is localised and unlikely to be mobile. The increase in LNAPL thickness that has manifested during this monitoring event is likely associated with residual LNAPL saturation rather than an ongoing source. This is evident by water table fluctuations which can result in a dynamic change in the extent of the unsaturated and saturated zones, causing LNAPL to continuously redistribute vertically. As consequence, the amount of mobile LNAPL changes with time, however the LNAPL volume remains unchanged. A 2.1 m increase in SWLs was recorded at this location during the 2022 event, and a further 1.5 m decrease during this round of monitoring.

Shallow groundwater (<2 m) is not present across the site and shallow perched groundwater has not been identified by Cavvanba throughout any of the intrusive investigations completed since August 2020. The results of the hydrocarbon fingerprinting analysis and absence of detectable volatile hydrocarbons such as BTEXN, short chain or chlorinated hydrocarbons indicates that a potential vapour intrusion health risk as a result of the LNAPL presence at MW06 is low. This risk is further reduced due to the absence of routinely occupied buildings within this area, and assumed air exchange capacity of the large and open roundhouse building.

Diesel refuelling gantry

Dissolved phase petroleum hydrocarbon contamination in groundwater was reported at a maximum concentration of 40,700 μ g/L (F2 TRH >C₁₀ – C₁₆) at monitoring well location MW02, located immediately adjacent to the former diesel refuelling gantry during the DSI in 2020. A sudden, two orders of magnitude reduction in TRH concentrations was reported at this location during the subsequent Additional ESA in 2021, which was considered to be associated a ruptured belowground water pipe and potential potable water influence at this location. This was further evidenced by the detections of chloroform and

bromodichloromethane at this location which are present in drinking water as a result of the chlorination disinfection process.

TRH (F2 > $C_{10} - C_{16}$) concentrations within this monitoring well were reported at 740 µg/L during this groundwater monitoring event. Consistent with recent the most recent groundwater investigations completed in 2021 and 2022 at the site, petroleum hydrocarbon concentrations at this location remain low, and are localised, being delineated by down-gradient monitoring wells, however MW02 has shown a slight increase which may be an indication of a slow rebound.

Monitored natural attenuation data collected across the site, and the observed trends of selected monitoring wells up-gradient (MW04), within the source zone (MW02) and down-gradient (MW10) of the diesel refuelling gantry have shown that indicators are present to support natural attenuation. The significance of this is further discussed in Section 9.0.

8.2.3 Volatile organic compounds

TCE and DCE were detected in groundwater at monitoring well location MW12, at respective concentrations of 8 μ g/L and 5 μ g/L during the 2022 monitoring event. VOCs were not detected in groundwater within any of the monitoring wells sampled as part of this monitoring event.

The isolated detections and low concentrations identified in 2022 (i.e. < 10% criterion DCE) are unlikely to represent an unacceptable risk to human health or the environment on or off-site (delineation achieved and absence of a vapour intrusion pathway at this location), however their previous presence represents an ongoing data gap warranting inclusion in any ongoing monitoring or operational changes.

8.2.4 Per- and poly-fluoroalkyl substances

PFAS was included within the groundwater analytical suite for all groundwater monitoring wells sampled across the site. The nature and extent of PFAS impacts within groundwater is as follows:

- PFOS, PFHxS and the sum of the two were reported above the human health drinking water guideline value at monitoring well locations MW02, MW05 and MW103 on-site with a maximum reported concentration of 3.05 µg/L (Sum of at MW05).
- PFOS and Sum of PFHxS and PFOS were reported above the human health recreational water guideline value at monitoring well location MW05 only.
- Exceedances of the adopted 99% level of species protection criteria for PFOS were reported at monitoring well locations MW02, MW05 and MW12, with a maximum reported concentration of 2.15 μ g/L (Sum of at MW05). However, Cavvanba acknowledges that the laboratory limit of reporting (LOR) is greater than the 99% level of species protection criteria, and therefore may be an indication that additional exceedances are apparent in groundwater at other monitoring well locations on-site.
- Exceedances of the 95% level of species protection criteria for PFOS (0.13 μ g/L) was reported at one monitoring well location, MW05 only.
- The distribution of PFAS infers that the roundhouse is likely to be the source of contamination, however there is no clearly defined plume and the source is not well understood. It is plausible that the source of contamination is associated with a variety of activities undertaken at the site over many years, and its presence is an artifact of historical operations rather than a particular event (i.e. fire training / fire). This is also supported by the low concentration PFAS in surface water samples

collected, which are likely to detect an ongoing surface source such as exposed soil or concrete.

 Delineation has been partly achieved onsite, with the most obvious data gap being MW103, where PFOS is likely to be greater than the 99% species protection level given PFHxS was detected at 0.11 ug/L (the second highest recorded concentration of PFHxS), and its close proximity to the site boundary. Further investigation is required to assess whether an unacceptable risk to human health and the environment is present, and it should consider the distance to the nearest receiving surface water (Mulwaree River ~570 m), availability of municipal potable water and the absence of registered groundwater extraction bores down-gradient of the site.

8.2.5 Heavy metals

Consistent with the previous groundwater monitoring events, a limited number of exceedances of the adopted 95% level of species protection criteria were detected in monitoring wells on-site. These reported concentrations are not considered to represent an unacceptable risk to the environment based on the following:

- the reported concentrations are within a similar order of magnitude and/or only marginally in excess of the adopted criteria;
- groundwater beneath the site is not considered to be an ecological receptor of concern in itself; and
- the Mulwaree River is located approximately 570 m from the site boundary, and it is likely that physical and geochemical processes such as dispersion and adsorption would inhibit migration of this distance.

Water hardness corrections

Water hardness concentrations were reported to be highly variable across the site, ranging from 26 mg CaCO₃/L at MW10 to 488 mg CaCO₃/L at MW01, indicating soft to extremely hard conditions. Given this, an average hardness concentration of 176 mg CaCO₃/L was calculated and applied to the dataset from the reported hardness concentrations across the site.

This value was utilised to modify the guideline for cadmium, chromium (III), nickel, zinc and lead which have been presented within Table 12. The following can be summarised from this process:

- cadmium, chromium (III) and lead concentrations were not detected above the laboratory detection limits and as such, the modification does not affect the outcome of the results;
- nickel did not exceed the guideline value or the modified guideline value; and
- zinc exceed the guideline value at one location, however did not exceed the modified guideline.

Chromium

Speciation for chromium was conducted at all groundwater monitoring well locations onsite and reported:

- no exceedances of the human health drinking water guideline value of 50 μ g/L (CrVI); and
- three locations to exceed the 95% level of species protection criteria, with a maximum reported concentration of 30 µg/L.

The concentrations of CrVI were similar to the total chromium (i.e. CrIII + CrVI) concentration indicating that the detection of total chromium represents a likely CrVI concentration. Cavvanba therefore acknowledges that the resultant laboratory limit of reporting (LOR) for speciated CrVI of 10 μ g/L is greater than the 95% level of species protection criterion of 1 μ g/L. As a result, the lower concentration total chromium detects

which are less than 10 $\mu g/L$ but more than 1 $\mu g/L$ may be considered exceedances of the CrVI criterion.

The exact source of chromium in groundwater at the site remains uncertain, it is likely a legacy issue associated with a variety of historical operations completed at the site. Whilst exceedances of the 95% level of species protection criteria for chromium (VI) were identified on the boundary and delineation remains incomplete off-site, it is not considered to represent an unacceptable risk to human health or the environment based on the following:

- groundwater beneath the site is not considered to be an ecological receptor of concern in itself;
- there are no registered groundwater extraction bores down gradient of the site; and
- the Mulwaree River is located approximately 570 m from the site boundary and it is likely that physical and geochemical processes such as dispersion and adsorption would inhibit migration of this distance.

8.3 Stormwater and drainage

The stormwater and drainage investigation was completed by Aqua Assets under the guidance and direction of ARTC. The observations of which, were communicated with Cavvanba for inclusion within this report. Based on the observations made during this investigation, as outlined in Section 6.4, the following key data gaps have been identified:

- The integrity of the pipework and stormwater pits, particularly the pits constructed of bricks and mortar. Whilst the majority were observed to be in sound condition, there is the potential for soil and groundwater contamination as a result of their long history and use. With the exception of monitoring well MW06, gross petroleum contamination in groundwater has not been identified based on the monitoring well network available to date.
- The integrity of the pipework at the southern discharge point, and whether there are resultant soil and groundwater contamination issues associated with this.
- The chemical composition of stormwater at the discharge point (i.e. within the holding tanks) on the eastern side of Braidwood Road (for location refer to Figure B of Appendix A). This is particularly relevant given the identified freshwater guideline value exceedances discussed in Section 8.3.1, below.

8.3.1 Surface water

Exceedances of the protection of freshwater guideline value were reported for heavy metals and PFOS in surface water sampled from the northern and southern arrestor pits on-site. TRH concentrations were also reported above the laboratory limit of reporting at both locations, and a slight sheen reported within the northern arrestor pit. The significance of these are further discussed below.

Petroleum hydrocarbon contamination

TRH was reported at a maximum concentration of 1,900 μ g/L (F3 >C₁₆ – C₃₄) at SW02 and total >C₁₀ – C₄₀ concentration of 2,970 μ g/L. The corresponding field observations at this location reported a slight hydrocarbon sheen at this location as presented on Photograph 26.

The significance of this, and whether there is a potential unacceptable risk to ecological receptors off-site are to be further evaluated as part of future surface water monitoring.

Heavy metals

Select metals exceeded the 95% level of species protection criteria within the northern and southern arrestor pits on-site, as presented within Table 12. However, it is noted that all samples collected for metals analysis were analysed as total metals, i.e. unfiltered in the field. In accordance with ANZECC/ARMCANZ (2000), measuring the total (unfiltered) metal concentration in the first instance is the preferred approach as should the resultant concentration meet the guideline values, then no further investigation is required. A comparison of total concentrations will, at best, overestimate the fraction that is bioavailable as the major toxic effect of metals comes from the dissolved fraction.

Therefore, given the metals concentrations reported, field filtering should be considered as part of future surface water monitoring to enable a more appropriate assessment against the ANZECC/ARMCANZ (2000) freshwater guideline value.

Per- and poly-fluoroalkyl substances

Exceedances of the adopted 99% level of species protection criteria for PFOS was reported at surface water location SW02, being the northern arrestor pit on-site at a concentration of 0.03 μ g/L. However, consistent with groundwater, Cavvanba acknowledges that the laboratory limit of reporting (LOR) is greater than the 99% level of species protection criteria.

Exceedances of the 95% level of species protection criteria for PFOS (0.13 $\mu\text{g/L})$ were not identified.

Consistent with petroleum hydrocarbons, the significance of these exceedances, and whether there is a potential unacceptable risk to ecological receptors off-site are to be further evaluated as part of future surface water monitoring.

9.0 Monitored natural attenuation

9.1 Introduction

Natural attenuation is the process of breaking down contamination through one or a combination of the following processes:

- biodegradation;
- dispersion;
- dilution;
- sorption;
- volatilisation;
- chemical or biological stabilisation;
- transformation; and
- destruction of contaminants.

Natural attenuation via biodegradation has been assessed at the site using the following lines of evidence as per the technical guidance *CRC CARE Technical Report 15* (Beck and Mann, 2010), ASTM (2010), and US EPA (1997).

Natural attenuation processes are evaluated through three key lines of evidence:

- Primary evidence shrinkage of plume extent and attenuation of contaminant concentrations.
- Secondary evidence trends in chemical indicator parameters which support the presence of active biological degradation processes.
- Tertiary evidence demonstrated presence of bacterial fauna which are known to degrade the identified COPC.

9.2 Primary lines of evidence – concentration trends

9.2.1 LNAPL

There are two known and independent contamination sources areas based on the presence and distribution of petroleum hydrocarbon detections in groundwater. These are referred to as the locomotive maintenance bays and former diesel refuelling gantry. The presence of LNAPL in MW06 is likely as a result of the locomotive maintenance bays and its presence has remained consistent over the previous two rounds of groundwater monitoring. A maximum thickness of 0.53 m was recorded during this monitoring round, suggesting a potential increasing thickness trend.

A measurable thickness of LNAPL has not been recorded within MW02, being associated with the former diesel refuelling gantry. However, TRH (F2 TRH > $C_{10} - C_{16}$) concentrations previously reported by Cavvanba as part of the DSI exceeded the solubility limits, and therefore was likely an indication of a potential source of LNAPL at this location. This was further evidenced by J&K in 1997, where a TRH concentration of 870,000 µg/L (TRH > $C_{10} - C_{14}$) was reported for groundwater that had accumulated (and sampled) within a borehole during advancement in this area.

The presence of LNAPL or likely presence of LNAPL represents an ongoing source which will prolong any passive option such as MNA. The feasibility of LNAPL removal should therefore be considered as a remediation action to enhance MNA.

9.2.2 Dissolved phase

TRH concentration trends in groundwater monitoring well MW02, are presented on Figure 9.1, below. This well has been selected as it is located immediately adjacent to the former

diesel refuelling gantry and has been the focus of elevated TRH dissolved concentrations in groundwater since the first monitoring event within this area of the site (Cavvanba, 2021a).

Concentrations of TRH > C_{10} – C_{40} in MW02 have significantly decreased from 72,600 ug/L in August 2020 to 2,300 ug/L in the most recent sampling round, completed in April 2023. It is noted that there has been a slight increase in concentrations at this location between 2021 and the most recent round of monitoring as previously discussed in Section 8.2.2.

The decrease in TRH concentrations at this location is likely associated with a combination of the following factors:

- the likely potable water influence as discussed in Section 8.2.2;
- natural attenuation processes occurring at the site; and
- the primary source of contamination has been removed (i.e. refuelling no longer occurs within this area of the site).

A detailed Mann-Kendell analysis was undertaken to quantitatively assess the groundwater concentration trend. The analysis was conducted on groundwater monitoring well MW02, which had at least four data points to calculate the statistical trend for TRH > C_{10} - C_{40} concentrations. The results are summarised in Table 9.1 and presented graphically on Figure 9.2, below.

Table 9.1: Mann-Kendell analysis

Monitoring well	Analyte	Concentrations stable or generally decreasing?	Mann-Kendall P Value	Statistically confirms decreasing trend?
MW02	TRH > C10-C40	Stable	1.000	No

Notes:

- A P-value less than the significance level (alpha = 0.05), means the null hypothesis is rejected, and there is a decreasing trend in the data (shown as Yes).

 A P-value greater than the significance level (alpha = 0.05) means the null hypothesis is not rejected, and there is not sufficient evidence to conclude that there is a trend (shown as No).

Figure 9.1: F1 TRH > C₁₀ - C₄₀ trend - MW02 (Mann Kendall analysis)

Figure 9.2: TRH > C_{10} – C_{40} concentration trend – MW02

The observation of an apparent and statistically significant decreasing trend graph is complicated by the likely potable water influence and sudden reduction in TRH concentrations reported at MW02 as part of the Additional ESA completed in 2021. It is further complicated by the potential slow rebound that may be occurring. Regardless, and whilst there is an insufficient sample size to evaluate whether there is a statistically significant decreasing trend, it can be assumed that a stable trend is present to support the primary lines of evidence. This is also evidenced by the immobile nature of the plume.

It is worthy of note that downgradient monitoring well MW01 has persistently reported low and consistent concentrations of TRH (refer to Table 10 of Appendix G). A similar concentration has also been reported at MW103, which is further down gradient. It is plausible that this represents the migration of contamination from MW02, however the low concentrations and presence of other potential sources along the flow path make this difficult to confirm.

9.3 Secondary lines of evidence

Dissolved phase plumes undergoing biodegradation typically progress from aerobic to anaerobic conditions given sufficient time. The typical order of reactions is provided in Table 9.2, below.

Theoretically, each of the reactions listed below should be mutually exclusive and occur one after the other. However, groundwater geochemical conditions can vary significantly over short spaces. Since groundwater samples are a mix of the microenvironments sampled across the screen length, a groundwater sample can show evidence of multiple processes at once. The most common pattern observed at petroleum release sites is that iron reduction and methanogenesis seem to be restricted to the higher contaminant concentration areas (e.g. source areas) with the other reactions (oxygen, nitrate, and sulfate depletion) occurring throughout the plume (CRC CARE, 2010; AFCEE, 1995). Study results have also shown that overall, the anaerobic processes of sulphate reduction and methanogenesis tend to dominate the biodegradation processes of petroleum impacted groundwater (CRC CARE, 2010; AFCEE, 1995; Newell et al. 1995). Changes in the concentration of the relevant geochemical indicators within the plume relative to background concentrations provide indirect evidence of microbial degradation of contaminants.

The spatial patterns identified on-site with respect to natural attenuation are described in Table 9.2 below.

Order of reaction	Terminal electron acceptor process	Geochemical Indicator in source zone	Apparent pattern
1	Aerobic respiration	Dissolved Oxygen/ Redox - Reduction	
2	Denitrification	Nitrate (NO ₃ -) - Reduction	$\mathbf{\nabla}$
31	Manganese (IV) reduction	Manganese (Mn ²⁺) - Increase	
31	Fe (III) reduction	Ferrous Iron (Fe ²⁺) – Increase	$\mathbf{\nabla}$
4	Sulfate reduction	Sulfate (SO ₄ ²⁻) – Reduction	$\mathbf{\nabla}$
5	Methanogenesis	Methane (CH ₄) - Increase	\checkmark

Table 9.2: Natural attenuation reactions and indicator trends

Note:

1 – Iron reduction and manganese reduction occur at around the same redox state.

Overall, it appears that natural attenuation is occurring as strong indicators are present in the hydrocarbon plume based on the Monitored natural attenuation (MNA) data collected during the previous (February 2022) and this monitoring event. MNA data from the February 2022 monitoring event and the most recent round of data have been presented graphically below. This is described further in the following sections for each indicator across three wells selected: up-gradient (MW04), within the source zone (MW02) and down-gradient (MW10) and the observed trends.

Dissolved oxygen

The below Figures 9.3 and 9.4 display trend in dissolved oxygen across the plume. Dissolved oxygen is considered to be low and depleted within the plume, however concentrations of dissolved are relatively consistent across the majority of the site. Concentrations upgradient, downgradient and within the plume have generally decreased since the first round of monitoring completed in August 2020, representative of natural attenuation occurring.

CAVVANBA

Figure 9.3: Dissolved oxygen – February 2022

Figure 9.4: Dissolved oxygen – April 2023

Redox

The redox (reduction-oxidation) value is an indicator of whether the groundwater is well oxygenated or reducing. Values less than 400 mV are indicative of moderately reducing environments, and more than 400 mV are representative of well oxygenated environments.

Redox values are generally consistent across the site, ranging from 67.1 mV to 248.1 mV. These concentrations suggest oxygen is being depleted by mirco-organsims across the majority of the site.

Denitrification

The below Figures 9.5 and 9.6 on the following page displays the trend in nitrate across the plume. There is a clear correlation between the centre of the plume and nitrate concentrations, noting that upgradient well MW04 appears to have been slightly influenced by the plume during the February 2022 round.

Figure 9.5: Nitrate concentrations – February 2022

CAVVANBA

Figure 9.6: Nitrate concentrations – April 2023

Manganese and Iron (III) reduction

The below Figures 9.7, 9.8 and 9.9 displays the trends in manganese and Fe(III) across the plume. It is noted that manganese was not analysed during the February 2022 GME.

Figure 9.7: Fe (III) concentrations – February 2022

CAVVANBA

Figure 9.8: Fe (III) concentrations – April 2023

Figure 9.9: Manganese concentrations – April 2023

There is a clear correlation between the centre of the plume and the increase of manganese and Fe(III) concentrations, as shown above.

Sulfate reduction

The below Figures 9.10 and 9.11 below display the trends in sulfate across the plume.

Figure 9.10: Sulfate concentrations – February 2022

Figure 9.11: Sulfate concentrations – April 2023

The reduction of sulfate concentrations appears to be consistent and occurring within the plume, however downgradient wells also appear to be slightly influenced by the plume.

Methanogenesis

The below Figures 9.12 and 9.13 below display the trends in methane across the plume.

Figure 9.12: Methane concentrations – February 2022

Figure 9.13: Methane concentrations – April 2023

There is a clear correlation between the centre of the plume and methane concentrations, as depicted above with methane being generated in the centre of the plume.

9.4 Tertiary lines of evidence

Based on the primary and secondary lines of evidence discussed above, it was not considered necessary to provide tertiary lines of evidence that MNA processes are occurring within the plume i.e. demonstrating the presence of bacterial fauna which are known to degrade TRH. The evidence of stable TRH concentrations, an immobile plume and the trend of chemical indicator parameters are adequate to assess the aquifers ability to attenuate hydrocarbon contamination.

10.0 Conceptual site model update

A conceptual site model is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. An understanding of potential exposure scenarios is necessary to evaluate the suitability of a site for a particular land use.

This conceptual site model has been updated based on the information obtained as part of this supplementary DSI, and is related to soil, groundwater and surface water contamination issues at the site.

10.1 Sources of contamination

The potential and actual sources of soil, surface water and groundwater contamination for the site, and those which are considered to represent a potential environmental liability on-site are summarised below:

Potential sources

- **Current and historical operation of the Roundhouse building:** The site and Roundhouse building has a long history of industrial activities, with railway operations commencing in the early 1800's. The soil and groundwater contamination results from the following:
 - the current and historical application, use and storage of fuels, oils, solvents and degreasers;
 - the integrity of the locomotive maintenance pits / stormwater and drainage network; and
 - current and historical general locomotive maintenance and machining activities.
- **VOCs in groundwater:** The presence of VOCs in groundwater in previous assessments remains a potential source. These should be included in ongoing monitoring, however they have not been included as an actual source for further consideration in the CSM. Currently, the potential inhalation of vapours produced by chlorinated solvents is considered unlikely.
- **EIL exceedances:** The EIL exceedances of heavy metals discussed in previous sections (refer Section 8.1.3) are described as potential sources. That is, they are not considered significant enough to define as a source of contamination in the context of the CSM.
- Management limits / aesthetic issues: TRH concentrations in soil were reported to exceed the adopted management limits as part of this, and previous investigations completed at the site. The localised presence and magnitude of the TRH concentrations reported within the four-foot of the railway line are considered to represent aesthetic issues that require appropriate management, and have therefore not been further considered in the development of the CSM. <u>These potential sources</u> <u>should be addressed in the IEMP.</u>

Actual sources

- Lead and asbestos Site infilling and waste disposal areas. Lead in excess of the commercial/industrial HIL is widespread but discontinuous within the southern and north-western portions of the site. The distribution of non-friable ACM is widespread in and on soil within the southern and north-western portion of the site. No distinction has been attempted to separate the presence of ACM on-soil vs in-soil.
- **LNAPL Locomotive maintenance bays.** A LNAPL thickness of 0.53 m was recorded at MW06, located adjacent to the roundhouse building. The LNAPL presence

is localised and unlikely to be mobile, and likely associated with residual LNAPL saturation rather than an ongoing source.

- **TRH in groundwater Former diesel refuelling gantry.** Dissolved phase petroleum hydrocarbon contamination has been identified in groundwater. The TRH presence is limited in extent and the trend of chemical indicator parameters are adequate to assess the aquifers ability to attenuate hydrocarbon contamination.
- **PFAS in groundwater**. Exceedances of the 99% level of species protection criteria for PFOS were reported in groundwater at the site. The source of which is likely associated with a variety of activities, and its presence is an artifact of historical operations rather than particular events. Whilst an immediate risk to human health and the environment is considered unlikely, it represents a data gap warranting further consideration.
- **Chromium (VI) in groundwater.** Exceedances of the 95% level of species protection criteria for chromium (VI) were reported in groundwater at the site. The source of which is likely associated with a variety of historical operations. Whilst delineation off-site remains incomplete, it is not considered likely to represent an unacceptable risk to human health or the environment given the discussion provided in 8.2.5.
- **Stormwater and drainage** The stormwater and drainage system connects the repair bays within the Roundhouse building to the former effluent treatment plant via underground infrastructure including the API separator and arrestor pits. Whilst gross contamination has not been identified to be mobilising off-site due to the presence of arrestor pits and API separators, there are data gaps which are described in Section 11.

10.2 Exposure and migration pathways

The pathways for potential contaminant migration and potential exposure to receptors are controlled by the geological environment, the built environment overlying the site and in adjacent areas, as well as physical separation distances between sources and potential receptors.

The considered exposure and migration pathways at the site, and whether they are considered plausible includes the following:

Soil

- exposure via dermal contact (incidental) and ingestion (incidental) of lead contaminated soils – Plausible;
- exposure via inhalation (dust and airborne asbestos fibres) of contaminated soils Plausible;
- migration and exposure of vapours from contaminated soils / groundwater and/or LNAPL – Unlikely based on the absence of volatile petroleum hydrocarbons;
- generation and pooling of ground gases that may present an explosive hazard Unlikely;
- migration or transport of soil from the site via runoff, relocation or dust migration Plausible; and
- exposure to contaminated soils via plant root uptake Unlikely.

Groundwater

- migration and exposure of vapours from contaminated groundwater and/or LNAPL Unlikely;
- groundwater migration off-site or to an underlying aquifer Plausible;

- direct contact or ingestion of impacted groundwater Unlikely; and
- discharge of impacted groundwater to surface water bodies Unlikely based on distance to the river and discussion in 8.2.5. The nearby shallow drainage channel identified in Section 2.2 is unlikely to be in contact with groundwater at 5 m (approx.) below the ground surface.

Surface water

- mixing, erosion and suspension of soil and contaminants in runoff Unlikely given the presence of arrestor pits and API separator; and
- off-site migration of dissolved contaminants via surface water such as stormwater Plausible.

The viability of these pathways is further assessed in Section 10.4.

10.3 Receptors

The following potential receptors have been identified at the site:

Human receptors

- on-site occupants in a commercial/industrial scenario on-site;
- on-site occupants in a recreational scenario on-site (visitors to the site);
- on-site excavation / intrusive maintenance workers;
- potential users of groundwater for supply purposes; and
- private and recreational users of the Mulwaree River (i.e. members of the public and recreational users).

Ecological receptors

- on-site terrestrial ecological receptors including soil processes, plant species and organisms that may inhabit or contact soils; and
- freshwater aquatic organisms off-site within the Mulwaree River.

10.4 Conceptual site model summary

A source-pathway-receptor (SPR) linkage is considered to be present when a pathway links a source with a receptor. These linkages explain when there may be risks to the receptor, either now or in future.

All SPR linkages considered to be potentially complete are summarised in Table 10.1, below.

Source	Pathway	Receptor(s)	
Lead in soil – Fill material	Direct and dermal contact, ingestion and/or dust inhalation	 on-site occupants in a commercial/industrial land use scenario. visitors in a recreational land use scenario. on-site intrusive maintenance workers. 	
Asbestos in and on soil	Indoor / outdoor dust inhalation (airborne fibres)	 on-site occupants in a commercial/industrial land use scenario. visitors in a recreational land use scenario. on-site intrusive maintenance workers. 	
TRH, arsenic, copper, lead and zinc in soil – Fill material	Ecological exposure, direct contact, ingestion and/or absorption.	 on-site terrestrial ecological receptors including on-site soil processes, plant species and organisms that may inhabit or contact soils. 	
Stormwater and drainage – TRH and PFAS in stormwater	Off-site migration of contaminants via surface water such as stormwater	 flora, fauna (terrestrial and freshwater) and/or aquatic organisms within the Mulwaree River. 	

Table 10.1: Summary of Source-Pathway-Receptor linkages

Contaminated soils – human health

This section includes discussion of the identified complete exposure pathways associated with lead in soil and potential airborne asbestos fibres:

- direct contact with contaminated soil (lead);
- inhalation of dust from contaminated soil, airborne dust (lead and asbestos); and
- incidental ingestion of contaminated soils, airborne dust (lead).

The uncovered lead contaminated surface soil provides a direct exposure pathway to site occupants and intrusive maintenance workers via dermal contact, dust inhalation or ingestion of contaminated soil. Elevated concentrations of lead were reported to be widespread but discontinuous in fill material across the southern and north-western portion of the site which represents an unacceptable risk to human health. This potential risk is raised should the site be occupied for recreational / open space purposes which includes the presence of children on-site.

Non-friable ACM in and on soil provides a direct exposure pathway to on-site occupants and intrusive maintenance workers via airborne fibre inhalation if not appropriately managed. At depth the risk is reduced, however the areas where highly concentrated ACM is buried (i.e. within the vicinity of TP06 as part of the DSI (Cavvanba, 2021a)) at depth poses a high risk if the material is disturbed and should therefore be treated as friable during mechanical disturbance. The management of asbestos is further discussed in Sections 3.3 and 11.1.

Contaminated soils – ecological

Copper, arsenic, lead, zinc and / or TRH were reported to exceed the adopted ecological assessment criteria. These criteria are designed for the protection of the upper 0 - 3 m of

the soil profile, which corresponds to the root zone and habitation of many species. Given the highly disturbed nature of the site, presence of fill material and lack of vegetation and habitat for potential ecological receptors to exist, it is considered unlikely that a potentially complete SPR linkage exists. However, these exceedances should be considered in conjunction with human health criteria exceedances and assist with decision making regarding the proposed future site management and/or remediation.

Contaminated groundwater – Freshwater ecosystems

This section discusses root uptake of contaminants in groundwater, and potential off-site groundwater migration.

The presence of chromium (VI) and PFAS in groundwater which has not been delineated beyond the site boundary provides a potential exposure pathway to off-site freshwater aquatic organisms through direct contact, ingestion and/or absorption of contaminated groundwater. Root uptake is not considered a plausible pathway given the depth to groundwater and absence deep rooted vegetation. However, given the absence of sensitive ecological receptors within the immediate vicinity and proximity of the site to the Mulwaree River (570 m), the presence of these contaminants in groundwater on-site are unlikely to represent an unacceptable risk to ecological receptors off-site. There is, however an obvious data gap associated with offsite migration of PFAS. The significance of these exceedances, and whether there is a potential unacceptable risk to ecological receptors off-site are to be further evaluated as part of future groundwater monitoring.

Stormwater and drainage – TRH and PFAS in stormwater

The presence of TRH and PFAS in surface water on-site provides a potential exposure pathway to off-site freshwater aquatic organisms through direct contact, ingestion and/or absorption of discharged stormwater. The significance of these exceedances, and whether there is a potential unacceptable risk to ecological receptors off-site are to be further evaluated as part of future surface water monitoring.

11.0 Data gaps update

The continual refinement of the conceptual site model is facilitated through the identification and addressing of key data gaps. Any subsequent investigative efforts must focus on addressing the critical data gaps that remains in a manner that is proportional to the uncertainties identified and ensure the data collected is representative of the assessment area.

Based on Cavvanba's understanding of site conditions developed through information gathered to date, the following discussion is made regarding the outstanding data gaps:

• Data Gap 1: Groundwater contamination (TRH, PFAS and chromium). The varying magnitude and trends of TRH in groundwater within the vicinity of the former diesel refuelling gantry and the Roundhouse where active maintenance is occurring remains a data gap. Additional uncertainty is introduced through the increase in LNAPL thickness at MW06, and potential for TRH rebound at MW02. These uncertainties make groundwater remediation decision making premature. Additionally, there are uncertainties regarding the source or sources of PFAS and the plume geometry.

Cavvanba considers that these uncertainties can be rectified through future routine and planned groundwater monitoring events, and should be undertaken to assist decision making regarding remediation options. It is possible that for TRH, the outcome will be passive remediation such as monitored natural attenuation. The feasibility of LNAPL removal at this stage is unknown.

- Data Gap 2: Site infilling and waste disposal areas. Cavvanba considers that the nature and extent of buried waste material within the eastern and southern portion of the site has been established, sufficient to facilitate future remediation and/or management options for this area.
- *Data Gap 3: Asbestos in and on soil*. There is adequate information to facilitate future remediation and/or management options for ACM on-site.
- Data Gap 4: Site history. The site has a long and complicated history with over 100 years of heavy industrial activity, and a change in site operations and management from approximately 1989 when the GLRPS acquired the lease. Whilst it is acknowledged that there are inherent uncertainties in the site history, Cavvanba considers that there is sufficient soil and groundwater data and information to support the development of remediation options for the site.
- Data Gap 5: Stormwater and drainage. Cavvanba's understanding of the stormwater and drainage network on-site has been sufficiently established through the data gathered as part of this investigation. However as a result, there are data gaps associated with the integrity of the pipework at the southern discharge point, and whether there are resultant soil and groundwater contamination issues. This also includes the chemical composition of stormwater at the discharge point and is particularly relevant given the presence of TRH, and PFAS in excess of the 99% species protection levels.

11.1 Asbestos management

In June 2023, a hand-picking exercise was completed across the entire site area. A total of approximately 80 kg of ACM was identified and removed as part of the works. Areas of surface ACM were categorised as the following:

- higher risk area, being an area where multiple fragments of ACM were identified and creates a higher risk of generating airborne fibres if disturbed; and
- lower risk area, being areas where isolated ACM fragments were identified and presents a lower risk due to the incidental presence and non-friable nature.

The June 2023 event was undertaken after these Supplementary DSI investigations as a separate exercise and was documented in a letter report titled:

Cavvanba Consulting (30 June 2023) Asbestos Management – Goulburn Roundhouse, 12 Braidwood Road, Goulburn NSW 2580 (ref. 20025.76 L03).

The extent of asbestos letter does not change the outcome of the asbestos assessment described in this Supplementary DSI. However, it should be referred to for operational matters in accordance with the IEMP. It has been included as Appendix I.

12.0 Conclusions and recommendations

Based on the scope of works completed, the overarching objectives are considered to have been met and an increased understanding of contamination at the site has been established, sufficient to assist in addressing and closing data gaps previously identified and provide an updated assessment on potential risks to human health and/or the environment on and off-site.

In the context of the conceptual site model developed for the site, the following conclusions have been drawn:

Lead in soil

 The distribution of lead contaminated soils based on all available data can be summarised as widespread but discontinuous within the southern and north-western portion of the site. The magnitude of which, varies due to a mosaic of historical activities and progressive infilling that has occurred on-site.

Asbestos

- Asbestos containing material is widespread and extends into areas where access was previously obstructed due to the presence of rail-related infrastructure. This includes beneath locomotives and rolling stock on railway lines within the southern portion of the site and in filled areas on the eastern side of the roundhouse (Bays 1 to 15). The presence of ACM on soils exceeds health screening levels for asbestos.
- Asbestos containing material was identified in soils within filled areas to the east of the roundhouse and adjacent to the north of the administration building. These were areas where ACM has not been previously identified.
- Continued asbestos management events such as those prescribed in the IEMP, have reduced the immediate hazard of ACM at the surface.

Groundwater

- Groundwater SWLs ranged from 4.190 m (MW102) in the north-eastern portion of the site, to 7.365 m (MW02), in the north-western portion of the site which were reported to have lowered since the 2022 monitoring event with an average decrease of 0.7 m recorded across the site. The measured standing water levels and calculated groundwater elevations indicate groundwater flow is consistent with that previously reported, predominantly flowing in a north-easterly direction.
- The nature and extent of groundwater contamination can be summarised as follows:
 - LNAPL was identified at a measurable thickness of 0.53 m at MW06, an increase of 0.37 m from the previous monitoring event. Its presence is localised, unlikely to represent a vapour intrusion risk and likely associated with residual LNAPL saturation rather than an ongoing source;
 - all groundwater samples collected on-site were reported below the adopted CRC CARE health screening levels for vapour intrusion;
 - TRH concentrations at MW02, adjacent to the refuelling gantry remain low and localised in extent, however are likely to be artificially reduced by the previously identified potable water influence;
 - VOCs (i.e. TCE / DCE) were not detected above the laboratory limit of reporting;
 - Sum of PFHxS and PFOS were detected in groundwater on-site, at a maximum concentration of 3.05 µg/L, however its presence in groundwater is unlikely to represent an unacceptable risk to ecological receptors off-site; and

chromium (VI) was detected in groundwater at a maximum concentration of 30 µg/L, and whilst it has not been delineated off-site, is unlikely to represent an unacceptable risk.

Stormwater and drainage

- The stormwater and drainage system connects the repair bays within the Roundhouse building to the former effluent treatment plant via underground infrastructure such as the API separator and arrestor pits. Whilst gross contamination has not been identified to be mobilising off-site due to the presence of arrestor pits and API separators, there are some data gaps which remain outstanding.
- TRH was detected in surface water on-site, at a maximum concentration of 1,900 μ g/L, and PFOS at a maximum concentration of 0.03 μ g/L. The significance of these exceedances and whether a potential unacceptable risk to ecological receptors offsite remains uncertain based on the current dataset.

Through the development and continual refinement of the conceptual site model, potentially complete source-pathway-receptor linkages resulting in a potential risk to human health and the environment have been identified which require further monitoring, remediation and/or appropriate management. These are discussed in Table 12.1, below.

Data Gaps summation	Recommendation
 Groundwater contamination (TRH, PFAS and chromium) The varying magnitude and trends of TRH in groundwater within the vicinity of the former diesel refuelling gantry and the Roundhouse where active maintenance is occurring remains a data gap. Additional uncertainty is introduced through the increase in LNAPL thickness at MW06, and potential for TRH rebound at MW02. Additionally, there are uncertainties regarding the source or sources of PFAS and the plume geometry. These uncertainties make groundwater remediation decision making premature. Cavvanba considers that these uncertainties can be rectified through future routine and planned groundwater monitoring events, and should be undertaken to assist decision making regarding remediation options. It is possible that for TRH, the outcome will be passive remediation. The feasibility of LNAPL removal at this stage is unknown. 	 Preparation of a formal groundwater monitoring plan, and continue with routine groundwater monitoring to: ensure that any changes in contaminant concentrations can be detected; demonstrate plume stability, or otherwise; and ensure the appropriate protection of groundwater human and ecological health. Assess the feasibility of LNAPL removal.
2) Site infilling and waste disposal areas Cavvanba considers that the nature and extent of buried waste material within the eastern and southern portion of the site has been established, sufficient to facilitate future remediation and/or management options for this area.	Development of remediation and/or management options to ensure the protection of human and ecological health, focussing on the removal of the potential exposure pathway.

	-
3) Asbestos in and on soil There is adequate information to facilitate future remediation and/or management options for ACM on-site.	Implement interim management measures as per the updated <i>Interim Management Plan</i> (Cavvanba, 2022), and development of remediation and/or management options to ensure the appropriate protection of human health. Consider measures in conjunction with data gap 2.
4) Site history The site has a long and complicated history with over 100 years of heavy industrial activity, and a change in site operations and management from approximately 1989 when the GLRPS acquired the lease. Whilst it is acknowledged that there are inherent uncertainties in the site history, Cavvanba considers that there is sufficient soil and groundwater data and information to support the development of remediation options for the site.	Predominantly reconciled, however consideration should be given to obtaining historical information relating to the potential use of PFAS containing products.
5) Stormwater and drainage Cavvanba's understanding of the stormwater and drainage network on-site has been sufficiently established through the data gathered as part of this investigation. However, uncertainties remain associated with the integrity of the pipework at the southern discharge point, and whether there are resultant soil and groundwater contamination issues. This also includes the chemical composition of stormwater at the discharge point and is particularly relevant given the presence of TRH, and PFAS in excess of the 99% species protection levels.	The railway maintenance bays within the roundhouse <u>must not</u> be used for any chemical / oil collection (no products to ground) until such time that the network is deemed fit for purpose. Surface water sampling within the holding tanks at the discharge point on the eastern side of Braidwood Road (<i>refer to Figure B of Appendix A</i>). Assessment of groundwater conditions within the areas of known integrity issues, being the southern discharge point.

13.0 References

Previous Environmental Investigations and Plans

Cavvanba (August 2023) (Ref. 20025.76 L04) Waste Classification – Grit Blasting Media, Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (June 2023) (Ref. 20025.76 L03) Asbestos Management – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (May 2023) (Ref. 20025.76 R07) Interim Environmental Management Plan – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (September, 2022) (Ref. 20025.76 R05) Remediation Options Assessment – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (July, 2022) (Ref. 20025.76 L01) Asbestos Management – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (July, 2022) (Ref. 20025.76 R06) Groundwater Monitoring Event – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580

Cavvanba (August, 2021d) (Ref. 20025.76 R03) Additional Environmental Site Assessment – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (April, 2021b) (Ref. 20025.76 R02) Sampling and Analysis Quality Plan – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (April, 2021c) (Ref. 20025.76 L02) Interim Management Plan – Goulburn Roundhouse, 12 Braidwood Road, Goulburn NSW 2580.

Cavvanba (January, 2021a) (Ref. 20025.76 R01) Detailed Site Investigation – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580.

Cavvanba (September, 2020c) (Ref. 20025.76 L01) Interim Management Plan – Goulburn Roundhouse, 12 Braidwood Road, Goulburn NSW 2580.

Cavvanba (2019) Contamination Summary Report – Goulburn Roundhouse.

CMPS&F Pty Ltd (1996) Phase 1 Environmental Contamination Assessment.

Dames and Moore Pty Ltd (1997) *Decommissioning/Decontamination Strategy for Goulburn Railyard.*

GHD Pty Ltd (January 2023) *Site Audit 0102_IDG, Goulburn Roundhouse – Interim Audit Advice #1, Review of Investigation Reports and Remediation Options Assessment.*

Goulburn Loco Roundhouse Preservation Society Incorporated (2006) *Environmental Management Plan – The Goulburn Roundhouse Complex.*

Jeffrey and Katauskas Pty Ltd (1997) *Environmental Investigation – Goulburn Fuelling Facility at Braidwood Rd.*

DM McMahon Pty Ltd (2014) *Preliminary Contamination Investigation – Goulburn Roundhouse Railway Track*.
Other References

Bozier, R (2011) NSW Rail.net (webpage) accessed at www.nswrail.net.

CCME (2008) *Canada-wide standard for petroleum hydrocarbons (PHC) in soil*. Technical supplement, January, Canadian Council of the Ministers of the Environment.

NSW Department of Primary Industries – Water Division (2016) http://allwaterdata.water.nsw.gov.au/water.stm (accessed August 2023).

Guidelines made by EPA

DEC (2007) Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination. NSW EPA, Sydney.

Department of Environment, Climate Change and Water (DECCW) (2009) *Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008.* NSW DECCW, Sydney;

EnRiskS (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs.* Carlingford Court, NSW.

EPA (2016) *Designing Sampling Programs for Sites Potentially Contaminated by PFAS: Guidance Document*. EPA, Sydney.

EPA (2016) Contaminated Land Management: Draft Guidelines for the NSW Site Auditor Scheme (3rd edition). EPA, Sydney.

EPA (1995a) Contaminated Sites: Guidelines for the Vertical Mixing of Soil on Former Broad-acre Agricultural Land. NSW EPA, Sydney.

EPA (1997) *Contaminated Sites: Guidelines for Assessing Banana Plantation Sites*. NSW EPA, Sydney.

EPA (2005) *Contaminated Sites: Guidelines for Assessing Former Orchards and Market Gardens*. NSW EPA, Sydney.

EPA (1999) *Contaminated Sites: Guidelines on Significant Risk of Harm from Contaminated Land and the Duty to Report.* NSW EPA, Sydney.

EPA (2000) *Environmental Guidelines: Use and Disposal of biosolids products*. NSW EPA, Sydney.

EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases.NSW EPA, Sydney.

EPA (2015) *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* NSW DECC, Sydney.

EPA (November 2014) *Waste Classification Guidelines – Part 1: Classifying Waste*. NSW EPA, Sydney, NSW.

EPA (2020) Consultants Reporting on Contaminated Land.

EPA (2022) Sampling design part 1 – application.

EPA (2022) Sampling design part 2 – interpretation.

Guidelines approved by the EPA

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Paper No 4, Canberra.

ANZECC/NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment and Conservation Council and the National Health and Medical Research Council, Canberra.

Department of Health and Ageing and EnHealth Council (2002) *Environmental Health Risk Assessment: Guidelines for Assessing Human Health Risks from Environmental Hazards*. Commonwealth of Australia, Canberra.

Lock, W. H., (1996) "Composite Sampling", *National Environmental Health Forum Monographs, Soil Series No. 3*. SA Health Commission, Adelaide.

NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure, Schedule A and Schedules B(1)-B(10), amended April 2013. National Environment Protection Council, Adelaide.

NHMRC/ NRMMC (2011) *Australian Drinking Water Guidelines*. National Health and Medical Research Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, and Natural Resource Management Ministerial Council (NRMMC), Australian Government, Canberra.

NSW Agricultural/CMPS&F (1996) *Guidelines for the Assessment and Clean Up of Cattle Tick Dip Sites for Residential Purposes*. NSW Agricultural and CMPS&F Environmental, Canberra.

Figures

Holding Tanks Effluent Treatment Plant (Decommissioned

Former Sewerage Pumping/Statio

Locomotive Sand Hopper

Diesel ASTs (Decommissioned).

Lot 1 DP 1162556

Open Stormwater Channel

Faidwood Road

Former Chargeman's Office Former Meal Room / Building 8 Former Shower Room / Flammable Stores Former Oil Filter Cleaning Shed Engine Shed oundhouse Building Maintenance Pits

Former 'Pay Bus' Maintenance

Fuel Depot Oil Drum/Stora

asting Area Ancillary Workshop Buildings (Use/Unknown)

ormer Fuel Depot

60m

1:2,257

Key: Site Boundary Perimeter Fence

Temporary Fence

Diesel ASTs (Decommissioned)

API & Differential Separator

Former Building (Use Unknown) -Former Oil Drum Compound 'Loco' Store / Building 9 - Refuelling Gantry (Decommissioned) -Chargeman's Office Former Lube Oil Storage & Waste Oil Holding Tank

> Northern Arrestor Pit Administration Building / DLE Office

-Southern Arrestor Pit

-Gardner's Shed

Former Office / Fitter's Amenities

Former Workshop / Machine Shop / Wellington Building

Former Maintenance Pit

Raised Filled Area

Figure 2: Site Layout

Site: Goulburn Roundhouse Location: 12 Braidwood Road, Goulburn, NSW 2580 Details: Supplementary Detailed Site Investigation

Client: Australian Rail Track Corporation Drawn: ZL 30 October 2023 Source: NSW Dept of Finance & Services

Plumber's Shed

Tables

	Table 1: Soil Analytical Summary - Sample Description and Analytical Summary											
	Depth	Date	Material			Analysis						
Sample	(m)	sampled	Encountered	PID (ppm)	Description	Heavy metals	BTEX	TRH	PAHs	Asbestos		
Surface Sa	mples		1	1		1						
SS101	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, tine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS102	0.0-0.1	18/04/2023	Fill	1.2	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS103	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS104	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS105	0.0-0.1	18/04/2023	Fill	3.5	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS106	0.0-0.1	18/04/2023	Fill	2.9	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS107	0.0-0.1	18/04/2023	Fill	2.1	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS108	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS109	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS110	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS111	0.0-0.1	18/04/2023	Fill	1.8	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS112	0.0-0.1	18/04/2023	Fill	2.7	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS113	0.0-0.1	18/04/2023	Fill	1.4	Sandy Gravel, sub-angular gravel, grey, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS114	0.0-0.1	18/04/2023	Fill	1.7	Sandy Gravel, sub-angular gravel, grey, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS115	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, grey, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS116	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS117	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS118	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS119	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS120	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS121	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS122	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS123	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS124	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS125	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.		•	•	•			
SS126	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.		•	•	•			
SS127	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed	•	•	•	•			

	Table 1: Soil Analytical Summary - Sample Description and Analytical Summary											
	Depth	Date	Material					Analysis				
Sample	(m)	sampled	Encountered	PID (ppm)	Description	Heavy metals	BTEX	TRH	PAHs	Asbestos		
SS128	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Ash material. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS129	0.0-0.1	18/04/2023	Fill	2.1	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour. Some staining observed within areas of the siding tracks.	•	•	•	•			
SS130	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS131	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS132	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS133	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS134	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS135	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining.	•	•	•	•			
SS136	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS137	0.0-0.1	19/04/2023	Fill	2.8	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS138	0.0-0.1	19/04/2023	Fill	1.4	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS139	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS140	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS141	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS142	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, light grey / brown, no odour or staining.	•	•	•	•			
SS143	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining. Ash material. Fragment of non- friable ACM.	•	•	•	•			
SS144	0.0-0.1	20/04/2023	Fill	1.5	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown / grey, dry, no odour or staining. Ash material. Fragment of non- friable ACM.	•	•	•	•			
SS145	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown, no odour or staining.	•	•	•	•			
SS146	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, sub-angular gravel, fine to medium grain sand, dark brown, no odour or staining.	•	•	•	•			
SS147	0.0-0.1	20/04/2023	Fill	0.0	Silty Sand, light grey / brown, sub-angular gravels, fine to medium grain sand, no odour or staining.	•	•	•	•			
SS148	0.0-0.1	20/04/2023	Fill	0.0	Silty Sand, light grey / brown, sub-angular gravels, fine to medium grain sand, no odour or staining.	•	•	•	•			
Boreholes			•									
BH101	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark grey / light grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•			
BH102	0.0-0.1	19/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	•	•	•	•			
BH103	0.0-0.1	19/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	•	•	•	•			
BH104	0.0-0.1	19/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	•	•	•	•			
	0.3-0.4	19/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. ACM at 0.4m, glass, brick.	•	•	•	•			
BH105	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. Glass, ash.	•	•	•	•			
BH106	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand. Glass, metal.	•	•	•	•			
BH107	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. Ash.	•	•	•	•			
BH108	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, light brown / grey, loose, sub-angular gravel, fine to medium grained sand.	•	•	•	•			
	0.3-0.4	20/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. Ash.	•	•	•	•			
BH109	0.0-0.1	20/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, rootlets.	•	•	•	•			
BH110	0.0-0.1	20/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel. Metal, brick.	•	•	•	•			
BH111	0.0-0.1	20/04/2023	Fill	0.0	Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, rootlets.	•	•	•	•			

Table 1: Soil Analytical Summary - Sample Description and Analytical Summary											
	Dopth	Data	Matorial			Analysis					
Sample	(m)	sampled	Encountered	PID (ppm)	Description	Heavy metals	BTEX	TRH	PAHs	Asbestos	
Test Pits	1										
TP101	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
TP102	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets. Metal pins.	•	•	•	•		
TP103	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets. Tile, metal, pins.	•	•	•	•		
TP104	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets. Metal pins.	•	•	•	•		
70105	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
19105	0.3-0.4	18/04/2023	Fill	0.0	Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	•	•	•	•		
TP106	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
	0.0-0.1	18/04/2023	Fill	0.0	Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets. Metal.	•	•	•	•		
TP107	0.3-0.4	18/04/2023	Fill	0.0	Light brown / dark brown, soft, low plasticity, fine to medium grained sand, homogeneous.	•	•	•	•		
TP108	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets. Glass, coal fragments.	•	•	•	•		
TP109	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand, rootlets. Metal pins, brick, glass.	•	•	•	•		
	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets. Metal fragments.	•	•	•	•		
19110	0.3-0.4	19/04/2023	Fill	0.0	Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	•	•	•	•		
TP111	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets. Glass.	•	•	•	•		
TP112	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown / light grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
	0.0-0.1	19/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
IP113	0.4-0.5	19/04/2023	Fill	0.0	Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. ACM present 0.4-0.5m. Ash from 0.4m.	•	•	•	•		
TP114	0.0-0.1	20/04/2023	Fill	2.5	Sandy Sand, light brown, loose, fine to medium grained sand. Timber, ballast, glass.	•	•	•	•		
70445	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, brown / dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
1P115	0.3-0.4	20/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand. Ash.	•	•	•	•		
TP116	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	•	•	•	•		
TP117	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand. Slag.	•	•	•	•		
TP118	0.0-0.1	20/04/2023	Fill	0.0	Sandy Gravel, light brown, loose, sub-angular gravel, fine to medium grained sand.	•	•	•	•		

				Table 1: Soil	Analytical Summary - Sample Description and Analytical Summar	у					
	Depth	Date	Material			Analysis					
Sample	(m)	sampled	Encountered	PID (ppm)	Description	Heavy metals	BTEX	TRH	PAHs	Asbestos	
Monitoring Wells											
MW103	0.2-0.3	19/04/2023	Fill	1.2	Sandy Clay, brown, soft, low plasticity, fine to medium grained sand, some sub-angular gravel, rootlets.	•	•	•	•		
Asbestos fra	agments										
ACM101	Surface	18/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected adjacent to the railway tracks within the south-eastern portion of Area E near SS101.					•	
ACM102	Surface	18/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 80x45x5mm. Collected within the railway tracks in the northern portion of Area E near SS112.					•	
ACM103	Surface	19/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 45x35x5mm. Collected on the surface within the central portion of Area B near TP110.					•	
ACM104	Surface	19/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 60x40x5mm. Collected on the surface within the western portion of Area E near TP106.					•	
ACM105	Surface	20/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected on the surface within the northern portion of site near SS139 and the former meal room.					•	
TP109	0.0-0.1	18/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 40x35x5mm. Collected within the surface fill material after sieving had been completed.					•	
TP113	0.4-0.5	19/04/23	Fragment	-	Several pieces of asbestos cement sheeting approximately 85x60x5mm. Collected within the deeper ash fill material at TP113.					•	
BH104	0.3-0.4	19/04/23	Fragment	-	One piece of asbestos cement sheeting approximately 85x75x5mm. Collected within the deeper ash fill material at BH104.					•	

Table 2: Soil Analytical Summary - Heavy Metals (mg/kg) Chromium Cadmium Copper Arsenic Nickel Mercur) Material Lead Zinc Sample Depth (m) Encountered LOR 5 1 2 5 5 2 5 0.1 Analytical - Surface Samples SS101 0.0-0.1 Fill 34 6 66 273 623 54 664 nd SS102 0.0-0.1 Fill 27 nd 27 143 222 16 249 nd SS103 0.0-0.1 Fill 29 nd 31 117 250 14 202 nd SS104 0.0-0.1 Fill 144 5 46 427 1,130 45 866 nd SS105 0.0-0.1 Fill 26 8 54 1,130 35 488 836 SS106 0.0-0.1 Fill 63 15 130 288 537 51 672 0.1 SS107 0.0-0.1 Fill 61 nd 22 735 475 18 419 nd SS108 0.0-0.1 Fill 11 2 25 205 266 14 200 nd Fill 11 2 71 209 322 19 417 SS109 0.0-0.1 nd SS110 0.0-0.1 Fill 20 3 45 1,980 2,260 45 883 nd SS111 Fill 18 2 39 24 nd 0.0-0.1 158 552 498 Fill 77 SS112 0.0-0.1 163 20 206 <u>2,280</u> 640 <u>2,520</u> nd SS113 0.0-0.1 Fill 80 7 103 <u>855</u> 302 52 989 nd 19 SS114 0.0-0.1 Fill 29 1 52 394 523 761 nd SS115 0.0-0.1 Fill 97 3 75 <u>777</u> 294 24 <u>822</u> nd SS116 0.0-0.1 Fill 8 nd 34 231 234 13 431 nd SS117 0.0-0.1 Fill 22 2 86 253 457 41 <u>790</u> nd Fill 10 102 SS118 0.0-0.1 36 6 136 7 nd SS119 0.0-0.1 Fill 29 3 44 196 902 32 658 nd 17 24 SS120 0.0-0.1 Fill 172 19 407 1 650 SS121 0.0-0.1 Fill 59 1 18 176 324 17 337 nd 23 SS122 0.0-0.1 Fill 24 nd 115 226 14 356 nd Fill 14 SS123 0.0-0.1 16 220 274 20 200 nd nd SS124 0.0-0.1 Fill 26 3 22 170 344 29 470 nd SS125 0.0-0.1 Fill 7 28 126 142 10 135 nd SS126 0.0-0.1 Fill 6 nd 42 123 243 64 272 nd Fill 29 138 76 49 219 SS127 0.0-0.1 SS128 0.0-0.1 Fill 10 43 97 112 72 206 nd 0.0-0.1 Fill 13 71 24 nd SS129 nd 182 551 606 SS130 0.0-0.1 Fill 6 18 231 443 12 225 nd nd Fill 779 SS131 0.0-0.1 13 nd 55 428 14 216 nd SS132 0.0-0.1 Fill 5 16 111 216 8 149 nd nd SS133 0.0-0.1 Fill 6 nd 31 150 436 9 354 nd Fill 710 9 449 SS134 0.0-0.1 6 16 210 0.1 SS135 0.0-0.1 Fill nd nd 18 165 539 8 192 nd SS136 Fill 21 210 352 14 236 0.0-0.1 7 nd SS137 0.0-0.1 Fill nd 10 12 15 6 52 nd Fill 15 SS138 0.0-0.1 20 23 7 52 nd nd nd SS139 0.0-0.1 Fill nd nd 7 94 90 7 179 nd 54 Fill 16 68 38 128 SS140 0.0-0.1 nd nd nd SS141 0.0-0.1 Fill 16 156 197 13 478 nd SS142 0.0-0.1 Fill nd nd 14 65 121 5 154 nd Fill 9 33 1,310 746 SS143 0.0-0.1 2 <u>472</u> 20 0.1 SS144 0.0-0.1 Fill 7 nd 35 135 163 19 216 nd Fill SS145 0.0-0.1 5 13 153 98 12 205 nd nd SS146 0.0-0.1 Fill 10 nd 22 87 57 12 99 nd SS147 0.0-0.1 Fill 15 136 182 10 863 nd nd nd SS148 0.0-0.1 Fill nd nd 5 238 33 8 96 nd Analytical - Boreholes Fill 9 BH101 0.0-0.1 nd 13 60 153 7 178 nd BH102 0.0-0.1 Fill 7 nd 25 <u>324</u> 916 14 400 0.1 BH103 0.0-0.1 Fill 8 19 247 601 8 238 0.2 nd 0.0-0.1 Fill 5 nd 17 127 204 7 163 nd BH104 0.3-0.4 Fill 8 12 11 140 nd 626 1.020 nd BH105 0.0-0.1 Fill 10 1 45 418 1,140 11 597 0.1 BH106 Fill 0.2 0.0-0.1 12 592 11 324 nd nd 328 BH107 0.0-0.1 Fill 11 136 98 8 186 nd nd nd 21 0.0-0.1 Fill nd 21 28 8 41 nd nd BH108 0.3-0.4 Fill 6 nd 5 <u>602</u> <u>1,910</u> 10 49 0.2 BH109 0.0-0.1 Fill 5 nd 46 141 220 7 174 nd BH110 0.0-0.1 Fill 12 41 128 4 130 nd nd nd BH111 0.0-0.1 Fill 11 nd 18 203 431 11 296 nd

Sample	Depth (m)	Material Encountered	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
	LOR		5	1	2	5	5	2	5	0.1
Analytical - Test Pits			ļ	ļ				ļ		J
TP101	0.0-0.1	Fill	19	nd	24	63	143	9	167	nd
TP102	0.0-0.1	Fill	18	7	36	206	669	26	248	nd
TP103	0.0-0.1	Fill	20	nd	16	169	381	11	299	0.1
TP104	0.0-0.1	Fill	<u>282</u>	nd	284	472	427	36	245	nd
704.05	0.0-0.1	Fill	19	nd	13	125	290	14	208	nd
19105	0.3-0.4	Fill	13	nd	8	238	356	9	58	nd
TP106	0.0-0.1	Fill	19	nd	32	224	297	23	314	nd
	0.0-0.1	Fill	20	nd	14	221	249	30	190	nd
19107	0.3-0.4	Fill	8	nd	66	43	64	17	142	nd
TP108	0.0-0.1	Fill	20	1	43	229	392	37	298	nd
TP109	0.0-0.1	Fill	15	nd	13	188	331	14	416	nd
	0.0-0.1	Fill	10	nd	12	133	86	10	151	nd
1P110	0.3-0.4	Fill	27	nd	6	194	47	15	70	nd
TP111	0.0-0.1	Fill	17	nd	29	189	217	23	349	nd
TP112	0.0-0.1	Fill	8	nd	38	630	530	24	394	0.1
	0.0-0.1	Fill	9	nd	15	310	823	12	184	nd
TP113	0.4-0.5	Fill	10	nd	14	409	1,200	15	298	nd
TP114	0.0-0.1	Fill	112	nd	9	68	209	5	262	nd
	0.0-0.1	Fill	12	nd	20	213	396	18	423	nd
TP115	0.3-0.4	Fill	nd	nd	nd	6	38	3	31	nd
TP116	0.0-0.1	Fill	11	nd	25	168	108	19	141	nd
TP117	0.0-0.1	Fill	nd	nd	30	132	132	14	363	nd
TP118	0.0-0.1	Fill	nd	nd	16	428	257	13	1.290	nd
Analytical - Monitoring	Wells									
MW103	0.2-0.3	Fill	10	nd	45	109	111	24	819	nd
Statistics	•	•			•	•			•	
Samples analysed			85	85	85	85	85	85	85	85
Detects			68	21	84	85	85	85	85	10
% detect			80%	25%	99%	100%	100%	100%	100%	12%
Maximum			282	20	284	2,280	2,260	77	2,520	0.2
Mean		28	5	35	272	413	20	372	0.1	
Median	13	3	23	188	294	14	249	0.1		
Minimum	<5	<1	<2	6	15	<2	31	< 0.1		
Criteria	1	=								
HILs - Commercial / In	3,000	900	3,600	240,000	1,500	6,000	400,000	730/180		
EILs - Commercial and	<u>160</u>	-	680	<u>310</u>	<u>1,800</u>	290	<u>750</u>	-		

Table 2: Soil Analytical Summary - Heavy Metals (mg/kg)

Table 3:	Soil Anal	vtical Summar	y - TRH and	BTEXN	(mg/kg)	,
					····	

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100
Analytical - Surface Samples												
SS101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	840	260
SS102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd
SS103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	310	150
SS104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	520	260
SS105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	70	<u>5,540</u>	1,820
SS106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	120	<u>3,530</u>	1,650
SS107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	880	500
SS108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	510	220
SS109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	160	1,130	290
SS110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	200	nd
SS111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	120	1,170	370
SS112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	450	220
SS113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	390	190
SS114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	460	180
SS115	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	50	1,460	640
SS116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	340	160
SS117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	80	1,070	350
SS118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	nd
SS119	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	50	790	300
SS120	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	380	150
SS121	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	480	260
SS122	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS123	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	180	nd
SS124	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	520	190
SS125	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	2,260	1,740
SS126	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd
SS127	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	160
SS128	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd
SS129	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	400	220

Table 3:	Soil Analy	tical Summa	arv - TRH an	d BTFXN	(ma/ka)
Tuble 5.	Son Analy	cicul Summe	ary incirum		(1119/169/

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C10 - C16	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀
	LOR	•	0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100
SS130	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	370	210
SS131	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd
SS132	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS133	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	250	160
SS134	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	nd
SS135	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	100	nd
SS136	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	250	100
SS137	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS138	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd
SS139	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS140	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	210	170
SS141	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS142	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS143	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
SS144	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	690	400
SS145	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS146	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd
SS147	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	160	nd
SS148	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Boreholes												
BH101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	150
BH102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd
BH103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	240	150
BUILDA	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH104	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd
BH105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd
BH106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH100	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
σπιυδ	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 3:	Soil Analy	vtical Summary	v - TRH and	BTEXN	(ma/ka)
					····

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100
BH109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
Analytical - Test Pits												
TP101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
TP103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	350	110
TP104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	460	170
11103	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	180	nd
TP106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	420	160
TP107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	400	130
11107	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	100	nd
TP108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	580	230
TP109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
TP110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
11110	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd
TP113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd
11115	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	220	nd
TP114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	1,020	590
TP115	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	60	520	160
	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	110	900	190
TP116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd
TP117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd
TP118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100
Analytical - Monitoring Wells												
MW103	0.2-0.3	Fill	nd	nd	nd	nd	nd	nd	nd	250	470	nd
Statistics												
Samples analysed			85	85	85	85	85	85	85	85	85	85
Detects			0	0	0	0	0	0	0	10	65	37
% detect			0%	0%	0%	0%	0%	0%	0%	12%	76%	44%
Maximum			<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<u>250</u>	<u>5,540</u>	1,820
Mean			<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	372	233
Median			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	95	250	210
Minimum			<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
Criteria - Commercial / Industr	ial (Sand)											
HSL D - 0 m to < 1 m			3	NL	NL	23	30	NL	260	NL	NL	NL
HILs - Commercial / Industrial	D		-	-	-		-	-	-	-	-	-
Ecological - Commercial / Indu	strial (Aged)		75	135	165	18	30	370	215	<u>170</u>	<u>1,700</u>	3,300
Management Limits - Commerc	ial and Industrial		-	-	-		-	-	700	1,000	3,500	10,000
HSL D - Direct Contact			430	99,000	27,000	81,	000	-	26,000	20,000	27,000	38,000
Intrusive Maintenance Worker	- Direct Contact		1,100	120,000	85,000	130	,000	29,000	82,000	62,000	85,000	120,000
Intrusive Maintenance Worker	- Shallow Trench - 0 i	m to < 2 m	350	NL	NL	N	IL	NL	NL	NL	NL	NL

CAVVANBA

Table 4:	Soil Analy	tical Sum	imary - PA	Hs (ma/ka)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Analytical - Surface S	Samples																			
SS101	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	1.3	nd
SS102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS104	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.6	0.6	nd	nd	nd	nd	nd	nd	nd	nd	2.2	nd
SS105	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	0.7	0.7	nd	nd	nd	nd	nd	nd	nd	nd	2.2	nd
SS106	0.0-0.1	Fill	nd	nd	nd	nd	2.4	nd	2.2	1.8	0.5	0.6	0.5	nd	nd	nd	nd	nd	8	nd
SS107	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	1.7	1.4	1	1.1	2.7	0.7	nd	0.7	nd	0.6	11	0.5
SS108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS109	0.0-0.1	Fill	1	nd	nd	nd	2.9	nd	0.9	0.8	nd	nd	nd	nd	nd	nd	nd	nd	5.6	nd
SS110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS111	0.0-0.1	Fill	0.9	0.8	nd	nd	3.1	nd	2.4	2.3	1.2	1.6	1.7	0.5	0.8	nd	nd	nd	15.3	1.2
SS112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS114	0.0-0.1	Fill	nd	nd	nd	nd	0.7	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.7	nd
SS115	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.8	nd
SS116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS117	0.0-0.1	Fill	nd	nd	nd	nd	3	nd	1.4	1.1	0.6	0.8	0.8	nd	nd	nd	nd	nd	7.7	nd
SS118	0.0-0.1	Fill	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5	nd
SS119	0.0-0.1	Fill	nd	nd	nd	nd	1.8	nd	1.1	1.1	0.5	0.9	0.9	nd	nd	nd	nd	nd	6.3	nd
SS120	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd
SS121	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS122	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS123	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS124	0.0-0.1	Fill	nd	nd	nd	nd	0.9	nd	0.8	0.8	nd	0.6	0.6	nd	nd	nd	nd	nd	3.7	nd
SS125	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS126	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS127	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS128	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS129	0.0-0.1	Fill	nd	nd	nd	nd	0.9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.9	nd
SS130	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS131	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 4.	Soil Analy	tical	Summary		(ma/ka)
Table 4:	SOIL ANALY	yucai	Summary	- PARS	(1119/K9)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SS132	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS133	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS134	0.0-0.1	Fill	nd	nd	nd	nd	0.9	nd	1.3	1.2	nd	0.6	0.5	nd	nd	nd	nd	nd	4.5	nd
SS135	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS136	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	1	1.1	nd	0.6	0.7	nd	nd	nd	nd	nd	3.4	nd
SS137	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS138	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS139	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS140	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS141	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS142	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS143	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS144	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS145	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS146	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS147	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS148	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Boreholes	5																			
BH101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH103	0.0-0.1	Fill	nd	0.8	nd	nd	0.9	nd	1	1.6	0.8	1	1.1	nd	1	0.6	nd	1	9.8	1.3
BH104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DITIO	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Biiloo	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

CAVVANBA

Table 4:	Soil Anal	vtical Summary	/ - PAHs ((ma/ka)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ
	LORs	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Analytical - Test Pits																				
TP101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP103	0.0-0.1	Fill	nd	nd	nd	nd	1.5	nd	1.2	1.3	0.6	0.8	0.7	nd	nd	nd	nd	nd	6.1	nd
TP104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP105	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd
11105	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP106	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.1	nd
TP107	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	0.6	nd	nd	nd	0.5	nd	nd	nd	nd	nd	2.2	nd
11107	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP108	0.0-0.1	Fill	nd	nd	nd	nd	1.2	nd	1.2	1	nd	0.5	0.6	nd	nd	nd	nd	nd	4.5	nd
TP109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	0.8	0.8	nd	0.6	0.7	nd	nd	nd	nd	nd	2.9	nd
TP114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 4: Soil Analytical Summary - PAHs (mg/kg)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TP115	0.0-0.1	Fill	0.7	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd
	0.3-0.4	Fill	0.7	nd	nd	nd	0.9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.6	nd
TP116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Monitoring	g Wells																			
MW103	0.2-0.3	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Statistics																				
Samples analysed			85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85
Detects			4	2	0	0	24	0	18	15	7	13	13	2	2	2	0	2	26	3
% detect			5%	2%	0%	0%	28%	0%	21%	18%	8%	15%	15%	2%	2%	2%	0%	2%	31%	4%
Maximum			1	0.8	<0.5	<0.5	3.1	<0.5	2.4	2.3	1.2	1.6	2.7	0.7	1	0.7	<0.5	1	15.3	1.3
Mean			0.83	0.80	<0.5	<0.5	1.30	<0.5	1.11	1.17	0.74	0.78	0.92	0.60	0.90	0.65	<0.5	0.80	4.11	1.00
Median			0.8	0.8	<0.5	<0.5	1	<0.5	1	1.1	0.6	0.6	0.7	0.6	0.9	0.65	<0.5	0.8	2.55	1.2
Minimum			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Criteria																				
HILs - Commercial / I	Industrial D		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,000	40
EILs - Commercial / I	ndustrial (Aged)		370	-	-	-	-	-	-	-	-	-	-	-	1.4	-	-	-	-	-

Table 5: Asbestos Analytical Summary

Sample	Date	Field observations	Asbestos detected in laboratory sample?	Asbestos Type Laboratory result	Classification - AF or ACM Based on laboratory & field assessment
ACM101	18/04/2023	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected adjacent to the railway tracks within the south-eastern portion of Area E near SS101.	Yes	Ch + Am	ACM
ACM102	18/04/2023	One piece of asbestos cement sheeting approximately 80x45x5mm. Collected wihtin the railway tracks in the northern portion of Area E near SS112.	Yes	Ch	АСМ
ACM103	19/04/2023	One piece of asbestos cement sheeting approximately 45x35x5mm. Collected on the surface within the central portion of Area B near TP110.	Yes	Ch	АСМ
ACM104	19/04/2023	One piece of asbestos cement sheeting approximately 60x40x5mm. Collected on the surface within the western portion of Area E near TP106.	Yes	Ch	ACM
ACM105	20/04/2023	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected on the surface near SS139 and adjacent to the former meal room within the northern portion of site.	Yes	Ch + Am	АСМ
TP109_0-0.1	18/04/2023	One piece of asbestos cement sheeting approximately 40x35x5mm. Collected within the surface fill material after seiving had been completed.	Yes	Ch	АСМ
TP113_0.4-0.5	19/04/2023	Several pieces of asbestos cement sheeting approximately 85x60x5mm. Collected within the deeper ash fill material at TP113.	Yes	Ch + Am	АСМ
BH104_0.3-0.4	19/04/2023	One piece of asbestos cement sheeting approximately 85x75x5mm. Collected within the deeper ash fill material at BH104.	Yes	Ch	ACM

Table 6: Soil Analytical Summary - Quality Control (mg/kg)

Analyte	Primary Laboratory LOR mg/kg	Secondary Laboratory LOR mg/kg	SS104	QS101	RPD	QS102	RPD	SS115	QS103	RPD	QS104	RPD	BH105_0.0- 0.1	QS105	RPD	QS106	RPD	SS147	QS107	RPD	QS108	RPD
Туре		-	Primary	Intralab Duplicate	%	Interlab Duplicate	%	Primary	Intralab Duplicate	%	Interlab Duplicate	%	Primary	Intralab Duplicate	%	Interlab Duplicate	%	Primary	Intralab Duplicate	%	Interlab Duplicate	%
Date		-	18/04/23	18/04/23		23/04/23		18/04/23	18/04/23		23/04/23		19/04/23	19/04/23		23/04/23		20/04/23	20/04/23		23/04/23	
Media	S	oil	Soil	Soil	-	Soil	-	Soil	Soil	-	Soil	-	Soil	Soil	-	Soil	-	Soil	Soil	-	Soil	-
Heavy metals																						
Arsenic	5	2	144	139	4	120	20	97	142	38	100	3	10	10	0	14	29	nd	6	-	5.7	-
Cadmium	1	0.4	5	4	22	3.1	61	3	4	29	3	0	1	1	0	1.3	23	nd	nd	-	0.5	-
Chromium	2	5	46	40	14	52	12	75	93	21	76	1	11	10	10	45	76	15	21	33	18	17
Copper	5	5	427	414	3	440	3	777	947	20	940	17	418	484	15	480	13	136	172	23	160	15
Lead	5	5	1130	1220	8	1,300	13	294	370	23	240	23	1,140	918	22	940	21	182	155	16	140	30
Nickel	2	5	45	35	25	44	2	24	38	45	34	29	11	13	17	14	21	10	16	46	11	9
Zinc	5	5	866	949	9	770	12	822	1,200	37	890	8	597	508	16	450	33	863	620	33	490	76
Mercury	0.1	0.1	nd	0.2	-	0.1	-	nd	nd	-	nd	-	0.1	0.1	0	0.1	0	nd	nd	-	nd	-
Organics																						
Benzene	0.2	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
Toluene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
Ethyl benzene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
meta- & para-Xylene	0.5	0.2	nd	nd		nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
ortho-Xylene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
F1 TRH C ₆ - C ₁₀	10	20	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-	nd	nd	-	nd	-
F2 TRH >C ₁₀ - C ₁₆	50	50	nd	nd		nd	-	nd	nd	-	61	-	nd	nd	-	nd	-	nd	nd	-	nd	-
F3 TRH >C ₁₆ - C ₃₄	100	100	520	320	48	440	18	1,460	820	56	1,100	33	170	120	34	300	43	160	230	36	400	60
F4 TRH >C34 - C40	100	100	260	170	42	290	10	640	420	42	710	10	nd	nd	-	180	-	nd	nd	-	280	- 1
Sum PAHs	0.5	0.5	2.2	2	10	1.1	100	640	nd	-		-	nd	nd	-	nd	-	nd	1.8	-	nd	-
Data Quality Indicator			-	-	<50%	-	<50%	-	-	<50%	-	<50%	-	-	<50%	-	<50%	-	-	<50%	-	<50%

Table 7: Soil Analytical Summary - Quality Control (mg/kg)

Analyte	Primary Laboratory LOR mg/kg	Secondary Laboratory LOR mg/kg	TP117_0.0-0.1	QS109	RPD	QS110	RPD	BH109_0.0- 0.1	QS111	RPD	QS112	RPD	RB1	RB2	RB3	Trip Blank	Trip Spike	Trip Spike Control	Trip Spike
Туре		-	Primary	Intralab Duplicate	%	Interlab Duplicate	%	Primary	Intralab Duplicate	%	Interlab Duplicate	%	R	insate Sample	es	Lab prep	Field	Lab	Recovery
Date		-	20/04/23	20/04/23		20/04/23		20/04/23	20/04/23		23/04/23		18/04/23	19/04/23	20/04/23	17/04/23	11/04/23	11/04/23	-
Media	S	oil	Soil	Soil	-	Soil	-	Soil	Soil	-	Soil	-	Water	Water	Water	Soil	Soil	Soil	
Heavy metals			•																
Arsenic	5	2	nd	nd	-	5	-	5	5	0	9.3	46	-	-	-	-	-	-	-
Cadmium	1	0.4	nd	nd	-	0.6	-	nd	nd	-	nd	-	-	-	-	-	-	-	-
Chromium	2	5	30	27	11	35	14	20	46	79	39	49	-	-	-	-	-	-	-
Copper	5	5	132	150	13	140	6	141	202	36	160	12	-	-	-	-	-	-	-
Lead	5	5	132	145	9	160	18	220	221	0	190	16	-	-	-	-	-	-	-
Nickel	2	5	14	15	7	16	13	7	9	25	14	50	-	-	-	-	-	-	-
Zinc	5	5	363	481	28	440	18	174	114	42	150	16	-	-	-	-	-	-	-
Mercury	0.1	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	-	-	-	-
Arsenic	0.001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Cadmium	0.0001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Chromium	0.001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Copper	0.001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Lead	0.001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Nickel	0.001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Zinc	0.005	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Mercury	0.0001	-	-	-	-	-	-	-	-	-	-	-	nd	nd	nd	-	-	-	-
Organics																			
Benzene	0.2	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	nd	nd	-
Toluene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	3.4	3.5	97
Ethyl benzene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	6.1	6.2	98
meta- & para-Xylene	0.5	0.2	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	6.3	6.8	93
ortho-Xylene	0.5	0.1	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	3	3.2	94
F1 TRH C ₆ - C ₁₀	10	20	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	nd	-	-	
F2 TRH >C ₁₀ - C ₁₆	50	50	nd	nd	-	nd	-	nd	nd	-	nd	-	-	-	-	-	-	-	
F3 TRH >C ₁₆ - C ₃₄	100	100	nd	nd	-	170	-	nd	nd	-	140	-	-	-	-	-	-	-	
F4 TRH >C ₃₄ - C ₄₀	100	100	100	nd	-	130	23	nd	nd	-	150	-	-	-	-	-	-	-	
Sum PAHs	0.5	0.5	nd	nd	-	nd	-	nd	nd	-		-	-	-	-	-	-	-	
Data Quality Indicator			-	-	<50%	-	<50%	-	-	<50%	-	<50%		-		-	-	-	70-130%

Soil Analytical Summary Table Notes

LOR denotes limit of reporting (standard LOR unless otherwise shown)

nd denotes not detected above the LOR

NL denotes non-limiting

- denotes not analysed/not available

Bold - Exceedance of HILs / HSLs

Underline - Exceedance of EILs / ESLs

Italic - Exceedance of Management Limits

RPD denotes relative percent difference

^ denotes raised LOR

TRH C_6 - C_{10} F1 = TRH C_6 - C_{10} minus BTEX compounds

HSL for VI = Health Screening Levels for Vapour Intrusion

Management limits = Petroleum hydrocarbon management limits (ASC NEPM (2013))

HSLs for direct contact = CRC CARE (2011)

ESL = Ecological Screening Levels

EIL = Ecological Investigation Levels (ASC NEPM (2013))

*analyte list shown on laboratory report

1. Methyl mercury / inorganic mercury

Table 8: Groundwater	Monitorina	Well	Construction	Details
rubic or Groundwater	Ploincoring		construction	Details

Well ID	Date of Installation	Top of Well Casing Elevation (m AHD)	Bottom of Well Depth (m)	Top of Well Screen (m)	Bottom of Well Screen (m)	Initial Water Strike	Initial Groundwater level	Lithology of screened selection
W1	28/05/1997	637.330	12.0	0 9.0 12.0 11.0 7.20		7.207	Silty Clay	
W2	28/05/1997	636.230	10.5	7.5	10.5	10.0	6.212	Silty Clay
W3	28/05/1997	635.810	9.0	6.0	9.0	8.5	5.825	Silty Clay
MW01	28/05/1997	637.670	9.0	5.0	9.0	7.5	6.451	Sandy Clay / Clay
MW02	19/08/2020	638.200	9.0	5.0	9.0	5.5	7.952	Sandy Clay / Clay
MW03	19/08/2020	638.600	9.0	5.0	9.0	7.7	8.284	Clay / Sandy Clay
MW04	19/08/2020	638.090	9.0	5.0	9.0	7.0	7.877	Sandy Clay
MW05	19/08/2020	638.110	10.0	5.0	10.0	5.8	7.692	Sandy Clay / Gravelly Clay
MW06	19/08/2020	638.010	9.0	5.0	9.0	6.4	7.238	Clay / Gravelly Clay
MW07	19/08/2020	638.050	9.0	5.0	9.0	7.0	6.755	Clay / Gravelly Clay
MW08	19/08/2020	637.920	6.0	5.0	6.0	6.3	4.238	Sandy Clay / Gravelly Clay
MW09	9/06/2021	637.767	9.0	4.5	9.0	7.9	6.452	Clay / Gravelly Clay
MW10	9/06/2021	634.887	8.0	3.5	8.0	7.5	4.022	Sandy Clay / Gravelly Clay
MW12	9/06/2021	636.155	9.0	4.5	9.0	7.8	5.242	Clay / Gravelly Clay
MW13	9/06/2021	635.497	9.0	4.5	9.0	4.8	4.338	Clay / Gravelly Clay
MW101	19/04/2023	635.133	7.6	3.1	7.6	6.5	7.105	Silty Clay
MW102	19/04/2023	634.400	8.0	3.5	8.0	7.0	7.590	Silty Clay
MW103	19/04/2023	636.403	8.0	3.5	8.0	6.5	7.455	Silty Clay

m AHD: metres Australian Height Datum

MGA: Map Grid of Australia

Table 9: Groundwater	Gauging Data
----------------------	--------------

Well ID	Gauging Date	TOC Elevation (mAHD)	Ground Surface Elevation (mAHD)	Depth of Well (mbTOC)	Depth to NAPL (mbTOC)	Depth to Water (mbTOC)	NAPL Thickness (m)	Corrected Depth to Water (m)	Water Elevation (mAHD)	
W2	27/04/2023	636.230	635.310	11.513	-	5.365	-	5.365	630.865	
W3	27/04/2023	635.810	635.070	9.540	-	5.275	-	5.275	630.535	
MW01	27/04/2023	637.670	637.700	8.702	-	6.715	-	6.715	630.955	
MW02	26/04/2023	638.200	638.195	8.920	-	7.365	-	7.365	630.835	
MW03	26/04/2023	638.600	638.660	8.985	-	7.300	-	7.300	631.300	
MW04	26/04/2023	638.090	638.200	9.078	-	7.155	-	7.155	630.935	
MW05	26/04/2023	638.110	638.180	9.973	-	6.415	-	6.415	631.695	
MW06	27/04/2023	638.010	638.110	8.972	6.095	6.625	0.530	6.625	631.385	
MW07	26/04/2023	638.050	638.150	9.187	-	6.025	-	6.025	632.025	
MW08	26/04/2023	637.920	637.830	6.133			Well dry			
MW09	26/04/2023	637.767	637.849	8.075	-	7.095	-	7.095	630.672	
MW10	27/04/2023	634.887	634.986	8.014	-	4.295	-	4.295	630.592	
MW12	26/04/2023	636.155	636.282	8.965	-	5.535	-	5.535	630.620	
MW13	26/04/2023	635.497	635.575	9.026	-	4.645	-	4.645	630.852	
MW101	27/04/2023	635.133	635.531	7.505	-	4.775	-	5.173	630.358	
MW102	27/04/2023	634.400	634.595	7.905	-	3.995	-	4.190	630.405	
MW103	27/04/2023	636.403	635.531	8.560	-	5.850	-	4.978	630.553	

m AHD: metres Australian Height Datum

mbTOC: metres below top of casing

NAPL: non-aqueous phase liquid

Table 10: Water Quality Parameters

Location ID	Date Sampled	DO (mg/L)	EC (µScm-1)	Salinity (ppm)	Salinity (‰)	pН	Eh (mV)	TEMP (°C)	Purge Volume (L)	Comments					
Groundwater															
W2	27/04/2023	4.2	1,777	1,137	1.137	8.86	87.2	15.62	2.5	Clear, no odour or sheen, well in good condition					
W3	27/04/2023	3.09	1,252	801	0.801	6.73	99.4	17.95	2.5	Clear, no odour or sheen, well in good condition					
MW01	27/04/2023	3.17	1,005	643	0.643	6.97	99.2	17.02	2.5	Slightly cloudy, no sheen or odour, well in good condition					
MW02	26/04/2023	3.12	1,567	1,003	1.003	6.80	92.3	19.10	2.5	Slightly cloudy, brown tinge, slight hydrocarbon odour, slight sheen					
MW03	26/04/2023	5.2	1,920	1,229	1.229	7.71	101.1	20.15	2.5	Clear, no odour or sheen, well in good condition					
MW04	26/04/2023	4.68	1,642	1,051	1.051	7.60	85.2	17.25	2.5	Slighty cloudy, brown tinge, no odour or sheen, well in good condition					
MW05	26/04/2023	4.28	1,760	1,126	1.126	6.06	98.2	17.32	2.5	Clear, no odour or sheen					
MW06	27/04/2023	2.78	668	428	0.428	6.90	101.2	16.28	2.5	Slightly cloudy, brown tinge, strong hydrocarbon/oil odour and sheen. Dark black LNAPL present in well (0.5 m).					
MW07	26/04/2023	4.88	912	584	0.584	6.71	85.2	16.92	2.5	Slightly cloudy, no odour or sheen					
MW08	26/04/2023				Wel	dry				Well dry					
MW09	26/04/2023	3.30	1,105	707	0.707	7.18	80.1	15.25	2.5	Brown, turbid, no odour or sheen					
MW10	27/04/2023	3.60	549	351	0.351	7.28	67.1	17.25	2.5	Slightly cloudy, brown tinge, no odour or sheen					
MW12	26/04/2023	3.68	1,117	715	0.715	6.00	101.9	17.35	2.5	Cloudy, brown, no odour or sheen					
MW13	26/04/2023	3.88	898	575	0.575	7.56	79.2	17.80	2.5	Slightly cloudy, brown tinge, no odour or sheen					
MW101	27/04/2023	3.54	1,780	1,139	1.139	7.08	107.2	17.21	2.5	Slightly cloudy, brown tinge, no odour or sheen					
MW102	27/04/2023	4.12	2,032	1,300	1.300	7.43	116.2	18.12	2.5	Slightly cloudy, brown tinge, no odour or sheen					
MW103	27/04/2023	3.11	1,601	1,025	1.025	7.17	106.7	19.05	2.5	Slightly cloudy, brown tinge, no odour or sheen					
Surface Water															
SW01	27/04/2023	3.53	279	179	0.179	7.29	83.3	17.36	-	Clear, no odour or sheen.					
SW02	27/04/2023	3.21	393	252	0.252	7.62	99.1	17.98	-	Slightly cloudy, slight sheen on surface, no odour					

				BTEXN	-	-		-	TI	RH		
Sample Identification	Date Sampled	Benzene	Toluene	Ethyl benzene	Xylenes	Naphthalene	C ₆ - C ₉ TRH	F1>C ₆ - C ₁₀ TRH	F2 >C ₁₀ - C ₁₆ TRH	F3 >C ₁₆ - C ₃₄ TRH	F4 >C ₃₄ - C ₄₀ TRH	>C ₁₀ - C ₄₀ TRH
LC	DR	1	2	2	2	2	20	20	100	100	100	100
Analytical - Groundwater												
W2	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW01	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	340	nd	340
MW02	26/04/2023	nd	nd	nd	nd	nd	nd	nd	740	1,560	nd	2,300
MW03	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW05	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW07	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW09	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW101	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW102	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW103	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	420	nd	420
Analytical - Groundwater					1	1		1	1			1
SW01	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	420	140	560
SW02	27/04/2023	nd	nd	nd	nd	nd	nd	nd	430	1,900	640	2,970
Statistics												
Samples analysed		17	17	17	17	17	17	17	17	17	17	17
Detects		0	0	0	0	0	0	0	2	5	2	5
% detect		0%	0%	0%	0%	0%	0%	0%	12%	29%	12%	29%
Maximum		<1	<2	<2	<2	<2	<20	<20	740	1,900	<100	2,970
Minimum		<1	<2	<2	<2	<2	<20	<20	<100	<100	<100	<100
Criteria - Commercial / Indus	trial											
ANZG (2018) 95% Level of Sp	pecies Protection	950	180	80	75	16	-	-	-	-		-
GILs Drinking Water		1	800	300	600	-	-	-	-	-	-	-
HSL D 2 m to $<$ 4 m (Sand)		5,000	NL	NL	NL	NL	NL	6,000	NL	-	-	-
HSL D 4 m to < 8 m (Sand)		5,000	NL	NL	NL	NL	NL	6,000	NL	-	-	-
HSL D > 8 m (Sand)		5,000	NL	NL	NL	NL	NL	7,000	NL	-	-	-
HSL D Intrusive Maintenance	Worker 2 m to < 4m (Sand)	NL	NL	NL	NL	NL	NL	NL	NL	-	-	-
HSL D Intrusive Maintenance	Worker 4 m to < 8 m (Sand)	NL	NL	NL	NL	NL	NL	NL	NL	-	-	-
HSL D Intrusive Maintenance	NL	NL	NL	NL	NL	NL	NL	NL	-	-	-	

Table 11: Water Analytical Summary - TRH & BTEXN (µg/L)

CAVVANBA

Table 12: Water Analytical Summary - Heavy Metals (µg/L)

Sample Identification	Date Sampled	Hardness (mg CaCO ₃ /L)	Hardness Catergory ¹	Arsenic	Cadmium	Chromium	Trivalent Chromium	Hexavalent Chromium	Copper	Lead	Nickel	Zinc	Mercury
LOI	1	0.1	1	10	10	1	1	1	5	0.1			
Analytical - Groundwater													
W2	27/04/2023	169	Hard	nd	nd	26	nd	<u>30</u>	nd	nd	nd	nd	nd
W3	27/04/2023	131	Hard	nd	nd	10	nd	10	4	nd	2	<u>11</u>	nd
MW01	27/04/2023	488	Extremely hard	nd	nd	nd	nd	nd	nd	nd	2	nd	nd
MW02	26/04/2023	214	Very hard	7	nd	nd	nd	nd	nd	nd	2	nd	nd
MW03	26/04/2023	160	Hard	nd	nd	<u>3</u>	nd	nd	nd	nd	nd	nd	nd
MW04	26/04/2023	134	Hard	nd	nd	<u>12</u>	nd	<u>20</u>	<u>2</u>	nd	1	nd	nd
MW05	26/04/2023	114	Moderate	nd	nd	2	nd	nd	nd	nd	nd	nd	nd
MW07	26/04/2023	198	Very hard	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW09	26/04/2023	97	Moderate	nd	nd	<u>5</u>	nd	nd	nd	nd	nd	nd	nd
MW10	27/04/2023	26	Soft	nd	nd	<u>2</u>	nd	nd	nd	nd	nd	nd	nd
MW12	26/04/2023	70	Moderate	nd	nd	<u>5</u>	nd	nd	nd	nd	nd	nd	nd
MW13	26/04/2023	138	Hard	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW101	27/04/2023	166	Hard	nd	nd	nd	nd	nd	1	nd	2	nd	nd
MW102	27/04/2023	356	Very hard	nd	nd	2	nd	nd	nd	nd	nd	nd	nd
MW103	27/04/2023	186	Very hard	nd	nd	nd	nd	nd	<u>2</u>	nd	2	6	nd
Analytical - Surface Water													
SW01	27/04/2023	-	-	nd	nd	nd	-	-	nd	3	nd	1,330	nd
SW02	27/04/2023	-	-	nd	<u>1</u>	<u>3</u>	-	-	<u>38</u>	<u>14</u>	3	<u>683</u>	nd
Statistics								•				•	•
Samples analysed				17	17	17	15	15	17	17	17	17	17
Detects				1	1	10	0	3	5	2	7	4	0
% detect				6%	6%	59%	0%	20%	29%	12%	41%	24%	0%
Maximum				7.0	0.8	<u>26</u>	<10	<u>30</u>	<u>38</u>	14	3	1,330	<0.1
Minimum				<0.1	<0.1	<1	<10	<10	<1	<1	<1	<5	<0.1
Criteria - Commercial / Indu	ıstrial					1	•	1	1	1	1	1	
ANZG (2018) 95% Level of 3	Species Protection			13**	0.2	1*	3.3	1	1.4	3.4	11	8	0.06***
ANZG (2018) 95% Level of 3	Species Protection (Water	hardness corre	ction applied) ²	-	0.97	-	14.1	-	-	32.2	49.5	36.0	-
GILs Drinking Water	· · · ·			10	2	50	50	50	2,000	10	20	-	1

Table 13: Wat	er Analytica	I Summary	- PAHs	(µg/L))
---------------	--------------	-----------	--------	--------	---

Sample Identification	Date Sampled	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ
LOR		1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	0.5	0.5
Analytical - Groundwater																			
W2	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW01	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW02	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW03	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW05	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW07	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW09	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW101	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW102	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW103	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Surface Water																			
SW01	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SW02	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Statistics																			
Samples analysed		17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% detect		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Maximum		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<0.5
Minimum		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<0.5	<0.5
Criteria - Commercial / Indus	strial			•															
ANZG (2018) 95% Level of Species Protection		16	-	-	-	0.6***	0.01***	-	-	-	-	-	-	0.1***	-	-	-	-	-
GILs Drinking Water		-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-

Supplementary Detailed Site Investigation Goulburn Roundhouse - 12 Braidwood Road, Goulburn, NSW, 2580
CAVVANBA

Table 14: Water Analytical Summary - VOCs (µg/L)

Sample Identification	Date Sampled	1,2-dichloroethane	cis-1.2-Dichloroethene	Chloroethane	Chloroform	Chloromethane	Trichloroethene	Tetrachloroethene	Vinyl chloride	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Bromobenzene	Chlorobenzene	Methyl Ethyl Ketone	2-hexanone (MBK)	p-Isopropyltoluene
LOF	2	5	5	50	5	50	5	5	50	5	5	5	5	5	50	50	5
Analytical - Groundwater																	
W2	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW01	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW02	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW03	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW05	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW07	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW09	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW101	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW102	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW103	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Surface Water																	
SW01	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SW02	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Statistics																	
Samples analysed		17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
Detects		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% detect		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Maximum		<5	<5	<50	<5	<50	<5	<5	<50	<5	<5	<5	<5	<5	<50	<50	<5
Minimum		<5	<5	<50	<5	<50	<5	<5	<50	<5	<5	<5	<5	<5	<50	<50	<5
Criteria - Commercial / Indu	strial																
ANZG (2018) 95% Level of 9	Species Protection	1,900	-	-	370	-	-	-	-	160	260	60	-	55	-	-	-
GILs Drinking Water		-	60	-	-	4	-	-	0.3	1,500	-	40	-	300	-	-	-

Table 15: Water Analytical Summary - PFAS (µg/L)

		Perfluor	fluoroalkyl Sulfonic Acids			Perfluoro	alkyl Carbox	ylic Acids		Fl	uorotelomer	Sulfonic Aci	ds	PFAS	Sums
Monitoring well / sample location	Date / time sampled	Perfluorobutane sulfonic acid (PFBS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8: 2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Sum of PFAS (WA DER List)
LO	Rs	0.02	0.02	0.01	0.1	0.02	0.02	0.02	0.01	0.05	0.05	0.05	0.05	0.01	0.01
Analytical - Groundwater															
W2	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
W3	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
MW01	27/4/23	nd	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05	0.05
MW02	26/4/23	nd	0.04	0.08	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.12	0.12
MW03	26/4/23	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW05	26/4/23	0.18	0.89	<u>2.16</u>	nd	0.05	0.18	nd	0.04	nd	nd	nd	nd	3.05	3.5
MW07	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW09	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW10	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
MW12	26/4/23	nd	0.03	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05	0.05
MW13	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW101	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW102	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW103	26/4/23	0.03	0.11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.11	0.14
Analytical - Surface Water	r														
SW01	27/04/2023	nd	0.03	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.03	0.03
SW02	27/04/2023	nd	0.02	0.03	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05	0.05
Statistics															
Samples analysed		17	17	17	17	17	17	17	17	17	17	17	17	17	17
Detects		2	16	4	0	1	1	0	1	0	0	0	0	16	16
% detect		12%	94%	24%	0%	6%	6%	0%	6%	0%	0%	0%	0%	94%	94%
Maximum		0.18	0.89	<u>2.16</u>	<0.1	0.05	0.18	< 0.02	0.04	< 0.05	< 0.05	< 0.05	< 0.05	3.05	3.5
Minimum		<0.02	<0.02	< 0.01	<0.1	<0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
Criteria - Freshwater															
Drinking Water (Australiar 2019)	n Gov. Dept of Health	-	0.07	0.07	-	-	-	-	0.56	-	-	-	-	0.07	-
Recreational criteria (NHM	IRC, 2019) ³	-	2	2	-	-	-	-	10	-	-	-	-	2	-
Ecological (Fresh water 99 (NEMP 2022 V2.0) ⁴	9% Protection of species)	-	-	0.00023	-	-	-	-	19	-	-	-	-	-	-

Sample Identification	Date Sampled	Redox as Eh (mV)	Dissolved Oxygen (mg/L)	Sulfate as SO4 - Turbidimetric	Manganese (mg/L)	Ferrous Iron	Nitrate as N	Methane (µg/L)
LOR		-	-	1	0.001	0.05	0.01	10
Analytical - Groundwater								
MW01	27/04/2023	99.2	3.17	33	0.359	nd	0.06	nd
MW02	26/04/2023	92.3	3.12	18	1.79	2.8	0.35	848
MW04	26/04/2023	85.2	4.68	122	nd	nd	3.78	nd
MW05	26/04/2023	98.2	4.28	151	nd	3.98	1.80	nd
MW06	27/04/2023	101.2	2.78	1	0.975	nd	0.03	637
MW07	26/04/2023	85.2	4.88	67	nd	nd	18.9	nd
MW09	26/04/2023	80.1	3.30	118	0.018	nd	1.06	nd
MW10	27/04/2023	67.1	3.60	40	nd	nd	1.62	nd
MW12	26/04/2023	101.9	3.68	57	nd	nd 2.31		nd
MW13	26/04/2023	79.2	3.88	37	nd	nd	4.09	nd
MW101	27/04/2023	107.2	3.54	135	1.5	5 nd 23.1		nd
MW102	27/04/2023	116.2	4.12	114	0.018	3 nd 29.7		nd
MW103	27/04/2023	106.7	3.11	34	0.398	nd	1.01	nd

Table 16: Groundwater Analytical Summary - Natural Attenuation Parameters

Analyte	Primary Laboratory LOR ug/L	Secondary Laboratory LOR ug/L	MW03	QW01	RPD	QW02	RPD	RB4	RB5	Trip Blank	Trip Spike	Trip Spike Control	Trip Spike
Туре		-	Primary	Intra- Laboratory Duplicate	%	Inter- Laboratory Duplicate of MW03	%	Rinsate	samples	Lab prep	Lab prep	Lab	Recovery
Date		-	26/04/23	26/04/23	-	26/04/23	-	26/04/23	27/04/23	17/04/23	17/04/23	17/04/23	-
Metals													
Arsenic	1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Cadmium	0.1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Chromium	1	-	3	3	0	-	-	nd	nd	-	-	-	-
Copper	1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Lead	1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Nickel	1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Zinc	5	-	nd	nd	-	-	-	nd	nd	-	-	-	-
Mercury	0.1	-	nd	nd	-	-	-	nd	nd	-	-	-	-
BTEXN													
Benzene	1	1	nd	nd	-	nd	-	-	-	nd	19	20	95
Toluene	2	1	nd	nd	-	nd	-	-	-	nd	18	20	90
Ethylbenzene	2	1	nd	nd	-	nd	-	-	-	nd	18	20	90
meta- & para-Xylene	2	2	nd	nd	-	nd	-	-	-	nd	18	20	90
ortho-xylene	2	1	nd	nd	-	nd	-	-	-	nd	19	20	95
Naphthalene	5	10	nd	nd	-	nd	-	-	-	nd	18	20	90
C6 - C9 Fraction	20	20	nd	nd	-	nd	-	-	-	nd	-	-	-
C6 - C10 Fraction minus BTEX (F1)	20	20	nd	nd	-	nd	-	-	-	nd	-	-	-
>C10 - C16 Fraction minus Naphthalene (F2)	100	50	nd	nd	-	nd	-	-	-	-	-	-	-
>C16 - C34 Fraction	100	100	nd	nd	-	nd	-	-	-	-	-	-	-
>C34 - C40 Fraction	100	100	nd	nd	-	nd	-	-	-	-	-	-	-
>C10 - C40 Fraction (sum)	100	100	nd	nd	-	nd	-	-	-	-	-	-	-
Sum of PAHs	0.5	1	nd	nd	-	nd	-	-	-	-	-	-	-
VOCs													
1,2-dichloroethane	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
cis-1.2-Dichloroethene	5	1	nd	nd	-	nd		-	-	-	-	-	-
Chloroethane	50	5	nd	nd	-	nd	-	-	-	-	-	-	-
Chloroform	5	5	nd	nd	-	nd	-	-	-	-	-	-	-
Chloromethane	50	5	nd	nd	-	nd	-	-	-	-	-	-	-
Trichloroethene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
Tetrachloroethene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
Vinyl chloride	50	5	nd	nd	-	nd	-	-	-	-	-	-	-
1,2-dichlorobenzene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
1,3-dichlorobenzene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
1,4-dichlorobenzene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
Chlorobenzene	5	1	nd	nd	-	nd	-	-	-	-	-	-	-
Polyfluoroalky/ Substances (PEAS)	5	-	Thu .	nu	1	nu		1	1	1	1	1	
prive	0.01	0.01	n d	nd		nd			1	1	1	1	r
PFHXS	0.01	0.01	nd	nd	-	nd	-	-		-		-	
FFUS	0.01	0.01	na	na	-	na		-			-		
	0.01	0.01	nd	nd		nd		-	-	-	-	-	-
Dete Overlite Terlineter	0.01	0.01	nu	nu		nu			<u> </u>				70 1000
Data Quality Indicator	-	1	1	1	<50%	1	<50%	1	1		-	-	10-130%

Table 17: Water Analytical Summary - Quality Control (µg/L)

Water Analytical Summary Table Notes

- LOR limit of reporting (standard LOR unless otherwise shown)
- nd not detected above the LOR
- Underlined Exceeds criteria
- Bold Exceeds criteria
- ^ LOR raised
- denotes not analysed/not available
- NL Not limiting
- ¹Based on table Table 3.4.4 within ANZECC (2000)
- $^2\mbox{Calculated}$ based on an average hardness value of 176 mg/L \mbox{CaCO}_3
- *- Chromium criteria as Cr(VI)
- ** Low reliability trigger value, used as interim working level only.
- *** Bioaccumulative, therefore a higher protection level has been adopted. For example, a PC95 will be increased to PC99, a PC80 will be increased to PC90.
- Health Screening Levels (HSLs) for vapour intrusion in a clay geology has been derived based on field observations.
- HSL D Commercial/industrial
- GILs Drinking Water National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines (Updated August 2018) (NHMRC (2011) ADWG)
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (http://www.waterquality.gov.au/anz-guidelines as accessed 26 April 2022) (ANZG 2018)
- 3. NHMRC (2008) National Health and Medical Research Council, Guielines for Managing Risks in Recreational Waters
- 4. HEPA (2022V2.0), PFAS National Environmental Management Plan Version 2.0, Heads of EPA Australia and New Zealand 2022'.

Appendix A

Stormwater and Drainage

1	BRS	Bulk Recovery Solut 16 Kerr Road Ingleburn, NSW 2565	ions P/L Ph: (02) 8717 3366			 	nvoice nvoice FAX I	Date: No: NVOIC	2 E	21–JUN–23 1105421
	Bill To: Aqua A	A.B.N: 51 148 898 784 ssets Pty Ltd	Fax:			Tota	l Due	e:	1	,023.31
	12 Nels	son Ave	12 Nelson Ave	Ac	count	Order	Ref:		Terr.:	Whse:
	Padstow NSW		NSW		500129 :143891					5124
				R	ep:	Cust	t. Ref No	.:	Our C	order No.
	Accoun	its – 0249400410 LYDIA	Accounts – 0249400410 LYDIA 2211		ТІМ				11	05421
	Ph:02 9708	3 0800 Fax:02								
Iter	m Code	Item Description		Ordered	Shipped	B/Ord	UOM	Unit Price		Line Total
J12	20-B	J120–B Oily Water>10% <30%		1.90	1.90	0.00	TON	290.00		551.00
WA	SHOUTJ120	Wash Water for J120		1.00	1.00	0.00	EACH	190.00		190.00
WΤ	Ľ	Waste Trackable Levy		1.90	1.90	0.00	TON	81.20		154.28
WT	FP	Waste Tracking Fee Paperwork – 2T013	357259	1.00	1.00	0.00	EACH	35.00		35.00
		XN29VL : 21–Jun–23 12:59								

Direct All EFT Payments To:Bank:Westpac Banking Corp Fairfield Neeta CityA/C Name:Bulk Recovery Solutions P/LBSB:032–072 Account No: 287975

Ex Tax:	930.28
GST:	93.03
Freight:	0.00
Total: AUD	1,023.31

1	BRS	Bulk Recovery Solution 16 Kerr Road Ingleburn, NSW 2565	Ph: (02) 8717 3366			וו וו ך	nvoice nvoice FAX I	Date: No: NVOIC	2 E	2–JUN–23 1105544
	Bill To: Aqua A	A.B.N: 51 148 898 784 ssets Pty Ltd	Fax: Deliver To: Aqua Assets Pty Ltd			Tota	l Due	e :	9	,093.14
	12 Nels	son Ave	12 Nelson Ave	Ac	count	Order	Ref:		Terr.:	Whse:
	Padsto NSW	W	NSW		500129		:14397	'9	5124	5124
				R	ep:	Cust	. Ref No). :	Our O	rder No.
	Accoun 2211 Ph:02_9708	its – 0249400410 LYDIA 3 0800 Fax: 02	Accounts – 0249400410 LYDIA 2211		TIM				110)5544
_										
Iter	m Code	Item Description		Ordered	Shipped	B/Ord	UOM	Unit Price	!	Line Total
J12	0-SLUDGE	J120–SLUDGE Oily Water Sludge > 30%		12.74	12.74	0.00	TON	550.00		7,007.00
WA	SHOUTJ120	Wash Water for J120		1.00	1.00	0.00	EACH	190.00		190.00
WΤ	Ľ	Waste Trackable Levy		12.74	12.74	0.00	TON	81.20		1,034.49
WT	FP	Waste Tracking Fee Paperwork – 2T013570	56	1.00	1.00	0.00	EACH	35.00		35.00
		X067IY : 22–Jun–23 13:25								

Direct All EFT Payments To:Bank:Westpac Banking Corp Fairfield Neeta CityA/C Name:Bulk Recovery Solutions P/LBSB:032–072 Account No: 287975

Ex Tax:	8,266.49
GST:	826.65
Freight:	0.00
Total: AUD	9,093.14

Terms: 30 Days

Page: 1 of 1

	Bulk Recovery Solutior 16 Kerr Road Ingleburn, NSW	ns P/L			 	nvoice nvoice FAX I	Date: No: NVOIC	10 E)-AUG-23 1109771
	2565 A.B.N: 51 148 898 784	Ph: (02) 8717 3366 Fax:			Tota	l Due	e :	2	,064.63
Bill To: Aqua Assets Pty Ltd 12 Nelson Ave Padstow NSW		beilver 10. Aqua Assets Fty Ltd 2 Nelson Ave Padstow NSW			Order 2 Cust	Ref: 5616:147	7511	Terr.: 5124 Our O	Whse: 5124 rder No.
Accoun 2211 Ph:02 9708	ts – 0249400410 LYDIA 3 0800 Fax:02	Accounts - 0249400410 LYDIA 2211		TIM				110	9771
Item Code	Item Description		Ordered	Shipped	B/Ord	UOM	Unit Price		Line Total
J120-A	J120-A Oily Water <10%		6.6	4 6.64	0.00	TON	190.00		1,261.60
WTL	Waste Trackable Levy		6.6	4 6.64	0.00	TON	87.40		580.34
WTFP	Waste Tracking Fee Paperwork - 2T013728	31	1.0	1.00	0.00	EACH	35.00		35.00
	XN96ST : 10-Aug-23 14:23								

Direct All EFT Payments To:Bank:Westpac Banking Corp Fairfield Neeta CityA/C Name:Bulk Recovery Solutions P/LBSB:032–072Account No:287975

Ex Tax:	1,876.94
GST:	187.69
Freight:	0.00
Total: AUD	2,064.63

	Bulk Recovery Soluti 16 Kerr Road Ingleburn, NSW	ons P/L			וו וו ך	nvoice nvoice FAX I	Date: No: NVOIC	0! E	9-AUG-23 1109626
(Bill To: Agi	A.B.N: 51 148 898 784	Ph: (02) 8717 3366 Fax:			Tota	l Due	9:	1	,944.08
12	Velson Ave	12 Nelson Ave	A	count	Order	Ref:		Terr.:	Whse:
NSW Padstow		NSW		500129 25616:147378				5124	5124
0			R	Rep: Cust. Ref No. :). :	Our C	rder No.
ACC 221	1	2211		TIM				11(09626
PII:02 8	706 0600 Fax. 02								
Item Code	Item Description		Ordered	Shipped	B/Ord	UOM	Unit Price	;	Line Total
J120-A	J120-A Oily Water <10%		5.56	5.56	0.00	TON	190.00	1	1,056.40
WASHOUTJ120	Wash Water for J120		1.00	1.00	0.00	EACH	190.00		190.00
WTL	Waste Trackable Levy		5.56	5.56	0.00	TON	87.40		485.95
WTFP Waste Tracking Fee Paperwork - 2T01371243			1.00	1.00	0.00	EACH	35.00		35.00
	XN96ST : 09-Aug-23 09:45								

Direct All EFT Payments To:Bank:Westpac Banking Corp Fairfield Neeta CityA/C Name:Bulk Recovery Solutions P/LBSB:032-072 Account No: 287975

Ex Tax:	1,767.35
GST:	176.73
Freight:	0.00
Total: AUD	1,944.08

	Bulk Recovery Solutio 16 Kerr Road Ingleburn, NSW	ns P/L			וו וו ך	nvoice nvoice FAX I	Date: No: NVOIC	0 E	9-AUG-23 1109700
Bill To: Aqua A	2565 A.B.N: 51 148 898 784 ssets Pty Ltd	Ph: (02) 8717 3366 Fax: Deliver To: Aqua Assets Pty Ltd			Tota	l Due	9:		882.19
12 Nels	son Ave	12 Nelson Ave	A	ccount	Order	Ref:		Terr.:	Whse:
NSW	w	NSW		500129	2	5616:147	7443	5124	5124
			F	Rep:	Cust	. Ref No	.:	Our C	Drder No.
Accounts - 0249400410 LYDIA 2211 Ph:02 9708 0800 Fax:02		Accounts - 0249400410 LYDIA 2211		TIM				11	09700
Item Code	Item Description		Ordered	Shipped	B/Ord	UOM	Unit Price	<u> </u>	Line Total
J120-A	J120-A Oily Water <10%		2.08	2.08	0.00	TON	190.00		395.20
WASHOUTJ120	Wash Water for J120		1.00	1.00	0.00	EACH	190.00		190.00
WTL	Waste Trackable Levy		2.08	3 2.08	0.00	TON	87.40		181.79
WTFP	Waste Tracking Fee Paperwork - 2T013712	242	1.00	1.00	0.00	EACH	35.00		35.00
	AQ23EA : 09-Aug-23 19:07								

Direct All EFT Payments To:Bank:Westpac Banking Corp Fairfield Neeta CityA/C Name:Bulk Recovery Solutions P/LBSB:032-072 Account No: 287975

Total: AUD	882.19
Freight:	0.00
GST:	80.20
Ex Tax:	801.99

Appendix B

Data Quality Objectives: Planning process Output

Project:	Supplementary Detailed Site Investigation – Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580
Field work stage:	Supplementary Detailed Site Investigation
DQOs completed (by/date):	Mr Zac Laughlan – 27 March 2023
DQOs reviewed (by/date):	Mr Drew Wood – 27 March 2023
Background to DQOs:	The proposal to Australian Rail Track Corporation (ARTC) dated 22 February 2023 was prepared based on information provided to Cavvanba by ARTC.
	The site has over 100 years of industrial activity having officially opened as an operational railway Roundhouse by the NSW Government Railways in 1918, with railway maintenance activities commencing at the site in approximately 1869. The site has been used to maintain a large portion of the railways fleet of steam locomotives, followed by diesel locomotives being maintained at the site from the 1950's until its closure in 1981.
	A supplementary detailed site investigation was required as the next stage of the investigation to address data gaps identified by Cavvanba, reduce uncertainties in the assessment of remedial options and regulation of the site. It was also to address NSW EPA and Site Auditor comments on the investigations and assessments to date.
	Refer to Section 1 of the body of the report.
DQOs Objective:	Estimate problem

DQOs Planning Process Output – Decision Problems

Step 1 - State the problem

Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem.

1.1	Write a brief summary of the contamination problem: The objectives of the supplementary DSI are stated in Section 1.2 of the main body of this report.				
	The overarching objectives of the works were to re-evaluate and supplement previous investigation data, and address the key issues raised by the Site Auditor and the NSW EPA. The proposed works were to assist in reducing uncertainties in the assessment of remedial options, and regulation of the site.				
1.2	Identify members of the planning team				
	Person	Organisation	Role		
	Drew Wood	Cavvanba	Principal Environmental Scientist		
	Mark Curran	Australian Rail Track Corporation	Senior Environmental Specialist		
	Ian Gregson	GHD Pty Ltd	Site Auditor		

Step 1 Summai resource	- State the problerise the contaminat rise the contaminat as available to reso	em ion problen lve the prol	n that will require i blem.	new environ	mental data, and id	entify the
	Zac Laughlan		Cavvanba		Field Environmenta Engineer	al
	Ben Wackett	Cavvanba	Principal Environmental Scientist		ental	
	Various		GLRPS		Lessee	
1.3	Develop/refine the	e conceptua	al site model (CSM)) (see CSM)):	
	The conceptual s contamination sou	ite model Jrces, expo	is outlined in the sure pathways and	body of the location of the lo	e report, including	details of
1.4	Define the summa	ary exposu	re scenarios (Y/N)*			
	Soil/dust	Y/N	Groundwater	Y/N	Surface Water	Y/N
	Dermal	Y	Dermal	Р	Dermal	U
	Ingestion	Y	Ingestion	Р	Ingestion	U
	Inhalation	Y	Inhalation	Р	Inhalation	U
	Ecological	Р	Ecological	Р	Ecological	Р
	* C = Commercial Unlikely; P = Poter	worker; M = ntial. *Add a	Maintenance worker dditional if required.	(i.e. during	site works/construction	ı); U =
1.5	Specify the availa study, budget, av	ble resourc ailability of	es and constraints, personnel and sch	, such as re edule, etc.:	levant deadlines for	the
	The scope of work proposal titled <i>Co Braidwood Road,</i> Ref: P20025.76.5	and metho ontaminate Goulburn I).	odology was consis <i>d land consulting</i> VSW 2580 submitte	tent with th <i>services –</i> ed to ARTC	at detailed within Ca Goulburn Roundho in February 2023 (avvanba's <i>use – 12</i> Cavvanba
	The site is an ope progressed with a utilities, including subterranean was	erational ro practical a existing inf te oil lines	oundhouse and mu allowance for worki frastructure, concre and site-specific ge	seum, ther ng with and ete slab / fo eological fea	efore the investigat around on-site acti otings, underground atures.	ion works vities and I services,

Step 2 - Identify the decision

Г

To identify the decision that requires new environmental data to address the contamination problem.

2.1	Identify the principal study questions: Define the extent of on-site contamination that may represent a risk to human health or the environment under the prescribed land use scenario?
2.2	Identify the alternative outcomes or actions that could result from resolution of the principal study questions: Where contamination poses an unacceptable risk to human health and/ or the
	environment, additional remediation, management and/or modification of the proposed remediation works, and current site activities will be required.

Step 2 - Identify the decision

To identify the decision that requires new environmental data to address the contamination problem.

2.3	Combine the principal study questions and the alternative actions into decision statements:
	If the contamination present at the site is adequately characterised, appropriate and justifiable remediation and/or management measures will be actioned to ensure the protection of human health and the environment.
	If the contamination present at the site is not adequately characterised and there is insufficient information to develop appropriate and justifiable remediation and/or management measures to ensure the protection of human health and the environment, further investigation will be required.
2.4	Organise multiple decisions (attached flow charts/logic diagrams, summary tables, etc.):
	N/A

Step 3 - Identify the inputs to the decision

To identify the information that will be required to support the decision and specify which inputs require new environmental measurements.

3.1 Identify the information that will be required to resolve the decision statements, including existing information and new environmental data, and identify the sources for each item of information required:

Existing information:

Refer to the previous environmental investigations and plans listed in Section 12 of the Supplementary DSI report.

New environmental data:

Measurements of soil, groundwater and surface water for known contaminants of concern (COCs), being total recoverable hydrocarbons (TRH), benzene, toluene, ethyl-benzene, xylenes and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals (As, Hg, Cd, Cr (total), Cr (III), Cr(VI) Cu, Pb, Ni and Zn), organochlorine and organophosphate pesticides (OCPs and OPPs), volatile organic compounds (VOCs), per-and polyfluoroalkyl substances (PFAS) and asbestos. Furthermore, natural attenuation parameters, stormwater and drainage investigation data, geological logs, field data and observations provide additional environmental data.

Step 3 - Identify the inputs to the decision To identify the information that will be required to support the decision and specify which inputs require new environmental measurements.				
3.2	Identify the information needed to establish the action level:			
	The Tier 1 assessment criteria was sourced from guidelines made or approved under the <i>Contaminated Land Management (CLM) Act (1997),</i> and are based on a review of the following reference documents:			
	• National Environment Protection Council (NEPC) (April 2013) National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPC, Canberra (ASC NEPM 2013).			
	 CRC Care Technical Report no. 10 – Health screening level for petroleum hydrocarbon in soil and groundwater – Part 2: Application Document (CRC Care, 2011). 			
	• <i>PFAS National Environmental Management Plan Version 2.0 – January 2020</i> (PFAS NEMP) (Heads of EPAs Australia and New Zealand (HEPA), 2020)			
	• National Health and Medical Research Council (NHMRC) (2011) Australian Drinking Water Guidelines (Updated August 2018) (NHMRC (2011) ADWG).			
	With respect to asbestos, the criteria outlined in the ASC NEPM (2013) is applicable, which includes a requirement for the top 10 cm to be free of visible asbestos.			
3.3	Confirm that appropriate analytical methods exist to provide the necessary data:			
	Feasible analytical methods, both field and laboratory were consistent with existing guidance including being in accordance with ASC NEPM (2013). The laboratories used as part of the investigation were national association of testing authorities (NATA) accredited and use analytical methods based on USEPA and APHA methods. All PCOC limits of reporting were less than the applicable assessment criteria.			

Step 4 - Define the boundaries of the study

To define the spatial and temporal boundaries that the data must represent to support the decisions.

4.1	Specify the characteristics that define the population of interest:
	The site is referred to as 12 Braidwood Road, Goulburn NSW 2580, being Lot 2 in DP 1002813, as presented on Figure 1.
	The population of interest for soil was limited to further characterising and delineating known contamination areas, and within areas not previously assessed on-site. The assessment of soils included the identified of ACM presence across the ground surface of the site, including within shallow fill material using hand tools only. It was also completed to provide an assessment of COC concentrations in surface and shallow soils.
	For groundwater, the population of interest was associated with assessing groundwater within the location of the decommissioned diesel aboveground storage tanks and effluent treatment plant, and an updated assessment of groundwater conditions across the site.
	A stormwater and drainage investigation was conducted by ARTC to determine areas of potential soil, groundwater and/or surface water contamination as a result of integrity issues associated with this infrastructure.

Step 4	- Define the boundaries of the study
lo defin decision	e the spatial and temporal boundaries that the data must represent to support the s.
4.2	Define the geographic area and media to which the decision statement applies:
	The lateral boundary is defined as the site, referred to as 12 Braidwood Road, Goulburn NSW 2580 (Lot 2 in DP 1002813). The investigation included the vertical extent of investigation to a maximum depth of 8 m and within the site boundary where access could be achieved.
	The media to which the decision statement applies includes fill material, natural soils, surface water and groundwater.
	Media is also stratified depending on the nature of the material encountered (i.e. fill material/natural soil) and surface water / groundwater. Groundwater is defined as the unconfined water bearing zone in natural clays.
4.3	When appropriate, divide the populations into strata that have relatively homogenous characteristics:
	To summarise stratification, it is desirable for studying subpopulations or for reducing the complexity of the problem by breaking it into more manageable pieces. It can also improve the efficiency of the sampling design, and the planning team can subsequently make separate decisions about each stratum as well as the entire population. As previously discussed, this will be applied to fill material and natural soil, groundwater and surface water.
4.4	Determine the time frame to which the decision applies:
	The timeframe is in accordance with the approved VMP for the site, VMP No. 20231709, dated 6 July 2023.
4.5	Determine when to collect data:
	The investigation was undertaken during normal working hours, Monday to Friday.
4.6	Define the scale of the decision making:
	The scale of decision making was aimed at the collection of sufficient data such that an assessment can be made regarding whether the contamination at the site presents an unacceptable risk to human health or the environment both on and off-site, including defining the extent of remediation / management required at the site.
	Other aspects of site suitability are not being addressed in this assessment.
	It is acceptable for no decision to be made regarding landuse suitability if unacceptable uncertainty arises from the data collection stage.
4.7	Identify any practical constraints on data collection:
	The practical constraints on the data collection included above and below ground services on-site and where investigation locations could be safely achieved. For the stormwater and drainage investigation this included physically accessible below ground infrastructure.

Step 5	- Develop the analytic (statistical) approach
Develop the decis	a logical "if, then, else" statement that defines the conditions that would cause sion maker to choose among alternative actions.
5.1	Specify the statistical parameter that characterises the population of interest, such as mean, median, maximum or proportion, etc.:
	The 95% upper confidence limit (UCL) of the arithmetic average concentration is the primary parameter used in making decisions for soils. Other parameters may be appropriate, based on site specific considerations and the objectives of the study, e.g. maximum, mean, median, or specified percentiles.
	For all statistical tests, appropriate grouping of data by media/strata is required. For some tests, seasonality needs to be considered.
	Requirements for statistical interpretation of data may also include that the relevance of localised elevated values is considered by using additional tests, e.g. ASC NEPM 2013 specifies that the standard deviation of the results should be less than 50% of the criterion; and no single value should exceed 250% of the criterion.
5.2	Specify the action level for the decision:
	Analytical actions levels were based on guidelines made or approved under the <i>Contaminated Land Management (CLM) Act (1997)</i> , and included the ASC NEPM (2013), CRC CARE (2011) and PFAS NEMP. The criteria is not clean-up criteria, therefore exceedances were screened to determine whether further investigation, management or remediation is required.
5.3	Confirm that measurement detection will allow reliable comparisons with the action level:
	Representative samples were collected and submitted to a NATA accredited laboratory for analysis. Standard limits of reporting were considered to be appropriate. Visual observations on the nature and extent of contamination was also made during the investigation.
5.4	Combine the outputs from the previous DQOs steps and develop an "if, then, else \dots " theoretical decision rule based on the chosen action level:
	If statistical parameters of the data exceed applicable action levels, further remediation or management may be required. For example, if the 95% UCL of the arithmetic average is \leq the action level, then the site may be considered suitable for continued commercial/industrial landuse, otherwise additional investigation, remediation or management will be required.

Step 6 To speci	 Specify performance or acceptance criteria fy probability limits for false rejection and false acceptance decision errors.
6.1	Specify the decision rule as a statistical hypothesis test: Project specific, but for landuse suitability the statistical hypotheses are: null hypotheses (H₀) the 95% UCL is > action level; and alternate hypotheses (H₄) the 95% UCL is ≤ action level.

Step 6 To speci	 Specify performance or acceptance criteria ify probability limits for false rejection and false acceptance decision errors.
6.2	Examine consequences of making incorrect decisions from the test:
	False rejection or Type I error of determining the site is suitable when it is not (wrongly rejects a true H_0). Consequence is potential risks to human health and/or the environment.
	False acceptance or Type II error of determining the site is not suitable when it is (wrongly accepts a false H_0). Consequence is unnecessary expenditure of resources or a site not being used for its highest value.
6.3	Place acceptable limits on the likelihood of making decision errors:
	The Australian Standard (AS 4482.1) specifies an alpha risk (Type I error) of a = 0.05, and a beta risk (Type II error) of β = 0.2. Application of these include the 95% UCL (a only as a onesided test is used), and determination of the number of samples required to determine the average concentration (Appendix D of AS 4482.1), which should be used to confirm that sufficient samples have been analysed to support the decision.

Step 7 – Optimise the design for obtaining data
To identify a resource effective sampling and analysis design for generating data that are expected to satisfy the DQOs.

7.1	Document the final sampling and analysis design, along with a discussion of the key assumptions underlying this design:
	The investigation strategy was designed to further characterise and delineate known contamination areas, and within areas not previously investigated or where there was limited spatial coverage. A visual appraisal of surface soils for the presence / absence of ACM was also completed within the vicinity of each sampling location, in addition to the visual appraisal of the entire site surface completed as part of the ACM hand-picking exercise in June 2023.
	The stormwater and drainage investigation was completed by Aqua Assets Pty Ltd under the supervision and direction of ARTC. The findings of which, were provided to Cavvanba at the cessation of the fieldwork program.
	The sampling and analysis design is documented within Section 5.0 of the Supplementary DSI report.
	Soil, groundwater and surface water samples were analysed for actual and potential COCs.
7.2	Detail how the design should be implemented, together with contingency plans for unexpected events:
	Prior to commencing the intrusive investigation, any unexpected finds were to be clearly communicated to ARTC including requirements for further investigation.
7.3	Determine the quality assurance and quality control (QA/QC) procedures that would be performed to detect and correct problems to ensure defensible results:
	The field QA, and the field and laboratory QC, are described in the <i>Data Usability Summary Assessment</i> . In summary, the following QC samples were completed in accordance with the ASC NEPM 2013.

Step 7	7 – Optimise the design for obtaining data										
To ident expected	ify a resource effective sampling and analysis design for generating data that are d to satisfy the DQOs.										
	Field QC samples Lab QC samples										
	Blind duplicate	≥ 5%	Lab blank	≥ 1/lab batch							
	Blind triplicate	≥ 5%	Surrogate spike	Organics by GC							
	Rinsate sample	≥ day	LCS	≥ 1/lab batch							
	Trip blank	\geq 1/field batch	Matrix spike	≥ 1/media type							
	Trip spike	\geq 1/field batch	Lab duplicate	≥ 10%							
7.4	Document the operat the sampling, analysis	ional details and theor s and quality plan (SAC	etical assumptions of t QP):	he selected design in							
	Prior to commencing unexpected finds and locations. The rational Supplementary DSI.	the intrusive investigat I unimpeded access w ale for the sampling c	tion, it was assumed th as achievable to all p lesign is detailed withi	nat there would be no roposed investigation in Section 5.0 of the							

Appendix C

Calibration Certificates, Field Forms and Survey Data

Photoionisation Detector Calibration Record

Job Ref. 20025.76

Serial Number	Date	Time	Span gas conc' (e.g 100 ppm isobutylene)	Span gas reading	Fresh air Cal reading	Initials
592-405868	18.4-22	10:56	100	99.4	0.0	26/10
8. 11	19.4.23	7:25	100	99.6	0.0	ZLICC
<i>p</i> 11	20-4.23	7:22	100	99.8	0,0	ZLILL
10 17	21.4.23	7:15	100	99.7	0.0	20/00

Groundwater – SWLs

Job Ref. 20025.76	InitialsZL
Location Costinium	Date

Well ID	Date / Time	SWL (m BTOC)	NAPL Depth (mBTOC)	Comments
MW08	26 4.23	Drg		
MWO7		6.025	nil	
MW13		4.645	nil	
MWOS		6.415	nik	
MW04		7.155	nit	
MW03		7.300	uil	
MWOZ		7.365	int	Slight hydroichon
MWO9		7-095	nil	
MW12		5.535	nit	
MWIO	27.4.23	4.295	vit	
W2		5.365	inil	
MWOI		6.715	nil	
NWIOI	5	4.775	ail	
MWIOZ		3.995	nil	

CAVVANBA

Date / Time	SWL (m BTOC)	NAPL Depth (mBTOC)	Comments
27.4-23	5.850	nil	
	5.275	nit	
	6.625	5.095	LNAPL on surface she hydrocalen foil oclour
			0
	Date / Time	Date / Time SWL (m BTOC) 27.4.23 5.850 5.275 6.625 6.625 7 7	Date / Time SWL (m BTOC) NAPL Depth (mBTOC) 27 · 4 · 23 S. 850 mil 5. 275 mil 6. 6 25 5. 095

Job Number: 20025.76 Weil Type: ≦ Monitor □ Extractor □ Other Recorded By: Zlaughlan Weil Type: ≦ Monitor □ Extractor □ Other Date: 2 #/04/2023 Sample by: Zlaughlan PURGE VOLUME PURGE VOLUME PURGEMETHOD Weil Diameter (D in mm): Ø 50 □ 100 □ Other Baler - Type: □ PVC □ SS □ Teflon □ Other Total Depth of Weil (TD in m BTOC): //.5/3 □ Other Water Level Depth WL in m BTOC): //.5/3 □ Other 3 □ □ □ Other Depth (m BTOC) - Top : Bottom: PURGE TIME 25 £22 0 Other PURGE TIME 25 £22 0 Other PURGE TIME 25 £22 0 Other PURGE TIME 25 £2 0 Other PURGE TIME 25 £2 0 Other PURGE TIME 25 £2 0 Other PURGE TIME 26 £ 7 £ 7 £ 5 £8 0 Other PURGE TIME 27 £2 0 Other PURGE TIME 26 £ 7 £ 7 £ 5 £8 0 Other PURGE TIME 25 £2 £ 7 £8 0 Other PURGE TIME 25 £6 £ 7 £7 £ 5 £8 0 Other 20 2.0 5 £6 £ 1 /77 £ 5 £8 £ 7 £ 7 £ 5 £8 £ 0 Other	Job Name:	: Suppleme	entary D	SI			Well N	lo: 141	7			
Recorded By: Z.Laughian Well Material: $[M PUC] EXTRACT OF Other Date: 2 4/04/2023 Sample by: Z Laughian PURGE VOLUME PURGE VOLUME PURGE VOLUME PURGE METHOD Well Diameter (D in mm): [M 50] 100] 0 ther Bailer - PURGE METHOD Ware Volume to be purged (# Vol.5) Colspan="2">PURGE METHOD Ware Level Depth WL in m BTOC): S. 265 VOLUME PURGE TIME VOLUME to be purged (# Vol.5) Depth (m BTOC) - Top : Bottom: PURGE TIME PURGE TIME Serven Interval (m BTOC) - Top : Bottom: PURGE TIME Serven Interval (m BTOC) - Top : Bottom: PURGE TIME Serven Interval (m BTOC) - Top : Bottom: PURGE TIME Serven Interval (m BTOC) - Top : Bottom: PURGE TIME Serventime PH Cond. Serventime PH Cond. Serventime PH Cond. $	Job Numb	er: 20025.	76				Well T		Monitor		. <u> </u>	
Date: 2 #104/2023 Sample by: Z Laughlan PURGE VOLUME PURGE TIME VOLUME PURGE TIME State State PURGE TIME State	Recorded	By: Z.Laug	hlan				Well M	laterial.				Other
PURCE VOLUME PURCE PURCE METHOD Well Diameter (D in mm): \$\$ 0 100 Other Bailer - Type: PVRCE METHOD Total Depth of Well (TD in m BTOC): //.5/3 PUMP - Type: \$\$ Submersible Peristaltic Water Level Depth WL in m BTOC): //.5/3 Dump - Type: \$\$ Submersible Peristaltic Water Level Depth WL in m BTOC): .5.765 PUMP INTAKE SETTING Number of well (TD in m BTOC): .5.765 PUMP INTAKE SETTING Number of well (Volume to be purged (# Volus) Depth (m BTOC) - Top : Bottom: PURCE TIME 2.5 Aux^o PURGE TIME ACTUAL PURGE PURGE TIME 2.5 Aux^o PURGE TIME Final: FIELD PARAMETER MEASUREMENTS Min since Volume pH Cond. Temp Min since Volume pH Cond. Temp Do Std? 5 Std? 5 2.0 2.0 3.4 1.745 1.5 2.8 4.7 Std? 10 1.0 1.4 5.78 4.71 3.75 5.66 2.0 3.4 1.72 1.745 5.78 2.7 5.46 1.1 1.5 2.8 4.72 5.472 5.478 1.2	Date: 27	404/2023					Samp	e by: 7			□ Othe	r
PURGE VOLUME PURGE METHOD Well Diameter (D in mm): Ø 50 100 0ther Bailer - Type: [] PVC [] SS] Teflon Other Total Depth of Well (TD in m BTOC): //.5/3 Pump - Type: Ø Submersible Peristaltic Water Level Depth WL in m BTOC): S. 765 PUMP INTAKE SETTING Pump - Type: Ø Submersible Peristaltic Number of well volumes to be purged (# VOLS) Depth (m BTOC) - Top : Bottom: PURGE TIME 2.5 ////////////////////////////////////	- Pharles at the			A CARLES AND		PUR	GING	<u>c by. 2</u>	Lauginar			
Well Diameter (D in mm): $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		P	URGE V	OLUME					DUD			
Total Depth of Well (TD in m BTOC): //.573 Pump - Type: ID Submersible Definition Other Water Level Depth WL in m BTOC): S.765 PUMP INTAKE SETTING Data 1 5 10 Other PURGE TIME Screen Interval (m BTOC) - Top : Bottom: PURGE TIME 25 fuilo PURGE RATE 4.01 ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Initial: Final: Other (e.g. observations) began (L) 1.727 1.538 4.75 5.725	Well Diame	eter (D in I	mm): 🛛	50 🗆 10		ther	🗆 Bai	ler – Tvr				
Water Level Depth WL in m BTOC): S. 765 DUMPEr Data 1 1 0 Other Depth (m BTOC) Screen Interval (m BTOC) - Top : Bottom: PURGE TIME 25 fuils PURGE RATE 4 0 L ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since Yourne Other (e.g. observations) Some Outme Other Condition (mg/L) (mg/L) Other (e.g. observations) Some Noime Outme H Cond. Temp DO Other (e.g. observations) Some 0.01me H Cond. Temp DO (mg/L) (mg/L) Other (e.g. observations) Some 0.175 1.745 15 43 S.6.8 87.7 S.472 S.458 Interval Interval <td< td=""><td>Total Dept</td><td>h of Well (</td><td>TD in m</td><td>BTOC):</td><td>11.513</td><td>7</td><td></td><td>np – Typ</td><td>be: 🛛 S</td><td>ubmersible</td><td>$P \in \square P \in$</td><td>eristaltic</td></td<>	Total Dept	h of Well (TD in m	BTOC):	11.513	7		np – Typ	be: 🛛 S	ubmersible	$P \in \square P \in$	eristaltic
Number of well volues to be purged (# VOLS) Depth (m BTOC) Depth (m BTOC) 3 4 5 10 Other Screen Interval (m BTOC) - Top : Bottom: PURGE TIME PURGE TIME 25 / 4/2 PURGE RATE 4.0 L ACTUAL PURGE Streen Interval (m BTOC) - Top : Bottom: PURGE TIME 25 / 4/2 / 2/2 PURGE TIME 20 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /	Water Leve	el Depth W	'L in m B	STOC):	5765	-		ier				
Image: State in the image: State i	Number of	well volun	nes to be	e purged (#	VOLS)		Depth	(m BTO		NIAKE SE	TTING	
PURGE TIME 25 min PURGE RATE 4.0 L ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since Volume pH Cond. Temp DO Redox SWL Other (e.g. observations) began (L)		1 ∐ 5 [10 [Other	,		Screen	Interva	-) l (m BTC			
PURGE TIME 25 pum PURGE RATE 4.0 L ACTUAL PURGE VOLUME 232 Initial: Final: Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since PH cond. Temp DO Redox SWL Other (e.g. observations) began (L) 1.145 15.43 S.6.8 87.7 S.4725	PURGE TI	ME						incerva		(C) = TOP	: Вс	ottom:
Start: Stop: Elapsed: Initial: Final: FIEL PARAMETER MEASUREMENTS Min since Volume PH Cond. Temp DO Redox SWL Other (e.g. observations) began (L) ////////////////////////////////////	PURGE TIM VOLUME_	IE <u>2</u>	5 pins	PURGE R	ATE	4.02	A	CTUAL P	URGE			
FIELD PARAMETER MEASUREMENTS Initial: Final: Min since purge began (L) Volume Purged (mS/cm) PH (CO, (mS/cm) Cond, (CC) Temp (mS/cm) DO (mS/L) Redox (mS/Cm) SWL (mBTOC) Other (e.g. observations) 5 0.5 \$15 1.145 15.43 \$6.68 \$7.7 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) Image: Cond (mS/cm) Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) \$.4755 \$.4755 Image: Cond (mS/cm) Image: Cond (mS/cm) <td>Start:</td> <td>Ston</td> <td></td> <td>Elancodi</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Start:	Ston		Elancodi								
Min since purge began Volume (L) pH Cond. (mS/cm) Temp (°C) DO (mg/L) Redox (mV) SWL (mBTOC) Other (e.g. observations) 5 ℓ .5 \tilde{J} . \tilde{J} 1.145 15.43 5.68 $\delta7.7$ 5.725 $$	FIELD PAR	AMETER	MEASU		In	itial:	Fi	nal:				
purge Purged (mS/cm) (remp) DO Redox SWL (mV) Other (e.g. observations) 5 0.5 \$.75 1.145 15.43 \$.68 \$7.7 \$.475	Min since	Volume	nH	Cond	Tam							
S 0.5 $\overline{5.75}$ 1.145 15.43 $S.68$ 87.7 $S.475$ 10 1.0 5.85 11.75 15.28 4.25 87.2 5.438 15 1.5 5.16 1.772 15.38 4.76 87.1 5.450 $2o$ $2.o$ 5.47 1.777 15.92 4.11 87.2 5.468 25 2.5 8.86 1.777 15.62 4.20 87.2 5.472 25 2.5 8.86 1.777 15.62 4.20 87.2 5.472 25 2.5 8.86 1.777 15.62 4.20 87.2 5.472 25 2.5 8.86 1.777 15.62 4.20 87.42 5.472 20 2.5 8.86 0.777 15.62 4.20 87.42 5.472 5.472 20 1.000 1.777 15.62 4.20 87.42 5.472 5.472 5.472 2.5	purge began	Purged (L)	pn	(mS/cm)	(°C)) (n	DO ng/L)	Redox (mV)	SWI (mBTC	C)	er (e.g.	observations)
10 1.0 5.85 1175 15.28 8.7.7 5.775 15 1.5 5.86 1.77 15.38 4.76 8.7.1 5.480 20 7.0 5.47 1.737 15.38 4.76 8.7.1 5.480 20 7.0 5.47 1.737 15.36 4.71 8.72 5.480 20 7.0 5.47 1.737 15.62 4.70 8.7.2 5.472 20 7.0 5.47 1.737 15.62 4.70 8.7.2 5.472 20 7.0 5.47 1.737 15.62 4.70 8.72 5.472 20 1.0 1.0 1.0 1.00 1.00 1.00 1.00 Observations during purging (well condition, turbidity, colour, odour, sheen): Uservations during purging (well condition, turbidity, colour, odour, sheen): Uservations during purging (well condition, turbidity, colour, odour, sheen): Uservations during purging (well condition, turbidity, colour, odour, sheen): Uservations during purging (well condition, turbidity, colour, odour, sheen):	5	0.5	5.75	1.145	15.5	x c	16	279	r 1-	(T-		
15 1.5 5.36 1.77.4 15.38 4.7.5 8.7.2 5.438 20 2.0 5.47 1.73.9 15.36 4.11 8.7.1 5.450 20 2.0 5.47 1.73.9 15.36 4.11 8.7.2 5.463 20 2.0 5.47 1.73.9 15.36 4.11 8.7.2 5.463 20 2.5 8.86 1.73.7 15.36 4.11 8.7.2 5.463 20 2.5 8.86 1.73.7 15.26 4.20 8.7.2 5.472 Deservations during purging (well condition, turbidity, colour, odour, sheen):	10	1.0	585	1.175	15 29	8 0	00	01.1	5.92	5		
I_{1} I_{1} I_{1} I_{2} I_{1}	15	15	0.81	1.77	13.60	9 4.	.25	87.2	5.43	8		
20 7.6 3.47 1.147 15.46 4.11 87.2 5.468 25 2.5 8.86 1.777 15.62 4.20 87.2 5.472 Dbservations during purging (well condition, turbidity, colour, odour, sheen):	20	7.5	5.00	1.117	13.50	9.	16	87.1	5.950	2		
25 2.3 8.86 1.737 15.62 4.20 87.2 5.472 Deservations during purging (well condition, turbidity, colour, odour, sheen):	20	1.0	J.41	1.179	15.76	4.	11	87.2	5.46	8		
Deservations during purging (well condition, turbidity, colour, odour, sheen): User, Ns adar of Malan Discharge water disposal: Drums SampLing SampLing METHOD Same as purge method Bailer - Type: PVC PVC SS Teflon Other Pump - Type: PVC Vol/Cont. Analysis Preservatives Lab Comments 1 I MI Amber J unpreserved A G J MI Amber J HINO3 J Hild filtered? MUX HCl J HUX J HUX J HUX J HUX J HUX J HUX J Upticate Sample J HUX J HUX J HUX J J J HUX J HUX J HUX	25	2.5	8.86	1.777	15.62	2 4.	20	87.2	5.47	2		
SAMPLING SAMPLING METHOD Same as purge method Bailer - Type: PVC SS Teflon Other Pump - Type: PVC SS Teflon Other AMPLE DISTRIBUTION Sample Name: Mu U Comments Comments MUC Analysis Preservatives Lab Comments 1 ml Amber / unpreserved # 6 6 3 ml plastic # HNO3 / field filtered? ⑦ / N 2 ml VOA vials Z HCl 2 ml VOA vials Z HCl 2 ml VOA vials Z HCl	Observation Discharge w	s during p <i>Ue</i> ater dispo	urging (well conditio <u>No ocloc</u> Drums 🗆 S	n, turbid <i>O</i> Sanitary s	ity, colo - <u>Jac</u> sewer	Dur, odou Zen Storr	nr, sheen n sewer): □ Surf	ace 🛛 O	ther	
SAMPLING METHOD Same as purge method Bailer - Type: PVC SS Teflon Other Pump - Type: PVC SS Teflon Other AMPLE DISTRIBUTION Sample Name: Mu UZ ottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved M 6						SAMPL	ING					
Bailer - Type: PVC SS Teflon Other Pump - Type: PVC SS Teflon Other AMPLE DISTRIBUTION Sample Name: Mu U Z ottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved M 6 G 3 ml plastic F HNO3 / field filtered? M / N 2 ml VOA vials Z HCl Image: Mu O/ N Image: Mu O/ N Image: Mu O/ N Image: Mu O/ N 2 ml VOA vials Z HCl Image: Mu O/ N Image: Mu O/ N <td>SAMPLING</td> <td>METHOD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>iraa mat</td> <td></td> <td></td> <td></td>	SAMPLING	METHOD							iraa mat			
AMPLE DISTRIBUTION Sample Name: Image: Margin W2 ottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved Image: Comments Image: Comments Image: Comments 3 ml plastic Image: Comments Image: Comments Image: Comments Image: Comments 2 ml VOA vials Image: Comments Image: Comments Image: Comments Image: Comments 2 ml VOA vials Image: Comments Image: Comments Image: Comments Image: Comments Image: Comments 2 ml VOA vials Image: Comments Image	🗌 Bailer – 1	Гуре: 🗌 🖡	PVC □	SS 🗌 Teflo	n 🗌 Oth	ier		ne as pu np – Typ	pe: 🗌 P	nod VC 🗌 SS	🗌 Teflo	n 🗌 Other
ottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved # 6	SAMPLE DI	STRIBUTI	ION S	ample Name	. Atta	1117						
1 ml Amber / unpreserved Lab Comments 3 ml plastic # HNO3 / field filtered? // 2 ml VOA vials Z HCI - - - 2 ml VOA vials Z HCI - - - - - HQBH / - - - UALITY CONTROL SAMPLES Blank Samples Other Samples riginal No Dupficate No Type Sample No Type Sample No	Bottles:	Vol/Cor	nt.	Analy	sis	Proco	nuative-					
3 ml plastic HNO3 field filtered? 2 ml VOA vials Z HCI 4 HCI HCI	1	m	Amber	1	515	Unproc	rvatives	La	b	(Commen	ts
2 ml VOA vials 2 HCl field filtered? Mail 2 ml VOA vials 2 HCl HCl HCl 4 HCl HCl HCl HCl	3	m	l plastic	¥		HNO	erved	14	6			
Inclusion Inclusion Image: Hole of the state of the	2	ml V(DA vials	7				- /	fie	eld filtered	1? ()/	N
Image:				6		Han		2				
UALITY CONTROL SAMPLES Duplicate Samples riginal No Duplicate No Type Sample No Type Sample No						112504	C 100 Control of the second	6				
Duplicate Samples Blank Samples Other Samples riginal No Duplicate No Type Sample No	UALITY CO	ONTROL S		2		NAUH		1				
Blank Samples Other Samples riginal No Duplicate No Type Sample No Type Sample No	Dunlic	ate Sample		, 			50 P					
Type Sample No Type Sample No		Durte		_	Bla	ank San	nples			Oth	ier Samp	oles
		Duplica	ate No		Туре		Sample	No		Туре	5	ample No
	/				/					/		
	/				/					/		

Job Nam	e: Suppleme	entary D	SI		,	Well N	0: h1	2			
Job Num	ber: 20025.	76				Well T	ne X	J Monitor	Extract	or 🗖	011
Recorded By: Z.Laughlan							aterial:				Other
Date: 24	~/04/2023					Sample by: 7 Laughlan					
					PURGI	NG				and the second	
	P	URGE V	OLUME					PURGE	METHO	D	
Well Diar	neter (D in i	mm): 🛛	50 🗆 10	0 🗌 Otl	her l	🗆 Bail	er – Typ	e: PVC			
Total Dep	oth of Well (TD in m	BTOC):	9.540		☐ Pun ☐ Oth	np – Typ er	e: 🛛 Subr	nersible	D Pe	ristaltic
Water Le	vel Depth W	'L in m B	TOC): 5	275					AKE SET	TING	
	$\begin{array}{c c} \text{of well volum} \\ 4 & \Box 5 \\ \end{array}$	$10 \Box$	purged (# ' Other	VOLS)		Depth (C)			
PURGE T	IME						Incerva		- Top :	Во	ttom:
PURGE TI VOLUME_	MEZJ 2.J	nuns L	PURGE R/	ATE	4.0L	AC	CTUAL P	URGE			
Start:	Stop		Elapsed:	Ini	tial·	Fir					
FIELD PA	RAMETER	MEASU	REMENTS	1111							
Min since purge began	Volume Purged (L)	рН	Cond. (mS/cm)	Temp (°C)	DC (mg,) /L)	Redox (mV)	SWL (mBTOC)	Other	(e.g. (bservations)
5	0.5	6.81	1319	18.70	4 12	1	996	5 320			
10	1.0	6.75	1200	18 20	1 20	8	16.	0,520			
15	1.5	124	1148	12.20	5.2	0	99.2	5.528			
20	20	6.17	1.610	10(1)	3.6	2 4	19.1	5-420			
20	2.0	6.75	1.651	18.05	3.8	0 7	19.5	5.425			
25	2.0	6.73	1.252	17.95	3.0	90	19.4	5.430			
Observatio Discharge	water dispo	urging (v lew sal: 🗆 [vell condition	n, turbidit Locr Sanitary s	ty, colour	, odou <i>s ha</i> Storn	r, sheen): Surface	e 🛛 Oth	er	
				and the second second		IG					
SAMPLIN	G METHOD					🛛 Sar	ne as pi	irae method	4		
🗌 Bailer -	Туре: 🗌	PVC	SS 🗌 Teflo	n 🗌 Othe	er	🗆 Pur	np – Typ	pe: D PVC	□ ss□] Teflor	n 🗌 Other
SAMPLE D	ISTRIBUT	ION S	ample Name	: W3	7						
Bottles:	Vol/Co	nt.	Analy	sis	Preserva	atives	La	b	<u> </u>	mmon	
1	m	l Amber	1		unpreser	ved	4	4		mineri	.5
3	m	l plastic	5		HNO ₃		1	field	filtered?	(Y) /	N
2	ml V	OA vials	2		HCI				meer eu:	(1)/	v
					Hy SOA		2				
					NaO H		J				
QUALITY	CONTROL S	SAMPLES	5								
Dupl	icate Sampl	es		Bla	nk Samp	les			Othe	r Samp	les
Original No	Duplic	ate No		Туре	s	ample	No	-	Type		and a ti
/				/					ype	Sa	ample No
/											
				(

Job Nam	e: Suppleme	ntary DS	51		Well No: Minral						
Job Number: 20025.76							Well Type: Monitor Extractor Other				
Recorded By: Z.Laughlan							aterial.				Other
Date: 27/04/2023							e by: 7 I	aughlan		Joulei	
			A. F. A. S. Starting	ALL SALES	PURG			aagman		and the second	
	URGE V	PURG									
Well Diar	neter (D in r	nm): 🛛	50 🗆 10	0 🗌 Oth	ner	🗆 Bail	ler – Typ			Tef	Ion Other
Total Dep	oth of Well (1	ΓD in m l	втос):	7.702		Pun Oth	np – Typ	e: 🛛 Sub	mersible	D Per	istaltic
Water Le	vel Depth W	L in m B	тос): 👩	715			F		TAKE SET	TING	
Number of	of well volum	nes to be	purged (#	VOLS)		Depth	(m BTOC	:)			
	4 ∐ 5 L	J 10 L] Other			Screen	Interval	(m BTOC) - Top :	Bo	ttom:
PURGE T	IME										
PURGE TI VOLUME_	ME25	Mis	PURGE R	ATE4	4.0L	A	CTUAL PL	JRGE			
Start:	Stop:		Elapsed:	Init	tial:	Fir	nal:				
FIELD P	ARAMETER	MEASU	REMENTS								
Min sinceVolumepHCond.TempDORedoxSWLpurgePurged(mS/cm)(°C)(mg/L)(mV)(mBTOC)									Othe	r (e.g. c	bservations)
5	05	707	1074	17.20	2	10	941	1 0-1	5		
10	117	7.00	1077	17.00	2.	-8	11.7	6.80.	>		
10	1.0	1.01	1.028	11.67	- 3.1	6	99.6	6.872	-		
15	1.3	6.99	1.010	17.28	3.1	9	99.2	6.878	2		
20	2.0	6.48	1.009	17.10	3	29	94.1	6.405	-	1	
25	2.5	6.97	1.005	17.02	3.	17	99.2	6.916			
Observati	ons during p	urging (well conditio	n, turbidit <i>tari 5,0</i>	ty, color	ur, odou binze,	ur, sheen): adocr	orsh	leen	
Discharge			Drums 🗆 S		ewer		m sewer	∐ Surfa	ce 🛛 Ot	her	
SAMPLIN	IG METHOD				SAMPL.	MG					
Bailer	– Туре: 🗌	PVC 🗌	SS 🗌 Teflo	on 🗌 Othe	er	🗆 Pu	mp – Typ	pe: 🗌 P	oa /C 🗆 ss[] Teflo	n 🗆 Other
SAMPLE	DISTRIBUT		ample Nam	nA las	10 1						
Bottles:	Vol/Co	nt.			Drocer	votive -					
1		l Amber		515	Preser	vatives	La		C	ommen	ts
3	m	nl plastic	. 9		HNO-	ei veu	5		ld 611		
2	ml V	OA vials	4				- 2	пе	la filtered	?	N
					4.00						
					173504		5				
OUALITY CONTROL SAMPLES											
Dup	Duplicate Samples Blank Samples Other County										
Original N	Original No Dublicato No Traca de Contra Samples										
Signa N		Late NO		туре		Sample	e No		Туре	S	ample No
/									/		
/								1			
ť											

Job Name:	Suppleme	entary D	SI		Well	No: MA	11177			
Job Numbe	er: 20025.	76			Well	Type: X	Monitor D	F 1 .		
Recorded I	By: Z.Laug	hlan			Well	Material			or 🗆 (Other
Date: 26	/04/2023				Sam	nle hv. 7 l		55 🗆	Other	
and the second second		a arbaite			PURGING	pie by. 2	augman		AND	
	Р	URGE V	OLUME				DUDOE			
Well Diame	eter (D in i	mm): 🛛	50 10	0 🗌 Oth	er 🗖 F	ailer - Tyr)	
Total Dept	h of Well (TD in m	BTOC):	8 67 -		ump – Tyr	e. Y Subm			on 🛛 Other
			6	5.920		ther		ersible	L Peri	staltic
Water Leve	el Depth W	'L in m B	TOC):	7.365				KE SETT	TNG	
Number of	well volun	nes to be	purged (#	VOLS)	Dept	h (m BTO	C)		ING	
		10] Other		Scre	en Interva	(m BTOC) -	- Top :	Bott	om:
PURGETI	ME								000	.0111.
PURGE TIM VOLUME_	E 25	Snus	PURGE R	АТЕ4	1.0L	ACTUAL P	URGE			
Start:	Ston		Flansed	Trait	- I.					
FIELD PAR	AMETER	MFASI		Init	lal:	Final:				
Min since	Volume	nH	Cond	Toma						
purge	Purged	pn	(mS/cm)	(°C)		Redox (mV)	SWL	Other	(e.g. ob	servations)
began	(L)		((mg/L)	(iiiv)	(mrioc)			
5	0.5	187	1.590	19.16	270	a4 7	7 170			
10	10	6.78	1511	11.70	210	91.8	7.428			
15	1.0	6.00	1.597	10-ST	5.25	103.5	7.520			
75	7 0	0.80	1.5)0	14.20	3.15	89.6	7.580			
20	1.0	6.81	1.565	18.11	3.58	91.2	2.595			
23	2.5	6.80	1.567	19.10	3.17	91.3	7618			
Discharge w	Slig ater dispo	htly a sal:	owdy, <u>br</u> prums 🗆 s	Sanitary se	wer Sto	our, sheer het hydra orm sewer): <u>nabon d</u> Surface	Othe	s <i>lich</i> er	t sheen
				S	AMPLING	ile crestores	1 Martine Roberts			Part Constanting
SAMPLING	METHOD				⊠ s	ame as pi	irae method			
🗌 Bailer – 1	Гуре: 🗌 I	PVC 🗆 :	SS 🗌 Teflo	n 🗌 Othe	r 🗆 F	ump – Typ	pe: 🗌 PVC	□ ss□	Teflon	🗌 Other
SAMPLE DI	STRIBUT	ION Sa	ample Name	: MIN	02					
Bottles:	Vol/Co	nt.	Analys	sis	Preservative	es La	b	Com	nm c = 1	
1	m	l Amber	/	u	npreserved		-	0	nments	
3	m	l plastic	9	н	NO ₃	2	field f	iltorod2	R IN	
2	ml V	OA vials	4	Н	CI	1	neid i	intereur	CO/ N	
				14	4. 601	(
					NaOH	1				
UALITY CO	ONTROL S	SAMPLES	5	I /						
Duplic	ate Sampl	es		Blan	k Samples			Other	Sample	
Driginal No	Duplic	ate No		Type	(am				Jampie	
/				/	Jain			уре	Sar	nple No
								/		
/				/						

Job Name:	Suppleme	entary DS	51			Well N	o. M	14102					
Job Number: 20025.76							Well Type: Monitor Fytractor Other						
Recorded I	By: Z.Laug	hlan				Well Material: X PVC SS Other							
Date: 26	/04/2023					Sample	e by: Z L	aughlan		Joulei			
ant or server of the					PURG	ING		ginan		ti da seg			
	P	URGE V	OLUME					PUR	GE METHO				
Well Diame	eter (D in n	nm): 🛛	50 🗌 10	0 🗆 Otł	ner	🛛 Bail	ler – Typ	e: D PV	C SS		Ion Other		
Total Dept	h of Well (1	rd in m I	BTOC):	8.985		Pun Oth	np – Type Ier	e: 🛛 Su	bmersible	Per	ristaltic		
Water Leve	el Depth W	L in m B	TOC): 7	300			F		TAKE SET	TING			
Number of	well volum	ies to be	purged (#	VOLS)		Depth	(m BTOC)		11110			
	ME	<u> </u>	J Other			Screen	Interval	(m BTO	С) – Тор :	Во	ttom:		
PURGE TIM VOLUME	E <u>2</u>	mis	PURGE R/	ATE	4.0	<u></u> A0	CTUAL PL	JRGE					
Start:	Ston:		Elancod	Testi	bind.								
FIELD PAP	RAMETER	MFASI		IUI	tial:	Fir	nal:						
Min since	Volume	nH	Cond	Tomp			Doday						
purge began	Purged (L)	pri	(mS/cm)	(°C)	(m	ng/L)	(mV)	(mBTO	C) Other	r (e.g. d	bservations)		
5	0.5	7.94	1.710	22.37	> 5	\$7	1122	7 17	25				
10	10	7.85	2700	79 79	t	17	102.5	7.90	- J				
15	15	777	1 × 60	18 60	2 5	22	101.4	1.50	0				
10	(.)	730	1.0/1	10-30	3.	01	101.6	7.55	2				
25	2.0	7.10	1.901	19.13	4.	74	99.2	7.560	9				
_ 23	2.)	+. H	1.720	20.15	5.	20	101.1	7.560	5				
Observatior Discharge w	ns during p	urging (v <i>low</i> , sal: 🗆 [well conditio <u>Mu aa</u> Drums □ s	n, turbidit	ty, colo	ur, odou	ur, sheen): 					
	13,253			summer y s	SAMPL	ING	in sewer			her			
SAMPLING	METHOD					🛛 Sai	me as pu	irae meti	hod				
🗌 Bailer –	Туре: 🗌 I	PVC 🗆	SS 🗌 Teflo	n 🗌 Oth	er	🗆 Pui	mp – Typ	pe: 🗌 P	vc 🗆 ss[] Teflo	n 🗌 Other		
SAMPLE DI	STRIBUT	ION S	ample Name	. Min	103								
Bottles:	Vol/Co	nt.	Analy	sis	Proco	rvativos		h					
1	m	I Amber	3	515	Preservative		La	7	Co	ommen	ts		
3	m	l plastic	10		HNO	erveu	18	-					
2	ml V	OA vials	13				2		eld filtered		N		
			0		H SOU	1	6						
					11- 500	r L	0						
QUALITY C	ONTROL S	SAMPLE	S		NAOF	/	3						
Duplie	cate Sampl	es		Bla	ank Sar	nples	>		Othe	ar Camr			
Original No	Duplic	ate No		Туре		Sample	e No		Type		ample No		
MW03	Qu	201		/				1 🗖	11				
MW03	RW	02		/					e	-			
				3									

Job Name:	Suppleme	entary DS	SI		Well	No: na	1. 1 Car					
Job Numbe	er: 20025.	76			Well	Well Type: Monitor						
Recorded	By: Z.Laug	hlan			Well	Well Material: X PVC C CC C Other						
Date: 26	/04/2023				Sam	ple by: 7 I	aughlan		Other			
			1		PURGING		Laagman	CAR STORING				
	P	URGE V	OLUME				DURCE	METUO				
Well Diame	eter (D in r	mm): 🛛	50 🗆 10	0 🗌 Othe	er 🗆 B	ailer – Tvr						
Total Dept	h of Well (TD in m l	BTOC):	A 178	D P	ump – Typ	e: X Subr	nersible				
Mahani				1.070	🗆 o	ther		ilei sibile				
Water Leve	el Depth W	L in m B	TOC):	7.155			PUMP INT	AKE SET	TING			
			purged (#	VOLS)	Dept	h (m BTOC	C)					
			Other		Scree	en Interva	(m BTOC)	- Top :	Bottom:			
FORGETT	ME											
PURGE TIM VOLUME	E	ning	PURGE R	ате <u> </u>	OL	ACTUAL P	URGE					
Start:	Ston		Elanadi									
FIELD PAR		MEASU	Elapsed:	Initi	al:	Final:						
Min since	Volume	nH	Cond	Tan			T					
purge	Purged	PIT	(mS/cm)	(°C)		Redox	SWL	Other	r (e.g. observation			
began	(L)		()		(IIIg/L)	(IIV)	(mBTOC)					
5	0.5	755	1179	18 02	112	97.7	7 200					
10	10	710	1.001	10.00	4.62	08.1	7.20					
10		7.11	1.6)4	17.79	4.75	82.5	7.265					
	1.5	7.61	1.640	17.20	9.65	85.3	7-320					
20	2.0	7.62	1.641	16.71	9.79	85.9	7.350					
25	2.5	7.60	1.642	17.25	4.68	851	7255					
							1.555	-				
Discharge w	Slig G ater dispo	sal: D	rums = s	Sanitary sev	tinge, vi wer 🗆 Sto	rm sewer	- or so	e 🛛 Oth	(uyple collected For lab QU er			
		n orang diper-	the period of the second	SA	MPLING	an a			Seattle States			
SAMPLING	METHOD				🛛 s	ame as ni	irde metho	4				
🗌 Bailer – T	ype: 🗌 🖡	PVC										
						ump – Typ	e: 🗌 PVC		Teflon 🗌 Other			
SAMPLE DI	STRIBUTI	ION Sa	mple Name	· nalas	A							
3ottles:	Vol/Cor	nt.	Analy	sis	Preservativo	<u> </u>	h					
1	m	I Amber	3		nreserved	s La	D	Co	mments			
3	m	l plastic	G	H		8						
2	ml V(OA vials	4	H		4	field	filtered?	(Y) / N			
			//		6.0	5						
				172	1004	5						
UALITY CO	NTROL S	AMPLES	8	70	aver	/						
Duplic	ate Sample	es		Plan								
				ыап	samples			Other	Samples			
	Duplica	ate No		Туре	Samp	le No	-	Гуре	Sample No.			
									Campie NO			
				/								
			-	\leftarrow								

Job Name	Suppland	ontany D	CI			292-						
Job Numbe	er: 20025	76	51		Wel	INO: M	wos					
Recorded	Bv: 7 Laug	/0			Wel	Well Type: 🛛 Monitor 🗌 Extractor 🗌 Other						
Date: 2(/04/2022	man			Wel	Well Material: X PVC SS Other						
Date: 60	104/2023		star for an an and the		Sam	ple by: Z	Laughlan					
	a billion of the grant of the first of the second s	UDCEN	<u> </u>	1.20日起来就是	PURGING	的这些影响在这			Section 10			
Well Diame	eter (D in r						PURG	E METHO	D			
Total Dept				0 L Othe		Bailer – Typ	be: 🛛 PVC	s 🗆 ss	🗆 Те	flon 🗌 Other		
	in or wen (BIOC):	9.973		Pump – Typ	be: 🛛 Sub	mersible	🗆 Pe	ristaltic		
Water Leve	el Depth W	'L in m B	TOC):	115		other						
Number of	well volum	nes to be	e purged (#	VOLS)	Dent	h (m PTO)		TAKE SET	TING			
] 10 [Other)	Scre	en Interva		\ T				
PURGE TI	ME					ch interva) - Top :	Bo	ottom:		
PURGE TIM	E2	5 nin	PURGE R	АТЕ9	l.oL	ACTUAL P	URGE					
Start	<u>L</u>	-36					UNCL					
	Stop:		Elapsed:	Initia	al:	Final:						
Min cinco	AMETER	MEASU	REMENTS									
Durge	Purgod	рН	Cond.	Temp	DO	Redox	SWL	Other	(e.g. (observations)		
began	(I)		(mS/cm)	(°C)	(mg/L)	(mV)	(mBTOC)	(0.9.			
<u> </u>	05	125	1701		1	0						
10	0.5	6.13	1.756	18.45	4.23	93.6	6.595	-				
10	1.0	6.04	1.761	17.64	9.15	19.8	6.690					
15	1.3	6.05	1.763	17.34	4.38	99.9	6.725	-				
20	2.0	6.07	1.759	17.38	4.21	97.5	6739					
25	2.5	6.06	1.760	17.32	4.28	987	6 150					
						10.0	0.750					
Observation	s durina n	urging (
	s during pi	urging (v	vell conditio	n, turbidity	, colour, od	our, sheen	ı):					
	Ull	N, N	to odoer	or si	heen							
Discharge w	ater dispos	sal: 🗌 🗆		anitary cou								
	NY AND STREET					orm sewer	□ Surfac	ce 🛛 Oth	ier			
	dist. Kato a ngowes	and the local sectors		SA	MPLING				1.1.1.1.1			
SAMPLING	METHOD				M							
🗌 Bailer – T				_		ame as pu	irge metho	bd				
	ype. 🗆 P		SS 🗆 Teflo	n 🗌 Other	□ F	ump – Typ	pe: 🗌 PV	c 🗆 ss 🗆] Teflor	D 🗌 Other		
	STRIBUT			he	105							
Bottles:	Vol/Cor	on Sa	Angle Name	: MW	105							
1	ml	Ambor	Analy	SIS P	Preservative	es La	b Comments					
3	m			ur	npreserved 5							
2	ml VC		9	H	NO ₃	2	field	filtered?	0)/1	N		
		on viuis	7	HC		- 1			0			
				Hz	504	5						
				N	140H	1						
UALITY CO	ONTROL S	AMPLES	5									
Duplica	ate Sample	es		Blank	Samples							
	Duplier	ata Na		Diant	Samples			Othe	r Samp	les		
g.nui NU	Duplica	are NO		Type	Samp	ole No		Туре	Si	ample No		
			L	used	R	B4						
/			11	wint	0.	21		$\langle -$				
					"LB	7						

Job Name	Supplem	entary D	~ 7									
	- Supplem	cillary D.	51			Wall	No. MA	11.100 6				
Job Number: 20025.76							Well Type: Marine December 201					
Recorded By: Z.Laughlan							Well Material: X DVC Concerning Other					
Date: 27	704/2023					Sample by: 7 Laughlan						
					PURC	GING	ie by. Z i	Laugilian	a South and a wa		CO Second and a second	
	P	URGE V	OLUME					DUDC	E METU			
Well Diam	eter (D in r	mm): 🛛	50 🗆 10	0 🗆 0	ther	🗆 Ва	iler – Tvr					
Total Dept	h of Well (TD in m	BTOC):	0 971	,	D Pu	mp – Typ	e: 🛛 Sub	mersible		ristaltic	
Water Lev	el Denth W	linmB		0.112	-	□ Otl	her					
Number of	well volum	res to be	Durged (#)	0.025				PUMP IN	TAKE SET	TTING		
□ 3 □ 4	1 □ 5 [] Other	VOLS)		Depth	(m BTOC	2)				
PURGE TI	ME					Screer	n Interva	(m BTOC) – Top :	Bo	ottom:	
PURGE TIM VOLUME	IE <u>2</u> J	mis	PURGE R/	ATE	4.00	A	CTUAL P	JRGE				
	Stop:		Elapsed:	Ir	nitial:	Fi	nal:					
Min since	AMETER	MEASU	EMENTS		,							
Durae	Purged (mS/cm) (a		Tem	p [00	Redox	SWL	Other	r (e.a.	bservations		
began	(L)		(IIIS/CM)	(°C)	(m	ig/L)	(mV)	(mBTOC)			
5	0.5	6.85	0.653	170	7 7	CA	10	6 1 4 5	-			
10	1.0	6.88	0 662	MA	r r r r r r	20	100.8	6.683	-			
15	1.5	6-87	0.60	11.0	C_2	2 d	100.7	6-695				
/ 5			0 000	10.9	3 5.0	01	101.2	6.717				
20	2.0	6.89	D 665	11 41	2 0	AF		0706				
20 25	2.0	6.89	D.665	16.90	2 2.	95	101.3	6-700				
20 25 bservation	2.0 Z.J s during p	6.8 % 6.90 urging (v	0.665 0.668 /ell condition	16.25	2 <u>2</u> - 7 2	95 78 ur. odoj	101. 3 101. 2	6.750				
20 25 bservation <i>LNAPL</i> ischarge w	2.0 2.5 s during pu <i>an local</i> ater dispos	6-89 6-90 urging (v <i>M</i> , 0.6 sal: D	0.665 0.668 vell condition Øm, LNAP2 rums 🗆 S	16.90 16.29 n, turbiq = 60 #5m anitary	2 2	<i>95</i> <i>78</i> <i>ur, odou</i> <i>ightfg</i> □ Store	101. 3 101. 2 ur, sheen <u>cloudy</u> m sewer	6-750 6-750): , bullur o clay Surfac	1 Hinge r and se 🛛 Oth	stro Usba	ng lizehoce	
20 25 bservation <i>LMAPL</i> ischarge w	2.0 2.5 s during po an sort ater dispos	6-89 6-90 urging (v M, 0.6 sal: D	0.665 0.668 vell condition Øm, LNAP2 rums	16.29	2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	95 78 ur, odou <i>ightly</i> □ Storn	101. 3 101. 2 ur, sheen <u>1000</u> m sewer	6-750 6-750): 	1 Hinge r dirte re 🛛 Oth	, stro U sta ner	ng hychoce	
20 25 bservation <i>LMAPL</i> ischarge w	2.0 2.5 s during pu an source ater dispose	6-89 6-90 urging (v M, 0 6 sal: 🗌 D	0.665 0.668 vell condition Øm_LNAPL rums	16.90 16.29	SAMPLI	45 78 ur, odou <i>iGµtty</i> □ Storn ING ⊠ Sa	IOI. 3 IOI. 2 Ur, sheen Loudy m sewer	6-750 6-750): , bicus octac Surfac	1 Hinge r divide se 🛛 Oth	, stro H sto ner	ng hychoce	
20 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer – T	2.0 2.5 s during pu <i>an inter</i> ater dispose METHOD	6-8₽ 6-90 urging (v <i>M, 0</i> 6 sal: □ D	0.665 0.668 vell condition 8m, LNAP2 rums	16.90 16.25 n, turbid 16.25 n, turbid 17.25 n, turbid 17.25 n, turbid 17.25 n, turbid 17.5	SAMPLI	45 78 ur, odou <i>ichty</i> Storn ING ⊠ Sau Puu	IOI. 3 IOI. 2 JIT, sheen Loudy m sewer me as pu	6-750 6-750): 	n Hinge r diede re 🛛 Oth	l stro H stop ner	ng lychoce	
20 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - ⁻	2.0 2.5 s during po <i>an soci</i> ater dispos METHOD Type:	6.89 6-90 urging (v M, 0.6 sal: □ D	0.665 0.668 vell condition 8m, LNAP2 rums	16.90 16.25 n, turbiq 16.25 n, turbiq 16.25 n □ Oth	SAMPLI	45 78 ur, odou <i>Gutty</i> Storn ING Sa Pun	IOI. 3 IOI. 2 Jur, sheen Loudy m sewer me as pu mp – Typ	6-750 6-750): , belue octor Surfac	1 Hinge r dinte r dinte r dinte r dinte r dinte r dinte r dinte r dinte	J <i>ro</i> M <i>Slo</i> ner	n 🗌 Other	
20 25 observation 2MAPL ischarge w AMPLING Bailer - 7	2.0 2.5 s during pr <i>ain Intel</i> ater dispose METHOD Type: F F STRIBUTI	6-89 6-90 urging (v <i>U</i> , 0.6 sal: D PVC C s	0.665 0.668 vell condition <i>Bm_LNAPL</i> rums S SS Teflor mple Name:	16.90 16.25 1	SAMPLI SAMPLI SAMPLI	<i>45</i> <i>78</i> <i>ightfy</i> <i>G</i> <i>Storn</i> <i>ING</i> <i>Sal</i> <i>Q</i> <i>Sal</i> <i>Q</i> <i>Q</i>	IOI. 3 IOI. 2 UI, sheen Loudy m sewer me as pu mp – Typ	6-702 6-700 6-750): , bullin olac Surfac	n Hinge r dinge r dinge	l <i>sfræ</i> her] Teflo	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - T AMPLE DI ottles:	2.0 2.5 s during pr <i>a</i> ter dispose METHOD Fype: F STRIBUTI Vol/Cor	6-89 6-90 urging (v <i>ll, 0</i> sal: D D D VC Sa SON Sa nt.	0.665 0.668 vell condition main LNAPL rums S S Teflor mple Name: Analys	16.90 16.25 1	SAMPLI SAMPLI Preser	45 78 ur, odou <i>ightfg</i> Storn ING ■ Pui vatives	IOI. 3 IOI. 2 Jur, sheen Loudy m sewer me as pu mp – Typ	6-750 6-750): , bullur o'da ge metho rge metho rge metho	n Hinge v and v and c □ ss □	l stro l sta her] Teflo	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer – T AMPLE DI ottles:	2.0 2.5 s during pu <i>n Jurel</i> ater dispose METHOD Type: F STRIBUTI Vol/Cor ml	6.89 6.90 urging (v <i>M</i> , 0.6 sal: D D DVC C S con Sant. Amber	0.665 0.668 vell condition 8m, LNAP2 rrums S SS Teflor mple Name: Analys	16.90 16.25 n, turbiq 16.25 n, turbiq 16.25 n □ Oth 100 100 100 100 100 100 100 10	SAMPLI Preser Unpreser	45 78 78 ur, odou 1000	III. 2 III. 2 JIR, sheen Loudy m sewer me as pu mp – Typ	6-750 6-750): 	n Hinge r did r did c I ss Co	, stro d sto ner] Teflo pmmen	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI ottles: 1 3 2	2.0 2.5 s during po ater dispose METHOD Type: [] F STRIBUTI Vol/Cor ml	$\begin{array}{c} 6.89\\ 6.40\\ \hline 6.40\\ \hline 0.40\\ \hline 0$	0.665 0.668 vell condition m	16.90 16.29 16	SAMPLI Preser UNC HNO3	45 78 ur, odou 4 4 4 4 4 4 4 4 4 4 4 4 4	IOI. 3 IOI. 2 UI, sheen <i>Loudy</i> m sewer me as pu mp – Typ	6-750 6-750): , belue octor Surface rge methor rge methor rge methor	1 <i>Hinge</i> <i>r diste</i> <i>r d</i>	Teflo	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI ottles: 1 3 2	2.0 2.5 s during pu ater dispose METHOD Type: F STRIBUTI Vol/Cor ml ml VO	6.89 6.40 urging (v <i>M</i> , 0.6 sal: D pvc Sa sont. Amber plastic DA vials	0.665 0.668 vell condition <i>Bm_LNAP2</i> rrums S SS Teflor mple Name: Analys 9 4	16.90 16.25 n, turbid 16.25 n, turbid 16.25 n □ Oth anitary	SAMPLI Preser UND (Preser UND (HNO ₃ HCl	45 78 ur, odou <i>ighty</i> Storn ING Sa Pul vatives erved	III. 2 III. 2 IIIII. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2	6 - 7.00 6 - 7.50): , bullun olac Surfac rge metho rge metho re: PV	n Hinge r dinge r di r di r di r di	Teflo	n 🗆 Other	
20 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI ottles: 1 3 2	2.0 2.5 s during pu <i>au Junu</i> ater dispose METHOD Type: F STRIBUTI Vol/Cor ml ml VC	$\begin{array}{c} 6.8\% \\ 6.8\% \\ 6.40 \\ \hline \end{array}$	0.665 0.668 vell condition market in the second sec		SAMPLI Preser Unpreser HNO ₃ HCl HSSUE	45 78 ur, odou <i>ightfy</i> Storn ING ■ Storn NG NG vatives erved	III. 3 III. 2 JIT, sheen Loudu m sewer me as pu mp – Typ	6-702 6-700 6-750): , buttur octor ge methor rge methor rge methor b b field	n Hinge r didd r diddd r di	Teflo	n 🗆 Other	
20 25 bservation 2MAPL ischarge w AMPLING Bailer AMPLE DI bttles: 1 3 2	2.0 2.5 s during pu ater dispose METHOD Type: F STRIBUTI Vol/Cor ml ml VC	6.89 6.40 urging (v M, 0.6 sal: D D DVC C S SON Sa nt. Amber plastic DA vials	0.665 0.668 vell condition m. LNAP2 rums S SS Teflor mple Name: Analys		2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 78 ur, odou 4 4 4 4 4 4 4 4 4 4 4 4 4	IOI. 3 IOI. 2 JI, sheen Loudy m sewer me as pu mp – Typ La S I J	6-750 6-750): 	n Hiuge r did r dida r di	Teflo	n 🗆 Other	
20 25 bservation 2MAPL ischarge w AMPLING Bailer - 7 AMPLE DI ottles: 1 3 2 2 JALITY CO	2.0 2.5 s during pu ater dispose METHOD STRIBUTI Vol/Cor ml MI VC ONTROL S	6.89 6.90 urging (v M, 0.6 sal: D pvC D sal: D pvC Sa son Sa nt. Amber plastic DA vials AMPLES	0.665 0.668 vell condition m	16.90 16.29 n, turbid 16.29 n, turbid 16.29 n Other is	A 2	45 78 ur, odou 4 4 78 ur, odou 4 4 5 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	III. 2 III. 2 IIIII. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2	6-702 6-700 6-750): , bulling olda surface rge metho rge metho rge metho rge metho rge metho	n Hinge r dinte r dinte di di di	Teflo	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI Dttles: 1 3 2 JALITY CC Duplic	2.0 2.5 s during pu <i>ater dispos</i> METHOD Type: F STRIBUTI Vol/Cor ml ml VOl/Cor ml ml VC DNTROL S ate Sample	6.89 6.90 6.90 urging (v M, 0.6 sal: D D VC C S ion Sa nt. Amber plastic DA vials AMPLES es	0.665 0.668 vell condition market in the second sec		Image: Construction of the second	45 78 ur, odou Galacian Ur, odou Galacian Storn ING NG Sau Puu vatives erved ples	III. 3 III. 2 JI, sheen Laudu m sewer me as pu mp – Typ	6-702 6-700 6-750): , buttur octar ge metho pe: PV	n hince n hince n did c □ ss□ c □ d filtered?	Teflo	n 🗆 Other	
20 25 25 bservation 2MAPL ischarge w AMPLING Bailer - 7 AMPLE DI ottles: 1 3 2 JALITY CC Duplic	2.0 2.5 s during provention s during provention s during provention s during provention mater dispose METHOD STRIBUTI Vol/Cor mil MI Vol/Cor MI Vol/Cor V	6.89 6.40 6.40 wrging (v M, 0.6 sal: D pVC C s int. Amber plastic DA vials Amples es ate No	0.665 0.668 vell condition m		Image: Construction of the second	45 78 78 ur, odou Garage Garage Ing Ing<	IOI. 3 IOI. 2 JI, sheen Loudy m sewer me as pu mp – Typ	6-702 6-700 6-750): 	1 filtered? CCC	Teflo	n 🗆 Other	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI Dttles: 1 3 2 JALITY CC Duplic	2.0 2.5 s during pu ater dispose METHOD Type: F STRIBUTI Vol/Cor ml Vol/Cor ml Vol/Cor ml Vol/Cor ml vol/Cor vol/Cor ml vol/Cor vol	6.89 6.40 4.40 sal: D bvC Sa con Sa nt. Amber plastic DA vials AMPLES es ate No	0.665 0.668 vell condition m	IG . 90 IG . 90 IG . 25 n, turbid manitary n Other is BI Type	A 2 2 2	45 78 ur, odou yethy Storn ING Sample Sample	III. 3 III. 2 III. 2 IIIII. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2	6 - 7 0 2 6 - 7 0 2 6 - 7 50): , bullun oday rge methor rge methor b field	1 Hinge r dinge r di r di r di	Teflo	n 🗆 Other ts N bles ample No	
20 25 25 bservation <i>LMAPL</i> ischarge w AMPLING Bailer - 7 AMPLE DI Dttles: 1 3 2 JALITY CC Duplic	2.0 2.5 s during pu ater dispose METHOD Type: F STRIBUTI Vol/Cor ml ml VC DNTROL S ate Sample Duplica	6.89 6.40 4.40 5al: D 5al: D 5vC Sa 5vC Sa 5	0.665 0.668 vell condition <i>Bm_LMAP2</i> rrums S S S S Teflor mple Name: Analys 7 9 4	16.90 16.25 n, turbia #371 anitary n Oth	Preser UND (Preser UND (Preser UND (HNO ₃ HCl H ₂ SU HCl H ₃ SU SU SU SU SU SU SU SU SU SU SU SU SU S	45 78 ur, odou Garrier Ur, odou Garrier Samples Sample	III. 3 III. 2 III. 2 IIIII. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2 III. 2	6-702 6-700 6-750): , butur o'da ge metho ee: PV b b field	1 Hinge r dide r dide	Teflo	n 🗆 Other ts N ples ample No	

Job Name:	Suppleme	entary D	SI		Wel	No: M	14/127					
Job Numbe	er: 20025.	76			Wel	Well Type: Manitor						
Recorded E	By: Z.Laug	hlan			Wel	Well Material: X PVC C SS C Other						
Date: 26	/04/2023				Sam	ple by: 7 I	aughlan		Other	1.1		
					PURGING	<u></u>	augman		and the second			
	P	URGE V	OLUME				PURG					
Well Diame	eter (D in i	mm): 🛛	50 🗆 10	0 🗌 Oth	er 🗆 🛙	Bailer – Tvr						
Total Depth	n of Well (TD in m	BTOC):	9.187		Pump – Typ Other	e: 🛛 Subr	mersible		ristaltic		
Water Leve	l Depth W	'L in m B	TOC):	6.205				AKE SET	TINC			
Number of	well volun	nes to be	purged (#	VOLS)	Dep	th (m BTO	C)	ARE DET	IIII			
		10	J Other		Scre	en Interva	(m BTOC)	- Top :	Bo	ttom:		
PURGE TI	ME								20			
PURGE TIM VOLUME_	e <u>2</u>	Smr 51	PURGE R	ATE	1.0L	ACTUAL P	URGE					
Start:	Stop		Flansed	Total	-1.	-						
FIELD PAR	AMETER	MEASU		Initi	al:	Final:						
Min since	Volume	nH	Cond	Tama	D 0		1					
purge began	Purged (L)	pri	(mS/cm)	(°C)	(mg/L)	(mV)	SWL (mBTOC)	Other	(e.g. c	observations)		
5	0.5	6.78	1.005	17.00	6.71	1030	1100	ink	a			
10	1.0	ingn	1.4.3	11 22	C17	102.0	0.485	844	100			
15	1.5	6.66	A GAG	16.TL	5.12	105.0	6.582					
20		6.71	0.701	16.75	5.10	85.7	6.585	-				
2-	2.0	6.70	0.910	16.87	4.95	73.5	6.670					
25	2.5	6.71	0.912	16.92	4.88	85.2	6.61.8					
Discharge w	s during p کر ater dispo	sal:	well conditio 4 <i>cloca</i> Drums 🗆 S	n, turbidity	v, colour, oc docu wer 🗆 St	lour, sheer	n): <u>sheen</u>	e 🛛 Othe	er			
				5	AMPLING							
SAMPLING	METHOD				\boxtimes	Same as pu	irge metho	d				
🗌 Bailer – 1	уре: 🗌	PVC 🗌	SS 🗌 Teflo	n 🗌 Othe	r 🗌	Pump – Typ	De: 🗌 PVC	⊂ 🗆 ss 🗆	Teflor	n 🗌 Other		
SAMPLE DI	STRIBUT	ION S	ample Name	: MU	107							
Bottles:	Vol/Co	nt.	Analy	sis	Preservativ	es La	h	C				
1	m	I Amber	1	u	npreserved	(0	nmen	ls		
3	m	l plastic	9	н	NO ₃		, 2 field	filtered2		N		
2	ml V	OA vials	4	н	CI	1		incereu:	97			
				/	to SOA	.5						
				n	Jan H	1						
UALITY CO	ONTROL S	SAMPLE	S		-10 /	/						
Duplic	ate Sampl	es		Blan	k Samples			Other				
Driginal No	Duplic	ate No		Type		-		other	Samp	nes		
/				type	Sam		-	Туре	Sa	ample No		
-												

ï

Job Number Recorded I Date: 26		intary D	SI			Well	lo: A	A lat 10%					
Recorded I Date: 26	Job Number: 20025.76												
Date: 26	Recorded By: Z.Laughlan							Well Material: Monitor L Extractor Other					
A State of the second second	/04/2023					Samo	la by: 7			Other	-		
					DIID	STNC	ie by. Z	Laughian	and the second second				
	P	URGE V	OLUME		FUR	JING					and the second		
Well Diame	eter (D in n	nm): 🕅	50 1100		ther			PURG	E METHO	D			
Total Dept	h of Well (T	D in m	BTOCI		uner		iler – Typ	be: D PVC		Те	flon 🛛 Othe		
			erec).				mp – Typ Der	pe: 🛛 Sub	mersible	🗆 Pe	ristaltic		
Water Leve	el Depth W	in m B	TOC):				iei		AVE CET	TINC			
Number of	well volum	es to be	purged (# V	OLS)		Depth	(m BTO		ARE SET	TING			
	+ Ц 5 L	J 10 L	Other			Screer	Interva	l (m BTOC) – Top :	Ro	ttom		
PURGE TI	ME							(<u>, iop.</u>	DU			
PURGE TIM VOLUME	E		PURGE RA	TE		A	CTUAL P	URGE					
Start:	Ston												
FIELD PAG		MEACU	Elapsed:	Ir	nitial:	Fi	nal:						
Min since	Volume		Cond	-									
purge Purged began (L)		рн	Cond. Temp (mS/cm) (°C)		p I (m	DO ng/L)	Redox (mV)	SWL (mBTOC	Other	Other (e.g. observations			
			Dra										
Discharge w	ater dispos	al: 🗆 C		, turbid anitary	lity, colo sewer	ur, odo Stor	ur, sheer	n): Surfac	e 🛛 Oth	er			
A CONTRACT OF A CONTRACTOR					SAMPL	ING			State of the				
Bailer - 1				—		🛛 Sa	me as pu	urge metho	d				
					ner	∐ Pu	mp – Tyj	pe: 🗌 PV	C□ ss□] Tefloi	n 🗌 Other		
AMPLE DI	STRIBUTI	ON Sa	ample Name:										
otties:	Vol/Con	t.	Analys	s	Preser	vatives	La	b	Ce	mmen	te		
4	ml	Amber			unpres	erved				minell			
1	ml	plastic			HNO ₃			field	filterada	(V) /	N		
1 3	ml VOA vials			HCI				nen	a meereu?	(1)/	IN		
1 3 2	ml VC												
1 3 2	ml VC												
1 3 2	ml VC					,							
1 3 2 UALITY CC		AMPLES	5			,							
1 3 2 UALITY CC Duplic	DNTROL SA	AMPLES	6	BI	ank Sam	nples			Othe	r Samr	les		
1 3 2 UALITY CC Duplic. riginal No	DNTROL SA Duplica	AMPLES es		ВІ	ank Sam	nples			Othe	r Samr	ules		
1 3 2 UALITY CC Duplic. riginal No	DNTROL SA ate Sample Duplica	AMPLES es		ВІ Гуре	ank Sam	nples Sample	e No		Othe Type	r Samr	ample No		
1 3 2 UALITY CC Duplic. Priginal No	DNTROL SA ate Sample Duplica	AMPLES esite No		ВІ Гуре	ank Sam	nples Sample	e No		Othe Type	r Samr	ample No		

Job Name:	Job Name: Supplementary DSI					Well No: Munog					
Job Numbe	er: 20025.	76				Well Ty	vne: 🛛	Monitor	Extract		Other
Recorded E	By: Z.Laug	hlan									
Date: 26,	/04/2023					Sample	e by: Z L	aughlan		Joner	
	and the second second				PURG	ING					
	P	URGE V	OLUME					PURG		D	
Well Diame	eter (D in r	nm): 🛛	50 🗆 10	0 🗌 Oth	ner	🗆 Bail	er – Typ	e: D PVC			
Total Dept	n of Well (⁻	rD in m I	BTOC):	8.075		Pun Oth	np – Typ er	e: 🛛 Sub	mersible	D Pe	ristaltic
Water Leve	el Depth W	L in m B	TOC):	7.095	-			PUMP IN	TAKE SET	TING	
Number of	well volum	nes to be	purged (#	VOLS)		Depth	(m BTOC	C)			
	ME	J 10 L	J Other			Screen	Interval	(m BTOC) – Top :	Во	ttom:
PURGE TIM VOLUME	E2s	mins	PURGE R	ATE	4.0L	A		JRGE			
Start:	Stop:	j	Elapsed	• Init	tial·	E 1.	221				
FIELD PARAMETER MEASUREMENTS											
Min since	Volume	pH	Cond.	Temp	Г	00	Redox	CIMI	011	,	
purge began	Purged (L)		(mS/cm)	(°C)	(m	ig/L)	(mV)	(mBTOC) Other	r (e.g. (bservations)
5	0.5	7.66	1.113	14.12	2 3.	58	80.9	7 120	,		
10	1.0	7.28	1.0005	11.18	2	25	00 0	7 70			
iſ	1.5	7.16	1 640	15 20	5.	. 63	80.3	7.250	,		
26	20	717	A 4807	10.20	5.	16	80.2	7.263			
20	20	C.11	a.002	15.10	3-	1.8	80.1	7.240			
25	2.5	7.18	0 - 105	15.25	3.	30 .	50.1	7.285	-		
Observation Discharge w	is during p vater dispo	urging (v <i>Brow</i> sal: 🗆 [well conditio <i>n, Fenb</i> . Drums 🗆 s	n, turbidit ' <i>M, M</i> Sanitary s	ty, colo <i>O Oc</i> ewer	ur, odou <i>low</i>	n, sheer	n): <u>- <i>Leer</i></u> □ Surfa	ce 🛛 Oth	her	
					SAMPL	ING		~			
SAMPLING	METHOD					🛛 Sai	me as pi	urae meth	od		
🗌 Bailer – 🗆	Туре: 🗌	PVC 🗆	SS 🗌 Teflo	on 🗌 Oth	er	🗆 Pu	mp [°] – Tyj	pe: 🗌 PV	c 🗆 ss[] Teflo	n 🗌 Other
SAMPLE DI	STRIBUT	ION S	ample Name	. M	4109						
Bottles:	Vol/Co	nt.	Analy	sis	Prese	rvativec	1-	h			
1	m	l Amber	1		unpres	erved			C	ommen	ts
3	m	l plastic	9		HNO ₃		2	fiel	d filtorod	n tin i	N
2	ml V	OA vials	4		HCI				u nicereu:	0/	N
-					H. SO.		6				
					Nodu	-	1				
	ONTROL S	SAMPLE	S		<u>vu v n</u>		/				
Duplic	ate Sampl	es		Bla	ank San	nples			Oth	or Com	
Original No Duplicate No Tupo					<u></u>			Oute		Jies	
Type					Sample	e No	┥ ┝──	Туре	/s	ample No	
							/	1			
-				/							
	1										

10

ſ

Job Name:	: Suppleme	entary D	SI		Wel	Well No: Maun				
Job Numbe	er: 20025.	76			Wel		Monitor	F 1 1		
Recorded	By: Z.Laug	hlan			Wel			Extracto	r 📋	Other
Date: 27	/04/2023				Sam	Sample by Z laught				
THE PARTY PROPERTY				A STATE OF STATE	DURGING	ipie by: Z	Laughian			
	Р	URGE V	OLUME		OKGING	nahisi kasi basha da ba				
Well Diame	eter (D in r	mm): 🛛	50 10	0 🗌 Othe	ar 🗆 🗆	Poilor Tu	PURGE	METHOD)	
Total Dept	h of Well (TD in m	BTOC):			baller – Typ		LI SS L	Tef	lon 🗌 Othe
Water Leve	el Denth W	l in m P		8.014		Other	be: 🖾 Subm	iersible	□ Per	istaltic
Number of	well volum	les to be	Durgod (#)	<u>T.295</u>			PUMP INTA	KE SETT	ING	
			Other	VULS)	Dept	th (m BTO	C)			
PURGE TI	ME		other		Scre	en Interva	I (m BTOC)	- Top :	Bot	tom:
PURGE TIM VOLUME	IE25	nus 5L	PURGE R/	ATE4	1.02	_ACTUAL P	URGE			
Start:	Ston									
FIELD PAR		MEACU	Elapsed:	Initia	al:	Final:				
Min since	Volume	DEASUR	Cond	-						
purge began	Purged (L)	рп	(mS/cm)	(°C)	DO (mg/L)	Redox (mV)	SWL (mBTOC)	Other (e.g. o	bservations)
5	0.5	705	0.691	1557	210	165	1 20 9			
10	10	7.70	0557	17.11	2.60	07.5	4.528			
15	1.5	202	0.337	17.10	3.92	66.8	4.339			
	2	7-28	0 500	16.74	3.71	67.0	4.360			
20	2.0	4.29	0.548	17.40	3.65	670	4.345			
25	2.5	7.28	0.549	17.25	3.60	621	4 001			
Observation Discharge w	s during po Sligh vater dispos	urging (v 1 <u>4 A</u> sal: 🗆 D	vell condition archy 3 prums 🗆 S	n, turbidity for the several sev	, colour, od <i>Age, M</i> ver 🗆 Sta	lour, sheer 80 <i>(xloc</i> orm sewer	n): <u>r ar sha</u> Surface	een 🛛 Othe	r	
and the second secon	A state is highly			SA	MPLING					
	METHOD				\boxtimes s	Same as pu	irge method			
_ Bailer – ٦	Гуре: 🗌 Р	PVC 🗆 S	SS 🗌 Teflo	n 🗌 Other	□ F	Pump – Typ	e: 🗌 PVC	□ss□	Teflon	Other
AMPLE DI	STRIBUTI	ON Sa	mple Name	:						
sottles:	Vol/Cor	nt.	Analys	sis F	Preservative		b			
1	m	Amber	1	ur	preserved		-	Com	iment	S
3	m	l plastic	9	Н	VO3	2	field	Cill. 10.	<u> </u>	
2	ml VC	DA vials	4	HC		8	neid	litered?	(Y) / N	
				14	a COA					
				11	1204					
UALITY CO	ONTROL S	AMPLES	5		au IT	/				
Duplic	ate Sample	ès		Blank	< Samples			Other	<u> </u>	
riginal No Duplicate No Type			Samı	ole No		Type				
			R	8 A link	RI	34	1	ype	Sa	
(and Ristin			nk	4					
				1 1 2 4	100	6				

Job Name:	Supplem	entary D	SI		Well	Well No: Muiz				
Job Numbe	er: 20025.	76			Well	Type: M	Manitan			
Recorded E	By: Z.Laug	hlan			Well	Matarial	Monitor L		or 🗌	Other
Date: 26	/04/2023				Sam	Semala handle PVC SS Other				
		es Spelae.	and the second second	and the states of		pie by: Z	Laughian			
	P	URGEV	OLUME		FORGING		Ministration of			
Well Diame	eter (D in i	mm): 🕅					PURGI	E METHO	D	
Total Dept	n of Well (TD in m				Bailer – Type: PVC SS Teflon Other				
Water Love	Donth M			8.965		ump – Typ ther	be: 🛛 Subr	nersible	🗆 Pe	ristaltic
Number of	well welling		10C):	5-535			PUMP INT	AKE SET	TING	
			e purged (#	VOLS)	Dept	h (m BTO	C)			
			J Other		Scree	en Interva	I (m BTOC)	- Top :	Bo	ttom:
PORGE	ME									
PURGE TIM VOLUME	EZĴ	mis	PURGE R	ATE4	.02	ACTUAL P	URGE			
Start:	Stop									
ETELD DAD	SLOP	MEAGU	Elapsed:	Initia	al:	Final:				
Min since	Volume	MEASU	REMENTS	1						
Durge	Purgod	рн	Cond.	Temp	DO	Redox	SWL	Other	(e.a. (observations)
began	(I)		(mS/cm)	(°C)	(mg/L)	(mV)	(mBTOC)		(
5	0.5	5.94	1.093	17.58	797	1057	E CED			
10	1.0	598	1118	17 77	1.16	105.2	5.350			
15	15	5.10	1.110	17.33	5.50	106.4	5.628			
15	1	0.02	1.117	11.24	3.85	101.8	5.750			
Zo	2.0	6.01	1.118	17.39	3.72	1017	6768			
25	2.5	6.00	1.117	1275	368	101.9	5-100			
				17.33	5.02	101.9	5.795			
Discharge w	ater dispo	<i>ovdy</i> sal:	Drums 🗆 s	<i>Mo odd</i> Sanitary sev	ver Sto	our, sheer <u>shoer</u> orm sewer	n):	e 🛛 Oth	er	
				SA	MPLING					
SAMPLING	METHOD				🛛 s	ame as ni	irae metho	d		
🗌 Bailer – T	уре: 🗌 I	PVC	SS 🗌 Teflo	n 🗌 Other	· 🗆 P	ump – Typ	pe: D PVC	u ∷ □ ss □] Teflor	n 🗌 Other
SAMPLE DI	STRIBUT	ION Sa	ample Name	: MUIT	2					
Bottles:	Vol/Co	nt.	Analys	sis F	Preservative	S La	h	6		
1	m	l Amber	/	ur	preserved			Co	mment	IS
3	m	l plastic	9	н	NO ₂			C:11 10	8	
2	ml V	OA vials	4	н		6	- neid	filtered?	(m)/I	N
				H	Co.	- /	-			
				500	504		2			
DUALITY CO			-		VaoH	/				
Duplic	ate Sampl		,							
Driginal No Duplicate Na				k Samples			Other	r Samp	les	
- ignui No	Type			Samp	le No		Туре	Sa	ample No	

Job Name: Supplementary DSI	Job Name: Supplementary DSI						Well No: MINIZ				
Job Number: 20025.76			Well Type: X Monitor								
Recorded By: Z.Laughlan			Well Ma	aterial.				Other			
Date: 26 /04/2023			Sample by: 7 Laughlan								
		PURG	ING		augman	No. and No. of Sec.					
PURGE VOLUM	E				DUDCE	METUO					
Well Diameter (D in mm): 🛛 50		her	D Baile	er - Typ		METHO					
Total Depth of Well (TD in m BTOC)	:			n - Typ				Ion L Other			
Water Level Dopth Will in m PTOC)	9.026	6	Othe	er	e. 🖾 Subh	iersible	L Per	istaltic			
Number of well volumes to be pure	4.64	S		F	PUMP INT	AKE SET	TING				
$\square 3 \square 4 \square 5 \square 10 \square 0$ tha	ed (# VOLS)	Ļ	Depth (m BTOC)						
PURGE TIME	:F ~		Screen	Interval	(m BTOC)	– Top :	Bo	ttom:			
PURGE TIME <u>25 mm</u> PUR VOLUME <u>25 L</u>	GE RATE	4.0L	AC	TUAL PL	JRGE						
Start: Stop: Flans	ed: Ini	tial	F :	-1.							
FIELD PARAMETER MEASUREMENTS											
Min since Volume pH Co	nd Temp			Doday	<u></u>	1					
purge Purged (mS, began (L)	/cm) (°C)	(m	g/L)	(mV)	(mBTOC)	Other	· (e.g. c	bservations)			
5 0.5 7.78 0.1	18.4	0 2	58	72 -	1 770						
10 1.0 7.6 0.	196 1805	- 2	21	BAR	1.8-20						
15 1.5 755 18	91 194	2 2	25	20.5	4-028						
20 20 755 08	47 17.70	1 5.	85 7	P. 1	4420						
25 2.0 7.53 0.0	97 17.76	5 5.9	8 2	81.2	4.980						
23 2-3 7.50 0.8	98 17.80	> 32	58 7	79.2	4.985						
Discharge water disposal: Drums	ndition, turbidit	ty, colou	ur, odou <u>low</u> Storm	r, sheen): <u>slææ</u> Surface	∕Z ≘ ⊠ Oth	ner				
		SAMPLI	ING			No. A Contraction					
Bailer – Type: PVC SS	Teflon 🗌 Oth	er	🛛 San	ne as pu np – Typ	rge methoo 9e: 🗌 PVC	d : □ ss□] Teflor	n 🗌 Other			
SAMPLE DISTRIBUTION Sample	Name: Mala	117									
Bottles: Vol/Cont.	Analysis	Procor	votives								
1 ml Amber	/	FIESE	valives	La	D	Co	omment	S			
3 ml plastic	9	HNO	erved	2			-				
2 ml VOA vials	4			2	field	filtered?	\mathbb{C}	N			
	7	4 10-		e							
	/	12504	-	5							
		NaOIT		/							
Duplicate Samples											
Original No Duplicate No -					Other Samples						
Original No Duplicate No Type			Sample	No		Туре	Si	mple No			
						/					
	l				1 7						

Job Name:	Suppleme	entary D	SI		We	Well No: Malandi				
Job Numbe	er: 20025.	76			We		Monito	r 🗌 Extra	ton 🗖	011
Recorded E	By: Z.Laug	hlan			Wel	Material				Other
Date: 27	/04/2023				San	Sample by: 7 Laughlan				
					PURGING	<u></u>	Laugine		Sector Const	
	P	URGE V	OLUME				DU	DCE METU		
Well Diame	eter (D in i	mm): 🛛	50 🗆 10	0 Oth	er 🗍	Bailer – Tv				a 🗖
Total Depth	n of Well (TD in m	BTOC):	7 . 00		Pumn – Ty				flon L Other
			1	4.505		Other		Submersible	L Pe	ristaltic
Water Leve	l Depth W	'L in m B	TOC):	4,775			PIIMD	INTAKE CE	TTINC	
Number of	well volun	nes to be	purged (#	VOLS)	Dep	th (m BTO	()	INTAKE SE	TIING	
		10	Other	,	Scre	en Interva	el (m BT	O(C) = Top :	De	
PURGE TI	ME							<u>oc) - rop .</u>	ВС	ottom:
PURGE TIM VOLUME	E2	mis SL	PURGE R	ате <u>4</u> .	06	_ACTUAL F	VRGE			
Start:	Stop		Flansed	Initi		-				
FIELD PAR	FIELD PARAMETER MEASUREMENTS									
Min since	Volume	pH	Cond	Toma						
purge	Purged	Pri	(mS/cm)	(°C)		(m)()	SV	VL Othe	er (e.g. o	observations)
began	(L)				(119/L)		(mB1	00)		
5	DIT	#19	1015	17 07	205	. 11				
in	A	7.10	1 200	17.80	5.9)	10+,1	4.8	20		
10	1.0	7.15	1-795	17.65	3.85	107.2	4.8	35		
/5	1.1	7.10	1.781	17.28	3.72	107.1	4.8	87		
20	2.0	7.09	1.782	17.30	265	1925	48	91		
25	2.5	7.08	1.780	1771	254	107.3	T.0	18		
				11.61	2.21	107.6	4.9	05		
Discharge w	Slig. ater dispo	htly C sal: □ [<u>lovdy, b</u> prums □ s	anitary se		orm sewer	<i>@^~\$</i> Su	rface 🛛 Ot	her	
	METHOD							· · · · · · · · · · · · · · · · · · ·		
Bailer – T	ype:	PVC	SS 🗌 Teflo	n 🗌 Othe	r 🗆	Same as p Pump – Ty	urge me pe: 🗌	ethod PVC 🗆 SS[] Teflo	n 🗌 Other
	STRIBUT				.01					
Bottles	Vel/C-	ION Si	ample Name	: NUI	01					
1	v0/C0	nt.	Analy	sis	Preservativ	es Li	ab	С	ommen	ts
3		Amber	1	u	npreserved		5			
2	m	il plastic	9	Н	NO ₃	2	2	field filtered	? (m)/	N
2	mi v	OA vials	4	Н	CI	1	1			
				h	5 SOL	5	-		10	
				1	Vallet	1				
UALITY CO	NTROL S		5							
Duplic	ate Sampl	es	_	Blan	k Samples			Oth	er Samr	
Original No	Duplic	ate No		Type	Com		$\neg \vdash$	-		
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ball		- -	Туре	S	ample No
							/			

Job Name:	Suppleme	ntary DS		Well No: MAININ								
Job Numbe	er: 20025.7	'6				Well	Type: 🕅	Monitor		vtractor		Other
Recorded E	By: Z.Laugh	nlan				Well	Material:			$S \square C$)ther	other
Date: 27	/04/2023					Sample by: Z Laughlan						
and the second		N ALL SOM			PURC	SING		uugmun		al de Neures	Server of	
	P		OLUME		I UIK			DIID		ETHOD		
Well Diame	eter (D in n	nm): 🛛	50 100		ner							
Total Dept	n of Well (T	D in m E	BTOC):	7000	-		ump – Tyr		hmer	sihle [
				1.40)		Πo	ther		Sinci			istance
Water Leve	el Depth WI	_ in m B1	FOC):	3.995					TAK	E SETTI	NG	
Number of	well volum	es to be	purged (# \	VOLS)	2	Dept	h (m BTO	C)				
		J 10 L	Other			Scree	en Interva	I (m BTO	C) – T	Гор:	Bot	tom:
PURGE TI	ME											
	- 10	ALIA			1 ni	/						
VOLUME	E2	-/	PURGE R/	ATE	7.06	-	ACTUAL P	URGE				
Start:	Change (6										
	Stop:	MEACUE	Elapsed:	Ini	tial:		Final:					
Min cinco	Volumo	MEASUR	CEMENTS	-				-				
	Purgod	рн	Cond.	Temp		DO	Redox	SWL	-	Other (e.g. c	bservatior
began	(I)		(IIIS/CIII)	(°C)	(1	ng/L)	(1110)	(mBIC	C) -			
C	05	722	1114	2/11	1	1 0 1	1270	1	20			
10	0.5	7.76	1.057	21.16	4	-21	123.3	4.00	S			
10	1.0	7.14	2.030	18.59	4	.09	120.6	4.03	8			
15	1-5	7.45	2.043	17.84	4	. 15	117.6	4.04	5			
20	2.0	7.42	2.028	18.00	: 4	-25	112.8	4.09	17			
25	2.5	7.43	7.022	1812	1	12	1167	4 0	~2			
		1		10-1		12	110	F-05	0			
Discharge v	vater dispo	sal: 🗆 [Drums 🗆 s	<u>ないろん</u> Sanitary s	<i>inge</i> sewer	<i>n0</i> □ St	<i>odour</i> orm sewe	_ <i></i> ∽ r □ Sur	lær face	∽ ⊠ Othe	r	
					SAMP	LING	And Aller					
	METHOD											
SAMPLING							Same as p	urge met	hod			
🗆 Bailer –	Туре: 🗌	PVC 🗌	SS 🗌 Teflo	on 🗌 Oth	ier		Pump – Ty	/pe: 🗌	vc [SS□	Teflo	n 🗌 Othe
SAMPLE D	ISTRIBUT	ION S	ample Name	e: <i>MU</i>	N102							
Bottles:	Vol/Co	nt.	Analy	/sis	Pres	ervativ	es L	.ab		Cor	nmen	ts
1	m	nl Amber	1		unpre	served		5				
3	n	nl plastic	9		HNO_3			2 f	ield fi	Itered?	(1)	N
2	ml V	OA vials	4		HCI		1			42		
Ha Sa						Æ		5				
					Dao	Ħ	1					
QUALITY C	ONTROL	SAMPLE	S									
Duplicate Constant												-
Duplicate Samples Blank S						amples	1			Other	Sam	ples
Driginal No Duplicate No Type						Sam	ple No		Τv	pe		ample No.
/								\neg	. ,	/		ample NO
170				l								

Job Name	: Suppleme	entary D	SI		Well	No: 11	11.107		
Job Numb	er: 20025.	76			Well	Type: X	Monitor		0.1
Recorded	By: Z.Laug	hlan			Well	Material:			Other
Date: 27	404/2023				Sam	ble by: 7 I			er
					PURGING		Laagman	NA 12 Million State	
	P	URGE V	OLUME				PURCE	METHOD	
Well Diam	eter (D in r	mm): 🛛	50 🗆 10	0 🗌 Oth	er 🗆 Ba	ailer – Tvr			
Total Dept	th of Well (TD in m	BTOC):	SMABO 2	S \$60 □ PL □ OT	ump – Typ ther	be: 🛛 Subm	ersible P	eristaltic
Water Leve	el Depth W	L in m B	TOC):	1850 1	1450		PUMP INTA	KE SETTING	1
			e purged (#	VOLS) 5	850 Depth	n (m BTOC	C)		
PURGE TI	ME		J Otner		Scree	n Interva	l (m BTOC) -	-Тор: В	ottom:
PURGE TIM VOLUME	1E <u></u> 2.5	nús	PURGE R	ATE4	.01	ACTUAL P	URGE		
Start:	Stop:		Flancod	T					
FIELD PARAMETER MEASUREMENTS									
Min since	Volume	DH	Cond	Tomp					
purge began	Purged (L)	F	(mS/cm)	(°C)	(mg/L)	(mV)	SWL (mBTOC)	Other (e.g.	observations)
5	0.5	7.20	1.618	19.65	245	1076	590x		
10	1.0	7.16	1.595	19.75	2.15	101.0	0.180		
15	1.5	210	1 692	19.6	5.00	101.1	3.475		
20	70	7.15	1.515	11.140	5.21	106.5	6.005		
20	2.0	7.10	1.590	19.17	3.16	106.2	6.025		
65	6.3	7.17	1.007	19.05	2.11	106.7	61035		
Discharge w	vater dispos		orums	n, turbidity	v, colour, odd <u>m Hagge</u> wer 🗆 Stor	our, sheen): <u>xelow</u> a Surface	<i>Slæen</i> ⊠ Other	-
	METHOD				AMPLING				和 的意思。在1993年1月1日
Bailer –	Type: 🗌 🖡	vc 🗆 :	SS 🗌 Teflo	n 🗌 Other	r ⊡ Pu	ame as pu ump – Typ	irge method be: 🗌 PVC	SS Tefl	on 🗌 Other
SAMPLE DI	STRIBUTI	ION Sa	ample Name	: Mu	1107				
sottles:	Vol/Cor	nt.	Analy	sis	Preservatives	s la	b	Commo	atc
1	m	l Amber	1	u	npreserved	6	~	Comme	
3	m	l plastic	9	Н	NO ₃	2	field f	iltered? AN	N
2	ml V(OA vials	4	Н	CI	1	incidit		
				H	SOA	5			
				n	Valt	1			
		and the second se							
UALITY CO	ONTROL S	AMPLES	5						
2UALITY CO Duplic	ONTROL S	es	5	Blan	k Samples			Other Sam	ples
2UALITY Co Duplic Driginal No	ONTROL S cate Sample Duplica	es ate No	5	Blan Type	k Samples Samp	e No	т	Other Sam	ples Sample No
2UALITY CO Duplic Driginal No	ONTROL S cate Sample Duplica	es ate No		Blan Type	k Samples Samp	e No		Other Sam	ples Sample No
2UALITY CO Duplic Driginal No	ONTROL S	es ate No		Blan Type	k Samples Samp	le No	T	Other Sam	ples Sample No

Job Name	e: Suppleme	ntary DS	SI		Well	No:	SINCI	/			
Job Numl	per: 20025.7	7 6			Well	Type:	Mon	itor 🗌	Extracto	or 🗌	Other
Recorded	By: Z.Laugl	nlan			Well	Well Material: X PVC SS Other					
Date: 24	/04/2023				Sam	le by:	Z Laud	hlan	<u> </u>	ounci	
					URGING	法的 自然			Section of the		
	P	URGE V	OLUME					PURGE	METHO	D	
Well Dian	neter (D in n	nm): 🛛	50 🗌 100) 🗌 Othe	r 🗆 Ba	ailer – T	Type:	PVC	🗆 ss	Tef	lon 🛛 Other
Total Dep	th of Well (1	D in m I	зтос):	/		□ Pump – Type: ⊠ Submersible □ Peristaltic □ Other					
Water Lev	el Depth Wi	L in m B	гос): 🦯				PUN	1P INTA	KE SETT	TING	
Number of	of well volum	es to be	purged (# V	/OLS)	Dept	ו (m BT	OC)				
		J 10 L	Other		Scree	n Inter	val (m	BTOC) -	Тор:	Во	ttom:
PURGE	IME										
PURGE TI	ME	/		TE				-			
VOLUME_				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ACTUAL	PURG	E			
Start:	Stop:		Elapsed:	Initia	al ·	Final					
FIELD PA	RAMETER	MEASUR	REMENTS			man.	and the second second				
Min since	volume	pН	Cond.	Temp	DO	Redo	x	SWI	Other	(en c	hservations)
purge	Purged		(mS/cm)	(°C)	(mg/L)	(mV)) (r	nBTOC)		(0.9. 0	
began	(L)	0 - 1									
	-	4.29	0.279	17.36	3.53	83-	3	/			
											30)
Observati	ons during p	urging (v	well condition	n, turbidity	, colour, od	our. she	een).				
		Clow	ini isal	lou o	r share	();	ceny.				
turner of			1-0 000	000 0/	Succ						
Discharge	water dispo	sal: 🗌 🛙	Drums 🗌 S	anitary sev	wer 🗌 Sto	orm sew	ver 🗆	Surface	🛛 Oth	er	
				SI							
		_				same as	s purge	e method			
Bailer -	- Туре: 凵	PVC 🗌	SS 🗌 Teflo	n 🗌 Other	- 🗆 F	ump –	Type:	D PVC] Teflo	n 🗌 Other
SAMPLE	DISTRIBUT	ION S	ample Name	anos							
Bottles:	Vol/Co	nt.	Analy	sis	Preservative	es	Lab		Co	mmen	ts
1	m	I Amber	A	/ u	npreserved		2.				
3	m	nl plastic	2	<u>г</u> н	NO ₃		2:	field	filtered?	01	Ń
2	mi V	OA vials	R.	2 Н	CI						
				H	2504		2				
QUALITY	CONTROL S	SAMPLE	s								
Dup	licate Samp	es		Blan	k Samples				Othe	r Sam	nles
Original N	0 Dunlie	ate No		Type							
Type S				Sam			1	ype	S	ample No	
/			_	/							

Job Number: 20025.76 Well Type: Monitor Extractor Other Becorded By: ZLaughlan Well Material: BYC SS Other Date: 27 /04/2023 Sample by: ZLaughlan PURGE METHOD Well Diameter (D in mm): S0 100 Other Bailer - Type: Byce METHOD Water Level Depth WL in/m BTOC): Dump - Type: Submersible Perinstatic PURGE YOLK Number of well volumes to be purged (# VOLS) Depth (m BTOC) Topp: Bottom: PURGE TIME PURGE RATE ACTUAL PURGE Submersible Depth (m BTOC) Number of well volume pH Cond. Temp Cond. Temp Submersible Detestime PURGE TIME PURGE RATE ACTUAL PURGE Submersible Detestime Other (e.g. observations) purge burged pH Cond. Temp (col. Temp (ms/cm) SwlL. Other (e.g. observations) began (L) A 2 2 Ø 3 3 3 7 4 4 1, J Image (ms/cm) Image (ms/cm) Start: Stop Elapsed: Initial: Final: Final: Fill Muset Method Same aspurge met	Job Name	Job Name: Supplementary DSI					Well N	lo: (4	111				
Recorded By: Z_Laughian Well Material: Work: Disk D other Date: 24 /04/2023 PURGE VOLUME PURGE METHOD PURGE VOLUME PURGE VOLUME PURGE METHOD PURGE VOLUME PURGE METHOD PURGE VOLUME PURGE METHOD PURGE VOLUME PURGE METHOD PURGE VOLUME PURGE TIME PURGE TIME PURGE RATE CTULA PURGE PURGE TIME	Job Numb	per: 20025.7	76				Well T	vne X	Monitor	Extract		Others	
Date: 2/ 104/2023 Sample by: Z Laughtan PURGE VOLUME PURGE VOLUME PURGE WITHOD Well Diameter (D in mm): Ø 50 _100 _ Other Bailer _ Type: Ø LUWE Water Level Depth WL In/m BTOC): Dump - Type: Ø Submersible Peristattic Number of well volumgés to be purged (# VOLS) Depth (m BTOC) - Top : Bottom: PUMGE TIME PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FILED PARAMETER MEASUREMENTS Temp DO (mV) (mBTOC) Min since Volume pH Cond. Temp DO Other (e.g. observations) Jurge TIME PURGE TIME Final: Final: Final: Final: FILE PURGE (mS/cm) (mg/L) (mV) (mBTOC) Image: Cond. Start: Stop: Elapsed: Initial: Final: Final: FILE Volume pH Cond. (mg/L) (mV) (mBTOC) Discharge water disposal: Drums Sanitary sever Storm sever Surface Other<	Recorded	By: Z.Laug	hlan				Well M						
PURGENCE PURGENCE PURGE METHOD Well Diameter (D in mm): Ø 50 100 Other Bailer - Type: PURCE METHOD Water Level Depth WL Ig/M BTOC): Pump - Type: Ø Submersible Perstatic Water Level Depth WL Ig/M BTOC): Pump - Type: Ø Submersible Perstatic Water Level Dept WL Ig/M BTOC): Depti(m BTOC) Screen Interval (m BTOC) - Top : Bottom: PURGE TIME PURGE RATE ACTUAL PURGE VOLUME	Date: 27	/04/2023					Sampl	e by: 71	aughlan		other	4	
PURGE VOLUME PURGE METHOD Well Diametr (D in mm): $3 50 \ 100$ Other Bailer - Type: $VC \ SS \ Teflon$ Other Total Depth of Well (TD in m BTOC): $Other$ $Pump \ Type:$ $Stress \ Teflon$ Other Water Level Depth WL in m BTOC): $Other$ $Pump \ Type:$ $Stress \ Teflon$ Other Number of well volumés to be purged (# VOLS) Depth (m BTOC) Total Depth (m BTOC) - Top : Bottom: PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since Other (e.g. observations) Other (e.g. observations) purge Volume pH Cond. Temp DO (mV) (mBTOC) In since Volume pH Cond. Temp MO (mg/L) Other (e.g. observations) Discharge water disposal: D nume Conduct, sheen): Image: Stress and stress Discharge water di			States States			PUR	GING	<u> </u>	augmun	on the strate	the second second		
Well Diameter (D in mm): X 50 100 Other □ Bailer - Type: □ VPC SS □ Tefion Other Water Level Depth of Well (TD in m BTOC): □ Pump - Type: Ø Submersible □ Peristaltic Water Level Depth WL in M BTOC): □ Pump - Type: Ø Submersible □ Peristaltic Water Level Depth WL in M BTOC): □ Pump - Type: Ø Submersible □ Peristaltic PURGE TIME PURGE TIME PURGE TIME PURGE TIME PURGE TIME PURGE TIME PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Initial: Final: Field Parameter Min since Volume PH Cond. Temp DO (mV) (mBTOC) Jogan (1) 2 Ø 393 17.98 3.? / 94.1		Р	URGE V	OLUME					DUDCE	METHO			
Total Depth of Well (TD in m BTQC): □ Pump - Type: S Submersible □ Peristalitic Water Level Depth WL in m BTQC): □ Other Number of well volumés to be purged (# VOLS) Depth (m BTQC) 3 □ 4 □ 5 □ 10 □ Other Depth (m BTOC) PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop Elapsed: Initial: Final: Final: FIELD PARAMETER MEASUREMENTS Min since Volume purged purged (m S/cm) (ms) (mc/m) (ms) (ms/m) (ms) (mc/m) (ms) (ms/m)	Well Diam	neter (D in n	nm): 🛛	50 100) 🗆 Otl	her	🗌 Bai	ler – Tvn					
Water Level Depth WL In /n BTOC): Dumper of well volumes to be purged (# VOLS) Depth (m BTOC) 3 4 5 10 0 ther Depth (m BTOC) Screen Interval (m BTOC) - Top : Bottom: PURGE TIME PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop Elapsed: Initial: Final: FIED PARAMETER MEASUREMENTS Min since PURGE (ms/cm) (°C) (mg/L) (mW) (mBTOC) Other (e.g. observations) // / / / / / / / / / / / / / / / / / /	Total Dep	th of Well (1	rd in m I	втое):				np – Typ	e: Subr	nersible		ristaltic	
Number of well volumes to be purged (# VOLS) Depth (m BTOC) 3 4 5 10 Other PURGE TIME PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop Elapsed: Initial: Final: PURGE TIME PURGE RATE ACTUAL PURGE Start: Stop Elapsed: Initial: Final: PURGE TIME PURGE RATE Cond. Temp DO Redox SWL Other (e.g. observations) purge Purged PH Cond. Temp DO Redox SWL Other (e.g. observations) began (L) 7.4.2 0.39.3 17.9.8 3.2.1 94.1 - </td <td>Water Lev</td> <td>el Depth W</td> <td>L in m B</td> <td>TOC):</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TING</td> <td></td>	Water Lev	el Depth W	L in m B	TOC):							TING		
Bailer - Type: PVC SS Teffon Other Bailer - Type: PVC SS Teffon Other Start: Start: Store Start: Start: Store PURGE TIME PURGE RATE ACTUAL PURGE Start: Store Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since Other (e.g. observations) purge PURGE TIME PURGE RATE Notice Start: Store Store SWL Other (e.g. observations) purge PH Cond. Temp Do (my) (mBTOC) Start: Store Store SWL Other (e.g. observations)	Number o	f well volum	es to be	purged (#)	(015)		Depth	(m BTOC		AKE SEI	TING	40 K. 46	
PURGE TIME Outcom interval (in BIOC) = Top : Bottom: PURGE TIME PURGE RATE ACTUAL PURGE PURGE TIME Start: Stop: Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Initial: Final: SWL Other (e.g. observations) purge Purged (mS/cm) (°C) (mg/L) (mV) (mBTOC) / 7.6.2 0.373 /7.9.8 3.7.7 94.1		4 🗆 5 🗋	10 C	Other			Screen	Interval	(m PTOC)	Tan			
PURGE TIME PURGE RATE ACTUAL PURGE VOLUME Stop: Elapsed: Initial: Final: Tissince Volume PH Cond. Temp DO Redox SWL Other (e.g. observations) purge Purged PH Cond. Temp DO Redox SWL Other (e.g. observations) // 7.4.2 0.39.3 17.98 3.71 94.1 -	PURGE T	IME					001001	i incei vai	(III BIOC)	- TOP :	ВО	ttom:	
Volume Stop! Elapsed: Initial: Final: FIELD PARAMETER MEASUREMENTS Min since Volume pH Cond. Temp DO Redox SWL Other (e.g. observations) purge purge (mS/cm) (°C) (mg/L) (mV) (mBTOC) Other (e.g. observations) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>PURGE TI</td> <td>ME</td> <td></td> <td>PURGE RA</td> <td>ATE</td> <td></td> <td>A</td> <td>CTUAL PI</td> <td>URGE</td> <td></td> <td></td> <td></td>	PURGE TI	ME		PURGE RA	ATE		A	CTUAL PI	URGE				
Start: Stopf: Elapsed: Initial: Final: Min since purge began Volume (L) pH Cond. Temp (mS/cm) DO ("C) Redox (my/L) SWL (mBTOC) Other (e.g. observations) // 7.4.2 0.393 1/7.98 3.71 94.1 - - // 7.4.2 0.393 1/7.98 3.71 94.1 - - - // 7.4.2 0.393 1/7.98 3.71 94.1 - - - // // // // // /// /// //// //// ///// // // /// /// //// //// //// //// //// //// // // /// //// //// //// //// ///// // // //// //// //// //// ///// ///// // /// /// //// //// //// ///// ///// // /// //// //// //// ///// </td <td>VOLUME_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	VOLUME_		-										
FIELD PARAMETER MEASUREMENTS Min since purge began Volume (L) PH Cond, (mS/cm) Temp (°C) DO (mg/L) Redox (mV) SWL (mBTOC) Other (e.g. observations) / 7.62 0.393 1/2.48 3.21 9/4.1 - <td< td=""><td>Start:</td><td colspan="10">Start: Stop^e Elapsed: Initial: Final:</td></td<>	Start:	Start: Stop ^e Elapsed: Initial: Final:											
Min since purged began Volume (L) PH Cond. (mS/cm) Temp (°C) DO (mg/L) Redox (mW) SWL (mBTOC) Other (e.g. observations) / 7.62 0.393 17.98 3.71 94.1 -	FIELD PA	RAMETER	MEASUR	REMENTS									
Image: Second string purging (well condition, turbidity, colour, odour, sheen): Observations during purging (well condition, turbidity, colour, odour, sheen): Discharge water disposal: Drums SamPLING SAMPLING SAMPLING method Bailer - Type: PVC PVC SS 1 ml Amber 1 ml VOA vials 2 HCl 1 If 2504 2 Ml VOA vials 2 HCl 1 Type Samples Other Samples Type Sample No Type Sample No Type Sample No Type Sample No	Min since purge began	Volume Purged (L)	рН	Cond. (mS/cm)	Temp (°C)	(1	DO mg/L)	Redox (mV)	SWL (mBTOC)	Other	r (e.g. (observations)	
1 1	1		762	1 397	17 (1)	2 :	271	ac.	- /				
Image: Sample Distribution Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int U = S_{ample Name:}$ $\int Sample Name:$ 1 ml plastic $\int HRCl$ Image: Sample Name: $\int Sample Name:$ $\int Sample Name:$ <td></td> <td></td> <td>1.0-</td> <td>0.713</td> <td>17.90</td> <td>))</td> <td> /</td> <td>79.1</td> <td></td> <td></td> <td></td> <td></td>			1.0-	0.713	17.90))	/	79.1					
Observations during purging (well condition, turbidity, colour, odour, sheen):													
Observations during purging (well condition, turbidity, colour, odour, sheen):													
Observations during purging (well condition, turbidity, colour, odour, sheen):													
Observations during purging (well condition, turbidity, colour, odour, sheen): Observations during purging (well condition, turbidity, colour, odour, sheen): Discharge water disposal: Drums Sanitary sewer Storm sewer Surface Other Discharge water disposal: Drums Sanitary sewer Storm sewer Surface Other Discharge water disposal: Drums Sanitary sewer Storm sewer Surface Other Discharge water disposal: Drums Sanitary sewer Storm sewer Surface Other SAMPLING METHOD Sample Name: Multiple Multiple Preservatives Lab Comments SAMPLE DISTRIBUTION Sample Name: July 2 MNO3 2 field filtered? (Y) / N 2 ml VOA vials Z HCl Interest (Y) / N Interest (Y) / N 2 ml VOA vials Z HCl Interest (Y) / N Interest (Y) / N 2 ml VOA vials Z HCl Interest (Y) / N Int													
Observations during purging (well condition, turbidity, colour, odour, sheen):													
Discharge water disposal: Drums Sanitary sewer Storm sewer Surface Other SAMPLING Same as purge method Bailer - Type: PVC SS Teflon Other Pump - Type: PVC SS Teflon Other SAMPLE DISTRIBUTION Sample Name: Surface Z Sample Name: Surface Supervision Other SAMPLE DISTRIBUTION Sample Name: Surface Z Sample Name: Supervision Supervision Other SAMPLE DISTRIBUTION Sample Name: Supervision Lab Comments Comments 1 ml Amber / unpreserved Z field filtered? Y) / N 2 ml VOA vials Z HCI Image: Supervision	Observatio	ons during p	urging (\	well condition	n, turbidi	ty, col	lour, odo	ur, sheer	ı):				
SAMPLING SAMPLING SAMPLING METHOD Same as purge method Bailer - Type: PVC SS PVC SS Teflon Other SAMPLE DISTRIBUTION Sample Name: Superior SAMPLE DISTRIBUTION Sample Name: Superior SAMPLE DISTRIBUTION Sample Name: Superior Sample Name: Superior Comments 1 ml Amber / unpreserved 2 ml VOA vials Z field filtered? 2 ml VOA vials Z HCl Implicate Samples Blank Samples Other Samples Duplicate No Type Sample No	Discharge	water dispo	sal: 🗌 [Drums 🗆 S	anitary s	ewer	□ Stor	m cowor					
SAMPLING SAMPLING METHOD Same as purge method Bailer - Type: PVC SS Teflon Other Pump - Type: PVC SS Teflon Other SAMPLE DISTRIBUTION Sample Name: Swo2 Bottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved Z					anical y s	SAMD		in sewer		e 🖾 Otr	her		
SAMPLING METHOD Same as purge method Bailer - Type: PVC SS Teflon Other SAMPLE DISTRIBUTION Sample Name: Suez SAMPLE DISTRIBUTION Sample Name: Suez Bottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved Z						SAMP		an far staar te staar te staar. Geboort					
SAMPLE DISTRIBUTION Sample Name: Ju vZ Bottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved Z ////////////////////////////////////	Bailer -		PVC 🗆	SS 🗌 Teflo	n 🗌 Oth	er	⊠ Sa □ Pu	ıme as pı ımp – Tyı	urge metho pe: 🗌 PV(d C 🗆 ss 🗆] Teflo	n 🗌 Other	
Bottles: Vol/Cont. Analysis Preservatives Lab Comments 1 ml Amber / unpreserved Z 3 ml plastic 3 HNO3 2 field filtered? (Y) / N 2 ml VOA vials Z HCl Image: Second s	SAMPLE D	ISTRIBUT	ION S	ample Name		54107							
1 ml Amber unpreserved Z 3 ml plastic 3 HNO3 2 2 ml VOA vials 2 HCI 1 It 2004 It 2004 2 ml VOA vials 2 1 It 2004 It 2004	Bottles:	Vol/Co	nt.	Analy	sis	Pres	ervatives		ah	~	0.00.0		
3 ml plastic 3 HNO3 2 field filtered? (Y) / N 2 ml VOA vials 2 HCl It 2504 2 QUALITY CONTROL SAMPLES Duplicate Samples Blank Samples Other Samples Original No Duplicate No Type Sample No	1	m	I Amber	1		unnre	served		1		ommen	15	
2 ml VOA vials 2 HCI 2 ml VOA vials 2 HCI 1/2 SO4 2 QUALITY CONTROL SAMPLES Duplicate Samples Blank Samples Other Samples Original No Duplicate No Type Sample No	3	m	l plastic	2		HNO	Sci veu		2 5.1		2		
QUALITY CONTROL SAMPLES Duplicate Samples Original No Duplicate No Type Sample No Type Sample No	2	ml V	OA vials	2		HCI				filtered	(m)	N	
QUALITY CONTROL SAMPLES Duplicate Samples Original No Duplicate No Type Sample No Type				6		14 00		2					
Duplicate Samples Blank Samples Other Samples Original No Duplicate No Type Sample No						112504	F		-				
Duplicate Samples Blank Samples Other Samples Original No Duplicate No Type Sample No	QUALITY		SAMPLE	S									
Original No Duplicate No Type Sample No	Duplicate Samples Blank Sa					amples			Othe	er Sam	nles		
Type Sample No Type Sample No	Original No Duplicate No Type					Comel	o Ne	1					
					type		Sampl	e 110		Гуре	S	ample No	
	/				/								

Equipment Calibration Report

7

Equipment Calibration Report

HAN Water Quality Meter 98194-4M- Serial No. 0404000101

рН	🗹 рН 6.86	Actual: <u>6.85</u>
Conductivity	☑ 5,000 uS/cm	Actual:
Dissolved oxygen	☑ 0.0 mg/L	Actual:
Redox Potential	🛛 240 mV	Actual: <u>240</u> .1
Temperature, (i.e. R	coom temperature):	21_20

Calibrated by:	22	
Date tested:	26.4.23	-
Job Reference:	20075.76	
Notes:		

Equipment Calibration Report

Equipment Calibration Report

HAN Water Quality Meter 98194-4M- Serial No. 0404000101

рН	🗹 рН 6.86	Actual: 6.85
Conductivity	☑ 5,000 uS/cm	Actual: <u>5036</u>
Dissolved oxygen	🗹 0.0 mg/L	Actual:
Redox Potential	☐ 240 mV	Actual: <u>240</u> .2
Temperature, (i.e. F	coom temperature):	13.44

Calibrated by:	21) 	-
			_
Date tested:	27.4.23		
Job Reference:	20075.76		
Notes:			
12			

Hi Zac

See below for pickups done on the 27th of April 2023 at Braidwood Rd Goulburn

Points	Easting	Northing	RL
MW103 TOC	748169.109	6148849.532	636.403
MW103 Top concrete	748169.146	6148849.717	635.531
pad			
MW102 TOC	748172.125	6148890.020	634.400
MW102 Top of lid	748172.175	6148890.039	634.595
MW101 TOC	748176.837	6148919.963	635.133
MW101 top of lid	748176.871	6148919.936	635.293

TOC = Top of pipe (which im assuming is the top of casing)

If you have any questions let me know

Cheers

Bryce Roberts

- A: 1A/10 Exchange Parade, Smeaton Grange 2567
- E: <u>Bryce.Roberts@rcsurveys.com.au</u>
- W: <u>www.rcsurveys.com.au</u>

This email, and any files transmitted with it, are confidential and intended for use by the addressee only. The confidential nature of the information contained in the email and/or file attachment is not waived, lost or destroyed if it is sent to other than the addressee. Use or dissemination of the information contained in the email and/or file attachment, by a recipient other than the addressee, may cause commercial damage to both/either the sender and/or addressee. If you are not the addressee of this email/file attachment contact the sender immediately and delete this email/file attachment.

Please consider the environment before printing this email.

Appendix D

Borehole and Testpit Logs

Project Name:	Supplementary De	etailed Site Investigation	Hole ID.	BH101	
Location / Site:	Goulburn Roundh	ouse, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Tra	ack Corporation	Hole Depth:	0.50 m	
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	18/04/2023	Ground Level (mAHD):		$(\Lambda)/\Lambda/\Lambda$	
Date Completed:	18/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		CO	nsulting

	e			Бс	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
		0.20			F		FILL - Sandy Gravel, dark grey / light grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	BH101_0.0-0.1	
HA		_			F	Fill	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH101 0 3-0 4	Ash, glass.
		- 0.50							0.0	Birro1_0.3-0.4	
		0.00		~~~			Terminated at 0.50 m Target depth.				
		_									
ı.au		1									
nad.com		_									
ww.reur		-									
vhite at v		-									
y laurie v		-									
drawn b											
06 AM -											
3 11:35:											
6/22/2:		_									
CC.GD		2									

Abandonment Method: Backfill with soil and compact.

GOULBURN	,
20025_76	
CCL0G2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation	Hole ID.	BH102	
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Track	Corporation	Hole Depth:	0.30 m	
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	19/04/2023	Ground Level (mAHD):		C = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	
Date Completed:	19/04/2023	Easting: Northing			NDA
Sheet:	1 of 1		CO	nsulting	

	evel	n)		Log	Symbol	Type		0		Samples	21	
Method	Water L	Depth (r	RL (m)	Graphic	USCS 5	Material	Material Description	Moisture	PID ppm	ID No.	Observa	tions / Comments
							Surface: Grass					
HA		_			F	Fill	FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	moist	0.0	BH102_0.0-0.1		
		0.20			F		FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH102_0.2-0.3	Ash.	
.GDT 6/22/23 11:35:07 AM - drawn by laurie white at www.reumad.com.au							Terminated at 0.30 m Target depth.					
o Lae	Abandonment Method: Backfill with soil and compact											
20025_76 GOULBURN.6	Addit	tional	Com	ments	:: No	odo	ur or staining. No anthropogenic material.					
COG2023 2	Log Drawn By: Laurie White Logged By: Zac Laughlan Date: 19/04/2023 Contact: laurie.white@reumad.com.au Checked By: Zac Laughlan Date: 22/06/2023											

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation	Hole ID.	BH103	
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Track	Corporation	Hole Depth:	0.40 m	
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			NBA
Sheet:	1 of 1	Zone:		CO	nsulting

				g	lodn	/pe				Samples	
Method	Water Leve	Depth (m)	RL (m)	Graphic Lo	USCS Syn	Material Ty	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
۸		0.20			F	Fill	FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	moist	0.0	BH103_0.0-0.1	
Ŧ		0.30			F		FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH103_0.2-0.3	Ash.
		0.40			CL	Nat.	Sandy CLAY - soft, low plasticity, fine to medium grained sand.	moist			
							Terminated at 0.40 m Target depth.				
		_									
		_									
		_									
		_									
.au		1									
nad.com		_									
ww.reun		_									
nite at w		-									
aurie wł		_									
awn by I											
AM - dr		_									
1:35:09		-									
22/23 1		-									
GDT 6/		-									
ც_	-									I	

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

11:35:(
6/22/23	
CC.GDT	
76 GOULBURN.GPJ	
20025_	
CCLOG2023	ł

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Detail	Hole ID.	BH104		
Location / Site:	Goulburn Roundhous	e, 12 Braidwood Rd, Goulburn NSV	N	Project Number:	20025.76
Client:	Australian Rail Track	Corporation		Hole Depth:	0.50 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			NBA
Sheet:	1 of 1	Zone:		СО	nsulting

thod	ter Level	oth (m)	(m)	phic Log	CS Symbol	terial Type	Material Description	sture	PID	Samples ID No.	Observations / Comments
Met	Vai	Dep	RL	Gra	NSI	Mat		Moi	- FF		
							Surface: Grass				
		- 0.20			F		FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel, rootlets.	moist	0.0	BH104_0.0-0.1	
H		_				Ē	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist			
		_			F				0.0	BH104_0.3-0.4	ACM at 0.4m, glass, brick.
-	-	0.50		XXX			Terminated at 0.50 m		-		
35:10 AM - drawn by laurie white at www.reumad.com.au							Terminated at 0.50 m Target depth.				
23 11:		_									
6/22/2											
C.GDT		2									
	Aba	ndonn	nont	Motha	d.Po		with soil and compact				
0025_76 GOULBURN.G	Addi	itional	Com	nments	u.ba	odo	ur or staining. Layered ACM identified from 0.4 m to the maxi	mum dept	h of inve	istigation.	
G2023 2	R	E	M	A)	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Logge Checke	ed By: ed By:	Zac Laughlan Zac Laughlan	Date: 19/04/2023 Date: 22/06/2023
 cclc			Cav	vanba	a Co	nsul	Iting Pty Ltd 4/82 Centennial Circuit (PO Box 2191),	Byron Ba	ay, NSV	V 2481 Tel.02 66	85 7811 www.cavvanba.com

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary De	tailed Site Investigation	Hole ID.	BH105	
Location / Site:	Goulburn Roundho	ouse, 12 Braidwood Rd, Goulburn NS	N	Project Number:	20025.76
Client:	Australian Rail Tra	ck Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	19/04/2023	Ground Level (mAHD):		$(\Lambda) / \lambda / \Lambda$	
Date Completed:	19/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

	vel	(Log	/mbol	Type			Samples		
Method	Water Le	Depth (rr	RL (m)	Graphic	is sosn	Material	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
A		_			Г	=	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH105_0.0-0.1 QS105, QS106	Glass, ash.
T		_			Г	E			0.0	BH105_0.3-0.4	
		0.40		~~~~			Terminated at 0.40 m Target depth.		-		
		_									
		_									
		-									
р		1									
nad.com.a		_									
www.reun		-									
e white at		_									
m by lauri		_									
AM - drav		_									
11:35:12		_									
T 6/22/23		_									
CC.GD		2									
GPJ.	Abar	ndonn	nent	Metho	d:Ba	ckfill	with soil and compact.				
-76 GOULBURN	Addi	tional	Com	iments	s: No	odo	ur or staining.				

20025	
CCLOG2023	R

Г

T T 1 Т

Т

Contact: Jaurie white@reumad.com.au Checked By: Zac Jaughlan Date: 22/06/2023	Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023	
	Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023	

Project Name:	Supplementary D	etailed Site Investigation	Hole ID.	BH106	
Location / Site:	Goulburn Roundh	ouse, 12 Braidwood Rd, Goulburn NSV	N	Project Number:	20025.76
Client:	Australian Rail Tr	ack Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	20/04/2023	Ground Level (mAHD):			
Date Completed:	20/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			bo	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic L	USCS Syi	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
4		-			F	_	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH106_0.0-0.1	Glass, metal.
Ĥ		_			F	Ē	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH106_0.3-0.4	Ash.
		0.40					Terminated at 0.40 m Target depth.				
		_									
		_									
-		1									
mad.com.a		_									
www.ren		_									
white at		_									
by laurie		_									
1 - drawn		_									
:35:13 AN		-									
22/23 11		_									
CC.GDT 6/		2									

Abandonment Method:Backfill with soil and compact.

BURN.(
6 GOUL	
0025_7	
COG2023 2	ſ
ö	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

	Project Name:	Supplementary De	tailed Site Investigation		Hole ID.	BH107
	Location / Site:	Goulburn Roundho	ouse, 12 Braidwood Rd, Goulburn NSV	1	Project Number:	20025.76
	Client:	Australian Rail Tra	ck Corporation		Hole Depth:	0.40 m
	Contractor:	N/A				
_	Method:	Hand Auger				
	Date Started:	20/04/2023	Ground Level (mAHD):			
	Date Completed:	20/04/2023	Easting: Northing			NDA
	Sheet:	1 of 1	Zone:		CO	nsulting

	vel	(Log	/mbol	Type			Samples		
Method	Water Le	Depth (m	RL (m)	Graphic I	USCS S	Material ⁻	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Gravel				
		_			F		FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH107_0.0-0.1	Glass, metal.
HA		0.20			F	Fill	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist			Ash.
		0.40		\otimes					0.0	BH107_0.3-0.4	
au							Terminated at 0.40 m Target depth.				
eumad.com.		_									
hite at www.r		_									
ı by laurie w		_									
5 AM - drawr		_									
/23 11:35:1(_									
C.GDT 6/22		2									
о́ —	Ahar	ndonn	nent	Metho	d Ra	ckfill	with soil and compact				
0025_76 GOULBURN.G	Addi	tional	Com	iments	: No	odo	ur or staining.				
LOG2023 2	R	EU	-	A		Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Logge Checke	ed By: ed By:	Zac Laughlan Zac Laughlan	Date: 20/04/2023 Date: 22/06/2023

•	R	-

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation		Hole ID.	BH108
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	v	Project Number:	20025.76
Client:	Australian Rail Track	Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	20/04/2023	Ground Level (mAHD):		$C = \frac{1}{\sqrt{3}}$	
Date Completed:	20/04/2023	Easting: Northing			NDA
Sheet:	1 of 1	Zone:		COI	nsulting

	e			bo [.]		bo:	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments		
							Surface: Gravel						
T		-			F	_	FILL - Sandy Gravel, light brown / grey, loose, sub-angular gravel, fine to medium grained sand.	dry	0.0	BH108_0.0-0.1			
Ĥ		_			F	Ξ	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH108_0.3-0.4	Ash.		
		0.40		\propto			Terminated at 0.40 m Target depth.						
		_											
		_											
		- 1											
.com.au		-											
w.reumac		_											
ite at ww		_											
aurie wh		_											
Irawn by I													
6 AM - d		_											
11:35:1		_											
T 6/22/20		_											
CC.GD		2											

Abandonment Method: Backfill with soil and compact.

<u></u>	
CC.GDT 6/22/23	
76 GOULBURN.GPJ	
20025	
CCLOG2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation		Hole ID.	BH109
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	N	Project Number:	20025.76
Client:	Australian Rail Track	Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	20/04/2023	Ground Level (mAHD):		$(\Delta)/\lambda/\lambda$	
Date Completed:	20/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

Material Description PID point (m)	
	ations / Comments
Surface: Gravel	
FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, rootlets. dry 0.0 BH109_0.0-0.1 QS111, QS112	
0.40 F FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand. moist 0.0 BH109_0.3-0.4 Slag, coal fragm	nents, ash.
Terminated at 0.40 m Target depth.	
8/25/33	

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

_	
Ę,	_/
JRN	ļ
JLBL	
50	
76 (
25_	
200	
023	1
0G2	U
СС	
S	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Detail	ed Site Investigation		Hole ID.	BH110
Location / Site:	Goulburn Roundhous	e, 12 Braidwood Rd, Goulburn NSV	v	Project Number:	20025.76
Client:	Australian Rail Track	Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	20/04/2023	Ground Level (mAHD):			
Date Completed:	20/04/2023	Easting: Northing:			NBA
Sheet:	1 of 1	Zone:		COI	nsulting

Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Moisture	PID	Samples ID No.	Observations / Comments
	-						Surface: Gravel				
AA		_			F	Eill	FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, with sub-angular gravel.	moist	0.0	BH110_0.0-0.1	Metal, brick.
		_ 0.40							0.0	BH110_0.3-0.4	
		_					Terminated at 0.40 m Target depth.				
		_									
		_									
		_									
d.com.au											
ww.reuma		_									
e white at v		_									
vn by lauri		_									
) AM - drav		_									
3 11:35:19		_									
3DT 6/22/2		_									
- CC.C		2					- 10 1				
025_76 GOULBURN.GF	Abaı Addi	tional	Com	Metho	d:Ba s: No	odo	with soil and compact. ur or staining.				
-0G2023 20	R	U	M	A-I)	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Logge Checke	ed By: ed By:	Zac Laughlan Zac Laughlan	Date: 20/04/2023 Date: 22/06/2023
CCI	Cavvanba Consulting Pty Ltd 4/82 Centennial Circuit (PO Box 2191), Byron Bay, NSW 2481 Tel.02 6685 7811 www.cavvanba.com										

4	
	R
)	
í	
Ś	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation		Hole ID.	BH111
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	N	Project Number:	20025.76
Client:	Australian Rail Track	Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand Auger				
Date Started:	20/04/2023	Ground Level (mAHD):		$(\Lambda)/\lambda/\Lambda$	
Date Completed:	20/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			bo	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic L	USCS Syi	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
				\otimes			FILL - Sandy Clay, dark brown, soft, low plasticity, fine to medium grained sand, rootlets.	slightly moist	0.0	BH111_0.0-0.1	
					F	II.					
		0.30				ш					
		0.40			F		FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	BH111_0.3-0.4	Ash, metal, brick.
							Terminated at 0.40 m Target depth.				
-		1									
d.com.a		_									
reumac		_									
at www		_									
ie white		_									
by laur											
- drawn		_									
:20 AM		_									
3 11:35											
6/22/2:											
CC.GDT		2									

Abandonment Method: Backfill with soil and compact.

_	
ę	Ā
JRN.	A
ГВ	
200	
76 (
25_	
200	
023	1
062	U
G	
0	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Monitoring Well Log

Project Name:	Supplementary Detailed Site Inv	estigation		Hole ID.	MW101
Location / Site:	Goulburn Roundhouse, 12 Braid	wood Rd, Goulburn NS	N	Project Number:	20025.76
Client:	Australian Rail Track Corporatio	n		Hole Depth:	8.00 m
Contractor:	BG Drilling Pty Ltd				
Method:	Hand Auger, Solid Flight Auger	Rig Type: Christie Rig	27		
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting:			NBA
Sheet:	1 of 1	Zone:		со	nsulting

	vel			bo-	/mbol	Type				Samples		ails	struction
;	Water Le	Depth (m	RL (m)	Graphic I	uscs sy	Material ⁻	Material Description	Moisture	PID ppm	ID No.	Observations / Comments	Well Deta	Well Con
							Surface: Grass						
	HA	- 70			F	Fill	FILL - Sandy Clay, brown, soft, low plasticity, fine to medium grained sand, some sub-angular gravel, rootlets.	moist	0.0	MW 101_0.0-0.1 MW 101_0.5-0.6	Concrete pieces.		Gat.
		0.90			F		FILL - Sandy Gravel, dark brown / grey, loose,	moist	0.0	 MW101_0.8-0.9	Metal, ash.		out
							Silty CLAY - dark brown, soft, low plasticity, homogeneous.	moist			1.60		Ō
		2					Clay becoming hard at 2.5m.		0.0	MW 101_2.5-2.6	2.60		T Bent.
		3			CL						3.10		
om.au	SFA	4				tural							
/w.reumad.co		5.00				Nat	Sandy CLAY - light brown, mottled grey, stiff,	moist	0.0	MW 101_5.0-5.1			Sand
aurie wnite at w		6			CL		medium plasticity, fine to medium grained sand, homogenous.						en
m by 18													Scre
: Aivi - drav	¥-	7.00						wet					
77:92:11 27:77		8.00			CL		Silty CLAY - light brown, stiff, medium plasticity, fine to medium grained sand, with fine sub-rounded gravel.	sat'd	0.0	VIV 101_7.0-7.1	7.60		
105.		0.00					Terminated at 8.00 m Target depth.						
3-			•		•				•				

Abandonment Method: Install monitoring well.

Additional Comments: No odour or staining. Well developed by bailer 21/04/2023. Encountered Groundwater Level (m BGL) / 6.500

Stabilised Groundwater Level (m BGL)

Cavvanba Consulting Pty Ltd | 4/82 Centennial Circuit (PO Box 2191), Byron Bay, NSW 2481 | Tel.02 6685 7811 | www.cavvanba.com

CCLOG2023 20025_76 GOULBURN.GPJ

ł

2

2

Monitoring Well Log

Project Name:	Supplementary Detailed Site Inv	restigation		Hole ID.	MW102
Location / Site:	Goulburn Roundhouse, 12 Braid	lwood Rd, Goulburn NSV	N	Project Number:	20025.76
Client:	Australian Rail Track Corporation	on		Hole Depth:	8.00 m
Contractor:	BG Drilling Pty Ltd				
Method:	Hand Auger, Solid Flight Auger	Rig Type: Christie Rig	27		
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Moisture	PID ppm	Samples ID No.	 Observations / Comments	Well Details	Well Construction
HA		0.20			F	Fill	Surface: Grass FILL - Sandy Gravel, light brown, loose, sub-angular gravel, fine to medium grained sand, rootlets. FILL - Sandy Clay, dark brown, soft, low plasticity,	dry moist	0.0	MW102_0.0-0.1 MW102_0.5-0.6	0.30		Gat.
	-						gravel. Silty CLAY - light brown, mottled grey, stiff, medium plasticity, homogeneous.	moist	0.0	MW 102_1.2-1.3			Grout
		2							0.0	MW 102_2.0-2.1	2.00		<mark>↑</mark> Arease ent.
		3							0.0	MW102_3.0-3.1	3.00 3.50		й
d.com.au SFA		4			CL	Natural			0.0	MW 102_4.0-4.1			Sand
nite at www.reumao		5							0.0	MW 102_5.0-5.1			
· drawn by laurie wl		6							0.0	MW 102_6.0-6.1			Screen
2/23 11:35:26 AM	¥	7.00			CL	-	CLAY - light brown, soft, homogeneous.	sat'd	0.0	MW 102_7.0-7.1			
3DT 6/2		8.00					Terminated at 8.00 m					∷ <u>⊟</u> :	<u>.</u>
	l Abar Addit	l ndonr tional	nent Con	I Metho	l d:Ins s: No We	stall i o odc ell de	monitoring well. bur or staining. No anthropogenic material. eveloped by bailer 21/04/2023.	<u> </u>	<u> </u>	E	I Encountered Groundwater Level (m BGL) Stabilised Groundwater Level (m BGL)		 7.000
CCLOG2023 2002	R	U	Cav	M vanb) a Co	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au Iting Pty Ltd 4/82 Centennial Circuit (PO Box 2191),	Logge Checke Byron Ba	ed By: ed By: ay, NSV	Zac Laughlan Zac Laughlan V 2481 Tel.02 6	Date: 19/04/2023 Date: 22/06/2023 5685 7811 www.cavvanba.com		

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Monitoring Well Log

Project Name:	Supplementary Detailed Site Inv	restigation		Hole ID.	MW103
Location / Site:	Goulburn Roundhouse, 12 Braid	lwood Rd, Goulburn NS	W	Project Number:	20025.76
Client:	Australian Rail Track Corporation	on		Hole Depth:	8.00 m
Contractor:	BG Drilling Pty Ltd				
Method:	Hand Auger, Solid Flight Auger	Rig Type: Christie Rig	27		
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			NBA
Sheet:	1 of 1	Zone:		со	nsulting
					c

ate: 19/04/2023 ate: 22/06/2023		
water Level (m BGL) water Level (m BGL)	∑ ▼	6.500
		Ň
		creen
		Sand
3.50		
3.00		Ber
2.00		it.
		Grout
carbon (diesel)		
Stickup = 0.90m		<u>ה</u>
ons / Comments	Well Details	Well Constru
	Stickup = 0.90m carbon (diesel) 200 3.00 3.50	Stickup = 0.90m carbon (diesel)

<u> </u>						
	Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023
	Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023

Project Name:	Supplementary Det	ailed Site Investigation		Hole ID.	TP101
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	k Corporation		Hole Depth:	0.50 m
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):			
Date Completed:	18/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			bc	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
		_			F		FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP101_0.0-0.1	
Hand		0.30				Ē					
					F		FILL - Sandy Gravel, black, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP101_0.3-0.4	Ash.
		0.50		~~~			Terminated at 0.50 m Target depth.				
		_									
		_									
		_									
		-									
com.au											
eumad.o		_									
www.re		_									
white at		-									
/ laurie		_									
Irawn by		_									
1 AM - c		-									
11:35:3		_									
22/23		-									
GDT 6/		-									
ĞС	-	2									

Abandonment Method: Backfill with soil and compact.

11:35	
6/22/23	
CC.GDT	
6 GOULBURN.GPJ	/ /
20025_7	
CCL0G2023	6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Det	Hole ID.	TP102		
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	k Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):			
Date Completed:	18/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			g	lodn	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
pu		-			F	Fill	FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP102_0.0-0.1	Metal pins.
На					CL	Natural	CLAY - light brown, soft, low plasticity, homogeneous.	moist	0.0	TP102_0.3-0.4	
							Terminated at 0.40 m Target depth.				
		_									
		_									
		_									
om.au		_1									
reumad.cc		_									
te at www.		_									
laurie wh		_									
- drawn by											
35:33 AM		_									
22/23 11:		_									
		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

CC.GDT	
GPJ	Abai
25_76 GOULBURN	Addi
200	
CCLOG2023	R

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	Hole ID.	TP103		
Location / Site:	Goulburn Roundhou	Project Number:	20025.76		
Client:	Australian Rail Track	Hole Depth:	0.40 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):		$(\Delta)/\lambda/\lambda$	
Date Completed:	18/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

vertup vertup <th></th> <th><u></u></th> <th></th> <th></th> <th>ĝ</th> <th>lodn</th> <th>/pe</th> <th></th> <th></th> <th></th> <th>Samples</th> <th></th>		<u></u>			ĝ	lodn	/pe				Samples	
Verture Image: Second Sec	Method	Water Leve	Depth (m)	RL (m)	Graphic Lc	USCS Syn	Material T ₃	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
P - - F E F E F E F E F E F E Sindy Clavel, fark brown / black, loose, sub-angluar gravel, fine to medium grained sand, rootests. moist 0.0 TP103_0.0-0.1 Tile, metal, pins. -								Surface: Grass				
Protocol Proto	pu		0.20			F	Fill	FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP103_0.0-0.1	Tile, metal, pins.
Image: Normal Sector	Ha					CL	Natural	Sandy CLAY - light brown, soft, low plasticity, fine to medium grained sand, homogeneous.	moist	0.0	TP103_0.3-0.4	
1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for Mile State 1.35:35 3M · Gravm for								Terminated at 0.40 m Target depth.				
1133:33:33 AM - drawn by laurie with at www.reunnad.com 1133:33:33 AM - drawn by laurie with at www.reunnad.com 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at www.reunnad.com 1 1135:31 AM - drawn by laurie with at wwww.reunnad.com 1			_									
1133336 AM - drawn by lattice white at www.reunad.com.au 113336 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at www.reunad.com.au 113337 AM - drawn by lattice white at white at white at white at white at www.reunad.com.au 113337 AM - drawn by lattice white at white												
11:36:35 AM - drawn by laurie with at www.reunad.com au 11:36:35 AM - drawn by laurie with at www.reunad.com au 11:36:36 AM - drawn by laurie with at www.reunad.co			_									
11:36:36 AM - drawn by faurie white at www.reunad.com 14:36:36 AM - drawn by faurie white at www.reunad.com 14:4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	n.au		1									
11.13.35.35 AM - drawn by later at the second secon	umad.coi		_									
11:35:35 AM - 4Tawn by laurie while a start of the start	at www.re		_									
11:35:35 AM - diameter diamete	ie white a		_									
11:35:35 AM - drav	vn by laur		_									
11:35:35 ²	AM - drav		_									
	11:35:35 /		_									
	6/22/23											
	CC.GDT		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

Ð.	
BURN-	,
GOUL	
76	
20025	
JG2023	-
CCLO	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary D	Hole ID.	TP104		
Location / Site:	Goulburn Round	Project Number:	20025.76		
Client:	Australian Rail Tr	Hole Depth:	0.40 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):		$(\Lambda)/\lambda/\Lambda$	
Date Completed:	18/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	<u> </u>			b	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
p		_			F	Fill	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP104_0.0-0.1	Metal pins.
Har		0.20			F		FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP104_0.2-0.3	
		0.40			CL	Nat.	Sandy CLAY - light brown, soft, low plasticity, fine to medium grained sand, homogeneous.	moist	0.0	TP104_0.3-0.4	
							Terminated at 0.40 m Target depth.				
		_									
		_									
		_									
		_									
au		1									
lad.com		_									
ww.reum		_									
ite at w		_									
aurie wh		_									
awn by l											
AM - dra		_									
1:35:37 .		-									
22/23 1		-									
GDT 6/2		-									
ġĽ		2									

Abandonment Method: Backfill with soil and compact.

Ę,	
JRN	A
JLBL	
50L	
76.0	
25	
200	
023	£
G20	U
CLO	
ŭ	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	Hole ID. TP1			
Location / Site:	Goulburn Roundhou	Project Number:	20025.76		
Client:	Australian Rail Trac	Hole Depth:	0.60 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):		$(\Lambda) / \lambda / \Lambda$	
Date Completed:	18/04/2023	Easting: Northing			NDA
Sheet:	1 of 1	Zone:		СО	nsulting

	e			b	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
					F	Fill	FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP105_0.0-0.1	
Hand		0.30			F	-	FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP105_0.3-0.4	Ash.
		0.60			CL	Nat.	Sandy CLAY - light brown, mottled grey, soft, low plasticity, fine to medium grained sand, bomoreneous	moist			
0T 6/22/23 11:35:38 AM - drawn by laurie white at www.reumad.com.au							Terminated at 0.60 m Target depth.				
C.GDT 6/22/23		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

_	
ę	Ā
IRN.	A
Б	
DO SOU	
76.0	
25	
200	
23	F
G20	U
2	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

CCI

Project Name:	Supplementary Det	Hole ID.	TP106		
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	k Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):			
Date Completed:	18/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

	<u>_</u>			b	lodn	/pe				Samples	
Method	Water Leve	Depth (m)	RL (m)	Graphic Lo	uscs syn	Material T ₃	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
Hand		_ 0.30			F	Fill	FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP106_0.0-0.1	
		0.40			F		FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP106_0.3-0.4	Ash.
CC.GDT 6/22/23 11:35:40 AM - drawn by laurie white at www.reumad.com.au							Terminated at 0.40 m Target depth.				

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

_	
Ъ,	Ab
6 GOULBURN	Ad
20025_7	
CCL0G2023	R

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Det	Hole ID. TP			
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	k Corporation		Hole Depth:	0.50 m
Contractor:	N/A				
 Method:	Hand				
Date Started:	18/04/2023	Ground Level (mAHD):			
Date Completed:	18/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		СО	nsulting

	e			bc	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
Hand		- 0.30			F	Fill	FILL - Sandy Gravel, dark brown / black, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP107_0.0-0.1	Metal.
		0.50			CL	Natural	Sandy CLAY - light brown / dark brown, soft, low plasticity, fine to medium grained sand, homogeneous.	moist	0.0	TP107_0.3-0.4	
		0.00					Terminated at 0.50 m Target depth.				
		_									
		_									
		_									
		- 1									
com.au											
eumad.		_									
it www.r		_									
white a		_									
y laurie		_									
drawn b											
-2 AM -		_									
11:35:4		-									
8/22/23		-									
C.GDT 6		2									

Abandonment Method: Backfill with soil and compact.

CC.GI	
JRN.GPJ	
GOULBL	
25_76	
200	
CCL0G2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	18/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	Hole ID.	TP108		
Location / Site:	Goulburn Roundhou	Project Number:	20025.76		
Client:	Australian Rail Trac	k Corporation		Hole Depth:	0.50 m
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing			NDA
Sheet:	1 of 1	Zone:		CO	nsulting

				g	lodn	/pe				Samples	
Method	Water Leve	Depth (m)	RL (m)	Graphic Lo	USCS Syn	Material Ty	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
Hand					F	Fill	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP108_0.0-0.1	Glass, coal fragments.
		- 0.50			CL	Nat.	Sandy CLAY - light brown, soft, low plasticity, fine to medium grained sand, homogeneous.	moist	0.0	TP108_0.3-0.4	
		0.00					Terminated at 0.50 m Target depth.				
		_									
		_									
		_									
		_									
om.au											
eumad.c		_									
WWW.F6		_									
white at		_									
, laurie		_									
rawn by											
HAM - d		-									
1:35:44											
22/23 1		-									
3DT 6/		-									
يز	1	2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

CC.GD	
GOULBURN.GPJ	
25_76	
200	
LOG2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

CC

Project Name:	Supplementary De	tailed Site Investigation	Hole ID.	TP109	
Location / Site:	Goulburn Roundho	ouse, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Tra	ck Corporation		Hole Depth:	0.60 m
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	Level		Ê	: Log	Symbol	I Type	Material Description	ð	Samples		Observations / Commonts
Method	Water L	Depth (RL (m)	Graphic	NSCS	Materia		Moistur	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
		_					FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP109_0.0-0.1	ACM, metal pins, brick, glass.
		-			F						
Hand		_				Ξ					
		_									
		0.50 0.60			F		FILL - Sandy Gravel, dark brown / white, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP109_0.5-0.6	Ash.
		_					Terminated at 0.60 m Target depth.				
		_									
		_									
.au		1									
ad.com		_									
ww.reun		_									
nite at w		_									
aurie wł		_									
awn by I											
AM - dr		_									
11:35:45		_									
122/23		_									
CGDT 6		2									
JPJ CC	Ahar	ndonn	nent	Metho	d:Ba	ckfill	with soil and compact.				
oulburn.(Additional Comments: No odour or staining. 13g ACM x 1 piece.										
25_76 G											
23 200	5. F r	. 0 .	N 4		6	Lo	g Drawn By: Laurie White	Logge	ed By:	Zac Laughlan	Date: 19/04/2023
10G20		Y		hl			Contact: laurie.white@reumad.com.au	Checke	ed By:	Zac Laughlan	Date: 22/06/2023

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023
Project Name:	Supplementary Deta	Hole ID.	TP110		
------------------	-----------------------	-----------------------	----------	-------------	----------
Location / Site:	Goulburn Roundhou	Project Number:	20025.76		
Client:	Australian Rail Track	Corporation		Hole Depth:	0.40 m
Contractor:	N/A				<u> </u>
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			NBA
Sheet:	1 of 1	Zone:		СО	nsulting

	<u>–</u>			b	lodn	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
pu		0.20			F	=	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP110_0.0-0.1	Metal fragments.
Ha		0.40			F	E	FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP110_0.3-0.4	
ie white at www.reumad.com.au							Terminated at 0.40 m Target depth.				
3PJ CC.GDT 6/22/23 11:35:47 AM - drawn by lauri	Abar		nent	Metho	d:Ba	ckfill	with soil and compact.				
25_76 GOULBURN.G	Adandonment wethod: Backfull with Soll and compact. Additional Comments: No odour or staining.										

2002	
CCL0G2023	R

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary De	Hole ID.	TP111		
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Tra	ck Corporation		Hole Depth:	0.40 m
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):		$\int \Delta V / V / \Delta$	
Date Completed:	19/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			b	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
pu		-			F	_	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP111_0.0-0.1	Glass.
Hai		_			F	Ξ	FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP111_0.3-0.4	
		0.40		~~~			Terminated at 0.40 m Target depth.				
		_									
		_									
		-									
		- 1									
l.com.au											
w.reumad		_									
ite at ww		_									
laurie wh		-									
Irawn by											
48 AM - c		_									
3 11:35:4		_									
T 6/22/2.		_									
CC.GD		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

Ъ	/
JRN.	
JLBI	
GOL	
76	
20025	
G2023	6
CCLC	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Det	Hole ID.	TP112		
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	Hole Depth:	0.40 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):		$(\Delta)/)/A$	
Date Completed:	19/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		СО	nsulting

	e			bc	lodn	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
pu		0.20			F	_	FILL - Sandy Gravel, dark brown / light grey, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP112_0.0-0.1	Glass, plastic fragments, ash.
На		_			F	Ē	FILL - Sandy Gravel, dark grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP112_0.3-0.4	Ash.
		0.40		~~~			Terminated at 0.40 m Target depth.				
		_									
		_									
		-									
au		1									
ad.com.		_									
w.reum		_									
e at ww		_									
rie whit		_									
ı by lau		_									
- drawr		_									
:50 AM											
11:35											
6/22/23											
C.GDT		2									
	Abor	ndonn	nont	Motha	d.Po		with soil and compact				
	Addi	itional	Com	iments	: No	odo	ur or staining.				

00	
5_76	
2002	
CCL0G2023	ſ

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Supplementary Deta	ailed Site Investigation	Hole ID.	TP113	
Goulburn Roundhou	use, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Australian Rail Trac	k Corporation	Hole Depth:	0.60 m	
N/A				
Hand				
19/04/2023	Ground Level (mAHD):			
19/04/2023	Easting: Northing			NBA
1 of 1	Zone:		CO	nsulting
	Supplementary Deta Goulburn Roundhou Australian Rail Trac N/A Hand 19/04/2023 19/04/2023 1 of 1	Supplementary Detailed Site Investigation Goulburn Roundhouse, 12 Braidwood Rd, Goulburn NSW Australian Rail Track Corporation N/A Hand 19/04/2023 Ground Level (mAHD): Easting: Northing: 1 of 1 Zone:	Supplementary Detailed Site Investigation Goulburn Roundhouse, 12 Braidwood Rd, Goulburn NSW Australian Rail Track Corporation N/A Hand 19/04/2023 Ground Level (mAHD): Easting: Northing: 1 of 1 Zone:	Supplementary Detailed Site Investigation Hole ID. Goulburn Roundhouse, 12 Braidwood Rd, Goulburn NSW Project Number: Australian Rail Track Corporation Hole Depth: N/A Hand 19/04/2023 Ground Level (mAHD): 19/04/2023 Easting: Northing: CAVVA 1 of 1 Zone:

	vel	_		-og	'mbol	Гуре				Samples	
Method	Water Le	Depth (m	RL (m)	Graphic I	uscs sy	Material ⁷	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
					F		FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP113_0.0-0.1	
Hand		_				Eil	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist			
		_			F				0.0	TP113_0.4-0.5	ACM present 0.4-0.5m. Ash from 0.4m.
		0.60		×××			Terminated at 0.60 m Target depth.				
		_									
.com.au		_1									
ww.reumad		_									
irie white at v		_									
drawn by lau											
:35:52 AM -		_									
T 6/22/23 1		_									
CC.GD		2									
25_76 GOULBURN.GPJ	Abandonment Method:Backfill with soil and compact. Additional Comments: No odour or staining. Multiple ACM fragments identified (< 10) to be intermixed with ash fill material from 0.4 m to 0.5 m.										
CLOG2023 200	20	U	Cav	Vanba		Log	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Logg Check	ed By: ed By:	Zac Laughlan Zac Laughlan (2481 Tel.02.66	Date: 19/04/2023 Date: 22/06/2023 85 7811 www.cavvanba.com

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	ailed Site Investigation	Hole ID.	TP114	
Location / Site:	Goulburn Roundhou	use, 12 Braidwood Rd, Goulburn NSV	v	Project Number:	20025.76
Client:	Australian Rail Trac	k Corporation	Hole Depth:	0.50 m	
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing			NDA
Sheet:	1 of 1	Zone:		CO	nsulting

	<u>_</u>			b	lodn	/pe				Samples	
Method	Water Leve	Depth (m)	RL (m)	Graphic Lo	uscs syn	Material Ty	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
		_			F		FILL - Sandy Sand, light brown, loose, fine to medium grained sand.	dry	0.0	TP114_0.0-0.1	Timber, ballast, glass.
Hand		0.30			Г	Fill					
		_			F		FILL - Sandy Gravelly Clay, dark brown, soft, sub-angular gravel, fine to medium grained sand.	slightly moist	0.0	TP114_0.3-0.4	
		0.50		$\sim \sim \sim$			Terminated at 0.50 m		-		
		-									
		-									
		-									
		-									
om.au		_1									
umad.co		-									
www.rei		-									
/hite at		-									
laurie v		-									
awn by		-									
AM - dr		-									
1:35:53		$\left - \right $									
2/23 11		$\left - \right $									
IDT 6/2		$\left - \right $									
о. С		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

ö	
025_76 GOULBURN.GPJ	
20	
CCL0G2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Det	ailed Site Investigation	Hole ID.	TP115	
Location / Site:	Goulburn Roundho	use, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Trac	k Corporation	Hole Depth:	0.50 m	
Contractor:	N/A				
Method:	Hand				
Date Started:	19/04/2023	Ground Level (mAHD):			
Date Completed:	19/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		CO	nsulting

				g	lodn	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
					F		FILL - Sandy Gravel, brown / dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	moist	0.0	TP115_0.0-0.1	
Hand		_				Ē	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand.	moist			Ash.
		-			F				0.0	TP115_0.3-0.4	
		0.50					Terminated at 0.50 m Target depth.				
		_									
		_									
		_									
		-									
com.au											
eumad.o		_									
t www.re		_									
white at		_									
y laurie		_									
drawn b		_									
5 AM - (-									
11:35:5		-									
\$122/23		-									
GDT 6		2									
8	-										

Abandonment Method: Backfill with soil and compact.

ö	
0	
Ъ	
RN	
BU	
INO	
Ū	
2	
025	
ñ	-
2023	4
00	-
ö	
U	

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	19/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Deta	iled Site Investigation	Hole ID.	TP116	
Location / Site:	Goulburn Roundhou	se, 12 Braidwood Rd, Goulburn NSV	Project Number:	20025.76	
Client:	Australian Rail Track	Corporation	Hole Depth:	0.40 m	
Contractor:	N/A				
Method:	Hand				
Date Started:	20/04/2023	Ground Level (mAHD):		$(\Delta)/)/A$	
Date Completed:	20/04/2023	Easting: Northing:			NDA
Sheet:	1 of 1	Zone:		со	nsulting

	<u></u>			b	lodi	/pe				Samples	
Method	Water Leve	Depth (m)	RL (m)	Graphic Lo	USCS Syn	Material Ty	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
p		-			F	_	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand, rootlets.	dry	0.0	TP116_0.0-0.1	
Har		_		F	Ē	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist	0.0	TP116_0.3-0.4	Ash.	
		0.40		~~~			Terminated at 0.40 m Target depth.				
		_									
		_									
		_									
		_									
m.au											
umad.cc		_									
t www.re		-									
e white a											
by laurie											
- drawn		_									
5:56 AM		_									
23 11:3		_									
DT 6/22/		-									
CC.GI		2									

Abandonment Method: Backfill with soil and compact.

CC.GDT	
GPJ	A
GOULBURN	А
76	
20025	
CCL0G2023	ſ

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary De	tailed Site Investigation	Hole ID. TP1		
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Tra	Hole Depth:	0.40 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	20/04/2023	Ground Level (mAHD):		(- A)/)/A	
Date Completed:	20/04/2023	Easting: Northing:			INDA
Sheet:	1 of 1	Zone:		со	nsulting

				b	lodn	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
pu		- 0.20			F	=	FILL - Sandy Gravel, dark brown, loose, sub-angular gravel, fine to medium grained sand.	slightly moist 0.0		TP117_0.0-0.1 QS109, QS110	Slag.
Ha		- 0.40	F		Ē	FILL - Sandy Gravelly Clay, dark brown, mottled orange, soft, low plasticity, sub-angular gravel, fine to medium grained sand.		0.0	TP117_0.3-0.4	Ash.	
				~~~			<b>Terminated at 0.40 m</b> Target depth.				
		_									
		_									
		_									
n.au		_1									
umad.cor		_									
at www.re		_									
rie white a		_									
wn by lau			_								
AM - dra		_									
11:35:58		_									
6/22/23											
CC.GDT		2									

Abandonment Method: Backfill with soil and compact.

CC.GD	
76 GOULBURN.GPJ	4 4
20025	
CCL0G2023	-[

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

Project Name:	Supplementary Det	Hole ID. TP11			
Location / Site:	Goulburn Roundho	Project Number:	20025.76		
Client:	Australian Rail Trac	Hole Depth:	0.50 m		
Contractor:	N/A				
Method:	Hand				
Date Started:	20/04/2023	Ground Level (mAHD):		$(\Lambda)/\lambda/\Lambda$	
Date Completed:	20/04/2023	Easting: Northing			INDA
Sheet:	1 of 1	Zone:		со	nsulting

	e			bc	nbol	ype				Samples	
Method	Water Lev	Depth (m)	RL (m)	Graphic Lo	USCS Syr	Material T	Material Description	Moisture	PID ppm	ID No.	Observations / Comments
							Surface: Grass				
		-			F		FILL - Sandy Gravel, light brown, loose, sub-angular gravel, fine to medium grained sand.	slightly moist	0.0	TP118_0.0-0.1	
Hand		_			Fill	FILL - Sandy Gravel, dark brown / grey, loose, sub-angular gravel, fine to medium grained sand.	moist			Ash.	
		_			F				0.0	TP118_0.3-0.4	
				<u>(XXX</u>			Terminated at 0.50 m Target depth.				
		_									
		_									
		_									
com.au		_1									
.reumad.		_									
e at www		_									
aurie whit		_									
rawn by I											
00 AM - d											
3 11:36:(		_									
DT 6/22/2		_									
CC.GL		2									

Abandonment Method: Backfill with soil and compact.

Additional Comments: No odour or staining.

6/22/	
CC.GDT	
I.GPJ	_
GOULBURN	
76	
20025	
LOG2023	-6

Log Drawn By:	Laurie White	Logged By:	Zac Laughlan	Date:	20/04/2023
Contact:	laurie.white@reumad.com.au	Checked By:	Zac Laughlan	Date:	22/06/2023

CC

# Appendix E

# Data Usability Assessment & Background To Data Usability

### **Data Usability Summary Assessment**

A background to data usability is provided in this appendix. All site work was completed in accordance with standard Cavvanba sampling protocols, including a quality assurance/quality control (QA/QC) programme and standard operating procedures.

A data usability assessment was performed for the soil and groundwater data collected by Cavvanba, as summarised in the following tables:

- Table 1.1: Field QC samples summary,
- Table 1.2: Summary of field QA/QC, and
- Table 1.3: Summary of laboratory QA/QC.

This data usability assessment was conducted on laboratory batch number ES2313346, ES2313408, ES2313946 (primary – ALS), 984747-S and 985222-W (inter-laboratory – Eurofins).

	Total samples	Field duplicates ¹	Inter-lab duplicates ¹	Trip spike	Trip blank	Rinsate
Soil						
BTEXN	85	6 (7.06%)	6 (7.06%)	1	1	-
TRH C ₆ – C ₁₀	85	6 (7.06%)	6 (7.06%)	1	1	-
TRH C ₁₀ – C ₄₀	85	6 (7.06%)	6 (7.06%)	-	-	-
Metals ²	85	6 (7.06%)	6 (7.06%)	-	-	3
PAHs	85	6 (7.06%)	6 (7.06%)	-	-	-
Groundwater and Su	rface Water					
BTEXN	17	1 (5.88%)	1 (5.88%)	1	1	-
TRH C ₆ – C ₁₀	17	1 (5.88%)	1 (5.88%)	1	1	-
TRH C ₁₀ – C ₄₀	17	1 (5.88%)	1 (5.88%)	-	-	-
Metals ²	17	1 (5.88%)	1 (5.88%)	-	-	2
PAHs	17	1 (5.88%)	1 (5.88%)	-	-	-
VOCs	17	1 (5.88%)	1 (5.88%)	-	-	-
PFAS	17	1 (5.88%)	1 (5.88%)	-	-	-

#### Table 1.1: Field QC samples summary

Notes:

1. Shows number of duplicate samples collected and the percentage of total samples analysed.

2. Arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury.

- = not applicable, as trip spike/blank analysed for volatile compounds only.

#### Table 1.2: Summary of field QA/QC

Parameter	Complies	Comments ¹	
Precision			
Standard operating procedures Yes (SOPs) appropriate and complied with		Sampling was conducted in accordance with Cavvanba standard field operating procedures. The sampling methods complied with industry standards and guidelines.	

Parameter	Complies	Comments ¹	
Field duplicates	Partial	RPD ² criteria < 30% – 50%, frequency $\ge$ 5%.	
		RPD exceedances were reported for chromium between the primary and intra-laboratory duplicate for soil.	
		The frequency of field duplicates were within the acceptable range with the exception of PFAS for groundwater.	
Inter-laboratory duplicates	Partial	RPD ² criteria < 30% – 50%, frequency $\geq$ 5%.	
		RPD exceedances were reported for chromium and cadmium between the primary and inter- laboratory duplicate in soil.	
		The frequency of inter-laboratory duplicates were within the acceptable range with the exception of PFAS for groundwater.	
Accuracy			
Matrix spikes samples appropriate	Partial	≥ 1/media type.	
Representativeness			
Sample collection - preservation	Yes	All samples were collected directly into laboratory supplied containers with no headspace. All samples were placed immediately into eskies containing ice.	
Sample collection - sample splitting	Yes	Duplicate samples were split in the field by filling each container collectively (i.e. co-collected).	
Field equipment calibrated	Yes	PID and groundwater multi-parameter probe calibration records are included as an appendix to the report.	
Decontamination procedures	Yes	Soil samples were collected either from the centre of the hand auger or directly from the shovel / trowel, ensuring the sampling equipment had been decontaminated between each location and a new pair of disposable gloves worn between sample collection.	
		Groundwater samples were collected using single use disposable equipment. Decontamination of the interface probe and micro-purge pump was conducted between sampling each monitoring well. No other re- usable sampling equipment was used.	
		The field sampler also wore new disposable nitrile gloves during sampling and between sample locations.	
		No Teflon containing, or Teflon coated sample equipment was used during groundwater and surface water sampling.	

Parameter	Complies	Comments ¹	
Rinsate samples	Yes	Required $\geq$ 1/field batch, < LORs.	
		Rinsate samples were collected from the trowel and micro-purge pump per day of sampling and submitted to the laboratory. Analytical results were reported below the laboratory LOR.	
Trip blanks	Yes	$\geq$ 1/field batch (volatiles), < LORs.	
		Trip blanks were collected for all sample batches submitted to the laboratory. Analytical results were reported below the laboratory LOR.	
Trip spikes	Yes	≥ 1/field batch (volatiles), 70 - 130%, (recovery) or ≤ 30 - 50% (RPDs).	
		Trip spike samples were collected/analysed for all sample batches submitted to the laboratory. RPDs for were within acceptable limits.	
Comparability			
Consistent sampling staff	Yes	All field work was completed Mr Zac Laughlan and Mr Cam Campbell of Cavvanba Consulting.	
Consistent weather/field conditions	Yes	No extreme weather events were reported during, before or following the investigation.	
Completeness			
Sample logs and field data	Yes	Standard field sampling sheets were used during the investigation.	
Chain of Custody	Yes	-	

Notes:

For QC samples, specified frequency and acceptance criteria shown.
 RPD = relative percentage difference.

#### Table 1.3: Summary of laboratory QA/QC

Parameter	Complies	Notes ¹
Precision		
Laboratory duplicates	Partial	Laboratory specified RPD range, frequency $\geq$ 10%.
		Laboratory duplicate recoveries were within the laboratory specified global acceptance criteria with the exception of select metals in soils as reported by the primary laboratory.
		The frequency of laboratory duplicates was reported within the acceptable range with the exception of total mercury in soils and PAH/Phenols and semi volatile TRH fractions in water as reported by the primary laboratory.

Parameter	Complies	Notes ¹
Accuracy		
Surrogate spikes	Partial	Organics by GC, RPD criteria of 70% - 130%.
		Surrogate spike recoveries were within the laboratory specified global acceptance criteria with the exception of select phenols and PAHs in soils as reported by the primary laboratory. The frequency of surrogate spikes was within the acceptable range.
Matrix spikes analysis	Partial	RPD criteria of $\geq$ 70% - 130%.
appropriate		Matrix spike recoveries were within the laboratory specified global acceptance criteria with the exception of lead in soils and hexavalent chromium and methane in water as reported by the primary laboratory. The frequency of matrix spike analysis was reported within the acceptable range.
Laboratory control samples (LCSs)	Yes	RPD criteria of 70% - 130%, frequency of $\geq$ 1/lab batch
		Laboratory control sample recoveries were within the laboratory specified global acceptance criteria. The frequency of laboratory control samples was within the acceptable range.
Certified reference material (CRM)	n/a	-
Representativeness		
Sample condition	Yes	-
Holding times	Partial	An analysis holding time exceedance was reported for the trip spike soil sample within laboratory batch ES2313408 (intra-laboratory).
Laboratory blanks	Yes	≥ 1/lab batch, < LORs.
Comparability		
NATA accredited laboratory	Yes	ALS Environmental Pty Ltd is a NATA accredited laboratory (accreditation number 825). The inter- laboratory is also NATA accredited, Eurofins Scientific Pty Ltd (accreditation number 1261).
NEPM methods or similar	Yes	ALS and Eurofins describe their in-house laboratory methods are referenced from NEPC, ASTM and modified USEPA/APHA documents.
Limits of reporting (LORs) consistent and appropriate	Partial	The LOR for PFOS, hexavalent chromium, mercury and select PAHs compared to the adopted species protection level, and LOR for vinyl chloride compared to the drinking water criteria.

Parameter	Complies	Notes ¹	
Completeness			
Sample receipt	Yes	-	
Laboratory Reports	Yes	-	

Notes:

1. For QC samples, acceptance criteria shown. Acceptance criteria can vary based on analyte, statistical data and laboratory specific methods. Laboratory specified relates to detected concentrations based on LORs, e.g. result <  $10 \times LOR =$  no limit,  $10 - 20 \times LOR = 0 - 50\%$ , >  $20 \times LOR = 0 - 20\%$ . See laboratory reports for specific details.

#### Summary and discussion

The following issues were identified with the data:

#### Precision

RPD exceedances were reported for soil between the primary sample and the intra- and inter-laboratory duplicates for cadmium and chromium. These exceedances are likely due to the inherent variability, and the resultant heterogeneity of the fill material sampled across the site. Additionally, the exceedances are associated with concentrations being reported only marginally above the limit of reporting, therefore only minor variations in concentrations result in exaggerated RPDs. These exceedances are not considered to detract from the precision of the dataset, nor affect the conclusions drawn within the report.

There were no RPD exceedances reported for groundwater between the primary sample and the intra- and inter-laboratory samples.

The frequency of the field and inter-laboratory duplicates for PFAS in water were reported slightly outside of the acceptable range of  $\geq 10$  %, in accordance with that stipulated in the PFAS NEMP. There were no anomalies or unexpected PFAS detections identified as part of the investigation. This minor frequency outlier is not considered to represent an actual uncertainty in the dataset, nor affect the conclusions drawn within the report. This is further evidenced by the quality of the data collected for primary COCs.

Laboratory duplicate RPD exceedances were reported for select metals in soils by the primary laboratory. It was reported that the RPD exceeded LOR based limits. These exceedances are not considered to detract from the overall precision of the dataset nor affect decision making.

Laboratory duplicate recovery frequencies were reported to be within the acceptable ranges with the exception of total mercury in soils and PAH/Phenols and semi-volatile TRH factions in water as reported by the primary laboratory. These frequency outliers are not considered to detract from the precision of the dataset.

There were no laboratory duplicate RPD exceedances or outliers reported by the secondary laboratory.

#### Accuracy

Matrix spike recoveries were unable to be determined for lead in soils, where the background level was greater than or equal to four times the spike level. Matrix spike recoveries were also outside of the laboratory specified acceptance criteria for methane and hexavalent chromium in water. The primary laboratory reported that the recovery of

hexavalent chromium was less than the lower data quality objective and the background level for methane was greater than or equal to four times the spike level. However, in all cases an acceptable recovery was obtained for the laboratory control samples indicating sample matrix interference, which is considered by the laboratory to be a more appropriate indicator.

Surrogate spike outliers were reported for select phenols and PAHs in soils, where the recovery was less than the lower data quality objective.

The outliers reported above are not considered to affect the overall accuracy of the data and/or the conclusions drawn within the report.

Matrix spike recovery frequencies were reported to be within the acceptable ranges by both the primary and secondary laboratories.

#### Representativeness

A holding time exceedance was reported for BTEXN within the soil trip spike sample under laboratory batch ES2313408. All trip spike recoveries were reported within the within the specified RPDs. As such, this holding time exceedance is not considered to affect the representativeness of the data collected.

Trip blank results were reported below laboratory detection limits.

Concentrations of all rinsate samples collected during the investigation were reported below laboratory detection limits.

A PFAS trip blank sample was not collected for groundwater during the investigation. A trip blank is used to assess the representativeness of the dataset through bias via cross-contamination during handling and transport. There were no anomalies or unexpected detections identified as part of the investigation, and no indication that the sampling methodology has contributed to cross-contamination. This is further evidenced by the non-detect results in the dataset. The absence of a trip blank sample is not considered to affect the representativeness of the dataset or the conclusions drawn within the report.

There were no rinsate samples specific to PFAS collected as part of the investigation. Cavvanba notes that single use disposable sampling equipment was utilised for each sample location, and all reusable sampling equipment was thoroughly decontaminated by washing the equipment with Neutracon  $^{\odot}$  / potable water solution. This is evidenced by the absence of detectable concentrations of COCs within the rinsate samples collected. The absence of a PFAS-specific rinsate sample is not considered to affect the representativeness of the dataset, nor affect the conclusions drawn within the report.

#### Comparability

The data is considered to be acceptable, with experienced sampling staff used, NATA accredited laboratories used and LORs below the relevant criteria. It is noted that the LOR for PFOS, hexavalent chromium, mercury, select PAHs and vinyl chloride are in excess of the adopted species protection levels / drinking water criteria. The significance of these are discussed within the body of the report.

#### Completeness

Laboratory and field documentation is considered to be complete.

## Background to Data Usability

## **1.0** Introduction

Information generated from environmental investigations requires some statement in regard to the usability of the data¹, and therefore quality assurance (QA) and quality control (QC) are an integral part of the analysis and interpretation of environmental data. QA/QC used in contaminated sites investigations is briefly reviewed in this section.

Quality assurance involves all of the actions, procedures, checks and decisions undertaken to ensure the representativeness and integrity of samples, and accuracy and reliability of analytical results (NEPC as amended 2013). Quality control is the component of QA which monitors and measures the effectiveness of other procedures by the comparison of these measures to previously decided objectives.

There are various components of QA/QC which address the operation of the laboratories and the routine procedures conducted to achieve a minimum level of quality. Examples of QA components include sample control, data transfer, instrument calibration, staff training, etc. Examples of QC components include the measurement of samples to access the quality of reagents and standards, cleanliness of apparatus, accuracy and precision of methods and instruments, etc. Generally, the management of laboratory QA issues is addressed through accreditation by the National Association of Testing Authorities (NATA), or similar, and monitoring of these issues is not addressed on a project by project basis.

On a project specific basis, those involved in collecting, assessing or reviewing the relevant data should ensure the minimum level of QA is conducted. Appropriate numbers and types of QC samples should be collected and analysed, both field QC samples and laboratory QC samples. While minimum levels of QA/QC are specified in some guidelines, e.g. NSW EPA 1994, AS 4482.1-1997, NEPC as amended 2013, the minimum level required may vary between projects, based on site and project specific aspects. This means that the minimum specified requirements may not be sufficient for a particular project. As described in the NEPM (NEPC 1999):

As a general rule, the level of required QC is that which adequately measures the effects of all possible influences upon sample integrity, accuracy and precision, and is capable of predicting their variation with a high degree of confidence.

### 2.0 PARCC parameters

Following receipt of laboratory analytical results, data validation is conducted to determine if the specified acceptance criteria have been met. This is conducted to ensure that all data, and subsequent decisions based on that data, are technically sound. Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters². Field QA/QC and laboratory QC is described below within the PARCC framework.

¹ To avoid confusion with the data quality objectives (DQOs) process, the term data usability is used rather than data quality.

² The PARCC parameters are sometimes referred to as data quality indicators (DQIs).

### 2.1 Precision

#### 2.1.1 Duplicates

Precision is a measure of the reproducibility of results under a given set of conditions and is assessed on the basis of agreement between a set of duplicate results obtained from duplicate analyses. The precision of a duplicate determination is measured by comparing the difference between the two samples to the average of the two samples, expressed as a relative percentage difference (RPD).

The determination is:

$RPD = (P-D)/(P+D/2) \times 100$	P = primary sample
	D = duplicate sample

Three types of duplicates are commonly used:

- field duplicates are used to measure the precision of the sampling and analytical process;
- inter-laboratory duplicates are used to check on the analytical performance of the primary laboratory; and
- laboratory duplicates are used to measure the precision of the analytical process.

#### 2.1.2 Field Duplicates

Field duplicates (or blind replicates) are collected from the same location and submitted to the laboratory for analyses, as a primary sample. The sample nomenclature is such that the laboratory is not aware which sample is a duplicate. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis. Where results are below the practical quantification limit (PQLs) or limits of reporting (LORs), i.e. non-detects, RPDs cannot be calculated. Where one result is detected, the results are considered to conform when the detected result is less than five times the PQL/LOR.

The PQL/LOR is the lowest concentration of an analyte that can be determined with acceptable precision (repeatability) and accuracy under the test conditions. The PQL/LOR is usually calculated as five times the lower limit of detection (or method detection limit). However, adjustments in PQLs/LORs may be required due to interference from high contaminant concentrations.

As environmental samples can exhibit a high degree of heterogeneity, field duplicates often exceed the acceptance criterion, particularly if the samples are co-collected, for example, because of the potential for losing volatiles during sample splitting. It is generally accepted that before results which fail the acceptance criterion are described as due to low concentrations or sample heterogeneity, the sample should be re-analysed. This may not be necessary when the analytical results are significantly less than the landuse criteria.

#### 2.1.3 Inter-laboratory duplicates

Inter-laboratory duplicates (or split samples) are field duplicates which are sent to a second laboratory and analysed for the same analytes and, as far as possible, by the same methods. These provide a check on the analytical performance of the primary laboratory.

#### 2.1.4 Laboratory Duplicates

Laboratory duplicates (or check samples) are field samples which are split by the laboratory and thereafter treated as separate samples. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis.

USEPA (1994) specifies that for inorganics, if the results for laboratory duplicates fall outside of the recommended control limits for a particular analyte, all results for that analyte, in all associated samples of the same matrix, should be qualified as an estimated quantity. For organics, USEPA (1999) does not specify recommended actions for laboratory duplicates.

#### 2.2 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. Inasmuch as the true sample concentrations are not known, the determination of accuracy is achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Spiking of reference material into the actual sample matrix is the preferred technique because it provides a measure of the matrix effects on the analytical recovery.

Accuracy is measured in terms of percentage recovery as defined by:

	%R = percentage recovery spike SSR = spiked sample result	
%R = ((SSR - SR) / SA) x 100	SR = sample result	
	SA = spike added	

#### 2.2.1 Matrix spikes/matrix spike duplicates

These are samples prepared in the laboratory by dividing a sample into two aliquots and then spiking each with identical concentrations of specific analytes. The matrix spike (MS) and matrix spike duplicate (MSD) are then analysed separately and the results compared to determine the accuracy and precision of the analytes.

#### 2.2.2 Surrogate spikes

Surrogate spikes provide an indication of analytical accuracy. They are used only for analyses which use gas chromatography and are compounds which are similar to the organic analytes of interest in chemical composition, extraction and chromatography, but which are not normally found in field samples. Surrogates are generally spiked into all sample aliquots prior to preparation and analysis. If the surrogate spike recovery does not meet the prescribed acceptance criteria, the samples should be re-analysed.

#### 2.2.3 Laboratory control samples

Laboratory control samples (quality control check samples) are laboratory prepared samples of an appropriate clean matrix (i.e. sand or distilled water) which are spiked with known concentrations of specific analytes. The laboratory control sample (LCS) is then analysed and the results are used to assess sample preparation and analytical accuracy, free of matrix effects. Certified reference material (CRM) is another form of LCS, and involves the analysis of a known standard as part of the laboratory batch, e.g. British Columbia sediment samples for analysis of metals.

### 2.3 Representativeness

Representativeness refers to the degree to which the samples reflect the site specific conditions. It is primarily dependent on the design and implementation of the sampling program, with representativeness of the data being partially ensured by the avoidance of cross-contamination, adherence to sample handling and analytical methods, use of field duplicates, ensuring that samples do not exceed holding times prior to analysis, use of chain-of-custody forms and other appropriate documentation.

There are a number of QC samples which can be collected to assist in the qualification of representativeness, including:

#### 2.3.1 Rinsate blanks

Used to determine if sampling equipment has been adequately decontaminated to ensure that cross-contamination between samples has not occurred. The frequency for rinsate blanks is one per piece of equipment per day (AS 4482.1-1997), however it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigators discretion.

#### PFAS

The frequency for rinsate blanks is at least one for every ten primary samples (PFAS NEMP 2.0).

#### 2.3.2 Trip blanks

Used to determine if transport / couriering / similar has resulted in contamination of the samples. For trip blanks, a sufficient number should be analysed to allow the representativeness of the sampling to be determined. However, it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigator's discretion.

#### PFAS

In accordance with the PFAS NEMP 2.0, trip blanks should be collected to verify the integrity of sampling and decontamination procedures.

#### 2.3.3 Trip spikes

Used only when volatile organics are sampled to attempt to quantify loss of volatiles during the analytical process. For trip spikes, a sufficient number of samples should be analysed to allow qualification of the likely loss of volatiles during the field sampling.

#### 2.3.4 Laboratory blanks

Laboratory blanks (or method blanks, or analysis blanks) are used to verify that contaminants are not introduced into the samples during sample preparation and analysis. The NEPM (NEPC 1999) specifies that laboratory blanks should be conducted at a frequency of "at least one per process batch". The acceptance criterion for laboratory blanks is non-detect at the PQL/LOR.

#### 2.4 Comparability

Comparability is a qualitative parameter designed to express the confidence with which one data set may be compared with another, including established criteria. Comparability is maintained by using consistent methods and ensuring that PQLs/LORs are below the relevant criteria.

### 2.5 Completeness

Quality control sample completeness is defined as the number of QC samples which should have been analysed, compared to the actual number analysed. If the appropriate number of QC samples are not analysed with each matrix or sample batch, then the data reviewer should use professional judgement to determine if the associated sample data should be qualified.

Completeness also refers to the complete and correct inclusion of field/sample documentation and laboratory documentation.

#### 2.5.1 QC sample frequency and criteria

Based on EPA made or approved guidelines, the following QC samples are required for all contaminated site investigations, unless otherwise specified as part of the data quality objectives (DQOs) process review. All data to be used for validation should conform as a minimum to the requirements specified, regardless of minimum sample size.

Quality control sample	Frequency	Results ¹		
Precision				
Field duplicates.	≥ 5%	≤ 30 - 50% ²		
Field duplicates (PFAS).	≥ 10%	≤ 30 - 50% ²		
Inter-laboratory duplicates.	≥ 5%	≤ 30 - 50% ²		
Inter-laboratory duplicates (PFAS).	≥ 10%	≤ 30 - 50% ²		
Laboratory duplicates.	≥ 10%	Lab specified ³		
Accuracy				
Surrogate spikes.	Organics by GC	70 - 130% ⁴		
Matrix spikes (MSs).	≥ 1/media type	70 - 130% ⁵		
Laboratory control samples (LCSs).	≥ 1/lab batch	70 - 130% ⁶		
Certified reference material (CRM).	LCS for metals	Lab specified ⁷		
Representativeness				
Rinsate samples.	≥ 1/field batch	< LOR		
Rinsate samples (PFAS).	≥ 1/field batch or 1/ every ten samples	< LOR		
Trip blanks.	≥ 1/field batch	< LOR		
Trip spikes.	$\geq$ 1/field batch (volatiles)	70 - 130%, ≤ 30 - 50% ⁸		
Laboratory blanks.	≥ 1/lab batch	< LOR		

Notes:

RPDs for laboratory duplicates specified by the laboratory. Based on the magnitude of the results compared to the level of reporting (LOR), e.g. ALS: result < 10 x LOR = no limit, 10 - 20 x LOR = 0-50%, > 20 x LOR = 0-20%. LabMark: < 5 x LOR = 0-100%, 5 - 10 x LOR = 0-75%, > 10 x LOR = 0-50% or 0-30% for metals.

5. MS recoveries specified by laboratory based on global acceptance criteria.

^{1.} Where results are laboratory specified, the laboratory analytical reports should be consulted for specific information.

^{2.} Relative percentage differences (RPDs) for field duplicates from AS 4482.1 (1997).

^{4.} Surrogate recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.

- 6. LCS recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 7. CRM recoveries specified by laboratory based on global acceptance criteria.
- 8. Trip spike results are specified as either recoveries or RPDs.

### 3.0 References

Australian New Zealand Environment and Conservation Council (1996) *Guidelines for the laboratory analysis of contaminated soils*. ANZECC, Canberra, ACT.

Australian Standard AS 4482.1 (2005) *Guide to the sampling and investigation of potentially contaminated soil, Part 1: Non-volatile and Semi-volatile compounds.* Standards Australia, Homebush, NSW.

National Chemicals Working Group of the Heads of EPAs Australia and New Zealand (HEPA) (2020) *PFAS National Environmental Management Plan Version 2.0*.

National Environment Protection Council (NEPC) (1999) *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended April 2013)*. National Environment Protection Council, Canberra.

NSW Environment Protection Authority (1994) *Contaminated Sites: Guidelines for Assessing Service Station Sites.* NSW EPA, Chatswood, NSW.

EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

United States Environmental Protection Agency, Contract Laboratory Program (1994) *National Functional Guidelines for Inorganic Data Review.* USEPA, Washington, DC.

United States Environment Protection Agency, Contract Laboratory Program (1999) *National Functional Guidelines for Organic Data Review.* USEPA, Washington, DC.

# Appendix F

# **Photographic Log**



the site.



**Photograph 4** View northeast from BH104 towards BH109 – BH111 and Braidwood Road.



**Photograph 6** View northwest from SS138 towards the former meal room and the former refuelling gantry.



**Photograph 8** View northeast from TP115 towards the locomotive sand hopper.



An example of test pit, TP105, excavated using hand tools, located in the southeastern portion of the site.





An example of the anthropogenic material intermixed through fill material across the site.



**Photograph 16** View north towards the roundhouse adjacent to SS112. Note the potential ACM on the surface.



An example of the soil profile encountered during the installation of groundwater monitoring well MW102 (increasing in depth from left to right).



**Photograph 19** *View southwest towards the location of groundwater monitoring well MW101.* 



**Photograph 20** View west towards the location of groundwater monitoring well MW102.



**Photograph 22** LNAPL identified within groundwater monitoring well MW06.





Standing water sampled at SW02. Note the slight sheen on the surface of the water
# **Appendix G**

# **Historical Soil and Groundwater Data**

Table 1: Historical Soil Analyti	ical Summary - Heavy Metals (mg/kg)
Table 1. Instorical Son Analyt	car Summary - neavy netals (mg/kg)

			_							
Sample	Depth (m)	Material Encountered	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
	LOR		5	1	2	5	5	2	5	0.1
	LOK		5	1	2	3	3	2	3	0.1
Analytical - Phase 1 Env	vironmental Contan	nination Assessment (C	MPS&F, 199	6)						
SP1A	-	-	3	nd	13	150	160	-	1,200	nd
SP2A	-	-	nd	nd	19	2,600	4,600	-	620	0.68
SP3A	-	-	5.9	nd	40	350	370	-	220	0.056
Analytical Environment	 	1007)	515	110	10	000	575		220	0.000
Analytical - Environmen	ital Investigation (J	&K, 1997)								
BH1	0.1-0.5	Fill	18	nd	11	170	440	11	295	0.085
BH1	2.5-3.0	Natural	nd	nd	18	23	36	13	13	-
BH2	0.1-0.5	Fill	11	nd	7	1,050	2,100	13	210	0.06
BH2	2.5-3.0	Natural	nd	nd	20	18	16	7	10	-
BH2	0.5-0.8	Natural	nd	nd	20	47	60	10	16	_
BUD	0.5-0.8	Natural	nu	nu	23	47	10	10	10	_
BH3	2.5-3.0	Natural	nd	nd	19	23	19	12	7.5	-
BH4	0.0-0.4	Fill	nd	nd	65	<u>470</u>	1,650	55	<u>800</u>	0.14
BH4	2.0-2.3	Natural	nd	nd	28	25	23	9.5	15	-
BH5	0.0-0.5	Fill	125	nd	34	<u>16,500</u>	43,000	60	<u>1,150</u>	0.055
BH5	0.5-1.2	Fill	nd	nd	5	150	330	11	25	0.025
BH6	0.0-0.5	Fill	nd	nd	9.5	31	130	8.5	26	0.015
BH6	1.6-2.1	Fill	nd	nd	12	50	70	12	37	0.03
8110	0.1-0.5	Fill	11	nd	55	90	165	17	36	0.09
	1.5.1.05	Natural		iiu 	22	17	103	1/		0.03
BH7	1.5-1.95	Naturai	na	na	32	17	29	8.5	9	-
BH8	0.2-0.5	Fill	nd	nd	7.5	<u>345</u>	650	11	49	0.05
BH8	2.3-2.7	Natural	18	nd	35	24	40	14	9	-
BH9	0.2-0.6	Fill	nd	nd	8	<u>325</u>	125	11	95	0.04
BH9	1.6-2.1	Natural	nd	nd	26	25	40	8.5	9	-
BH10	0.2-0.5	Fill	15	nd	9	420	700	16	145	0.09
BH10	2.2-2.6	Natural	17	nd	38	39	55	32	14	-
PU11	0.7.1.0	Natural	nd	nd	19	10	20	0 52	10	
BHII	0.7-1.0	Natural	nu	nu	18	19	30	6.5	10	-
BHII	2.5-3.0	Natural	nd	nd	23	27	25	6	9	-
BH12	0.3-0.8	Fill	nd	nd	6	<u>600</u>	43	22	40	0.035
BH12	2.5-3.0	Natural	nd	nd	40	26	35	23	11	-
BH13	0.2-0.5	Fill	nd	nd	6.5	65	55	14	315	0.02
BH13	2.5-3.0	Natural	nd	nd	48	36	50	19	19	-
BH14	0.2-0.4	Fill	50	nd	14	1,500	2.300	23	650	0.05
BH14	2 5-3 0	Natural	nd	nd	55	34	30	24	19	-
DII14	2.5 5.0	Natural	nd	nd	27	175	225	17	70	
BHIS	0.4-0.8	Natural	nu	nu	37	175	233	17	70	-
BH15	2.5-3.0	Natural	nd	nd	21	16	25	9	8	-
BH16	0.3-0.7	Natural	10	nd	28	75	85	15	32	-
BH16	2.5-3.0	Natural	21	nd	38	38	49	20	17	-
BH17	0.3-0.8	Fill	nd	nd	7	385	335	24	160	0.05
BH17	2.5-3.0	Natural	nd	nd	29	31	24	15	7.5	-
BH18	0.2-0.4	Fill	nd	nd	7	285	300	17	405	0.045
BH18	2.5-3.0	Natural	nd	nd	30	38	36	23	9.5	
BH19	0.1-0.5	Fill	29	nd	22	120	250	85	185	0.045
RH10	2 0-2 5	Natural	nd	nd	22	75	Q5	0.5	200	-
	2.0-2.3	r:II	70	nu	2/		110		105	0.02
BHZU	0.1-0.5	FIII	70	na	8 25	00	110	5.5	102	0.03
BH20	2.3-2.5	Natural	nd	nd	35	27	55	24	14	-
BH21	0.1-0.5	Fill	30	nd	10	220	275	11	475	0.025
BH21	2.1-2.5	Natural	nd	nd	23	33	32	4.5	8.5	-
BH22	0.1-0.5	Natural	nd	nd	32	21	11	13	14	-
BH22	2.5-3.0	Natural	nd	nd	25	24	nd	10	8.5	-
BH23	0.2-0.5	Fill	17	nd	19	190	315	20	100	0.07
BH23	2.5-3.0	Natural	nd	nd	20	22	nd	10	15	
BH24	0.2-0.5	Natural	nd	nd	17	30	20	95	13	
DI124	0.2-0.3	Natural	nu z d	iiu 	20	20	17	3.5	11	-
BH24	2.5-3.0	Natural	na	na	29	20	1/	20	11	-
BH25	0.2-0.6	Fill	nd	nd	190	230	500	25	475	0.24
BH25	1.5-2.0	Fill	nd	nd	455	160	215	28	550	0.12
BHW1	0.2-0.4	Natural	nd	nd	32	21	14	9	8	-
BHW1	10.5-11.0	Natural	nd	nd	21	12	14	12	23	-
BHW2	0.5-0.8	Natural	12	nd	40	37	95	32	22	-
BHW2	9.0-9.5	Natural	nd	nd	55	20	23	21	18	-
BHW3	0.4-0.8	Natural	nd	nd	19	55	55	65	21	
BHW2	0.1 0.0 Ω 1_Ω Ε	Natural	nd	nd	20	20	24	1.9	24	
	0.1-0.5	ivatural	nu	nu	20	20	24	10	24	
Analytical - Detailed Sit	e Investigation (Ca	vvanba, 2020)								

			r		r		r	r		
Sample	Depth (m)	Material Encountered	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
	LOR		5	1	2	5	5	2	5	0.1
BH01	0.4-0.5	Fill	nd	nd	44	16	27	9	9	nd
BH02	0.0-0.05	Fill	7	nd	17	143	212	16	94	nd
BH02	6.9-7.0	Natural	nd	nd	36	21	18	27	16	nd
BH03	0.4-0.5	Fill	27	nd	11	<u>1,900</u>	<u>1,800</u>	17	297	0.4
BH04	1.9-2.0	Fill	nd	nd	65	24	17	16	15	nd
BH04	6.9-7.0	Natural	nd	nd	34	19	22	24	14	nd
BH05	0.0-0.05	Fill	16	1	8	<u>944</u>	1,570	16	592	0.2
BH06	0.0-0.05	Fill	7	nd	8	<u>739</u>	576	8	62	nd
BH07	0.0-0.05	Fill	8	nd	8	<u>461</u>	391	11	116	nd
BH07	5.9-6.0	Natural	7	nd	14	9	15	24	11	nd
BH08	0.0-0.05	Fill	11	nd	9	<u>349</u>	447	13	67	nd
BH09	0.2-0.3	Fill	12	nd	12	<u>906</u>	<u>1,850</u>	14	147	0.2
BH09	5.2-5.3	Natural	nd	nd	20	13	18	14	13	nd
BH10	0.4-0.5	Fill	8	nd	6	<u>1,160</u>	2,620	12	219	0.2
BH11	0.0-0.05	Fill	22	nd	8	3,530	<u>9,440</u>	1/	270	0.2
HAU1	0.0-0.05	Fill	6	nd	9	292	304	13	459	nd
TP01	0.05-0.1	Fill	9	nd	9	83	122	12	234	nd
TP02	0.4-0.5	FIII	na 20	na	52	10	15	10	/	nd
TP03	1.4.1.5	FIII	20 nd	nd	30	1/3	202	12	12	nd
TP04	1.4-1.5	Fill	13	nd	40	86	23	12	313	nd
TP04	0.05-0.1	Fill	15	nd	50	116	320	9	183	nd
TP05	0.4-0.5	Fill	13	nd	31	1 820	3 570	27	450	0.1
TP06	0.4-0.5	Fill	33	1	31	1,180	1.420	30	645	0.1
TP07	0.0-0.05	Fill	46	1	10	923	2.020	13	597	0.2
TP08	0.4-0.5	Fill	30	28	151	1,210	6,160	102	6,140	0.3
TP08	2.2-2.3	Natural	nd	nd	43	15	26	11	15	nd
TP09	0.0-0.05	Fill	30	8	193	2,430	2,750	90	26,200	nd
TP10	0.4-0.5	Fill	8	nd	22	297	385	20	119	nd
TP10	1.9-2.0	Natural	nd	nd	28	22	15	12	14	nd
TP11	0.0-0.05	Fill	16	nd	16	179	248	21	422	nd
TP12	0.05-0.1	Fill	nd	nd	29	142	194	11	101	nd
TP13	0.0-0.05	Fill	19	nd	94	212	320	53	230	nd
TP13	1.9-2.0	Natural	nd	nd	46	21	34	10	154	nd
TP14	0.0-0.05	Fill	7	nd	155	<u>721</u>	717	19	180	nd
TP15	0.05-0.1	Fill	12	nd	17	162	221	14	225	nd
TP15	0.4-0.5	Fill	nd	nd	51	13	17	6	9	nd
Analytical - Additional El	nvironmental Site	Assessment (Cavvanba,	, 2021)							
MW09	0.0-0.05	Fill	40	nd	15	93	144	10	320	nd
MW09	7.9-8.0	Natural	nd	nd	22	15	10	11	14	nd
MW10	6.9-7.0	Natural	nd	nd	44	20	23	20	6	nd
MW10	7.9-8.0	Natural	nd	nd	44	21	27	23	8	nd
MW11	0.05-0.1	Fill	nd	nd	29	18	17	8	7	nd
MW11	8.9-9.0	Natural	nd	nd	18	10	12	10	8	nd
MW12	0.0-0.05	Fill	nd	nd	23	150	330	8	341	nd
MW12	7.9-8.0	Natural	nd	nd	11	9	7	9	nd	nd
MW13	0.0-0.05	Fill	9	nd	37	<u>1,050</u>	1,120	10	135	0.4
MW13	4.9-5.0	Natural	nd	nd	24	15	18	14	6	nd
TP16	0.0-0.05	FIII	-	-	-	-	104	-	-	-
TP16	0.3-0.4	FIII	-	-	-	-	396	-	-	-
TP17	0.0-0.05	FIII	-	-	-	-	160	-	-	-
TD18	0.0-0.03	Natural	-	-	_	-	38	-	-	
TP19	0.0-0.05	Fill	_	-	_	_	236	_	_	-
TP19	0.4-0.5	Fill	-	-	-	-	443	-	-	-
TP20	0.0-0.05	Natural	-	-	-	-	329	-	-	-
TP21	0.0-0.05	Fill	-	-	-	-	131	-	-	-
TP21	0.4-0.5	Fill	-	-	-	-	1,270	-	-	-
TP21	0.9-1.0	Fill	-	-	-	-	89	-	-	-
TP22	0.0-0.05	Fill	-	-	-	-	426	-	-	-
TP22	0.3-0.4	Fill	-	-	-	-	11	-	-	-
TP23	0.0-0.05	Fill	-	-	-	-	226	-	-	-
TP23	0.9-1.0	Fill	-	-	-	-	1,540	-	-	-

# Table 1: Historical Soil Analytical Summary - Heavy Metals (mg/kg)

Sample	Depth (m)	Material Encountered	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
TD22	LOR	Natural	5	1	2	5	5	2	5	0.1
TP23	0.0-0.05	Fill	-	-	-	-	9 62	-	-	-
TP25	0.0-0.05	Fill	-	-	-	-	700	-	-	-
TP25	0.4-0.5	Fill	-	-	-	-	16	-	-	-
TP26	0.0-0.05	Fill	-	-	-	-	468	-	-	-
TP27	0.0-0.05	Fill	-	-	-	-	275	-	-	-
TP27	0.4-0.5	Fill	-	-	-	-	1,040	-	-	-
TP28	0.0-0.05	Fill	-	-	-	-	194	-	-	-
1P28 TP20	0.9-1.0	Natural	-	-	-	-	61	-	-	-
TP29	0.0-0.05	Fill	-	-	-	-	269	-	-	-
TP30	0.0-0.05	Fill	-	-	-	-	32	-	-	-
TP30	1.4-1.5	Fill	-	-	-	-	85	-	-	-
TP31	0.0-0.05	Fill	-	-	-	-	882	-	-	-
TP31	0.4-0.5	Fill	-	-	-	-	30	-	-	-
TP32	0.0-0.05	Fill	-	-	-	-	152	-	-	-
TP33	0.0-0.05	Fill	-	-	-	-	118	-	-	-
TP33	0.4-0.5	Fill	-	-	-	-	36	-	-	-
TP34	0.0-0.05	Fill	-	-	-	-	500	-	-	-
TP34	0.4-0.5	Fill	-	-	-	-	235	-	-	-
TP35	0.4-0.5	Fill	-	-	_	-	233	-	-	-
TP36	0.0-0.05	Fill	-	-	-	-	247	-	-	-
TP36	0.9-1.0	Fill	-	-	-	-	85	-	-	-
TP37	0.0-0.05	Fill	-	-	-	-	742	-	-	-
TP37	0.4-0.5	Fill	-	-	-	-	24	-	-	-
TP38	0.0-0.05	Fill	-	-	-	-	18	-	-	-
TP39	0.0-0.05	Fill	-	-	-	-	229	-	-	-
TP39	0.3-0.4	Fill	-	-	-	-	90	-	-	-
TP40	0.0-0.05	FIII	-	-	-	-	329	-	-	-
TP41	0.0-0.05	Fill	-	-	_	-	124	-	-	-
TP42	0.4-0.5	Fill	-	-	-	-	157	-	-	-
TP43	0.0-0.05	Fill	-	-	-	-	148	-	-	-
TP43	0.9-1.0	Natural	-	-	-	-	24	-	-	-
TP44	0.0-0.05	Fill	-	-	-	-	360	-	-	-
TP44	0.4-0.5	Fill	-	-	-	-	353	-	-	-
TP44	0.6-0.7	Fill	-	-	-	-	21	-	-	-
TP45	0.0-0.05	Fill	-	-	-	-	164	-	-	-
1P45	0.2-0.3	FIII	-	-	-	-	33	-	-	-
Analytical - Supplement	ary Detailed Site II	nvestigation (Cavvanda	, 2023)							
55101	0.0-0.1	Fill	34	6	66	2/3	623	54	564	nd
SS102 SS103	0.0-0.1	Fill	27	nd	27	145	222	10	249	nd
SS103	0.0-0.1	Fill	144	5	46	427	1.130	45	866	nd
SS105	0.0-0.1	Fill	26	8	54	488	1,130	35	836	nd
SS106	0.0-0.1	Fill	63	15	130	288	537	51	672	0.1
SS107	0.0-0.1	Fill	61	nd	22	<u>735</u>	475	18	419	nd
SS108	0.0-0.1	Fill	11	2	25	205	266	14	200	nd
SS109	0.0-0.1	Fill	11	2	71	209	322	19	417	nd
SS110	0.0-0.1	Fill	20	3	45	<u>1,980</u>	2,260	45	883	nd
SS111	0.0-0.1	Fill	18	2	39	158	498	24	552	nd
SSI12 SS112	0.0-0.1	FIII	80 103	20	206	<u>2,280</u> 855	540 302	52	<u>2,520</u> 080	nd
SS113	0.0-0.1	Fill	29	, 1	52	394	523	19	761	nd
SS115	0.0-0.1	Fill	97	3	75	777	294	24	822	nd
SS116	0.0-0.1	Fill	8	nd	34	231	234	13	431	nd
SS117	0.0-0.1	Fill	22	2	86	253	457	41	<u>790</u>	nd
SS118	0.0-0.1	Fill	7	nd	10	36	102	6	136	nd
SS119	0.0-0.1	Fill	29	3	44	196	902	32	658	nd
SS120	0.0-0.1	Fill	17	1	24	172	650	19	407	nd
SS121	0.0-0.1	Fill	59	1	18	176	324	17	337	nd
55122	0.0-0.1	FIII	24	па	23	115	220	14	320	nd

# Table 1: Historical Soil Analytical Summary - Heavy Metals (mg/kg)

Sample	Depth (m)	Material Encountered	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury
	LOR		5	1	2	5	5	2	5	0.1
SS123	0.0-0.1	Fill	14	nd	16	220	274	20	200	nd
SS124	0.0-0.1	Fill	26	3	22	170	344	29	470	nd
SS125	0.0-0.1	Fill	7	nd	28	126	142	10	135	nd
SS126	0.0-0.1	Fill	6	nd	42	123	243	64	272	nd
SS127	0.0-0.1	Fill	nd	nd	29	138	76	49	219	nd
SS128	0.0-0.1	Fill	10	nd	43	97	112	72	206	nd
SS129	0.0-0.1	Fill	13	nd	71	182	551	24	606	nd
SS130	0.0-0.1	Fill	6	nd	18	231	443	12	225	nd
SS131	0.0-0.1	Fill	13	nd	55	428	779	14	216	nd
SS132	0.0-0.1	Fill	5	nd	16	111	216	8	149	nd
SS133	0.0-0.1	Fill	6	nd	31	150	436	9	354	nd
SS134	0.0-0.1	Fill	6	nd	16	210	710	9	449	0.1
SS135	0.0-0.1	Fill	nd	nd	18	165	539	8	192	nd
SS136	0.0-0.1	Fill	7	nd	21	210	352	14	236	nd
SS137	0.0-0.1	Fill	nd	nd	10	12	15	6	52	nd
SS138	0.0-0.1	Fill	nd	nd	20	15	23	7	52	nd
SS139	0.0-0.1	Fill	nd	nd	7	94	90	7	179	nd
SS140	0.0-0.1	Fill	nd	nd	16	68	54	38	128	nd
SS141	0.0-0.1	Fill	nd	nd	16	156	197	13	478	nd
SS142	0.0-0.1	Fill	nd	nd	14	65	121	5	154	nd
SS143	0.0-0.1	Fill	9	2	33	<u>472</u>	1,310	20	746	0.1
SS144	0.0-0.1	Fill	7	nd	35	135	163	19	216	nd
SS145	0.0-0.1	Fill	5	nd	13	153	98	12	205	nd
SS146	0.0-0.1	Fill	10	nd	22	87	57	12	99	nd
SS147	0.0-0.1	Fill	nd	nd	15	136	182	10	<u>863</u>	nd
SS148	0.0-0.1	Fill	nd	nd	5	238	33	8	96	nd
BH101	0.0-0.1	Fill	9	nd	13	60	153	7	178	nd
BH102	0.0-0.1	Fill	7	nd	25	<u>324</u>	916	14	400	0.1
BH103	0.0-0.1	Fill	8	nd	19	247	601	8	238	0.2
BH104	0.0-0.1	Fill	5	nd	17	127	204	/	163	nd
DUITOF	0.3-0.4	Fill	8	nd	12	<u>626</u>	1,020	11	140	nd
BH105	0.0-0.1	FIII	10	L	45	<u>418</u>	1,140	11	597	0.1
BH106	0.0-0.1	FIII	na	na	12	<u>328</u>	592	11	324	0.2
BHIU/	0.0-0.1	Fill	nd	nd	21	21	90	0	100	nd
BH108	0.0-0.1	Fill	6	nd	21 E	602	1 010	10	41	0.2
BH109	0.0-0.1	Fill	5	nd	46	141	220	7	174	nd
BH110	0.0-0.1	Fill	nd	nd	12	41	128	4	130	nd
BH110 BH111	0.0-0.1	Fill	11	nd	18	203	431	11	296	nd
TP101	0.0-0.1	Fill	19	nd	24	63	143	9	167	nd
TP102	0.0-0.1	Fill	18	7	36	206	669	26	248	nd
TP103	0.0-0.1	Fill	20	nd	16	169	381	11	299	0.1
TP104	0.0-0.1	Fill	282	nd	284	472	427	36	245	nd
	0.0-0.1	Fill	19	nd	13	125	290	14	208	nd
TP105	0.3-0.4	Fill	13	nd	8	238	356	9	58	nd
TP106	0.0-0.1	Fill	19	nd	32	224	297	23	314	nd
TD107	0.0-0.1	Fill	20	nd	14	221	249	30	190	nd
19107	0.3-0.4	Fill	8	nd	66	43	64	17	142	nd
TP108	0.0-0.1	Fill	20	1	43	229	392	37	298	nd
TP109	0.0-0.1	Fill	15	nd	13	188	331	14	416	nd
TP110	0.0-0.1	Fill	10	nd	12	133	86	10	151	nd
1110	0.3-0.4	Fill	27	nd	6	194	47	15	70	nd
TP111	0.0-0.1	Fill	17	nd	29	189	217	23	349	nd
TP112	0.0-0.1	Fill	8	nd	38	<u>630</u>	530	24	394	0.1
TP113	0.0-0.1	Fill	9	nd	15	<u>310</u>	823	12	184	nd
	0.4-0.5	Fill	10	nd	14	<u>409</u>	1,200	15	298	nd
TP114	0.0-0.1	Fill	112	nd	9	68	209	5	262	nd
TP115	0.0-0.1	Fill	12	nd	20	213	396	18	423	nd
-	0.3-0.4	Fill	nd	nd	nd	6	38	3	31	nd
TP116	0.0-0.1	Fill	11	nd	25	168	108	19	141	nd
TP117	0.0-0.1	Fill	nd	nd	30	132	132	14	363	nd
TP118	0.0-0.1	Fill	nd	nd	16	<u>428</u>	257	13	<u>1,290</u>	nd
MW103	0.2-0.3	Fill	10	nd	45	109	111	24	819	nd

# Table 1: Historical Soil Analytical Summary - Heavy Metals (mg/kg)

#### Chromium Cadmium Copper Arsenic Mercury Nickel Lead Zinc Depth (m) Material Encountered Sample LOR 2 0.1 5 1 5 5 2 5 Statistics Samples analysed 191 191 191 191 246 188 191 85 Detects 112 26 190 191 244 188 190 44 % detect 59% 14% 99% 100% 99% 100% 99% 52% Maximum 28 455 16,500 <u>43,000</u> 102 <u>26,200</u> 0.7 <u>282</u> Mean 25 35 380 19 0.1 5 FALSE 423 Median 3 23 150 180 13 214 14 0.1 Minimum <5 <1 <2 5 <5 2 5 <0.1 95% UCL (Fill - lead only) 685.2* -_ _ -Criteria HILs - Commercial / Industrial D 3,000 900 3,600 240,000 1,500 6,000 400,000 730/180 EILs - Commercial and Industrial (Aged) -680 290 <u>160</u> <u>310</u> 1,800 <u>750</u> -

Table 1: Historical Soil Analytical Summary - Heavy Metals (mg/kg)

Notes: *95% UCL (H-UCL) calculated based on fill material data only, incorporating all historical and current lead analytical data. Refer to Table 7 for calculations.

Table 2	Historias	Call Anal	while a Cuma man	my TDU and	DTEVN (mag/kg)
Table 5	HIStorical	Soli Anai	yticai Summa	гу – ткп апо	DIEAN (mg/kg)

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	трн С ₆ - С ₉	TPH C ₁₀ - C ₁₄	TPH C ₁₆ - C ₂₈	TPH C ₃₀ - C ₃₆	TPH C ₆ - C ₃₆
	LOR	•	0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
Analytical - Environmental Inve	estigation (J&K, 1997	")															
BH1	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH1	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH2	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH2	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH3	0.5-0.8	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH3	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH4	0.0-0.4	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH4	2.0-2.3	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH5	0.0-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	14	nd	14
BH5	0.5-1.2	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	2	19	nd	22
BH6	0.0-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH6	1.6-2.1	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH7	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH7	1.5-1.95	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH8	0.2-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH8	2.3-2.7	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH9	0.2-0.6	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	4	15	nd	19
BH9	1.6-2.1	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH10	0.2-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	0.3	nd	nd	nd	0.35
BH10	2.2-2.6	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH11	0.7-1.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH11	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH12	0.3-0.8	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	0.09	nd	nd	nd	nd
BH12	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	4	4
BH13	0.2-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH13	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH14	0.2-0.4	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH14	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	8	nd	8.4
BH15	0.4-0.8	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH15	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	16	37	nd	53
BH16	0.3-0.7	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH16	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH17	0.3-0.8	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	0.2	39	32	nd	71
BH17	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	3	3.1
BH18	0.2-0.4	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd

Table 3	3:	Historical	Soil	Analytica	al Summarv	- TRH a	and BT	EXN (mo	ı/ka)
Table .		matorical	3011	- naiy cice	in Summary	111116		EVIA (IIIč	J/ ~ 9/

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	TPH C ₆ - C ₉	TPH C ₁₀ - C ₁₄	TPH C ₁₆ - C ₂₈	TPH C ₃₀ - C ₃₆	TPH C ₆ - C ₃₆
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
BH18	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	52	38	nd	90
BH19	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH19	2.0-2.5	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH20	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH20	2.3-2.5	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	3	20	nd	22
BH21	0.1-0.5	Fill	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH21	2.1-2.5	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	9	nd	9
BH21	2.5-3.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BH22	0.1-0.5	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH22	2.5-3.0	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH23	0.2-0.5	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH23	2.5-3.0	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH24	0.2-0.5	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH24	2.5-3.0	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH25	0.2-0.6	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH25	1.5-2.0	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BHW1	0.2-0.4	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BHW1	10.5-11.0	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BHW2	0.5-0.8	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BHW2	9.0-9.5	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BHW3	0.4-0.8	Natural	nd	nd	nd	nd	nd	-	-	-	-	-	nd	nd	nd	nd	nd
BHW3	8.1-8.5	Natural	nd	nd	nd	nd	nd	-	-	-	-	1	nd	nd	nd	nd	nd
Analytical - Detailed Site Inves	tigation (Cavvanba, 2	2020)															
BH01	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH02	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	220	nd	nd	nd	170	nd	170
BH02	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	130	110	nd	nd	60	180	nd	240
BH03	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	2,060	880	nd	nd	960	1,490	2,450
BH04	1.9-2.0	Fill	nd	nd	nd	nd	nd	nd	21	2,540	2,220	nd	nd	1,240	3,460	nd	4,700
BH04	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH05	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	260	nd	nd	nd	160	140	300
BH06	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	250	140	nd	nd	110	180	290
BH07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	330	100	nd	nd	200	180	380
BH07	5.9-6.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH08	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	nd	nd	nd	nd	nd	nd
BH09	0.2-0.3	Fill	nd	0.6	0.6	2.3	nd	4	28	5,990	6,960	470	11	3,310	8,780	950	13,000
BH09	5.2-5.3	Natural	nd	nd	nd	nd	nd	nd	nd	460	470	nd	nd	240	650	nd	890

Table 3	3:	Historical	Soil	Analytica	al Summarv	- TRH a	and BT	EXN (mo	ı/ka)
Table .		matorical	3011	- naiy cice	in Summary	111116		EVIA (IIIč	J/ ~ 9/

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	TPH C ₆ - C ₉	TPH C ₁₀ - C ₁₄	TPH C ₁₆ - C ₂₈	TPH C ₃₀ - C ₃₆	TPH C ₆ - C ₃₆
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
BH10	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	420	160	nd	nd	230	260	490
BH11	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
HA01	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	380	160	nd	nd	220	220	440
TP01	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP02	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP03	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	260	150	nd	nd	170	150	320
TP03	1.4-1.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP04	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP05	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP05	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	210	nd	nd	nd	120	nd	120
TP06	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	440	140	nd	nd	180	320	500
TP07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd	nd	nd	nd	110	110
TP08	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	620	260	nd	nd	270	440	710
TP08	2.2-2.3	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP09	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP10	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP10	1.9-2.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP11	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP12	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP13	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	260	nd	nd	nd	120	180	300
TP13	1.9-2.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP14	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	200	nd	nd	nd	110	120	230
TP15	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd	nd	nd	nd	nd	nd
TP15	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Additional Environr	mental Site Assessme	ent (Cavvanba, 2021)	)														
MW09	0.0-0.05	Fill	nd	nd	nd	1.8	0.7	nd	nd	nd	150	nd	nd	nd	nd	110	110
MW09	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW11	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	160	180	nd	nd	nd	130	130
MW11	8.9-9.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	100	100
MW13	4.9-5.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Analytical - Supplementary De	tailed Site Investigati	on (Cavvanba, 2023)	)														

Table 3	3:	Historical	Soil	Analytica	al Summarv	- TRH a	and BT	EXN (mo	ı/ka)
Table .		matorical	3011	- naiy cice	in Summary	111116		EVIA (IIIč	J/ ~ 9/

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	ТРН С ₆ - С ₉	TPH C ₁₀ - C ₁₄	TPH C ₁₆ - C ₂₈	ТРН С ₃₀ - С ₃₆	TPH C ₆ - C ₃₆
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
SS101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	840	260	nd	nd	450	520	970
SS102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd	nd	nd	nd	nd	nd
SS103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	310	150	nd	nd	140	240	380
SS104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	520	260	nd	nd	280	380	660
SS105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	70	<u>5,540</u>	1,820	nd	nd	3,000	3,390	6,390
SS106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	120	<u>3,530</u>	1,650	nd	60	1,760	2,710	4,530
SS107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	880	500	nd	nd	440	650	1,090
SS108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	510	220	nd	nd	240	400	640
SS109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	160	1,130	290	nd	80	830	510	1,420
SS110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	200	nd	nd	nd	100	150	250
SS111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	120	1,170	370	nd	60	820	600	1,480
SS112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	450	220	nd	nd	230	320	550
SS113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	390	190	nd	nd	200	290	490
SS114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	460	180	nd	nd	270	280	550
SS115	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	50	1,460	640	nd	nd	780	980	1,760
SS116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	340	160	nd	nd	200	240	440
SS117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	80	1,070	350	nd	50	680	580	1,310
SS118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	nd	nd	nd	nd	nd	nd
SS119	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	50	790	300	nd	nd	480	460	940
SS120	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	380	150	nd	nd	260	220	480
SS121	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	480	260	nd	nd	190	360	550
SS122	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS123	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	180	nd	nd	nd	110	nd	110
SS124	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	520	190	nd	nd	340	260	600
SS125	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	2,260	1,740	nd	nd	790	2,000	2,790
SS126	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd	nd	nd	nd	120	120
SS127	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	160	nd	nd	nd	130	130
SS128	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	nd	nd
SS129	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	400	220	nd	nd	230	240	470
SS130	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	370	210	nd	nd	200	230	430
SS131	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd	nd	nd	nd	nd	nd
SS132	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS133	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	250	160	nd	nd	120	170	290
SS134	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	nd	nd	nd	nd	nd	nd
SS135	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	100	nd	nd	nd	nd	nd	nd
SS136	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	250	100	nd	nd	140	140	280
SS137	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 3	3:	Historical	Soil	Analytica	al Summarv	- TRH a	and BT	EXN (mo	ı/ka)
Table .		matorical	3011	- naiy cice	in Summary	111116		EVIA (IIIč	J/ ~ 9/

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C10 - C16	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	ТРН С ₆ - С ₉	TPH C ₁₀ - C ₁₄	TPH C ₁₆ - C ₂₈	TPH C ₃₀ - C ₃₆	TPH C ₆ - C ₃₆
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
SS138	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	nd	nd
SS139	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS140	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	210	170	nd	nd	nd	200	200
SS141	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS142	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS143	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	130	nd	130
SS144	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	690	400	nd	nd	330	480	810
SS145	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SS146	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd	nd	nd	nd	nd	nd
SS147	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	160	nd	nd	nd	nd	110	110
SS148	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	130	150	nd	nd	nd	110	110
BH102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	nd	nd
BH103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	240	150	nd	nd	150	130	280
BH104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BHICH	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd	nd	nd	nd	nd	nd
BH105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	170	nd	nd	nd	110	nd	110
BH106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BHIOD	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	nd	130	130
TP101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	120	110	230
TP103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	350	110	nd	nd	250	160	410
TP104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	140	nd	140
TP105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	460	170	nd	nd	330	220	550
11103	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	180	nd	nd	nd	150	nd	150
TP106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	420	160	nd	nd	300	200	500
TP107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	400	130	nd	nd	290	180	470
11 107	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	100	nd	nd	nd	nd	nd	nd
TP108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	580	230	nd	nd	390	310	700
TP109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	130	nd	130
TP110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
19110	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 3:	Historical	Soil Analy	tical Summary	- TRH and	BTEXN (ma/ka)
Tuble bi	motorical	Son Analy	cical Gaimiary	inter ana	

Sample	Depth (m)	Material Encountered	Benzene	Toluene	Ethyl benzene	meta- & para-Xylenes	ortho-Xylene	Naphthalene	F1 TRH C ₆ - C ₁₀	F2 TRH >C ₁₀ - C ₁₆	F3 TRH >C ₁₆ - C ₃₄	F4 TRH >C ₃₄ - C ₄₀	ТРН С ₆ - С ₉	TPH C ₁₀ - C ₁₄	ТРН С ₁₆ - С ₂₈	ТРН С ₃₀ - С ₃₆	TPH C ₆ - C ₃₆
	LOR		0.2	0.5	0.5	0.5	0.5	0.5	10	50	100	100	0.08	2	4	3	9.1
TP111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	190	nd	nd	nd	130	nd	130
TP113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	120	nd	nd	nd	nd	nd	nd
	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	220	nd	nd	nd	120	150	270
TP114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	1,020	590	nd	nd	480	810	1,290
TP115	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	60	520	160	nd	nd	430	180	610
	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	110	900	190	nd	60	750	280	1,090
TP116	TP116 0.0-0.1 Fill   TP117 0.0-0.1 Fill		nd	nd	nd	nd	nd	nd	nd	nd	170	nd	nd	nd	140	nd	140
TP117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	110	nd	nd	nd	nd	nd	nd
TP118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW103	TP118 0.0-0.1 Fill   MW103 0.2-0.3 Fill			nd	nd	nd	nd	nd	nd	250	470	nd	nd	90	620	nd	710
Statistics																	
Samples analysed			181	181	181	181	181	132	132	132	132	132	181	181	181	181	181
Detects			0	1	1	2	1	1	2	14	88	47	4	16	72	61	85
% detect			0%	1%	1%	1%	1%	1%	2%	11%	67%	36%	2%	9%	40%	34%	47%
Maximum			<0.2	0.6	0.6	2.3	0.7	4.0	28.0	5,990	<u>6,960</u>	<u>1,820</u>	11	3,310	8,780	3,390	13,000
Mean			<0.2	0.6	0.6	2.1	0.7	4.0	24.5	728	585	340	3	335	487	417	774
Median			<0.5	0.6	0.6	2.1	0.7	4.0	24.5	95	250	210	0	60	200	220	300
Minimum			<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<0.08	<2	<4	<3	<9.1
Criteria - Commercial / Industr	ial (Sand)																
HSL D - 0 m to < 1 m			3	NL	NL	23	30	NL	260	NL	NL	NL	-	-	-		-
HILs - Commercial / Industrial		-	-	-			-	-	-	-	-	-	-	-		-	
Ecological - Commercial / Indu		75	135	165	18	30	370	215	<u>170</u>	<u>1,700</u>	3,300	-	-	-		-	
Management Limits - Commer		-	-	-			-	700	1,000	3,500	10,000	-	-	-		-	
HSL D - Direct Contact	SL D - Direct Contact					81,	000	-	26,000	20,000	27,000	38,000	-	-	-		-
Intrusive Maintenance Worker	- Direct Contact		1,100	120,000	85,000	130	000	29,000	82,000	62,000	85,000	120,000	-	-	-	_	-
Intrusive Maintenance Worker	- Shallow Trench - 0	m to < 2 m	350	NL	NL	N	L	NL	NL	NL	NL	NL	-	-	-		-

Table 4: Historical Soll An	alytical Summary -	PARS	Phenois (	mg/kg)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ	Phenol	Pentachlorophenol
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
Analytical - Detailed S	Site Investigation (Cav	vanba, 2020)																				
BH01	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH02	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH02	6.9-7.0	Naturai	nd	nd	nd	nd	nd	nd	nd	na	nd	nd O Z	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH04	1 9-2 0	Fill	13	nd	0.7	1.6	2.8	nd	0.9	nd	nd	nd	0.0	nd	nd	nd	nd	nd	5.5	nd	nd	nd
BH04	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH05	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH06	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH07	5.9-6.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH08	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH09	0.2-0.3	Fill	7.1	nd	1.1	2.2	4.3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	15.2	nd	nd	nd
BH09	5.2-5.3	Natural	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5	nd	nd	nd
BH10	0.4-0.5	Fill	nd	nd	nd	nd	0.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6	nd	nd	nd
BHII	0.0-0.05	FIII	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP01	0.05-0.03	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP02	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP03	0.0-0.05	Fill	0.8	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.6	nd	nd	nd
TP03	1.4-1.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP04	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP05	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP05	0.4-0.5	Fill	nd	nd	nd	nd	0.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6	nd	nd	nd
TP06	0.4-0.5	Fill	nd	nd	nd	nd	0.7	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.7	nd	nd	nd
TP07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP08	0.4-0.5	Fill	nd	nd	nd	nd	0.6	nd	0.5	0.5	nd	nd	nd	nd	nd	nd	nd	nd	1.6	nd	nd	nd
TP08	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP10	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP10	1.9-2.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP11	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP12	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP13	0.0-0.05	Fill	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5	nd	nd	nd
TP13	1.9-2.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TP14	0.0-0.05	Fill	0.6	nd	nd	nd	0.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.2	nd	nd	nd
TP15	0.05-0.1	Fill	nd	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.8	nd	nd	nd
TP15	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

Table 4: Historical Soil Analytical Summary - PAHs & Phenols (mg/kg)

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ	Phenol	Pentachlorophenol
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
Analytical - Additional	Environmental Site As	ssessment (Cavvanba	, 2021)																			
MW09	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW09	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW10	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW10	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW11	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW11	8.9-9.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW12	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW12	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW13	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW13	4.9-5.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
Analytical - Suppleme	entary Detailed Site Inv	estigation (Cavvanba	a, 2023)																			
SS101	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	1.3	nd	-	-
SS102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS104	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.6	0.6	nd	nd	nd	nd	nd	nd	nd	nd	2.2	nd	-	-
SS105	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	0.7	0.7	nd	nd	nd	nd	nd	nd	nd	nd	2.2	nd	-	-
SS106	0.0-0.1	Fill	nd	nd	nd	nd	2.4	nd	2.2	1.8	0.5	0.6	0.5	nd	nd	nd	nd	nd	8	nd	-	-
SS107	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	1.7	1.4	1	1.1	2.7	0.7	nd	0.7	nd	0.6	11	0.5	-	-
SS108	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS109	0.0-0.1	Fill	1	nd	nd	nd	2.9	nd	0.9	0.8	nd	nd	nd	nd	nd	nd	nd	nd	5.6	nd	-	-
SS110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS111	0.0-0.1	Fill	0.9	0.8	nd	nd	3.1	nd	2.4	2.3	1.2	1.6	1.7	0.5	0.8	nd	nd	nd	15.3	1.2	-	-
SS112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS114	0.0-0.1	Fill	nd	nd	nd	nd	0.7	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.7	nd	-	-
SS115	0.0-0.1	Fill	nd	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.8	nd	-	-
SS116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS117	0.0-0.1	Fill	nd	nd	nd	nd	3	nd	1.4	1.1	0.6	0.8	0.8	nd	nd	nd	nd	nd	7.7	nd	-	-
SS118	0.0-0.1	Fill	nd	nd	nd	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5	nd	-	-
SS119	0.0-0.1	Fill	nd	nd	nd	nd	1.8	nd	1.1	1.1	0.5	0.9	0.9	nd	nd	nd	nd	nd	6.3	nd	-	-
SS120	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd	-	-
SS121	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS122	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS123	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS124	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	0.8	0.8	nd	0.6	0.6	nd	nd	nd	nd	nd	3.7	nd	-	-
SS125	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
55126	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS127	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
55128	0.0-0.1	FIII	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	-	-
55129	0.0-0.1	FIII	na	na	na	na	0.9	na	na	na	na	na	na	na	na	na	na	na	0.9	na	-	-

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ	Phenol	Pentachlorophenol
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
SS130	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS131	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS132	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS133	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS134	0.0-0.1	Fill	nd	nd	nd	nd	0.9	nd	1.3	1.2	nd	0.6	0.5	nd	nd	nd	nd	nd	4.5	nd	-	-
SS135	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS136	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	1	1.1	nd	0.6	0.7	nd	nd	nd	nd	nd	3.4	nd	-	-
SS137	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS138	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS139	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS140	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS141	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS142	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS143	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS144	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS145	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS146	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS147	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
SS148	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH103	0.0-0.1	Fill	nd	0.8	nd	nd	0.9	nd	1	1.6	0.8	1	1.1	nd	1	0.6	nd	1	9.8	1.3	-	-
BH104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
DITIO	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH105	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH106	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH107	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-

Table 4: Historical Soil Analytical Summary - PAHs & Phenols (mg/kg)

Table 4: Historical Soil Analytical Summary - DAMs & Phonels	(ma/ka)
Table 4. Historical Son Analytical Summary - FAITS & Filenois	

Sample	Depth (m)	Material Encountered	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total PAHs	B(a)P TEQ	Phenol	Pentachlorophenol
	LORs		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2
BH109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BHIU6	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
BH111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP101	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP102	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP103	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP104	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP105	0.0-0.1	Fill	nd	nd	nd	nd	1	nd	0.5	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd	-	-
11205	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP106	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.1	nd	-	-
TP107	0.0-0.1	Fill	nd	nd	nd	nd	1.1	nd	0.6	nd	nd	nd	0.5	nd	nd	nd	nd	nd	2.2	nd	-	-
	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP108	0.0-0.1	Fill	nd	nd	nd	nd	1.2	nd	1.2	1	nd	0.5	0.6	nd	nd	nd	nd	nd	4.5	nd	-	-
TP109	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP110	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
	0.3-0.4	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP111	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP112	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP113	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	0.8	0.8	nd	0.6	0.7	nd	nd	nd	nd	nd	2.9	nd	-	-
TP114	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP115	0.0-0.1	Fill	0.7	nd	nd	nd	0.8	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.5	nd	-	-
	0.3-0.4	Fill	0.7	nd	nd	nd	0.9	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	1.6	nd	-	-
TP116	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP117	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
TP118	0.0-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
MW103	0.2-0.3	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-
Statistics																						
Samples analysed			132	132	132	132	132	132	132	132	132	132	132	132	132	132	132	132	132	132	37	37
Detects			8	2	2	2	34	0	19	16	7	13	13	2	2	2	0	2	37	3	0	0
% detect			6%	2%	2%	2%	26%	0%	14%	12%	5%	10%	10%	2%	2%	2%	0%	2%	28%	2%	0%	0%
Maximum			7.1	0.8	1.1	2.2	4.3	<0.5	2.4	2.3	1.2	1.6	2.7	0.7	1	0.7	<0.5	1	15.3	1.3	< 0.5	<2
Mean			1.64	0.80	0.90	1.90	1.25	<0.5	1.06	1.11	0.74	0.78	0.93	0.60	0.90	0.65	<0.5	0.80	3.67	1.00	< 0.5	<2
Median	Median			0.8	0.9	1.9	0.9	<0.5	0.9	1.05	0.6	0.6	0.7	0.6	0.9	0.65	< 0.5	0.8	1.6	1.2	< 0.5	<2
Minimum			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<2
Criteria																						
HILs - Commercial / I	ndustrial D		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4,000	40	240,000	660
EILs - Commercial / Ir	ndustrial (Aged)		370	-	-	-	-	-	-	-	-	-	-	-	1.4	-	-	-	-	-	.,	

				Table 5: Hi	istorical Soil A	nalytical Sum	mary - OCPs, (	OPPs, PCBs an	d Phenoxyace	tic Acid Herbi	cides (mg/kg	)					
						OCPs				OPPs	PCBs		P	henoxyacetic	Acid Herbicid	es	
Sample	Depth (m)	Material Encountered	Heptachlor	Total Chlordane (sum)	Endrin	Endosulfan (sum)	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Chloropyrifos	Total Polychlorinated biphenyls	2.4.5-T	2.4-D	MCPA	MCPB	Mecoprop	Picloram
	LORs		0.2	0.1	0.05	0.05	0.2	0.05	0.05	0.05	0.1	0.02	0.02	0.02	0.02	0.02	0.02
Analytical - Detailed Site	Investigation (Cavvanba	, 2020)															
BH01	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
BH02	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
BH03	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
BH05	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
BH06	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
BH07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
BH08	0.0-0.05	Fill	-	-	-	-	-	-	-	-	-	nd	nd	nd	nd	nd	nd
BH09	0.2-0.3	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
BH10	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
BH11	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
HA01	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP01	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
TP02	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP03	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP03	1.4-1.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP05	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP06	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
TP07	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd
TP08	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP08	2.2-2.3	Natural	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP09	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP10	0.4-0.5	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP10	1.9-2.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP11	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP12	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP13	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP14	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-	-
TP15	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd

				Table 5: Hi	storical Soil A	nalytical Sum	d Phenoxyace	tic Acid Herbi	cides (mg/kg)	)							
						OCPs				OPPs	PCBs		P	henoxyacetic	Acid Herbicide	es	
Sample	Depth (m)	Material Encountered	Heptachlor	Total Chlordane (sum)	Endrin	Endosulfan (sum)	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Chloropyrifos	Total Polychlorinated biphenyls	2.4.5-T	2.4-D	MCPA	MCPB	Mecoprop	Picloram
	LORs		0.2	0.1	0.05	0.05	0.2	0.05	0.05	0.05	0.1	0.02	0.02	0.02	0.02	0.02	0.02
Analytical - Additional En	nvironmental Site Assessi	ment (Cavvanba, 2021)															
MW09	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW09	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW10	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW10	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW11	0.05-0.1	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW11	8.9-9.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW12	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW12	7.9-8.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW13	0.0-0.05	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
MW13	4.9-5.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	-	-	-
Statistics																	
Samples analysed			37	37	37	37	37	37	37	37	10	8	8	8	8	8	8
Detects			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% detect			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Maximum			<0.2	<0.1	< 0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	<0.05	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02
Mean			<0.2	<0.1	< 0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	<0.05	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02
Median			<0.2	<0.1	< 0.05	<0.05	<0.2	< 0.05	< 0.05	< 0.05	< 0.05	<0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02
Minimum			<0.2	<0.1	<0.05	<0.05	<0.2	<0.05	<0.05	< 0.05	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Criteria																	
HILs - Commercial / Indu	ustrial D		50	530	100	2,000	2,500	45	3,600	2,000		5,000	9,000	5,000	5,000	5,000	35,000
EILs - Commercial and Ir	ndustrial (Aged)		-	-	-	-	-	-	640 (DDT only)	-		-	-	-	-	-	-

		Та	ble 6: His	storical So	il Analytic	al Summar	y - Volatil	e Organic	Compound	ls (mg/kg	)					
Sample	Depth (m)	Material Encountered	1,1-dichloroethene	Chloroethane	Chloroform	Chloromethane	Trichloroethene	Tetrachloroethene	Vinyl chloride	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Bromobenzene	Chlorobenzene	2-hexanone (MBK)	p-Isopropyltoluene
	LORs				0.5	5	0.5	0.5	5	0.5	0.5	0.5	0.5	0.5	5	0.5
Analytical - Detailed S	ite Investigation (Cavv	ranba, 2020)														
BH02 6.9-7.0	6.9-7.0	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH04 1.9-2.0	1.9-2.0	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH09 0.2-0.3	0.2-0.3	Fill	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.5
BH09 5.2-5.3	5.2-5.3	Natural	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Statistics																
Samples analysed			4	4	4	4	4	4	4	4	4	4	4	4	4	4
Detects			0	0	0	0	0	0	0	0	0	0	0	0	0	1
% detect			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	25%
Maximum			<0.2	<0.1	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.1	<0.2	<0.1	<0.05	<0.05	0.5
Mean			<0.2	<0.1	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.1	<0.2	<0.1	<0.05	<0.05	0.5
Median			<0.2	<0.1	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.1	<0.2	<0.1	<0.05	<0.05	0.5
Minimum			<0.2	<0.1	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.1	<0.2	<0.1	<0.05	<0.05	<0.2
Criteria																
HILs - Commercial / I	ndustrial D		NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL

A complete VOC scan is presented within the associated laboratory analytical report.

	Table 7: Historical Asbestos Analytical Sun	hmary		
Sample	Field observations	Asbestos detected in laboratory sample?	Asbestos Type Laboratory result	Classification - AF or ACM Based on laboratory & field assessment
Analytical - Environ	mental Investigation (J&K, 1997)			
BH1_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH2_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH3_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH4_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH5_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH6_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH7_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH8_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH9_0.0-0.05	Plant fragments detected.	No	N/A	N/A
BH10_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH11_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH12_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH13_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH14_0.0-0.1	-	No	N/A	N/A
BH15_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH16_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH17_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH18_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH19_0.1-0.2	Plant fragments detected.	No	N/A	N/A
BH20_0.1-0.2	Plant fragments detected.	No	N/A	N/A
BH21_0.1-0.2	Plant fragments detected.	No	N/A	N/A
BH22_0.0-0.1	Plant fragments detected.	No	N/A	N/A

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sample	Field observations	Asbestos detected in laboratory sample?	Asbestos Type Laboratory result	Classification - AF or ACM Based on laboratory & field assessment
BH23_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH24_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH25_0.0-0.2	Plant fragments detected.	No	N/A	N/A
BH W1_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH W2_0.0-0.1	Plant fragments detected.	No	N/A	N/A
BH W3_0.0-0.1	Plant fragments detected.	No	N/A	N/A
Analytical - Detailed	i Site Investigation (Cavvanba, 2020)			
ACM05	Cement sheeting fragment adjacent to TP06.	Yes	Chrysotile	ACM
ACM06	Cement sheeting fragment within TP06.	Yes	Chrysotile	ACM
ACM07	Cement sheeting fragment collected from rail abutment.	Yes	Chrysotile	ACM
Analytical - Addition	al Environmental Site Assessment (Cavvanba, 2021)		•	•
ACM01	Cement sheeting fragment identified within TP30 at 1.7 metres in depth.	Yes	Chrysotile	ACM
Analytical - Suppler	nentary Detailed Site Investigation (Cavvanba, 2023)		I	
ACM101	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected adjacent to the railway tracks within the south-eastern portion of Area E near SS101.	Yes	Ch + Am	ACM
ACM102	One piece of asbestos cement sheeting approximately 80x45x5mm. Collected wihtin the railway tracks in the northern portion of Area E near SS112.	Yes	Ch	ACM
ACM103	One piece of asbestos cement sheeting approximately 45x35x5mm. Collected on the surface within the central portion of Area B near TP110.	Yes	Ch	ACM
ACM104	One piece of asbestos cement sheeting approximately 60x40x5mm. Collected on the surface within the western portion of Area E near TP106.	Yes	Ch	ACM
ACM105	One piece of asbestos cement sheeting approximately 35x30x5mm. Collected on the surface near SS139 and adjacent to the former meal room within the northern portion of site.	Yes	Ch + Am	ACM
TP109_0-0.1	One piece of asbestos cement sheeting approximately 40x35x5mm. Collected within the surface fill material after seiving had been completed.	Yes	Ch	ACM
TP113_0.4-0.5	Several pieces of asbestos cement sheeting approximately 85x60x5mm. Collected within the deeper ash fill material at TP113.	Yes	Ch + Am	ACM
BH104_0.3-0.4	One piece of asbestos cement sheeting approximately 85x75x5mm. Collected within the deeper ash fill material at BH104.	Yes	Ch	ACM

# Table 7: Historical Asbestos Analytical Summary

#### Table 7: UCL Statistics for Lead (Fill material only)

### User Selected Options

Date/Time of Computation ProUCL 5.130/10/2023 2:05:53 PM

From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

C0

Total Number of Observations	270	General Statistics	170
Total Number of Observations	278	Number of Distinct Observations	0
Minimum	11	Mean	673
Maximum	43000	Median	282.5
SD	2694	Std. Error of Mean	161.6
Coefficient of Variation	4.003	Skewness	14.28
		Normal GOE Test	
Shapiro Wilk Test Statistic	0.195	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.403	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0536	Data Not Normal at 5% Significance Level	
D	ata Not No	ormal at 5% Significance Level	
	Assur	ning Normal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	939.7	95% Adjusted-CLT UCL (Chen-1995)	1087
		95% Modified-t UCL (Johnson-1978)	962.8
		Gamma GOF Test	
A-D Test Statistic	3.597E+28	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.807	Data Not Gamma Distributed at 5% Significance Le	vel
K-S Test Statistic	0.161	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.0572	Data Not Gamma Distributed at 5% Significance Le	vei
	0.054	Gamma Statistics	0.047
K nat (MLE) Thete bet (MLE)	0.651	K star (bias corrected MLE)	0.647
nu bat (MLE)	362.2	nu star (bias corrected)	359.6
MLE Mean (bias corrected)	673	MLE Sd (bias corrected)	836.9
( , , , , , , , , , , , , , , , , , , ,		Approximate Chi Square Value (0.05)	316.7
Adjusted Level of Significance	0.0491	Adjusted Chi Square Value	316.5
	Accur	ning Gamma Distribution	
95% Approximate Gamma UCL (use when n>=50))	764.3	95% Adjusted Gamma UCL (use when n<50)	764.8
Shapiro Wilk Test Statistic	0.978	ognormal GOF Test Shaniro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0.139	Data appear Lognormal at 5% Significance Leve	1
Lilliefors Test Statistic	0.0701	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.0536	Data Not Lognormal at 5% Significance Level	
Data appea	r Approxin	nate Lognormal at 5% Significance Level	
	L	ognormal Statistics	
Minimum of Logged Data	2.398	Mean of logged Data	5.575
Maximum of Logged Data	10.67	SD of logged Data	1.248
	Assumi	ng Lognormal Distribution	
95% H-UCL	685.2	90% Chebyshev (MVUE) UCL	740.8
95% Chebyshev (MVUE) UCL	817.4	97.5% Chebyshev (MVUE) UCL	923.7
99% Chebyshev (MVUE) UCL	1132		
Non	narametric	Distribution Free UCL Statistics	
Data appear to f	ollow a Dis	cernible Distribution at 5% Significance Level	
	N	and Distribution From U.O	
95% CLT LICI	Nonparan	Netric Distribution Free UCLs	939 7
95% Standard Bootstran UCL	937.5	95% Bootetran-t LICI	1497
95% Hall's Bootstrap UCL	1931	95% Percentile Bootstrap UCL	968.8
95% BCA Bootstrap UCL	1157	······································	
90% Chebyshev(Mean, Sd) UCL	1158	95% Chebyshev(Mean, Sd) UCL	1377
97.5% Chebyshev(Mean, Sd) UCL	1682	99% Chebyshev(Mean, Sd) UCL	2281
	<u>e</u> ,	innested LICL to Lise	
95% H-UCL	685.2	990000 00L 10 000	
Note: Suggestions regarding the selection of	ot a 95% U	CL are provided to help the user to select the most appropriate 95% UCL.	

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only. H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide. It is therefore recommended to avoid the use of H-statistic based 95% UCLs. Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Well ID	Gauging Date	TOC Elevation (mAHD)	Ground Surface Elevation	Depth of Well (mbTOC)	Depth to NAPL (mbTOC)	Depth to Water (mbTOC)	NAPL Thickness (m)	Corrected Depth to Water	Water Elevation
			(11/(112))			(110100)		(11)	(IIIAIID)
	30/05/1997			12.000		7.570		9.140	629.760
W1	24/08/2020	637.330	638.900	12.073	-	7.207	-	8.777	630.123
	7/07/2021			12.075		6.337		7.907	630.993
	30/05/1997			10.500		5.560		4.640	630.670
	24/08/2020					6.212		5.292	630.018
W2	5/07/2021	636.230	635.310	11.270	-	5.362	-	4.442	630.868
	24/02/2022					4.985		4.065	631.245
	27/04/2023			9 000		5.365		4.445	629 610
	24/08/2020			9.000		5.825		5.085	629.010
W3	5/07/2021	635.810	635.070		-	5.053	-	4.313	630.757
	24/02/2022			9.370		4.675		3.935	631.135
	27/04/2023					5.275		4.535	630.535
	24/08/2020				-	6.451	-	6.481	631.219
	7/07/2021	607.670	607 700	0.567	-	6.451	-	6.481	631.219
MW01	24/02/2022	637.670	637.700	8.567	-	6.075	-	6.105	631.595
	27/04/2023				-	6.715	-	6.745	630.955
	24/08/2020				-	7.952	-	7.947	630.248
MW02	5/07/2021	638 200	638 195	8 728	-	6.502	-	6.497	631.698
111102	23/02/2022	050.200	050.155	0.720	-	6.711	-	6.706	631.489
	26/04/2023				-	7.365	-	7.360	630.835
	24/08/2020				-	8.284	-	8.344	630.316
MW03	8/07/2021	638.600	638.660	8.974	-	7.230	-	7.290	631.370
	23/02/2022				-	6.552	-	6.612	632.048
	26/04/2023				-	7.300	-	7.360	631.300
	24/08/2020				-	7.877	-	7.987	630.213
MW04	8/07/2021	638.090	638.200	8.947	-	6.968	-	7.078	631.122
	25/02/2022				-	7 155	-	7.265	631.799
	20/04/2023				-	7.133	-	7.203	630.418
	8/07/2020				_	6 448	-	6 518	631 662
MW05	23/02/2022	638.110	638.180	9.964	-	5.515	-	5.585	632.595
	26/04/2023				-	6.415	-	6,485	631.695
	24/08/2020				-	7.238	-	7.338	630.772
1000	7/07/2021	600.040	600 440	0.050	-	6.177	-	6.277	631.833
MW06	23/02/2022	638.010	638.110	8.960	4.920	5.080	0.16	5.180	632.930
	27/04/2023				6.095	6.625	0.530	6.725	631.385
	24/08/2020				-	6.755	-	6.855	631.295
MW07	7/07/2021	638.050	638 150	9.056	-	5.913	-	6.013	632.137
111107	23/02/2022	050.050	050.150	5.050	-	5.650	-	5.750	632.400
	26/04/2023				-	6.025	-	6.125	632.025
	24/08/2020				-	4.238	-	4.148	633.682
MW08	7/07/2021	637.920	637.830	6.133	-	5.550	-	5.460	632.370
	23/02/2022				-	4.620	- Malt dury	4.530	633.300
	26/04/2023			<u> </u>		6 450	weil dry	6 534	621 215
MW/00	5/07/2021	637 767	637 040	9.075	-	6 201	-	6.534	631.315
111109	24/02/2022	037.707	037.849	9.075	-	7.005	-	7 177	631.476
	5/07/2023				-	/.093	-	/.1//	630.865
MW10	24/02/2022	634 887	634 986	8 014		3 480		3 579	631 407
111110	27/04/2023	054.007	054.500	0.014	-	4 295	-	4 394	630 592
MW11	7/07/2021	636.035	636.133	9.001	-	5.102	-	5.200	630.933
	7/07/2021				-	5.242	-	5.369	630.913
MW12	23/02/2022	636.155	636.282	8.465	-	4.901	-	5.028	631.254
	26/04/2023	1			-	5.535	-	5.662	630.620
	5/07/2021				-	4.338	-	4.416	631.159
MW13	23/02/2022	635.497	635.575	9.024	-	3,970	-	4,048	631.527
	26/04/2023			= .		4 645	_	4 723	630.852
MW101	20/04/2023	625 122	625 521	7 505	-	4 775	-	T./23	620.250
MW101	27/04/2023	035.133	035.531	7.505	-	4.//5	-	5.1/3	630.358
MW102	27/04/2023	634.400	634.595	7.905	-	3.995	-	4.190	630.405
MW103	27/04/2023	636.403	635.531	8.560	-	6.750	-	5.878	629.653

Table 8: Historical Groundwater Gauging Data

m AHD: metres Australian Height Datum mbTOC: metres below top of casing NAPL: non-aqueous phase liquid

Table 9: Historical Groundwater Quality Parameters

Location ID	Date Sampled	DO (mg/L)	EC (µScm-1)	Salinity (ppm)	Salinity (‰)	рН	Eh (mV)	TEMP (°C)	Turbidity (NTU)	Purge Volume (L)	Comments
	30/05/1997*	-	2,290	1,466	1.466	7.68	-	-	-	-	No hydrocarbon odours.
W1	24/08/2020	3.38	2,710	1,734	1.734	6.77	168	10.80	32.4	2.5	Clear, no odour or sheen, well in good condition, $PID = 0.0 ppm$
	7/07/2021	6.22	2,344	1,500	1.500	7.22	20	13.57	-	2.5	Clear, no odour or sheen, well in good condition
	30/05/1997*	-	1,160	742	0.742	7.75	-	-	-	-	No hydrocarbon odours.
	24/08/2020	6.23	1,260	806	0.806	6.84	235	8.36	78.0	2.5	Clear, no odour or sheen, well in good condition, PID = 0.0 ppm
W2	5/07/2021	4.42	1,276	817	0.817	7.17	-6.2	14.81	-	3.0	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
	24/02/2022	4.63	1,103	706	0.706	7.48	234.7	18.24	-	2.5	Clear, no odour or sheen, well in good condition
	24/02/2022	4.63	1,103	706	0.706	7.48	234.7	18.24	-	2.5	Clear, no odour or sheen, well in good condition
	27/04/2023	4.2	1,777	1,137	1.137	8.86	87.2	15.62	-	2.5	Clear, no odour or sheen, well in good condition
	30/05/1997*	-	2,110	1,350	1.350	7.39	-	-	-	-	No hydrocarbon odours.
	24/08/2020	2.61	654	419	0.419	7.01	155	16.88	305.0	2.5	Cloudy, milky brown, no odour or sheen, well in good condition, PID = 0.1 ppm
W3	7/07/2021	5.43	504	323	0.323	7.23	26.2	13.92	-	2.5	Slightly cloudy becoming clear, no odour or sheen, well in good condition
	24/02/2022	3.67	966	618	0.618	6.76	248.1	19.23	-	2.5	Clear, no odour or sheen, well in good condition
	24/02/2022	3.67	966	618	0.618	6.76	248.1	19.23	-	2.5	Clear, no odour or sheen, well in good condition
	27/04/2023	3.09	1,252	801	0.801	6.73	99.4	17.95	-	2.5	Clear, no odour or sheen, well in good condition
	25/08/2020	2.86	940	602	0.602	7.05	196	11.06	374.7	2.5	Cloudy, slight hydrocarbon odour, no sheen, well in good condition, PID = 4.9 ppm
	7/07/2021	1.87	967	619	0.619	7.01	15.2	14.94	-	2.5	Clear, no odour or sheen, well in good condition
MW01	24/02/2022	2.56	974	623	0.623	6.93	239.6	18.22	-	2.5	Slightly cloudy, no sheen or odour, well in good condition
	24/02/2022	2.56	974	623	0.623	6.93	239.6	18.22	-	2.5	Slightly cloudy, no sheen or odour, well in good condition
	27/04/2023	3.17	1,005	643	0.643	6.97	99.2	17.02	-	2.5	Slightly cloudy, no sheen or odour, well in good condition
	25/08/2020	5.01	1,180	755	0.755	6.81	-76	15.25	>1000	2.5	Turbid, brown, strong hydrocarbon odour, no sheen, well in good condition, PID = 19.8 ppm
	5/07/2021	1.62	693	444	0.444	7.11	-43.6	13.83	-	2.5	Slightly cloudy becoming clear, slight hydrocarbon odour, no sheen, well in good condition
MW02	23/02/2022	3.37	700	448	0.448	6.89	138.7	18.36	-	2.5	Clear, slight hydrocarbon odour, no sheen, well in good condition
	23/02/2022	3.37	700	448	0.448	6.89	138.7	18.36	-	2.5	Clear, slight hydrocarbon odour, no sheen, well in good condition
	26/04/2023	3.12	1,567	1,003	1.003	6.80	92.3	19.10	-	2.5	Slightly cloudy, brown tinge, slight hydrocarbon odour, slight sheen
	25/08/2020	6.8	1,910	1,222	1.222	7.29	136	13.80	11.3	2.5	Clear, no odour or sheen, well in good condition, PID = 0.0 ppm
	8/07/2021	4.00	1,828	1,170	1.170	7.78	33.7	13.08	-	2.5	Clear, no odour or sheen, well in good condition
MW03	23/02/2022	5.12	1,214	777	0.777	7.91	218.2	18.72	-	2.5	Clear, no odour or sheen, well in good condition
	23/02/2022	5.12	1,214	777	0.777	7.91	218.2	18.72	-	2.5	Clear, no odour or sheen, well in good condition
	26/04/2023	5.2	1,920	1,229	1.229	7.71	101.1	20.15	-	2.5	Clear, no odour or sheen, well in good condition
	25/08/2020	5.06	1,070	685	0.685	7.47	217	10.32	30.7	2.5	Clear, no odour or sheen, well in good condition, PID = 0.2 ppm
	8/07/2021	5.13	1,282	820	0.820	7.58	56.6	12.90	-	2.5	Clear, no odour or sheen, well in good condition
MW04	23/02/2022	4.21	989	633	0.633	7.65	227.3	18.15	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
	23/02/2022	4.21	989	633	0.633	7.65	227.3	18.15	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
	26/04/2023	4.68	1,642	1,051	1.051	7.60	85.2	17.25	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
	25/08/2020	3.4	1,210	774	0.774	7.19	-319	9.95	34.2	2.5	Clear, no odour or sheen, well in good condition, PID = 0.2 ppm
	8/07/2021	4.14	1,077	689	0.689	7.48	30.1	13.33	-	2.5	Clear, no odour or sheen, well in good condition
MW05	23/02/2022	3.99	922	590	0.590	7.52	223.6	18.57	-	2.5	Clear, no odour or sheen, well in good condition
	23/02/2022	3.99	922	590	0.590	7.52	223.6	18.57	-	2.5	Clear, no odour or sheen, well in good condition
	26/04/2023	4.28	1,760	1,126	1.126	6.06	98.2	17.32	-	2.5	Clear, no odour or sheen
	26/08/2020	4.45	754	483	0.483	7.82	79	6.79	21.3	2.5	Clear, slight hydrocarbon odour, no sheen, well in good condition, PID = 53.9 ppm
MWOG	7/07/2021	3.56	389	249	0.249	6.80	-100.7	13.47	-	2.5	Clear, strong hydrocarbon odour, slight sheen, well in good condition
MW00	23/02/2022			Sa	mple collect	ed of LNA	PL materia				Clear, strong hydrocarbon/oil odour, dark black LNAPL present in well (0.16 m), PID = 88.0 ppm in well, 0.8 ppm in gatic
	27/04/2023	2.78	668	428	0.428	6.90	101.2	16.28	-	2.5	Slightly cloudy, brown tinge, strong hydrocarbon/oil odour and sheen. Dark black LNAPL present in well (0.5 m).
	26/08/2020	9.20	825	528	0.528	7.54	167	9.94	32.7	3.0	Clear, no odour or sheen, well in good condition, PID = 0.8 ppm
	7/07/2021	6.64	740	474	0.474	7.11	0.8	14.03	-	2.5	Clear, no odour or sheen, well in good condition
MW07	23/02/2022	5.13	521	333	0.333	6.87	245.2	18.21	-	2.5	Clear, no odour or sheen, well in good condition
	26/04/2023	4.88	912	584	0.584	6.71	85.2	16.92	-	2.5	Sightly douby as douby as douby as douby
1	20/04/2023	4.00	212	504	0.304	0.71	05.2	10.92	-	2.5	Slightly cloudy, no oddur or sneet

#### Table 9: Historical Groundwater Quality Parameters

Location ID	Date Sampled	DO (mg/L)	EC (µScm-1)	Salinity (ppm)	Salinity (‰)	pН	Eh (mV)	TEMP (°C)	Turbidity (NTU)	Purge Volume (L)	Comments
	26/08/2020	9.78	515	330	0.330	7.23	190	11.95	96.2	2.5	Slightly cloudy, milky white, no odour or sheen, well in good condition, PID = 0.1 ppm
MWOR	7/07/2021	4.9	425	272	0.272	7.41	-47.1	12.84	-	2.5	Clear, no odour or sheen, well in good condition
141000	23/02/2022	7.96	340	218	0.218	7.52	233.1	17.41	-	2.5	Clear, no odour or sheen, well in good condition
	26/04/2023				٧	Vell dry					Well dry
	5/07/2021	3.52	869	556	0.556	7.47	67.4	14.12	-	2.5	Slightly cloudy, brown, no odour or sheen, well in good condition
MW09	24/02/2022	4.17	1,032	660	0.660	7.37	241.1	17.62	-	2.5	Cloudy, light brown, no odour or sheen, well in good condition
	26/04/2023	3.30	1,105	707	0.707	7.18	80.1	15.25	-	2.5	Brown, turbid, no odour or sheen
	5/07/2021	4.25	721	461	0.461	7.29	-42.3	16.32	-	2.5	Slightly cloudy becoming clear, slight hydrocarbon odour, no sheen, well in good condition
MW10	24/02/2022	2.56	461	295	0.295	7.27	221.5	18.27	-	2.5	Clear, no odour or sheen, well in good condition
	27/04/2023	3.60	549	351	0.351	7.28	67.1	17.25	-	2.5	Slightly cloudy, brown tinge, no odour or sheen
MW11	7/07/2021	3.89	1,171	749	0.749	7.60	2.9	14.15	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
	7/07/2021	6.22	944	604	0.604	7.41	20.1	13.43	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
MW12	23/02/2022	3.62	590	378	0.378	7.48	195.9	18.06	-	2.5	Clear, no odour or sheen, well in good condition
	26/04/2023	3.68	1,117	715	0.715	6.00	101.9	17.35	-	2.5	Cloudy, brown, no odour or sheen
	5/07/2021	5.12	649	415	0.415	7.66	-10.6	14.73	-	2.5	Slightly cloudy, brown tinge, no odour or sheen, well in good condition
MW13	23/02/2022	3.38	476	305	0.305	7.82	219.2	17.65	-	2.5	Slightly cloudy, light brown tinge, no odour or sheen, well in good condition
	26/04/2023	3.88	898	575	0.575	7.56	79.2	17.80	-	2.5	Slightly cloudy, brown tinge, no odour or sheen
MW101	27/04/2023	3.54	1780	1,139	1.139	7.08	107.2	17.21	-	2.5	Slightly cloudy, brown tinge, no odour or sheen
MW102	27/04/2023	4.12	2032	1,300	1.300	7.43	116.2	18.12	-	2.5	Slightly cloudy, brown tinge, no odour or sheen
MW103	27/04/2023	3.11	1601	1,025	1.025	7.17	106.7	19.05	-	2.5	-

*Conductivity and pH laboratory results presented for W1, W2 and W3 from the May 1997 monitoring event.

### Table 10: Historical Groundwater Analytical Summary - TRH & BTEXN (µg/L)

				BTEXN							TRH				
				a)				Ŧ	RH	RH	RH	т			
Sample Identification	Date Sampled	ene	ene	nzen	nes	Ialene	ндт (	C10 TF	C16 T	C ₃₄ T	C40 T	40 TR	14 TPH	TPH	36 TPH
		Benz	Tolu	hyl be	Xyle	aphth	, , ,	ç	- C ₁₀ -	- C ₁₆ -	- C ₃₄ -	10 - 0		- C	58 - C
				Ett		Ż	0	E1>	F2 >	F3 >	F4 >	~	Ű	Ű	Ű
LO	R	1	2	2	2	2	20	20	100	100	100	100	20	50	30
Analytical - Groundwater	30/05/1997	nd	nd	nd	nd		nd	-	-		-	-	nd	nd	nd
W1	24/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	24/08/2020	nd	nd	nd	nd	- nd	nd	- nd	- nd	- nd	- nd	- nd	nd	nd	nd
W2	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	30/05/1997	nd	1	nd	nd	-	nd	-	-	-	-	-	nd	nd	nd
	24/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	24/02/2022	nd	nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	280	460	nd	740	170	540	nd
MW01	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	340	nd	340	nd	380	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	340	nd	340	nd	370	nd
	25/08/2020	nd	nd	nd	nd	nd	40 30	130 30	40,700	31,500	350	72,600 930	23,300	47,000	1,220
MW02	23/02/2022	nd	nd	nd	nd	nd	nd	260	260	1,050	nd	1,310	110	1,220	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	740	1,560	nd	2,300	370	1920	nd
	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW03	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MWOA	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	26/04/2023 25/08/2020	nd	nd nd	nd	nd nd	nd	nd	nd	nd	nd	nd	nd nd	nd	nd	nd
MW05	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	26/04/2022	nd	nd	nd	nd	in d	nd	n d	nd	nd	nd	nd	nd	nd	nd
MNOC	26/04/2023 26/08/2020	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd 700	nd 1,670	nd nd	nd 2,370	nd 330	nd 1,990	nd nd
MW06	26/04/2023 26/08/2020 7/07/2021	nd nd nd	nd nd nd	nd nd 2	nd nd nd	nd nd 15	nd nd nd	nd nd nd	nd 700 1,160	nd 1,670 1,740	nd nd nd	nd 2,370 2,920	nd 330 690	nd 1,990 2,190	nd nd 70
MW06	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021	nd nd nd nd	nd nd nd nd	nd nd 2 nd nd	nd nd nd nd	nd nd 15 nd nd	nd nd nd nd	nd nd nd nd	nd 700 1,160 nd nd	nd 1,670 1,740 nd nd	nd nd nd nd	nd 2,370 2,920 nd nd	nd 330 690 nd nd	nd 1,990 2,190 nd nd	nd nd 70 nd nd
MW06 MW07	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd 2 nd nd nd	nd nd nd nd nd	nd nd 15 nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd 700 1,160 nd nd	nd 1,670 1,740 nd nd nd	nd nd nd nd nd	nd 2,370 2,920 nd nd nd	nd 330 690 nd nd nd	nd 1,990 2,190 nd nd nd	nd nd 70 nd nd nd
MW06 MW07	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd 2 nd nd nd nd	nd nd nd nd nd nd	nd nd 15 nd nd nd nd	nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd	nd 1,670 1,740 nd nd nd nd	nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd	nd 330 690 nd nd nd nd	nd 1,990 2,190 nd nd nd nd	nd nd 70 nd nd nd nd
MW06 MW07 MW08	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023 7/07/2021	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	nd nd 15 nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd 15 nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd	nd nd 2 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n
MW06 MW07 MW08 MW09	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 2 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 5/07/2021	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 7/07/2021	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 7/07/2021 7/07/2021 23/02/2022	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 23/02/2022 26/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 7,060 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW13	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 7000 1,1600 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW13	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW13 MW101 MW101	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 27/04/2023 5/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW13 MW13 MW101 MW102 MW103	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 27/04/2023 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW11 MW12 MW12 MW13 MW13 MW101 MW102 MW103 Statistics	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW13 MW13 MW13 Statistics Samples analysed Debeter	26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 7/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW13 MW13 MW13 Statistics Samples analysed Detects M detect	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 7/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW13 MW13 MW13 Statistics Samples analysed Detects % detect Maximum	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 3300 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW12 MW13 MW13 Statistics Samples analysed Detects % detect Maximum Minimum	26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023 26/04/2023 26/04/2023 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 3300 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW13 MW13 MW13 Statistics Samples analysed Detects % detect Maximum Minimum Criteria - Commercial / Industr	26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023 26/04/2023 26/04/2023 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW12 MW13 MW13 Statistics Samples analysed Detects % detect Maximum Minimum <i>Criteria - Commercial / Indust</i>	26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023 26/04/2023 26/04/2023 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW13 MW13 MW13 Statistics Samples analysed Detects % detect Maximum Minimum <i>Criteria - Commercial / Industs</i> ANZG (2018) 95% Level of Sp GILS Drinking Water HSL D 2 m to < 4 m (Sand)	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 5/07/2021 24/02/2022 26/04/2023 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 700 1,160 nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW12 MW13 MW13 MW13 Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statistics Statis	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 5/07/2021 24/02/2022 26/04/2023 7/07/2021 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 7000 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW12 MW13 MW12 MW13 Statistics Samples analysed Detects % detect Maximum Minimum Criteria - Commercial / Industu ANZG (2018) 95% Level of Sp GLS Drinking Water HSL D 2 m to < 4 m (Sand) HSL D 2 m to < 8 m (Sand) HSL D 1 m tusive Maintenance V	26/04/2023 26/08/2020 7/07/2021 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 5/07/2021 24/02/2022 27/04/2023 7/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 2	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 7000 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd
MW06 MW07 MW08 MW09 MW10 MW10 MW11 MW12 MW12 MW13 MW13 MW13 Statistics Samples analysed Detects % detect Maximum Minimum <i>Criteria - Commercial / Industs</i> MAXG (2018) 95% Level of Sp GLS Drinking Water HSL D 2 m to < 4 m (Sand) HSL D 2 m to < 4 m (Sand) HSL D 1 mtrusive Maintenance V HSL D Intrusive Maintenance V	26/04/2023 26/08/2020 7/07/2021 23/02/2022 26/04/2023 26/04/2023 26/04/2023 26/04/2023 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 24/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 5/07/2021 23/02/2022 26/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 27/04/2023 2	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 2 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd 15 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 7000 1,160 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 1,670 1,740 nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd 2,370 2,920 nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 330 690 nd nd nd nd nd nd nd nd nd nd	nd 1,990 2,190 nd nd nd nd nd nd nd nd nd nd	nd nd 70 nd nd nd nd nd nd nd nd nd nd nd nd nd

		Table 11: His	storical Groun	dwater A	nalytical	Summary	- Heavy P	letais (µg	I/L)				
Sample Identification	Date Sampled	Hardness (mg CaCO ₃ /L)	Hardness Catergory	Arsenic	Cadmium	Chromium	Trivalent Chromium	Hexavalent Chromium	Copper	Lead	Nickel	Zinc	Mercury
	LOR	1		1	0.1	1	10	10	1	1	1	5	0.1
Analytical - Groundv	vater												
	30/05/1997	-	-	nd	nd	nd	-	-	nd	nd	nd	<u>50</u>	nd
W1	24/08/2020	-	-	nd	nd	1	-	-	nd	nd	nd	nd	nd
	30/05/1997	-	-	nd	nd	<u>1</u> nd	-	-	nd	nd	nd	<u>22</u>	nd
	24/08/2020	-	-	nd	nd	41	-	-	nd	nd	nd	12	nd
W2	5/07/2021	-	-	nd	nd	<u>40</u>	-	-	nd	nd	nd	nd	nd
	24/02/2022	-	-	nd	nd	35	-	-	nd	1	nd	nd	nd
	27/04/2023	169	Hard	nd	nd	26	nd	30	nd	nd	nd	nd	nd
	24/08/2020	-	-	nd	nd	7	-	-	nd	nd	nd	21	nd
W3	7/07/2021	-	-	nd	nd	4	-	-	nd	nd	nd	nd	nd
	24/02/2022	-	-	nd	nd	<u>6</u>	-	-	nd	nd	nd	nd	nd
	27/04/2023	131	Hard	nd	nd	<u>10</u>	nd	<u>10</u>	4	nd	2	11	nd
	25/08/2020	-	-	nd	nd	nd	-	-	nd	nd	2	<u>18</u> 7	nd
MW01	24/02/2022	-	-	nd	nd	nd	-	-	nd	nd	nd	nd	nd
	27/04/2023	488	Extremely hard	nd	nd	nd	nd	nd	nd	nd	2	nd	nd
	25/08/2020	-	-	5	nd	nd	-	-	nd	<u>13</u>	3	5	nd
MW02	5/07/2021	-	-	1	nd	nd	-	-	nd	nd	2	<u>8</u>	nd
	26/04/2023	214	- Verv hard	7	nd	nd	nd	nd	nd	nd	2	nd	nd
	25/08/2020	-	-	nd	nd	nd	-	-	1	nd	nd	33	nd
MW03	8/07/2021	-	-	nd	nd	<u>2</u>	-	-	nd	nd	nd	6	nd
11005	23/02/2022	-	-	nd	nd	<u>2</u>	-	-	nd	nd	nd	7	nd
	26/04/2023	160	Hard	nd	nd	3	nd	nd	nd	nd	nd	nd	nd
	8/07/2020	-	-	nd	nd	3	-	-	nd	nd	nd	<u>20</u> nd	nd
MW04	23/02/2022	-	-	nd	nd	18	-	-	nd	nd	nd	nd	nd
	26/04/2023	134	Hard	nd	nd	12	nd	<u>20</u>	2	nd	1	nd	nd
	25/08/2020	-	-	nd	nd	<u>1</u>	-	-	nd	nd	nd	46	nd
MW05	8/07/2021	-	-	nd	nd	<u>1</u>	-	-	2	nd	nd	nd	nd
	25/02/2022	- 114	- Moderate	nd	nd	7 2	- nd	- nd	nd	nd	nd	nd	nd
Mulac	26/08/2020	-	-	nd	nd	nd	-	-	nd	nd	2	20	nd
MW06	7/07/2021	-	-	1	nd	nd	-	-	nd	nd	4	nd	nd
	26/08/2020	-	-	nd	nd	nd	-	-	nd	nd	nd	<u>14</u>	nd
MW07	7/07/2021	-	-	nd	nd	nd	-	-	nd	nd	nd	nd	nd
	25/02/2022	- 198	- Verv hard	nd	nd	nd	- nd	- nd	nd	nd	nd	nd	nd
	26/08/2020	-	-	nd	nd	1	-	-	1	2	nd	nd	nd
MW08	7/07/2021	-	-	nd	nd	<u>3</u>	-	-	nd	nd	nd	<u>9</u>	nd
	23/02/2022	-	-	nd	nd	nd	-	-	nd	nd	nd	nd	nd
MW09	5/07/2021	-	-	nd	nd	<u>14</u>	-	-	nd	nd	nd	6 	nd
141009	24/02/2022	- 97	- Moderate	nd	nd	<u>2</u> 5	- nd	nd	nd	nd	nd	nd	nd
	5/07/2021	-	-	nd	nd	nd	-	-	nd	nd	nd	nd	nd
MW10	24/02/2022	-	-	nd	nd	nd	-	-	nd	nd	nd	nd	nd
	27/04/2023	26	Soft	nd	nd	2	nd	nd	nd	nd	nd	nd	nd
MW11	7/07/2021	-	-	nd	nd	<u>32</u> 11	-	-	nd	nd	nd	nd	nd
MW12	23/02/2022	-	-	nd	nd	10	-	-	nd	3	nd	nd	nd
	26/04/2023	70	Moderate	nd	nd	<u>5</u>	nd	nd	nd	nd	nd	nd	nd
	5/07/2021	-	-	nd	nd	4	-	-	nd	nd	nd	nd	nd
MW13	23/02/2022	-	-	nd	nd	5	-	-	nd	nd	nd	nd	nd
MW101	27/04/2023	166	Hard	nd	nd	nd	nd	nd	1	nd	2	nd	nd
MW102	27/04/2023	356	Very hard	nd	nd	2	nd	nd	nd	nd	nd	nd	nd
MW103	27/04/2023	186	Very hard	nd	nd	nd	nd	nd	2	nd	2	6	nd
Statistics													
Samples analysed				58	58	58	15	15	58	58	58	58	58
Detects			5	0	33	0	3	7	4	13	19	0	
Maximum			9% 7	<0.1	5/% 41	<10	20%	4	13	22% 4	33% 50	<0.1	
Minimum			<1	<0.1	<1	<10	<10	<1	<1	<1	<5	<0.1	
Criteria - Commercia	al / Industrial					=							
ANZG (2018) 95% I	evel of Species Protection	1		13**	0.2	1*	3.3	1	1.4	3.4	11	8	0.06***
ANZG (2018) 95% L	evel of Species Protection	(Water hardness	s correction	-	0.97		14 1	_		32.2	49.5	36.0	
applied) GILs Drinking Water				10	2	50	50	50	2,000	10	20	-	1

Sample Identification	Date Sampled	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Phenol	Pentachlorophenol	2-Chlorophenol	Total PAHs	B(a)P TEQ
LO	R	1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	2	1	0.5	0.5
Analytical - Groundwater																						
\M/1	24/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
VVI	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	24/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W/2	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
WZ	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	24/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
VV 5	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW01	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
HWUI	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	25/08/2020	nd	nd	nd	nd	<u>28.9</u>	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	28.9	nd
MW02	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
111102	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW03	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
11005	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
11004	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW05	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
0000	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MWOG	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MWUO	7/07/2021	8.8	nd	1	2.3	1.6	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	13.7	nd

Table 12: Historical Groundwater Analytical Summary - PAHs and Phenols (µg/L)

Sample Identification	Date Sampled	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Phenol	Pentachlorophenol	2-Chlorophenol	Total PAHs	B(a)P TEQ
LO	R	1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1	1	2	1	0.5	0.5
Analytical - Groundwater																						
	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW/07	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MWU7	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW08	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW09	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW10	24/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW11	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW12	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW13	23/02/2022	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
	26/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW101	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW102	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
MW103	27/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-	-	-	nd	nd
Statistics				-	-				-		-		-								-	
Samples analysed		55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	12	12	12	55	55
Detects		1	0	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
% detect		2%	0%	2%	2%	4%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%
Maximum		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<2	<1	<0.5	<0.5
Minimum		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<1	<1	<1	<1	<2	<1	<0.5	<0.5
Criteria - Commercial / In	dustrial																					
ANZG (2018) 95% Level o	f Species Protection	16	-	-	-	0.6***	0.01***	-	-	-	-	-	-	0.1***	-	-	-	-	-	-	-	-
GILs Drinking Water		-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	10	300	-	-

Table 12: Historical Groundwater Analytical Summary - PAHs and Phenols (µg/L)

Table 13. Historical (	Groundwater	Analytical	Summary -	VOCe	(un /1)
TADIE 13. HISTORICAL	nounuwater	Allaivuucai	Summary -		

Table 13: Historical Groundwater Analytical Summary - VOCs (µg/L)																			
Sample Identification	Date Sampled	1,2-dichloroethane	cis-1.2-Dichloroethene	Chloroethane	Chloroform	Bromodichloromethane	Chloromethane	Trichloroethene	Tetrachloroethene	Vinyl chloride	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	1.2.4-Trimethylbenzene	Bromobenzene	Chlorobenzene	Methyl Ethyl Ketone	2-hexanone (MBK)	p-Isopropyltoluene
LOR		5	5	50	5	5	50	5	5	50	5	5	5	5	5	5	50	50	5
Analytical - Groundwate	r																		
W1	24/08/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W1	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	24/08/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
W2	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	24/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	27/04/2023	nu	nu	nu	nu	-	nu	nu	nu	nu	nu	nu	nu	-	nu	na	nu	nu	nu
	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
W3	24/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	25/08/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW01	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	24/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	25/04/2023	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	- nd	nd	nd	nd	nd	nd
	5/07/2021	nd	nd	nd	27	11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW02	23/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	25/08/2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW03	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
23/02/2022	23/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1000	8/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
23/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW05	8/07/2021	nd	nd	nd	nd	na	nd	nd	nd	nd	nd	nd	nd	na	nd	nd	nd	nd	na
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MWOG	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MWUG	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	14	nd	nd	nd	nd	nd
	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW07	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	_	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW08	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
111100	23/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MW/09	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW10	24/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	27/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MW11	7/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW12	23/02/2022	nd	5	nd	nd	-	nd	8	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
	5/07/2021	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW13	23/02/2022	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MW/101	26/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MW101 MW102	27/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
MW103	27/04/2023	nd	nd	nd	nd	-	nd	nd	nd	nd	nd	nd	nd	-	nd	nd	nd	nd	nd
-																		_	
Samples analysed		51	51	51	51	22	51	51	51	51	51	51	51	22	51	51	51	51	51
Detects		0	1	0	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0
maximum		0%	2%	0%	2%	5%	0%	2%	0%	0%	0%	0%	0%	5%	0%	0%	0%	0%	0%
Minimum		<5	<5	<50	<5	<5	< 50	<5	<5	<50	<5	<5	<5	<5	<5	<5	< 50	< 50	<5
Criteria - Commercial /	Industrial			.50								.5			,5				
ANZG (2018) 95% Leve	l of Species	1 000			370						160	260	60	85		55			
Protection		1,300	-	-	370	-	-	-	-	-	100	200	00	00	-	200	-	-	-
GILS DRINKING Water			60	-	-	250	4			0.3	1,500	-	40		-	300		-	-

Sample Identification	Date Sampled	Endosulfan (sum)	Heptachlor	Total Chlordane (sum)	Endrin	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Hexachlorobenzene (HCB)
LC	DR	0.01	0.005	0.01	0.01	0.01	0.01	0.01	0.01
Analytical - Groundwater				-				-	
W1	24/08/2020	-	-	-	-	-	-	-	-
W2	24/08/2020	-	-	-	-	-	-	-	-
W3	24/08/2020	-	-	-	-	-	-	-	-
MW01	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
MW02	25/08/2020	-	-	-	-	-	-	-	-
MW03	25/08/2020	-	-	-	-	-	-	-	-
MW04	25/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
MW05	25/08/2020	-	-	-	-	-	-	-	-
MW06	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
MW07	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
MW08	26/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
Statistics									
Samples analysed	5	5	5	5	5	5	5	5	
Detects		0	0	0	0	0	0	0	0
% detect	0%	0%	0%	0%	0%	0%	0%	0%	
Maximum	< 0.01	<0.005	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	
Minimum	<0.01	<0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Criteria - Commercial / Indu	strial								
ANZG (2018) 95% Level of 9	Species Protection	0.03***	0.01***	0.03***	0.01***	-	-	0.006***	-
GILs Drinking Water	20	-	2	-	-	3	-	-	

Table 14: Historical Groundwater Analytical Summary - OCPs (µg/L)

Table 15: Historical Groundwater analytical summary, PFAS ( $\mu g/L$ )

		Perfluor	oalkyl Sulfor	nic Acids		Perfluoro	alkyl Carbox	ylic Acids		Fli	uorotelomer	Sulfonic Aci	ds	PFAS	Sums
Monitoring well / sample location	Date / time sampled	Perfluorobutane sulfonic acid (PFBS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHXS and PFOS	Sum of PFAS (WA DER List)
LO	Rs	0.02	0.02	0.01	0.1	0.02	0.02	0.02	0.01	0.05	0.05	0.05	0.05	0.01	0.01
Analytical - Groundwater															
W2	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
W3	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
MW01	27/4/23	nd	0.05	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05	0.05
MW02	26/4/23	nd	0.04	<u>0.08</u>	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.12	0.12
MW03	26/4/23	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW04	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW05	26/4/23	0.18	0.89	<u>2.16</u>	nd	0.05	0.18	nd	0.04	nd	nd	nd	nd	3.05	3.5
MW07	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW09	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW10	27/4/23	nd	0.01	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.01	0.01
MW12	26/4/23	nd	0.03	<u>0.02</u>	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.05	0.05
MW13	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW101	26/4/23	nd	0.04	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.04	0.04
MW102	26/4/23	nd	0.02	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.02	0.02
MW103	26/4/23	0.03	0.11	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.11	0.14
Statistics															
Samples analysed		15	15	15	15	15	15	15	15	15	15	15	15	15	15
Detects		2	14	3	0	1	1	0	1	0	0	0	0	14	14
% detect		13%	93%	20%	0%	7%	7%	0%	7%	0%	0%	0%	0%	93%	93%
Maximum		0.18	<u>0.89</u>	<u>2.16</u>	<0.1	0.05	0.18	<0.02	0.04	<0.05	<0.05	<0.05	<0.05	3.05	3.5
Minimum		<0.02	<0.01	<0.01	<0.1	<0.02	<0.02	<0.02	< 0.01	<0.05	<0.05	<0.05	<0.05	<0.01	< 0.01
Criteria - Freshwater															
¹ Drinking Water (Australia 2019)	an Gov. Dept of Health	-	0.07	0.07	-	-	-	-	0.56	-	-	-	-	0.07	-
² Recreational criteria (NH	MRC, 2019)	-	2	2	-	-	-	-	10	-	-	-	-	2	-
Ecological (Freshwater 99 (NEMP 2020 V2.0)***	% Protection of species)	-	-	0.00023	-	-	-	-	19	-	-	-	-	-	-

Sample Identification	Date Sampled	Redox as Eh (mV)	Dissolved Oxygen (mg/L)	Sulfate as SO4 - Turbidimetric	Manganese (mg/L)	Ferrous Iron	Nitrate as N	Methane (µg/L)		
LOR		-	-	1	0.001	0.05	0.01	10		
Analytical - Groundwater										
MW01	24/02/2022	239.6	2.56	40	-	nd	0.07	nd		
MWUI	27/04/2023	99.2	3.17	33	0.359	nd	0.06	nd		
	23/02/2022	138.7	3.37	18	-	0.78	nd	656		
MW02	26/04/2023	92.3	3.12	18	1.79	2.8	0.35	848		
MW04	23/02/2022	227.3	4.21	170	-	nd	0.74	nd		
MW04	26/04/2023	85.2	4.68	122	nd	nd	3.78	nd		
MWOE	23/02/2022	223.6	3.99	134	-	nd	4.25	nd		
MWUS	26/04/2023	98.2	4.28	151	nd	3.98	1.80	nd		
MW06	27/04/2023	101.2	2.78	1	0.975	nd	0.03	637		
MW07	26/04/2023	85.2	4.88	67	nd	nd	18.9	nd		
MWOO	24/02/2022	241.1	4.17	109	-	nd	1.63	nd		
MW09	26/04/2023	80.1	3.30	118	0.018	nd	1.06	nd		
MW/10	24/02/2022	221.5	2.56	42	-	nd	3.89	nd		
MWIU	27/04/2023	67.1	3.60	40	nd	nd	1.62	nd		
MW12	23/02/2022	195.9	3.62	62	-	nd	3.45	nd		
1414412	26/04/2023	101.9	3.68	57	nd	nd	2.31	nd		
MW13	26/04/2023	79.2	3.88	37	nd	nd	4.09	nd		
MW101	27/04/2023	107.2	3.54	135	1.5	nd	23.1	nd		
MW102	27/04/2023	116.2	4.12	114	0.018	nd	29.7	nd		
MW103	27/04/2023	106.7	3.11	34	0.398	nd	1.01	nd		

### Table 16: Historical Groundwater Analytical Summary - Natural Attenuation Parameters

# Appendix H

# **Laboratory Analytical Certificates**



#### **CERTIFICATE OF ANALYSIS** Page Work Order : ES2313346 : 1 of 43 Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney Contact : MR DREW WOOD Contact : Karen Coveny Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO Box 322 **NEWCASTLE 2300** Telephone : +61 02 6685 7811 Telephone : +61-2-8784 8555 Project : 20025.76 **Date Samples Received** : 21-Apr-2023 19:40 Order number : 20025.76 Date Analysis Commenced : 28-Apr-2023 C-O-C number Issue Date : -----: 04-May-2023 16:29 Sampler : ZAC LAUGHLAN Site : -----

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 78

· 66

: SYBQ/409/21

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

## Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW



## **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Lead on sample ES2313346 # 014. Confirmed by re-digestion and reanalysis.
- EG005T: Poor precision was obtained for Zinc on sample ES2313346 # 057. Confirmed by re-digestion and reanalysis.
- EG035: Positive Mercury result ES2313346 #6 has been confirmed by reanalysis.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Analysis of asbestos from swabs and tapes is not covered under the current scope of NATA accreditation.
- EP075(SIM): Poor surrogate recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EA200: N/A Not Applicable
# Page : 3 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS101	SS102	SS103	SS104	SS105					
	Sampli	ng date / time	18-Apr-2023 00:00									
Compound CAS Number	LOR	Unit	ES2313346-001	ES2313346-002	ES2313346-003	ES2313346-004	ES2313346-005					
			Result	Result	Result	Result	Result					
EA055: Moisture Content (Dried @ 105-110°C)	EA055: Moisture Content (Dried @ 105-110°C)											
Moisture Content	1.0	%	15.9	11.4	15.3	24.2	7.6					
EG005(ED093)T: Total Metals by ICP-AES												
Arsenic 7440-38-2	5	mg/kg	34	27	29	144	26					
Cadmium 7440-43-9	1	mg/kg	6	<1	<1	5	8					
Chromium 7440-47-3	2	mg/kg	66	27	31	46	54					
Copper 7440-50-8	5	mg/kg	273	143	117	427	488					
Lead 7439-92-1	5	mg/kg	623	222	250	1130	1130					
Nickel 7440-02-0	2	mg/kg	54	16	14	45	35					
<b>Zinc</b> 7440-66-6	5	mg/kg	664	249	202	866	836					
EG035T: Total Recoverable Mercury by FIMS												
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1					
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons												
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Phenanthrene 85-01-8	0.5	mg/kg	0.8	<0.5	<0.5	1.0	0.8					
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	0.7					
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	0.7					
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Chrysene 218-01-9	0.5	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5					
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	1.3	<0.5	<0.5	2.2	2.2					
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5					
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6					
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2					
EP080/071: Total Petroleum Hydrocarbons												
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10					

# Page : 4 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			SS101	SS102	SS103	SS104	SS105			
		Sampli	ng date / time	18-Apr-2023 00:00							
Compound	CAS Number	LOR	Unit	ES2313346-001	ES2313346-002	ES2313346-003	ES2313346-004	ES2313346-005			
				Result	Result	Result	Result	Result			
EP080/071: Total Petroleum Hydrocarbons - Continued											
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
C15 - C28 Fraction		100	mg/kg	450	<100	140	280	3000			
C29 - C36 Fraction		100	mg/kg	520	<100	240	380	3390			
^ C10 - C36 Fraction (sum)		50	mg/kg	970	<50	380	660	6390			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions											
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10			
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10			
(F1)											
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	70			
>C16 - C34 Fraction		100	mg/kg	840	110	310	520	5540			
>C34 - C40 Fraction		100	mg/kg	260	<100	150	260	1820			
^ >C10 - C40 Fraction (sum)		50	mg/kg	1100	110	460	780	7430			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	70			
(F2)											
EP080: BTEXN											
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1			
EP075(SIM)S: Phenolic Compound Su	irrogates										
Phenol-d6	13127-88-3	0.5	%	72.7	80.4	75.0	74.2	84.6			
2-Chlorophenol-D4	93951-73-6	0.5	%	77.6	86.7	80.0	78.9	91.3			
2.4.6-Tribromophenol	118-79-6	0.5	%	60.0	66.0	57.4	61.8	85.0			
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.5	%	70.6	76.8	74.5	77.2	77.8			
Anthracene-d10	1719-06-8	0.5	%	68.1	74.7	70.5	67.6	71.8			
4-Terphenyl-d14	1718-51-0	0.5	%	74.8	83.4	80.5	76.5	77.4			
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.2	%	97.9	98.2	98.1	106	104			
Toluene-D8	2037-26-5	0.2	%	90.9	94.8	94.1	99.2	100			

Page	5 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS101	SS102	SS103	SS104	SS105	
		Sampli	ng date / time	18-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-001	ES2313346-002	ES2313346-003	ES2313346-004	ES2313346-005	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	99.4	105	100	104	104	

# Page : 6 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS106	SS107	SS108	SS109	SS110			
	Sampl	ing date / time	18-Apr-2023 00:00							
Compound CAS Number	r LOR	Unit	ES2313346-006	ES2313346-007	ES2313346-008	ES2313346-009	ES2313346-010			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	5.3	19.8	4.6	8.8	9.8			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38	2 5	mg/kg	63	61	11	11	20			
Cadmium 7440-43	9 1	mg/kg	15	<1	2	2	3			
Chromium 7440-47	3 2	mg/kg	130	22	25	71	45			
<b>Copper</b> 7440-50	8 5	mg/kg	288	735	205	209	1980			
Lead 7439-92	1 5	mg/kg	537	475	266	322	2260			
Nickel 7440-02	0 2	mg/kg	51	18	14	19	45			
<b>Zinc</b> 7440-66	6 5	mg/kg	672	419	200	417	883			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97	6 0.1	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20	3 0.5	mg/kg	<0.5	<0.5	<0.5	1.0	<0.5			
Acenaphthylene 208-96	8 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32	9 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73	7 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01	8 0.5	mg/kg	2.4	1.1	<0.5	2.9	<0.5			
Anthracene 120-12	7 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44	0 0.5	mg/kg	2.2	1.7	<0.5	0.9	<0.5			
Pyrene 129-00	0 0.5	mg/kg	1.8	1.4	<0.5	0.8	<0.5			
Benz(a)anthracene 56-55	3 0.5	mg/kg	0.5	1.0	<0.5	<0.5	<0.5			
Chrysene 218-01	9 0.5	mg/kg	0.6	1.1	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82	3 0.5	mg/kg	0.5	2.7	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08	9 0.5	mg/kg	<0.5	0.7	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32	8 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39	5 0.5	mg/kg	<0.5	0.7	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70	3 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24	2 0.5	mg/kg	<0.5	0.6	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	8.0	11.0	<0.5	5.6	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene TEQ (half LOR)	- 0.5	mg/kg	0.6	1.0	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.5	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 7 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			SS106	SS107	SS108	SS109	SS110		
		Sampli	ng date / time	18-Apr-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2313346-006	ES2313346-007	ES2313346-008	ES2313346-009	ES2313346-010		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	60	<50	<50	80	<50		
C15 - C28 Fraction		100	mg/kg	1760	440	240	830	100		
C29 - C36 Fraction		100	mg/kg	2710	650	400	510	150		
^ C10 - C36 Fraction (sum)		50	mg/kg	4530	1090	640	1420	250		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	120	<50	<50	160	<50		
>C16 - C34 Fraction		100	mg/kg	3530	880	510	1130	200		
>C34 - C40 Fraction		100	mg/kg	1650	500	220	290	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	5300	1380	730	1580	200		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	120	<50	<50	160	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Su	irrogates									
Phenol-d6	13127-88-3	0.5	%	71.1	79.3	84.5	79.0	77.4		
2-Chlorophenol-D4	93951-73-6	0.5	%	76.7	84.2	91.0	85.0	82.8		
2.4.6-Tribromophenol	118-79-6	0.5	%	71.3	72.7	73.7	64.8	57.8		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	66.7	78.2	79.0	76.3	75.3		
Anthracene-d10	1719-06-8	0.5	%	58.0	73.3	76.4	69.5	72.5		
4-Terphenyl-d14	1718-51-0	0.5	%	65.5	81.1	82.8	81.5	81.9		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	112	97.9	104	105	102		
Toluene-D8	2037-26-5	0.2	%	109	91.6	100	99.2	96.6		

Page	: 8 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS106	SS107	SS108	SS109	SS110	
		Sampli	ng date / time	18-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-006	ES2313346-007	ES2313346-008	ES2313346-009	ES2313346-010	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	113	95.3	106	102	101	

# Page : 9 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS111	SS112	SS113	SS114	SS115			
	Sampling date / time			18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00			
Compound CAS Number	LOR	Unit	ES2313346-011	ES2313346-012	ES2313346-013	ES2313346-014	ES2313346-015			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	15.0	8.3	7.9	7.8	6.9			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	18	163	80	29	97			
Cadmium 7440-43-9	1	mg/kg	2	20	7	1	3			
Chromium 7440-47-3	2	mg/kg	39	206	103	52	75			
Copper 7440-50-8	5	mg/kg	158	2280	855	394	777			
Lead 7439-92-1	5	mg/kg	498	640	302	523	294			
Nickel 7440-02-0	2	mg/kg	24	77	52	19	24			
<b>Zinc</b> 7440-66-6	5	mg/kg	552	2520	989	761	822			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	3.1	<0.5	<0.5	0.7	0.8			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	2.4	<0.5	<0.5	<0.5	<0.5			
Pyrene 129-00-0	0.5	mg/kg	2.3	<0.5	<0.5	<0.5	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	1.6	<0.5	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	1.7	<0.5	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	15.3	<0.5	<0.5	0.7	0.8			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	1.4	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.7	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 10 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS111	SS112	SS113	SS114	SS115		
		Sampl	ing date / time	18-Apr-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2313346-011	ES2313346-012	ES2313346-013	ES2313346-014	ES2313346-015		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	60	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	820	230	200	270	780		
C29 - C36 Fraction		100	mg/kg	600	320	290	280	980		
^ C10 - C36 Fraction (sum)		50	mg/kg	1480	550	490	550	1760		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	120	<50	<50	<50	50		
>C16 - C34 Fraction		100	mg/kg	1170	450	390	460	1460		
>C34 - C40 Fraction		100	mg/kg	370	220	190	180	640		
^ >C10 - C40 Fraction (sum)		50	mg/kg	1660	670	580	640	2150		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	120	<50	<50	<50	50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Su	urrogates									
Phenol-d6	13127-88-3	0.5	%	80.2	77.3	79.8	82.9	77.9		
2-Chlorophenol-D4	93951-73-6	0.5	%	84.9	81.8	86.6	88.6	84.6		
2.4.6-Tribromophenol	118-79-6	0.5	%	71.7	59.7	65.6	65.9	67.7		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	74.9	89.6	90.5	95.3	89.7		
Anthracene-d10	1719-06-8	0.5	%	69.9	72.2	74.1	76.6	69.5		
4-Terphenyl-d14	1718-51-0	0.5	%	79.9	80.2	81.1	85.2	78.6		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	100	102	118	115	109		
Toluene-D8	2037-26-5	0.2	%	94.7	96.5	114	116	104		

Page	: 11 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS111	SS112	SS113	SS114	SS115	
		Sampli	ng date / time	18-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-011	ES2313346-012	ES2313346-013	ES2313346-014	ES2313346-015	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	99.5	101	121	117	106	

# Page : 12 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS116	SS117	SS118	SS119	SS120				
	Sampling date / time			18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00				
Compound CAS Number	LOR	Unit	ES2313346-016	ES2313346-017	ES2313346-018	ES2313346-019	ES2313346-020				
			Result	Result	Result	Result	Result				
EA055: Moisture Content (Dried @ 105-110°C)	EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	3.2	32.0	6.3	17.2	29.4				
EG005(ED093)T: Total Metals by ICP-AES											
Arsenic 7440-38-2	5	mg/kg	8	22	7	29	17				
Cadmium 7440-43-9	1	mg/kg	<1	2	<1	3	1				
Chromium 7440-47-3	2	mg/kg	34	86	10	44	24				
Copper 7440-50-8	5	mg/kg	231	253	36	196	172				
Lead 7439-92-1	5	mg/kg	234	457	102	902	650				
Nickel 7440-02-0	2	mg/kg	13	41	6	32	19				
Zinc 7440-66-6	5	mg/kg	431	790	136	658	407				
EG035T: Total Recoverable Mercury by FIMS											
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1				
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons											
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	3.0	0.5	1.8	1.0				
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	1.4	<0.5	1.1	0.5				
Pyrene 129-00-0	0.5	mg/kg	<0.5	1.1	<0.5	1.1	<0.5				
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	0.6	<0.5	0.5	<0.5				
Chrysene 218-01-9	0.5	mg/kg	<0.5	0.8	<0.5	0.9	<0.5				
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	0.8	<0.5	0.9	<0.5				
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	7.7	0.5	6.3	1.5				
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.7	0.6	0.7	0.6				
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2				
EP080/071: Total Petroleum Hydrocarbons											
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10				

# Page : 13 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS116	SS117	SS118	SS119	SS120		
		Sampli	ng date / time	18-Apr-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2313346-016	ES2313346-017	ES2313346-018	ES2313346-019	ES2313346-020		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	200	680	<100	480	260		
C29 - C36 Fraction		100	mg/kg	240	580	<100	460	220		
^ C10 - C36 Fraction (sum)		50	mg/kg	440	1310	<50	940	480		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	80	<50	50	<50		
>C16 - C34 Fraction		100	mg/kg	340	1070	130	790	380		
>C34 - C40 Fraction		100	mg/kg	160	350	<100	300	150		
^ >C10 - C40 Fraction (sum)		50	mg/kg	500	1500	130	1140	530		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	80	<50	50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Surro	ogates									
Phenol-d6	13127-88-3	0.5	%	79.4	68.8	81.2	79.5	75.7		
2-Chlorophenol-D4	93951-73-6	0.5	%	83.2	75.9	89.0	83.8	82.5		
2.4.6-Tribromophenol	118-79-6	0.5	%	54.6	57.6	65.1	64.6	62.0		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	88.4	87.6	92.7	92.4	89.9		
Anthracene-d10	1719-06-8	0.5	%	72.0	67.9	74.0	69.9	71.3		
4-Terphenyl-d14	1718-51-0	0.5	%	79.4	77.6	84.3	81.7	80.7		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	106	96.2	78.3	101	104		
Toluene-D8	2037-26-5	0.2	%	102	90.8	81.6	93.5	94.5		

Page	: 14 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS116	SS117	SS118	SS119	SS120	
		Sampli	ng date / time	18-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-016	ES2313346-017	ES2313346-018	ES2313346-019	ES2313346-020	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	108	94.8	95.5	102	98.1	

# Page : 15 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS121	SS122	SS123	SS124	SS125			
	Sampling date / time			18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00			
Compound CAS Number	LOR	Unit	ES2313346-021	ES2313346-022	ES2313346-023	ES2313346-024	ES2313346-025			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	31.4	27.8	30.0	36.7	7.2			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	59	24	14	26	7			
Cadmium 7440-43-9	1	mg/kg	1	<1	<1	3	<1			
Chromium 7440-47-3	2	mg/kg	18	23	16	22	28			
Copper 7440-50-8	5	mg/kg	176	115	220	170	126			
Lead 7439-92-1	5	mg/kg	324	226	274	344	142			
Nickel 7440-02-0	2	mg/kg	17	14	20	29	10			
<b>Zinc</b> 7440-66-6	5	mg/kg	337	356	200	470	135			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	0.9	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5			
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	3.7	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 16 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS121	SS122	SS123	SS124	SS125		
		Sampli	ng date / time	18-Apr-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2313346-021	ES2313346-022	ES2313346-023	ES2313346-024	ES2313346-025		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	190	<100	110	340	790		
C29 - C36 Fraction		100	mg/kg	360	<100	<100	260	2000		
^ C10 - C36 Fraction (sum)		50	mg/kg	550	<50	110	600	2790		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	480	<100	180	520	2260		
>C34 - C40 Fraction		100	mg/kg	260	<100	<100	190	1740		
^ >C10 - C40 Fraction (sum)		50	mg/kg	740	<50	180	710	4000		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Surr	rogates									
Phenol-d6	13127-88-3	0.5	%	69.1	68.4	66.4	67.0	76.9		
2-Chlorophenol-D4	93951-73-6	0.5	%	76.5	79.5	68.2	69.6	77.3		
2.4.6-Tribromophenol	118-79-6	0.5	%	71.3	71.7	67.4	65.9	69.6		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	75.9	84.6	81.0	79.0	82.1		
Anthracene-d10	1719-06-8	0.5	%	71.7	82.6	79.0	76.7	76.2		
4-Terphenyl-d14	1718-51-0	0.5	%	79.4	95.4	92.1	88.4	91.3		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	65.3	77.5	88.6	91.6	97.9		
Toluene-D8	2037-26-5	0.2	%	75.3	94.3	87.9	90.8	98.0		

Page	: 17 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS121	SS122	SS123	SS124	SS125	
		Sampli	ng date / time	18-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-021	ES2313346-022	ES2313346-023	ES2313346-024	ES2313346-025	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	76.5	93.8	84.1	85.6	100	

# Page : 18 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS126	SS127	SS128	SS129	SS130				
	Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00				
Compound CAS Number	LOR	Unit	ES2313346-026	ES2313346-027	ES2313346-028	ES2313346-029	ES2313346-030				
,			Result	Result	Result	Result	Result				
EA055: Moisture Content (Dried @ 105-110°C)	EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	8.1	4.3	7.0	9.9	23.5				
EG005(ED093)T: Total Metals by ICP-AES											
Arsenic 7440-38-2	5	mg/kg	6	<5	10	13	6				
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1				
Chromium 7440-47-3	2	mg/kg	42	29	43	71	18				
Copper 7440-50-8	5	mg/kg	123	138	97	182	231				
Lead 7439-92-1	5	mg/kg	243	76	112	551	443				
Nickel 7440-02-0	2	mg/kg	64	49	72	24	12				
Zinc 7440-66-6	5	mg/kg	272	219	206	606	225				
EG035T: Total Recoverable Mercury by FIMS											
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1				
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons											
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	0.9	<0.5				
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	0.9	<0.5				
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6				
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2				
EP080/071: Total Petroleum Hydrocarbons											
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10				

# Page : 19 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS126	SS127	SS128	SS129	SS130		
		Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00		
Compound	CAS Number	LOR	Unit	ES2313346-026	ES2313346-027	ES2313346-028	ES2313346-029	ES2313346-030		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	230	200		
C29 - C36 Fraction		100	mg/kg	120	130	<100	240	230		
^ C10 - C36 Fraction (sum)		50	mg/kg	120	130	<50	470	430		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	170	120	120	400	370		
>C34 - C40 Fraction		100	mg/kg	<100	160	<100	220	210		
^ >C10 - C40 Fraction (sum)		50	mg/kg	170	280	120	620	580		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Surre	ogates									
Phenol-d6	13127-88-3	0.5	%	67.0	69.6	70.5	63.9	65.4		
2-Chlorophenol-D4	93951-73-6	0.5	%	71.6	78.2	78.1	64.2	72.3		
2.4.6-Tribromophenol	118-79-6	0.5	%	59.0	65.2	67.6	50.7	59.8		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	76.7	79.6	80.0	79.0	78.3		
Anthracene-d10	1719-06-8	0.5	%	71.9	77.7	78.3	76.3	75.4		
4-Terphenyl-d14	1718-51-0	0.5	%	85.0	89.8	89.3	92.7	89.4		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.1	93.0	84.2	106	89.3		
Toluene-D8	2037-26-5	0.2	%	109	81.9	93.4	93.8	85.0		

Page	: 20 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS126	SS127	SS128	SS129	SS130	
		Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313346-026	ES2313346-027	ES2313346-028	ES2313346-029	ES2313346-030	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	98.8	102	95.4	70.1	91.3	

# Page : 21 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL		Sample ID	SS131	SS132	SS133	SS134	SS135			
	Sampli	ng date / time	19-Apr-2023 00:00							
Compound CAS Number	LOR	Unit	ES2313346-031	ES2313346-032	ES2313346-033	ES2313346-034	ES2313346-035			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	14.6	18.3	26.5	9.5	8.4			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	13	5	6	6	<5			
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1			
Chromium 7440-47-3	2	mg/kg	55	16	31	16	18			
Copper 7440-50-8	5	mg/kg	428	111	150	210	165			
Lead 7439-92-1	5	mg/kg	779	216	436	710	539			
Nickel 7440-02-0	2	mg/kg	14	8	9	9	8			
<b>Zinc</b> 7440-66-6	5	mg/kg	216	149	354	449	192			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	0.9	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	1.3	<0.5			
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	1.2	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	4.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 22 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS131	SS132	SS133	SS134	SS135			
		Sampli	ng date / time	19-Apr-2023 00:00							
Compound	CAS Number	LOR	Unit	ES2313346-031	ES2313346-032	ES2313346-033	ES2313346-034	ES2313346-035			
				Result	Result	Result	Result	Result			
EP080/071: Total Petroleum Hydrocarbons - Continued											
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
C15 - C28 Fraction		100	mg/kg	<100	<100	120	<100	<100			
C29 - C36 Fraction		100	mg/kg	<100	<100	170	<100	<100			
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	290	<50	<50			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions											
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10			
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10			
(F1)											
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
>C16 - C34 Fraction		100	mg/kg	110	<100	250	130	100			
>C34 - C40 Fraction		100	mg/kg	<100	<100	160	<100	<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg	110	<50	410	130	100			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50			
(F2)											
EP080: BTEXN											
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1			
EP075(SIM)S: Phenolic Compound Su	rrogates										
Phenol-d6	13127-88-3	0.5	%	69.2	69.1	68.9	73.0	66.3			
2-Chlorophenol-D4	93951-73-6	0.5	%	75.7	77.0	77.8	77.2	74.5			
2.4.6-Tribromophenol	118-79-6	0.5	%	58.9	61.0	63.1	61.5	57.3			
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.5	%	79.4	80.5	80.0	82.7	79.8			
Anthracene-d10	1719-06-8	0.5	%	76.8	77.9	77.8	78.9	76.3			
4-Terphenyl-d14	1718-51-0	0.5	%	88.7	90.7	89.8	91.4	89.0			
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.2	%	90.7	81.5	77.0	86.9	72.8			
Toluene-D8	2037-26-5	0.2	%	98.6	94.3	97.3	98.5	89.5			

Page	: 23 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS131	SS132	SS133	SS134	SS135	
		Sampli	ng date / time	19-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-031	ES2313346-032	ES2313346-033	ES2313346-034	ES2313346-035	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	106	91.0	96.5	103	88.2	

# Page : 24 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS136	SS137	SS138	SS139	SS140				
	Sampling date / time			19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00				
Compound CAS Number	LOR	Unit	ES2313346-036	ES2313346-037	ES2313346-038	ES2313346-039	ES2313346-040				
			Result	Result	Result	Result	Result				
EA055: Moisture Content (Dried @ 105-110°C)											
Moisture Content	1.0	%	5.9	1.8	4.1	2.2	12.0				
EG005(ED093)T: Total Metals by ICP-AES											
Arsenic 7440-38-2	5	mg/kg	7	<5	<5	<5	<5				
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1				
Chromium 7440-47-3	2	mg/kg	21	10	20	7	16				
Copper 7440-50-8	5	mg/kg	210	12	15	94	68				
Lead 7439-92-1	5	mg/kg	352	15	23	90	54				
Nickel 7440-02-0	2	mg/kg	14	6	7	7	38				
<b>Zinc</b> 7440-66-6	5	mg/kg	236	52	52	179	128				
EG035T: Total Recoverable Mercury by FIMS											
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1				
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons											
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluoranthene 206-44-0	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5				
Pyrene 129-00-0	0.5	mg/kg	1.1	<0.5	<0.5	<0.5	<0.5				
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Chrysene 218-01-9	0.5	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5				
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5				
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	3.4	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6				
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2				
EP080/071: Total Petroleum Hydrocarbons											
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10				

# Page : 25 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS136	SS137	SS138	SS139	SS140			
		Sampli	ng date / time	19-Apr-2023 00:00							
Compound	CAS Number	LOR	Unit	ES2313346-036	ES2313346-037	ES2313346-038	ES2313346-039	ES2313346-040			
				Result	Result	Result	Result	Result			
EP080/071: Total Petroleum Hydrocarbons - Continued											
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
C15 - C28 Fraction		100	mg/kg	140	<100	<100	<100	<100			
C29 - C36 Fraction		100	mg/kg	140	<100	<100	<100	200			
^ C10 - C36 Fraction (sum)		50	mg/kg	280	<50	<50	<50	200			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions											
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10			
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10			
(F1)											
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
>C16 - C34 Fraction		100	mg/kg	250	<100	120	<100	210			
>C34 - C40 Fraction		100	mg/kg	100	<100	<100	<100	170			
^ >C10 - C40 Fraction (sum)		50	mg/kg	350	<50	120	<50	380			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50			
(F2)											
EP080: BTEXN											
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1			
EP075(SIM)S: Phenolic Compound Surr	rogates										
Phenol-d6	13127-88-3	0.5	%	68.2	67.2	68.7	71.7	61.2			
2-Chlorophenol-D4	93951-73-6	0.5	%	77.6	76.7	80.6	73.2	64.6			
2.4.6-Tribromophenol	118-79-6	0.5	%	57.3	47.8	51.3	46.2	37.0			
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.5	%	81.4	80.2	81.6	76.9	77.1			
Anthracene-d10	1719-06-8	0.5	%	77.7	76.8	78.9	72.7	47.5			
4-Terphenyl-d14	1718-51-0	0.5	%	89.8	91.0	92.6	87.6	69.1			
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.2	%	81.4	82.8	78.4	79.7	111			
Toluene-D8	2037-26-5	0.2	%	101	98.8	96.0	102	87.1			

Page	: 26 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS136	SS137	SS138	SS139	SS140	
		Sampli	ng date / time	19-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-036	ES2313346-037	ES2313346-038	ES2313346-039	ES2313346-040	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	103	109	105	107	80.8	

# Page : 27 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS141	SS142	SS143	SS144	SS145				
	Sampling date / time			19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00				
Compound CAS Number	LOR	Unit	ES2313346-041	ES2313346-042	ES2313346-043	ES2313346-044	ES2313346-045				
			Result	Result	Result	Result	Result				
EA055: Moisture Content (Dried @ 105-110°C)											
Moisture Content	1.0	%	2.5	1.9	11.9	11.7	21.6				
EG005(ED093)T: Total Metals by ICP-AES											
Arsenic 7440-38-2	5	mg/kg	<5	<5	9	7	5				
Cadmium 7440-43-9	1	mg/kg	<1	<1	2	<1	<1				
Chromium 7440-47-3	2	mg/kg	16	14	33	35	13				
Copper 7440-50-8	5	mg/kg	156	65	472	135	153				
Lead 7439-92-1	5	mg/kg	197	121	1310	163	98				
Nickel 7440-02-0	2	mg/kg	13	5	20	19	12				
<b>Zinc</b> 7440-66-6	5	mg/kg	478	154	746	216	205				
EG035T: Total Recoverable Mercury by FIMS											
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1				
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons											
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5				
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6				
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2				
EP080/071: Total Petroleum Hydrocarbons											
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10				

# Page : 28 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS141	SS142	SS143	SS144	SS145			
		Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00			
Compound	CAS Number	LOR	Unit	ES2313346-041	ES2313346-042	ES2313346-043	ES2313346-044	ES2313346-045			
				Result	Result	Result	Result	Result			
EP080/071: Total Petroleum Hydrocarbons - Continued											
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
C15 - C28 Fraction		100	mg/kg	<100	<100	130	330	<100			
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	480	<100			
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	130	810	<50			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions											
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10			
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10			
(F1)											
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50			
>C16 - C34 Fraction		100	mg/kg	<100	<100	190	690	<100			
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	400	<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	190	1090	<50			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50			
(F2)											
EP080: BTEXN											
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1			
EP075(SIM)S: Phenolic Compound Su	rrogates										
Phenol-d6	13127-88-3	0.5	%	70.2	69.3	66.5	71.3	69.9			
2-Chlorophenol-D4	93951-73-6	0.5	%	80.1	78.9	71.9	76.1	70.7			
2.4.6-Tribromophenol	118-79-6	0.5	%	51.6	53.1	56.8	56.8	48.1			
EP075(SIM)T: PAH Surrogates											
2-Fluorobiphenyl	321-60-8	0.5	%	84.2	83.2	76.3	82.4	80.6			
Anthracene-d10	1719-06-8	0.5	%	79.7	79.3	73.4	78.0	76.0			
4-Terphenyl-d14	1718-51-0	0.5	%	95.4	94.2	85.9	92.8	90.9			
EP080S: TPH(V)/BTEX Surrogates											
1.2-Dichloroethane-D4	17060-07-0	0.2	%	115	123	115	116	115			
Toluene-D8	2037-26-5	0.2	%	102	102	93.1	94.7	96.3			

Page	: 29 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS141	SS142	SS143	SS144	SS145	
		Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313346-041	ES2313346-042	ES2313346-043	ES2313346-044	ES2313346-045	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	104	99.6	90.5	88.4	96.9	

# Page : 30 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	SS146	SS147	SS148	BH101_0-0.1	BH102_0-0.1			
	Sampling date / time			20-Apr-2023 00:00	20-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00			
Compound CAS Number	LOR	Unit	ES2313346-046	ES2313346-047	ES2313346-048	ES2313346-049	ES2313346-051			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	6.2	<1.0	4.1	13.1	30.5			
EG005(ED093)T: Total Metals by ICP-AES					·					
Arsenic 7440-38-2	5	mg/kg	10	<5	<5	9	7			
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1			
Chromium 7440-47-3	2	mg/kg	22	15	5	13	25			
Copper 7440-50-8	5	mg/kg	87	136	238	60	324			
Lead 7439-92-1	5	mg/kg	57	182	33	153	916			
Nickel 7440-02-0	2	mg/kg	12	10	8	7	14			
Zinc 7440-66-6	5	mg/kg	99	863	96	178	400			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 31 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS146	SS147	SS148	BH101_0-0.1	BH102_0-0.1		
		Sampli	ng date / time	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00		
Compound	CAS Number	LOR	Unit	ES2313346-046	ES2313346-047	ES2313346-048	ES2313346-049	ES2313346-051		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	110	<100	110	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	110	<50	110	<50		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	110	160	<100	130	120		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	150	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	110	160	<50	280	120		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Su	rrogates									
Phenol-d6	13127-88-3	0.5	%	69.7	70.6	71.0	70.7	69.6		
2-Chlorophenol-D4	93951-73-6	0.5	%	77.6	77.6	79.0	81.1	70.9		
2.4.6-Tribromophenol	118-79-6	0.5	%	54.8	56.8	51.0	61.1	54.8		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	81.2	83.9	79.6	82.5	74.8		
Anthracene-d10	1719-06-8	0.5	%	77.3	76.6	76.6	79.2	72.0		
4-Terphenyl-d14	1718-51-0	0.5	%	91.6	92.2	90.0	92.7	85.3		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	118	119	121	80.3	112		
Toluene-D8	2037-26-5	0.2	%	97.5	98.1	100.0	100	91.8		

Page	: 32 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS146	SS147	SS148	BH101_0-0.1	BH102_0-0.1	
		Sampli	ng date / time	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313346-046	ES2313346-047	ES2313346-048	ES2313346-049	ES2313346-051	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	95.4	94.8	99.6	80.8	88.4	

# Page : 33 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	BH103_0-0.1	BH104_00.1	BH104_0.3-0.4	BH105_0-0.1	BH106_0-0.1			
	Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	18-Apr-2023 00:00			
Compound CAS Number	LOR	Unit	ES2313346-053	ES2313346-055	ES2313346-056	ES2313346-057	ES2313346-059			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	28.0	21.6	19.4	19.0	9.3			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	8	5	8	10	<5			
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	1	<1			
Chromium 7440-47-3	2	mg/kg	19	17	12	11	12			
Copper 7440-50-8	5	mg/kg	247	127	626	418	328			
Lead 7439-92-1	5	mg/kg	601	204	1020	1140	592			
Nickel 7440-02-0	2	mg/kg	8	7	11	11	11			
Zinc 7440-66-6	5	mg/kg	238	163	140	597	324			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	0.2	<0.1	<0.1	0.1	0.2			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5			
Pyrene 129-00-0	0.5	mg/kg	1.6	<0.5	<0.5	<0.5	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	1.1	<0.5	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	9.8	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	1.3	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	1.5	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.8	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 34 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH103_0-0.1	BH104_00.1	BH104_0.3-0.4	BH105_0-0.1	BH106_0-0.1		
		Sampli	ing date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	18-Apr-2023 00:00		
Compound	CAS Number	LOR	Unit	ES2313346-053	ES2313346-055	ES2313346-056	ES2313346-057	ES2313346-059		
				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	150	<100	<100	110	<100		
C29 - C36 Fraction		100	mg/kg	130	<100	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	280	<50	<50	110	<50		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	240	<100	110	170	<100		
>C34 - C40 Fraction		100	mg/kg	150	<100	<100	<100	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	390	<50	110	170	<50		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Su	irrogates									
Phenol-d6	13127-88-3	0.5	%	68.7	74.0	66.7	71.0	71.9		
2-Chlorophenol-D4	93951-73-6	0.5	%	77.3	83.9	68.4	68.8	75.4		
2.4.6-Tribromophenol	118-79-6	0.5	%	63.1	58.6	41.0	46.9	48.8		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	80.2	82.7	80.5	81.2	81.7		
Anthracene-d10	1719-06-8	0.5	%	77.8	79.4	75.3	74.1	75.5		
4-Terphenyl-d14	1718-51-0	0.5	%	89.0	93.5	90.9	91.4	92.3		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	117	111	111	110	118		
Toluene-D8	2037-26-5	0.2	%	96.3	92.4	89.8	87.7	92.7		

Page	: 35 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			BH103_0-0.1	BH104_00.1	BH104_0.3-0.4	BH105_0-0.1	BH106_0-0.1	
		Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	18-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313346-053	ES2313346-055	ES2313346-056	ES2313346-057	ES2313346-059	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	93.3	88.8	80.6	82.0	87.0	

# Page : 36 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	BH107_0-0.1	BH108_0-0.1	BH108_0.3-0.4	BH109_0-0.1	BH110_0-0.1			
	Sampli	ng date / time	20-Apr-2023 00:00							
Compound CAS Number	LOR	Unit	ES2313346-061	ES2313346-063	ES2313346-064	ES2313346-065	ES2313346-067			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	6.4	5.1	28.9	17.3	23.5			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	<5	<5	6	5	<5			
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1			
Chromium 7440-47-3	2	mg/kg	11	21	5	20	12			
Copper 7440-50-8	5	mg/kg	136	21	602	141	41			
Lead 7439-92-1	5	mg/kg	98	28	1910	220	128			
Nickel 7440-02-0	2	mg/kg	8	8	10	7	4			
<b>Zinc</b> 7440-66-6	5	mg/kg	186	41	49	174	130			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 37 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH107_0-0.1	BH108_0-0.1	BH108_0.3-0.4	BH109_0-0.1	BH110_0-0.1		
		Sampli	ng date / time	20-Apr-2023 00:00						
Compound	CAS Number	LOR	Unit	ES2313346-061	ES2313346-063	ES2313346-064	ES2313346-065	ES2313346-067		
· · ·				Result	Result	Result	Result	Result		
EP080/071: Total Petroleum Hydrocarbons - Continued										
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions										
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10		
(F1)										
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50		
(F2)										
EP080: BTEXN										
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1		
EP075(SIM)S: Phenolic Compound Sur	rogates									
Phenol-d6	13127-88-3	0.5	%	75.8	68.0	66.3	65.0	65.8		
2-Chlorophenol-D4	93951-73-6	0.5	%	76.9	68.0	71.2	70.6	69.7		
2.4.6-Tribromophenol	118-79-6	0.5	%	48.4	51.3	57.4	54.2	52.5		
EP075(SIM)T: PAH Surrogates										
2-Fluorobiphenyl	321-60-8	0.5	%	81.3	83.4	71.3	81.5	79.8		
Anthracene-d10	1719-06-8	0.5	%	76.5	79.6	70.3	77.9	77.5		
4-Terphenyl-d14	1718-51-0	0.5	%	92.2	94.5	77.8	91.4	90.9		
EP080S: TPH(V)/BTEX Surrogates										
1.2-Dichloroethane-D4	17060-07-0	0.2	%	119	124	99.3	118	108		
Toluene-D8	2037-26-5	0.2	%	96.6	103	75.6	94.4	87.5		

Page	: 38 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH107_0-0.1	BH108_0-0.1	BH108_0.3-0.4	BH109_0-0.1	BH110_0-0.1	
		Sampli	ng date / time	20-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313346-061	ES2313346-063	ES2313346-064	ES2313346-065	ES2313346-067	
				Result	Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	89.7	99.7	67.0	85.7	80.3	
# Page : 39 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



# Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	BH111_0-0.1	TP101_0-0.1	TP102_0-0.1	TP103_0-0.1	TP104_0-0.1
	Sampli	ng date / time	20-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00
Compound CAS Number	LOR	Unit	ES2313346-069	ES2313346-071	ES2313346-073	ES2313346-075	ES2313346-077
			Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-110°C)							
Moisture Content	1.0	%	16.6	14.2	17.4	16.8	19.6
EG005(ED093)T: Total Metals by ICP-AES							
Arsenic 7440-38-2	5	mg/kg	11	19	18	20	282
Cadmium 7440-43-9	1	mg/kg	<1	<1	7	<1	<1
Chromium 7440-47-3	2	mg/kg	18	24	36	16	284
Copper 7440-50-8	5	mg/kg	203	63	206	169	472
Lead 7439-92-1	5	mg/kg	431	143	669	381	427
Nickel 7440-02-0	2	mg/kg	11	9	26	11	36
<b>Zinc</b> 7440-66-6	5	mg/kg	296	167	248	299	245
EG035T: Total Recoverable Mercury by FIMS							
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	1.5	<0.5
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	1.2	<0.5
<b>Pyrene</b> 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	1.3	<0.5
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	0.6	<0.5
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	0.7	<0.5
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	<0.5	6.1	<0.5
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.7	0.6
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbons							
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10

# Page : 40 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



# Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH111_0-0.1	TP101_0-0.1	TP102_0-0.1	TP103_0-0.1	TP104_0-0.1
		Sampli	ng date / time	20-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313346-069	ES2313346-071	ES2313346-073	ES2313346-075	ES2313346-077
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocart	oons - Continued					·		
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	120	250	140
C29 - C36 Fraction		100	mg/kg	130	<100	110	160	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	130	<50	230	410	140
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	190	<100	190	350	190
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	110	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	190	<50	190	460	190
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	88.6	80.8	81.1	83.6	78.4
2-Chlorophenol-D4	93951-73-6	0.5	%	96.8	83.1	84.0	88.0	83.2
2.4.6-Tribromophenol	118-79-6	0.5	%	92.8	50.5	58.0	60.2	55.3
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	85.6	75.0	78.9	81.4	79.6
Anthracene-d10	1719-06-8	0.5	%	108	72.4	73.0	78.7	76.3
4-Terphenyl-d14	1718-51-0	0.5	%	95.6	71.5	74.5	77.7	75.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	88.3	90.3	95.1	97.1	96.2
Toluene-D8	2037-26-5	0.2	%	94.9	96.1	97.1	101	90.7

Page	: 41 of 43
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



# Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH111_0-0.1	TP101_0-0.1	TP102_0-0.1	TP103_0-0.1	TP104_0-0.1
		Sampli	ng date / time	20-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00	18-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313346-069	ES2313346-071	ES2313346-073	ES2313346-075	ES2313346-077
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates -	Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	95.2	99.6	99.3	102	92.3

# Page : 42 of 43 Work Order : ES2313346 Client : CAVVANBA CONSULTING Project : 20025.76



# Analytical Results

Sub-Matrix: SOLID (Matrix: SOLID)			Sample ID	BH104_0.3-0.4	 	 
		Sampli	ng date / time	19-Apr-2023 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2313346-078	 	 
				Result	 	 
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples						
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	 	 
Asbestos Type	1332-21-4	-		Ch	 	 
Asbestos (Trace)	1332-21-4	5	Fibres	N/A	 	 
Sample weight (dry)		0.01	g	70.4	 	 
Synthetic Mineral Fibre		-	-	No	 	 
Organic Fibre		-	-	Yes	 	 
APPROVED IDENTIFIER:		-		B.SCHRADER	 	 
Analytical Results						

### **Descriptive Results**

### Sub-Matrix: SOLID

Method: Compound	Sample ID - Sampling date / time	Analytical Results				
EA200: AS 4964 - 2004 Identification of Asbestos	in bulk samples					
EA200: Description BH104_0.3-0.4 - 19-Apr-2023 00:00		One piece of asbestos cement sheeting approximately 85x75x5mm.				



## Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	63	125
Toluene-D8	2037-26-5	67	124
4-Bromofluorobenzene	460-00-4	66	131

## Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOLID) EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples



# QUALITY CONTROL REPORT

Work Order	: ES2313346	Page	: 1 of 26
Client		Laboratory	: Environmental Division Sydney
Contact	: MR DREW WOOD	Contact	: Karen Coveny
Address	: PO Box 322 NEWCASTLE 2300	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 6685 7811	Telephone	: +61-2-8784 8555
Project	: 20025.76	Date Samples Received	: 21-Apr-2023
Order number	: 20025.76	Date Analysis Commenced	: 28-Apr-2023
C-O-C number	:	Issue Date	: 04-May-2023
Sampler	: ZAC LAUGHLAN		Hac-MRA NATA
Site	·		
Quote number	: SYBQ/409/21		Accreditation No. 825
No. of samples received	: 78		Accredited for compliance with
No. of samples analysed	: 66		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	al Metals by ICP-AES (QC L	ot: 5017754)							
ES2313346-014	SS114	EG005T: Cadmium	7440-43-9	1	mg/kg	1	1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	52	58	11.3	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	19	19	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	29	40	31.8	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	394	466	16.7	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	523	# 640	20.1	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	761	752	1.2	0% - 20%
EG005(ED093)T: Tot	al Metals by ICP-AES (QC L	ot: 5018267)							
ES2313346-001	SS101	EG005T: Cadmium	7440-43-9	1	mg/kg	6	10	44.8	0% - 50%
		EG005T: Chromium	7440-47-3	2	mg/kg	66	61	7.6	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	54	64	18.6	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	34	34	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	273	276	1.1	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	623	582	6.8	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	664	666	0.3	0% - 20%
ES2313346-011	SS111	EG005T: Cadmium	7440-43-9	1	mg/kg	2	3	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	39	36	8.8	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	24	20	17.4	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	18	40	74.9	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	158	168	6.0	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	498	472	5.4	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	552	454	19.4	0% - 20%
EG005(ED093)T: Tot	al Metals by ICP-AES (QC L	ot: 5018269)							
ES2313346-022	SS122	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit

Page	: 3 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	al Metals by ICP-AES	(QC Lot: 5018269) - continued							
ES2313346-022	SS122	EG005T: Chromium	7440-47-3	2	mg/kg	23	20	12.7	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	14	12	14.1	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	24	22	7.9	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	115	100	13.3	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	226	206	9.1	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	356	355	0.0	0% - 20%
ES2313346-032	SS132	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	16	18	9.1	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	111	106	4.8	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	216	207	4.3	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	149	148	0.0	0% - 20%
EG005(ED093)T: Tot	al Metals by ICP-AES	(QC Lot: 5018458)							
ES2313346-033	SS133	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	31	29	8.3	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	9	8	17.4	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	150	126	17.2	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	436	386	12.3	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	354	311	12.7	0% - 20%
ES2313346-043	SS143	EG005T: Cadmium	7440-43-9	1	mg/kg	2	1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	33	24	32.0	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	20	16	20.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	9	10	17.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	472	484	2.4	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	1310	1340	2.2	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	746	645	14.5	0% - 20%
EG005(ED093)T: Tot	al Metals by ICP-AES	(QC Lot: 5018460)							
ES2313663-005	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	6	8	26.1	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	5	5	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	31	35	12.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	124	135	9.0	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	140	146	4.8	0% - 20%
ES2313346-057	BH105_0-0.1	EG005T: Cadmium	7440-43-9	1	mg/kg	1	1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	11	14	21.7	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	11	13	17.9	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	10	0.0	No Limit

Page	÷	4 of 26
Work Order	÷	ES2313346
Client	÷	CAVVANBA CONSULTING
Project	÷	20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tota	al Metals by ICP-AES (QC L	ot: 5018460) - continued							
ES2313346-057	BH105_0-0.1	EG005T: Copper	7440-50-8	5	mg/kg	418	424	1.5	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	1140	1030	9.5	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	597	# 483	21.2	0% - 20%
EG005(ED093)T: Tota	al Metals by ICP-AES (QC L	ot: 5020839)							
ES2313663-019	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	41	47	13.8	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	20	22	11.8	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	7	7	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	11	10	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	21	18	14.3	No Limit
EB2312037-020	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	11	4	90.5	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	5	6	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	10	7	32.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	8	11	34.4	No Limit
EA055: Moisture Cor	ntent (Dried @ 105-110°C) (	QC Lot: 5017763)							
ES2313482-001	Anonymous	EA055: Moisture Content		0.1	%	4.7	4.5	3.8	No Limit
ES2313587-005	Anonymous	EA055: Moisture Content		0.1	%	<1.0	<1.0	0.0	No Limit
EA055: Moisture Cor	itent (Dried @ 105-110°C) (	QC Lot: 5018271)							
ES2313346-003	SS103	EA055: Moisture Content		0.1	%	15.3	15.5	1.2	0% - 50%
ES2313346-015	SS115	EA055: Moisture Content		0.1	%	6.9	7.5	8.1	No Limit
EA055: Moisture Cor	itent (Dried @ 105-110°C) (	QC Lot: 5018272)							
ES2313346-024	SS124	EA055: Moisture Content		0.1	%	36.7	36.9	0.3	0% - 20%
ES2313943-001	Anonymous	EA055: Moisture Content		0.1	%	18.2	18.9	4.0	0% - 20%
EA055: Moisture Cor	ntent (Dried @ 105-110°C) (	QC Lot: 5018468)							
ES2313346-035	SS135	EA055: Moisture Content		0.1	%	8.4	8.0	5.0	No Limit
ES2313346-046	SS146	EA055: Moisture Content		0.1	%	6.2	7.2	15.2	No Limit
EA055: Moisture Cor	tent (Dried @ 105-110°C) (	QC Lot: 5018469)				1			
ES2313346-063	BH108 0-0.1	EA055: Moisture Content		0.1	%	5.1	4.8	5.6	No Limit
ES2313663-008	Anonymous	EA055: Moisture Content		0.1	%	15.2	14.4	5.4	0% - 20%
EA055: Moisture Cor	tent (Dried @ 105-110°C) (	QC Lot: 5020825)				I			
ES2313346-075	TP103 0-0.1	EA055: Moisture Content		0.1	%	16.8	16.2	3.7	0% - 50%
EA055: Moisture Cor		QC Lot: 5020847)				1	1		
ES2313346-069	BH111 0-0.1	EA055: Moisture Content		0.1	%	16.6	17 5	5 1	0% - 50%
ES2313663-030	Anonymous	EA055: Moisture Content		0.1	%	11.5	11.6	1.1	0% - 50%

Page	5 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5017756)							
ES2313346-014	SS114	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5018268)							·
ES2313346-001	SS101	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2313346-011	SS111	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5018270)							
ES2313346-032	SS132	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5018459)							
ES2313346-033	SS133	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2313346-043	SS143	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	0.1	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5018461)							
ES2313346-057	BH105_0-0.1	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	<0.1	0.0	No Limit
ES2313744-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	QC Lot: 5020840)							
EB2312037-020	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2313845-003	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP075(SIM)B: Polyni	uclear Aromatic Hydrocarbo	ons (QC Lot: 5014056)							
ES2313346-001	SS101	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.8	<0.5	40.9	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.3	<0.5	88.9	No Limit
		hydrocarbons		0.5		-0 5	-0.5	0.0	No Limit
E\$2212246 011	QQ111	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<u.5< td=""><td>C.U&gt;</td><td>0.0</td><td>NO LIMIT</td></u.5<>	C.U>	0.0	NO LIMIT
E32313340-011	33111	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	0.9	0.8	0.0	NO LIMIT
		EPU/5(SIM): Accenaphthylene	208-96-8	0.5	mg/kg	U.8	<0.5	40.1	NO LIMIT
I		EP075(SIM): Acenaphthene	83-32-9	0.5	під/кд	SU.5	SU.5	0.0	

Page	: 6 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014056) - continued							
ES2313346-011	SS111	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	3.1	3.1	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.4	2.3	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	2.3	2.0	11.1	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.2	1.1	12.5	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.6	1.5	9.2	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	1.7	1.6	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	0.8	0.6	16.5	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	15.3	13.0	16.3	0% - 20%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.2	0.9	26.6	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014062)							
ES2313346-021	SS121	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2313346-031	SS131	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 7 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014062) - continued							
ES2313346-031	SS131	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014064)							
ES2313346-041	SS141	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2313346-053	BH103_0-0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 8 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ons (QC Lot: 5014064) - continued							
ES2313346-053	BH103_0-0.1	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	0.8	0.7	17.4	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.9	0.7	24.1	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	1.0	0.8	23.5	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.6	1.4	13.8	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	0.8	0.6	22.2	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.0	0.8	13.4	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	1.1	1.0	9.6	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	1.0	0.9	10.7	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.6	0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.0	0.8	15.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	9.8	8.2	17.8	0% - 50%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.3	1.1	12.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ons (QC Lot: 5014071)							
ES2313346-071	TP101_0-0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	< 0.5	0.0	No Limit

Page	: 9 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL					Laboratory L	Duplicate (DUP) Report			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014071) - continued							
ES2313408-011	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	0.6	19.7	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	0.6	18.2	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014073)							
ES2313346-069	BH111_0-0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							

Page	: 10 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014073) - continued							
ES2313346-069	BH111_0-0.1	EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2313408-060	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	EP075(SIM): Sum of polycyclic aromatic			0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC	Lot: 5014057)							
ES2313346-001	SS101	EP071: C15 - C28 Fraction		100	mg/kg	450	420	7.9	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	520	530	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-011	SS111	EP071: C15 - C28 Fraction		100	mg/kg	820	920	12.1	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	600	710	16.7	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	60	60	0.0	No Limit
EP080/071: Total Peti	oleum Hydrocarbons (QC I	Lot: 5014061)							
ES2313346-021	SS121	EP071: C15 - C28 Fraction		100	mg/kg	190	260	28.9	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	360	340	6.1	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-031	SS131	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pet	oleum Hydro <u>carbons (QC</u>	Lot: 5014063)							·
ES2313346-041	SS141	EP071: C15 - C28 Fraction	[	100	mg/ka	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-053	BH103 0-0.1	EP071: C15 - C28 Fraction		100	mg/kg	150	180	21.0	No Limit
					5.5				

Page	: 11 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5014063) - continued							
ES2313346-053	BH103_0-0.1	EP071: C29 - C36 Fraction		100	mg/kg	130	140	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5014070)							
ES2313346-071	TP101_0-0.1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-011	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	130	130	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5014072)							
ES2313346-069	BH111_0-0.1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	130	110	13.8	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-060	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5016563)							
ES2313346-001	SS101	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2313346-011	SS111	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5016567)							
ES2313346-021	SS121	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2313346-031	SS131	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5016579)							
ES2313346-041	SS141	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2313346-053	BH103_0-0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 5021159)							
ES2313346-069	BH111_0-0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2314141-006	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbons - I	NEPM 2013 Fractions (QC Lot: 5014057)							
ES2313346-001	SS101	EP071: >C16 - C34 Fraction		100	mg/kg	840	770	8.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	260	290	10.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-011	SS111	EP071: >C16 - C34 Fraction		100	mg/kg	1170	1390	17.2	0% - 50%
		EP071: >C34 - C40 Fraction		100	mg/kg	370	450	20.7	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	120	110	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbons - I	NEPM 2013 Fractions (QC Lot: 5014061)							
ES2313346-021	SS121	EP071: >C16 - C34 Fraction		100	mg/kg	480	530	10.2	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	260	240	9.3	No Limit

Page	: 12 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5014061) - continu	ied						
ES2313346-021	SS121	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-031	SS131	EP071: >C16 - C34 Fraction		100	mg/kg	110	120	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5014063)							
ES2313346-041	SS141	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313346-053	BH103_0-0.1	EP071: >C16 - C34 Fraction		100	mg/kg	240	280	15.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	150	130	16.1	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5014070)							
ES2313346-071	TP101_0-0.1	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-011	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	190	180	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5014072)							
ES2313346-069	BH111_0-0.1	EP071: >C16 - C34 Fraction		100	mg/kg	190	160	17.9	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-060	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5016563)							
ES2313346-001	SS101	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313346-011	SS111	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5016567)	i de la composición d						
ES2313346-021	SS121	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313346-031	SS131	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5016579)							
ES2313346-041	SS141	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313346-053	BH103_0-0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Red	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 5021159)					, 		
ES2313346-069	BH111 0-0.1	EP080: C6 - C10 Eraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
ES2314141-006	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN_(QC	l of: 5016563)						1	1	1

Page	: 13 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP080: BTEXN (QC	Lot: 5016563) - conti	nued								
ES2313346-001	SS101	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	
ES2313346-011	SS111	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	
EP080: BTEXN (QC	Lot: 5016567)									
ES2313346-021	SS121	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	
ES2313346-031	SS131	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	
EP080: BTEXN (QC	Lot: 5016579)									
ES2313346-041	SS141	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	
ES2313346-053	BH103_0-0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	

Page	: 14 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report	1	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC I	ot: 5016579) - continued								
ES2313346-053	BH103_0-0.1	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3					l.	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP080: BTEXN (QC I	_ot: 5021159)								
ES2313346-069	BH111_0-0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3					1	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2314141-006	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit



## Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Under CompanyColumnSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolutionSolu	Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
Mathene ComponendCARUnitMeaultConcentrationL.C.R.UseMageBC004SEC0037: Total Matlab by (CP-AES) (COL:15: S0177.405mg/kg4.5121. mg/kg94.880.880.0113EC0035: Constraint7404.352mg/kg4.5121. mg/kg80.880.880.0132EC0035: Constraint7404.0732mg/kg4.562.8 mg/kg10.380.0113EC0035: Constraint7404.0505mg/kg4.560.8 mg/kg10.080.0113EC0035: Constraint7404.0505mg/kg4.560.8 mg/kg10.080.0120EC0035: Constraint7404.0505mg/kg4.5130.3 mg/kg90.080.0120EC0035: Constraint7404.0565mg/kg4.5121. mg/kg80.0130.3130.3EC0035: Constraint7404.0565mg/kg4.5121. mg/kg80.0130.3130.3EC0035: Constraint7404.0565mg/kg4.5121. mg/kg80.0130.3130.3EC0035: Constraint7404.0565mg/kg4.5135.3 mg/kg80.0130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.3130.				Report		Spike	Spike Recovery (%)	Acceptable	Limits (%)
E6005(E0093)T: Total Mutals by LCP-AES (ACLOL: 50177-54)           CECODST: Acada         7440-43-9         1         mg/kg         <1	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
Econors: Ansamic         7440-382         5         mg/kg         <5         121.1 mg/kg         94.9         88.0         113           Econors: Cadmum         7440-473         2         mg/kg         <1	EG005(ED093)T: Total Metals by ICP-AES (Q0	CLot: 5017754)							
Econos:         Cadmium         7440-43-9         1         mg/kg         -1         0.7.4 mg/kg         B0.8         70.0         139           Econos::         Cadmic / Yadva         2         mg/kg         -2         19.0 mg/kg         10.3         68.0         111           Econos::         Cadmic / Yadva         5         mg/kg         -45         60.8 mg/kg         41.0         80.0         111           Econos::         Cadmic / Yadva         2         mg/kg         -5         60.8 mg/kg         45.0         60.8 mg/kg         45.0 <td>EG005T: Arsenic</td> <td>7440-38-2</td> <td>5</td> <td>mg/kg</td> <td>&lt;5</td> <td>121.1 mg/kg</td> <td>94.9</td> <td>88.0</td> <td>113</td>	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	94.9	88.0	113
Econost: Chromium         T440-47-3         2         mg/kg         <-2         19.6 mg/kg         10.3         68.0         13.2           Econost: Load         T440-60-8         5         mg/kg         <-5	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	80.8	70.0	130
Econopric         7440-50-8         5         mg/kg         <-5         50.9 mg/kg         103         89.0         111           EGODST. Load         7439-92-1         5         mg/kg         <-5	EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	103	68.0	132
EconosT: Leade         7439.94-1         5         mg/kg         <         60.8 mg/kg         100         82.00         113           EGO05T: Nickel         7440.40-0         2         mg/kg         <	EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	103	89.0	111
Econost         index         <	EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	100	82.0	119
EG005T: Zinc         7440-68-6         5         mg/kg         <5         139.3 mg/kg         90.8         66.0         133           EG005T: Zinc         7440-38-2         5         mg/kg         <121.1 mg/kg	EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	94.0	80.0	120
EG005(ED03)T: Total Metals by ICP-AES (QCLot: 5018267)           EG0057: Axenic         7440-38-2         5         mg/kg         <1         0.74 mg/kg         92.0         88.0         113           EG0057: Axenic         7440-38-2         1         mg/kg         <1	EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.8	66.0	133
EG005T: Arsenic         7440.38-2         5         mg/kg <f5< th="">         121.1 mg/kg         92.0         88.0         113           EG005T: Cadmium         7440.47-3         1         mg/kg         &lt;1</f5<>	EG005(ED093)T: Total Metals by ICP-AES(Q0	CLot: 5018267)							-
EG005T: Cadmium         740-43-9         1         mg/kg         <1         0.74 mg/kg         90.4         70.0         130           EG005T: Chronium         740-47-3         2         mg/kg         <2	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	92.0	88.0	113
EG005T: Chronium         7440-47-3         2         mg/kg         <2         19.6 mg/kg         98.2         66.0         132           EG005T: Copper         7440-50-6         5         mg/kg         <5	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	90.4	70.0	130
EG005T: Copper         7440-50-8         5         mg/kg         <5         52.9 mg/kg         96.6         89.0         111           EG005T: Lead         7439-92.1         5         mg/kg         <5	EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	98.2	68.0	132
EG005T: Lead         7439-92-1         5         mg/kg         <5         60.8 mg/kg         93.3         82.0         119           EG005T: Nickel         7440-02-0         2         mg/kg         <2	EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	96.6	89.0	111
EG005T: Nickel         7440-02-0         2         mg/kg         <2         15.3 mg/kg         91.2         80.0         120           EG005T: Zinc         7440-66-6         5         mg/kg         <5	EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	93.3	82.0	119
EG00ST: Zinc7440-66-65mg/kg<5139.3 mg/kg90.166.0133EG00ST: Arsenic7440-38-25mg/kg<5	EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	91.2	80.0	120
EG005(ED03)T: Total Metals by ICP-AES (QCLot: 5018269)         mg/kg         <5         121.1 mg/kg         91.7         88.0         113           EG005T: Cadmium         7440-38-2         5         mg/kg         <1	EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.1	66.0	133
EG005T: Arsenic7440-38-25mg/kg<5121.1 mg/kg91.788.0113EG005T: Cadmium7440-43-91mg/kg<1	EG005(ED093)T: Total Metals by ICP-AES(Q0	CLot: 5018269)							
EG005T: Cadmium         7440-43-9         1         mg/kg         <1         0.74 mg/kg         91.0         70.0         130           EG005T: Chromium         7440-47-3         2         mg/kg         <2	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	91.7	88.0	113
EG005T: Chromium7440-47-32mg/kg<219.6 mg/kg10668.0132EG005T: Copper7440-50-85mg/kg<5	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	91.0	70.0	130
EG005T: Copper7440-50-85mg/kg<552.9 mg/kg10189.0111EG005T: Lead7439-92-15mg/kg<5	EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	106	68.0	132
EG005T: Lead7439-92-15mg/kg<560.8 mg/kg95.682.0119EG005T: Nickel7440-02-02mg/kg<2	EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	101	89.0	111
EG005T: Nickel7440-02-02mg/kg<215.3 mg/kg95.980.0120EG005T: Zinc7440-66-65mg/kg<5	EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	95.6	82.0	119
EG005T: Zinc7440-66-65mg/kg<5139.3 mg/kg90.166.0133EG005T: Colspan="4">EG005T: Arsenic7440-38-25mg/kg<5121.1 mg/kg88.188.0113EG005T: Cadmium7440-43-91mg/kg<1	EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	95.9	80.0	120
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 5018458)EG005T: Arsenic7440-38-25mg/kg<5	EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.1	66.0	133
EG005T: Arsenic7440-38-25mg/kg<5121.1 mg/kg88.188.0113EG005T: Cadmium7440-43-91mg/kg<1	EG005(ED093)T: Total Metals by ICP-AES(Q0	CLot: 5018458)							
EG005T: Cadmium7440-43-91mg/kg<10.74 mg/kg86.370.0130EG005T: Chromium7440-47-32mg/kg<2	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	88.1	88.0	113
EG005T: Chromium         7440-47-3         2         mg/kg         <2         19.6 mg/kg         102         68.0         132           EG005T: Copper         7440-50-8         5         mg/kg         <5	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	86.3	70.0	130
EG005T: Copper         7440-50-8         5         mg/kg         <5         52.9 mg/kg         94.1         89.0         111           EG005T: Lead         7439-92-1         5         mg/kg         <5	EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	102	68.0	132
EG005T: Lead         7439-92-1         5         mg/kg         <5         60.8 mg/kg         93.2         82.0         119           EG005T: Nickel         7440-02-0         2         mg/kg         <2	EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	94.1	89.0	111
EG005T: Nickel 7440-02-0 2 mg/kg <2 15.3 mg/kg 93.0 80.0 120	EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	93.2	82.0	119
	EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	93.0	80.0	120

Page	: 16 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot	: 5018458) - continued							
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	89.0	66.0	133
EG005(ED093)T: Total Metals by ICP-AES (QCLot:	: 5018460)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	108	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	123	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	119	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	111	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	116	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	110	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	108	66.0	133
EG005(ED093)T: Total Metals by ICP-AES (QCLot:	: 5020839)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	88.1	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	73.4	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	99.6	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	89.1	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	86.0	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	88.2	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	81.8	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 5017756)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	91.6	70.0	125
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 5018268)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	82.4	70.0	125
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 5018270)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	88.9	70.0	125
EG035T: Total Recoverable Mercury by FIMS (OC	Lot: 5018459)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	72.4	70.0	125
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 5018461)					1		
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	120	70.0	125
EG035T: Total Recoverable Mercury by EIMS (OC	(Lot: 5020840)				1			
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	83.3	70.0	125
EP075/SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCI of: 5014056)							-
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	87.7	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	82.9	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	88.8	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	88.9	72.0	126
			I	I	1	I		

Page	: 17 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL	-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
	i i			Report	Spike Spike Recovery (%) Acceptable Lim			Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 5014056) - c	ontinued						
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	91.9	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	90.4	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	92.2	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	89.4	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	85.4	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	93.3	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	88.1	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	91.9	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	71.4	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	80.1	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	75.9	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	81.5	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 5014062)					·	-	
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	99.2	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	89.8	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	91.6	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	93.3	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	100	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	80.6	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	103	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	101	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	95.1	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	103	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	90.0	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	107	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	79.0	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	86.2	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	81.3	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	87.4	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 5014064)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	93.9	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	86.6	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	90.7	73.0	127

Page	: 18 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike Spike Recovery (%) Acceptable Lin			) Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 5014064) - c	ontinued						
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	92.2	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	93.7	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	81.2	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	95.0	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	91.9	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	92.0	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	93.1	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	91.3	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	93.0	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	74.9	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	82.1	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	78.5	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	85.3	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (	(QCLot: 5014071)						L.	
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	88.9	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	84.0	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	89.4	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.8	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	92.0	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	87.2	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	93.9	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	93.1	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	84.6	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	89.4	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	85.4	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	95.3	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	79.8	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	91.5	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	88.6	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	88.3	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (	(QCLot: 50 <u>14073)</u>							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	95.8	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	91.1	72.0	124

Page	: 19 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike Spike Recovery (%) Acceptable Lin			Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 5014073) - 0	continued						
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	94.8	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.2	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	104	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	89.4	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	105	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	103	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	95.0	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	97.6	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	94.4	68.0	116
	205-82-3	0.5		-0.5	0		74.0	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	104	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	92.2	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	96.2	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	101	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	102	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5014057)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	94.5	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	90.2	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	109	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5014061)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	113	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	104	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	97.2	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5014063)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	107	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	106	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	97.2	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5014070)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	107	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	96.0	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.5	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5014072)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	89.6	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	100	77.0	131

Page	: 20 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 501	4072) - continued							
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.2	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5016	563)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	116	72.2	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5016	567)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	123	72.2	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5016	579)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	110	72.2	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5021	159)					1	-	·
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	99.7	72.2	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	ot: 5014057)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	100.0	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	87.2	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	87.9	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	ot: 5014061)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	110	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	107	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	106	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 5014063)					-	
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	109	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	108	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	104	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 5014070)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	91.4	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	101	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	101	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 5014072)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	103	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	88.4	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	106	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	.ot: 5016563)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	116	72.4	133
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	_ot: 5016 <u>567)</u>						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	123	72.4	133
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	ot: 5016579)					·	

Page	: 21 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike Spike Recovery (%) Acceptable Limit			Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions (QC	CLot: 5016579) - co	ontinued					
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	110	72.4	133
EP080/071: Total Recoverable Hydrocarbons - NEF	M 2013 Fractions (QC	Lot: 5021159)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	103	72.4	133
EP080: BTEXN (QCLot: 5016563)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	107	76.0	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	109	78.5	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	110	77.4	121
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	113	78.2	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	109	81.3	121
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	116	78.8	122
EP080: BTEXN (QCLot: 5016567)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	108	76.0	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	120	78.5	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	112	77.4	121
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	114	78.2	121
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	109	81.3	121
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	106	78.8	122
EP080: BTEXN (QCLot: 5016579)						1		
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	106	76.0	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	98.3	78.5	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	101	77.4	121
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	102	78.2	121
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	103	81.3	121
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	110	78.8	122
EP080: BTEXN (QCLot: 5021159)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	106	76.0	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	78.5	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	101	77.4	121
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	107	78.2	121
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	104	81.3	121
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	102	78.8	122



## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				IVIO	iunx spike (iiis) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5017754)						
ES2313304-004	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	102	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	104	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	87.5	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	106	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	70.0	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	87.5	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	80.7	66.0	133
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5018267)						
ES2313346-001	SS101	EG005T: Arsenic	7440-38-2	50 mg/kg	73.4	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	90.1	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	127	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	76.3	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	128	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	85.7	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	70.2	66.0	133
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5018269)						
ES2313346-022	SS122	EG005T: Arsenic	7440-38-2	50 mg/kg	91.4	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	95.2	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	85.7	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	89.7	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	83.7	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	91.1	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	76.4	66.0	133
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5018458)						
ES2313346-033	SS133	EG005T: Arsenic	7440-38-2	50 mg/kg	95.9	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.0	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	100	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	92.8	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	90.5	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	92.7	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	68.6	66.0	133
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5018460)						
ES2313346-057	BH105 0-0.1	EG005T: Arsenic	7440-38-2	50 mg/kg	107	70.0	130
						-	



Sub-Matrix: SOIL				Ма	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable L	_imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: To	tal Metals by ICP-AES (QCLot: 5018460) - continued						
ES2313346-057	BH105_0-0.1	EG005T: Cadmium	7440-43-9	50 mg/kg	106	70.0	130
	_	EG005T: Chromium	7440-47-3	50 mg/kg	112	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	124	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	124	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	107	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	120	66.0	133
EG005(ED093)T: To	tal Metals by ICP-AES (QCLot: 5020839)						
EB2312037-020	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	92.5	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	99.0	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	86.2	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	97.8	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	98.2	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	96.7	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	101	66.0	133
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5017756)						
ES2313346-014	SS114	EG035T: Mercury	7439-97-6	5 mg/kg	91.8	70.0	130
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5018268)						
ES2313346-001	SS101	EG035T: Mercury	7439-97-6	5 mg/kg	87.2	70.0	130
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5018270)						
ES2313346-022	SS122	EG035T: Mercury	7439-97-6	5 mg/kg	99.2	70.0	130
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5018459)						
ES2313346-033	SS133	EG035T: Mercury	7439-97-6	5 mg/kg	91.1	70.0	130
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5018461)				i i i i i i i i i i i i i i i i i i i		
ES2313346-057	BH105_0-0.1	EG035T: Mercury	7439-97-6	5 mg/kg	83.8	70.0	130
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 5020840)						
EB2312037-020	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	103	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014056)						
ES2313346-001	SS101	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	93.9	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	94.3	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014062)						
ES2313346-021	SS121	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	101	70.0	130
		EP075(SIM): Pvrene	129-00-0	10 mg/kg	111	70.0	130
EP075(SIM)B: Polv	nuclear Aromatic Hydrocarbons (QCLot: 5014064)				· · · · · · · · · · · · · · · · · · ·		
ES2313346-041	SS141	EP075(SIM): Acenaphthene	83-32-9	10 ma/ka	92.9	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	95.4	70.0	130
I Contraction of the second			· · · •				

Page	: 24 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Ма	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014071)						
ES2313346-071	TP101_0-0.1	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	95.9	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.4	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014073)						
ES2313346-069	BH111 0-0.1	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	101	70.0	130
	_	EP075(SIM): Pyrene	129-00-0	10 mg/kg	98.5	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014057)						
ES2313346-001	SS101	EP071: C10 - C14 Fraction		480 ma/ka	114	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	116	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	118	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014061)						
ES2313346-021	SS121	EP071: C10 - C14 Fraction		480 ma/ka	122	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	117	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	120	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014063)			0.0			
ES2313346-041	SS141	EP071: C10 - C14 Fraction		480 ma/ka	111	73.0	137
		EP071: C15 - C28 Fraction		3100 ma/ka	112	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	117	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014070)			0.0			
ES2313346-071	TP101_0-0_1	ED071: C10 C14 Erection		480 ma/ka	99.2	73.0	137
202010040 071		EP071: C15 - C28 Fraction		3100 mg/kg	83.8	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	110	52.0	132
EP080/071: Total P	Petroleum Hydrocarbons (OCI of: 5014072)			3 3	-		
ES2313346-069		ED071: C10 C14 Fraction		480 ma/ka	110	73.0	137
L32313340-009	BITTT_0-0.1	EP071: C10 - C14 Fraction		3100 mg/kg	110	53.0	137
		EP071: C20 C36 Fraction		2060 mg/kg	106	52.0	132
EP080/071: Total P	Vetroleum Hydrocarbons (OCL et: 5016563)			2000 mg/ng	100	02.0	102
ES2313346-001	SS101	EP080: C6 C0 Eraction		32.5 ma/ka	108	60.4	142
ED080/074: Total D				02.0 mg/ng	100	00.4	172
EP060/071: Total P				22.5	440	60.4	140
ES2313346-021	55121	EP080: C6 - C9 Fraction		32.5 mg/kg	113	60.4	142
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5016579)						
ES2313346-041	SS141	EP080: C6 - C9 Fraction		32.5 mg/kg	122	60.4	142
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5021159)						
ES2313346-069	BH111_0-0.1	EP080: C6 - C9 Fraction		32.5 mg/kg	83.9	60.4	142
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	CLot: 5014057)					
ES2313346-001	SS101	EP071: >C10 - C16 Fraction		860 mg/kg	105	73.0	137
				·			

Page	: 25 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				M	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5014057) - continued					
ES2313346-001	SS101	EP071: >C16 - C34 Fraction		4320 mg/kg	120	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	98.5	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5014061)					
ES2313346-021	SS121	EP071: >C10 - C16 Fraction		860 mg/kg	112	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	121	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	115	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5014063)			i i		
ES2313346-041	SS141	EP071: >C10 - C16 Fraction		860 mg/kg	118	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	125	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	118	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5014070)			·		
ES2313346-071	TP101_0-0.1	EP071: >C10 - C16 Fraction		860 mg/kg	99.3	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	94.9	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	116	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5014072)			·		
ES2313346-069	BH111_0-0.1	EP071: >C10 - C16 Fraction		860 mg/kg	98.3	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	109	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	90.5	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5016563)					
ES2313346-001	SS101	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	105	61.1	142
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5016567)					
ES2313346-021	SS121	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	112	61.1	142
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5016579)			·		
ES2313346-041	SS141	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	118	61.1	142
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(C	CLot: 5021159)					
ES2313346-069	BH111_0-0.1	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	85.2	61.1	142
EP080: BTEXN (Q	CLot: 5016563)						
ES2313346-001	SS101	EP080: Benzene	71-43-2	2.5 mg/kg	99.5	62.1	122
		EP080: Toluene	108-88-3	2.5 mg/kg	102	66.6	119
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	106	67.4	123
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	105	66.4	121
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	105	70.7	121
		EP080: Naphthalene	91-20-3	2.5 mg/kg	86.7	61.1	115
EP080: BTEXN (Q	CLot: 5016567)						
ES2313346-021	SS121	EP080: Benzene	71-43-2	2.5 mg/kg	101	62.1	122

Page	: 26 of 26
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL				Ma	Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080: BTEXN (Q	CLot: 5016567) - continued							
ES2313346-021	SS121	EP080: Toluene	108-88-3	2.5 mg/kg	101	66.6	119	
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	105	67.4	123	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	105	66.4	121	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	114	70.7	121	
		EP080: Naphthalene	91-20-3	2.5 mg/kg	94.7	61.1	115	
EP080: BTEXN (Q	CLot: 5016579)							
ES2313346-041	SS141	EP080: Benzene	71-43-2	2.5 mg/kg	104	62.1	122	
		EP080: Toluene	108-88-3	2.5 mg/kg	104	66.6	119	
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	108	67.4	123	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	107	66.4	121	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	109	70.7	121	
		EP080: Naphthalene	91-20-3	2.5 mg/kg	74.6	61.1	115	
EP080: BTEXN (Q	CLot: 5021159)							
ES2313346-069	BH111_0-0.1	EP080: Benzene	71-43-2	2.5 mg/kg	88.2	62.1	122	
		EP080: Toluene	108-88-3	2.5 mg/kg	89.0	66.6	119	
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	93.2	67.4	123	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	91.2	66.4	121	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	91.3	70.7	121	
		EP080: Naphthalene	91-20-3	2.5 mg/kg	77.9	61.1	115	



QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES2313346	Page	: 1 of 16		
Client	: CAVVANBA CONSULTING	Laboratory	: Environmental Division Sydney		
Contact	: MR DREW WOOD	Telephone	: +61-2-8784 8555		
Project	: 20025.76	Date Samples Received	: 21-Apr-2023		
Site	:	Issue Date	: 04-May-2023		
Sampler	: ZAC LAUGHLAN	No. of samples received	: 78		
Order number	: 20025.76	No. of samples analysed	: 66		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2313346014	SS114	Lead	7439-92-1	20.1 %	0% - 20%	RPD exceeds LOR based limits
EG005(ED093)T: Total Metals by ICP-AES	ES2313346057	BH105_0-0.1	Zinc	7440-66-6	21.2 %	0% - 20%	RPD exceeds LOR based limits

#### **Regular Sample Surrogates**

#### Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075(SIM)S: Phenolic Compound Surrogates	ES2313346-040	SS140	Phenol-d6	13127-88-3	61.2 %	63.0-123	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313346-029	SS129	2-Chlorophenol-D4	93951-73-6	64.2 %	66.0-122	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313346-040	SS140	2-Chlorophenol-D4	93951-73-6	64.6 %	66.0-122	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313346-040	SS140	2.4.6-Tribromophenol	118-79-6	37.0 %	40.0-138	Recovery less than lower data quality
						%	objective
EP075(SIM)T: PAH Surrogates	ES2313346-006	SS106	2-Fluorobiphenyl	321-60-8	66.7 %	70.0-122	Recovery less than lower data quality
						%	objective
EP075(SIM)T: PAH Surrogates	ES2313346-006	SS106	Anthracene-d10	1719-06-8	58.0 %	66.0-128	Recovery less than lower data quality
						%	objective
EP075(SIM)T: PAH Surrogates	ES2313346-040	SS140	Anthracene-d10	1719-06-8	47.5 %	66.0-128	Recovery less than lower data quality
						%	objective

#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: SOIL

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	10				
Laboratory Duplicates (DUP)					
Total Mercury by FIMS	10	103	9.71	10.00	NEPM 2013 B3 & ALS QC Standard

# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Page	: 3 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL		Evaluation: ★ = Holding time breach ; ✓ = Within holding time						
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
TP101_0-0.1,	TP102_0-0.1,	18-Apr-2023				02-May-2023	02-May-2023	<ul><li>✓</li></ul>
TP103_0-0.1,	TP104_0-0.1							
Soil Glass Jar - Unpreserved (EA055)								
SS101,	SS102,	18-Apr-2023				28-Apr-2023	02-May-2023	<ul><li>✓</li></ul>
SS103,	SS104,							
SS105,	SS106,							
SS107,	SS108,							
SS109,	SS110,							
SS111,	SS112,							
SS113,	SS114,							
SS115,	SS116,							
SS117,	SS118,							
SS119,	SS120,							
SS121,	SS122,							
SS123,	SS124,							
SS125.	SS126.							
SS127.	SS128.							
SS129.	BH101 0-0.1.							
BH106 0-0 1	2							
Soil Glass Jar - Unpreserved (FA055)								
SS130,	SS131,	19-Apr-2023				28-Apr-2023	03-May-2023	1
SS132.	SS133.							
SS134.	SS135.							
SS136	SS137							
SS138	SS139							
SS140	SS141							
SS142	SS143							
BH102 0-0 1	BH103 0-0 1							
BH104_0_01	BH104_0_3-0_4							
BH105_0.01	DITIOT_0.3-0.4,							
Soil Glass Jar, Uppreserved (EA055)								
BH111 0-0 1		20-Apr-2023				02-May-2023	04-May-2023	
Soil Glass Jar - Uppreserved (EA055)								•
SS144.	SS145.	20-Apr-2023				28-Apr-2023	04-May-2023	1
SS146.	SS147.					-		1
SS148	BH107 0-0 1							
BH108 0-0 1	BH108 0 3-0 4							
BH109_0-0 1	BH110_0-0.1							
Biiio_0.1,	DITTIO_0-0.1		1					

Page	: 4 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Whend         Sample bit         Elitecturit         Discretaria         Caluadia	Matrix: SOIL			Evaluation: $\star$ = Holding time breach ; $\checkmark$ = Within ho						
Contact Clear Supple D(g)         Contact Clear Supple D(g)         Description         Read of the running of the runnin	Method		Sample Date	Extraction / Preparation			Analysis			
Sebel Consistence week (E00051) TP101_0.0.1, TP102_0.0.1, TP103_0.0.1, TP104_0.0.1, TP104_0.0.1, TP104_0.0.1, TP104_0.0.1, TP104_0.0.1, TP104_0.0.1, TP103_0.0.1, SS102, SS102, SS103, SS104, SS104, SS104, SS104, SS104, SS104, SS104, SS114, SS114, SS114, SS114, SS114, SS114, SS114, SS114, SS122, SS122, SS123, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS124, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS134, SS	Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
Schl Gass Jar - Unpreserved (E00057)         TP102_0.0.1,         TP104_0.0.1         16-Abr-2023         16-Oct-2023         1         02.4May-2033         1	EG005(ED093)T: Total Metals by ICP-AES									
TP101_0.0.1,       TP102_0.0.1,       TP102_0.0.0,       TP102_0.0.0,       TP102_0.0.0,       TP102_0.0.0,       TP102_0.0.0,       TP102_0.0.0, <th< th=""><th>Soil Glass Jar - Unpreserved (EG005T)</th><th></th><th></th><th></th><th>45 0 4 0000</th><th></th><th></th><th>45 0 1 0000</th><th></th></th<>	Soil Glass Jar - Unpreserved (EG005T)				45 0 4 0000			45 0 1 0000		
TP103_0-0.1         TP104_0-0.1         TP104_00.1         TP104_00.1         TP105_00.1         TP105	TP101_0-0.1,	TP102_0-0.1,	18-Apr-2023	02-May-2023	15-Oct-2023	~	02-May-2023	15-Oct-2023	✓	
Soli Dias Jar - Unpreserved (EG0007)         Stitu - Impreserved (EG0007)	TP103_0-0.1,	TP104_0-0.1								
Sin1,       Sin2,       19. Apr.2023       19. OCC.2023       ✓       01. Map.2023       19. OCC.2023       ✓       01	Soil Glass Jar - Unpreserved (EG005T)				15 0 1 0000			45.0.4.0000		
Sh130,       Sh14,         Sh105,       Sh106,         Sh105,       Sh106,         Sh106,       Sh100,         Sh105,       Sh100,         Sh110,       Sh112,         Sh111,       Sh114,         Sh113,       Sh114,         Sh114,       Sh114,         Sh115,       Sh16,         Sh12,       Sh12,         Sh12,       Sh12,         Sh12,       Sh12,         Sh12,       Sh12,         Sh12,       Sh12,         Sh12,       Sh13,         Sh13,       Sh14,         Sh14,       Sh14,         Sh12,       Sh12,         Sh12,       Sh13,         Sh13,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,         Sh13,       Sh14,         Sh13,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,         Sh13,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,         Sh14,       Sh14,	SS101,	SS102,	18-Apr-2023	28-Apr-2023	15-Oct-2023	~	01-May-2023	15-Oct-2023	<ul> <li>✓</li> </ul>	
S5105,       S106,       S106,         S5107,       S5108,       S5100,       S5100,       S5110,       S5111,       S5111,       S5113,       S5114,       S5114,       S5113,       S5114,       S5114,       S5124,       S5134,	SS103,	SS104,								
S5107,       S5106,       S5106,       S5100,       S5110,         S5110,       S5112,       S5112,       S5113,       S5120,       S5121,       S5122,       S5122,       S5124,       S5125,       S5128,       S5128,       S5127,       S5128,       S5128,       S513,       S514,	SS105,	SS106,								
S5100,       S5110,       S5110,       S5112,       S5113,       S5114,       S5114,       S5114,       S5114,       S5114,       S5114,       S5114,       S5114,       S5114,       S5112,       S5120,       S5121,       S5120,       S5124,       S5131,       S5134,       S5144,	SS107,	SS108,								
SS111,       SS112,       SS112,       SS114,       SS114,       SS114,       SS114,       SS114,       SS113,       SS113,       SS113,       SS113,       SS113,       SS113,       SS113,       SS122,       SS122,       SS124,       SS124,       SS124,       SS124,       SS124,       SS126,       SS126,       SS126,       SS126,       SS126,       SS13,       SS14,	SS109,	SS110,								
SS113,       SS114,       SS114,       SS114,       SS116,       SS116,       SS116,       SS116,       SS116,       SS116,       SS116,       SS117,       SS120,       SS122,       SS123,       SS122,       SS122,       SS123,       SS124,       SS124,       SS124,       SS124,       SS124,       SS134,       SS144,       S144,	SS111,	SS112,								
SS115,       SS118,         SS117,       SS118,         SS117,       SS120,         SS121,       SS122,         SS122,       SS124,         SS122,       SS122,         SS122,       SS122,         SS122,       SS122,         SS122,       SS122,         SS122,       SS122,         SS124,       SS122,         SS124,       SS122,         SS124,       SS122,         SS124,       SS124,         SS124,       SS124,         SS124,       SS134,         SS130,       SS131,         SS131,       SS134,         SS132,       SS134,         SS134,       SS134,         SS135,       SS134,         SS140,       SS140,         SS141,       S142,         SS134,       SS140,         SS140,       S140,         SS141,       S142,         SS141,       S142,         SS141,       S142,         SS141,       S142,         SS141,       S142,         SS141,       S140,         SS141,       S140,         S141, <td>SS113,</td> <td>SS114,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SS113,	SS114,								
SS117.         SS118.         SS120.         SS130.         SS131.         SS130.         SS131.         SS130.         SS140.         SS140.<	SS115,	SS116,								
SS119,       SS120,       SS120,       SS121,       SS122,       SS124,       SS124,       SS126,       SS128,       SS129,       BH101_0-0.1,       BH101_0-0.1,       BH101_0-0.1,       SS130,       SS131,       SS141,       SS141,       SS141,	SS117,	SS118,								
SS121,       SS122,       SS124,       SS124,       SS124,       SS126,       SS127,       SS128,       SS127,       SS128,       SS129,       SS129,       SS129,       SS129,       SS129,       SS129,       SS129,       SS129,       SS130,       SS131,       SS131,       SS132,       SS131,       SS132,       SS131,       SS132,       SS130,       SS134,       SS134,       SS132,       SS134,       SS133,       SS134,       SS133,       SS134,       SS133,       SS134,       SS133,       SS134,       SS144,	SS119,	SS120,								
SS123,       SS124,       SS125,       SS126,       SS127,       SS128,       BH101_0.0.1,       S144,       S144,       S144,       S144,       S144,       S144,       S144,       S144,       S145,	SS121,	SS122,								
SS125,       SS126,       SS128,       SS131,       SS132,       SS132,       SS134,       SS134,       SS134,       SS136,       SS136,       SS136,       SS136,       SS136,       SS136,       SS138,       SS136,       SS138,       SS134,       SS134,       SS136,       SS136,       SS138,       SS136,       SS136,       SS136,       SS136,       SS137,       SS138,       SS140,	SS123,	SS124,								
SS127,       SS128,       BH101_0-0.1,         BH106_0-0.1       SS130,       SS131,       19-Apr-2023       28-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023 <td< td=""><td>SS125.</td><td>SS126.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	SS125.	SS126.								
SS129, BH100_0.0.1, BH100_0.0.1       BH100_0.0.1, BH100_0.0.1       BH100_0.0.1, BH100_0.0.1       Include Construction of the	SS127.	SS128.								
BH106_0.0.1       Ich	SS129	BH101 0-0 1								
Schl Glass Jar - Unpreserved (EG005T)       SS131,       19-Apr-2023       28-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       ✓         Soli Glass Jar - Unpreserved (EG005T)       SS134,       SS136,       SS136,       SS136,       SS136,       SS138,       19-Apr-2023       29-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       ✓         SS135,       SS136,       SS136,       SS138,       SS138,       SS139,       SS140,       SS144,       SS142,       SS144,       SS142,       SS144,       SS145,       SS145,       SS144,       SS145,       SS144,	BH106 0-0.1									
SS130, SS132       SS131, SS132       19-Apr-2023       28-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       ✓         SS132       SS132       SS134,       19-Apr-2023       29-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       ✓       01-May-2024       16-Oct-2023       ✓       01-May-2023       17-Oct-2023       ✓       01-May-2023       17-Oct-2023       ✓       ✓       01-May-2023       17	Soil Glass Jar - Unpreserved (EG005T)									
SS132       Image: SS132       Image: SS132       Image: SS133       Image: SS134       Image: SS134       Image: SS135       Image: SS136       Image	SS130,	SS131,	19-Apr-2023	28-Apr-2023	16-Oct-2023	1	01-May-2023	16-Oct-2023	1	
Soil Glass Jar - Unpreserved (EG005T)       SS133,       SS134,       SS135,       SS136,       SS136,       SS137,       SS138,       SS139,       SS140,       SS141,       SS142,       SS142,       SS143,       BH102_0-0.1,       BH104_0-0.1,       BH104_0-0.1,       BH104_0-0.1,       BH104_0-0.1,       BH105_0-0.1       In-Oct-2023       17-Oct-2023       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓       ✓	SS132									
SS133,       SS134,       SS134,       19-Apr-2023       29-Apr-2023       16-Oct-2023       ✓       01-May-2023       16-Oct-2023       ✓       ✓       16-Oct-2023       ✓       16-Oct-2023       ✓       16-Oct-2023       ✓       ✓       16-Oct-2023       ✓       16-Oct-2023       ✓       16-Oct-2023       16-Oct-2023       ✓       16-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023 <td>Soil Glass Jar - Unpreserved (EG005T)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Soil Glass Jar - Unpreserved (EG005T)									
SS135,       SS136,       SS136,       SS137,       SS138,       SS138,       SS138,       SS138,       SS139,       SS140,       SS142,       SS142,       SS142,       SS142,       SS143,       BH102_0-0.1,       BH104_0.0.1,       BH104_0.0.1,       BH104_0.0.1,       BH105_0.0.1       Image: SS143,       SS143,       SS143,       SS144,       SS145,       SS145,       SS145,       SS145,       SS145,       SS145,       SS145,       SS145,       SS145,       SS144,       SS145,       SS145,       SS145,       SS145,       SS145,       SS147,       SS145,       SS147,       SS144,       SS147,       SS147,       SS146,       SS147,       SS146, <t< td=""><td>SS133,</td><td>SS134,</td><td>19-Apr-2023</td><td>29-Apr-2023</td><td>16-Oct-2023</td><td>1</td><td>01-May-2023</td><td>16-Oct-2023</td><td><ul> <li>✓</li> </ul></td></t<>	SS133,	SS134,	19-Apr-2023	29-Apr-2023	16-Oct-2023	1	01-May-2023	16-Oct-2023	<ul> <li>✓</li> </ul>	
SS137,       SS138,       SS138,       SS140,       SS140,       SS142,       SS142,       SS142,       SS142,       SS142,       SS143,       BH102_0-0.1,       BH104_0.0.1,       BH104_0.0.1,       BH104_0.0.1,       BH105_0-0.1       Description       Description </td <td>SS135,</td> <td>SS136,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SS135,	SS136,								
SS139,       SS140,       SS142,       SS142,       SS142,       SS142,       SS142,       SS143,       BH102_0-0.1,       BH104_0.0.1,       BH104_0.0.1,       BH104_0.0.1,       BH105_0-0.1       Description       Description <t< td=""><td>SS137,</td><td>SS138,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SS137,	SS138,								
SS141,       SS142,         SS143,       BH102_0-0.1,         BH104_0.3-0.4,       BH105_0-0.1         Soil Glass Jar - Unpreserved (EG005T)       BH105_0-0.1         BH111_0-0.1       20-Apr-2023       02-May-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       √         Soil Glass Jar - Unpreserved (EG005T)       S145,       S145,       S145,       17-Oct-2023       √       17-Oct-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       √       √         Soil Glass Jar - Unpreserved (EG005T)       S145,       S145,       S145,       S147,       S148,       BH107_0-0.1,       BH108_0.3-0.4,       BH107_0-0.1,       BH108_0.3-0.4,       BH108_0.3-0.4,       BH108_0.3-0.4,       BH100_0-0.1       H110_0-0.1	SS139,	SS140,								
SS143,       BH102_0-0.1,       BH104_00.1,       BH104_00.1,       BH104_00.1,       BH104_00.1,       BH105_0-0.1       Image: Constant of the consta	SS141,	SS142,								
BH103_0-0.1, BH104_0.3-0.4, BH105_0-0.1 Soil Glass Jar - Unpreserved (EG005T) BH111_0-0.1 Soil Glass Jar - Unpreserved (EG005T) Soil Glass Jar - Unpreserved (EG005T) SS144, SS145, SS145, SS145, SS145, SS146, SS147, SS148, BH107_0-0.1, BH110_0-0.1 BH110_0-0.1, BH108_0.3-0.4, BH109_0-0.1, BH109_0-0.1, BH100_0-0.1	SS143.	BH102 0-0.1.								
BH104_0.3-0.4,       BH105_0-0.1       BH105_0-0.1       Image: Constraint of the second s	BH103 0-0.1.	BH104_00.1.								
Soil Glass Jar - Unpreserved (EG005T)       20-Apr-2023       02-May-2023       17-Oct-2023       √       02-May-2023       17-Oct-2023       √       √         Soil Glass Jar - Unpreserved (EG005T)       SS145,       20-Apr-2023       29-Apr-2023       17-Oct-2023       ✓       01-May-2023       17-Oct-2023       √       √         SS144,       SS145,       SS147,       SS147,       SS147,       SS147,       17-Oct-2023       ✓       17-Oct-2023       √       01-May-2023       17-Oct-2023       √       √          SS146,       SS147,       SS147,       SS148,       BH107_0-0.1,       BH108_0.3-0.4,       BH108_0.3-0.4,       BH100_0-0.1       BH110_0-0.1       BH110_0-0.1<	BH104_0.3-0.4	BH105_0-0_1								
BH111_0-0.1       20-Apr-2023       02-May-2023       17-Oct-2023       17-Oct-2023       17-Oct-2023       √         Soil Glass Jar - Unpreserved (EG005T)       SS145,       SS145,       SS147,       SS147,       SS147,       SS147,       SS147,       SS147,       SS148,       BH107_0-0.1,       BH108_0.3-0.4,       BH108_0.3-0.4,       BH100_0.0.1,       BH100_0.0.1,       BH110_0-0.1	Soil Glass Jar - Unpreserved (EG005T)									
Soli Giass Jar - Unpreserved (EG005T) SS144, SS145, SS145, SS146, SS147, SS148, BH107_0-0.1, BH108_0.3-0.4, BH109_0-0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.1, BH100_0.0.	BH111 0-0.1		20-Apr-2023	02-May-2023	17-Oct-2023	1	02-May-2023	17-Oct-2023	1	
SS144,       SS145,       20-Apr-2023       29-Apr-2023       17-Oct-2023       01-May-2023       17-Oct-2023         SS146,       SS147,       SS148,       BH107_0-0.1,       BH108_0.3-0.4,       H108_0.3-0.4,       H110 0-0.1	Soil Glass Jar - Unpreserved (EG005T)									
SS146,       SS147,         SS148,       BH107_0-0.1,         BH108_0-0.1,       BH108_0.3-0.4,         BH109_0-0.1,       BH110_0-0.1	SS144,	SS145,	20-Apr-2023	29-Apr-2023	17-Oct-2023	1	01-May-2023	17-Oct-2023	<ul> <li>✓</li> </ul>	
SS148,       BH107_0-0.1,         BH108_0-0.1,       BH108_0.3-0.4,         BH109_0-0.1,       BH110_0-0.1	SS146,	SS147,								
BH108_0-0.1, BH108_0.3-0.4, BH109_0-0.1, BH110_0-0.1	SS148,	BH107_0-0.1,								
BH109 0-0.1, BH110 0-0.1	BH108 0-0.1,	BH108 0.3-0.4,								
	BH109 0-0.1,	BH110 0-0.1								

Page	5 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL			Evaluation: × = Holding time brea						
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG035T: Total Recoverable Mercury by F	IMS								
Soil Glass Jar - Unpreserved (EG035T)									
TP101_0-0.1,	TP102_0-0.1,	18-Apr-2023	02-May-2023	16-May-2023	1	03-May-2023	16-May-2023	<ul> <li>✓</li> </ul>	
TP103_0-0.1,	TP104_0-0.1								
Soil Glass Jar - Unpreserved (EG035T)									
SS101,	SS102,	18-Apr-2023	28-Apr-2023	16-May-2023	~	02-May-2023	16-May-2023	<ul> <li>✓</li> </ul>	
SS103,	SS104,								
SS105,	SS106,								
SS107,	SS108,								
SS109,	SS110,								
SS111,	SS112,								
SS113,	SS114,								
SS115,	SS116,								
SS117,	SS118,								
SS119,	SS120,								
SS121.	SS122.								
SS123.	SS124.								
SS125.	SS126.								
SS127	SS128								
SS129	BH101 0-0 1								
BH106_0-0_1	Binor_0 0.1,								
Soil Glass Jar - Uppreserved (EG035T)									
SS130.	SS131.	19-Apr-2023	28-Apr-2023	17-May-2023	1	02-May-2023	17-May-2023	1	
SS132									
Soil Glass Jar - Unpreserved (EG035T)									
SS133,	SS134,	19-Apr-2023	29-Apr-2023	17-May-2023	1	02-May-2023	17-May-2023	1	
SS135,	SS136,								
SS137,	SS138,								
SS139,	SS140,								
SS141.	SS142.								
SS143.	BH102 0-0.1.								
BH103 0-0.1.	BH104_00.1.								
BH104_0_3-0_4	BH105_0-0_1								
Soil Glass Jar - Unpreserved (EG035T)	200_0 0								
BH111 0-0.1		20-Apr-2023	02-May-2023	18-May-2023	1	03-May-2023	18-May-2023	1	
Soil Glass Jar - Unpreserved (EG035T)									
SS144,	SS145,	20-Apr-2023	29-Apr-2023	18-May-2023	1	02-May-2023	18-May-2023	<ul> <li>✓</li> </ul>	
SS146,	SS147,								
SS148,	BH107_0-0.1,								
BH108 0-0.1,	BH108 0.3-0.4,								
BH109 0-0.1,	BH110 0-0.1								
								1 C	
Page	: 6 of 16								
------------	-----------------------								
Work Order	: ES2313346								
Client	: CAVVANBA CONSULTING								
Project	20025.76								



Matrix: SOIL				Evaluation: * = Holding time breach ; ✓ = Within holding time						
Method			Extraction / Preparation Analysis							
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons									
Soil Glass Jar - Unpreserved (EP075(S	IM))			00 May 2022			10 km 0000			
SS122,	SS123,	18-Apr-2023	01-May-2023	02-Iviay-2023	~	02-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
SS124,	SS125,									
SS126,	SS127,									
SS128,	SS129									
Soil Glass Jar - Unpreserved (EP075(S	IM))						40.1.0000			
SS101,	SS121,	18-Apr-2023	01-May-2023	02-May-2023	-	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
BH101_0-0.1,	BH106_0-0.1,									
TP101_0-0.1,	TP102_0-0.1,									
TP103_0-0.1,	TP104_0-0.1									
Soil Glass Jar - Unpreserved (EP075(S	IM))									
SS102,	SS103,	18-Apr-2023	01-May-2023	02-May-2023	1	04-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
SS104,	SS105,									
SS106,	SS107,									
SS108,	SS109,									
SS110,	SS111,									
SS112,	SS113,									
SS114,	SS115,									
SS116,	SS117,									
SS118,	SS119,									
SS120	,									
Soil Glass Jar - Unpreserved (EP075(S	IM))									
SS130,	" SS131,	19-Apr-2023	01-May-2023	03-May-2023	1	02-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
SS132,	SS133,									
SS134.	SS135.									
SS136.	SS137.									
SS138.	SS139.									
SS140	,									
Soil Glass Jar - Unpreserved (EP075(S	IM))									
SS141,	SS142,	19-Apr-2023	01-May-2023	03-May-2023	1	03-May-2023	10-Jun-2023	1		
SS143.	BH102 0-0.1.							-		
BH103 0-0.1.	BH104_00.1									
BH104_0_3-0_4	BH105_0-0_1									
Soil Glass Jar - Unpreserved (FP075/S	IM))									
SS144.	SS145.	20-Apr-2023	01-May-2023	04-May-2023	1	03-May-2023	10-Jun-2023	1		
SS146.	SS147.				-					
SS148	BH107 0-0 1									
BH108 0-0 1	BH108_0 3-0 4									
BH109_0-0_1	BH110_0_0_1									
BH111 0 0 1	Diffito_0-0.1,									
DITIT_0-0.1				1						

Page	: 7 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Evaluation: × = Holding time breach ; ✓ =					breach ; ✓ = Withi	n holding time		
Method			E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071) TP101_0-0.1		18-Apr-2023	01-May-2023	02-May-2023	4	02-May-2023	10-Jun-2023	1
Soil Glass Jar - Unpreserved (EP071)							40.1.0000	
TP102_0-0.1,	TP103_0-0.1,	18-Apr-2023	01-May-2023	02-May-2023	~	03-May-2023	10-Jun-2023	<ul><li>✓</li></ul>
TP104_0-0.1								
Soil Glass Jar - Unpreserved (EP071)	66100	18 Apr 2023	01 May 2023	02_May_2023		04 May 2023	10- lun-2023	
SS101,	SS102,	10-Api-2023	01-1viay-2023	02-101dy-2020	~	04-11/ay-2023	10-0011-2020	✓
55103,	55104,							
SS105,	SS106,							
SS107,	SS108,							
SS109,	SS110,							
SS111,	SS112,							
SS113,	SS114,							
SS115,	SS116,							
SS117,	SS118,							
SS119,	SS120,							
SS121,	SS122,							
SS123,	SS124,							
SS125,	SS126,							
SS127,	SS128,							
SS129,	BH101_0-0.1,							
BH106_0-0.1								
Soil Glass Jar - Unpreserved (EP080)								
TP101_0-0.1,	TP102_0-0.1,	18-Apr-2023	02-May-2023	02-May-2023	~	02-May-2023	02-May-2023	<ul> <li>✓</li> </ul>
TP103_0-0.1,	TP104_0-0.1							
Soil Glass Jar - Unpreserved (EP080)								
SS121,	SS122,	18-Apr-2023	28-Apr-2023	02-May-2023	~	01-May-2023	02-May-2023	<ul> <li>✓</li> </ul>
SS123,	SS124,							
SS125,	SS126,							
SS127,	SS128,							
SS129,	BH101_0-0.1							
Soil Glass Jar - Unpreserved (EP080)								
BH106_0-0.1		18-Apr-2023	28-Apr-2023	02-May-2023	✓	02-May-2023	02-May-2023	<ul> <li>✓</li> </ul>
Soil Glass Jar - Unpreserved (EP080)		I	I			l	l	l

Page	: 8 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL			Evaluation: × = Holding time breact						
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Petroleum Hydrocarbons	s - Continued								
SS101,	SS102,	18-Apr-2023	28-Apr-2023	02-May-2023	1	29-Apr-2023	02-May-2023	✓	
SS103,	SS104,								
SS105,	SS106,								
SS107,	SS108,								
SS109,	SS110,								
SS111,	SS112,								
SS113,	SS114,								
SS115,	SS116,								
SS117,	SS118,								
SS119,	SS120								
Soil Glass Jar - Unpreserved (EP071)									
SS141,	SS142,	19-Apr-2023	01-May-2023	03-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
SS143									
Soil Glass Jar - Unpreserved (EP071)									
SS130,	SS131,	19-Apr-2023	01-May-2023	03-May-2023	~	04-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
SS132,	SS133,								
SS134,	SS135,								
SS136,	SS137,								
SS138,	SS139,								
SS140,	BH102_0-0.1,								
BH103_0-0.1,	BH104_00.1,								
BH104_0.3-0.4,	BH105_0-0.1								
Soil Glass Jar - Unpreserved (EP080)									
SS130,	SS131,	19-Apr-2023	28-Apr-2023	03-May-2023	~	01-May-2023	03-May-2023	<ul> <li>✓</li> </ul>	
SS132,	SS133,								
SS134,	SS135,								
SS136,	SS137,								
SS138,	SS139								
Soil Glass Jar - Unpreserved (EP080)	00444	40.4	00.4	02 May 2002		00 Mar. 0000	02 May 2002		
SS140,	SS141,	19-Apr-2023	28-Apr-2023	03-Iviay-2023	~	02-Way-2023	03-Iviay-2023	✓	
SS142,	SS143,								
BH102_0-0.1,	BH103_0-0.1,								
BH104_00.1,	BH104_0.3-0.4,								
BH105_0-0.1									
Soil Glass Jar - Unpreserved (EP071)		20 4 77 2022	04 May 2022	04 May 2022	,	02 May 2022	10 Jun 2022		
SS145,	BH111_0-0.1	20-Apr-2023	01-Way-2023	04-1viay-2023	~	03-Way-2023	10-Jun-2023	✓	
Soli Glass Jar - Unpreserved (EP071)	SS146	20-Apr-2023	01-May-2023	04-May-2023		04-May-2023	10lun-2023		
SS147	SS140, SS148	20-401-2023	01-may-2023	0- May-2020	~	54-may-2025	10 001-2020	✓	
BH107 0.0.1									
DI 100_0.3-0.4, DU110_0.0.1	טווחם_0-0.1,								
DT110_0-0.1			1						

Page	: 9 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydroca	arbons - Continued							
Soil Glass Jar - Unpreserved (EP080 BH111_0-0.1	)	20-Apr-2023	02-May-2023	04-May-2023	1	02-May-2023	04-May-2023	~
Soil Glass Jar - Unpreserved (EP080	)							
SS144,	SS145,	20-Apr-2023	28-Apr-2023	04-May-2023	1	02-May-2023	04-May-2023	<ul> <li>✓</li> </ul>
SS146,	SS147,							
SS148,	BH107_0-0.1,							
BH108_0-0.1,	BH108_0.3-0.4,							
BH109_0-0.1,	BH110_0-0.1							

Page	: 10 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Evaluation: ★ = Holding time breach ; ✓ = Wi					breach ; 🗸 = Withi	n holding time				
Method			ample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarbons - N	IEPM 2013 Fractions									
Soil Glass Jar - Unpreserved (EP071) TP101_0-0.1		18-	3-Apr-2023	01-May-2023	02-May-2023	~	02-May-2023	10-Jun-2023	1	
Soil Glass Jar - Unpreserved (EP071)										
TP102_0-0.1,	TP103_0-0.1,	18-	3-Apr-2023	01-May-2023	02-May-2023	~	03-May-2023	10-Jun-2023	✓	
TP104_0-0.1										
Soil Glass Jar - Unpreserved (EP071)					00 May 2000			10 1		
SS101,	SS102,	18-	3-Apr-2023	01-May-2023	02-May-2023	~	04-May-2023	10-Jun-2023	✓	
SS103,	SS104,									
SS105,	SS106,									
SS107,	SS108,									
SS109,	SS110,									
SS111,	SS112,									
SS113,	SS114,									
SS115,	SS116,									
SS117,	SS118,									
SS119,	SS120,									
SS121,	SS122,									
SS123,	SS124,									
SS125,	SS126,									
SS127,	SS128,									
SS129,	BH101_0-0.1,									
BH106_0-0.1										
Soil Glass Jar - Unpreserved (EP080)										
TP101_0-0.1,	TP102_0-0.1,	18-	3-Apr-2023	02-May-2023	02-May-2023	✓	02-May-2023	02-May-2023	✓	
TP103_0-0.1,	TP104_0-0.1									
Soil Glass Jar - Unpreserved (EP080)										
SS121,	SS122,	18-	3-Apr-2023	28-Apr-2023	02-May-2023	~	01-May-2023	02-May-2023	✓	
SS123,	SS124,									
SS125,	SS126,									
SS127,	SS128,									
SS129,	BH101_0-0.1									
Soil Glass Jar - Unpreserved (EP080)										
BH106_0-0.1		18-	3-Apr-2023	28-Apr-2023	02-May-2023	✓	02-May-2023	02-May-2023	✓	
Soil Glass Jar - Unpreserved (EP080)			I							

Page	: 11 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL			Evaluation: × = Holding time breach ; ✓ = Within holding time						
Method Container / Client Sample ID(s)		Sample Date	Ex	ktraction / Preparation		Analysis			
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions - Continued								
SS101,	SS102,	18-Apr-2023	28-Apr-2023	02-May-2023	1	29-Apr-2023	02-May-2023	✓	
SS103,	SS104,								
SS105,	SS106,								
SS107,	SS108,								
SS109,	SS110,								
SS111,	SS112,								
SS113,	SS114,								
SS115,	SS116,								
SS117,	SS118,								
SS119.	SS120								
Soil Glass Jar - Unpreserved (EP071)									
SS141,	SS142,	19-Apr-2023	01-May-2023	03-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
SS143									
Soil Glass Jar - Unpreserved (EP071)									
SS130,	SS131,	19-Apr-2023	01-May-2023	03-May-2023	~	04-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
SS132,	SS133,								
SS134,	SS135,								
SS136,	SS137,								
SS138,	SS139,								
SS140,	BH102 0-0.1,								
BH103 0-0.1,	BH104_00.1,								
BH104_0.3-0.4,	BH105_0-0.1								
Soil Glass Jar - Unpreserved (EP080)									
SS130,	SS131,	19-Apr-2023	28-Apr-2023	03-May-2023	1	01-May-2023	03-May-2023	✓	
SS132,	SS133,								
SS134,	SS135,								
SS136,	SS137,								
SS138,	SS139								
Soil Glass Jar - Unpreserved (EP080)									
SS140,	SS141,	19-Apr-2023	28-Apr-2023	03-May-2023	1	02-May-2023	03-May-2023	<ul> <li>✓</li> </ul>	
SS142,	SS143,								
BH102_0-0.1,	BH103_0-0.1,								
BH104_00.1,	BH104_0.3-0.4,								
BH105_0-0.1									
Soil Glass Jar - Unpreserved (EP071)									
SS145,	BH111_0-0.1	20-Apr-2023	01-May-2023	04-May-2023	1	03-May-2023	10-Jun-2023	✓	
Soil Glass Jar - Unpreserved (EP071)					_				
SS144,	SS146,	20-Apr-2023	01-May-2023	04-May-2023	~	04-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
SS147,	SS148,								
BH107_0-0.1,	BH108_0-0.1,								
BH108_0.3-0.4,	BH109_0-0.1,								
BH110 0-0.1									

Page	: 12 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL					Evaluation	i: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydro	carbons - NEPM 2013 Fractions - Continued							
Soil Glass Jar - Unpreserved (EP080) BH111_0-0.1		20-Apr-2023	02-May-2023	04-May-2023	1	02-May-2023	04-May-2023	<b>~</b>
Soil Glass Jar - Unpreserved (EP080								
SS144,	SS145,	20-Apr-2023	28-Apr-2023	04-May-2023	1	02-May-2023	04-May-2023	<ul> <li>✓</li> </ul>
SS146,	SS147,							
SS148,	BH107_0-0.1,							
BH108_0-0.1,	BH108_0.3-0.4,							
BH109_0-0.1,	BH110_0-0.1							

Page	: 13 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Mond         Container (2012)         Container (2012) <thcontainer (2012)<="" th=""> <thcontainer (2012)<="" th="">         &lt;</thcontainer></thcontainer>	Matrix: SOIL						Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Contant         Contant         Disc argented         Disc argented <thdisc argented<="" th="">         Disc argented</thdisc>	Method			le Date	Ex	traction / Preparation		Analysis		
Defendes	Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
Solid Data - Unpreserved (EP080) TP105_00.1         TP102_0.0.1         D2.May-2022         Q2.May-2023         Q2.May-2024         Q2.May-2024         Q2.May-2024         Q2.May-2024         Q2.May-2024         Q2.May-2024	EP080: BTEXN									
TP 102_0-0.1       TP 102_0.0.1        TP 102_0.0.1 <th< th=""><th>Soil Glass Jar - Unpreserved (EP080)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Soil Glass Jar - Unpreserved (EP080)									
TP106_0.0.1         TP104_0.0.1         Implementation         Implementatio	TP101_0-0.1,	TP102_0-0.1,	18-Api	r-2023	02-May-2023	02-May-2023	~	02-May-2023	02-May-2023	✓
Solid Base Jur - Unpreserved (EP080)         Sti22.         Sti22.         Paper 2023	TP103_0-0.1,	TP104_0-0.1								
Sh121,       Sh124,       Sh134,	Soil Glass Jar - Unpreserved (EP080)					00 14 0000			00 14 0000	
SS123.       SS124.       SS126.       SS127.       SS128.       SS138.	SS121,	SS122,	18-Api	r-2023	28-Apr-2023	02-1vlay-2023	~	01-May-2023	02-May-2023	✓
S152,       S122,       S122,       S122,       S122,       S122,       S122,       S122,       S122,       S123,       S123,       S123,       S123,       S123,       S123,       S123,       S123,       S123,       S124,       S134,       S134, <th< td=""><td>SS123,</td><td>SS124,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SS123,	SS124,								
S127.       S128, S122.       S128, BH101_0.0.1       Constraints       Constraints <thconstraints< th="">       Constraints</thconstraints<>	SS125,	SS126,								
S512a,       BH101_0.0.1	SS127,	SS128,								
Shi Das Jar - Unpreserved (EP080)       Stild	SS129,	BH101_0-0.1								
Bit 106, 0.0.1         194, Apr. 2023         234, Apr. 2023         V         02.May. 2023         V         V         02.May. 2023         V         V         02.May. 2023         V         V         02.May. 2023         V	Soil Glass Jar - Unpreserved (EP080)									
Soli Dias Jar - Unpreserved (EP080)         S110_         S110_         PApr-2023         PAM2-2023         PAM2-20	BH106_0-0.1		18-Api	r-2023	28-Apr-2023	02-May-2023	~	02-May-2023	02-May-2023	✓
SS101,       SS102,       SS102,       18-Apr-2023       28-Apr-2023       V       29-Apr-2023       02-May-2023       V       29-Apr-2023       V	Soil Glass Jar - Unpreserved (EP080)									
SS103,       SS104,       SS104,       SS105,       SS105,       SS105,       SS105,       SS107,       SS108,       SS107,       SS108,       SS110,       SS110,       SS111,       SS112,       SS111,       SS113,       SS13,       SS14,       SS14, <t< td=""><td>SS101,</td><td>SS102,</td><td>18-Api</td><td>r-2023</td><td>28-Apr-2023</td><td>02-May-2023</td><td>~</td><td>29-Apr-2023</td><td>02-May-2023</td><td>✓</td></t<>	SS101,	SS102,	18-Api	r-2023	28-Apr-2023	02-May-2023	~	29-Apr-2023	02-May-2023	✓
SS105,         SS106,         SS106,         SS107,         SS100,         SS100,         SS100,         SS100,         SS100,         SS110,         SS111,         SS112,         SS113,         SS114,         SS114,         SS115,         SS116,         SS107,         SS114,         SS113,         SS114,         SS114,         SS114,         SS113,         SS114,         SS13,         SS114,         SS13,         SS114,         SS13,         SS14,         SS13,         SS14,         SS14,<	SS103,	SS104,								
SS107,         SS108,         SS109,         SS100,         SS110,         SS110,         SS110,         SS111,         SS112,         SS113,         SS114,         SS115,         SS116,         SS116,         SS117,         SS116,         SS113,         SS13,         SS14,         SS14,<	SS105,	SS106,								
S5100,       S5110,       S5110,       S5112,       S5112,       S5113,       S5114,       S5115,       S5116,       S5116,       S5117,       S5118,       S5110,       S5110,       S5110,       S5110,       S5110,       S5110,       S5110,       S5111,       S5110,       S5110,       S5110,       S5111,       S5110,       S5130,       S5131,       S5131,       S5131,       S5131,       S5131,       S5132,       S5130,       S5140,       S141,	SS107,	SS108,								
SS111,       SS112,       SS114,       SS114,       SS114,       SS114,       SS114,       SS115,       SS117,       SS118,       SS117,       SS110,       SS113,       SS114,       SS113,       SS114,       SS114,       SS113,       SS114,	SS109,	SS110,								
SS113,       SS114,       SS116,       SS116,       SS116,       SS116,       SS116,       SS117,       SS118,       SS113,       SS130,       SS131,       SS132,       SS133,       SS134,       SS135,       SS136,       SS137,       SS138,       SS134,       SS140,       SS141,	SS111,	SS112,								
S3115,       S3116,       S3116,       S3117,       S3118,       S3117,       S3117,       S3117,       S3117,       S3120,       S3120,       S3131,       S3132,       S3133,       S3133,       S3134,       S3135,       S3136,       S3137,       S3141,       S3130,       S3141,       S3143,       S3143,       S3143,       S3143,       S3144,       S3143,       S3143,       S3143,       S3144,       S3143,       S3144,       S3143,       S3144,       S3143,       S3144,       S3143,       S3144,       S3145,       S3145,       S3145,       S3145,       S3145,       S3145,       S3145,       S3145,       S3145,       S3147,       S3144,       S3147,       S3144,       S3147,       S3144,       S3147,       S3146,	SS113,	SS114,								
Sh117, Sh19, Sh19, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh130, Sh141, Sh130, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh140, Sh141, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh140, Sh	SS115,	SS116,								
SS119,         SS120         Image: Constraint of the constra	SS117,	SS118,								
Soil Glass Jar - Unpreserved (EP080)       SS131,       SS132,       SS133,       SS133,       SS134,       SS133,       SS134,       SS135,       SS136,       SS137,       SS138,       SS138,       SS138,       SS138,       SS139,       SS138,       SS138,       SS138,       SS139,       SS138,       SS138,       SS139,       SS138,       SS139,       SS141,       SS140,       SS141,       SS143,       SS144,       SS144,       SS144,       SS144,       SS144,       SS145,       SS144,       SS145,       SS144,       SS145,       SS144,       SS144,       SS147,       SS148,       SS147,       SS148,       SS147,       SS148,       SS147,       SS148,       SS144,       SS14	SS119,	SS120								
SS130,       SS131,       SS132,       SS133,       SS133,       SS133,       SS133,       SS134,       SS141,       SS141,       SS142,       SS143,       SS143,       SS143,       SS143,       SS144,       SS143,       SS143,       SS144,       SS144,       SS144,       SS145,       SS145,       SS145,       SS144,       SS145,       SS145,       SS144,       SS144,       SS145,       SS144,       SS145,       SS144,       SS144,       SS145,       SS144,       SS144,       SS147,       SS148,       BH107_0-0.1,       BH108_0.3-0.4,       PAP-2023       V-Amay-2023       V       04-May-2023       V       V       PAP-3023       V       PAP-3023       V       PAP-3023       V       PAP-3023       V       PAP-3023	Soil Glass Jar - Unpreserved (EP080)									
SS132,       SS133,       SS133,       SS133,       SS134,       SS135,       SS135,       SS136,       SS137,       SS136,       SS137,       SS147,       SS144,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SS144,       S1417,       SS144,       SS147,       SS144,       SS147,       SS144,       SS144,       S1417,       SS144,       S1414,       S1417,       SS144,	SS130,	SS131,	19-Api	r-2023	28-Apr-2023	03-May-2023	1	01-May-2023	03-May-2023	✓
SS134,       SS135,       SS136,       SS137,       SS138,       SS137,       SS138,       SS139       SS138,       SS139       SS139       SS138,       SS139       SS139       SS139       SS141,       SS139,       SS141,       SS142,       SS143,       SS143,       SS143,       SS142,       SS143,       SS143,       SS143,       SS142,       SS143,       SS143,       SS141,       SS142,       SS143,       SS143,       SS144,       SS145,       SS145,       SS145,       SS144,       SS145,       SS144,       SS145,       SS145,       SS144,       SS145,       SS144,       SS145,       SS145,       SS144,       SS145,       SS145,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SS147,       SS144,       SH107_0-0.1,       SH108_0.30.4,       SH107_0-0.1,       SH108_0.30.4,       SH108_0.03.0,4,       SH108_0.03.0,4,       SH108_0.03.0,4,       SH108_0.03.0,4,       SH108_0.03.0,4,       SH108_0.00.1,       SH108_0.00.1,       SH1010_0.01,       SH1010_0.01, <td>SS132,</td> <td>SS133,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SS132,	SS133,								
SS136,       SS137,       SS137,       SS139       Image: SS139, SS139, SS139, SS139, SS139, SS139, SS140, SS141, SS143, SS143, SS143, SS143, SS143, SS143, SS143, SS143, SS144, SS145, SS146, SS147, SS146, SS147, SS144, SS144, SS144, SS147, SS144, SS144, SS147, SS144, SS144, SS147, SS144, SS144, SS147, SS147, SS144, SS147, SS147, SS147, SS144, SS147, SS147, SS144, SS147, SS144, SS147, SS144, SS147, SS144, SS147, SS144, SS147, SS147, SS144, SS147, SS147, SS144, SS147, SS1	SS134,	SS135,								
SS138,       SS139       SS140,       SS141,       SS141,       SS141,       SS141,       SS141,       SS141,       SS141,       SS142,       SS143,       SS142,       SS143,       BH103_0-0.1,       BH103_0-0.1,       BH104_0.3.0.4,       BH104_0.3.0.4,       SS141,       SS141,       SS141,       SS141,       SS142,       SS143,       SS142,       SS143,       SS144,       SS143,       SS144,       SS145,       SS144,       SS145,       SS147,       SS145,       SS147,       SS147,       SS146,       SS147,       SS148,       BH107_0-0.1,       BH108_0.3-0.4,       BH108_0.3-0.4,       BH108_0.0-0.1,       BH108_0.3-0.4,       BH100_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1       SU10_0-0.1	SS136.	SS137.								
Soil Glass Jar - Unpreserved (EP080)       SS141,       SS141,       SS143,       19-Apr-2023       28-Apr-2023       03-May-2023       04-May-2023       04-May-2023       04-May-2023       04-May-2023       04-May-2023       √       Soil Glass Jar - Unpreserved (EP080)       SS145,       SS145,       SS145,       SS147,       SS144,       SS147,       SS146,       SS147,       SS147,       SS147,       SS147,       SS147,       SS147,       SS146,       SH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH100_0.0.1       BH100_0.0.1       BH100_0.0.1       SS145,       SS145,       SS145,       SS146,       SS147,       SS148,       BH108_0.3.0.4,       BH108_0.3.0.4,       BH108_0.3.0.4,       SH110_0.0.1       SS145,       SS146,       SS147,       SS146,	SS138.	SS139								
SS140,       SS141,       SS141,       19-Apr-2023       28-Apr-2023       03-May-2023       √       02-May-2023       04-May-2023       √       04-May-2023       √ </td <td>Soil Glass Jar - Unpreserved (EP080)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Soil Glass Jar - Unpreserved (EP080)									
SS142,       SS143,         BH102_0-0.1,       BH103_0-0.1,         BH104_00.1,       BH104_0.3-0.4,         BH105_0-0.1       BH104_0.3-0.4,         BH105_0-0.1       20-Apr-2023         Soli Glass Jar - Unpreserved (EP080)       SS145,         BH111_0-0.1       20-Apr-2023         Soli Glass Jar - Unpreserved (EP080)       SS145,         S144,       SS145,         SS145,       SS147,         SS146,       SS147,         SS148,       BH107_0-0.1,         BH108_0-0.1,       BH108_0.3-0.4,         BH108_0-0.1,       BH108_0.3-0.4,         BH109_0-0.1       BH108_0.0-0.1	SS140,	SS141,	19-Api	r-2023	28-Apr-2023	03-May-2023	✓	02-May-2023	03-May-2023	✓
BH102_0-0.1,       BH103_0-0.1,       BH104_0.3-0.4,       BH104_0.3-0.4,       BH104_0.3-0.4,       BH104_0.3-0.4,       Image: Solid Glass Jar - Unpreserved (EP080)       Solid Glass Jar - Unpreserved	SS142,	SS143,								-
BH104_00.1,       BH104_0.3-0.4,       BH104_0.3-0.4,       Image: Constraint of the second sec	BH102 0-0.1.	BH103 0-0.1.								
BH105_0.0.1       Image: Solid Glass Jar - Unpreserved (EP080)       Image:	BH104_00.1.	BH104_0.3-0.4.								
Soil Glass Jar - Unpreserved (EP080)       20-Apr-2023       02-May-2023       04-May-2023	BH105_0-0_1	,								
BH111_0-0.1     20-Apr-2023     02-May-2023     04-May-2023     04-May-2023     04-May-2023     √       Soil Glass Jar - Unpreserved (EP080)     SS145,     SS145,     20-Apr-2023     28-Apr-2023     04-May-2023     √     02-May-2023     04-May-2023     √       SS144,     SS147,     SS147,     SS147,     SS148,     BH107_0-0.1,     BH108_0.3-0.4,     BH108_0.3-0.4,     H108_0.3-0.4,     H110_0-0.1     H100_0-0.1     H110_0-0.1     H100_0-0.1     H100_0-0.1     H100_0-0.1<	Soil Glass Jar - Unpreserved (FP080)									
Soli Giass Jar - Unpreserved (EP080) SS144, SS145, SS145, SS145, SS146, SS147, SS148, BH107_0-0.1, BH108_0.3-0.4, BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH108_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH110_0-0.1 BH109_0-0.1. BH100_0-0.1 BH109_0-0.1. BH100_0-0.1 BH109_0-0.1. BH100_0-0.1 BH109_0-0.1. BH100_0-0.1 BH109_0-0.1. BH100_0-0.1 BH109_0-0.1. BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 BH100_0-0.1 B	BH111 0-0.1		20-Api	r-2023	02-May-2023	04-May-2023	1	02-May-2023	04-May-2023	1
SS144,       SS145,       20-Apr-2023       28-Apr-2023       04-May-2023       04-May-2023       04-May-2023         SS146,       SS147,       BH107_0-0.1,       BH107_0-0.1,       BH108_0.3-0.4,       H108_0.3-0.4,       H110_0.0.1       H100_0.0.1	Soil Glass Jar - Unpreserved (EP080)									· ·
SS146,       SS147,         SS148,       BH107_0-0.1,         BH108_0-0.1,       BH108_0.3-0.4,         BH109_0-0.1       BH110_0-0.1	SS144,	SS145,	20-Api	r-2023	28-Apr-2023	04-May-2023	1	02-May-2023	04-May-2023	✓
SS148, BH107_0-0.1, BH108_0-0.1, BH108_0.3-0.4, BH109_0-0.1 BH110_0-0.1	SS146,	SS147,								
BH108_0-0.1, BH108_0.3-0.4, BH109_0-0.1 BH110_0-0.1	SS148,	BH107 0-0.1,								
BH109 0-0.1. BH110 0-0.1	BH108 0-0.1,	BH108 0.3-0.4,								
	BH109 0-0.1.	BH110 0-0.1								

Page	: 14 of 16
Work Order	: ES2313346
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOLID				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples							
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200)							
BH104_0.3-0.4	19-Apr-2023				28-Apr-2023	16-Oct-2023	<ul> <li>✓</li> </ul>



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specific						not within specification ; 🗸 = Quality Control frequency within specification.	
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	13	119	10.92	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	10	97	10.31	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	10	103	9.71	10.00	×	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	11	110	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	10	97	10.31	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	8	77	10.39	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	6	103	5.83	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	6	110	5.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	77	5.19	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	6	103	5.83	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	6	110	5.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	77	5.19	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	6	103	5.83	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	6	110	5.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	5	97	5.15	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	77	5.19	5.00	1	NEPM 2013 B3 & ALS QC Standard



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Asbestos Identification in Bulk Solids	EA200	SOLID	In house: Referenced to AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.



### SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2313346					
Client Contact Address	: CAVVANBA CONSULTING : MR DREW WOOD : PO Box 322 NEWCASTLE 2300	Laboratory Contact Address	ental Division Sydney /eny Voodpark Road Smithfield tralia 2164			
E-mail         : drew@cavvanba.com           Telephone         : +61 02 6685 7811           Facsimile         : +61 02 6685 5083		E-mail Telephone Facsimile	: karen.coveny@alsglobal.com : +61-2-8784 8555 : +61-2-8784 8500			
Project Order number C-O-C number Site Sampler	: 20025.76 : 20025.76 : : : ZAC LAUGHLAN	Page Quote number QC Level	: 1 of 4 : EB2017CA : NEPM 201	AVCON0001 (SYBQ/409/21) 13 B3 & ALS QC Standard		
Dates Date Samples Receiv Client Requested Due Date	red : 21-Apr-2023 19:40 : 04-May-2023	Issue Date Scheduled Reporting	g Date	: 26-Apr-2023 : <b>04-May-2023</b>		
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	ls : Carrier : 5 :	Security Seal Temperature No. of samples recei	ived / analysed	: Not Available : 6.6'C - Ice present : 78 / 66		

#### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This workorder has been split into ES2313408.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

H/BTEXN/PAH

#### • No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will

default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

#### Matrix: SOIL

Matrix: SOIL Laboratory sample Sampling date / Sample ID UD time	SOIL - S-26 8 metals/TRH/B1
Laboratory sample Sampling date / Sample ID	SOIL - 8 meta
	· 🖌
ES2313346-001 18-Apr-2023 00:00 SS101	
ES2313346-002 18-Apr-2023 00:00 SS102	<ul> <li>✓</li> </ul>
ES2313346-003 18-Apr-2023 00:00 SS103	<ul> <li>✓</li> </ul>
ES2313346-004 18-Apr-2023 00:00 SS104	<ul> <li>✓</li> </ul>
ES2313346-005 18-Apr-2023 00:00 SS105	<ul> <li>✓</li> </ul>
ES2313346-006 18-Apr-2023 00:00 SS106	<ul> <li>✓</li> </ul>
ES2313346-007 18-Apr-2023 00:00 SS107	<ul> <li>✓</li> </ul>
ES2313346-008 18-Apr-2023 00:00 SS108	· 🗸
ES2313346-009 18-Apr-2023 00:00 SS109	· 🗸
ES2313346-010 18-Apr-2023 00:00 SS110	· 🖌
ES2313346-011 18-Apr-2023 00:00 SS111	· 🗸
ES2313346-012 18-Apr-2023 00:00 SS112	· 🗸
ES2313346-013 18-Apr-2023 00:00 SS113	· 🗸
ES2313346-014 18-Apr-2023 00:00 SS114	· 🖌
ES2313346-015 18-Apr-2023 00:00 SS115	· 🗸
ES2313346-016 18-Apr-2023 00:00 SS116	· 🖌
ES2313346-017 18-Apr-2023 00:00 SS117	<ul> <li>✓</li> </ul>
ES2313346-018 18-Apr-2023 00:00 SS118	· 🖌
ES2313346-019 18-Apr-2023 00:00 SS119	· 🗸
ES2313346-020 18-Apr-2023 00:00 SS120	· 🖌
ES2313346-021 18-Apr-2023 00:00 SS121	· 🗸
ES2313346-022 18-Apr-2023 00:00 SS122	· 🗸
ES2313346-023 18-Apr-2023 00:00 SS123	· 🗸
ES2313346-024 18-Apr-2023 00:00 SS124	· 🗸
ES2313346-025 18-Apr-2023 00:00 SS125	· 🗸
ES2313346-026 18-Apr-2023 00:00 SS126	<ul> <li>✓</li> </ul>
ES2313346-027 18-Apr-2023 00:00 SS127	· 🗸
ES2313346-028 18-Apr-2023 00:00 SS128	· 🗸
ES2313346-029 18-Apr-2023 00:00 SS129	· 🖌
ES2313346-030 19-Apr-2023 00:00 SS130	· 🗸
ES2313346-031 19-Apr-2023 00:00 SS131	· 🖌
ES2313346-032 19-Apr-2023 00:00 SS132	1
ES2313346-033 19-Apr-2023 00:00 SS133	· 🖌
ES2313346-034 19-Apr-2023 00:00 SS134	1
ES2313346-035 19-Apr-2023 00:00 SS135	<ul> <li>✓</li> </ul>

: 26-Apr-2023 : 3 of 4 : ES2313346 Amendment 0

: CAVVANBA CONSULTING



					PAH
			sted	_	XN/I
			- DIL DIL	5-100 ntent	H/BTI
			ld) S( Iysis I	EA05	S-26 s/TRI
			on Ho o ana	OIL -	DIL -
ES2313346-036	19-Apr-2023 00:00	SS136	Už	ŏ ≥	<u>∞</u> ر ۲
ES2313346-037	19-Apr-2023 00:00	SS137		· •	· •
ES2313346-038	19-Apr-2023 00:00	SS138		1	✓
ES2313346-039	19-Apr-2023 00:00	SS139			<ul> <li>✓</li> </ul>
ES2313346-040	19-Apr-2023 00:00	SS140		1	✓
ES2313346-041	19-Apr-2023 00:00	SS141		1	✓
ES2313346-042	19-Apr-2023 00:00	SS142		<b>√</b>	✓
ES2313346-043	19-Apr-2023 00:00	SS143		1	✓
ES2313346-044	20-Apr-2023 00:00	SS144		1	✓
ES2313346-045	20-Apr-2023 00:00	SS145		1	✓
ES2313346-046	20-Apr-2023 00:00	SS146		1	✓
ES2313346-047	20-Apr-2023 00:00	SS147		1	✓
ES2313346-048	20-Apr-2023 00:00	SS148		✓	✓
ES2313346-049	18-Apr-2023 00:00	BH101_0-0.1		1	✓
ES2313346-050	18-Apr-2023 00:00	BH101_0.3-0.4	✓		
ES2313346-051	19-Apr-2023 00:00	BH102_0-0.1		1	✓
ES2313346-052	19-Apr-2023 00:00	BH102_0.2-0.3	✓		
ES2313346-053	19-Apr-2023 00:00	BH103_0-0.1		✓	✓
ES2313346-054	19-Apr-2023 00:00	BH103_0.2-0.3	✓		
ES2313346-055	19-Apr-2023 00:00	BH104_00.1		1	✓
ES2313346-056	19-Apr-2023 00:00	BH104_0.3-0.4		✓	✓
ES2313346-057	19-Apr-2023 00:00	BH105_0-0.1		✓	✓
ES2313346-058	19-Apr-2023 00:00	BH105_0.3-0.4	✓		
ES2313346-059	18-Apr-2023 00:00	BH106_0-0.1		1	✓
ES2313346-060	20-Apr-2023 00:00	BH106_0.3-0.4	✓		
ES2313346-061	20-Apr-2023 00:00	BH107_0-0.1		✓	✓
ES2313346-062	20-Apr-2023 00:00	BH107_0.3-0.4	✓		
ES2313346-063	20-Apr-2023 00:00	BH108_0-0.1		<ul> <li>✓</li> </ul>	<ul> <li>✓</li> </ul>
ES2313346-064	20-Apr-2023 00:00	BH108_0.3-0.4		<ul> <li>✓</li> </ul>	<ul> <li>✓</li> </ul>
ES2313346-065	20-Apr-2023 00:00	BH109_0-0.1		<ul> <li>✓</li> </ul>	✓
ES2313346-066	20-Apr-2023 00:00	BH109_0.3-0.4	✓		
ES2313346-067	20-Apr-2023 00:00	BH110_0-0.1		<ul> <li>✓</li> </ul>	✓
ES2313346-068	20-Apr-2023 00:00	BH110_0.3-0.4	✓		
ES2313346-069	20-Apr-2023 00:00	BH111_0-0.1	-	<b>√</b>	<b>v</b>
ES2313346-070	20-Apr-2023 00:00	вн111_0.3-0.4	<b>√</b>		
ES2313346-071	18-Apr-2023 00:00	TP101_0-0.1		<b>√</b>	<b>v</b>
ES2313346-072	18-Apr-2023 00:00	TP101_0.3-0.4	*		
ES2313340-073	18 Apr 2022 00:00	TP102_0-0.1	./	•	¥
ES2313340-074	18 Apr 2023 00:00	TP102_0.01	*		
ES2212340-U/5	10-Apr-2023 00:00	TP102_0.2.0.4	./	•	<b>v</b>
L32313340-U/0	10-Apr-2023 00:00	1F 103_0.3-0.4	Ľ		

Issue Date	: 26-Apr-2023
Page	: 4 of 4
Work Order	ES2313346 Amendment 0
Client	: CAVVANBA CONSULTING



E52212246 077	18 Apr 2022 00:00	TR104 0.0.1	(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - S-26 R metals/TRH/RTEXN/PAH
ES2313346-077	18-Apr-2023 00:00	TP104_0-0.1		✓	✓
Matrix: SOLID Laboratory sample ID ES2313346-078	Sampling date / time	Sample ID	SOLID - EA200B Asbestos Identification in Bulk Solids (Excluding		

### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
DREW WOOD		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	drew@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	drew@cavvanba.com
<ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>	Email	drew@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	drew@cavvanba.com
- A4 - AU Tax Invoice (INV)	Email	drew@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	drew@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	drew@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ZAC LAUGHLAN		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	zac@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	zac@cavvanba.com
<ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>	Email	zac@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	zac@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	zac@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	zac@cavvanba.com

Envir	ALS Laboratory please tick -	DADELAIDE 21 Ph: 08.8359.092 DBRISBANE 33 Ph: 07.3243.722 CGLADSTONE Ph: 07.7471.560	1 Burma R 90 E adel 2 Shand S 22 E sam 46 Caller 90 E glad:	Read Pooraka SA 5095     IMACKAY 78 Ha       larde@alsglobal.com     Ph. 07 4944 0177       Street Stafford OLD 4053     IMELEOURNEZ       ples britshare@alsglobal.com     Ph. 08 549 9600       mondah Drive Clinton QLD 4680     IMUDGEE 27 Sy       stone@alsglobal.com     Ph. 08 672 6735	rhour Road Mackay QLD 4740 E. mackay@alsglobal.com 2-4 Westali Road Springvale VIC 311 E. samples melbourne@alsglobal. dney Road Mudgee NSW 2850 E. mudgee mail@alsglobal.com	DNEWCASTLE 5/585 Maitland Rd May Ph. 02:4014 2500 E. samples newcastle 71 DNOWRA 4/13 Geary Place North Now Ph. 024423 2063 E. newra@alsglobal.co DFERTH 10 Hod Way Malaga WA 6000 Ph. 08 9209 7655 E. samples perth@als	field West NSW 2304 DSYDM @allsglobal.com Ph. 024 ra NSW 2541 DTOW om Ph. 074 om Ph. 074 global.com Ph. 024 global.com Ph. 024	EY 277-289 Woodpark Road Smithfield NSW 2164 7784 8555 E. samples sydney@alsglobal.com ISVILLE 14-15 Desma Court Bohle QLD 4818 786 0600 E: townsville environmental@alsglobal.com .ONGONG 99 Kenny Street Wollongong NSW 2500 1225 3125 E. portkembla@alsglobal.com
CLIENT:	Courousa Cousiltin	ng	TURN	AROUND REQUIREMENTS : Standar	rd TAT (List due date):		FOR LABORATORY US	SE ONLY (Circle)
PROJECT:	Neurosel.	0	Ultra Tra		andard or urgent TAT <b>(List d</b>	lue date):	Custody Seal Intact?	Yes No N/A
ORDER NU	IBER: 20025.76		ALU Q			COC SEQUENCE NUMBER (Circle)	Teceipt? 7 Bandom Sample Temperati	Ves No N/A
PROJECT M	ANAGER: Diew wood		1:		The contract of the contract o	OF: 1 2 3 4 5 6	7 Other comment:	6.6
SAMPLER:	Zac Laught	SAMPLER MO	OBILE:	042888 854 RELINQUIS	HED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emaile	to ALS? (YES / NO)	EDD FORMAT	T (or de	efault):	A_	JA 4.4.3	SP '	Soft 4/4
Email Invoid	to (will default to PM if no other address	ses are listed):	1,20	ac DATE/TIME	117	DATE/TIME: 650	DATE/TIME:	DATE/TIME:
COMMENTS	SPECIAL HANDLING/STORAGE OR DIS	SPOSAL:	5	21.9	5.63	1000	019923 51	om 419125 1840
ALS USE	SAMPLE DET MATRIX: SOLID (S)	TAILS WATER (W)		CONTAINER INFORMATION	ANALYSIS Where Metal	REQUIRED including SUITES (NB. Suite Codes s are required, specify Total (unfiltered bottle required). required).	must be listed to attract suite price) ired) or <b>Dissolved</b> (field filtered botti	e Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	CONTAINERS			Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
								IAILEO
					,		LAB O	- ORIGIN
				0	to		NEW	CASTLE
				MAS	10		S & Boon V V	
				$\mathcal{O}$	1			
					IGN		Envi	ronmental Division
	2			FOU			Syd	ney ork Order Reference
			2	1			Ë	S2313346
								anbone : - 61-2-8784 9655
Water Contain	r Codes: P = Unpreserved Plastic; N = Nitric F	Preserved Plastic; ORC = Nitric	Preserve	TOTAL	dium Hydroxide Preserved Plas	stic: AG = Amber Glass Unnreserved: AP - Airfreig	ht Uppreserved Plastic	

LIENT:	Cavvanba Consulting Newcastle		TURNAR (Standard T	TOUND REQUIREMENTS : TAT may be longer for some tests e.g.		rd TAT (List	due date): gent TAT (List du	e date):					FOR	R LABORATOR	RY USE ON	NLY (Circle) Yes No N/A
ROJECT:	20025.76		ALS QUO	DTE NO.: SYE	3Q-409-21		341111 (2001 00			COC SEQUE	ENCE NUMB	ER (Circle)	Free	ice / frozen ice br	icks present	tupon Yes No N/A
RDER NU	MBER: 20025.76							coc:	1 2	3 4	5 6	7 8 9	10 11 Rand	ipt? dom Sample Temp	perature on F	Receipt: 'C
ROJECTI	MANAGER: Drew Wood	CONTACT	PH: 0403 68	9 755				OF:	1 2	3 4	5 6	7 8 9	10 11 Othe	r comment:		
AMPLER:	Zac Laughlan	SAMPLER	WOBILE: 04	28 288 854	RELINQUIS	HED BY:		REC	EIVED BY:	1			RELINQU	ISHED BY:		RECEIVED BY:
OC emaile	ed to ALS? ( YES / NO)	EDD FORM	AT (or defai	ult):				7	57-	A						
mail Repo	rts to (will default to PM if no other addres	ses are listed) drew@cavva	nba.com, za	c@cavvanba.com	DATE/TIME			DATE	É/TIME:	0	0-00	2	DATE/TIN	E:		DATE/TIME:
mail Invoi	ce to (will default to PM if no other address	es are listed). rob@cavvanba	a.com		24/04/202	3		2	umils	>						
OMMENT	S/SPECIAL HANDLING/STORAGE OR D	SPOSAL: Please place rer	naining san	ples ON HOLD												
ALS USE	SAMPLE DETAILS MATRIX: SC	DLID (S) WATER (W)		CONTAINER INFO	RMATION		v	ANALY: /here Motals	SIS REQUIRED in are required, spe	nctuding SU city Total (ur	IITES (NB. Si nfiltered bottle	ite Codes must be listed required) or Dissolved (	to attract suite p field filtered bott	rice) e required).		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	S-26; TRH/BTEXN/PAHs/8 Metals	Asbestos ID	TRH + BTEXN							Comments on likely contaminant levels, diutions or samples requiring specific QC analysis etc
1	SS101	18/04/2023	Soil			1	х									
2	SS102	18/04/2023	Soil			1	х									
3	SS103	18/04/2023	Soil			1	x									
4	SS104	18/04/2023	Soil	2		1	х					0				Environmental D
5	SS105	18/04/2023	Soil			1	x									Svdnev
6	SS106	18/04/2023	Soil			1	x								and over the characteria	Work Order Refer
2	SS107	18/04/2023	Soil			1	х									ES2313
8	SS108	18/04/2023	Soil			1	x									
C,	SS109	18/04/2023	Soil			1	x									
6	SS110	18/04/2023	Soil			1	х									
4	SS111	18/04/2023	Soil			1	x									
IL	SS112	18/04/2023	Soll			1	х									
13	SS113	18/04/2023	Soil			1	x									Telephone : + 61-2-8784 8556
14	SS114	18/04/2023	Soil			1	х									
15	SS115	18/04/2023	Soil			1	х									
16	SS116	18/04/2023	Soil			1	x				1.4	J. Colif V	85	2375	408	
17	SS117	18/04/2023	Soil			1	x		Subcor	17 For	wardel	ab / Spiit V	Y 0			a men and and and and
18	SS118	18/04/2023	Soil			1	x		Lab / A	Analys	sis:		Long van der die Alle Stat sin van Dat i		a un 10 au 11 an 11 an 11	n na với đị đị đất
19	SS119	18/04/2023	Soil			1	x		Organi	ised B	y / Da	te:			and post that that the post of	ar sy earlief do and
		And the second se												-		

Attached By PO / Internal Sheet:

LIENT: C	avvanba Consulting		TURNAR	OUND REQUIREMENTS :	🕸 Standar	d TAT (List	lue date):							FOR	LABORATO	RY USE ON	ILY (Circle)	
FFICE: N	ewcastle		(Standard T	AT may be longer for some tests e.g Organics)	Non St	andard or urg	ent TAT (List due	e date):						Custo	dy Seal Intact?	1	Yes	No N
ROJECT: :	20025.76		ALS QUO	DTE NO.: SYB	Q-409-21				(	COC SEQUENC	E NUMBER	(Circle)		Free i receip	ce / frozen ice it?	bricks present	upon Yes	No N
RDER NUN	/BER: 20025.76							coc;	1 2	3 4	ъ 6	7 8	9 1	0 11 Rand	om Sample Ter	inperature on F	Receipt:	.C
ROJECTM	ANAGER: Drew Wood	CONTACT	PH: 0403 68	9 755				OF:	1 2	3	5 6	7 8	9 1	0 11 Other	comment:			
AMPLER: 2	Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854	RELINQUIS	HED BY:		RECI	EIVED BY:	A				RELINQUI	SHED BY:		RECEIVED BY:	8
OC emaile	d to ALS? ( YES / NO)	EDD FORM	AT (or defau	ilt):	-			T T	· 17	P				DATE/TIM	E-		DATE/TIME	
mail Repor	ts to (will default to PM if no other address	ses are listed). drew@cavva	nba.com, zac	:@cavvanba.com	2A/0A/202	3		DATE	24/411	1 9	:50-			DATETIN	<b>L</b>		Di la Contra	
man mvoic	e to (will default to PW II no other address	es are insted). Tobl@cavvarb.	a.com		12-40-41202				1 11 11		,						L	
OMMENTS	SPECIAL HANDLING/STORAGE OR D	ISPUSAL: Prease place rel	naining sam	T HOLD													1	
ALS S USE	AMPLE DETAILS MATRIX: S	OLID (S) WATER (W)		CONTAINER INFO	RMATION		V	ANALYS /here Metals	SIS REQUIRED is are required spe	ncluding SUITE cily Total (unfilte	S (NB. Suite ered bottle rec	Codes mus quired) or Di	be listed t ssolved (fi	o altract suite pr ield filtered bottle	ice) a required)	T	Additional Ir	formation
LAB ID	SAMPLE ID	DATE / TIME	IMATRIX	TYPE & PRESERVATIVE codes below)	(rəfər to	TOTAL CONTAINERS	S-26: TRH/BTEXN/PAHs/8 Metals	Ashestos ID	TRH + BTEXN								Comments en likely contr diutions, or samples requ analysis etc.	aminant levels, Jiring specific QC
21	SS121	18/04/2023	Soil			1	Х											
12	SS122	18/04/2023	Soil			1	x										1.0	
13	S\$123	18/04/2023	Soil			1	×											2
14	SS124	18/04/2023	Soil			1	×											
15	SS125	18/04/2023	Soil			1	×											
il	SS126	18/04/2023	Soil			1	x											
17	SS127	18/04/2023	Soll			1	×											
18	SS128	18/04/2023	Soil			1	x											
19	SS129	18/04/2023	Soil			1	х											×
20	SS130	19/04/2023	Soil			1	x											
31	SS131	19/04/2023	Soil			1	x											
32	SS132	19/04/2023	Soil			1	×											
13	SS133	19/04/2023	Soil			1	×											
34	SS134	19/04/2023	Soil			1	×											
35	SS135	19/04/2023	Soil			1	×											
36	SS136	19/04/2023	Soil			ī	x											
37	SS137	19/04/2023	Soil			1	×											
78	S\$138	19/04/2023	Soil			1	x											
39	SS139	19/04/2023	Soil			1	×											
1	00140	19/04/20.23	Cail			1	¥											

FFICE: N	Cavvanba Consulting Newcastle		TURNAR (Standard T	OUND REQUIREMENTS : AT may be longer for some tests e.g.		rd TAT (List	due date): ient TAT (List du	e date):					FOR	LABORATC	RY USE ON	LY (Circle) Yes No
ROJECT:	20025.76		ALS QUO	DTE NO.: SYE	3Q-409-21		June 1711 (Line Che			COC SEQUENCE N	JMBER (Circl	0)	Free i	e / frozen ice	bricks present	upon Yes No
RDER NUI	MBER: 20025.76							coc:	1 2	3 4 5	6 7	8 9 10	11 Rando	m Sample Ter	nperature on R	leceipt: 'C
ROJECTN	MANAGER: Drew Wood	CONTACT	PH: 0403 68	9 755				OF:	1 2	3 4 5	6 7	8 9 10	11 Other	comment:		
AMPLER:	Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854	RELINQUIS	HED BY:		REC	EIVED BY:				RELINQUI	SHED BY:		RECEIVED BY:
OC emaile	ed to ALS? ( YES / NO)	EDD FORM	IAT (or defai	ult):				1	D 912 -	H						
mail Invoic	res to (will default to PM if no other address	es are listed): drew@cavva	a com	c@cavvanba.com	24/04/202	2		DAD 1	aluh	6.6			DATE/TIM	3		DATE/TIME:
OMMENTS			naining eas		124/04/202			- C	11-11	) 0.00					ala il constato il cons	l
		Di CORE, l'isase place lei	nanany aan													
ALS S USE	SAMPLE DETAILS MATRIX: SC	DLID (S) WATER (W)		CONTAINER INFO	RMATION		V	ANALY! /here Metals	SIS REQUIRED are required sp	including SUITES (N ecify Total (unfiltered	B. Suite Codes r bottle required) o	nust be listed to r Dissolved (fir	attract suile pri ad filtered bottle	ce) required)		Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer lo	TOTAL CONTAINERS	S-26: TRH/BTEXN/PAHs/8 Metals	Ashestos ID	TRH + BTEXN							Comments on likely contaminant levels, diutions or samples requiring specific C analysis etc.
m	SS141	19/04/2023	Soil			1	х									ŕ
YL	SS142	19/04/2023	Soil			1	х									
43	SS143	19/04/2023	Soil			1	х									
44	SS144	20/04/2023	Soil			1	x									
ur	SS145	20/04/2023	Soil			1	x						+			
46	SS146	20/04/2023	Soil			1	х									
47	SS147	20/04/2023	Soil			1	x									
MC	SS148	20/04/2023	Soil	-		1	x									
UG I	BH101 0-0.1	18/04/2023	Soil	-		1	×									
	EH101 0 3-0 4	18/04/2023	Soil			4	~						+			
1	BH102 0.0.1	19/04/2023	Soil			4	×									
61	DH102_00.1	10/04/2022	Reil				^									
17	BH402 0.0.4	10/04/2022	0.0				v									
37	DH 105_0-0.1	10/04/2023	301				*						-			
57	DH103_0.2-0.3	19/04/2023	Soil			1										
15	BH104_0-0.1	19/04/2023	Soil			1	X									
(6	BH104_0.3-0.4	19/04/2023	Soil			1	Х	Х	ļ							
इन	BH105_0-0.1	19/04/2023	Soil	-		1	x									
58	BH105_0.3-0.4	19/04/2023	Soil			1										
54	BH106_0-0.1	20/04/2023	Soil			1	×									
1	BH106 0.3-0.4	20/04/2023	Soil													

CLIENT: (	please tic Cavvanba Consulting	* →	TURNAR	OUND REQUIREMENTS :	⊕ Standa	rd TAT (List (	lue date):		1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19	PH: 05 9200 76	656 El karnele	s perhogalsolonal	2pm	FORL	ABORATORY U	E ONLY	Circle)	
OFFICE: I	Newcastle		(Standard T Ultra Trace I	AT may be longer for some tests e.g. Organics)	Non St	andard or urg	ent TAT (List due	late):						Custody	Seal Intact?		Yes No	N//
PROJECT:	20025.76		ALS QUO	DTE NO.: SYE	Q-409-21					COC SEQUENCE N	UMBER	Circle)		Free Ice receipt?	/ frozen ice bricks p	resent upon	Yes No	5 N//
	MBER: 20025.76	CONTACT	DU: 0402.69	0.755				COC	: 1 2	3 4 5	6 7	8 9	10	11 Randon	Sample Temperatu	ire on Receip	t. 'C	
SAMPLER:	Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854	RELINGUE	SHED BY		REC	FIVED BY	· / ·	6 7	8 9	10	ELINOUUS	HED BX:		RECEIVED BY:	
COC emaile	ed to ALS? (YES / NO)	EDD FORM	AT (or defai	ult):	-			ę	Far	A			ľ					
Email Repo	orts to (will default to PM if no other addre	esses are listed): drew@cavv	anba.com, z	ac@cavvanba.com	DATE/TIME	÷.		DAT	E/TIME:	0			D	ATE/TIME:			DATE/TIME:	
Email Invoi	ice to (will default to PM if no other addres	sses are listed): rob@cavvan	iba.com		24/04/202	3			24Mill;	1 9:p	-							
COMMENT	S/SPECIAL HANDLING/STORAGE OR I	DISPOSAL: Please place re	maining sar	nples ON HOLD														
ALS USE	SAMPLE DETAILS MATRIX: S	SOLID (S) WATER (W)		CONTAINER INFO	RMATION		W	ANAL'I here Metals	SIS REQUIRED	including SUITES ( ecify Total (unfiltered	NB Suite C bottle requi	odes must be lis red) or Dissolve	sted to attr ad (field filt	act suite price ered bottle re	t) quired).	1	Additional Inform	ation
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (o codes below)	(refer	TOTAL CONTAINERS	S-26: TRH/BTEXN/PAHs/8 Metals	Ashestos ID	TRH + BTEXN							Comm dilution analys	nents on likely contaminant ns. or samples requiring sp is etc.	t levels, secific QC
61	BH107_0-0.1	20/04/2023	Soil			3	x											
61	BH107_0.3-0.4	20/04/2023	Soil			1												
63	BH108_0-0.1	20/04/2023	Soil			1	х											
64	BH108_0.3-0.4	20/04/2023	Soil			1	x											
las	BH109_0-0.1	20/04/2023	Soil			1	х											
6h	BH109_0.3-0.4	20/04/2023	Soil			1											5	
62	BH110_0-0.1	20/04/2023	Soil			1	х											
66	BH110_0.3-0.4	20/04/2023	Soil			1										_		
ist.	BH111_0-0.1	20/04/2023	Soil	· · · · · · · · · · · · · · · · · · ·		1	х											
1	BH111 0.3-0.4	20/04/2023	Soil			1												er en des die een de beken
2	TP101 0-0.1	18/04/2023	Soil			4	x											
21	TP101 0.3-0.4	18/04/2023	Soil			1	~											
22	TP102 0-0.1	18/04/2023	Soil			4	¥											
d >	TP102_03-04	18/04/2023	Soil			4	~					,		~				
14	TD400.004	10/01/2020																
2	112103_0-0.1	18/04/2023	Soil			1	X											
N	TP103_0.3-0.4	18/04/2023	Soil			1												
59	TP104_0-0.1	18/04/2023	Soil			1	х											

ITAT. Co	please to	< <del>7</del>	THRNAR	OUND REQUIREMENTS :	∯ Standar	d TAT (List	due date):			105			FOR	LABORATOR	Y USE ON	LY (Circle)
ENT: Ga	wanta consulung		(Standard T)	AT may be longer for some tests e.g.	Non St	andard or un	gent TAT (List due	date):					Custo	dy Seal Intact?		Yes No N/A
ROJECT: 2	0025.76		ALS QUO	TE NO.: SYE	3Q-409-21			Í	CC	OC SEQUENCE NU	MBER (Cir	cle)	Free in	ce / frozen ice brid t?	cks present u	ipon Yes No N/A
	BER: 20025.76							COC:	1 2	3 4 5	6 7	8 9	0 11 Rando	om Sample Tempe	erature on Re	eceipt: 'C
ROJECT MA	ANAGER: Drew Wood	CONTACT I	PH: 0403 689	9 755				OF:	1 2	3 4 1 5	67	8 9	0 11 Other	comment:		
MPLER: Z	ac Laughlan	SAMPLER	WOBILE: 042	28 288 854	RELINQUIS	HED BY:		REC	EIVED BY:				RELINQU	SHED BY:		RECEIVED BY:
C emailed	to ALS? ( YES / NO)	EDD FORM	AT (or defau	lt):				7	17- 4	×						
nail Report	s to (will default to PM if no other addres	ses are listed): drew@cavva	nba.com, zac	@cavvanba.com	DATE/TIME			DAT	ETTIME:	a:0	0-		DATE/TIM	E		DATE/ UME:
nail Invoice	to (will default to PM if no other address	ses are listed): rob@cavvanba	a.com		24/04/202	3		1	MMILS		,					
OMMENTS/	SPECIAL HANDLING/STORAGE OR D	ISPOSAL: Please place rer	naining sam	ples ON HOLD								0				
ALS SA	AMPLE DETAILS MATRIX: SI	OLID (S) WATER (W)		CONTAINER INFO	DRMATION		V	ANALY There Motals	SIS REQUIRED inc are required specif	cluding SUITES (NE ify Total (unfiltered b	Suite Code	s must be listed	to attract suite pr field filtered bottle	ice) erequired)		Additional Information
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	S-20: TRH/BHS/8 Metals	Asbestos ID	TRH + BTEXN						c c	Commonts on likely contaminant levels, slutions, or samples requiring specific QC analysis etc.
1	SS101	18/04/2023	Soil	18 a		1	х									
7	SS102	18/04/2023	Soil			1	×									
3	SS103	18/04/2023	Soil			1	×									
4	SS104	18/04/2023	Soil			1	×									Environmental D
5	SS105	18/04/2023	Soil			1	×									Sydney
6	SS106	18/04/2023	Soil			1	x									Work Order Refer
2	SS107	18/04/2023	Soil			1	х									E02313
8	SS108	18/04/2023	Soil	1		1	x	ŝ.								
9	SS109	18/04/2023	Soil		9	t	x									
6	SS110	18/04/2023	Soil			1	x		E.				к.			
4	SS111	18/04/2023	Soil		2	1	x									
IL	\$\$112	18/04/2023	Soil			1	×									
13	SS113	18/04/2023	Soil			1	×									Telephone : + 61-2-8784 8555
14	SS114	18/04/2023	Soil			1	×								5	
15	SS115	18/04/2023	Soil			1	X				1					
16	SS116	18/04/2023	Soil			1	х		6		delah	/ Split	NO 8S	2313	408	
17	SS117	18/04/2023	Soil			1	x	-	Subcon	Forwar	Ma	Jean	n.	>A	har	105
18	SS118	18/04/2023	Soil			1	x		Lab / A	Analysis: _	1000	0100			- Carlos and	
19	SS119	18/04/2023	Soil	Cg.		1	x		Organi	ised By / I	Date:				and and was not been for the	aran na fai di  20
6	SS120	18/04/2023	Soil			1	×		Reling	uished By	// Dat	e:				110 (A (T) (A
Card and a										1. 1 Churi	0.000					

.

Attached By PO / Internal Sheet:



#### **CERTIFICATE OF ANALYSIS** Page Work Order : ES2313408 : 1 of 23 Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney Contact : MR DREW WOOD Contact : Karen Coveny Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO Box 322 **NEWCASTLE 2300** Telephone : +61 02 6685 7811 Telephone : +61-2-8784 8555 Project : 20025.76 **Date Samples Received** : 21-Apr-2023 19:40 Order number : 20025.76 Date Analysis Commenced : 28-Apr-2023 C-O-C number Issue Date : -----: 04-May-2023 16:32 Sampler : ZAC LAUGHLAN Site : -----

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 71

: 36

: SYBQ/409/21

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP071: Results of samples QS101, QS103, QS105 and QS107 have been confirmed by re-extraction and re-analysis.
- EG005T: Poor precision was obtained for Nickel on sample ES2313408 # 055. Confirmed by re-digestion and reanalysis.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Analysis of asbestos from swabs and tapes is not covered under the current scope of NATA accreditation.
- EP075(SIM): Surrogate recovery bias low due to sample matrix interferences.
- EP080: The trip spike and its control have been analysed for volatile TPH and BTEXN only. The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- EA200: N/A Not Applicable

# Page : 3 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	TP105_0-0.1	TP105_0.3-0.4	TP106_0-0.1	TP107_0-0.1	TP107_0.3-0.4
	Sampli	ng date / time	18-Apr-2023 00:00				
Compound CAS Number	LOR	Unit	ES2313408-003	ES2313408-004	ES2313408-005	ES2313408-007	ES2313408-008
			Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-110°C)							
Moisture Content	1.0	%	17.1	25.4	17.6	24.4	14.8
EG005(ED093)T: Total Metals by ICP-AES							
Arsenic 7440-38-2	5	mg/kg	19	13	19	20	8
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium 7440-47-3	2	mg/kg	13	8	32	14	66
Copper 7440-50-8	5	mg/kg	125	238	224	221	43
Lead 7439-92-1	5	mg/kg	290	356	297	249	64
Nickel 7440-02-0	2	mg/kg	14	9	23	30	17
<b>Zinc</b> 7440-66-6	5	mg/kg	208	58	314	190	142
EG035T: Total Recoverable Mercury by FIMS							
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene 85-01-8	0.5	mg/kg	1.0	<0.5	1.1	1.1	<0.5
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene 206-44-0	0.5	mg/kg	0.5	<0.5	<0.5	0.6	<0.5
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	0.5	<0.5
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	1.5	<0.5	1.1	2.2	<0.5
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbons							
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10

# Page : 4 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP105_0-0.1	TP105_0.3-0.4	TP106_0-0.1	TP107_0-0.1	TP107_0.3-0.4
		Sampli	ng date / time	18-Apr-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2313408-003	ES2313408-004	ES2313408-005	ES2313408-007	ES2313408-008
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocar	bons - Continued							
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	330	150	300	290	<100
C29 - C36 Fraction		100	mg/kg	220	<100	200	180	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	550	150	500	470	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	460	180	420	400	100
>C34 - C40 Fraction		100	mg/kg	170	<100	160	130	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	630	180	580	530	100
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	irrogates							
Phenol-d6	13127-88-3	0.5	%	83.1	75.1	51.0	75.2	71.2
2-Chlorophenol-D4	93951-73-6	0.5	%	87.6	80.1	64.4	81.0	76.1
2.4.6-Tribromophenol	118-79-6	0.5	%	63.8	54.8	46.4	63.4	40.8
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	79.3	78.5	79.7	76.2	87.0
Anthracene-d10	1719-06-8	0.5	%	73.5	74.4	77.2	72.0	85.4
4-Terphenyl-d14	1718-51-0	0.5	%	74.2	75.0	76.4	71.9	83.4
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	104	87.6	94.3	94.6	98.5
Toluene-D8	2037-26-5	0.2	%	86.2	85.9	97.4	96.7	87.8

Page	: 5 of 23
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP105_0-0.1	TP105_0.3-0.4	TP106_0-0.1	TP107_0-0.1	TP107_0.3-0.4
		Sampli	ng date / time	18-Apr-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2313408-003	ES2313408-004	ES2313408-005	ES2313408-007	ES2313408-008
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Continued								
4-Bromofluorobenzene	460-00-4	0.2	%	101	91.3	102	97.0	106

# Page : 6 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			TP109_0-0.1	TP110_0-0.1	TP110_0.3-0.4	TP111_0-0.1			
	Sampli	ng date / time	19-Apr-2023 00:00							
Compound CAS Number	LOR	Unit	ES2313408-009	ES2313408-011	ES2313408-013	ES2313408-014	ES2313408-015			
			Result	Result	Result	Result	Result			
EA055: Moisture Content (Dried @ 105-110°C)										
Moisture Content	1.0	%	18.5	11.6	11.8	12.6	18.3			
EG005(ED093)T: Total Metals by ICP-AES										
Arsenic 7440-38-2	5	mg/kg	20	15	10	27	17			
Cadmium 7440-43-9	1	mg/kg	1	<1	<1	<1	<1			
Chromium 7440-47-3	2	mg/kg	43	13	12	6	29			
Copper 7440-50-8	5	mg/kg	229	188	133	194	189			
Lead 7439-92-1	5	mg/kg	392	331	86	47	217			
Nickel 7440-02-0	2	mg/kg	37	14	10	15	23			
<b>Zinc</b> 7440-66-6	5	mg/kg	298	416	151	70	349			
EG035T: Total Recoverable Mercury by FIMS										
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Acenaphthene 83-32-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Phenanthrene 85-01-8	0.5	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5			
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Fluoranthene 206-44-0	0.5	mg/kg	1.2	<0.5	<0.5	<0.5	<0.5			
Pyrene 129-00-0	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5			
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Chrysene 218-01-9	0.5	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5			
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(a)pyrene 50-32-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	4.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2			
EP080/071: Total Petroleum Hydrocarbons										
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10			

# Page : 7 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP108_0-0.1	TP109_0-0.1	TP110_0-0.1	TP110_0.3-0.4	TP111_0-0.1
		Sampli	ng date / time	19-Apr-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2313408-009	ES2313408-011	ES2313408-013	ES2313408-014	ES2313408-015
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarbo	ons - Continued							
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	390	130	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	310	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	700	130	<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	580	190	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	230	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	810	190	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Surr	ogates							
Phenol-d6	13127-88-3	0.5	%	80.0	80.2	83.2	55.2	85.6
2-Chlorophenol-D4	93951-73-6	0.5	%	83.9	83.7	83.3	61.5	90.3
2.4.6-Tribromophenol	118-79-6	0.5	%	62.5	58.8	51.8	40.0	61.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	78.7	78.6	78.9	83.2	80.0
Anthracene-d10	1719-06-8	0.5	%	69.8	69.8	66.2	69.5	77.4
4-Terphenyl-d14	1718-51-0	0.5	%	70.9	72.9	72.4	78.8	78.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.2	91.4	89.9	110	95.4
Toluene-D8	2037-26-5	0.2	%	89.5	101	89.5	92.4	86.6

Page	: 8 of 23
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP108_0-0.1	TP109_0-0.1	TP110_0-0.1	TP110_0.3-0.4	TP111_0-0.1
		Sampli	ng date / time	19-Apr-2023 00:00				
Compound	CAS Number	LOR	Unit	ES2313408-009	ES2313408-011	ES2313408-013	ES2313408-014	ES2313408-015
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Continued								
4-Bromofluorobenzene	460-00-4	0.2	%	93.6	100	96.4	107	91.2

# Page : 9 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			TP113_0-0.1	TP113_0.4-0.5	TP114_0-0.1	TP115_0-0.1		
	Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00		
Compound CAS Number	LOR	Unit	ES2313408-017	ES2313408-019	ES2313408-020	ES2313408-021	ES2313408-023		
			Result	Result	Result	Result	Result		
EA055: Moisture Content (Dried @ 105-110°C)									
Moisture Content	1.0	%	19.4	21.3	11.4	15.0	18.0		
EG005(ED093)T: Total Metals by ICP-AES									
Arsenic 7440-38-2	5	mg/kg	8	9	10	112	12		
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1		
Chromium 7440-47-3	2	mg/kg	38	15	14	9	20		
Copper 7440-50-8	5	mg/kg	630	310	409	68	213		
Lead 7439-92-1	5	mg/kg	530	823	1200	209	396		
Nickel 7440-02-0	2	mg/kg	24	12	15	5	18		
<b>Zinc</b> 7440-66-6	5	mg/kg	394	184	298	262	423		
EG035T: Total Recoverable Mercury by FIMS									
Mercury 7439-97-6	0.1	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	0.7		
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Phenanthrene 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	0.8		
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5		
Pyrene 129-00-0	0.5	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5		
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5		
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.7	<0.5	<0.5		
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	<0.5	<0.5	2.9	<0.5	1.5		
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6		
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2		
EP080/071: Total Petroleum Hydrocarbons									
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10		

# Page : 10 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP112_0-0.1	TP113_0-0.1	TP113_0.4-0.5	TP114_0-0.1	TP115_0-0.1
		Sampli	ing date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-017	ES2313408-019	ES2313408-020	ES2313408-021	ES2313408-023
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocar	bons - Continued							
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	130	<100	120	480	430
C29 - C36 Fraction		100	mg/kg	<100	<100	150	810	180
^ C10 - C36 Fraction (sum)		50	mg/kg	130	<50	270	1290	610
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	60
>C16 - C34 Fraction		100	mg/kg	190	120	220	1020	520
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	590	160
^ >C10 - C40 Fraction (sum)		50	mg/kg	190	120	220	1610	740
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	60
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	irrogates							
Phenol-d6	13127-88-3	0.5	%	85.9	83.8	81.9	84.6	84.7
2-Chlorophenol-D4	93951-73-6	0.5	%	86.5	85.3	83.4	88.1	87.8
2.4.6-Tribromophenol	118-79-6	0.5	%	55.5	54.7	52.9	69.7	66.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	79.8	78.0	79.4	77.8	79.4
Anthracene-d10	1719-06-8	0.5	%	74.4	72.0	69.7	73.6	71.6
4-Terphenyl-d14	1718-51-0	0.5	%	75.5	72.9	71.9	72.5	73.1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	99.8	86.4	80.9	87.4	89.9
Toluene-D8	2037-26-5	0.2	%	84.5	88.0	85.0	89.0	89.4

Page	: 11 of 23
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP112_0-0.1	TP113_0-0.1	TP113_0.4-0.5	TP114_0-0.1	TP115_0-0.1
		Sampli	ng date / time	19-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-017	ES2313408-019	ES2313408-020	ES2313408-021	ES2313408-023
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates - Continued								
4-Bromofluorobenzene	460-00-4	0.2	%	97.2	100.0	89.8	96.2	91.7

# Page : 12 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	atrix: SOIL Sample ID :: SOIL)				TP117_0-0.1	TP118_0-0.1	MW103_0.2-0.3		
	Sampli	ng date / time	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	19-Apr-2023 00:00		
Compound CAS Number	LOR	Unit	ES2313408-024	ES2313408-025	ES2313408-027	ES2313408-029	ES2313408-046		
			Result	Result	Result	Result	Result		
EA055: Moisture Content (Dried @ 105-110°C)									
Moisture Content	1.0	%	18.0	20.6	15.6	9.6	5.9		
EG005(ED093)T: Total Metals by ICP-AES									
Arsenic 7440-38-2	5	mg/kg	<5	11	<5	<5	10		
Cadmium 7440-43-9	1	mg/kg	<1	<1	<1	<1	<1		
Chromium 7440-47-3	2	mg/kg	<2	25	30	16	45		
Copper 7440-50-8	5	mg/kg	6	168	132	428	109		
Lead 7439-92-1	5	mg/kg	38	108	132	257	111		
Nickel 7440-02-0	2	mg/kg	3	19	14	13	24		
<b>Zinc</b> 7440-66-6	5	mg/kg	31	141	363	1290	819		
EG035T: Total Recoverable Mercury by FIMS									
Mercury 7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Naphthalene 91-20-3	0.5	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5		
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Phenanthrene 85-01-8	0.5	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5		
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Fluoranthene 206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
<b>Pyrene</b> 129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	1.6	<0.5	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6		
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2		
EP080/071: Total Petroleum Hydrocarbons									
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10		

# Page : 13 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			TP115_0.3-0.4	TP116_0-0.1	TP117_0-0.1	TP118_0-0.1	MW103_0.2-0.3
		Sampli	ng date / time	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	19-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-024	ES2313408-025	ES2313408-027	ES2313408-029	ES2313408-046
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocart	oons - Continued					·		
C10 - C14 Fraction		50	mg/kg	60	<50	<50	<50	90
C15 - C28 Fraction		100	mg/kg	750	140	<100	<100	620
C29 - C36 Fraction		100	mg/kg	280	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	1090	140	<50	<50	710
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	110	<50	<50	<50	250
>C16 - C34 Fraction		100	mg/kg	900	170	110	<100	470
>C34 - C40 Fraction		100	mg/kg	190	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	1200	170	110	<50	720
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	110	<50	<50	<50	250
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	80.1	84.1	83.0	87.5	89.2
2-Chlorophenol-D4	93951-73-6	0.5	%	82.2	94.4	88.8	95.9	97.8
2.4.6-Tribromophenol	118-79-6	0.5	%	59.3	103	70.4	84.0	91.7
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	75.3	103	101	103	103
Anthracene-d10	1719-06-8	0.5	%	66.9	103	90.2	112	102
4-Terphenyl-d14	1718-51-0	0.5	%	68.3	92.6	85.2	95.3	95.3
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	107	95.9	94.4	91.4	100
Toluene-D8	2037-26-5	0.2	%	91.6	88.0	81.2	93.4	93.7

Page	: 14 of 23
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TP115_0.3-0.4	TP116_0-0.1	TP117_0-0.1	TP118_0-0.1	MW103_0.2-0.3					
		Sampli	ng date / time	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00	19-Apr-2023 00:00					
Compound	CAS Number	LOR	Unit	ES2313408-024	ES2313408-025	ES2313408-027	ES2313408-029	ES2313408-046					
				Result	Result	Result	Result	Result					
EP080S: TPH(V)/BTEX Surrogates - Continued													
4-Bromofluorobenzene	460-00-4	0.2	%	99.2	93.7	87.3	92.2	98.4					

# Page : 15 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)		Sample ID	QS101	QS103	QS105	QS107	QS109						
Sampling date / time			18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00						
Compound CAS Number	LOR	Unit	ES2313408-055	ES2313408-056	ES2313408-057	ES2313408-058	ES2313408-059						
,			Result	Result	Result	Result	Result						
EA055: Moisture Content (Dried @ 105-110°C)													
Moisture Content	1.0	%	19.6	11.9	16.3	5.5	17.8						
EG005(ED093)T: Total Metals by ICP-AES													
Arsenic 7440-38-2	5	mg/kg	139	142	10	6	<5						
Cadmium 7440-43-9	1	mg/kg	4	4	1	<1	<1						
Chromium 7440-47-3	2	mg/kg	40	93	10	21	27						
Copper 7440-50-8	5	mg/kg	414	947	484	172	150						
Lead 7439-92-1	5	mg/kg	1220	370	918	155	145						
Nickel 7440-02-0	2	mg/kg	35	38	13	16	15						
Zinc 7440-66-6	5	mg/kg	949	1200	508	620	481						
EG035T: Total Recoverable Mercury by FIMS													
Mercury 7439-97-6	0.1	mg/kg	0.2	<0.1	0.1	<0.1	<0.1						
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons													
Naphthalene 91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Acenaphthylene 208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Acenaphthene 83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Fluorene 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Phenanthrene 85-01-8	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5						
Anthracene 120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Fluoranthene 206-44-0	0.5	mg/kg	0.6	<0.5	<0.5	0.9	<0.5						
Pyrene 129-00-0	0.5	mg/kg	0.6	<0.5	<0.5	0.9	<0.5						
Benz(a)anthracene 56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Chrysene 218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Benzo(b+j)fluoranthene 205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Benzo(k)fluoranthene 207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Benzo(a)pyrene 50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Indeno(1.2.3.cd)pyrene 193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Dibenz(a.h)anthracene 53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
Benzo(g.h.i)perylene 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
^ Sum of polycyclic aromatic hydrocarbons	0.5	mg/kg	2.0	<0.5	<0.5	1.8	<0.5						
^ Benzo(a)pyrene TEQ (zero)	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5						
^ Benzo(a)pyrene TEQ (half LOR)	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6						
^ Benzo(a)pyrene TEQ (LOR)	0.5	mg/kg	1.2	1.2	1.2	1.2	1.2						
EP080/071: Total Petroleum Hydrocarbons													
C6 - C9 Fraction	10	mg/kg	<10	<10	<10	<10	<10						
# Page : 16 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS101	QS103	QS105	QS107	QS109
		Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-055	ES2313408-056	ES2313408-057	ES2313408-058	ES2313408-059
				Result	Result	Result	Result	Result
EP080/071: Total Petroleum Hydrocarbo	ns - Continued							
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	180	400	<100	120	<100
C29 - C36 Fraction		100	mg/kg	240	620	<100	150	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	420	1020	<50	270	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	320	820	120	230	<100
>C34 - C40 Fraction		100	mg/kg	170	420	<100	110	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	490	1240	120	340	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Surro	ogates							
Phenol-d6	13127-88-3	0.5	%	85.3	82.6	82.1	84.3	81.6
2-Chlorophenol-D4	93951-73-6	0.5	%	84.6	91.7	87.2	90.8	88.6
2.4.6-Tribromophenol	118-79-6	0.5	%	104	98.7	81.4	63.5	98.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	105	101	104	103	96.8
Anthracene-d10	1719-06-8	0.5	%	106	99.3	95.7	102	102
4-Terphenyl-d14	1718-51-0	0.5	%	92.1	87.0	89.5	89.4	88.3
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	91.2	86.9	88.2	93.8	90.9
Toluene-D8	2037-26-5	0.2	%	91.2	95.1	93.1	99.6	96.8

Page	: 17 of 23
Work Order	ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS101	QS103	QS105	QS107	QS109
		Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00	20-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-055	ES2313408-056	ES2313408-057	ES2313408-058	ES2313408-059
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates -	Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	86.4	88.6	85.7	93.4	90.1

# Page : 18 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID		QS111	Trip Blank	Trip Spike	Trip Spike Control		
		Sampli	ng date / time	20-Apr-2023 00:00	17-Apr-2023 00:00	11-Apr-2023 00:00	11-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313408-060	ES2313408-066	ES2313408-067	ES2313408-068	
				Result	Result	Result	Result	
EA055: Moisture Content (Dried @ 105-1	110°C)							
Moisture Content		1.0	%	15.4				
EG005(ED093)T: Total Metals by ICP-AE	S							
Arsenic	7440-38-2	5	mg/kg	5				
Cadmium	7440-43-9	1	mg/kg	<1				
Chromium	7440-47-3	2	mg/kg	46				
Copper	7440-50-8	5	mg/kg	202				
Lead	7439-92-1	5	mg/kg	221				
Nickel	7440-02-0	2	mg/kg	9				
Zinc	7440-66-6	5	mg/kg	114				
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1				
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5				
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10			

# Page : 19 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOIL			Sample ID	QS111	Trip Blank	Trip Spike	Trip Spike Control	
		Sampli	ng date / time	20-Apr-2023 00:00	17-Apr-2023 00:00	11-Apr-2023 00:00	11-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313408-060	ES2313408-066	ES2313408-067	ES2313408-068	
				Result	Result	Result	Result	
EP080/071: Total Petroleum Hydrocar	bons - Continued							
C10 - C14 Fraction		50	mg/kg	<50				
C15 - C28 Fraction		100	mg/kg	<100				
C29 - C36 Fraction		100	mg/kg	<100				
^ C10 - C36 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10			
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10			
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50				
>C16 - C34 Fraction		100	mg/kg	<100				
>C34 - C40 Fraction		100	mg/kg	<100				
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50				
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50				
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	3.4	3.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	6.1	6.2	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	6.3	6.8	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	3.0	3.2	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	18.8	19.7	
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	9.3	10.0	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP075(SIM)S: Phenolic Compound Su	irrogates							
Phenol-d6	13127-88-3	0.5	%	85.7				
2-Chlorophenol-D4	93951-73-6	0.5	%	92.7				
2.4.6-Tribromophenol	118-79-6	0.5	%	99.2				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	98.6				
Anthracene-d10	1719-06-8	0.5	%	106				
4-Terphenyl-d14	1718-51-0	0.5	%	89.5				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	91.2	87.0	89.2	103	
Toluene-D8	2037-26-5	0.2	%	96.4	94.7	86.0	97.8	

Page	: 20 of 23
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS111	Trip Blank	Trip Spike	Trip Spike Control	
		Sampli	ng date / time	20-Apr-2023 00:00	17-Apr-2023 00:00	11-Apr-2023 00:00	11-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313408-060	ES2313408-066	ES2313408-067	ES2313408-068	
				Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates -	Continued							
4-Bromofluorobenzene	460-00-4	0.2	%	89.2	93.8	94.0	91.9	

# Page : 21 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



Sub-Matrix: SOLID (Matrix: SOLID)	Sample ID		ACM101	ACM102	ACM103	ACM104	ACM105	
		Sampli	ng date / time	18-Apr-2023 00:00	18-Apr-2023 00:00	19-Apr-2023 00:00	19-Apr-2023 00:00	20-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313408-061	ES2313408-062	ES2313408-063	ES2313408-064	ES2313408-065
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	Yes	Yes	Yes	Yes
Asbestos Type	1332-21-4	-		Ch + Am	Ch	Ch	Ch	Ch + Am
Asbestos (Trace)	1332-21-4	5	Fibres	N/A	N/A	N/A	N/A	N/A
Sample weight (dry)		0.01	g	5.55	22.2	8.45	19.4	6.60
Synthetic Mineral Fibre		-	-	No	No	No	No	No
Organic Fibre		-	-	No	No	No	No	No
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER	B.SCHRADER

# Page : 22 of 23 Work Order : ES2313408 Client : CAVVANBA CONSULTING Project : 20025.76



# Analytical Results

Sub-Matrix: SOLID (Matrix: SOLID)	Sample ID			TP109_0-0.1	TP113_0.4-0.5	 	
		Sampli	ng date / time	18-Apr-2023 00:00	19-Apr-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2313408-069	ES2313408-070	 	
				Result	Result	 	
EA200: AS 4964 - 2004 Identification of	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	Yes	 	
Asbestos Type	1332-21-4	-		Ch	Ch + Am	 	
Asbestos (Trace)	1332-21-4	5	Fibres	N/A	N/A	 	
Sample weight (dry)		0.01	g	13.6	74.6	 	
Synthetic Mineral Fibre		-	-	No	No	 	
Organic Fibre		-	-	No	No	 	
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	 	

# Analytical Results

### **Descriptive Results**

### Sub-Matrix: SOLID

Method: Compound	Sample ID - Sampling date / time	Analytical Results					
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples							
EA200: Description	ACM101 - 18-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 35x30x5mm.					
EA200: Description	ACM102 - 18-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 80x45x5mm.					
EA200: Description	ACM103 - 19-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 45x35x5mm.					
EA200: Description	ACM104 - 19-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 60x40x5mm.					
EA200: Description	ACM105 - 20-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 35x30x5mm.					
EA200: Description	TP109_0-0.1 - 18-Apr-2023 00:00	One piece of asbestos cement sheeting approximately 40x35x5mm.					
EA200: Description	TP113_0.4-0.5 - 19-Apr-2023 00:00	Several pieces of asbestos cement sheeting approximately 85x60x5mm.					



## Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	63	125
Toluene-D8	2037-26-5	67	124
4-Bromofluorobenzene	460-00-4	66	131

## Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOLID) EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples



# QUALITY CONTROL REPORT

Work Order	: ES2313408	Page	: 1 of 13
Client		Laboratory	: Environmental Division Sydney
Contact	: MR DREW WOOD	Contact	: Karen Coveny
Address	: PO Box 322 NEWCASTLE 2300	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 6685 7811	Telephone	: +61-2-8784 8555
Project	: 20025.76	Date Samples Received	: 21-Apr-2023
Order number	: 20025.76	Date Analysis Commenced	: 28-Apr-2023
C-O-C number	:	Issue Date	: 04-May-2023
Sampler	: ZAC LAUGHLAN		Hac-MRA NATA
Site	:		
Quote number	: SYBQ/409/21		Accreditation No. 825
No. of samples received	: 71		Accredited for compliance with
No. of samples analysed	: 36		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 5020364)							
ES2313408-003	TP105_0-0.1	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	13	14	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	14	12	18.1	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	19	18	7.1	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	125	124	1.1	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	290	310	6.5	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	208	220	5.8	0% - 20%
ES2313408-017	TP112_0-0.1	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	38	45	16.5	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	24	24	0.0	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	11	25.2	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	630	715	12.6	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	530	622	15.9	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	394	400	1.4	0% - 20%
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 5020366)							
ES2313408-055	QS101	EG005T: Cadmium	7440-43-9	1	mg/kg	4	5	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	40	38	4.8	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	35	# 44	23.1	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	139	140	0.0	0% - 20%
		EG005T: Copper	7440-50-8	5	mg/kg	414	468	12.3	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	1220	1360	10.6	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	949	803	16.6	0% - 20%
ES2313747-005	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	27	18	42.1	0% - 50%

Page	: 3 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tota	al Metals by ICP-AES (QC L	ot: 5020366) - continued							
ES2313747-005	Anonymous	EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	7	<5	39.8	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.0	No Limit
EA055: Moisture Con	tent (Dried @ 105-110°C) (0	QC Lot: 5020368)							
ES2313408-005	TP106_0-0.1	EA055: Moisture Content		0.1	%	17.6	18.5	5.0	0% - 50%
ES2313408-021	TP114_0-0.1	EA055: Moisture Content		0.1	%	15.0	12.8	15.6	0% - 50%
EA055: Moisture Con	tent (Dried @ 105-110°C) (0	QC Lot: 5020369)							
ES2313408-057	QS105	EA055: Moisture Content		0.1	%	16.3	15.6	4.5	0% - 50%
ES2313747-008	Anonymous	EA055: Moisture Content		0.1	%	16.2	15.5	4.3	0% - 50%
EG035T: Total Reco	verable Mercury by FIMS (C	C Lot: 5020365)							
ES2313408-003	TP105_0-0.1	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2313408-017	 TP112_0-0.1	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	<0.1	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS (C	C Lot: 5020367)							
ES2313408-055	QS101	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.0	No Limit
ES2313747-005	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014071)							
ES2313346-071	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	ma/ka	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2313408-011	TP109 0-0.1	EP075(SIM): Naphthalene	91-20-3	0.5	ma/ka	< 0.5	< 0.5	0.0	No Limit

Page	: 4 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014071) - continued							
ES2313408-011	TP109_0-0.1	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	0.6	19.7	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	0.6	18.2	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbo	ns (QC Lot: 5014073)							
ES2313346-069	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 5 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarbor	ns (QC Lot: 5014073) - continued							
ES2313408-060	QS111	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC L	ot: 5014070)							
ES2313346-071	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-011	TP109_0-0.1	EP071: C15 - C28 Fraction		100	mg/kg	130	130	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC L	.ot: 5014072)							
ES2313346-069	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	130	110	13.8	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-060	QS111	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC L	.ot: 5020213)							
ES2313845-007	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2313845-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (OC L	ot: 5020316)							I
ES2313408-003	TP105 0-0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit

Page	: 6 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: <b>SOIL</b>				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Petr	oleum Hydrocarbons (QC I	_ot: 5020316) - continued							
ES2313408-017	TP112_0-0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Petr	oleum Hydrocarbons (QC I	_ot: 5020323)	i e e e						
ES2313408-055	QS101	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2313747-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 5014070)	i de la desidera de la						
ES2313346-071	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-011	TP109_0-0.1	EP071: >C16 - C34 Fraction		100	mg/kg	190	180	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 5014072)							
ES2313346-069	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	190	160	17.9	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2313408-060	QS111	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 5020213)							
ES2313845-007	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313845-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 5020316)							
ES2313408-003	TP105_0-0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313408-017	TP112_0-0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Rec	overable Hydrocarbons - NI	EPM 2013 Fractions (QC Lot: 5020323)							
ES2313408-055	QS101	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2313747-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (QC L	.ot: 5020213)								
ES2313845-007	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2313845-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page	: 7 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: <b>SOIL</b>				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 5020213) - cont	inued							
ES2313845-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP080: BTEXN (QC	Lot: 5020316)								
ES2313408-003	TP105_0-0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2313408-017	TP112_0-0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP080: BTEXN (QC	Lot: 5020323)								
ES2313408-055	QS101	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2313747-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit



## Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 5020364)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	88.0	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	74.5	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	108	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	99.0	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	91.9	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	95.7	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	86.3	66.0	133
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 5020366)						• •	• •	
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	94.5	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	77.7	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	109	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	96.9	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	97.3	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	95.3	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	88.0	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QCLot: 5020	365)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	94.2	70.0	125
EG035T: Total Recoverable Mercury by FIMS (QCLot: 5020	367)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	84.5	70.0	125
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot	5014071)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	88.9	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	84.0	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	89.4	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.8	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	92.0	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	87.2	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	93.9	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	93.1	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	84.6	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	89.4	75.0	127

Page	: 9 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 5014071) - c	ontinued						
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	85.4	68.0	116
	205-82-3	0.5		0.5	0 "		74.0	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	95.3	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	79.8	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	91.5	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	88.6	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	88.3	63.0	121
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ns (QCLot: 5014073)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	95.8	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	91.1	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	94.8	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	89.2	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	104	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	89.4	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	105	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	103	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	95.0	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	97.6	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	94.4	68.0	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	104	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	92.2	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	96.2	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	101	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	102	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCL	.ot: 5014070)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	107	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	96.0	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.5	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCL	.ot: 5014072)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	89.6	75.0	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	100	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	92.2	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCL	.ot: 5020213)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	97.5	72.2	131

Page	: 10 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5020316)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	91.3	72.2	131	
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5020323)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	102	72.2	131	
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 5014070)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	91.4	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	101	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	101	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 5014072)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	103	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	88.4	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	106	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 5020213)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	102	72.4	133	
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 5020316)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	96.2	72.4	133	
EP080/071: Total Recoverable Hydrocarbons - NEPN	1 2013 Fractions (QCI	Lot: 5020323)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	104	72.4	133	
EP080: BTEXN (QCLot: 5020213)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	99.3	76.0	124	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	101	78.5	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	99.4	77.4	121	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	102	78.2	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	99.6	81.3	121	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	103	78.8	122	
EP080: BTEXN (QCLot: 5020316)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	92.0	76.0	124	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	95.0	78.5	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	95.7	77.4	121	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	102	78.2	121	
	106-42-3	0.5	malka	<0.5	1 ma/ka	00.0	Q1 2	101	
	90-47-0 01 20 2	1	mg/kg	NU.0	1 mg/kg	96.0	78 0	121	
	91-20-3	I	під/кд		т тід/кд	95.2	/ 0.0	122	
EP080: BTEXN (QCLot: 5020323)									

Page	: 11 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 5020323) - continued									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.5	76.0	124	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	93.4	78.5	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	95.4	77.4	121	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	97.1	78.2	121	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	95.4	81.3	121	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	104	78.8	122	

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5020364)							
ES2313408-003	TP105_0-0.1	EG005T: Arsenic	7440-38-2	50 mg/kg	96.9	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.8	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	95.2	68.0	132	
		EG005T: Copper	7440-50-8	250 mg/kg	98.7	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	106	70.0	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	94.3	70.0	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	113	66.0	133	
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 5020366)							
ES2313408-055	QS101	EG005T: Arsenic	7440-38-2	50 mg/kg	98.6	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	95.7	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	129	68.0	132	
		EG005T: Copper	7440-50-8	250 mg/kg	128	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	# Not	70.0	130	
					Determined			
		EG005T: Nickel	7440-02-0	50 mg/kg	117	70.0	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	74.8	66.0	133	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 5020365)							
ES2313408-003	TP105_0-0.1	EG035T: Mercury	7439-97-6	5 mg/kg	101	70.0	130	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 5020367)							
ES2313408-055	QS101	EG035T: Mercury	7439-97-6	5 mg/kg	103	70.0	130	
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014071	1)						

Page	: 12 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014071) -c	ontinued					
ES2313346-071	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	95.9	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.4	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 5014073)						
ES2313346-069	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	101	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	98.5	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014070)						
ES2313346-071	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	99.2	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	83.8	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	110	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5014072)						
ES2313346-069	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	110	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	110	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	106	52.0	132
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5020213)						
ES2313845-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	83.5	60.4	142
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5020316)						
ES2313408-003	TP105_0-0.1	EP080: C6 - C9 Fraction		32.5 mg/kg	101	60.4	142
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5020323)						
ES2313747-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	97.8	60.4	142
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QC	Lot: 5014070)					
ES2313346-071	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	99.3	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	94.9	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	116	52.0	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QC	Lot: 5014072)					
ES2313346-069	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	98.3	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	109	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	90.5	52.0	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QC	Lot: 5020213)					
ES2313845-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	85.4	61.1	142
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QC	Lot: 5020316)					
ES2313408-003	TP105_0-0.1	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	101	61.1	142
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 5020323)					
ES2313747-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	101	61.1	142
EP080: BTEXN (QC	CLot: 5020213)						
ES2313845-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	78.1	62.1	122

Page	: 13 of 13
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	: 20025.76



Sub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080: BTEXN (Q	CLot: 5020213) -continued								
ES2313845-001	Anonymous	EP080: Toluene	108-88-3	2.5 mg/kg	82.2	66.6	119		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	83.9	67.4	123		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	84.4	66.4	121		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	85.2	70.7	121		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	79.3	61.1	115		
EP080: BTEXN (Q	CLot: 5020316)								
ES2313408-003	TP105_0-0.1	EP080: Benzene	71-43-2	2.5 mg/kg	102	62.1	122		
		EP080: Toluene	108-88-3	2.5 mg/kg	98.2	66.6	119		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	105	67.4	123		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	105	66.4	121		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	105	70.7	121		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	76.2	61.1	115		
EP080: BTEXN (Q	CLot: 5020323)								
ES2313747-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	89.0	62.1	122		
		EP080: Toluene	108-88-3	2.5 mg/kg	89.4	66.6	119		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	92.4	67.4	123		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	90.7	66.4	121		
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	92.0	70.7	121		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	95.0	61.1	115		



QA/QC Compliance Assessment to assist with Quality Review							
Work Order	: ES2313408	Page	: 1 of 9				
Client		Laboratory	: Environmental Division Sydney				
Contact	: MR DREW WOOD	Telephone	: +61-2-8784 8555				
Project	: 20025.76	Date Samples Received	: 21-Apr-2023				
Site	:	Issue Date	: 04-May-2023				
Sampler	: ZAC LAUGHLAN	No. of samples received	: 71				
Order number	: 20025.76	No. of samples analysed	: 36				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

#### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2313408055	QS101	Nickel	7440-02-0	23.1 %	0% - 20%	RPD exceeds LOR based limits
Matrix Spike (MS) Recoveries							
EG005(ED093)T: Total Metals by ICP-AES	ES2313408055	QS101	Lead	7439-92-1	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

#### **Regular Sample Surrogates**

Sub-Matrix: SOIL

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075(SIM)S: Phenolic Compound Surrogates	ES2313408-005	TP106_0-0.1	Phenol-d6	13127-88-3	51.0 %	63.0-123	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313408-014	TP110_0.3-0.4	Phenol-d6	13127-88-3	55.2 %	63.0-123	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313408-005	TP106_0-0.1	2-Chlorophenol-D4	93951-73-6	64.4 %	66.0-122	Recovery less than lower data quality
						%	objective
EP075(SIM)S: Phenolic Compound Surrogates	ES2313408-014	TP110_0.3-0.4	2-Chlorophenol-D4	93951-73-6	61.5 %	66.0-122	Recovery less than lower data quality
						%	objective

#### **Outliers : Analysis Holding Time Compliance**

Matrix: SOIL Method Extraction / Preparation Analysis Date extracted Due for extraction Date analysed Due for analysis Container / Client Sample ID(s) Days Days overdue overdue EP080: BTEXN Soil Glass Jar - Unpreserved Trip Spike, **Trip Spike Control** 01-May-2023 25-Apr-2023 6 02-May-2023 25-Apr-2023 7

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:  $\mathbf{x}$  = Holding time breach ;  $\mathbf{v}$  = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		

Page	: 3 of 9
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL		Evaluation: × = Holding time breach ; < =						
Method			Ex		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023				01-May-2023	02-May-2023	<ul> <li>✓</li> </ul>
TP106_0-0.1,	TP107_0-0.1,							
TP107_0.3-0.4,	QS101,							
QS103								
Soil Glass Jar - Unpreserved (EA055)								
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023				01-May-2023	03-May-2023	<ul> <li>✓</li> </ul>
TP110_0-0.1,	TP110_0.3-0.4,							
TP111_0-0.1,	TP112_0-0.1,							
TP113_0-0.1,	TP113_0.4-0.5,							
MW103_0.2-0.3,	QS105							
Soil Glass Jar - Unpreserved (EA055)								
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023				01-May-2023	04-May-2023	<ul> <li>✓</li> </ul>
TP115_0.3-0.4,	TP116_0-0.1,							
TP117_0-0.1,	TP118 0-0.1,							
QS107,	QS109.							
QS111								
EG005(ED093)T: Total Metals by ICP-AES						1		
Soil Glass Jar - Unpreserved (EG005T)								
TP105 0-0.1,	TP105 0.3-0.4,	18-Apr-2023	01-May-2023	15-Oct-2023	1	02-May-2023	15-Oct-2023	1
TP106_0-0.1.	TP107_0-0.1.							-
TP107_0.3-0.4.	QS101.							
QS103	,							
Soil Glass Jar - Unpreserved (EG005T)								
TP108 0-0.1,	TP109 0-0.1,	19-Apr-2023	01-May-2023	16-Oct-2023	1	02-May-2023	16-Oct-2023	1
TP110_0-0.1.	TP110_0.3-0.4.							-
TP111_0-0_1	TP112 0-0 1							
TP113 0-0 1	TP113_0_4-0_5							
MW103 0 2-0 3	OS105							
Soil Glass Jar - Unpreserved (EG005T)	0100							
TP114 0-0.1.	TP115 0-0.1.	20-Apr-2023	01-May-2023	17-Oct-2023	1	02-May-2023	17-Oct-2023	
TP115_0.3-0.4	TP116 0-0 1				-			•
TP117 0-0 1	TP118 0-0 1							
OS107	OS109							
OS111	Q0100,							
QUIII			1					1

Page	: 4 of 9
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL				Evaluation: $\times$ = Holding time breach ; $\checkmark$ = Within holding time						
Method			Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EG035T: Total Recoverable Mercury by FIMS										
Soil Glass Jar - Unpreserved (EG035T)										
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	16-May-2023	1	03-May-2023	16-May-2023	✓		
TP106_0-0.1,	TP107_0-0.1,									
TP107_0.3-0.4,	QS101,									
QS103										
Soil Glass Jar - Unpreserved (EG035T)										
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	17-May-2023	1	03-May-2023	17-May-2023	✓		
TP110_0-0.1,	TP110_0.3-0.4,									
TP111_0-0.1,	TP112_0-0.1,									
TP113 0-0.1,	TP113 0.4-0.5,									
MW103 0.2-0.3,	QS105									
Soil Glass Jar - Unpreserved (EG035T)										
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	18-May-2023	1	03-May-2023	18-May-2023	1		
TP115 0.3-0.4,	TP116 0-0.1,							· · ·		
TP117 0-0.1,	TP118 0-0.1,									
QS107.	QS109.									
QS111	,									
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons										
Soil Glass Jar - Unpreserved (EP075(SIM))										
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP106_0-0.1,	TP107_0-0.1,									
TP107 0.3-0.4,	QS101,									
QS103										
Soil Glass Jar - Unpreserved (EP075(SIM))										
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
MW103_0.2-0.3,	QS105									
Soil Glass Jar - Unpreserved (EP075(SIM))										
TP110_0-0.1,	TP110_0.3-0.4,	19-Apr-2023	01-May-2023	03-May-2023	1	04-May-2023	10-Jun-2023	✓		
TP111_0-0.1,	TP112_0-0.1,									
TP113_0-0.1,	TP113_0.4-0.5									
Soil Glass Jar - Unpreserved (EP075(SIM))										
TP116_0-0.1,	TP117_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP118_0-0.1,	QS107,									
QS109,	QS111									
Soil Glass Jar - Unpreserved (EP075(SIM))										
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	1	04-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP115_0.3-0.4										

Page	: 5 of 9
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time		
Method		Sample Date	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EP080/071: Total Petroleum Hydrocarbons										
Soil Glass Jar - Unpreserved (EP080) Trip Blank		17-Apr-2023	01-May-2023	01-May-2023	~	01-May-2023	01-May-2023	1		
Soil Glass Jar - Unpreserved (EP080)										
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	~	02-May-2023	02-May-2023	<ul> <li>✓</li> </ul>		
TP106_0-0.1,	TP107_0-0.1,									
TP107_0.3-0.4,	QS101,									
QS103										
Soil Glass Jar - Unpreserved (EP071)							40.1.0000			
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	~	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP106_0-0.1,	TP107_0-0.1,									
TP107_0.3-0.4,	QS101,									
QS103										
Soil Glass Jar - Unpreserved (EP080)										
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	~	02-May-2023	03-May-2023	<ul> <li>✓</li> </ul>		
TP110_0-0.1,	TP110_0.3-0.4,									
TP111_0-0.1,	TP112_0-0.1,									
TP113_0-0.1,	TP113_0.4-0.5,									
MW103_0.2-0.3,	QS105									
Soil Glass Jar - Unpreserved (EP071)										
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	1	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP110_0-0.1,	TP110_0.3-0.4,									
TP111_0-0.1,	TP112_0-0.1,									
TP113_0-0.1,	TP113_0.4-0.5,									
MW103_0.2-0.3,	QS105									
Soil Glass Jar - Unpreserved (EP080)										
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	~	02-May-2023	04-May-2023	<ul> <li>✓</li> </ul>		
TP115_0.3-0.4,	TP116_0-0.1,									
TP117_0-0.1,	TP118_0-0.1,									
QS107,	QS109,									
QS111										
Soil Glass Jar - Unpreserved (EP071)										
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	~	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>		
TP115_0.3-0.4,	TP116_0-0.1,									
TP117_0-0.1,	TP118_0-0.1,									
QS107,	QS109,									
QS111										

Page	: 6 of 9
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL		Evaluation: × = Holding time bre							
Method			Extraction / Preparation Analysis						
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydrocar	rbons - NEPM 2013 Fractions					·	·		
Soil Glass Jar - Unpreserved (EP080) Trip Blank		17-Apr-2023	01-May-2023	01-May-2023	~	01-May-2023	01-May-2023	1	
Soil Glass Jar - Unpreserved (EP080)									
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	~	02-May-2023	02-May-2023	✓	
TP106_0-0.1,	TP107_0-0.1,								
TP107_0.3-0.4,	QS101,								
QS103									
Soil Glass Jar - Unpreserved (EP071)							40.1.0000		
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	~	03-May-2023	10-Jun-2023	✓	
TP106_0-0.1,	TP107_0-0.1,								
TP107_0.3-0.4,	QS101,								
QS103									
Soil Glass Jar - Unpreserved (EP080)									
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	~	02-May-2023	03-May-2023	✓	
TP110_0-0.1,	TP110_0.3-0.4,								
TP111_0-0.1,	TP112_0-0.1,								
TP113_0-0.1,	TP113_0.4-0.5,								
MW103_0.2-0.3,	QS105								
Soil Glass Jar - Unpreserved (EP071)									
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	~	03-May-2023	10-Jun-2023	✓	
TP110_0-0.1,	TP110_0.3-0.4,								
TP111_0-0.1,	TP112_0-0.1,								
TP113_0-0.1,	TP113_0.4-0.5,								
MW103_0.2-0.3,	QS105								
Soil Glass Jar - Unpreserved (EP080)									
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	~	02-May-2023	04-May-2023	✓	
TP115_0.3-0.4,	TP116_0-0.1,								
TP117_0-0.1,	TP118_0-0.1,								
QS107,	QS109,								
QS111									
Soil Glass Jar - Unpreserved (EP071)									
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	~	03-May-2023	10-Jun-2023	<ul> <li>✓</li> </ul>	
TP115_0.3-0.4,	TP116_0-0.1,								
TP117_0-0.1,	TP118_0-0.1,								
QS107,	QS109,								
QS111									

Page	: 7 of 9
Work Order	: ES2313408
Client	: CAVVANBA CONSULTING
Project	20025.76



Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
Trip Spike,	Trip Spike Control	11-Apr-2023	01-May-2023	25-Apr-2023	*	02-May-2023	25-Apr-2023	*
Soil Glass Jar - Unpreserved (EP080)								
Trip Blank		17-Apr-2023	01-May-2023	01-May-2023	~	01-May-2023	01-May-2023	✓
Soil Glass Jar - Unpreserved (EP080)								
TP105_0-0.1,	TP105_0.3-0.4,	18-Apr-2023	01-May-2023	02-May-2023	1	02-May-2023	02-May-2023	<ul> <li>✓</li> </ul>
TP106_0-0.1,	TP107_0-0.1,							
TP107_0.3-0.4,	QS101,							
QS103								
Soil Glass Jar - Unpreserved (EP080)								
TP108_0-0.1,	TP109_0-0.1,	19-Apr-2023	01-May-2023	03-May-2023	~	02-May-2023	03-May-2023	<ul> <li>✓</li> </ul>
TP110_0-0.1,	TP110_0.3-0.4,							
TP111_0-0.1,	TP112_0-0.1,							
TP113_0-0.1,	TP113_0.4-0.5,							
MW103_0.2-0.3,	QS105							
Soil Glass Jar - Unpreserved (EP080)								
TP114_0-0.1,	TP115_0-0.1,	20-Apr-2023	01-May-2023	04-May-2023	1	02-May-2023	04-May-2023	<ul> <li>✓</li> </ul>
TP115_0.3-0.4,	TP116_0-0.1,							
TP117_0-0.1,	TP118_0-0.1,							
QS107,	QS109,							
QS111								
Matrix: SOLID					Evaluation	: <b>x</b> = Holding time	breach : 🗸 = Withi	n holding tim

								in noiuing time.	
Method			Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA200: AS 4964 - 2004 Identification of Asbestos in bulk sa	amples								
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200) ACM101, TP109_0-0.1	ACM102,	18-Apr-2023				28-Apr-2023	15-Oct-2023	~	
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200) ACM103, TP113_0.4-0.5	ACM104,	19-Apr-2023				28-Apr-2023	16-Oct-2023	1	
Snap Lock Bag - Friable Asbestos/PSD Bag (EA200) ACM105		20-Apr-2023				28-Apr-2023	17-Oct-2023	1	



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: 🗴 = Quality Co	ontrol frequency	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)	·	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	4	37	10.81	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	37	10.81	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	6	59	10.17	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	59	5.08	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	2	37	5.41	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	59	5.08	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	3	59	5.08	5.00	1	NEPM 2013 B3 & ALS QC Standard



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Asbestos Identification in Bulk Solids	EA200	SOLID	In house: Referenced to AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.



# SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2313408			
Client Contact Address	: CAVVANBA CONSULTING : MR DREW WOOD : PO Box 322 NEWCASTLE 2300	Laboratory Contact Address	: Environmen : Karen Cove : 277-289 Wo NSW Austra	ntal Division Sydney eny podpark Road Smithfield alia 2164
E-mail Telephone Facsimile	: drew@cavvanba.com : +61 02 6685 7811 : +61 02 6685 5083	E-mail Telephone Facsimile	: karen.cover : +61-2-8784 : +61-2-8784	ny@alsglobal.com 8555 8500
Project Order number C-O-C number Site Sampler	: 20025.76 : 20025.76 : : : ZAC LAUGHLAN	Page Quote number QC Level	and       : haloficorony@alsglobal.com         phone       : +61-2-8784 8555         simile       : +61-2-8784 8500         e       : 1 of 4         te number       : EB2017CAVCON0001 (SYBQ/409/21)         Level       : NEPM 2013 B3 & ALS QC Standard         e Date       : 26-Apr-2023	
Dates Date Samples Receiv Client Requested Due Date	ed : 21-Apr-2023 19:40 : 04-May-2023	Issue Date Scheduled Reporting D	ate	: 26-Apr-2023 : <b>04-May-2023</b>
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	s : Carrier : 5 :	Security Seal Temperature No. of samples receive	d / analysed	: Not Available : 5.8'C - Ice present : 71 / 36

### **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- This workorder has been split from ES2313346.
- Sample QS102, QS104, QS106, QS108, QS110 & QS112 will be sent to Eurofins for analysis.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
  analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
  temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
  recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EXN with No Moisture for TBs

MOIST)

EXN/PAH

ES2313408-071 ; [ 19-Apr-2023 ] : MW101_7.0-7.1 - Received as extra sample

## Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

laboratory and component	displayed in bra	ckets without a time	Jested	± 03		MOIS EXN w	TEXN/I
Matrix: SOIL			d) SOIL ysis requ	EA055-1 e Conter	EP080	S-18 (NC 5-C9)/BT	S-26 s/TRH/B
Laboratory sample ID	Sampling date / time	Sample ID	(On Hol No anal	SOIL - F Moistur	SOIL - F BTEXN	SOIL - S TRH(C6	SOIL - 8 8 metal
ES2313408-001	18-Apr-2023 00:00	TP104_0.2-0.3	✓				
ES2313408-002	18-Apr-2023 00:00	TP104_0.3-0.4	✓				
ES2313408-003	18-Apr-2023 00:00	TP105_0-0.1		✓			✓
ES2313408-004	18-Apr-2023 00:00	TP105_0.3-0.4		✓			✓
ES2313408-005	18-Apr-2023 00:00	TP106_0-0.1		1			✓
ES2313408-006	18-Apr-2023 00:00	TP106_0.3-0.4	✓				
ES2313408-007	18-Apr-2023 00:00	TP107_0-0.1		1			✓
ES2313408-008	18-Apr-2023 00:00	TP107_0.3-0.4		1			✓
ES2313408-009	19-Apr-2023 00:00	TP108_0-0.1		1			✓
ES2313408-010	19-Apr-2023 00:00	TP108_0.3-0.4	1				
ES2313408-011	19-Apr-2023 00:00	TP109_0-0.1		1			✓
ES2313408-012	19-Apr-2023 00:00	TP109_0.5-0.6	✓				
ES2313408-013	19-Apr-2023 00:00	TP110_0-0.1		✓			✓
ES2313408-014	19-Apr-2023 00:00	TP110_0.3-0.4		1			✓
ES2313408-015	19-Apr-2023 00:00	TP111_0-0.1		1			✓
ES2313408-016	19-Apr-2023 00:00	TP111_0.3-0.4	<ul> <li>✓</li> </ul>				
ES2313408-017	19-Apr-2023 00:00	TP112_0-0.1		1			✓
ES2313408-018	19-Apr-2023 00:00	TP112_0.3-0.4	✓				
ES2313408-019	19-Apr-2023 00:00	TP113_0-0.1		1			✓
ES2313408-020	19-Apr-2023 00:00	TP113_0.4-0.5		1			✓
ES2313408-021	20-Apr-2023 00:00	TP114_0-0.1		1			✓
ES2313408-022	20-Apr-2023 00:00	TP114_0.3-0.4	✓				
ES2313408-023	20-Apr-2023 00:00	TP115_0-0.1		✓			✓
ES2313408-024	20-Apr-2023 00:00	TP115_0.3-0.4		✓			✓
ES2313408-025	20-Apr-2023 00:00	TP116_0-0.1		✓			✓
ES2313408-026	20-Apr-2023 00:00	TP116_0.3-0.4	<ul> <li>✓</li> </ul>				
ES2313408-027	20-Apr-2023 00:00	TP117_0-0.1		1			✓
ES2313408-028	20-Apr-2023 00:00	TP117_0.3-0.4	✓				
ES2313408-029	20-Apr-2023 00:00	TP118_0-0.1		1			✓
ES2313408-030	20-Apr-2023 00:00	TP118_0.3-0.4	✓				
ES2313408-031	19-Apr-2023 00:00	MW101_0-0.1	✓				
ES2313408-032	19-Apr-2023 00:00	MW101_0.5-0.6	✓				
ES2313408-033	19-Apr-2023 00:00	MW101_0.8-0.9	1				



: CAVVANBA CONSULTING



			(On Hold) SOIL No analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EP080 BTEXN	SOIL - S-18 (NO MOIST) TRH(C6-C9)/BTEXN with No Moisture for TBs	SOIL - S-26 8 metals/TRH/BTEXN/PAH
ES2313408-034	21-Apr-2023 00:00	MW101_2.5-2.6	1				
ES2313408-035	21-Apr-2023 00:00	MW101_5.0-5.1	✓				
ES2313408-036	19-Apr-2023 00:00	MW102_0-0.1	1				
ES2313408-037	19-Apr-2023 00:00	MW102_0.5-0.6	✓				
ES2313408-038	19-Apr-2023 00:00	MW102_1.2-1.3	1				
ES2313408-039	21-Apr-2023 00:00	MW102_2.0-2.1	1				
ES2313408-040	21-Apr-2023 00:00	MW102_3.0-3.1	✓				
ES2313408-041	21-Apr-2023 00:00	MW102_4.0-4.1	1				
ES2313408-042	21-Apr-2023 00:00	MW102_5.0-5.1	✓				
ES2313408-043	21-Apr-2023 00:00	MW102_6.0-6.1	✓				
ES2313408-044	21-Apr-2023 00:00	MW102_7.0-7.1	✓				
ES2313408-045	19-Apr-2023 00:00	MW103_0-0.1	✓				
ES2313408-046	19-Apr-2023 00:00	MW103_0.2-0.3		✓			✓
ES2313408-047	19-Apr-2023 00:00	MW103_0.5-0.6	✓				
ES2313408-048	19-Apr-2023 00:00	MW103_1.2-1.3	✓				
ES2313408-049	20-Apr-2023 00:00	MW103_2.0-2.1	✓				
ES2313408-050	20-Apr-2023 00:00	MW103_3.0-3.1	✓				
ES2313408-051	20-Apr-2023 00:00	MW103_4.0-4.1	✓				
ES2313408-052	20-Apr-2023 00:00	MW103_5.0-5.1	✓				
ES2313408-053	20-Apr-2023 00:00	MW103_6.0-6.1	✓				
ES2313408-054	20-Apr-2023 00:00	MW103_7.0-7.1	✓				
ES2313408-055	18-Apr-2023 00:00	QS101		✓			✓
ES2313408-056	18-Apr-2023 00:00	QS103		✓			✓
ES2313408-057	19-Apr-2023 00:00	QS105		✓			✓
ES2313408-058	20-Apr-2023 00:00	QS107		✓			✓
ES2313408-059	20-Apr-2023 00:00	QS109		✓			✓
ES2313408-060	20-Apr-2023 00:00	QS111		✓			✓
ES2313408-066	17-Apr-2023 00:00	Trip Blank				✓	
ES2313408-067	11-Apr-2023 00:00	Trip Spike			✓		
ES2313408-068	11-Apr-2023 00:00	Trip Spike Control			✓		
ES2313408-071	19-Apr-2023 00:00	MW101_7.0-7.1 Recei	✓				



Matrix: SOLID			- EA200B ss Identification in Bulk Solids (Excl.
Laboratory sample	Sampling date /	Sample ID	Destc
ID	time		SO
ES2313408-061	18-Apr-2023 00:00	ACM101	✓
ES2313408-062	18-Apr-2023 00:00	ACM102	✓
ES2313408-063	19-Apr-2023 00:00	ACM103	✓
ES2313408-064	19-Apr-2023 00:00	ACM104	✓
ES2313408-065	20-Apr-2023 00:00	ACM105	1
ES2313408-069	18-Apr-2023 00:00	TP109_0-0.1	
ES2313408-070	19-Apr-2023 00:00	TP113_0.4-0.5	1

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

# Requested Deliverables

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
DREW WOOD		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	drew@cavvanba.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	drew@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	drew@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	drew@cavvanba.com
- A4 - AU Tax Invoice (INV)	Email	drew@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	drew@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	drew@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ZAC LAUGHLAN		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	zac@cavvanba.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	zac@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	zac@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	zac@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	zac@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	zac@cavvanba.com

ding

LIENT:	Cavvanba Consulting		TURNAR	OUND REQUIREMENTS :	& Standa	d TAT (List	due date):					FOR	LABORATO	RY USE O	LY (Circle)		
FICE:	Newcastle		(Standard T Ultra Trace	AT may be longer for some tests e.g. Organics)	🛛 Non St	andard or ur	gent TAT (List du	e date):				Custo	dy Seal Intact?		Yes	No N/A	
JECT	20025.76		ALS QUO	DTE NO.: SYBO	Q-409-21				c	OC SEQUENCE NUMBER	R (Circle)	Free	ce / frozen ice t (?	nicks presen	upon Yes	No N/A	
DER N	JMBER: 20025.76							COC:	1 2	3 4 5 6	7 8 9	10 11 Rand	om Sample Ten	perature on	Receipt:	°C	
JECT	MANAGER: Drew Wood	CONTACT P	PH: 0403 68	9 755	· · · · · · · · · · · · · · · · · · ·			OF:	1 2	3 4 5 6	7 8 9	10 11 Other	comment				
<b>IPLER</b>	: Zac Laughlan	SAMPLER N	AOBILE: 04	28 288 854	RELINQUE	HED BY:		RECE	IVED BY:	1		RELINQUI	SHED BY:		RECEIVED BY:		
C emai	ed to ALS? ( YES / NO)	EDD FORM	AT (or defau	alt):	DATE/TIME			Inste	J.J.J.	/		DATEZINA	-		DATE/TIME		
ail Invo	ice to (will default to PM if no other address	es are listed): rob@cavvanba	LCOM	Secondarios com	24/04/202	3		2	uluni	Gife	/	DATENTIN			DATE TIME		
MAREN			naining sam	uniae ON HOLD	<u> </u>				1111)	· · ·		1					1
		ST COAL. T lease place left	iaming san				1										-
ALS	SAMPLE DETAILS MATRIX: SC	ULID (S) WATER (W)	_	CONTAINER INFOR	RMATION		V	ANALYS Vhere Metals a	IS REQUIRED in re required, spec	cluding SUITES (NB. Suite ally Total (unfiltered bottle re	e Codes must be listi equired) or Dissolve	ed to attract suite pr d (field filtered bottle	ce) required)		Additional In	formation	
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	5-26: TRH/BTEXN/PAHs/8 Metals	Asbestos ID	TRH + BTEXN						Comments on likely conta dilutions, or samples requ analysis etc.	minant levels ining specific QC	
1	TP104_0.2-0.3	18/04/2023	Soil			1					I I						1
2	TP104_0.3-0.4	18/04/2023	Soil			1								En	vironmont	al Divieic	n
3	TP105_0-0.1	18/04/2023	Soil			1	х							SV	dnev	al Divisit	511
4	TP105_0.3-0.4	18/04/2023	Soil			1	х							C y	Work Order I	Reference	
5	TP106_0-0.1	18/04/2023	Soil			1	х								ES23	1340	8
6	TP106_0.3-0.4	18/04/2023	Soil			1											
3	TP107_0-0.1	18/04/20:23	Soil			1 =	х										
8	TP107_0.3-0.4	18/04/2023	Soil			1	х										
٩	TP108_0-0.1	19/04/2023	Soil			1	х										
Q	TP108_0.3-0.4	19/04/2023	Soil			1	(t ⁻¹ -										
11	TP109_0-0.1	19/04/2023	Soil			1	х	x						Tele	phone: +61-2-8	784 8555	
K	TP109_0.5-0.6	19/04/2023	Soil			1											
3	TP110_0-0.1	19/04/2023	Soil			1	x										
14	TP110_0.3-0.4	19/04/2023	Soil			1	x										
5	TP111_0-0.1	19/04/2023	Soil			1	x									1 1722	334
6	TP111_0.3-0.4	19/04/2023	Soil			1						Subcon	Forw	ard La	p / Split WO		
2	TP112_0-0.1	19/04/2023	Soil			3	x					Lab/A	nalysis			***	
8	TP112_0.3-0.4	19/04/2023	Soil			1						Orgonia	rd By	Date		e ser die die die sole offense oon die sole oor die oo	
9	TP113_0-0.1	19/04/2023	Soil			1	x					Organite	· land I	$\frac{1}{2}$	ate		
2	TP113_0.4-0.5	19/04/2023	Soil			1	x	x				Relinqu	Insticut		and an other at the state of th		
21	TP114_0-0.1	20/04/2023	Soil			1	х					Conno	e/Cou	rier:	an Ma an an An Party on Chail Chaine at all a	ند کا شده به او هارش کا بنده به م	Gadane
							1					WON	d.			and as 12 as 26 pt as 26 st 45 st 46 st 46	in and did the day blir fact

Enuir	ommental ALS Labora please to	Res of Data i sedo er gred ck →																									
CLIENT: Ca	uvvanba Consulting		TURNAR	OUND REQUIREMENTS :	🕸 Standa	rd TAT (List	due date):						FOR	LABORATORY	USE ONLY (Circle)												
OFFICE: No	ewcastle		(Standard T Ultra Trace	AT may be longer for some tests e.g Organics)	Non S	tandard or ur	gent TAT (List du	ie date):					Custo	ly Seal Intact?	Yes No												
PROJECT: 2	0025.76		ALS QUO	DTE NO.: SYBO	2-409-21				c	COC SEQUENCE NU	MBER (Circle)		receip	e / frozen ice brick ?	is present upon Yes No												
ORDER NUM	BER: 20025.76		J					GOC:	1 2	3 4 6	6 7 B	9 1	0 11 Rando	m Sample Temper	ature on Receipt: C												
PROJECT M	ANAGER: Drew Wood	CONTACT	PH: 0403 68	9 755	DEL NOU			OF:	1 2	3 4 5	6 7 8	9 1	0 11 Other	comment:													
COC emailed	to ALS2 ( VES / NO)	5AMPLER EDD FORM	AT (or defa	26 266 854	RELINGUE	SHED BT:		RECE	IVED BY:	4	8-c		RELINGUR	HED BT:	RECEIVED BY:												
Email Report	s to (will default to PM if no other addre	sses are listed); drew@cavva	nba.com, zad	@cavvanba.com	DATE/TIME			DATE	TIME:	Ð			DATE/TIME		DATE/TIME:												
Email Invoice	to (will default to PM if no other addres	ises are listed). rob@cavvanb.	a.com		24/04/202	3			24/4/2	3 9:0	re																
COMMENTS/	SPECIAL HANDLING/STORAGE OR I	DISPOSAL: Please place rea	maining sam	ples ON HOLD		endologi and dollar							and our contraction of the second														
ALS S	AMPLE DETAILS MATRIX: S	OLID (S) WATER (W)		CONTAINER INFOR	RMATION		v	ANALYS	SIS REQUIRED in are required spec	ncluding SUITES (Ni cify Total (unfiltered )	3. Suite Codes mi othe required) or	ust be listed t Dissolved (f	o attract suite pri ield filtered bottle	ce) required).	Additional Information												
		1	1			I						1 1	1														
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	S-26: TRH/BTEXN/PAHs/8 Metals	Asbestos ID	TRH + BTEXN						Commente on likely conteminant lievela, dikulions: or samples requiring specific DC analysis etc:												
11	TP114_0.3-0.4	20/04/2023	Soil			1																					
13	TP115_0-0.1	20/04/2023	Soil			1	х																				
74	TP115_0.3-0.4	20/04/2023	Soil			1	x																				
2-	TP116_0-0.1	20/04/2023	Soil			1	x																				
11.	TP116_0.3-0.4	20/04/2023	Soil			1																					
17	TP117_0-0.1	20/04/2023	Soil			1	x																				
7S	TP117_0.3-0.4	20/04/2023	Soil			1																					
25	TP118_0-0.1	20/04/2023	Soil			1	x					a anti-anti-antal															
30	TP118_0.3-0.4	20/04/2023	Soil			1																					
31	MW 101_0-0.1	19/04/2023	Soll			1																					
32	MW101_0.5-0.6	19/04/2023	Soil			1																					
73	MW 101_0.8-0.9	19/04/2023	Soil			1																					
34	MW101_2.5-2.6	21/04/2023	Soil			1																					
35	MW101_5.0-5.1	21/04/2023	Soil			1									1												
36	MW102_0-0.1	19/04/2023	Soil			1																					
32	MW 102_0.5-0.6	19/04/2023	Soil			1																					
78	MW 102_1.2-1.3	19/04/2023	Soil			1																					
39	MW102_2.0-2.1	21/04/2023	Soil			1																					
ho	MW 102_3.0-3.1	21/04/2023	Soil			1																					
41	MW102_4.0-4.1	21/04/2023	Soil			1																					
N. S. Walder	all the second second second							-																			
Envi	CHAIN CUST	OF DHP Secret 22 that be of a cost 222 E at ODY Discret 3 Cost 2 at a secret per of a cost 3 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 2 at a secret per of a cost 5 Cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5 Cost 5 Cost 5 at a secret per of a cost 5 Cost 5 at a secret per of a cost 5								VIC 317 global or 650 com	n.										DISYDN Phil 82 1 Di YOV Phil 87 Di YOS Di YOS Di YOS		Woodpar tamples 15 Desm Lowegula 9 Kenny S porkemp	Road Smithlie Writery Salasi or In Court Buble C International Salasi Inter Workingsr International Salasi International Salasi Interna	la NSVI 215 NV prim 24.13 4614 grangional un ng NSW 250 m	14 201	
------------	--------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------	---------------------	------------------------------------	-----------------	----------------------------	------------------------------------	--------------------------	----------------------	------------------------	---------------------	----------------------	--------------------	-------------------------	-----------------------	-------------------------------------------	-------------------	------------------------------------------------------------------------	-------------	-------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------	---------------------------	-----
CLIENT	Cavvanha Consulting	A 104 9	TURNAR	OUND REQUIREMENTS -	A Standa	and TAT /Link	dua data):												FOR		ATO			2im lo]			
OFFICE:	Newcastle		(Standard 1	AT may be longer for some tests e.g.		topdard or u	coost TAT /List due	datali											Cueto	dy Seal Ir	stact2	(TUSE O	MALI (	Arcie)		No	NUA
PROJECT	20025.76		Ultra Trace	Organics)	0.409.24	aanuard or u	igent i Al (List due	ate):			000.85	OUEN	CE MUM	RED	Cirola	-			Free ice / frozen ice bricks present upon								
ORDER NI	UMBER: 20025.76		ALS QUE	51E NO 51E	Q-403-21									receip	ot?	in Toom	oombaro an	Downlad	Tes	P	40	NIA					
PROJECT	MANAGER: Draw Wood	CONTACT	0403 69	0.755					00: 1	2	3	8	5 0			o :			i Heand	om sampi	ie rem	perature on	несері.		· ·		
SAMPLER	· Zac I aunhlan	SAMPLER	MOBILE: 04	28 288 864	RELINOU	SHED BY-		0	ECEIVED	EV-	3	*	5 0	3	1 0	0 2		les	LINOU	CUMINEN			1	PECENIED	DV.		
COC emai	led to ALS2 ( YES / NO)	EDD FORM	AT (or defai	uit).		ondo on.		1.		ы.									LINGO	STILD D				ALCEIVED.	G1.		
Email Rep	orts to will default to PM if no other ad	dresses are listed): drew@cavvar	aha com za	c@cawanha.com	DATE/TIME	-		0	ATE/TIME									DA	TE/TIM	E.							
Email Invo	ice to (will default to PM if no other add	iresses are listed): rob@cavvanba	a com		24/04/202	23			COLUMN TO COL									D/A	101100					DATE TIME	-1.		
COMMENT					I no nizor																						
COMMENT	Tarafeciae Handeing/aTokage c	R DISPOSAL. Flease place feit	naming sam	The solution of the solution o			·····																				
ALS USE	SAMPLE DETAILS	(: SOLID (S) WATER (W)		CONTAINER INFO	RMATION		W	ANA here Mot	LYSIS REC tals are requ	QUIREE uired, sj	) includin pecify Tot	ig SUIT al (unfii	ES (NB 5 tered bott	Suite ( tie regi	Codes m uired) or	nust be r Disso	listed to lived (fic	o attrac eld fille	t suite pr red bottle	ice) required)	i i			Addition	al Inforn	nation	
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	S-26: TRH/BTEXNPAHs/8 Metals	Ashestos ID		TRH + BTEXN													Comm dilution analysi	ants on likely o s, or samples s etc	contamina requiring	int levels. specific (	20
YL	MW 102_5.0-5.1	21/04/2023	Soil			1												$\uparrow$		1			-				
43	MW 102_6.0-6.1	21/04/2023	Soil			1																					
44	MW 102_7.0-7.1	21/04/2023	Soil			1		******																	С. С		
ur	MW103_0-0.1	19/04/2023	Soil	-		1																					
46	MW 103_0.2-0.3	19/04/2023	Soil			1	x																				
42	MW 103_0.5-0.6	19/04/2023	Soil			1																					
48	MW 103_1.2-1.3	19/04/2023	Soil			1																					
45	MW103_2.0-2.1	20/04/2023	Soil			1			1													80 L					
r	MW 103_3.0-3.1	20/04/2023 .	Soil	-		1			-													**					
57	MW 103_4.0-4.1	20/04/2023	Soil			1																					
52	MW103_5.0-5.1	20/04/2023	Soil			1																					
53	MW103_6.0-6.1	20/04/2023	Soil			1																					
SY	MW103_7.0-7.1	. 20/04/2023	Soil			1												-									
15	QS101	18/04/2023	Soil			1	х																				
×	QS102	18/04/2023	Soil			1	Plea	se for	ward t	to Eu	rofin	s for	anal	ysis	- TR	RH/E	TEX	N/F	AHs,	8 Me	tals						-
0	QS103	18/04/2023	Soil		23	1	х															•					
×	QS104	18/04/2023	Soil			1	Plea	se for	rward t	to Eu	rofin	s for	anal	ysis	- TF	RH/E	BTEX	N/F	AHs,	8 Me	tals						
53	QS105	19/04/2023	Soil			1	х																				
×	QS106	19/04/2023	Soil			1	Plea	se for	ward t	to Ei	rofin	s for	anal	ysis	- TR	RH/E	BTEX	N/F	AHs,	8 Me	tals						
58	QS107	20/04/2023	Soil			1	х																				
×	QS108	20/04/2023	Soil			1	Plea	se for	rward t	to Ei	irofin	s for	anal	ysis	- TF	RH/E	BTEX	N/F	AHs	/8 Me	tals						
					TOTAL																						
Water Cont	tainer Codes: P = Unpreserved Plastic, N =	Nitric Preserved Plastic: ORC = Nitric	c Preserved C	RC; SH = Sodium Hydroxide/Cd Preserve	ed: S = Sodium	Hydroxide Pr	eserved Plastic: AG =	Amber G	Glass Unpre	eserved	AP - Airf	reight L	Inpreservi	red Pla	istic												

V = VQA Vaid HCI Proserved, VB = VQA Vaid Sodium Baughtabe Proserved VB = VQA Vaid Saffuring Proserved AV = Anthropy to Saffuring Proserved Ambor Glass: H = HCI proserved Plastic; HS = HCI preserved Speciation bdfle; SP = Saffuring Proserved Plastic; F = Formaldehyde Preserved Plastic; HS = HCI preserved Plas

Enul		AIN OF JSTODY LS Laboratory please tick +													
CLIENT:	Cavvanba Consulting Newcastle		TURNAR (Standard T	OUND REQUIREMENTS : AT may be longer for some tests e.g.	⊕ Standa	ard TAT (List	due date):	e date):				FOR	LABORAT	ORY USE O	NLY (Circle) Yes No N
PROJECT	: 20025.76		ALS QUO	Organics) DTE NO.: SYE	Q-409-21		gant in the function		co	C SEQUENCE NUMB	ER (Circle)	Free i	ce / frozen ice	bricks preser	itupon Yes No N
ORDER N	UMBER: 20025.76			-				co	c: 1 2	3 4 5 6	7 8 9 10	11 Rando	t? om Sample Te	emperature or	Receipt "C
PROJECT	MANAGER: Drew Wood	CONTACT	PH: 0403 68	39 755					•: 1 2 :	3 4 5 1 6	7 8 9 10	11 Other	comment		
SAMPLER	: Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854	RELINQUE	SHED BY:		RE	CEIVED BY:			RELINQUE	SHED BY:		RECEIVED BY:
COC emai	led to ALS? ( YES / NO)	EDD FORM	AT (or defa	ult):	1				-mar (	đ					
Email Rep	orts to (will default to PM if no	other addresses are listed): drew@ca	wanba.com,	zac@cawanba.com		E:		DA	TE/TIME:	0		DATE/TIM			DATE/TIME:
Email Invo	ice to (will default to PM if no	other addresses are listed): rob@cavva	anba.com		24/04/202	23		2	erlying	9:52					
COMMEN	TS/SPECIAL HANDLING/STO	RAGE OR DISPOSAL: Please place r	remaining sa	amples ON HOLD											
ALS USE	SAMPLE DETAILS	MATRIX: SOLID (S) WATER (W)		CONTAINER INFO	RMATION		Whe	ANAL Y re Metals	SIS REQUIRED incli are required, specify	uding SUITES (NB S Total (unfiltered bottle	uite Codes must be listed required) or Dissolved (1	io attract suite p ield filtered bottl	rice) e required)		Additional Information
			RIX	TYPE & PRESERVATIVE	(refer	AL INERS	6: N/PAHS/8 als	D sol	STEXN						Comments on likely contaminant levels,
LABID	SAMPLE ID	DATE / TIME	MAT	to codes below)	0.000	TOT	S-2 TRH/BTEXI Met	Asbesi	TRH + E						dilutions, or samples requiring specific QC analysis etc.
59	QS109	20/04/2023	Soil	-		1	x							10	
£	QS110	20/04/2023	Soil			1	Pleas	e forv	vard to Euroi	fins for analy	sis - TRH/BTE)	N/PAHs	8 Meta	ls	
60	QS111	20/04/2023	Soil	-		1	х								
x	QS112	20/04/2023	Soll			1	Pleas	e forw	vard to Euroi	fins for analy	sis - TRH/BTE)	N/PAHs	8 Meta	ls	
6/	ACM101	18/04/2023	Soil			1		х							
62	ACM102	18/04/2023	Soil			1		х							
63	ACM103	19/04/2023	Soil			1		х							
64	ACM104	19/04/2023	Soil			1		х							
65	ACM105	20/04/2023	Soil			1		х							
66	Trip Blank		Soil			1			x						
67	Trip Spike	10 C	Soil			1			x						
68	TSC		Soil												
			Soil												
			Soil												
			Soil												
			Soil												
			Soil												
			Soil												
			Soil												
					TOTAL										a)
Water Con	tainer Codes: P = Unpreserved P	lastic: N = Nitric Preserved Plastic: ORC =	Nitric Preserve	d ORC: SH = Sodium Hydroxide/Cd Pr	eserved, S = S	odium Hydrox	de Preserved Plastic	; AG = Ar	nber Glass Unpreser	ved: AP - Airfreight Un	preserved Plastic				



#### **CERTIFICATE OF ANALYSIS** Page Work Order : ES2313946 : 1 of 30 Client : CAVVANBA CONSULTING Laboratory : Environmental Division Sydney Contact : MR DREW WOOD Contact : Karen Coveny Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO Box 322 **NEWCASTLE 2300** Telephone : +61 02 6685 7811 Telephone : +61-2-8784 8555 Project : 20025.75 **Date Samples Received** : 28-Apr-2023 11:29 Order number Date Analysis Commenced : -----: 29-Apr-2023 C-O-C number Issue Date : -----: 05-May-2023 16:25 Sampler : ZAC LAUGHLAN Site : -----

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 26

: 26

: SY/159/20

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG050G: Poor spike recovery for Hexavalent Chromium due to matrix interferences(confirmed by re-analysis).
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074: Where reported, Total Trihalomethanes is the sum of the reported concentrations of all Trihalomethanes at or above the LOR.
- EP074: Where reported, Total Trimethylbenzenes is the sum of the reported concentrations of 1.2.3-Trimethylbenzene, 1.2.4-Trimethylbenzene and 1.3.5-Trimethylbenzene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020A-F: Positive results for sample ES2313946-017 have been confirmed by re-analysis.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.</li>
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

# Page : 3 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Sampli	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
				Result	Result	Result	Result	Result
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L			33	18	
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	169	131	488	214	160
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	0.007	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.026	0.010	<0.001	<0.001	0.003
Copper	7440-50-8	0.001	mg/L	<0.001	0.004	<0.001	<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L			0.359	1.79	
Nickel	7440-02-0	0.001	mg/L	<0.001	0.002	0.002	0.002	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	0.011	<0.005	<0.005	<0.005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG049F: Dissolved Trivalent Chromium								
Trivalent Chromium	16065-83-1	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG050F: Dissolved Hexavalent Chromium	ı							
Hexavalent Chromium	18540-29-9	0.01	mg/L	0.03	0.01	<0.01	<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analys	er							
Ferrous Iron		0.05	mg/L			<0.05	2.80	
EK058G: Nitrate as N by Discrete Analyse	er							
Nitrate as N	14797-55-8	0.01	mg/L			0.06	0.35	
EP033: C1 - C4 Hydrocarbon Gases								
Methane	74-82-8	10	µg/L			<10	848	
EP074A: Monocyclic Aromatic Hydrocarb	ons							
Styrene	100-42-5	5	µg/L	<5	<5	<5	<5	<5
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	<5	<5	<5
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	<5	<5	<5
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	<5	<5	<5
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	<5	<5	<5
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5	<5	<5
p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5	<5	<5	<5

# Page : 4 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Samplii	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
				Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hydroca	rbons - Continued							
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	<5	<5	<5
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50	<50	<50
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50	<50	<50
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50	<50	<50
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50	<50	<50
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5	<5	<5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	<5
EP074E: Halogenated Aliphatic Compo	unds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	<50
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50	<50
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	5	µg/L 	<5	<5	<5	<5	<5
1.1.2-Trichloroethane	79-00-5	5	µg/L 	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5	<5

# Page : 5 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Samplii	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Compo	unds - Continued							
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5	<5
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Compo	unds							
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5	<5	<5
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5	<5
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0

# Page : 6 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Samplii	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic I		inued						
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydroca	bons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	370	<50
C15 - C28 Fraction		100	µg/L	<100	<100	370	1920	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	370	2290	<50
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	740	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	340	1560	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	340	2300	<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	740	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5

# Page : 7 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Sampli	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
			1	Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Aci	ds							
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(PFBS)								
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	0.01	0.01	0.05	0.04	<0.01
Perfluorooctane sulfonic acid	1763-23-1	0.01	μg/L	<0.01	<0.01	<0.01	0.08	<0.01
(PFOS)								
EP231B: Perfluoroalkyl Carboxylic	Acids				·			
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
ED231D: DEAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.01	µg/L	0.01	0.01	0.05	0.12	<0.01
Sum of PFAS (WA DER List)		0.01	μg/L	0.01	0.01	0.05	0.12	<0.01
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	104	115	119	129	108
Toluene-D8	2037-26-5	5	%	108	116	122	129	105
4-Bromofluorobenzene	460-00-4	5	%	103	109	112	120	102
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	1.0	%	18.5	19.7	17.6	22.9	19.9
2-Chlorophenol-D4	93951-73-6	1.0	%	44.3	46.8	42.8	51.7	45.2
2.4.6-Tribromophenol	118-79-6	1.0	%	55.8	61.9	61.8	76.0	51.7
EP075(SIM)T: PAH Surrogates								

Page	: 8 of 30
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	W2	W3	MW01	MW02	MW03
		Sampli	ng date / time	27-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-001	ES2313946-002	ES2313946-003	ES2313946-004	ES2313946-005
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
2-Fluorobiphenyl	321-60-8	1.0	%	54.4	60.8	60.4	65.8	56.1
Anthracene-d10	1719-06-8	1.0	%	70.3	69.4	74.0	84.8	66.7
4-Terphenyl-d14	1718-51-0	1.0	%	75.4	73.2	77.5	88.0	68.0
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	112	124	128	138	116
Toluene-D8	2037-26-5	2	%	116	125	131	127	113
4-Bromofluorobenzene	460-00-4	2	%	112	118	120	122	108
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	99.6	91.4	99.1	94.8	97.6
13C8-PFOA		0.02	%	104	104	103	101	104

# Page : 9 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Sampli	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	122	151	1	67	118
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	134	114		198	97
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001		<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001		<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.012	0.002		<0.001	0.005
Copper	7440-50-8	0.001	mg/L	0.002	<0.001		<0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.975	<0.001	0.018
Nickel	7440-02-0	0.001	mg/L	0.001	<0.001		<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001		<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005		<0.005	<0.005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001		<0.0001	<0.0001
EG049F: Dissolved Trivalent Chromium								
Trivalent Chromium	16065-83-1	0.01	mg/L	<0.01	<0.01		<0.01	<0.01
EG050F: Dissolved Hexavalent Chromium	n							
Hexavalent Chromium	18540-29-9	0.01	mg/L	0.02	<0.01		<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analys	er							
Ferrous Iron		0.05	mg/L	<0.05	3.98	<0.05	<0.05	<0.05
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	3.78	1.80	0.03	18.9	1.06
EP033: C1 - C4 Hydrocarbon Gases								
Methane	74-82-8	10	µg/L	<10	<10	637	<10	<10
EP074A: Monocyclic Aromatic Hydrocarb	oons							
Styrene	100-42-5	5	µg/L	<5	<5		<5	<5
Isopropylbenzene	98-82-8	5	µg/L	<5	<5		<5	<5
n-Propylbenzene	103-65-1	5	µg/L	<5	<5		<5	<5
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5		<5	<5
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5		<5	<5
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5		<5	<5
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5		<5	<5
p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5		<5	<5

# Page : 10 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Samplii	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hydroca	rbons - Continued							
n-Butylbenzene	104-51-8	5	µg/L	<5	<5		<5	<5
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	50	µg/L	<50	<50		<50	<50
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50		<50	<50
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50		<50	<50
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50		<50	<50
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5	<5		<5	<5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5		<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5		<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5		<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5		<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5		<5	<5
EP074E: Halogenated Aliphatic Compou	unds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50		<50	<50
Chloromethane	74-87-3	50	µg/L	<50	<50		<50	<50
Vinyl chloride	75-01-4	50	µg/L	<50	<50		<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50		<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50		<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50		<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5		<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5		<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5		<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5		<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5		<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5		<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5		<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5		<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5		<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5		<5	<5
Dibromomethane	74-95-3	5	µg/L	<5	<5		<5	<5
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5		<5	<5
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5		<5	<5

# Page : 11 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Sampli	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Compound	nds - Continued							
Tetrachloroethene	127-18-4	5	µg/L	<5	<5		<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5		<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5		<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5		<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5		<5	<5
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5		<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5		<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5		<5	<5
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5		<5	<5
EP074F: Halogenated Aromatic Compou	nds							
Chlorobenzene	108-90-7	5	µg/L	<5	<5		<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5		<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5		<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5		<5	<5
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5		<5	<5
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5		<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5		<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5		<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5		<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5	<5		<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5		<5	<5
Dibromochloromethane	124-48-1	5	µg/L	<5	<5		<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5		<5	<5
EP075(SIM)B: Polynuclear Aromatic Hyd	rocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0		<1.0	<1.0

# Page : 12 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Sampli	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H		inued						
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5		<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0		<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	µg/L	<0.5	<0.5		<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5		<0.5	<0.5
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		20	µg/L	<20	<20		<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50		<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100		<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50		<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50		<50	<50
EP080/071: Total Recoverable Hydrod	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20		<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20		<20	<20
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100		<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100		<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100		<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100		<100	<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100		<100	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1		<1	<1
Toluene	108-88-3	2	µg/L	<2	<2		<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2		<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2		<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2		<2	<2
^ Total Xylenes		2	µg/L	<2	<2		<2	<2
^ Sum of BTEX		1	µg/L	<1	<1		<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5		<5	<5

# Page : 13 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Sampli	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Acid	ds							
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02	0.18		<0.02	<0.02
(PFBS)								
Perfluorohexane sulfonic acid	355-46-4	0.01	µg/L	0.04	0.89		0.04	0.02
(PFHxS)								
Perfluorooctane sulfonic acid	1763-23-1	0.01	µg/L	<0.01	2.16		<0.01	<0.01
(PFOS)								
EP231B: Perfluoroalkyl Carboxylic A	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1		<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.05		<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.18		<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02		<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.04		<0.01	<0.01
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05		<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05		<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05		<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05		<0.05	<0.05
EP231P: PEAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.04	3.05		0.04	0.02
Sum of PFAS (WA DER List)		0.01	µg/L	0.04	3.50		0.04	0.02
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	108	112		104	108
Toluene-D8	2037-26-5	5	%	106	107		99.7	104
4-Bromofluorobenzene	460-00-4	5	%	101	103		95.8	99.9
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	1.0	%	16.2	21.0		18.4	11.5
2-Chlorophenol-D4	93951-73-6	1.0	%	37.1	50.0		43.4	27.3
2.4.6-Tribromophenol	118-79-6	1.0	%	51.3	71.0		52.3	30.6
EP075(SIM)T: PAH Surrogates								

Page	: 14 of 30
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW04	MW05	MW06	MW07	MW09
		Sampli	ng date / time	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-006	ES2313946-007	ES2313946-008	ES2313946-009	ES2313946-010
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
2-Fluorobiphenyl	321-60-8	1.0	%	53.3	62.3		55.5	32.4
Anthracene-d10	1719-06-8	1.0	%	73.7	85.0		68.6	44.1
4-Terphenyl-d14	1718-51-0	1.0	%	80.4	89.0		72.2	47.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	116	120		112	116
Toluene-D8	2037-26-5	2	%	114	115		107	113
4-Bromofluorobenzene	460-00-4	2	%	109	108		102	106
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	96.7	95.0		94.7	97.6
13C8-PFOA		0.02	%	104	105		104	104

# Page : 15 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
				Result	Result	Result	Result	Result
ED041G: Sulfate (Turbidimetric) as SO4 2	- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	40	57	37	135	114
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	26	70	138	166	356
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.002	0.005	<0.001	<0.001	0.002
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	0.001	<0.001
Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	<0.001	1.50	0.018
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	0.002	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG049F: Dissolved Trivalent Chromium								
Trivalent Chromium	16065-83-1	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG050F: Dissolved Hexavalent Chromium	1							
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG051G: Ferrous Iron by Discrete Analys	er							
Ferrous Iron		0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EK058G: Nitrate as N by Discrete Analys	er							
Nitrate as N	14797-55-8	0.01	mg/L	1.62	2.31	4.09	23.1	29.7
EP033: C1 - C4 Hydrocarbon Gases								
Methane	74-82-8	10	µg/L	<10	<10	<10	<10	<10
EP074A: Monocyclic Aromatic Hydrocarb	ons							
Styrene	100-42-5	5	µg/L	<5	<5	<5	<5	<5
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	<5	<5	<5
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	<5	<5	<5
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	<5	<5	<5
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	<5	<5	<5
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5	<5	<5
p-IsopropyItoluene	99-87-6	5	µg/L	<5	<5	<5	<5	<5

# Page : 16 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Samplii	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
				Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hydroca	rbons - Continued					·		
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	<5	<5	<5
EP074B: Oxygenated Compounds								
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50	<50	<50
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50	<50	<50
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50	<50	<50
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50	<50	<50
EP074C: Sulfonated Compounds								
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5	<5	<5
EP074D: Fumigants								
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5	<5
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5	<5
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5	<5
EP074E: Halogenated Aliphatic Compou	unds							
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50	<50
Chloromethane	74-87-3	50	μg/L	<50	<50	<50	<50	<50
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50	<50
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50	<50
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50	<50
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50	<50
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5	<5
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5	<5
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5	<5
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5	<5
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5	<5
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5	<5
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5	<5
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5	<5
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5	<5

# Page : 17 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
				Result	Result	Result	Result	Result
EP074E: Halogenated Aliphatic Compou	unds - Continued							
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5	<5
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5	<5
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5	<5
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5	<5
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5	<5
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5	<5
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5	<5
EP074F: Halogenated Aromatic Compo	unds							
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5	<5
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5	<5
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5	<5
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5	<5
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5	<5	<5
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5	<5	<5
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5	<5	<5
EP074G: Trihalomethanes								
Chloroform	67-66-3	5	µg/L	<5	<5	<5	<5	<5
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5	<5
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5	<5	<5
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5	<5
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0

# Page : 18 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H		inued						
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0	<1.0
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20	<20
C10 - C14 Fraction		50	µg/L	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	µg/L	<100	<100	<100	<100	<100
C29 - C36 Fraction		50	µg/L	<50	<50	<50	<50	<50
^ C10 - C36 Fraction (sum)		50	µg/L	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydrod	arbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20	<20
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	<20	<20	<20	<20
(F1)								
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C16 - C34 Fraction		100	µg/L	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	<100	<100	<100	<100
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	<100	<100	<100	<100
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	<1
Toluene	108-88-3	2	µg/L	<2	<2	<2	<2	<2
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	<2
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	<2
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	<2
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	<1
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	<5

# Page : 19 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
			1	Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Acid	ds					·		
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
(PFBS)								
Perfluorohexane sulfonic acid	355-46-4	0.01	µg/L	0.01	0.03	0.02	0.04	0.02
(PFHxS)								
Perfluorooctane sulfonic acid	1763-23-1	0.01	µg/L	<0.01	0.02	<0.01	<0.01	<0.01
(PFOS)								
EP231B: Perfluoroalkyl Carboxylic A	Acids				· · · · · · · · · · · · · · · · · · ·			
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.01	0.05	0.02	0.04	0.02
Sum of PFAS (WA DER List)		0.01	µg/L	0.01	0.05	0.02	0.04	0.02
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	5	%	106	118	113	120	107
Toluene-D8	2037-26-5	5	%	99.1	114	107	111	101
4-Bromofluorobenzene	460-00-4	5	%	96.0	108	102	106	96.3
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	1.0	%	17.9	15.8	17.6	14.0	18.2
2-Chlorophenol-D4	93951-73-6	1.0	%	41.7	36.1	39.3	32.6	42.2
2.4.6-Tribromophenol	118-79-6	1.0	%	48.7	45.8	41.2	43.6	49.7
EP075(SIM)T: PAH Surrogates								

# Page : 20 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW10	MW12	MW13	MW101	MW102
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-011	ES2313946-012	ES2313946-013	ES2313946-014	ES2313946-015
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
2-Fluorobiphenyl	321-60-8	1.0	%	56.7	43.9	49.4	44.5	57.5
Anthracene-d10	1719-06-8	1.0	%	70.6	55.0	59.7	59.2	71.6
4-Terphenyl-d14	1718-51-0	1.0	%	74.9	56.0	61.9	63.4	75.8
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%	114	127	121	128	114
Toluene-D8	2037-26-5	2	%	107	123	116	119	109
4-Bromofluorobenzene	460-00-4	2	%	103	115	106	112	103
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	90.2	92.1	98.7	95.2	93.8
13C8-PFOA		0.02	%	103	104	103	104	101

# Page : 21 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW103	QW01	SW01	SW02	RB1
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020
				Result	Result	Result	Result	Result
ED041G: Sulfate (Turbidimetric) as SO4 2- t	by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	34				
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	186				
EG020F: Dissolved Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001	0.003			
Copper	7440-50-8	0.001	mg/L	0.002	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.398				
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Zinc	7440-66-6	0.005	mg/L	0.006	<0.005			
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L			<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L			<0.0001	0.0008	<0.0001
Chromium	7440-47-3	0.001	mg/L			<0.001	0.003	<0.001
Copper	7440-50-8	0.001	mg/L			<0.001	0.038	<0.001
Nickel	7440-02-0	0.001	mg/L			<0.001	0.003	<0.001
Lead	7439-92-1	0.001	mg/L			0.003	0.014	<0.001
Zinc	7440-66-6	0.005	mg/L			1.33	0.683	<0.005
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			
EG035T: Total Recoverable Mercury by FIN	IS							
Mercury	7439-97-6	0.0001	mg/L			<0.0001	<0.0001	<0.0001
EG049F: Dissolved Trivalent Chromium								
Trivalent Chromium	16065-83-1	0.01	mg/L	<0.01				
EG050F: Dissolved Hexavalent Chromium								
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01				
EG051G: Ferrous Iron by Discrete Analyser								
Ferrous Iron		0.05	mg/L	<0.05				
EK058G: Nitrate as N by Discrete Analyser								
Nitrate as N	14797-55-8	0.01	mg/L	1.01				
EP033: C1 - C4 Hydrocarbon Gases								

# Page : 22 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW103	QW01	SW01	SW02	RB1	
		Samplii	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020	
				Result	Result	Result	Result	Result	
EP033: C1 - C4 Hydrocarbon Gases - Continued									
Methane	74-82-8	10	µg/L	<10					
EP074A: Monocyclic Aromatic Hydroca	arbons								
Styrene	100-42-5	5	µg/L	<5	<5	<5	<5		
Isopropylbenzene	98-82-8	5	µg/L	<5	<5	<5	<5		
n-Propylbenzene	103-65-1	5	µg/L	<5	<5	<5	<5		
1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	<5	<5		
sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	<5	<5		
1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	<5	<5		
tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	<5	<5		
p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5	<5	<5		
n-Butylbenzene	104-51-8	5	µg/L	<5	<5	<5	<5		
EP074B: Oxygenated Compounds									
Vinyl Acetate	108-05-4	50	µg/L	<50	<50	<50	<50		
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	<50	<50		
4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	<50	<50		
2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	<50	<50		
EP074C: Sulfonated Compounds									
Carbon disulfide	75-15-0	5	µg/L	<5	<5	<5	<5		
EP074D: Fumigants									
2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	<5	<5		
1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	<5	<5		
cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	<5	<5		
trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	<5	<5		
1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	<5	<5		
EP074E: Halogenated Aliphatic Compo	ounds								
Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	<50	<50		
Chloromethane	74-87-3	50	µg/L	<50	<50	<50	<50		
Vinyl chloride	75-01-4	50	µg/L	<50	<50	<50	<50		
Bromomethane	74-83-9	50	µg/L	<50	<50	<50	<50		
Chloroethane	75-00-3	50	µg/L	<50	<50	<50	<50		
Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	<50	<50		
1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	<5	<5		
lodomethane	74-88-4	5	µg/L	<5	<5	<5	<5		
trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	<5	<5		

# Page : 23 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)	Sample ID			MW103	QW01	SW01	SW02	RB1		
		Samplii	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00		
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020		
				Result	Result	Result	Result	Result		
EP074E: Halogenated Aliphatic Compounds - Continued										
1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	<5	<5			
cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	<5	<5			
1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	<5	<5			
1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	<5	<5			
Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	<5	<5			
1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	<5	<5			
Trichloroethene	79-01-6	5	µg/L	<5	<5	<5	<5			
Dibromomethane	74-95-3	5	µg/L	<5	<5	<5	<5			
1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	<5	<5			
1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	<5	<5			
Tetrachloroethene	127-18-4	5	µg/L	<5	<5	<5	<5			
1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	<5	<5			
trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	<5	<5			
cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	<5	<5			
1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	<5	<5			
1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	<5	<5			
Pentachloroethane	76-01-7	5	µg/L	<5	<5	<5	<5			
1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	<5	<5			
Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	<5	<5			
EP074F: Halogenated Aromatic Compo	ounds									
Chlorobenzene	108-90-7	5	µg/L	<5	<5	<5	<5			
Bromobenzene	108-86-1	5	µg/L	<5	<5	<5	<5			
2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	<5	<5			
4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	<5	<5			
1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	<5	<5			
1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	<5	<5			
1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	<5	<5			
1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	<5	<5			
1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	<5	<5			
EP074G: Trihalomethanes										
Chloroform	67-66-3	5	µg/L	<5	<5	<5	<5			
Bromodichloromethane	75-27-4	5	µg/L	<5	<5	<5	<5			
Dibromochloromethane	124-48-1	5	µg/L	<5	<5	<5	<5			
Bromoform	75-25-2	5	µg/L	<5	<5	<5	<5			

# Page : 24 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW103	QW01	SW01	SW02	RB1	
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020	
				Result	Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Naphthalene	91-20-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Acenaphthene	83-32-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Fluorene	86-73-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Phenanthrene	85-01-8	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Anthracene	120-12-7	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Fluoranthene	206-44-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Pyrene	129-00-0	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Chrysene	218-01-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	<1.0	<1.0		
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<1.0	<1.0	<1.0		
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	µg/L	<0.5	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	<0.5	<0.5	<0.5		
EP080/071: Total Petroleum Hydroca	rbons								
C6 - C9 Fraction		20	µg/L	<20	<20	<20	<20		
C10 - C14 Fraction		50	µg/L	<50	<50	<50	200		
C15 - C28 Fraction		100	µg/L	440	<100	200	1620		
C29 - C36 Fraction		50	µg/L	<50	<50	300	810		
^ C10 - C36 Fraction (sum)		50	µg/L	440	<50	500	2630		
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns						
C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	<20	<20		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	<20	<20	<20		
(F1)									
>C10 - C16 Fraction		100	µg/L	<100	<100	<100	430		
>C16 - C34 Fraction		100	µg/L	420	<100	420	1900		
>C34 - C40 Fraction		100	µg/L	<100	<100	140	640		
^ >C10 - C40 Fraction (sum)		100	µg/L	420	<100	560	2970		
^ >C10 - C16 Fraction minus Naphthalene	e	100	µg/L	<100	<100	<100	430		
(F2)									

# Page : 25 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW103	QW01	SW01	SW02	RB1
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020
				Result	Result	Result	Result	Result
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1	<1	<1	<1	
Toluene	108-88-3	2	μg/L	<2	<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L	<2	<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	<2	<2	
ortho-Xylene	95-47-6	2	µg/L	<2	<2	<2	<2	
^ Total Xylenes		2	µg/L	<2	<2	<2	<2	
^ Sum of BTEX		1	µg/L	<1	<1	<1	<1	
Naphthalene	91-20-3	5	µg/L	<5	<5	<5	<5	
EP231A: Perfluoroalkyl Sulfonic Aci	ds							
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	0.03	<0.02	<0.02	<0.02	
(PFBS)								
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	0.11	<0.01	0.03	0.02	
Perfluorooctane sulfonic acid	1763-23-1	0.01	µg/L	<0.01	<0.01	<0.01	0.03	
(PFOS)								
EP231B: Perfluoroalkyl Carboxylic	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	<0.01	
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.11	<0.01	0.03	0.05	
Sum of PFAS (WA DER List)		0.01	µg/L	0.14	<0.01	0.03	0.05	
EP074S: VOC Surrogates						·	·	·
Li ul 40. VOO bullogates								

# Page : 26 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	MW103	QW01	SW01	SW02	RB1	
		Sampli	ng date / time	27-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	27-Apr-2023 00:00	18-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313946-016	ES2313946-017	ES2313946-018	ES2313946-019	ES2313946-020	
				Result	Result	Result	Result	Result	
EP074S: VOC Surrogates - Continued									
1.2-Dichloroethane-D4	17060-07-0	5	%	131	117	111	109		
Toluene-D8	2037-26-5	5	%	125	112	107	102		
4-Bromofluorobenzene	460-00-4	5	%	113	103	101	94.8		
EP075(SIM)S: Phenolic Compound Surrogates									
Phenol-d6	13127-88-3	1.0	%	16.6	19.5	16.4	16.1		
2-Chlorophenol-D4	93951-73-6	1.0	%	38.3	44.0	40.3	38.1		
2.4.6-Tribromophenol	118-79-6	1.0	%	60.9	54.4	49.2	60.2		
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	1.0	%	51.6	59.1	53.0	52.2		
Anthracene-d10	1719-06-8	1.0	%	73.2	74.7	66.0	67.0		
4-Terphenyl-d14	1718-51-0	1.0	%	74.9	80.2	68.2	68.4		
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	2	%	140	126	119	117		
Toluene-D8	2037-26-5	2	%	130	120	116	110		
4-Bromofluorobenzene	460-00-4	2	%	123	108	106	100		
EP231S: PFAS Surrogate									
13C4-PFOS		0.02	%	89.0	99.0	93.0	98.1		
13C8-PFOA		0.02	%	100	100	101	98.2		

# Page : 27 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)	Sample ID			RB2	RB3	RB4	RB5	Trip blank	
		Sampli	ng date / time	19-Apr-2023 00:00	20-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	17-Apr-2023 00:00	
Compound	CAS Number	LOR	Unit	ES2313946-021	ES2313946-022	ES2313946-023	ES2313946-024	ES2313946-025	
· ·				Result	Result	Result	Result	Result	
EG020T: Total Metals by ICP-MS									
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001		
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001		
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001		
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001		
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001		
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005		
EG035T: Total Recoverable Mercury b	y FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001		
EP080/071: Total Petroleum Hydrocart	oons								
C6 - C9 Fraction		20	µg/L			<20	<20	<20	
C10 - C14 Fraction		50	µg/L			<50	<50		
C15 - C28 Fraction		100	µg/L			<100	<100		
C29 - C36 Fraction		50	μg/L			<50	<50		
^ C10 - C36 Fraction (sum)		50	µg/L			<50	<50		
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns						
C6 - C10 Fraction	C6_C10	20	µg/L			<20	<20	<20	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L			<20	<20	<20	
(F1)									
>C10 - C16 Fraction		100	µg/L			<100	<100		
>C16 - C34 Fraction		100	µg/L			<100	<100		
>C34 - C40 Fraction		100	µg/L			<100	<100		
^ >C10 - C40 Fraction (sum)		100	µg/L			<100	<100		
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L			<100	<100		
(F2)									
EP080: BTEXN									
Benzene	71-43-2	1	µg/L			<1	<1	<1	
	108-88-3	2	µg/L			<2	<2	<2	
Ethylbenzene	100-41-4	2	µg/L			<2	<2	<2	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L			<2	<2	<2	
	95-47-6	2	µg/L			<2	<2	<2	
		<u> ۲</u>	μg/L			<2	~2	<2	
·· Sum of BIEX		1 F	µg/L			<1	<1	<1	
марптпанепе	91-20-3	Э	µg/L			<0	<0	<0	

Page	: 28 of 30
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER (Matrix: WATER)			Sample ID	RB2	RB3	RB4	RB5	Trip blank
		Sampli	ng date / time	19-Apr-2023 00:00	20-Apr-2023 00:00	26-Apr-2023 00:00	27-Apr-2023 00:00	17-Apr-2023 00:00
Compound	CAS Number	LOR	Unit	ES2313946-021	ES2313946-022	ES2313946-023	ES2313946-024	ES2313946-025
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%			120	120	98.9
Toluene-D8	2037-26-5	2	%			114	111	112
4-Bromofluorobenzene	460-00-4	2	%			104	104	109

# Page : 29 of 30 Work Order : ES2313946 Client : CAVVANBA CONSULTING Project : 20025.75



Sub-Matrix: WATER (Matrix: WATER)	Sample ID			Trip spike	 	 
		Sampli	ng date / time	17-Apr-2023 00:00	 	 
Compound	CAS Number	LOR	Unit	ES2313946-026	 	 
				Result	 	 
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	19	 	 
Toluene	108-88-3	2	µg/L	18	 	 
Ethylbenzene	100-41-4	2	µg/L	18	 	 
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	18	 	 
ortho-Xylene	95-47-6	2	µg/L	19	 	 
^ Total Xylenes		2	µg/L	37	 	 
^ Sum of BTEX		1	µg/L	92	 	 
Naphthalene	91-20-3	5	µg/L	18	 	 
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	105	 	 
Toluene-D8	2037-26-5	2	%	114	 	 
4-Bromofluorobenzene	460-00-4	2	%	117	 	 



#### Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)				
Compound	CAS Number	Low	High				
EP074S: VOC Surrogates							
1.2-Dichloroethane-D4	17060-07-0	78	133				
Toluene-D8	2037-26-5	79	129				
4-Bromofluorobenzene	460-00-4	81	124				
EP075(SIM)S: Phenolic Compound Surrogates							
Phenol-d6	13127-88-3	10	44				
2-Chlorophenol-D4	93951-73-6	14	94				
2.4.6-Tribromophenol	118-79-6	17	125				
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	20	104				
Anthracene-d10	1719-06-8	27	113				
4-Terphenyl-d14	1718-51-0	32	112				
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	72	143				
Toluene-D8	2037-26-5	75	131				
4-Bromofluorobenzene	460-00-4	73	137				
EP231S: PFAS Surrogate							
13C4-PFOS		60	120				
13C8-PFOA		60	120				



### QUALITY CONTROL REPORT

Work Order	: ES2313946	Page	: 1 of 19
Client	: CAVVANBA CONSULTING	Laboratory	: Environmental Division Sydney
Contact	: MR DREW WOOD	Contact	: Karen Coveny
Address	: PO Box 322 NEWCASTLE 2300	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 6685 7811	Telephone	: +61-2-8784 8555
Project	: 20025.75	Date Samples Received	: 28-Apr-2023
Order number	:	Date Analysis Commenced	: 29-Apr-2023
C-O-C number	:	Issue Date	: 05-May-2023
Sampler	: ZAC LAUGHLAN		Hac-MRA NATA
Site	:		
Quote number	: SY/159/20		Accreditation No. 925
No. of samples received	: 26		Accredited for compliance with
No. of samples analysed	: 26		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QC Lot: 5018872)									
ES2313946-009	MW07	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	67	66	0.0	0% - 20%
ES2313742-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.0	No Limit
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QC Lot: 5019040)									
ES2314050-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	152	154	1.5	0% - 20%
ES2313761-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	37	37	0.0	0% - 20%
EG020F: Dissolved Metals by ICP-MS (QC Lot: 5023596)									
ES2313946-001	W2	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.026	0.026	0.0	0% - 20%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES2313946-012	MW12	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.005	0.005	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EG020F: Dissolved	Metals by ICP-MS	(QC Lot: 5023621)							

Page	: 3 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved N	letals by ICP-MS (QC L	.ot: 5023621) - continued							
ES2313946-008	MW06	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.975	0.983	0.8	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.006	0.006	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES2313915-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.421	0.406	3.6	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.040	0.041	2.8	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 5	022387)							
ES2313560-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.003	0.004	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
ES2313946-019	SW02	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.0008	0.0008	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.038	0.038	0.0	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.014	0.014	0.0	0% - 50%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.683	0.699	2.2	0% - 20%
EG035F: Dissolved N	lercury by FIMS (QC L	ot: 5023597)							
ES2313946-002	W3	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2313946-011	MW10	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035F: Dissolved N	lercury by FIMS (QC Lo	ot: 5023622)							·
ES2313933-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2314036-001	Anonymous	EG035F: Mercurv	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035T: Total Recov	verable Mercury by EIM	S (QC Lot: 5020775)							1 
EM2307309-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	ma/l	<0.0001	<0.0001	0.0	No Limit

Page	: 4 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	: 20025.75



Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035T: Total Red	coverable Mercury by	y FIMS (QC Lot: 5020775) - continued							
EM2307309-011	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	< 0.0001	<0.0001	0.0	No Limit
EG050F: Dissolved	d Hexavalent Chromi	um (QC Lot: 5025736)							
ES2313946-001	W2	EG050G-E: Hexavalent Chromium	18540-29-9	0.01	mg/L	0.03	0.03	0.0	No Limit
ES2313946-011	MW10	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EG050F: Dissolved	d Hexavalent Chromi	ium (QC Lot: 5029446)							
ES2313946-002	W3	EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	0.01	0.02	0.0	No Limit
EG051G: Ferrous I	ron by Discrete Anal	lyser (QC Lot: 5020033)							1
ES2313888-001	Anonymous	EG051G: Ferrous Iron		0.05	mg/L	<0.05	<0.05	0.0	No Limit
ES2313946-009	MW07	EG051G: Ferrous Iron		0.05	mg/L	< 0.05	<0.05	0.0	No Limit
EP033: C1 - C4 Hy	drocarbon Gases (Q	C Lot: 5020136)							
ES2313946-003	MW01	EP033: Methane	74-82-8	10	µg/L	<10	<10	0.0	No Limit
ES2313946-014	MW101	EP033: Methane	74-82-8	10	µg/L	<10	<10	0.0	No Limit
EP074A: Monocyc	lic Aromatic Hydroca	arbons (QC Lot: 5021462)							
ES2313946-001	W2	EP074: Styrene	100-42-5	5	ua/L	<5	<5	0.0	No Limit
		EP074: Isopropylbenzene	98-82-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: n-Propylbenzene	103-65-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: p-lsopropyltoluene	99-87-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: n-Butylbenzene	104-51-8	5	µg/L	<5	<5	0.0	No Limit
ES2313946-012	MW12	EP074: Styrene	100-42-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: Isopropylbenzene	98-82-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: n-Propylbenzene	103-65-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: sec-Butylbenzene	135-98-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: tert-Butylbenzene	98-06-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: p-Isopropyltoluene	99-87-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: n-Butylbenzene	104-51-8	5	µg/L	<5	<5	0.0	No Limit
EP074B: Oxygenat	ted Compounds (QC	CLot: 5021462)							
ES2313946-001	W2	EP074: Vinyl Acetate	108-05-4	50	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	0.0	No Limit
ES2313946-012	MW12	EP074: Vinyl Acetate	108-05-4	50	µg/L	<50	<50	0.0	No Limit
		EP074: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	<50	0.0	No Limit
Page	5 of 19								
------------	-----------------------								
Work Order	: ES2313946								
Client	: CAVVANBA CONSULTING								
Project	: 20025.75								



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID Sample ID Method: Compound CAS Number			LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP074B: Oxygenate	d Compounds (QC Lo	ot: 5021462) - continued						i i i i	
ES2313946-012	MW12	EP074: 2-Hexanone (MBK)	591-78-6	50	µg/L	<50	<50	0.0	No Limit
EP074C: Sulfonated	Compounds (QC Lot	: 5021462)				1	1		
ES2313946-001	W2	EP074: Carbon disulfide	75-15-0	5	µg/L	<5	<5	0.0	No Limit
ES2313946-012	MW12	EP074: Carbon disulfide	75-15-0	5	µg/L	<5	<5	0.0	No Limit
EP074D: Fumigants	(QC Lot: 5021462)					1	1		
ES2313946-001	W2	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.0	No Limit
ES2313946-012	MW12	EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloropropane	78-87-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.3-Dichloropropylene	10061-01-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.3-Dichloropropylene	10061-02-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromoethane (EDB)	106-93-4	5	µg/L	<5	<5	0.0	No Limit
EP074E: Halogenate	d Aliphatic Compound	ds (QC Lot: 5021462)							
ES2313946-001	W2	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: lodomethane	74-88-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.0	No Limit
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.0	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	μg/L	<5	<5	0.0	No Limit
		EP074: Pentachloroethane	76-01-7	5	μg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	μg/L	<5	<5	0.0	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	μg/L	<5	<5	0.0	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	μg/L	<50	<50	0.0	No Limit
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.0	No Limit

Page	: 6 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	: 20025.75



Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074E: Halogenated	d Aliphatic Compounds (Q	C Lot: 5021462) - continued							
ES2313946-001	W2	EP074: Vinyl chloride	75-01-4	50	µg/L	<50	<50	0.0	No Limit
		EP074: Bromomethane	74-83-9	50	µg/L	<50	<50	0.0	No Limit
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.0	No Limit
ES2313946-012	MW12	EP074: 1.1-Dichloroethene	75-35-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Iodomethane	74-88-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.2-Dichloroethene	156-60-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloroethane	75-34-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.2-Dichloroethene	156-59-2	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1-Trichloroethane	71-55-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1-Dichloropropylene	563-58-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Carbon Tetrachloride	56-23-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichloroethane	107-06-2	5	µg/L	<5	<5	0.0	No Limit
		EP074: Trichloroethene	79-01-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromomethane	74-95-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2-Trichloroethane	79-00-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichloropropane	142-28-9	5	µg/L	<5	<5	0.0	No Limit
		EP074: Tetrachloroethene	127-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.1.2-Tetrachloroethane	630-20-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: trans-1.4-Dichloro-2-butene	110-57-6	5	µg/L	<5	<5	0.0	No Limit
		EP074: cis-1.4-Dichloro-2-butene	1476-11-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.1.2.2-Tetrachloroethane	79-34-5	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichloropropane	96-18-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Pentachloroethane	76-01-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dibromo-3-chloropropane	96-12-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: Hexachlorobutadiene	87-68-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dichlorodifluoromethane	75-71-8	50	µg/L	<50	<50	0.0	No Limit
		EP074: Chloromethane	74-87-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: Vinyl chloride	75-01-4	50	µg/L	<50	<50	0.0	No Limit
		EP074: Bromomethane	74-83-9	50	µg/L	<50	<50	0.0	No Limit
		EP074: Chloroethane	75-00-3	50	µg/L	<50	<50	0.0	No Limit
		EP074: Trichlorofluoromethane	75-69-4	50	µg/L	<50	<50	0.0	No Limit
EP074F: Halogenated	Aromatic Compounds (C	IC Lot: 5021462)							
ES2313946-001	W2	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.0	No Limit

Page	: 7 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	: 20025.75



Sub-Matrix: WATER						Laboratory	:		
Laboratory sample ID	Laboratory sample ID Sample ID Method: Compound CAS Number				Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP074F: Halogena	ted Aromatic Compo	ounds (QC Lot: 5021462) - continued							
ES2313946-001	W2	EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.0	No Limit
ES2313946-012	MW12	EP074: Chlorobenzene	108-90-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromobenzene	108-86-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	<5	0.0	No Limit
		EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	<5	0.0	No Limit
EP074G: Trihalome	ethanes (QC Lot: 50	21462)							
ES2313946-001	W2	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.0	No Limit
ES2313946-012	MW12	EP074: Chloroform	67-66-3	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	<5	0.0	No Limit
		EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	<5	0.0	No Limit
		EP074: Bromoform	75-25-2	5	µg/L	<5	<5	0.0	No Limit
EP075(SIM)B: Poly	nuclear Aromatic Hy	vdrocarbons (QC Lot: 5019356)							
ES2313946-006	MW04	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	<1.0	0.0	No Limit
			205-82-3					ļ	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	<1.0	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	<1.0	0.0	No Limit
EP080/071: Total P	etroleum Hydrocarb	oons (QC Lot: 5019357)							
ES2313946-006	MW04	EP071: C15 - C28 Fraction		100	µg/L	<100	<100	0.0	No Limit

Page	: 8 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	troleum Hydrocarbon	is (QC Lot: 5019357) - continued							
ES2313946-006	MW04	EP071: C10 - C14 Fraction		50	µg/L	<50	<50	0.0	No Limit
		EP071: C29 - C36 Fraction		50	µg/L	<50	<50	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 5019754)							
ES2313571-001	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	No Limit
ES2314022-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 5021461)							
ES2313946-001	W2	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2313946-012	MW12	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5019357)				1			
ES2313946-006	MW04	EP071: >C10 - C16 Fraction		100	µg/L	<100	<100	0.0	No Limit
		EP071: >C16 - C34 Fraction		100	μg/L	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	µg/L	<100	<100	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5019754)				1	,		,
ES2313571-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	20	µg/L	<20	<20	0.0	No Limit
ES2314022-001	Anonymous	EP080: C6 - C10 Fraction	 C6 C10	20	μg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 5021461)							
ES2313946-001	W2	EP080: C6 - C10 Fraction	C6 C10	20	μg/L	<20	<20	0.0	No Limit
ES2313946-012	MW12	EP080: C6 - C10 Fraction	 C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 5019754)					1			
ES2313571-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
ES2314022-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
EP080: BTEXN (QC	Lot: 5021461)								
ES2313946-001	W2	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	<2	0.0	No Limit

Page	: 9 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<b>RPD</b> (%)	Acceptable RPD (%)	
EP080: BTEXN (QC	Lot: 5021461) - contin	nued				3				
ES2313946-001	W2	EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit	
ES2313946-012	MW12	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit	
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit	
		EP080: meta- & para-Xvlene	108-38-3	2	µg/L	<2	<2	0.0	No Limit	
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit	
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit	
EP231A: Perfluoroal	kvl Sulfonic Acids (Q	C Lot: 5025829)								
ES2313946-001	W2	EP231X: Perfluorobexane sulfonic acid (PEHxS)	355-46-4	0.01	ua/L	0.01	0.01	0.0	No Limit	
		EP231X: Perfluorooctane sulfonic acid (PEOS)	1763-23-1	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluorobutane sulfonic acid (PEBS)	375-73-5	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
ES2314000-001	Anonymous	EP231X: Perfluorobexane sulfonic acid (PEHxS)	355-46-4	0.01	µg/L	0.01	0.01	0.0	No Limit	
	,	EP231X: Perfluorooctane sulfonic acid (PEOS)	1763-23-1	0.01	ua/L	0.01	0.02	0.0	No Limit	
		EP231X: Perfluorobutane sulfonic acid (PERS)	375-73-5	0.02	ua/L	<0.02	< 0.02	0.0	No Limit	
EP231B: Perfluoroa	Ikyl Carboxylic Acids	(OC Lot: 5025829)			13					
ES2313046 001			335.67.1	0.01	ug/l	<0.01	<0.01	0.0	No Limit	
E32313940-001	VVZ	EP231X: Perfluorooctanoic acid (PFOA)	2706 00 2	0.01	µg/L	<0.01	<0.01	0.0	No Limit	
		EP231X: Perfluoropentanoic acid (PFPeA)	2700-90-3	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
			307-24-4	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: Perfluoroneptanoic acid (PFHpA)	275 22 4	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
ES2214000 001	Δροριμο	EP231X: Perfluorobutanoic acid (PFBA)	225 67 1	0.1	µg/L	<0.1	<0.1	0.0	No Limit	
E32314000-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	2706 00 2	0.01	µg/L	<0.02	0.02	0.0	No Limit	
		EP231X: Perfluoropentanoic acid (PFPeA)	2700-90-3	0.02	µg/L	<0.02	<0.02	0.0	NO LIMIL	
		EP231X: Perfluoronexanoic acid (PFHxA)	275 95 0	0.02	µg/L	<0.02	<0.02	0.0	No Limit	
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-00-9	0.02	µg/L	<0.02	<0.02	0.0	NO LIMIL	
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.0	NO LIMIL	
EP231D: (n:2) Fluor	otelomer Sulfonic Acio	ds (QC Lot: 5025829)								
ES2313946-001	W2	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit	
		FTS)	07040.07.0	0.05		0.05	0.05		NI 11 11	
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.05	µg/L	<0.05	<0.05	0.0	No Limit	
		FIS)	20400 24 4	0.05		10.05	-0.05	0.0	No Limit	
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	µg/L	<0.05	<0.05	0.0	NO LIMIT	
			120226 60 0	0.05		<0.05	<0.05	0.0	No Limit	
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120220-00-0	0.05	μg/L	<0.05	<0.05	0.0	INO LIMIL	
ES2314000-001	Anonymous	ED231Y: 4:2 Eluorotelemen sulfonia poid (4:2	757104_70 4	0.05	uo/I	<0.05	<0.05	0.0	No Limit	
	7 monymous	ET231A. 4.2 Fluoroteionier Sunonic acid (4.2	101127-12-4	0.00	µg,∟	-0.00	-0.00	0.0		
		EP231X: 6:2 Eluorotelomer sulfonic acid (6:2	27619-97-2	0.05	ua/l	<0.05	<0.05	0.0	No Limit	
		FTS)			-3/-	5.00				

Page	: 10 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 5025829) - continued									
ES2314000-001	Anonymous	EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		FTS)							
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.05	µg/L	<0.05	<0.05	0.0	No Limit
		FTS)							



## Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QC	Lot: 5018872)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	99.6	82.0	122
				<1	500 mg/L	94.2	82.0	122
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QC	Lot: 5019040)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	103	82.0	122
				<1	500 mg/L	99.0	82.0	122
EG020F: Dissolved Metals by ICP-MS (QCLot: 502359	6)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.0	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	88.6	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	87.0	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	91.1	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	90.1	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	88.3	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	88.7	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	91.2	81.0	117
EG020F: Dissolved Metals by ICP-MS (QCLot: 502362	1)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.5	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	92.2	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	92.7	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.9	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.1	83.0	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	93.6	82.0	110
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	92.6	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	95.0	81.0	117
EG020T: Total Metals by ICP-MS (QCLot: 5022387)							-	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	93.4	82.0	114
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.8	84.0	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	89.7	86.0	116
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.8	83.0	118
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.3	85.0	115
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	90.8	84.0	116

Page	: 12 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 5022387) - co	ntinued							
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	93.2	79.0	117
EG035F: Dissolved Mercury by FIMS (QCLot: 5023597)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	95.8	83.0	105
EG035F: Dissolved Mercury by FIMS (QCLot: 5023622)								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	96.3	83.0	105
EG035T: Total Recoverable Mercury by FIMS (QCLot: 5	020775)					·		
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	94.8	77.0	111
EG050F: Dissolved Hexavalent Chromium (QCLot: 5025	736)					1	-	
EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.05 mg/L	100	86.0	112
EG050F: Dissolved Hexavalent Chromium (QCLot: 5029	446)							
EG050G-F: Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	0.05 mg/L	103	86.0	112
EG051G: Ferrous Iron by Discrete Analyser (QCLot: 502	(0033)							
EG051G: Ferrous Iron		0.05	mg/L	<0.05	2 mg/L	96.6	89.0	117
EP033: C1 - C4 Hydrocarbon Gases (QCLot: 5020136)								
EP033: Methane	74-82-8	10	µg/L	<10	28.48 µg/L	94.8	86.0	114
EP074A: Monocyclic Aromatic Hydrocarbons (QCLot: 5	021462)							
EP074: Styrene	100-42-5	5	µg/L	<5	10 µg/L	93.4	73.0	119
EP074: Isopropylbenzene	98-82-8	5	μg/L	<5	10 µg/L	91.5	76.0	118
EP074: n-Propylbenzene	103-65-1	5	µg/L	<5	10 µg/L	80.3	69.0	119
EP074: 1.3.5-Trimethylbenzene	108-67-8	5	µg/L	<5	10 µg/L	88.8	74.0	116
EP074: sec-Butylbenzene	135-98-8	5	µg/L	<5	10 µg/L	82.7	73.0	119
EP074: 1.2.4-Trimethylbenzene	95-63-6	5	µg/L	<5	10 µg/L	92.0	74.0	116
EP074: tert-Butylbenzene	98-06-6	5	µg/L	<5	10 µg/L	83.7	72.0	116
EP074: p-lsopropyltoluene	99-87-6	5	µg/L	<5	10 µg/L	84.4	71.0	119
EP074: n-Butylbenzene	104-51-8	5	µg/L	<5	10 µg/L	83.4	65.0	123
EP074B: Oxygenated Compounds (QCLot: 5021462)								
EP074: Vinyl Acetate	108-05-4	50	µg/L	<50	100 µg/L	99.6	61.4	134
EP074: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	100 µg/L	88.5	73.6	130
EP074: 4-Methyl-2-pentanone (MIBK)	108-10-1	50	µg/L	<50	100 µg/L	114	66.0	132
EP074: 2-Hexanone (MBK)	591-78-6	50	µg/L	<50	100 µg/L	96.6	65.0	137
EP074C: Sulfonated Compounds (QCLot: 5021462)						·	·	·
EP074: Carbon disulfide	75-15-0	5	µg/L	<5	10 µg/L	74.7	72.8	127
EP074D: Fumigants (QCLot: 5021462)						1	·	
EP074: 2.2-Dichloropropane	594-20-7	5	µg/L	<5	10 µg/L	83.2	68.0	122

Page	: 13 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Acceptable	table Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP074D: Fumigants (QCLot: 5021462) - continued								
EP074: 1.2-Dichloropropane 78-87-5	5	µg/L	<5	10 µg/L	94.7	76.0	118	
EP074: cis-1.3-Dichloropropylene 10061-01-5	5	µg/L	<5	10 µg/L	94.9	62.0	120	
EP074: trans-1.3-Dichloropropylene 10061-02-6	5	µg/L	<5	10 µg/L	99.3	60.0	114	
EP074: 1.2-Dibromoethane (EDB) 106-93-4	5	µg/L	<5	10 µg/L	114	69.0	117	
EP074E: Halogenated Aliphatic Compounds (QCLot: 5021462)								
EP074: Dichlorodifluoromethane 75-71-8	50	μg/L	<50	100 µg/L	83.1	60.6	138	
EP074: Chloromethane 74-87-3	50	µg/L	<50	100 µg/L	81.2	67.4	130	
EP074: Vinyl chloride 75-01-4	50	µg/L	<50	100 µg/L	76.9	69.4	129	
EP074: Bromomethane 74-83-9	50	µg/L	<50	100 µg/L	77.3	56.0	140	
EP074: Chloroethane 75-00-3	50	µg/L	<50	100 µg/L	72.8	61.0	139	
EP074: Trichlorofluoromethane 75-69-4	50	µg/L	<50	100 µg/L	72.8	69.0	131	
EP074: 1.1-Dichloroethene 75-35-4	5	µg/L	<5	10 µg/L	79.5	70.0	124	
EP074: lodomethane 74-88-4	5	µg/L	<5	10 µg/L	72.4	70.2	128	
EP074: trans-1.2-Dichloroethene 156-60-5	5	µg/L	<5	10 µg/L	87.6	74.0	118	
EP074: 1.1-Dichloroethane 75-34-3	5	µg/L	<5	10 µg/L	84.4	74.0	120	
EP074: cis-1.2-Dichloroethene 156-59-2	5	µg/L	<5	10 µg/L	89.7	77.0	119	
EP074: 1.1.1-Trichloroethane 71-55-6	5	µg/L	<5	10 µg/L	82.9	67.0	119	
EP074: 1.1-Dichloropropylene 563-58-6	5	µg/L	<5	10 µg/L	86.3	73.0	119	
EP074: Carbon Tetrachloride 56-23-5	5	µg/L	<5	10 µg/L	80.2	62.0	120	
EP074: 1.2-Dichloroethane 107-06-2	5	µg/L	<5	10 µg/L	90.0	73.0	123	
EP074: Trichloroethene 79-01-6	5	µg/L	<5	10 µg/L	93.3	76.0	118	
EP074: Dibromomethane 74-95-3	5	µg/L	<5	10 µg/L	97.6	73.0	119	
EP074: 1.1.2-Trichloroethane 79-00-5	5	µg/L	<5	10 µg/L	110	72.0	126	
EP074: 1.3-Dichloropropane 142-28-9	5	µg/L	<5	10 µg/L	108	71.0	129	
EP074: Tetrachloroethene 127-18-4	5	µg/L	<5	10 µg/L	95.2	72.0	124	
EP074: 1.1.1.2-Tetrachloroethane 630-20-6	5	µg/L	<5	10 µg/L	99.1	66.0	114	
EP074: trans-1.4-Dichloro-2-butene 110-57-6	5	µg/L	<5	10 µg/L	105	60.0	120	
EP074: cis-1.4-Dichloro-2-butene 1476-11-5	5	µg/L	<5	10 µg/L	107	70.6	128	
EP074: 1.1.2.2-Tetrachloroethane 79-34-5	5	µg/L	<5	10 µg/L	118	70.0	124	
EP074: 1.2.3-Trichloropropane 96-18-4	5	µg/L	<5	10 µg/L	117	74.0	126	
EP074: Pentachloroethane 76-01-7	5	µg/L	<5	10 µg/L	88.9	71.8	126	
EP074: 1.2-Dibromo-3-chloropropane 96-12-8	5	µg/L	<5	10 µg/L	82.5	66.4	136	
EP074: Hexachlorobutadiene 87-68-3	5	µg/L	<5	10 µg/L	72.6	58.0	130	

EP074F: Halogenated Aromatic Compounds (QCLot: 5021462)

Page	: 14 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER					Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP074F: Halogenated Aromatic Compounds (QCLot: 50	21462) - continu	ied						
EP074: Chlorobenzene	108-90-7	5	µg/L	<5	10 µg/L	99.5	79.0	117
EP074: Bromobenzene	108-86-1	5	µg/L	<5	10 µg/L	92.7	76.0	116
EP074: 2-Chlorotoluene	95-49-8	5	µg/L	<5	10 µg/L	83.2	73.0	119
EP074: 4-Chlorotoluene	106-43-4	5	µg/L	<5	10 µg/L	82.6	73.0	119
EP074: 1.3-Dichlorobenzene	541-73-1	5	µg/L	<5	10 µg/L	90.5	75.0	117
EP074: 1.4-Dichlorobenzene	106-46-7	5	µg/L	<5	10 µg/L	90.0	74.0	118
EP074: 1.2-Dichlorobenzene	95-50-1	5	µg/L	<5	10 µg/L	90.6	75.0	117
EP074: 1.2.4-Trichlorobenzene	120-82-1	5	µg/L	<5	10 µg/L	80.1	61.0	125
EP074: 1.2.3-Trichlorobenzene	87-61-6	5	µg/L	<5	10 µg/L	88.6	67.0	123
EP074G: Trihalomethanes (QCLot: 5021462)								
EP074: Chloroform	67-66-3	5	µg/L	<5	10 µg/L	96.9	72.0	120
EP074: Bromodichloromethane	75-27-4	5	µg/L	<5	10 µg/L	88.7	64.0	118
EP074: Dibromochloromethane	124-48-1	5	µg/L	<5	10 µg/L	97.2	65.0	115
EP074: Bromoform	75-25-2	5	µg/L	<5	10 µg/L	102	73.5	126
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCI	Lot: 5019356)							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	57.8	50.0	94.0
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	68.9	63.6	114
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	74.8	62.2	113
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	80.0	63.9	115
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	76.3	62.6	116
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	66.9	64.3	116
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	80.6	63.6	118
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	81.0	63.1	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	78.5	64.1	117
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	80.2	62.5	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	5 μg/L	79.8	61.7	119
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	83.5	63.0	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	74.0	63.3	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	84.0	59.9	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	83.0	61.2	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 μg/L	86.8	59.1	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: 5019	357)				·			
EP071: C10 - C14 Fraction		50	µg/L	<50	400 µg/L	69.4	53.7	97.0

Page	: 15 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	: 20025.75



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5019357) - continued							
EP071: C15 - C28 Fraction		100	µg/L	<100	600 µg/L	83.2	63.3	107
EP071: C29 - C36 Fraction		50	µg/L	<50	400 µg/L	102	58.3	120
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5019754)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	79.3	75.0	127
EP080/071: Total Petroleum Hydrocarbons (QCLot:	5021461)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	106	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCI	_ot: 5019357)						
EP071: >C10 - C16 Fraction		100	µg/L	<100	500 µg/L	68.4	53.9	95.5
EP071: >C16 - C34 Fraction		100	µg/L	<100	700 µg/L	77.7	57.8	110
EP071: >C34 - C40 Fraction		100	µg/L	<100	300 µg/L	97.1	50.5	115
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCI	_ot: 5019754)						
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	84.5	75.0	127
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCI	_ot: 5021461)						
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	106	75.0	127
EP080: BTEXN (QCLot: 5019754)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	84.8	68.3	119
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	94.6	73.5	120
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	98.6	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	98.0	73.0	122
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	98.0	76.4	123
EP080: Naphthalene	91-20-3	5	µg/L	<5	10 µg/L	86.4	75.5	124
EP080: BTEXN (QCLot: 5021461)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	106	68.3	119
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	103	73.5	120
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	107	73.8	122
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	107	73.0	122
	106-42-3	0		-2	10.00/		76.4	(
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	109	76.4	123
	91-20-3	J	µg/L	<b>~</b> 5	τυ μg/L	105	73.5	124
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 5025	5829) 275 70 5	0.02		<0.02	0.25.00/		72.0	
EP231X: Perfluorobutane sultonic acid (PFBS)	3/5-/3-5	0.02	µg/L	<0.02	0.25 µg/L	90.2	12.0	130
EP231X: Perfluorohexane sulfonic acid (PFHxS)	300-46-4	0.01	μg/L	<0.01	0.25 µg/L	98.6	65.0	131
EP231X: Pertluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/∟	<0.01	0.25 µg/L	105	65.0	140
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 5	025829)							

Page	: 16 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot	: 5025829) - continued								
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	1.25 µg/L	99.8	73.0	129	
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.25 µg/L	105	72.0	129	
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.25 µg/L	103	72.0	129	
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.25 µg/L	105	72.0	130	
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.25 µg/L	116	71.0	133	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCL	_ot: 5025829)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	0.25 µg/L	110	63.0	143	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	0.25 µg/L	116	64.0	140	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	0.25 μg/L	115	67.0	138	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	0.25 µg/L	105	71.4	144	

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report					
						Acceptable I	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	Concentration	MS	Low	High		
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 5018872)							
ES2313742-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	106	70.0	130	
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 5019040)							
ES2313761-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	70.0	70.0	130	
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5023596)							
ES2313946-004	MW02	EG020A-F: Arsenic	7440-38-2	1 mg/L	97.5	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	92.4	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	90.9	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	93.7	70.0	130	
		EG020A-F: Lead	7439-92-1	1 mg/L	89.2	70.0	130	
		EG020A-F: Manganese	7439-96-5	1 mg/L	88.4	70.0	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	92.4	70.0	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	94.4	70.0	130	
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5023621)							
ES2313915-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	111	70.0	130	
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	112	70.0	130	
		EG020A-F: Chromium	7440-47-3	1 mg/L	107	70.0	130	
		EG020A-F: Copper	7440-50-8	1 mg/L	109	70.0	130	

Page	: 17 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020F: Dissolved	I Metals by ICP-MS (QCLot: 5023621) - continued							
ES2313915-002	Anonymous	EG020A-F: Lead	7439-92-1	1 mg/L	105	70.0	130	
		EG020A-F: Manganese	7439-96-5	1 mg/L	114	70.0	130	
		EG020A-F: Nickel	7440-02-0	1 mg/L	109	70.0	130	
		EG020A-F: Zinc	7440-66-6	1 mg/L	110	70.0	130	
EG020T: Total Meta	als by ICP-MS (QCLot: 5022387)							
ES2313743-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	101	70.0	130	
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	103	70.0	130	
		EG020A-T: Chromium	7440-47-3	1 mg/L	100	70.0	130	
		EG020A-T: Copper	7440-50-8	1 mg/L	102	70.0	130	
		EG020A-T: Lead	7439-92-1	1 mg/L	98.3	70.0	130	
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.6	70.0	130	
		EG020A-T: Zinc	7440-66-6	1 mg/L	100	70.0	130	
EG035F: Dissolved	I Mercury by FIMS (QCLot: 5023597)							
ES2313946-003	MW01	EG035F: Mercury	7439-97-6	0.01 mg/L	79.1	70.0	130	
EG035F: Dissolved	I Mercury by FIMS (QCLot: 5023622)							
ES2313933-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	95.0	70.0	130	
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 5020775)							
EM2307309-002	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	91.3	70.0	130	
EG050F: Dissolved	I Hexavalent Chromium (QCLot: 5025736)							
ES2313946-001	W2	EG050G-F: Hexavalent Chromium	18540-29-9	0.5 mg/L	# 9.0	70.0	130	
EG050F: Dissolved	l Hexavalent Chromium (QCLot: 5029446)							
ES2313946-002	W3	EG050G-F: Hexavalent Chromium	18540-29-9	0.05 mg/L	99.4	70.0	130	
EG051G: Ferrous I	ron by Discrete Analyser (QCLot: 5020033)							
ES2313888-001	Anonymous	EG051G: Ferrous Iron		1 mg/L	99.1	70.0	130	
EP033: C1 - C4 Hyd	drocarbon Gases (QCLot: 5020136)							
ES2313946-004	MW02	EP033: Methane	74-82-8	28.48 µg/L	# Not	70.0	130	
					Determined			
EP074E: Halogena	ted Aliphatic Compounds (QCLot: 5021462)				· · · · ·			
ES2313946-001	W2	EP074: 1.1-Dichloroethene	75-35-4	25 µg/L	75.1	70.0	130	
		EP074: Trichloroethene	79-01-6	25 µg/L	86.7	70.0	130	
EP074F: Halogenat	ted Aromatic Compounds (QCLot: 5021462)				·		<u></u>	
ES2313946-001	W2	EP074: Chlorobenzene	108-90-7	25 µg/L	89.4	70.0	130	
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (OCI ot: 5019356)			mg. =				
EF015(010)B. POly			92 22 0	20 ug/l	72.0	70.0	120	
E32313940-000			03-32-8 120 00 0	20 µg/L	72.0	70.0	130	
1		EPU/3(SINI): Pyrene	129-00-0	20 µy/L	12.9	10.0	150	

Page	: 18 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER			Matrix Spike (MS) Report				
			Ĩ	Spike	SpikeRecovery(%)	Acceptable L	.imits (%)
Laboratory sample ID	Sample ID	Method: Compound C	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5019357)						
ES2313946-006	MW04	EP071: C10 - C14 Fraction		200 µg/L	117	70.0	130
		EP071: C15 - C28 Fraction		250 µg/L	97.8	71.0	130
		EP071: C29 - C36 Fraction		200 µg/L	119	67.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5019754)						
ES2313571-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	86.0	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 5021461)						
ES2313946-001	W2	EP080: C6 - C9 Fraction		325 µg/L	125	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCI	_ot: 5019357)	, i i i i i i i i i i i i i i i i i i i				
ES2313946-006	MW04	EP071: >C10 - C16 Fraction		250 µg/L	111	70.0	130
		EP071: >C16 - C34 Fraction		350 µg/L	104	75.0	130
		EP071: >C34 - C40 Fraction		150 µg/L	112	67.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCI	_ot: 5019754)					
ES2313571-001	Anonymous	EP080: C6 - C10 Fraction C	C6_C10	375 µg/L	86.7	70.0	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCI	.ot: 5021461)	, i i i i i i i i i i i i i i i i i i i			, in the second s	
ES2313946-001	W2	EP080: C6 - C10 Fraction C	C6_C10	375 µg/L	130	70.0	130
EP080: BTEXN (Q	CLot: 5019754)						
ES2313571-001	Anonymous	EP080: Benzene 7	1-43-2	25 µg/L	84.7	70.0	130
		EP080: Toluene	08-88-3	25 µg/L	95.5	70.0	130
		EP080: Ethylbenzene	00-41-4	25 µg/L	96.2	70.0	130
		EP080: meta- & para-Xylene	08-38-3	25 µg/L	96.0	70.0	130
		1	06-42-3				
		EP080: ortho-Xylene 9	95-47-6	25 µg/L	94.6	70.0	130
		EP080: Naphthalene 9	1-20-3	25 µg/L	81.9	70.0	130
EP080: BTEXN (Q	CLot: 5021461)						
ES2313946-001	W2	EP080: Benzene 7	1-43-2	25 µg/L	119	70.0	130
		EP080: Toluene 1	08-88-3	25 µg/L	113	70.0	130
		EP080: Ethylbenzene	00-41-4	25 µg/L	108	70.0	130
		EP080: meta- & para-Xylene	08-38-3	25 µg/L	105	70.0	130
		1	06-42-3				
		EP080: ortho-Xylene 9	95-47-6	25 µg/L	108	70.0	130
		EP080: Naphthalene 9	1-20-3	25 µg/L	97.3	70.0	130
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 5025829)						
ES2313946-001	W2	EP231X: Perfluorobutane sulfonic acid (PFBS) 3	375-73-5	0.25 µg/L	93.4	72.0	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS) 3	355-46-4	0.25 µg/L	94.8	68.0	131
		EP231X: Perfluorooctane sulfonic acid (PFOS) 1	763-23-1	0.25 µg/L	104	65.0	140
ED224B: Dorfluoro	alkul Carbonulia Acida (OCL et: 5025820)		· · · · · ·		1		

Page	: 19 of 19
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound C	CAS Number	Concentration	MS	Low	High		
EP231B: Perfluoro	oalkyl Carboxylic Acids (QCLot: 5025829) - continued								
ES2313946-001	W2	EP231X: Perfluorobutanoic acid (PFBA) 3	375-22-4	1.25 µg/L	101	73.0	129		
		EP231X: Perfluoropentanoic acid (PFPeA) 2	2706-90-3	0.25 µg/L	104	72.0	129		
		EP231X: Perfluorohexanoic acid (PFHxA) 3	307-24-4	0.25 µg/L	102	72.0	129		
		EP231X: Perfluoroheptanoic acid (PFHpA) 3	375-85-9	0.25 µg/L	103	72.0	130		
		EP231X: Perfluorooctanoic acid (PFOA) 3	335-67-1	0.25 µg/L	115	71.0	133		
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 5025829)									
ES2313946-001	W2	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 7	757124-72-4	0.25 µg/L	97.4	63.0	143		
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 2	27619-97-2	0.25 µg/L	105	64.0	140		
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 3	39108-34-4	0.25 µg/L	114	67.0	138		
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) 1	120226-60-0	0.25 µg/L	110	71.4	144		



QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES2313946	Page	: 1 of 16			
Client	: CAVVANBA CONSULTING	Laboratory	: Environmental Division Sydney			
Contact	: MR DREW WOOD	Telephone	: +61-2-8784 8555			
Project	: 20025.75	Date Samples Received	: 28-Apr-2023			
Site	:	Issue Date	: 05-May-2023			
Sampler	: ZAC LAUGHLAN	No. of samples received	: 26			
Order number	:	No. of samples analysed	: 26			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment			
Matrix Spike (MS) Recoveries										
EG050F: Dissolved Hexavalent Chromium	ES2313946001	W2	Hexavalent Chromium	18540-29-9	9.0 %	70.0-130%	Recovery less than lower data quality			
							objective			
EP033: C1 - C4 Hydrocarbon Gases	ES2313946004	MW02	Methane	74-82-8	Not		MS recovery not determined,			
					Determined		background level greater than or			
							equal to 4x spike level.			

#### **Outliers : Frequency of Quality Control Samples**

Matrix: WATER					
Quality Control Sample Type	Со	Count Rate (%) Qu		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	1				
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	1	18	5.56	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	1	20	5.00	10.00	NEPM 2013 B3 & ALS QC Standard

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	ion: $\mathbf{x}$ = Holding time breach ; $\mathbf{v}$ = Within holding time			
Method		Sample Date	E	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
ED041G: Sulfate (Turbidimetric) as SO4 2- by I	A								
Clear Plastic Bottle - Natural (ED041G)									
MW02,	MW04,	26-Apr-2023				01-May-2023	24-May-2023	<ul> <li>✓</li> </ul>	
MW05,	MW07,								
MW09,	MW12,								
MW13									
Clear Plastic Bottle - Natural (ED041G)									
MW01,	MW06,	27-Apr-2023				01-May-2023	25-May-2023	<ul> <li>✓</li> </ul>	
MW10,	MW101								
Clear Plastic Bottle - Natural (ED041G)									
MW102,	MW103	27-Apr-202				29-Apr-2023	25-May-2023	<ul> <li>✓</li> </ul>	

Page	: 3 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER Evaluation: * = Holding time					breach ; ✓ = Withi	n holding time		
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F: SAR and Hardness Calculations								
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) MW02, MW04,	MW03, MW05,	26-Apr-2023				03-May-2023	24-May-2023	~
MW07, MW12,	MW09, MW13							
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) W2, MW01, MW101, MW103	W3, MW10, MW102,	27-Apr-2023				03-May-2023	25-May-2023	~
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW02, MW04, MW07, MW12, QW01 Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) W2, MW01, MW10,	MW03, MW05, MW09, MW13, W3, MW06, MW101,	26-Apr-2023 27-Apr-2023				03-May-2023 03-May-2023	23-Oct-2023 24-Oct-2023	*
MW102,	MW103	<u> </u>	<u> </u>					
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) RB1		18-Apr-2023	02-May-2023	15-Oct-2023	~	02-May-2023	15-Oct-2023	~
RB2		19-Apr-2023	02-May-2023	16-Oct-2023	~	02-May-2023	16-Oct-2023	~
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) RB3		20-Apr-2023	02-May-2023	17-Oct-2023	1	02-May-2023	17-Oct-2023	~
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) RB4		26-Apr-2023	02-May-2023	23-Oct-2023	~	02-May-2023	23-Oct-2023	~
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) SW01, RB5	SW02,	27-Apr-2023	02-May-2023	24-Oct-2023	~	02-May-2023	24-Oct-2023	~

Page	: 4 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Due for analysis Evaluation Date analysed EG035F: Dissolved Mercury by FIMS Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 24-May-2023 26-Apr-2023 04-May-2023 MW02. MW03. ---- $\checkmark$ ____ MW04. MW05, MW07. MW09. MW12. MW13. QW01 Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 27-Apr-2023 04-May-2023 25-May-2023 W2, W3, ---- $\checkmark$ MW01, MW10, MW101. MW102. MW103 EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 18-Apr-2023 03-May-2023 16-May-2023 RB1 ------------ $\checkmark$ Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 19-Apr-2023 03-May-2023 17-May-2023 RB2 ------------ $\checkmark$ Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) 18-May-2023 RB3 20-Apr-2023 ____ 03-May-2023 -------- $\checkmark$ Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) RB4 26-Apr-2023 ----03-May-2023 24-May-2023  $\checkmark$ --------Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) SW01, 27-Apr-2023 03-May-2023 25-May-2023 SW02, ----- $\checkmark$ --------RB5 EG050F: Dissolved Hexavalent Chromium Clear Plastic Bottle - NaOH Filtered (EG050G-F) 03-May-2023 24-May-2023 MW02, MW03. 26-Apr-2023  $\checkmark$ --------MW04, MW05, MW07, MW09. MW12, MW13 Clear Plastic Bottle - NaOH Filtered (EG050G-F) 27-Apr-2023 03-May-2023 25-May-2023  $\checkmark$ W2, W3, --------MW01, MW10, MW101, MW102, MW103

Page	5 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER					Evaluatior	: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG051G: Ferrous Iron by Discrete An	alyser							
Clear Plastic Bottle - HCI - Filtered (E	G051G)							
MW02,	MW04,	26-Apr-2023				02-May-2023	03-May-2023	<ul> <li>✓</li> </ul>
MW05,	MW07,							
MW09,	MW12,							
MW13								
Clear Plastic Bottle - HCI - Filtered (E	G051G)							
MW01,	MW06,	27-Apr-2023				02-May-2023	04-May-2023	<ul> <li>✓</li> </ul>
MW10,	MW101,							
MW102,	MW103							
EP033: C1 - C4 Hydrocarbon Gases								
Amber VOC Vial - Sulfuric Acid (EP03	33)							
MW02,	MW04,	26-Apr-2023				01-May-2023	10-May-2023	✓
MW05,	MW07,							
MW09,	MW12,							
MW13								
Amber VOC Vial - Sulfuric Acid (EP03	33)							
MW01,	MW06,	27-Apr-2023				01-May-2023	11-May-2023	<ul> <li>✓</li> </ul>
MW10,	MW102,							
MW103								
Amber VOC Vial - Sulfuric Acid (EP03	33)							
MW101		27-Apr-2023				02-May-2023	11-May-2023	✓
EP074A: Monocyclic Aromatic Hydro	carbons							
Amber VOC Vial - Sulfuric Acid (EP07	74)							
MW02,	MW03,	26-Apr-2023	04-May-2023	10-May-2023	1	04-May-2023	10-May-2023	<ul> <li>✓</li> </ul>
MW04,	MW05,							
MW07,	MW09,							
MW12,	MW13,							
QW01								
Amber VOC Vial - Sulfuric Acid (EP07	74)							
W2,	W3,	27-Apr-2023	04-May-2023	11-May-2023	1	04-May-2023	11-May-2023	✓
MW01,	MW10,							
MW101,	MW102,							
MW103,	SW01,							
SW02								

Page	: 6 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time. Matrix: WATER Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Due for analysis Evaluation Date analysed EP074B: Oxygenated Compounds Amber VOC Vial - Sulfuric Acid (EP074) 10-May-2023 10-May-2023 26-Apr-2023 04-May-2023 04-May-2023 MW02. MW03. 1  $\checkmark$ MW04. MW05, MW07. MW09. MW12. MW13. QW01 Amber VOC Vial - Sulfuric Acid (EP074) 27-Apr-2023 04-May-2023 11-May-2023 04-May-2023 11-May-2023 W2, W3, 1  $\checkmark$ MW01, MW10, MW101. MW102, MW103. SW01, SW02 **EP074C: Sulfonated Compounds** Amber VOC Vial - Sulfuric Acid (EP074) MW02, MW03. 26-Apr-2023 04-May-2023 10-May-2023 1 04-May-2023 10-May-2023  $\checkmark$ MW04, MW05. MW07, MW09. MW12, MW13. QW01 Amber VOC Vial - Sulfuric Acid (EP074) 11-May-2023 04-May-2023 11-May-2023 W3, 27-Apr-2023 04-May-2023 1 W2,  $\checkmark$ MW01, MW10, MW101, MW102, MW103, SW01, SW02 EP074D: Fumigants Amber VOC Vial - Sulfuric Acid (EP074) MW03. 26-Apr-2023 04-May-2023 10-May-2023 04-May-2023 10-May-2023  $\checkmark$ MW02, 1 MW04, MW05, MW07, MW09, MW12, MW13, QW01 Amber VOC Vial - Sulfuric Acid (EP074) 27-Apr-2023 04-May-2023 11-May-2023 04-May-2023 11-May-2023 W2, W3, 1  $\checkmark$ MW01, MW10, MW101, MW102, MW103, SW01, SW02

Page	: 7 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time. Matrix: WATER Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Due for analysis Evaluation Date analysed EP074E: Halogenated Aliphatic Compounds Amber VOC Vial - Sulfuric Acid (EP074) 10-May-2023 10-May-2023 26-Apr-2023 04-May-2023 04-May-2023 MW02. MW03. 1  $\checkmark$ MW04. MW05, MW07. MW09. MW12. MW13. QW01 Amber VOC Vial - Sulfuric Acid (EP074) 27-Apr-2023 04-May-2023 11-May-2023 04-May-2023 11-May-2023 W2, W3, 1  $\checkmark$ MW01, MW10, MW101. MW102. MW103. SW01, SW02 EP074F: Halogenated Aromatic Compounds Amber VOC Vial - Sulfuric Acid (EP074) MW02, MW03. 26-Apr-2023 04-May-2023 10-May-2023 1 04-May-2023 10-May-2023  $\checkmark$ MW04, MW05. MW07, MW09. MW12, MW13. QW01 Amber VOC Vial - Sulfuric Acid (EP074) 11-May-2023 04-May-2023 11-May-2023 27-Apr-2023 04-May-2023 1 W2, W3,  $\checkmark$ MW01, MW10, MW101, MW102, MW103, SW01, SW02 EP074G: Trihalomethanes Amber VOC Vial - Sulfuric Acid (EP074)  $\checkmark$ 26-Apr-2023 04-May-2023 10-May-2023 04-May-2023 10-May-2023 MW02, MW03. 1 MW04, MW05, MW07, MW09, MW12, MW13, QW01 Amber VOC Vial - Sulfuric Acid (EP074) 27-Apr-2023 04-May-2023 11-May-2023 04-May-2023 11-May-2023 W2, W3, 1  $\checkmark$ MW01, MW10, MW101, MW102, MW103, SW01, SW02

Page	: 8 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER						Evaluation	: × = Holding time	breach ; 🗸 = With	in holding tim
Method		Sample Date	Extraction / Preparation Analysis						
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon									
Amber Glass Bottle - Unpreserved (EP075(SIM))									
MW02,	MW03,		26-Apr-2023	02-May-2023	03-May-2023	1	04-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>
MW04,	MW05,								
MW07,	MW09,								
MW12,	MW13								
Amber Glass Bottle - Unpreserved (EP075(SIM))									
QW01			26-Apr-2023	02-May-2023	03-May-2023	1	05-May-2023	11-Jun-2023	✓
Amber Glass Bottle - Unpreserved (EP075(SIM))									
W2,	W3,		27-Apr-2023	02-May-2023	04-May-2023	1	04-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>
MW01,	MW10,								
MW101,	MW102								
Amber Glass Bottle - Unpreserved (EP075(SIM))									
MW103,	SW01,		27-Apr-2023	02-May-2023	04-May-2023	1	05-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>
SW02									
EP080/071: Total Petroleum Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP071)									
MW02,	MW03,		26-Apr-2023	02-May-2023	03-May-2023	1	04-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>
MW04,	MW05,								
MW07,	MW09,								
MW12,	MW13,								
QW01.	RB4								
Amber Glass Bottle - Unpreserved (EP071)									
W2,	W3,		27-Apr-2023	02-May-2023	04-May-2023	1	04-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>
MW01,	MW10,								
MW101,	MW102,								
MW103.	SW01.								
SW02	RB5								
Amber VOC Vial - Sulfuric Acid (EP080)									
Trip blank			17-Apr-2023	01-May-2023	01-May-2023	1	01-May-2023	01-May-2023	1
Amber VOC Vial - Sulfuric Acid (EP080)									
MW02,	MW03,		26-Apr-2023	04-May-2023	10-May-2023	1	04-May-2023	10-May-2023	<ul> <li>✓</li> </ul>
MW04,	MW05,								
MW07,	MW09,								
MW12,	MW13,								
QW01,	RB4								
Amber VOC Vial - Sulfuric Acid (EP080)									
W2,	W3,		27-Apr-2023	04-May-2023	11-May-2023	1	04-May-2023	11-May-2023	✓
MW01,	MW10,								
MW101,	MW102,								
MW103,	SW01,								
SW02,	RB5								

Page	: 9 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time	
Method Container / Client Sample ID(s)			Extraction / Preparation Ana					nalysis	
			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 2013 Fractions								
Amber Glass Bottle - Unpreserved (	EP071)								
MW02,	MW03,	26-Apr-2023	02-May-2023	03-May-2023	1	04-May-2023	11-Jun-2023	<ul> <li>✓</li> </ul>	
MW04,	MW05,								
MW07,	MW09,								
MW12,	MW13,								
QW01.	RB4								
Amber Glass Bottle - Unpreserved (	EP071)								
W2,	W3,	27-Apr-2023	02-May-2023	04-May-2023	1	04-May-2023	11-Jun-2023	1	
MW01,	MW10,								
MW101.	MW102.								
MW103	SW01								
SW02	BB5								
Amber VOC Vial - Sulfuric Acid (EP	180)								
Trip blank		17-Apr-2023	01-May-2023	01-May-2023	1	01-May-2023	01-May-2023	1	
Amber VOC Vial - Sulfuric Acid (EP	080)			_			-	-	
MW02,	MW03,	26-Apr-2023	04-May-2023	10-May-2023	1	04-May-2023	10-May-2023	1	
MW04.	MW05.							-	
MW07	MW09								
MW/12	MW/13								
OW01	RB4								
Amber VOC Vial - Sulfuric Acid (EB)	180)								
W2	W3	27-Apr-2023	04-May-2023	11-May-2023	1	04-May-2023	11-May-2023	1	
MW01	MW/10			,	-		· · · · ·	•	
MW01, MW101	MW/102								
MW103	SW01								
SW02	DDF								
5002,	RBD								
EP080: BTEXN			1	1		I	1	1	
Amber VOC Vial - Sulfuric Acid (EPC	180) Trip opiles	17 Apr 2022	01 May 2022	01 May 2023		04 May 2022	01 May 2023		
	Пір зріке	17-Api-2023	01-1VIAy-2023	01-1viay-2023	~	01-Way-2023	01-101ay-2023	<b>√</b>	
Amber VOC Vial - Sulturic Acid (EPU	NUV(02	26-Apr-2023	04-May-2023	10-May-2023	/	04-May-2023	10-May-2023		
	NIN/05	20-Api-2023	04-1418 y-2023	10 Way 2020	~	04-11/dy-2023	10 Way 2020	✓	
N10004,	WW05,								
	MWV09,								
MVV12,	MW13,								
QW01,	RB4								
Amber VOC Vial - Sulfuric Acid (EPC	)80)	27 4 2022	04 May 2022	11 May 2022		04 May 2022	11 May 2022		
VV∠,	VV3,	27-Apr-2023	04-1VIAY-2023	1 1-1viay-2023	~	04-111ay-2023	1 1-1viay-2023	✓	
	MVV10,								
MVV101,	MW102,								
MW103,	SW01,								
SW02,	RB5								

Page	: 10 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			Sample Date	Ext	traction / Preparation		Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids									
HDPE (no PTFE) (EP231X)									
MW02,	MW03,	2	26-Apr-2023	04-May-2023	23-Oct-2023	~	05-May-2023	23-Oct-2023	<ul> <li>✓</li> </ul>
MW04,	MW05,								
MW07.	MW09.								
MW12	MW13								
OW01									
HDPE (no PTEE) (EP231X)									
W2	W3	2	27-Apr-2023	04-May-2023	24-Oct-2023	1	05-Mav-2023	24-Oct-2023	1
M/W/01	M/W/10					-			•
MW01,	MW 10,								
	01001								
	5001,								
SW02									
EP231B: Perfluoroalkyl Carboxylic Acids									1
HDPE (no PTFE) (EP231X)	N/10/00		26 Apr 2022	04 May 2022	22 Oct 2022	,	05 May 2022	22 Oct 2022	
MWU2,	MVV03,	4	20-Apr-2025	04-111ay-2023	23-001-2023	~	05-Way-2025	23-001-2023	✓
MW04,	MW05,								
MW07,	MW09,								
MW12,	MW13,								
QW01									
HDPE (no PTFE) (EP231X)									
W2,	W3,	2	27-Apr-2023	04-May-2023	24-Oct-2023	~	05-May-2023	24-Oct-2023	✓
MW01,	MW10,								
MW101,	MW102,								
MW103,	SW01,								
SW02									
EP231D: (n:2) Fluorotelomer Sulfonic Aci	ds		, II.						
HDPE (no PTFE) (EP231X)									
MW02,	MW03,	2	26-Apr-2023	04-May-2023	23-Oct-2023	1	05-May-2023	23-Oct-2023	✓
MW04,	MW05,								
MW07,	MW09,								
MW12.	MW13.								
QW01	,								
HDPE (no PTEE) (EP231X)									
W2.	W3.	2	27-Apr-2023	04-May-2023	24-Oct-2023	1	05-May-2023	24-Oct-2023	1
MW01.	MW10		-	-		-	-		
MW101	MW102								
MW/103	S\M01								
SM/00	54401,								
3VVUZ									

Page	: 11 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



#### Matrix: WATER Evaluation: $\mathbf{x}$ = Holding time breach ; $\mathbf{v}$ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231P: PFAS Sums HDPE (no PTFE) (EP231X) 26-Apr-2023 04-May-2023 23-Oct-2023 05-May-2023 23-Oct-2023 MW02, 1 MW03, $\checkmark$ MW04, MW05, MW07, MW09, MW12, MW13, QW01 HDPE (no PTFE) (EP231X) W3, 27-Apr-2023 04-May-2023 24-Oct-2023 ✓ 05-May-2023 24-Oct-2023 W2, $\checkmark$ MW01, MW10, MW101, MW102, MW103, SW01, SW02



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER	Evaluation: 😕 = Quality Control frequency not within specification ; 🗹 = Quality Control frequency within specificatior						
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
C1 - C4 Gases	EP033	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ferrous Iron by Discrete Analyser	EG051G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	3	24	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	10.00	×	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
C1 - C4 Gases	EP033	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ferrous Iron by Discrete Analyser	EG051G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
C1 - C4 Gases	EP033	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ferrous Iron by Discrete Analyser	EG051G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	40	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	13 of 16
Work Order	ES2313946
Client	CAVVANBA CONSULTING
Project	20025.75



Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; $\checkmark$ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
C1 - C4 Gases	EP033	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ferrous Iron by Discrete Analyser	EG051G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	40	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Trivalent Chromium - Dissolved	EG049G-F	WATER	In house: Referenced to APHA 3500 Cr-B & 3120/3125. Trivalent Chromium is the difference between total dissolved and dissolved hexavalent chromium.
Hexavalent Chromium by Discrete Analyser - Dissolved	EG050G-F	WATER	In house: Referenced to APHA 3500 Cr-A & B. Samples are 0.45µm filtered prior to analysis. Hexavalent chromium is determined directly on water sample by Descrete Analyser as received by pH adjustment and colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3).
Ferrous Iron by Discrete Analyser	EG051G	WATER	In house: Referenced to APHA 3500 Fe-B. A colorimetric determination based on the reaction between phenanthroline and ferrous iron at pH 3.2-3.3 to form an orange-red complex that is measured against a five-point calibration curve. This method is compliant with NEPM Schedule B(3).



Analytical Methods	Method	Matrix	Method Descriptions
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
C1 - C4 Gases	EP033	WATER	Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, US EPA - Region 1, EPA New England, July 2001. Automated static headspace, dual column GC/FID. A 12 mL sample is pipetted into a 20 mL headspace vial containing 3g of sodium chloride and sealed. Each sample is equilibrated with shaking at 40 degrees C for 10 minutes prior to analysis by GC/FID using a pair of PLOT columns of different polarity.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure

3			····· ································
			used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM Schedule B(3)
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated
			and concentrated for analysis. This method is compliant with NEPM Schedule B(3) . ALS default excludes
			sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

Page	: 16 of 16
Work Order	: ES2313946
Client	: CAVVANBA CONSULTING
Project	20025.75



Preparation Methods	Method	Matrix	Method Descriptions
Solid Phase Extraction (SPE) for PFAS in	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are
water			added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge.
			The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined
			with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US
			DoD QSM 5.3, table B-15 requirements.



# SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2313946					
Client Contact Address	: <b>CAVVANBA CONSULTING</b> : MR DREW WOOD : PO Box 322 NEWCASTLE 2300	Laboratory : E Contact : K Address : 2 N	Environmental Division Sydney Karen Coveny 177-289 Woodpark Road Smithfield NSW Australia 2164			
E-mail Telephone Facsimile	: drew@cavvanba.com : +61 02 6685 7811 : +61 02 6685 5083	E-mail : k Telephone : + Facsimile : +	aren.coveny@alsglobal.com ·61-2-8784 8555 ·61-2-8784 8500			
Project Order number C-O-C number Site Sampler	: 20025.75 : : : : ZAC LAUGHLAN	Page : 1 Quote number : E QC Level : N	: 1 of 3 : ES2020CAVCON0008 (SY/159/20) : NEPM 2013 B3 & ALS QC Standard			
Dates Date Samples Receive Client Requested Due Date	ed : 28-Apr-2023 11:29 : 05-May-2023	Issue Date Scheduled Reporting Date	: 28-Apr-2023 <b>05-May-2023</b>			
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S : Undefined : 4	Security Seal Temperature No. of samples received /	: Not Available : 3.2'c - Ice present analysed : 26 / 26			

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- Sample QW02 to be forwarded to Eurofins as per COC's.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.



ation Indicators - including Mn

alent Chromium by ICP & DA

avalent Chromium

Suite (12 analytes)

## Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

			23 ⁻ 23	62 92	-10 /0C/	-28 & nuatic
	ardr ed 7	c - EC	? - EF	ي ج	- K	k - W. Atter
Laboratory sample Sampling date / Sample ID	ATEF ssolv	ATEF ssolv	ATEF AS -	ATEF Metal	ATEF th/B1	ATEF itural
ID time	₽Ì≥ä	ă Ś	3 6	≥ ∞	ŚΪ	ŚΖ
ES2313946-001 27-Apr-2023 00:00 W2	<ul> <li>✓</li> </ul>	✓	✓	✓	1	
ES2313946-002 27-Apr-2023 00:00 W3	∕ √	✓	1	1	1	
ES2313946-003 27-Apr-2023 00:00 MW01	<ul> <li>✓</li> </ul>	<ul> <li>✓</li> </ul>	1	1	1	✓
ES2313946-004 26-Apr-2023 00:00 MW02	<ul> <li>✓</li> </ul>	✓	1	1	1	✓
ES2313946-005 26-Apr-2023 00:00 MW03	<ul><li>✓</li></ul>	1	1	1	1	
ES2313946-006 26-Apr-2023 00:00 MW04	′ √	1	1	1	1	✓
ES2313946-007 26-Apr-2023 00:00 MW05	<ul> <li>✓</li> </ul>	1	1	✓	1	✓
ES2313946-008 27-Apr-2023 00:00 MW06						✓
ES2313946-009 26-Apr-2023 00:00 MW07	<ul> <li>✓</li> </ul>	1	1	✓	1	✓
ES2313946-010 26-Apr-2023 00:00 MW09	<ul> <li>✓</li> </ul>	1	1	✓	✓	✓
ES2313946-011 27-Apr-2023 00:00 MW10	<ul> <li>✓</li> </ul>	1	1	✓	1	✓
ES2313946-012 26-Apr-2023 00:00 MW12	<ul> <li>✓</li> </ul>	✓	1	✓	1	✓
ES2313946-013 26-Apr-2023 00:00 MW13	<ul> <li>✓</li> </ul>	✓	1	1	1	✓
ES2313946-014 27-Apr-2023 00:00 MW101	<ul> <li>✓</li> </ul>	✓	1	1	1	✓
ES2313946-015 27-Apr-2023 00:00 MW102	<ul> <li>✓</li> </ul>	<ul> <li>✓</li> </ul>	1	1	1	✓
ES2313946-016 27-Apr-2023 00:00 MW103	<ul> <li>✓</li> </ul>	✓	1	1	1	✓
ES2313946-017 26-Apr-2023 00:00 QW01			1	1	1	
ES2313946-018 27-Apr-2023 00:00 SW01			✓		1	
ES2313946-019 27-Apr-2023 00:00 SW02			✓		✓	

Laboratory sample       Sampling date / Sample ID       Sample ID       Sample ID       Sample ID         ID       time       V       V       V       V         ES2313946-018       27-Apr-2023 00:00       SW01       V       V       V         ES2313946-019       27-Apr-2023 00:00       SW02       V       V       V         ES2313946-020       18-Apr-2023 00:00       RB1       V       V       V         ES2313946-021       19-Apr-2023 00:00       RB2       V       V       V         ES2313946-022       20-Apr-2023 00:00       RB3       V       V       V	Matrix: WATER			P080	/-02T otal)	1-04 V	/-18 :9)/BTEXN
Laboratory sample       Sampling date / time       Sample ID       ID				Ш - 	R - V Is (To	R - V	R - X
ES2313946-018       27-Apr-2023 00:00       SW01       ✓       ✓         ES2313946-019       27-Apr-2023 00:00       SW02       ✓       ✓         ES2313946-020       18-Apr-2023 00:00       RB1       ✓       ✓         ES2313946-021       19-Apr-2023 00:00       RB2       ✓       ✓         ES2313946-022       20-Apr-2023 00:00       RB3       ✓       ✓	Laboratory sample ID	Sampling date / time	Sample ID	WATE BTEXN	WATE 8 meta	WATE TRH/B	WATE TRH(C
ES2313946-019       27-Apr-2023 00:00       SW02       ✓       ✓         ES2313946-020       18-Apr-2023 00:00       RB1       ✓       ✓         ES2313946-021       19-Apr-2023 00:00       RB2       ✓       ✓         ES2313946-022       20-Apr-2023 00:00       RB3       ✓       ✓	ES2313946-018	27-Apr-2023 00:00	SW01		1		
ES2313946-020       18-Apr-2023 00:00       RB1       ✓       ✓         ES2313946-021       19-Apr-2023 00:00       RB2       ✓       ✓         ES2313946-022       20-Apr-2023 00:00       RB3       ✓       ✓	ES2313946-019	27-Apr-2023 00:00	SW02		1		
ES2313946-021         19-Apr-2023 00:00         RB2         ✓         ✓           ES2313946-022         20-Apr-2023 00:00         RB3         ✓         ✓	ES2313946-020	18-Apr-2023 00:00	RB1		✓		
ES2313946-022 20-Apr-2023 00:00 RB3	ES2313946-021	19-Apr-2023 00:00	RB2		✓		
	ES2313946-022	20-Apr-2023 00:00	RB3		✓		



			WATER - EP080 BTEXN	WATER - W-02T 8 metals (Total)	WATER - W-04 TRH/BTEXN	WATER - W-18 TRH(C6 - C9)/BTEXN
ES2313946-023	26-Apr-2023 00:00	RB4		✓	✓	
ES2313946-024	27-Apr-2023 00:00	RB5		✓	✓	
ES2313946-025	17-Apr-2023 00:00	Trip blank				✓
ES2313946-026	17-Apr-2023 00:00	Trip spike	✓			

## Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

## Requested Deliverables

### ACCOUNTS PAYABLE

ACCOUNTS PATABLE		
- A4 - AU Tax Invoice (INV)	Email	inbox@cavvanba.com
DREW WOOD		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	drew@cavvanba.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	drew@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	drew@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	drew@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	drew@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	drew@cavvanba.com
ROB MCLELLAND		
- A4 - AU Tax Invoice (INV)	Email	rob@cavvanba.com
ZAC LAUGHLAN		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	zac@cavvanba.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	zac@cavvanba.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	zac@cavvanba.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	zac@cavvanba.com
- Chain of Custody (CoC) (COC)	Email	zac@cavvanba.com
- EDI Format - ENMRG (ENMRG)	Email	zac@cavvanba.com

Enui	CHAIN CUSTO ALS Labo please	OF UBRISEANE 32 Sha Ph: 07 3243 7222 E. DDY USLADSTONE 48 Call. Ph: 07 7471 5000 E: gla ratory:	nd Street Statfo samples brisbar entondah Brive i dstorie @alisgiob	d QLD 9263 BADBOALCOM Ph 03 8359 0380 E adelink Illinton QLD 4880 Bitton 0 LD 4880 Ph: 07 4844 0177 E misckap	ad Pooraka SA 5098 de@alsglobal.com d Mackay QLD 474 g@atsglobal.com	EL HANGER 27 I	Se Stati Ford A samples met ninev Rigad Mod R amidges war	Springvale VIC 31- ioumir (parsglobal co pae NSVV 2950 (palsglobar com	DERT- Ph 08 92	NG1LE 5/565 M 014 2500 E: san 2502 3 Genry P 23 2065 E: now 1 10 Hog Way M 20 7655 E: sam	iitland Rd Mayfe ples.newcastle.g ace North Nowra a@alsglobat.com lega WA 8050 les perth@alsgl	id West NSW 2304 Iaisglobal com NBW 2541 1 I		DSYDNEY 277 Ph 02 6764 35 DTOWNSVILL Ph 07 4795 00 DWOLLONGO Ph 02 4225 310	-289 Weodraam Road Simitaheen NSW 21184 25 E samplaas syndray (@insighbahi com, E 14-15 Oleman Court Bohle OLD 4818 2000 E: homoritike untril dimensioglasjokan com VII 39 Kanny Stere Woolinggroup ASW 2800 28 E: prottlembla @alsgiveal.com	
IENT:	Cavvanba Consulting		TURNA	ROUND REQUIREMENTS :	Standard TA	⊤ (List due date	and the second sec				F	OR LABORAT	FORY USE	ONLY (Cir	cie)	
FICE:	Newcastle		Ultra Trac	Organics)	Non Standa	rd or urgent TAT	List due date	e):			c	ustody Seal Inta	ct?		Yes No NO	
DER NI	IMBER: 20025.76		ALS QU	OTE NO.: SY/15	9/20			COC SE	QUENCE NU	MBER (Cire	le)	ree / frozen id	ce bricks pre	sent upon rec	eipt? Yes No N/A	
OJECT	MANAGER: Drew Wood	CONTACT	DH- 0402 6	0.755				coc:	2 3	4 5	6 7 R	andom Sample	Temperature	on Receipt:	°C	
MPLER	Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854		DV.		OF: 1 (	2) 3	4 5	6 7 C	ther comment:	1		32	
C email	ed to ALS? ( YES / NO)	EDD FORM	AT (or defa	uit):	A	BT.		RECEIVED BY	8		RELIN	QUISHED BY:	a		RECEIVED BY:	
ail Rep	orts to (will default to PM if no other ad	dresses are listed): drew@cav	vanba.com,	zac@cavvanba.com D	ATE/TIME:						DATE	TIME: 7 %	142	3	503017 75	
nail Invo	ice to (will default to PM if no other add	resses are listed): rob@cavva	nba.com		28.4	23		28.4	.2.2	11:3	5	INNE. 00	4:5	Dian	20Hebrar	e
MMENT	S/SPECIAL HANDLING/STORAGE OF	R DISPOSAL: Please place ad	ditional bo	tles ON HOLD						11.0			7.0	Optr	- coppis1940	ł
ALS USE	SAMPLE DETAILS MATRI	X: SOLID (S) WATER (W)		CONTAINER INFORM	ATION		ANALYS /here Metals a	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) are Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Additional Informat								
	5					Cc	(8)	s	(eu		5	RH	-	1		
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE to codes below)	(refer TOTAL	CONTAINERS W - TRH/BTEXN/PAH/VC	(W-TU) W - Metals dissolved	W-28 Natural attenuation Indicato (Nitrate, Sulfate,	Ferrous Iron, Metha PFAS - Short suite	Manganese	Chromium speciatic	Hardness - Total as CaCO3 ED093FX + Ti	WT - Metals total (8	BTEX + TRH	Comments on likely contaminent levels, dilutions, or samples requiring specific QC analysis etc.	
1	W2	27/04/2023	Water			x	x		x		x	x			Additional sample collected for PFAS QA	
2	W3	27/04/2023	Water			x	x		x		x	x				
3	MW01	27/04/2023	Water			x	x	x	x	x	x	x				
1	MW02	26/04/2023	Water			x	x	x	x	x	x	x				
5	MW03	26/04/2023	Water			x	x		x		x	x				
6	MW04	26/04/2023	Water			x	x	x	x	x	x	x			Additional sample collected for TRH OA	
7	MW05	26/04/2023	Water			x	x	x	x	x	x	x				
8	MW06	27/04/2023	Water					x		x		-			Sample collected from contaminated well	
9	MW07	26/04/2023	Water			x	x	X	x	x	x	x				
0	MW09	26/04/2023	Water			x	x	x	x	x	x	x				
1	MW10	27/04/2023	Water			x	x	x	x	x	x	x			Environmente	al Divi
2	MW12	26/04/2023	Water			x	x	x	x	x	x	x			Sydney	
3	MW13	26/04/2023	Water			x	x	x	x	x	x	x			Work Order R	
4	MW101	27/04/2023	Water			x	x	x	x	x	x	x			E0231	139
Ś	MW102	27/04/2023	Water			x	x	x	x	x	x	x				
6	MW103	27/04/2023	Water			x	x	x	x	x	x	Y				- 01.1
)	QW01	26/04/2023	Water			x	x		x			-				E ERS.
-	QW02	26/04/2023	Water			Ple	ase forward	to Eurofins for	analysis W	- TRH/BTE		Cs (W-10) + PF	AS short s	suite		公平省
												<u>,</u>		1	Telephone : + 61-2-87	784 8555

ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag

CLIENT:       Cavvanba Consulting         DFFICE:       Newcastle         PROJECT:       20025.76         PROJECT:       20025.76         PROJECT MANAGER:       Drew Wood         AMPLER:       Zac Laughlan         COC emailed to ALS? (YES / NO)       mail Reports to (will default to PM if no other a         COMMENTS/SPECIAL HANDLING/STORAGE O       MATF         ALS       SAMPLE DETAILS       MATF         LAB ID       SAMPLE ID       SAMPLE ID         D       RB1       RB2         Q       RB1       RB2         Q       RB3       RB4         QQ       Trip spike       Trip spike		Laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: laboratory: labor	nd Street Statturo Amples brisband mondah Drive C Nitone@alegiote	d QLO 4053 EDADE LA IDE LA IDE LA IDE LA IDE LA IDE LA IDE AL IDE	a Rosd Pooraka delaine@al-giod • Road Mackay G ackay@al-gioba	CARB A	MELEOUANE 14 Wester Mai 15649 2000 E samo Multiple Assay Pa Multiple Assay Pa	ll Road Sp es melhou es mailou es mailou	nmovale VIC 3171 ime@ai-global.com e NSW 2880 alliglobal.com	CINEWCASTL Ph. 02 4014 21 CINOVYRA 4 1 Ph. 024423 20 SPERTH 10/H SPERTH 10/H	E 5/585 Mailland 300 E Sauglesin 3 Geary Place Br 53 El novra gals 53 El novra gals 56 El samples p	Rd Mayfield W ewcaslie @alsg oth Nowra NGV global.com WA 5090 WA 5090	est MSW 2304 lobal.com y 2541 com	2 P 1 2 P	ISYONEY 271 h 02 8784 88 DTOWNSVIL Ph 07 4796 0 WOLLONGO h 02 4225 31	7-203 Woodpark Road Similafied NSW 2184 635 E. similala signita gibilasgotati oon E. 14-163 Oleana Coult Bohle OLU 4815 600 E. komstilla amtonmerstaggangbaba oon N3 89 Kenny Street Wotongong NSW 2500 25 E. not(Immilig ablasjotaba
FFICE:       Newcastle         ROJECT:       20025.76         RDER NUMBER:       20025.76         ROJECT MANAGER:       Drew Wood         AMPLER:       Zac Laughlan         OC emailed to ALS? (YES / NO)         mail Reports to (will default to PM if no other a         DMMENTS/SPECIAL HANDLING/STORAGE C         ALS         SAMPLE DETAILS         MATF         AB ID         SAMPLE ID         SAMPLE ID         SAMPLE ID         SAMPLE ID         SAMPLE ID         SW01         SW02         RB1         RB2         RB3         RB4         Y         RB5         S         Trip blank         Id         Id         Id         Id         RB5         S         Id         Id         Id         RB4         Id         Id         Id         Id         Id         Id         Id         RB5         Id	sulting		TURNAR	ROUND REQUIREMENTS :	Stand	lard TAT (Lis	t due date):	1	A straight and		and a second second second second	FOR	RLABORAT	ORY USE	ONLY (CI	ircle)
COJECT: 20025.76         RDER NUMBER: 20025.76         ROJECT MANAGER: Drew Wood         IMPLER: Zac Laughlan         DC emailed to ALS? (YES / NO)         nail Reports to (will default to PM if no other a         Invoice to (will default to PM if no other a         MMENTS/SPECIAL HANDLING/STORAGE C         ALS         SAMPLE DETAILS         MATR         AB ID         SAMPLE ID         SW01         1         2         RB1         1         2         RB1         1         2         RB3         3         3         RB4         4         RB5         5         6         7         8         1         1         8         9         1         1         1         1         1         1         1         1         1         1         1         1         1 <th colspan="7">JFFICE: Newcastle (Standard TAT may be longer for some tests e.g., Ultra Trace Organics)</th> <th>date):</th> <th colspan="6">ate): Custody Seal Int</th> <th></th> <th>Yes No N</th>	JFFICE: Newcastle (Standard TAT may be longer for some tests e.g., Ultra Trace Organics)							date):	ate): Custody Seal Int							Yes No N
RDER NUMBER: 20025/76       ROJECT MANAGER: Drew Wood       MMPLER: Zac Laughian       DC emailed to ALS? ( YES / NO)       nail Reports to (will default to PM if no other a       DMMENTS/SPECIAL HANDLING/STORAGE C       ALS       SAMPLE DETAILS       MATH       AB ID       SAMPLE ID       B ID       SAMPLE ID       SW01       1       RB1       1       RB2       2       RB3       3       RB4       Y       RB5       S       Trip spike	70		ALS QUO	OTE NO.: SY	/159/20				COC SEQUEN	CE NUMBE	R (Circle)	Free	trozen id	e bricks pres	ent upon rec	ceipt? (Yes) No N
AMPLER: Zac Laughlan DC emailed to ALS? (YES / NO) mail Reports to (will default to PM if no other a mail Involce to (will default to PM if no other a DMMENTS/SPECIAL HANDLING/STORAGE O ALS USE SAMPLE DETAILS MATH AB ID SAMPLE ID B SW01 C RB1 C RB2 C RB3 C RB4 C RB5 S Trip blank C Trip spike	70 BW Wood	CONTACT	DIL 0402 CO	10 755				co	DC: 1 😪	3 4	56	7 Rano	dom Sample 1	emperature	on Receipt:	°C
OC emailed to ALS? (YES / NO)         mail Reports to (will default to PM if no other at an an il invoice to (will default to PM if no other at comments/SPECIAL HANDLING/STORAGE COMMENTS/SPECIAL HANDLING/SPECIAL HANDLING/		SAMPLER	MOBILE: 04	28 288 854	DELINOU	auto py		0	F: 1 (2)	3 4	56	7 Othe	r comment:			
mail Reports to (will default to PM if no other a mail Invoice to (will default to PM if no other a DMMENTS/SPECIAL HANDLING/STORAGE O ALS SAMPLE DETAILS MATH AB ID SAMPLE ID 3 SW01 9 SW02 9 RB1 1 RB2 2 RB3 3 RB4 1 RB5 5 Trip blank 4 Trip spike	ES / NO)	EDD FORM	AT (or defa	ult):	RELINQUISHED BY:			RE	RECEIVED BY: RELINQUISHED					UC.	_	RECEIVED BY:
nail Involce to (will default to PM if no other ac DMMENTS/SPECIAL HANDLING/STORAGE of ALS SAMPLE DETAILS MATE AB ID SAMPLE ID	ult to PM if no other	r addresses are listed): drew@cav	vanba.com,	zac@cavvanba.com	DATE/TIM	E:		DA	TE/TIME:			DATE	. 28	14/2	5	2007
OMMENTS/SPECIAL HANDLING/STORAGE OF       ALS     SAMPLE DETAILS     MATH       LAB ID     SAMPLE ID     MATH       LAB ID     SAMPLE ID     MATH       T     SW01     SW02       T     SW02     MATH       MATH     RB1     MATH       MATH     RB2     MATH       MATH     RB2     MATH       MATH     RB3     MATH       MATH     RB4     MATH       MATH     MATH     MATH	ult to PM if no other	addresses are listed): rob@cavva	nba.com		Ż	20:4	.23	5	28.4.27	2	11:30	DATE/TIM	IC.	4.50	Van-	BRI 17210
ALS USE     SAMPLE DETAILS     MATH       LAB ID     SAMPLE ID     SAMPLE ID	NDLING/STORAGE	E OR DISPOSAL: Please place ac	ditional bot	tles ON HOLD										1	1.4	12814 2517
AB ID SAMPLE ID 3 SW01 9 SW02 9 RB1 1 RB2 2 RB3 23 RB4 14 RB5 5 Trip blank 16 Trip spike	ails Ma	TRIX: SOLID (S) WATER (W)		CONTAINER INFO	RMATION		AN Where M	ALYSIS	REQUIRED including required, specify Tota	g SUITES (N I (unfiltered b	B. Suite Code: pottle required)	s must be liste or <b>Dissolve</b> o	ed to attract so I (field filtered	ite price) bottle require	d).	Additional Information
3         SW01           9         SW02           9         RB1           1         RB2           2         RB3           23         RB4           14         RB5           S         Trip blank           2         Trip spike	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE to codes below)	(refer	TOTAL CONTAINERS	W - TRH/BTEXNPAH/VOCs (W-10)	W - Metals (8)	W-28 Natural W-28 Natural attenuation Indicators (Nitrate, Sulfate, Ferrous Iron, Methane)	FAS - Short suite	Manganese	Chromium speciation	Hardness - Total as aCO3 ED093FX + TRH	WT - Metals total (8)	BTEX + TRH	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
SW02           0         RB1           1         RB2           2         RB3           3         RB4           1         RB5           S         Trip blank           6         Trip spike	SW01	27/04/2023	Water				x			x			0	x		
C   RB1     1   RB2     2   RB3     22   RB4     24   RB5     5   Trip blank     16   Trip spike	SW02	27/04/2023	Water				x			x				x		
RB2       RB3       RB4       RB5       Trip blank       Le	RB1	18/04/2023	Water											×		
2   RB3     23   RB4     24   RB5     5   Trip blank     16   Trip spike	RB2	19/04/2023	Water											 		
RB4 RB5 S Trip blank Le Trip spike	RB3	20/04/2023	Water		3									~ v		
K  K    S  Trip blank    Jo  Trip spike	RB4	26/04/2023	Water											~	~	
S Trip blank L Trip spike	RB5	27/04/2023	Water											~	~	
Trip spike	Trip blank		Water											^	~	
	Trip spike		Water												~	
	h		Water												^	
			Water											-		
			Water											-		
			Water											- 1		
			Water											-		
			Water											_		
			Water													
			Water											_		
			Water													
			mater											_		×


Cavvanba Consulting 1 / 66 Centennial Cct Byron Bay NSW 2481

Attention:

Drew Wood

Report Project name Project ID Received Date

20025.76 Apr 27, 2023

984747-S

Client Sample ID			QS102	QS104	QS106	QS108
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23- Ap0060302	S23- Ap0060303	S23- Ap0060304	S23- Ap0060305
Date Sampled			Apr 18, 2023	Apr 18, 2023	Apr 19, 2023	Apr 20, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	30	40	23	< 20
TRH C15-C28	50	mg/kg	190	460	170	170
TRH C29-C36	50	mg/kg	360	940	210	350
TRH C10-C36 (Total)	50	mg/kg	580	1440	403	520
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	61	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	61	< 50	< 50
TRH >C16-C34	100	mg/kg	440	1100	300	400
TRH >C34-C40	100	mg/kg	290	710	180	280
TRH >C10-C40 (total)*	100	mg/kg	730	1871	480	680
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	89	92	95
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.



Client Sample ID			QS102	QS104	QS106	QS108
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23- Ap0060302	S23- Ap0060303	S23- Ap0060304	S23- Ap0060305
Date Sampled			Apr 18, 2023	Apr 18, 2023	Apr 19, 2023	Apr 20, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	1.1	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	111	131	113	106
p-Terphenyl-d14 (surr.)	1	%	90	99	97	84
Heavy Metals						
Arsenic	2	mg/kg	120	100	14	5.7
Cadmium	0.4	mg/kg	3.1	3.0	1.3	0.5
Chromium	5	mg/kg	52	76	45	18
Copper	5	mg/kg	440	940	480	160
Lead	5	mg/kg	1300	240	940	140
Mercury	0.1	mg/kg	0.1	< 0.1	0.1	< 0.1
Nickel	5	mg/kg	44	34	14	11
Zinc	5	mg/kg	770	890	450	490
Sample Properties						
% Moisture	1	%	20	7.7	17	3.9

Client Sample ID			QS110	QS112
Sample Matrix			Soil	Soil
Eurofins Sample No.			S23- Ap0060306	S23- Ap0060307
Date Sampled			Apr 20, 2023	Apr 20, 2023
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	84	58
TRH C29-C36	50	mg/kg	130	130
TRH C10-C36 (Total)	50	mg/kg	214	188
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	170	140
TRH >C34-C40	100	mg/kg	130	150
TRH >C10-C40 (total)*	100	mg/kg	300	290
втех				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	102	98



Client Sample ID			QS110	QS112
Sample Matrix			Soil	Soil
Eurofins Sample No.			S23- Ap0060306	S23- Ap0060307
Date Sampled			Apr 20, 2023	Apr 20, 2023
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109	76
p-Terphenyl-d14 (surr.)	1	%	99	68
Heavy Metals				
Arsenic	2	mg/kg	5.2	9.3
Cadmium	0.4	mg/kg	0.6	< 0.4
Chromium	5	mg/kg	35	39
Copper	5	mg/kg	140	160
Lead	5	mg/kg	160	190
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	16	14
Zinc	5	mg/kg	440	150
Sample Properties				
% Moisture	1	%	15	14



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 28, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 28, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 28, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Apr 28, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 28, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Apr 28, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Apr 28, 2023	14 Days
- Method: LTM-GEN-7080 Moisture			

Eurofins Environment Testing Australia Pty Ltd									Eurofins ARL Pty Ltd	Eurofins Environment Testing NZ Ltd			
seurofins 🤃		fins	ABN: 50 005 085 521 Melbourne Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magoo Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 214/		<b>y</b> agowar Ro een 2145	Canberra Brisbane Newcastle war Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Dri Mitchell Murarrie Mayfield We 5 ACT 2911 OL D 4172 Tel: 461 24		Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106	NZBN: 942904602495 Auckland 35 O'Rorke Road Penrose, Auckland 1061	4 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675		
web:         www.eurorins.com.au         Tel: +61 3 8564 5000         Tel: +61 3 8564 5000			3 8564 5000 Tel: +6 1261 Site# 25403 NATA	1 2 9900 i 1261 Site	8400 e# 182	Tel: +61 2 6113 8091 Te 217 NATA# 1261 Site# 25466 NA	el: +61 7 3902 4600 ATA# 1261 Site# 20794	NATA# 1261 4 Site# 25079 & 25289	Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Tel: +64 9 526 45 51 IANZ# 1327	Tel: 0800 856 450 IANZ# 1290		
Co	mpany Name:	Cavvanba C	Consulting				c	Order No.:	_		Received:	Apr 27, 2023 3:50	PM
Ad	ldress:	1 / 66 Cente	ennial Cct				F	Report #: 984/4/	/ 25 7811		Due: Priority:	May 4, 2023	
		NSW 2481					F	Fax: 02 668	35 5083		Contact Name:	Drew Wood	
Pr	oiect Name												
Pre	oject ID:	20025.76											
	-									E	urofins Analytical Serv	vices Manager : Ai	ndrew Black
						N	Шц						
						istu	rofin						
						e S	sS						
						et	lite E						
							67						
		Sa	ample Detail										
				_				_					
Syd	ney Laboratory	- NATA # 1261	Site # 18217			X	X	_					
Exte		Samula Data	Compling	Motrix				_					
NO	Sample ID	Sample Date	Time	watrix									
1	QS102	Apr 18, 2023		Soil	S23-Ap006030	2 X	Х						
2	QS104	Apr 18, 2023		Soil	S23-Ap006030	3 X	Х						
3	QS106	Apr 19, 2023		Soil	S23-Ap006030	4 X	Х						
4	QS108	Apr 20, 2023		Soil	S23-Ap006030	5 X	Х						
5	QS110	Apr 20, 2023		Soil	S23-Ap006030	6 X	X						
6	QS112	Apr 20, 2023		Soil	S23-Ap006030	7 X	X	_					
Test	Counts					6	6						



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

#### Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank									
Total Recoverable Hydrocarbons									
TRH C6-C9	mg/kg	< 20			20	Pass			
TRH C10-C14	mg/kg	< 20			20	Pass			
TRH C15-C28	mg/kg	< 50			50	Pass			
TRH C29-C36	mg/kg	< 50			50	Pass			
TRH C6-C10	mg/kg	< 20			20	Pass			
TRH >C10-C16	mg/kg	< 50			50	Pass			
TRH >C16-C34	mg/kg	< 100			100	Pass			
TRH >C34-C40	mg/kg	< 100			100	Pass			
Method Blank									
BTEX	1								
Benzene	mg/kg	< 0.1			0.1	Pass			
Toluene	mg/kg	< 0.1			0.1	Pass			
Ethylbenzene	mg/kg	< 0.1			0.1	Pass			
m&p-Xylenes	mg/kg	< 0.2			0.2	Pass			
o-Xylene	mg/kg	< 0.1			0.1	Pass			
Xylenes - Total*	mg/kg	< 0.3			0.3	Pass			
Method Blank			1		I				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions									
Naphthalene	mg/kg	< 0.5			0.5	Pass			
Method Blank			1		1				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	mg/kg	< 0.5			0.5	Pass			
Acenaphthylene	mg/kg	< 0.5			0.5	Pass			
Anthracene	mg/kg	< 0.5			0.5	Pass			
Benz(a)anthracene	mg/kg	< 0.5			0.5	Pass			
Benzo(a)pyrene	mg/kg	< 0.5			0.5	Pass			
Benzo(b&j)fluoranthene	mg/kg	< 0.5			0.5	Pass			
Benzo(g.h.i)perylene	mg/kg	< 0.5			0.5	Pass			
Benzo(k)fluoranthene	mg/kg	< 0.5			0.5	Pass			
Chrysene	mg/kg	< 0.5			0.5	Pass			
Dibenz(a.h)anthracene	mg/kg	< 0.5			0.5	Pass			
Fluoranthene	mg/kg	< 0.5			0.5	Pass			
Fluorene	mg/kg	< 0.5			0.5	Pass			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5			0.5	Pass			
Naphthalene	mg/kg	< 0.5			0.5	Pass			
Phenanthrene	mg/kg	< 0.5			0.5	Pass			
Pyrene	mg/kg	< 0.5			0.5	Pass			
Method Blank					1				
Heavy Metals						_			
Arsenic	mg/kg	< 2			2	Pass			
	mg/kg	< 0.4			0.4	Pass			
Chromium	mg/kg	< 5			5	Pass			
Copper	mg/kg	< 5			5	Pass			
Lead	mg/kg	< 5			5	Pass			
Mercury	mg/kg	<u>&lt; 0.1</u>			0.1	Pass			
	mg/kg	< 5			5	Pass			
	mg/kg	< 5			5	Pass			
LCS - % Recovery									
Total Recoverable Hydrocarbons									
IRH C6-C9	%	101			70-130	Pass			



Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	78		70-130	Pass	
TRH C6-C10			%	102		70-130	Pass	
TRH >C10-C16			%	81		70-130	Pass	
LCS - % Recovery						•		
BTEX								
Benzene			%	92		70-130	Pass	
Toluene			%	91		70-130	Pass	
Ethylbenzene			%	97		70-130	Pass	
m&p-Xylenes			%	115		70-130	Pass	
o-Xylene			%	111		70-130	Pass	
Xylenes - Total*			%	114		70-130	Pass	
LCS - % Recovery								
<b>Total Recoverable Hydrocarbons -</b>	2013 NEPM Fract	ions						
Naphthalene		%	88		70-130	Pass		
LCS - % Recovery				T	1 1	I		
Polycyclic Aromatic Hydrocarbons	;							
Acenaphthene			%	103		70-130	Pass	
Acenaphthylene			%	103		70-130	Pass	
Anthracene			%	111		70-130	Pass	
Benz(a)anthracene			%	105		70-130	Pass	
Benzo(a)pyrene			%	101		70-130	Pass	
Benzo(b&j)fluoranthene			%	104		70-130	Pass	
Benzo(g.h.i)perylene			%	103		70-130	Pass	
Benzo(k)fluoranthene			%	98		70-130	Pass	
Chrysene			%	109		70-130	Pass	
Dibenz(a.h)anthracene			%	95		70-130	Pass	
Fluoranthene			%	113		70-130	Pass	
Fluorene			%	106		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	100		70-130	Pass	
Naphthalene			%	102		70-130	Pass	
Phenanthrene			%	104		70-130	Pass	
Pyrene			%	117		70-130	Pass	
LCS - % Recovery				1			-	
Heavy Metals							_	
Arsenic			%	100		80-120	Pass	
Cadmium			%	104		80-120	Pass	
Chromium			%	98		80-120	Pass	
			%	94		80-120	Pass	
Lead			%	87		80-120	Pass	
Nichol			%	103		80-120	Pass	
			%	108		80-120	Pass	
		<b>0 1</b>	%	105		80-120	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	000 4 000	NGE	<u> </u>	Result 1	<u>├</u> ───			
	S23-Ap0061756	NCP	%	80	<u>                                      </u>	/0-130	Pass	
	S23-Ap0061756	NCP	%	/9		/0-130	Pass	
Spike - % Recovery				Desilit				
Nonhtholono		0/	Kesult 1		70.400	Date		
	523-IVIYUUU5381	NCP	%	8/		70-130	Pass	
Polyovalia Arometia Uydroosetaara				Bogult 1				
	S23_AD0050204	NCD	0/.	101		70 120	Page	
	S23-An0050201	NCP	/0 0/_			70-130	Pass	
поспарнинуюте	020-700000000	NOF	/0	33	I	10-130	1 435	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	S23-Ap0059391	NCP	%	106			70-130	Pass	
Benz(a)anthracene	S23-Ap0059391	NCP	%	99			70-130	Pass	
Benzo(a)pyrene	S23-Ap0059391	NCP	%	100			70-130	Pass	
Benzo(b&j)fluoranthene	S23-Ap0059391	NCP	%	93			70-130	Pass	
Benzo(g.h.i)perylene	S23-Ap0059391	NCP	%	98			70-130	Pass	
Benzo(k)fluoranthene	S23-Ap0059391	NCP	%	99			70-130	Pass	
Chrysene	S23-Ap0059391	NCP	%	108			70-130	Pass	
Dibenz(a.h)anthracene	S23-Ap0059391	NCP	%	78			70-130	Pass	
Fluoranthene	S23-Ap0059391	NCP	%	108			70-130	Pass	
Fluorene	S23-Ap0059391	NCP	%	103			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S23-Ap0059391	NCP	%	87			70-130	Pass	
Naphthalene	S23-Ap0059391	NCP	%	100			70-130	Pass	
Phenanthrene	S23-Ap0059391	NCP	%	98			70-130	Pass	
Pyrene	S23-Ap0059391	NCP	%	115			70-130	Pass	
Spike - % Recovery							•		
Heavy Metals				Result 1					
Arsenic	S23-Ap0055612	NCP	%	94			75-125	Pass	
Cadmium	S23-Ap0060302	CP	%	102			75-125	Pass	
Chromium	S23-Ap0060302	CP	%	103			75-125	Pass	
Copper	S23-Ap0055612	NCP	%	94			75-125	Pass	
Lead	S23-Ap0055612	NCP	%	82			75-125	Pass	
Mercury	S23-Ap0060302	CP	%	109			75-125	Pass	
Nickel	S23-Ap0060302	CP	%	101			75-125	Pass	
Zinc	S23-Ap0060302	CP	%	87			75-125	Pass	
Spike - % Recovery	0207000002	01	70	01			10 120	1 400	
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S23-Ap0060304	CP	%	103			70-130	Pass	
TBH C6-C10	S23-Ap0060304	CP	%	106			70-130	Pass	
Spike - % Recovery	0_01,0000000	0.	,,,				10100		
BTEX				Result 1					
Benzene	S23-Ap0060304	CP	%	100			70-130	Pass	
Toluene	S23-Ap0060304	CP	%	90			70-130	Pass	
Ethylbenzene	S23-Ap0060304	CP	%	96			70-130	Pass	
m&p-Xylenes	S23-Ap0060304	CP	%	107			70-130	Pass	
o-Xylene	S23-Ap0060304	CP	%	115			70-130	Pass	
Xylenes - Total*	S23-Ap0060304	CP	%	110			70-130	Pass	
		QA	,,,	<b>D K</b> 4			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S23-Ap0055614	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S23-Ap0055614	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S23-Ap0055614	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S23-Ap0055614	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S23-Ap0055614	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S23-Ap0055614	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



Duplicate				-				_	
Polycyclic Aromatic Hydrocarbons	6		-	Result 1	Result 2	RPD			
Benzo(k)fluoranthene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S23-Ap0057819	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S23-Ap0060223	NCP	mg/kg	7.7	6.7	13	30%	Pass	
Cadmium	S23-Ap0060223	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S23-Ap0060223	NCP	mg/kg	16	14	11	30%	Pass	
Copper	S23-Ap0060223	NCP	mg/kg	17	16	3.0	30%	Pass	
Lead	S23-Ap0060223	NCP	mg/kg	45	48	7.2	30%	Pass	
Mercury	S23-Ap0060223	NCP	mg/kg	4.4	4.2	4.7	30%	Pass	
Nickel	S23-Ap0060223	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S23-Ap0060223	NCP	mg/kg	35	28	22	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S23-Ap0060300	NCP	%	8.1	9.2	13	30%	Pass	
Duplicate				r			1	-	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S23-Ap0060306	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	S23-Ap0060306	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				r			1	-	
BTEX				Result 1	Result 2	RPD			
Benzene	S23-Ap0060306	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S23-Ap0060306	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S23-Ap0060306	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S23-Ap0060306	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S23-Ap0060306	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S23-Ap0060306	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-Ap0060306	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

 N04
 analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

 N07
 the total of the two co-eluting PAHs

#### Authorised by:

Bonnie Pu	Analytical Services Manager
Mickael Ros	Senior Analyst-Metal
Raymond Siu	Senior Analyst-Volatile
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

		<b>C!</b>	Eurofins Envi ABN: 50 005 085	ronment Test	ting Australia Pty L	.td						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm	ent Testing NZ Ltd
web: w email: I	ww.eurofins.com.au	com	Melbourne 6 Monterey Road Dandenong Sout VIC 3175 Tel: +61 3 8564 5 NATA# 1261 Site	Geelor 1 19/8 Le h Groved VIC 32 5000 Tel: +6 w# 1254 NATA#	ng Syd ewalan Street 179 dale Girr 116 NS 11 3 8564 5000 Tel: # 1261 Site# 25403 NAT	Iney Magowar aween W 2145 +61 2 99 TA# 1261	[.] Road 00 840 Site# 1	0 18217	Brisbane           Street         1/21 Smallwood Place           Murarrie         QLD 4172           38091         Tel: +61 7 3902 4600           te# 25466 NATA# 1261 Site# 207	Nallwood Place 1/ M 72 Tr 7 3902 4600 N 261 Site# 20794 S	lewcastle /2 Frost Drive fayfield West NSW 2304 /ei: +61 2 4968 8448 IATA# 1261 /ite# 25079 & 25289	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Cavvanba C 1 / 66 Cente Byron Bay NSW 2481	onsulting nnial Cct					Ore Re Ph Fa	984747 02 6685 7811 02 6685 5083	11 33		Received: Due: Priority: Contact Name:	Apr 27, 2023 3:50 May 4, 2023 5 Day Drew Wood	РМ
Pro Pro	oject Name: oject ID:	20025.76									Eu	rofins Analytical Serv	vices Manager : Al	ndrew Black
		Sa	Imple Detail			Moisture Set		Eurofins Suite B7						
Sydr	ney Laboratory ·	NATA # 1261	Site # 18217			)	<	х						
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	QS102	Apr 18, 2023		Soil	S23-Ap00603	302	<	Х						
2	QS104	Apr 18, 2023		Soil	S23-Ap00603	303	<	х						
3	QS106	Apr 19, 2023		Soil	S23-Ap00603	304	<	Х						
4	QS108	Apr 20, 2023		Soil	S23-Ap00603	305 >	<	Х						
5	QS110	Apr 20, 2023		Soil	S23-Ap00603	306 >	<	Х						
6	QS112	Apr 20, 2023		Soil	S23-Ap00603	307 >	<	Х						
Test	Counts						6	6						

								_							
IENT: Cav	wanba Consulting		(Standard	OUND REQUIREMENTS :	Standa	ard TAT (List	due date):					FOR LABORAT	ORY USE ONL	r (Circle)	
ROJECT 20	Wcastle		Ultra Trace	Drugnics	Non S	standard or u	rgent TAT (List du	ue date):				Custody Seal Intac	t?	No No	A
RDER NUME	3ER: 20025.76		ALS QUI	01E NO.: 576	302-409-21				C	OC SEQUENCE NUMBER	(Circle)	receipt?	a pricks breadin ob	ON NO N	VA
OJECT MAI	NAGER: Drew Wood	CONTACT	PH: 0403 66	19 755				0	F: 1 2	3 4 5 6	7 8 9 10	11 Other comment:	emperature on Rec	eipt:	
MPLER: Za	c Laughlan	SAMPLER	MOBILE: 04	128 288 854	RELINQUE	SHED BY:		R	CEIVED BY:	1		RELINQUISHED BY:	- 745-7-7	RECEIVED BY:	-
IC emailed I	to ALS? ( YES / NO)	EDD FORM	IAT (or defa	ulų:					nom	F				Bundan	
ail Reports	to (will default to PM if no other addres	sses are listed): drew@cavva	nba.com, za	c@cavvanba.com	DATE/TIME	Е		DA	TE/TIME.	1		DATE/TIME:		DATE/TIME:	
nail Invoice	to (will default to PM if no other addres	ses are listed); rob@cavvanb	a.com		24/04/202	23			2414/13	Sine				21/2/23	. 20
DWMENTS/S	PECIAL HANDLING/STORAGE OR	SPOSAL: Please place	(arithing soli	REBINE CON BRIDE		_								/	-
ALS SAI	MPLE DETAILS MATRIX: S	OLID (S) WATER (W)		CONTAINER INFO	RMATION			ANAI Where Meta	YSIS REQUIRED in ils are required, spec	cluding SUITES (NB Suite ify Total (unfiltered bottle red	Codes must be listed to quired) or Dissolved (fis	altract suite price) 3d filtered botile required)		Additional Information	
AB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(relarity	TOTAL CONTAINERS	5-26: TRH/BTEXN/PAHs/8 Metals	Astrestos ID	TRH + BTEXN				C o đầu ana	nments on likely contaminant fevels dons, or samples requiring specific QC liyeis etc	
1	TP104_0.2-0.3	18/04/2023	Soil			1		-							-
2	TP104_0.3-0.4	18/04/2023	Soil			1		-					1		
3	TP105_0-0.1	18/04/2023	Soil			1	x						Envi	ronmental Divisi	on
4	TP105_0.3-0.4	18/04/2023	Soil			1	x						Sydr	1 <b>Cy</b> ork Order Beference	
5	TP106_0-0.1	18/04/2023	Soil			1	х						F	S231340	ั้่ 8
6	TP106_0.3-0.4	18/04/2023	Soil			1							hee	.0201040	
3	TIP107_0-0.1	18/04/2023	Soil			1	х								6161
8	TP107_0.3-0.4	18/04/2023	Soil			1	х								
3	TP108_0-0.1	19/04/2023	Soil			- ž	x						14		
ρ	TP108_0.3-0.4	19/04/2023	Soil			1									
11	TP109_0-0.1	19/04/2023	Soil			. L	х	x							1.11
K	TP109_0.5-0.6	19/04/2023	Soil			1							reieph	UILE . +01-2-0/04 0000	
3	TP110_0-0.1	19/04/2023	Soil			1	х						Î. I.		1
14	TP110_0.3-0.4	19/04/2023	Soil			1	x								
5	TP111_0-0.1	19/04/2023	Soil			1	x							A021	1741
6	TP111_0.3-0.4	19/04/2023	Soil			1					C	bcon Forw	ard-Lab /	Split WO >SO	
2	TP112_0-0.1	19/04/2023	Soil			1	x					h / Analycie			
\$	TP112_0.3-0.4	19/04/2023	Soil			1					1	AD / MILLISIS	Data		
9	TP113_0-0.1	19/04/2023	Soil			1	x				(	rganisco By	Date		T
20	TP113_0.4-0.5	19/04/2023	Soil			1	х	x			1	celinquished	By / Date	م هم که محمد و این این می	and the second sec
21	TP114_0-0.1	20/04/2023	Soil			1	х				(	Connote / Co	wier:		
															101

V = VOA Mal HCI Preserved; VB = VOA Vial Sodium Bisubhate Preserved; VS = VOA Vial Suffurio Preserved; AV = Arritright Unpreserved Vial SG = Sulfulic Preserved Amber Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ST = Sterile Bottle; ASS = Plastic Bag for Acid Bullihate Sols; B = Unpreserved B

.

984747

A	CHAIN OF CUSTODY																	
LIENT: Cavvanba Consulting			TURNAROUND REQUIREMENTS :	Standard TAT (List due date):										FOR LABORATORY USE ONLY	(Circle)			
FFICE: Newcastle			(Standard TAT may be longer for some tests e.g. Uitra Trace Organics)	Non Standard or urgent TAT (I	ist due date):									Custody Seal Infact?	Yes	No	N	ľ
ROJECT: 20025.76			ALS QUOTE NO .: SY	BQ-409-21			COC SE	QUENC	ENUMB	ER (Ci	rcle)			Free ice / frozen ice bricks present up	in Yes	No	Ni	ĥ
RDER NUMBER: 20025.76					COC;	1 2	3	4	5 6	7	в	9 10	11	Random Sample Temperature on Rec	apt	.C		
ROJECT MANAGER: Drew Woo	d	CONTACT P	PH: 0403 689 755		OF:	1 2	3	4	9 s	7	8	9 10	11	Other comment.				
AMPLER: Zac Laughlan		SAMPLER N	AOBILE: 0428 288 854	RELINQUISHED BY:	RECE	IVED BY:		11					REI	LINQUISHED BY:	RECEIVED	BY:		
OC emailed to ALS? ( YES / !	NO)	EDD FORM	AT (or default):		ĺ ĺ	510	: 7	5										
mail Reports to (will default to PN	l if no other addresses a	are listed): drew@cavvar	nba.com, zac@cavvanba.com	DATE/TIME:	DATE	TIME:	C	6.	- 17				DA	TE/TIME:	DATE/TIME:	1		
mail Invoice to (will default to PM if no other addresses are listed): rob@cavvanba.com 24/04/2023				24/04/2023	4	24 [4]	23	C)	12						_			
																		ĺ

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: Please place remaining samples ON HOLD

USE	SAMPLE DETAILS MATRIX: SOLI	D (S) WATER (W)		CONTAINER INFORMATION	ANALYSIS REQUIRED including SUITES (NE). Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unifiered bothe required) of Dissolved (field filtered bothe required).									Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	WATRIX	TYPE & PRESERVATIVE (reler lo codes beloxy)	TOTAL CONTAINERS	S+26: TRH/BTEXNPAHs/8 Wetals	Asbestos ID	TRH + BTEXN								Converting the contained terms of the second s
٦L	TP114_0.3-0.4	20/04/2023	Soil		1											
13	TP115_0-0.1	20/04/2023	Soil		1	x										
14	TP115_0.3-0.4	20/04/2023	Soil		1	x										
75	TP116_0-0.1	20/04/2023	Soil		1	x										
U	TP116_0.3-0.4	20/04/2023	Soil		1											
17	TP117_0-0.1	20/04/2023	Soil		1	×										
٦Ŝ	TP117_0.3-0.4	20/04/2023	Soil		1											
25	TP118_0-0.1	20/04/2023	Soil		i	x										
30	TP118_0.3-0.4	20/04/2023	Soil		1											
31	WW 101_0-0.1	19/04/2023	Soil		1											
36	MW101_0.5-0.6	19/04/2023	Soil		DE .											
73	MW101_0.8-0.9	19/04/2023	Soil		1											
34	MW101_2.5-2.6	21/04/2023	Soil		1											
3<	₩W101_5.0-5.1	21/04/2023	Soil		1											
36	MW102_0-0.1	19/04/2023	Soil		1											
32	MW102_0.5-0.6	19/04/2023	Soil		1											
78	MW 102_1.2-1.3	19/04/2023	Soil		1											
39	MW 102_2.0-2.1	21/04/2023	Soil		1											
ho	WW 102_3.0-3.1	21/04/2023	Soil		1											
41	MW 102_4.0-4.1	21/04/2023	Soil		1											
Water Con	ane Coes : Fragment Para Noter F	anna taun sa arga	Petriet	a protection participation for w	nig state in	101-19 ¹² -047-25	+ 5000 Dig	T. D. State State	Dr. Artaly Upras	aş sallır.						

- ÷

CONAVW C + 20c Addig Training Robert A 120A Proposed India: VL + Britishney ATS + Plats Explore Section 200 U + 200 minored Explore

.

#### CHAIN OF CUSTODY

A

.

ALS Laboratory

plaase tak 🦻																	
CLIENT: Cavvanba Consulting		TURNAROUND REQUIREMENTS :	Standard TAT (List due date):											FOR LABORATORY USE ONL	Y (Circte)		
DFFICE: Newcastle		(Standard TAT may be longer for some tests e.g. Ultra Trace Organics)	Non Standard or urgent TAT (	List dure date):										Custody Seaf Intact?	Yes	No	N/A
PROJECT: 20025.76		ALS QUOTE NO .: SYB	Q-409-21			c	COC SEC	UENCI	ENUMBE	R (Cir	cle)			Free ice / frozen ice bricks present u receipt?	oon Yes	No	N/A
DRDER NUMBER: 20025.76				COC:	1	2	3	4 8	5 6	7	8	9	10	11 Random Sample Temperature on Re	ceipt	с	
PROJECT MANAGER: Drew Wood	CONTACT P	PH: 0403 689 755		OF:	1	2	3	4 8	5 6	7	8	9	10	11 Other comment			
SAMPLER: Zac Laughlan	SAMPLER	MOBILE: 0428 288 854	RELINQUISHED BY:	RECE	IVED B	Y:							R	ELINQUISHED BY:	RECEIVED 8	Y:	
COC emailed to ALS? ( YES / NO)																	
Email Reports to (will default to PM if no other addresses a	are listed): drew@cavvar	nba.com, zac@cavvanba.com	DATE/TIME:	DATE	/TIME:								D	ATE/TIME:	DATE/TIME:		
Email Invoice to (will default to PM if no other addresses an	24/04/2023																
								_				_					_

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: Plate place remaining samples ON HOLD

ALS USE	SAMPLE DETAILS MATRIX: SOLI	) (S) WATER (W)		CONTAINER INFORMATION		V	ANALYS Where Metals a		Additional Information			
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL CONTAINERS	S-26: TRH/BTEXNIPAMS/8 Metals	Ashestos ID	TRH + BTEXN				Comments in Yorky and provided likely distants, or services equilation of the one of the property of the
٩L	MW102_5.0-5.1	21/04/2023	Soil		1							
43	MW 102_6.0-6.1	21/04/2023	Soil		1							
ЧИ	NW102_7.0-7.1	21/04/2023	Soil		1							
4r	WW103_0-0.1	19/04/2023	Soil		1							
46	MW103_0.2-0.3	19/04/2023	Soil		1	х						
47	MW103_0.5-0.6	19/04/2023	Soil		1							
બક	MW103_1.2-1.3	19/04/2023	Soil		1							
45	MW 103_2.0-2.1	20/04/2023	Soil		1							
50	MW103_3.0-3.1	20/04/2023	Soil		1							
\$7	MW 103_4.0-4.1	20/04/2023	Soil		1							
52	MW103_5.0-5.1	20/04/2023	Soil		(9)							
53	MW103_6.0-6.1	20/04/2023	Soil		1							
54	MW103_7.0-7.1	20/04/2023	Soil		1							
15	QS101	18/04/2023	Soil		1	х						
×	QS102	18/04/2023	Soil		1	Plea	ise forwa	ard to Eu	rofins for analysis - TRI	1/BTEXN/PAHs/8 Meta	ls	
6	QS103	18/04/2023	Soil		9)	х						
*	QS104	18/04/2023	Soil		1	Plea	ase forwa	ard to Eu	rofins for analysis - TRI	H/BTEXN/PAHs/8 Meta	ls	
57	QS105	19/04/2023	Soil		1	х						
×	QS106	19/04/2023	Soil		1	Plea	ise forwa	ard to Eu	rofins for analysis - TRI	H/BTEXN/PAHs/8 Meta	ls	
58	QS107	20/04/2023	Soil		1	х						
×	QS108	20/04/2023	Soil		1	Plea	ase forwa	ard to Eu	rofins for analysis - TRI	H/BTEXN/PAHs/8 Meta	ls	
Water Cour	niner Göller. 🐨 - Lingererund - Landt, In e fillet P	neer and Phillips - OP - Fierd	1 Jillion 1	n	H_100-5174	Harring to the	A America Oliver	Oursead -	P. Arrest Decrement Figure			

2. The Annual Pharmed Dial (2010) Report of the Pharma Dial Action Dial Pharma Dial Pha

IFAT.	please tick	→	TURNAR	OUND REQUIREMENTS :	Standa	rd TAT (List	due date):					FOR LABORATORY	SEONLY (Circle)
	Newcastle		(Standard T	AT may be longer for some tests e.g	Non Si	andard or ut	pent TAT (List du	e date):				Custody Seal Intact?	Yes No P
ROJECT	20025.76		ALS QUC	OTE NO.: SYE	3Q-409-21				c	DC SEQUENCE NUMBER	R (Circle)	Free ice / frozen ice bricks receipt?	present upon Yes No J
RDER NU	JMBER: 20025.76							coc:	1 2	3 4 5 6	7 8 9	10 11 Random Sample Temper	ature on Receipt: C
ROJECT	MANAGER: Drew Wood	CONTACT	PH: 0403 68	9 755				OF:	1 2	3 4 5/6	789	10 11 Other comment:	
AMPLER	: Zac Laughlan	SAMPLER	MOBILE: 04	28 288 854	RELINQUE	HED BY:		REC	EIVED BY:	F		RELINQUISHED BY:	RECEIVED BY:
OC emai	led to ALS? ( YES / NO)	EDD FORM	IAT (or defa	ull):				T	1000	91			
mail Rep	orts to (will default to PM if no other addre	esses are listed): drew@cav	wanba.com,	zac@cawanba.com	DATE/TIME			DATE	E/TIME:	6.5		DATE/TIME:	DATE/TIME:
mail Invo	ice to (will default to PM if no other addre	sses are listed): rob@cavva	inba.com		24/04/202	3		u	119115	-1.9-			
OMMEN	TS/SPECIAL HANDLING/STORAGE OR I	SPOSAL: Please place #	emaining so	mples ON HOLD									
ALS USÉ	SAMPLE DETAILS	DLID (S) WATER (W)		CONTAINER INFO	ORMATION		Whe	ANALYSI re Metals a	IS REQUIRED in: re required, spect	cluding SUITES (NB. Sui fy Total (unfiltered bottle (	te Cades must be liste required) ar Dissolved	d to attract suite price) (field filtered bottle required).	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	.TYPE & PRESERVATIVE to codes below!	(refer	TOTAL CONTAINERS	S-26: TRHJBTEXN/PAH5/8 Metals	Asbestos ID	TRH + BTEXN				Comments on ikely contaminant levels, dilutions, or samples requiring specific OC analysis etc.
59	QS109	20/04/2023	Soil			7	х						
£	QS110	20/04/2023	Soil			1	Pleas	e forwa	ard to Euro	ofins for analys	sis - TRH/BTI	EXN/PAHs/8 Metals	
two	QS111	20/04/2023	Soil	-		1	х						
6.0	Q5112	20/04/2023	Soil			1	Pleas	e forwa	ard to Euro	ofins for analys	sis - TRH/BTI	EXN/PAHs/8 Metals	
1.1	ACM101	18/04/2023	Soil			1		х					
67	ACM102	18/04/2023	Soil			1		x					
67	ACM103	19/04/2023	Soil			1		х	1				
64	ACM104	19/04/2023	Soil			1		х					
64	ACM105	20/04/2023	Soil			1		x					
66	Trip Blank		Soit			1			x				
67	Trìp Spike		Soil			1			x				
68	TSC		Soil										
			Soil										
			Soil										
			Soil										
			Soil										
			Soil										
			Soil										
			Soil										
Sugar Sugar		· Mart		Bride Biller ver ziert	Y 82			_					

.

984747



#### Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521					
Melbourne	Geelong	Sydney	Canberra	Brisbane	Newcastle
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place	1/2 Frost Drive
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie	Mayfield West NSW 2304
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172	Tel: +61 2 4968 8448
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600	NATA# 1261
NATA# 1261 Site# 1254	NATA# 1261 Site# 25403	NATA# 1261 Site# 18217	NATA# 1261 Site# 25466	NATA# 1261 Site# 20794	Site# 25079 & 25289

www.eurofins.com.au

Perth

Welshpool

WA 6106

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBI

IANZ# 1327

EnviroSales@eurofins.com

	· · · · · · · · · · · · · · · · · · ·
NZBN: 9429046024954	
Auckland	Christchurch
35 O'Rorke Road	43 Detroit Drive
Penrose,	Rolleston,
Auckland 1061	Christchurch 7675
Tel: +64 9 526 45 51	Tel: 0800 856 450

IANZ# 1290

### Sample Receipt Advice

Company name:	Cavvanba Consulting
Contact name:	Drew Wood
Project name:	Not provided
Project ID:	20025.76
Turnaround time:	5 Day
Date/Time received	Apr 27, 2023 3:50 PM
Eurofins reference	984747

#### **Sample Information**

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 1.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- 1 Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Drew Wood - drew@cavvanba.com.

Note: A copy of these results will also be delivered to the general Cavvanba Consulting email address.

### Global Leader - Results you can trust



Cavvanba Consulting 1 / 66 Centennial Cct Byron Bay NSW 2481

Attention:

Drew Wood

Report Project name Project ID Received Date

**985222-W** 20025.75

May 01, 2023

		1	
Client Sample ID			QW02
Sample Matrix			Water
			S23-
Eurofins Sample No.			My0001664
Date Sampled			Apr 26, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	127
Volatile Organics			
1.1-Dichloroethane	0.001	mg/L	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.



Client Sample ID Sample Matrix			QW02 Water
			S23-
Eurofins Sample No.			My0001664
Date Sampled			Apr 26, 2023
Test/Reference	LOR	Unit	
Volatile Organics	_		
1.3.5-Trimethylbenzene	0.001	ma/l	< 0.001
1.4-Dichlorobenzene	0.001	ma/l	< 0.001
2-Butanone (MEK)	0.005	ma/L	< 0.005
2-Propanone (Acetone)	0.005	ma/L	< 0.005
4-Chlorotoluene	0.001	ma/L	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	ma/L	< 0.005
Allvl chloride	0.001	ma/L	< 0.001
Benzene	0.001	ma/L	< 0.001
Bromobenzene	0.001	ma/L	< 0.001
Bromochloromethane	0.001	ma/L	< 0.001
Bromodichloromethane	0.001	ma/L	< 0.001
Bromoform	0.001	ma/L	< 0.001
Bromomethane	0.005	ma/L	< 0.005
Carbon disulfide	0.001	ma/L	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001
Chloroethane	0.005	mg/L	< 0.005
Chloroform	0.005	mg/L	< 0.005
Chloromethane	0.005	mg/L	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001
Dibromomethane	0.001	mg/L	< 0.001
Dichlorodifluoromethane	0.005	mg/L	< 0.005
Ethylbenzene	0.001	mg/L	< 0.001
lodomethane	0.001	mg/L	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005
o-Xylene	0.001	mg/L	< 0.001
Styrene	0.001	mg/L	< 0.001
Tetrachloroethene	0.001	mg/L	0.001
Toluene	0.001	mg/L	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001
Trichloroethene	0.001	mg/L	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003
Total MAH*	0.003	mg/L	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005
4-Bromofluorobenzene (surr.)	1	%	127
Toluene-d8 (surr.)	1	%	120
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01



Client Sample ID			QW02
Sample Matrix			Water
			S23-
Eurofins Sample No.			My0001664
Date Sampled			Apr 26, 2023
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	55
p-Terphenyl-d14 (surr.)	1	%	112
Per- and Polyfluoroalkyl Substances (PFASs) - Shor	t		
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	0.05	ug/L	< 0.05
13C2-6:2 FTSA (surr.)	1	%	122
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.01	ug/L	< 0.01
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.01	ug/L	< 0.01
18O2-PFHxS (surr.)	1	%	116
13C8-PFOS (surr.)	1	%	112
Perfluorooctanoic acid (PFOA) ^{N11}	0.01	ug/L	< 0.01
13C8-PFOA (surr.)	1	%	112
Sum (PFHxS + PFOS)*	0.01	ug/L	< 0.01
Sum of US EPA PFAS (PFOS + PFOA)*	0.01	ug/L	< 0.01
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.01	ug/L	< 0.01



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 02, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 02, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 02, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 02, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	May 02, 2023	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Volatile Organics	Sydney	May 02, 2023	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Per- and Polyfluoroalkyl Substances (PFASs) - Short	Sydney	May 02, 2023	28 Days

- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)

Eurofins Environment Testing Australia Pty Lt				g Australia Pty Ltd					Eurofins ARL Pty Ltd	Eurofins Environm	ent Testing NZ Ltd		
web: w email: E	eb: www.eurofins.com.au nail: EnviroSales@eurofins.com		ABN: 50 005 08 Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong         Sydney           Ibourne         Geelong         Sydney           Ionterey Road         19/8 Lewalan Street         179 Magow           ndenong South         Grovedale         Girraween           3175         VIC 3216         NSW 2145           : +61 3 8564 5000         Tel: +61 3 8564 5000         Tel: +61 2           TA# 1261 Site# 1254         NATA# 1261 Site# 25403 NATA# 120		jowar Road en 45 2 9900 8400 1261 Site# 182 ⁻		Canb Unit 1 Mitche ACT 2 Tel: + 17 NATA	Brisbane           Dacre Street         1/21 Smallwood Place           Murarrie         Murarrie           QLD 4172         26113 8091           Tel: +61 7 3902 4600         261 Site# 25466 NATA# 1261 Site# 2079	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289	ABN: 91 05 0159 898           Perth           46-48 Banksia Road           Welshpool           WA 6106           Tel: +61 8 6253 4444           NATA# 2377 Site# 2370	NZEN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Cavvanba C 1 / 66 Cente Byron Bay NSW 2481	consulting ennial Cct				O R P	order N eport hone: ax:	985222 02 6685 7811 02 6685 5083		Received: Due: Priority: Contact Name:	May 1, 2023 1:33 F May 8, 2023 5 Day Drew Wood	PM
Pro Pro	oject Name: oject ID:	20025.75								E	urofins Analytical Ser	vices Manager : Ar	ndrew Black
		Sa	ample Detail			Volatile Organics	Eurofins Suite B4	Per- and Polyfluoroalkyl Substances (PFASs) - Short					
Sydr	ney Laboratory	• NATA # 1261	Site # 18217	7		X	X	X					
	Sample ID	Sample Date	Sampling	Matrix									
		Campie Bate	Time	Matrix				-					
1	QW02	Apr 26, 2023		Water	S23-My0001664	X	X	X					
Test	Counts					1	1	1					



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

#### Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### **QC** - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			 	1	-	
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank		1		1		
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total*	mg/L	< 0.003		0.003	Pass	
Method Blank					-	
Volatile Organics						
1.1-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001		0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001		0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001		0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001		0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001		0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001		0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001		0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.005		0.005	Pass	
2-Propanone (Acetone)	mg/L	< 0.005		0.005	Pass	
4-Chlorotoluene	mg/L	< 0.001		0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.005		0.005	Pass	
Allyl chloride	mg/L	< 0.001		0.001	Pass	
Bromobenzene	mg/L	< 0.001		0.001	Pass	
Bromochloromethane	mg/L	< 0.001		0.001	Pass	
Bromodichloromethane	mg/L	< 0.001		0.001	Pass	
Bromoform	mg/L	< 0.001		0.001	Pass	
Bromomethane	mg/L	< 0.005		0.005	Pass	
Carbon disulfide	mg/L	< 0.001		0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001		0.001	Pass	
Chlorobenzene	mg/L	< 0.001		0.001	Pass	
Chloroethane	mg/L	< 0.005		0.005	Pass	
Chloroform	mg/L	< 0.005		0.005	Pass	
Chloromethane	mg/L	< 0.005		0.005	Pass	



Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
cis-1.2-Dichloroethene	mg/L	< 0.001		0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001		0.001	Pass	
Dibromochloromethane	mg/L	< 0.001		0.001	Pass	
Dibromomethane	mg/L	< 0.001		0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.005		0.005	Pass	
lodomethane	mg/L	< 0.001		0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001		0.001	Pass	
Methylene Chloride	mg/L	< 0.005		0.005	Pass	
Styrene	mg/L	< 0.001		0.001	Pass	
Tetrachloroethene	mg/L	< 0.001		0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001		0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001		0.001	Pass	
Trichloroethene	mg/L	< 0.001		0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.005		0.005	Pass	
Vinyl chloride	mg/L	< 0.005		0.005	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01		0.01	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ma/L	< 0.001		0.001	Pass	
Acenaphthylene	ma/L	< 0.001		0.001	Pass	
Anthracene	ma/L	< 0.001		0.001	Pass	
Benz(a)anthracene	ma/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	ma/L	< 0.001		0.001	Pass	
Benzo(b&i)fluoranthene	ma/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	ma/L	< 0.001		0.001	Pass	
Chrysene	ma/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank						
Per- and Polyfluoroalkyl Substances (PFASs) - Short						
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/L	< 0.05		0.05	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.01		0.01	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.01		0.01	Pass	
Sum of US EPA PFAS (PFOS + PFOA)*	ug/L	-		0.01	N/A	
LCS - % Recovery						
Total Recoverable Hydrocarbons						
TRH C6-C9	%	101		70-130	Pass	
TRH C10-C14	%	120		70-130	Pass	
TRH C6-C10	%	100		70-130	Pass	
TRH >C10-C16	%	120		70-130	Pass	
LCS - % Recovery	· · · ·		· ·			
BTEX						
Benzene	%	119		70-130	Pass	
Toluene	%	109		70-130	Pass	
Ethylbenzene	%	99		70-130	Pass	



Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes			%	90	70-130	Pass	
o-Xylene			%	94	70-130	Pass	
Xylenes - Total*			%	92	70-130	Pass	
LCS - % Recovery				-			
Volatile Organics							
1.1-Dichloroethene			%	91	70-130	Pass	
1.1.1-Trichloroethane			%	88	70-130	Pass	
1.2-Dichlorobenzene			%	82	70-130	Pass	
1.2-Dichloroethane			%	87	70-130	Pass	
Trichloroethene			%	83	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
Naphthalene			%	88	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	3						
Acenaphthene			%	88	70-130	Pass	
Acenaphthylene			%	92	70-130	Pass	
Anthracene			%	94	70-130	Pass	
Benz(a)anthracene			%	94	70-130	Pass	
Benzo(a)pyrene			%	109	70-130	Pass	
Benzo(b&i)fluoranthene			%	112	70-130	Pass	
Benzo(a, h, i)pervlene			%	96	70-130	Pass	
Benzo(k)fluoranthene			%	113	70-130	Pass	
Chrysene			%	109	70-130	Pass	
Dibenz(a,h)anthracene			%	90	70-130	Pass	
Fluoranthene			%	91	70-130	Pass	
Fluorene			%	96	70-130	Pass	
Indeno(1,2,3-cd)pyrene			%	93	70-130	Pass	
Naphthalene			%	73	70-130	Pass	
Phenanthrene			%	90	70-130	Pass	
Pyrene			%	92	70-130	Pass	
LCS - % Recovery			70	02	10 100	1 400	
Per- and Polyfluoroalkyl Substanc	es (PFASs) - Shor	t			1		
1H 1H 2H 2H-perfluorooctanesulfon	ic acid(6:2 FTSA)		%	106	50-150	Pass	
Perfluorobexanesulfonic acid (PEHx	S)		%	105	50-150	Pass	
Perfluorooctanesulfonic acid (PEOS	)		%	113	50-150	Pass	
Perfluorooctanoic acid (PEOA)	/		%	105	50-150	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance	Pass	Qualifying Code
Spike - % Recovery	I						
Total Recoverable Hydrocarbons			Result 1				
TRH C10-C14	S23-Mv0008594	NCP	%	125	70-130	Pass	
TRH >C10-C16	S23-My0008594	NCP	%	126	70-130	Pass	
Spike - % Recovery							
Per- and Polyfluoroalkyl Substances (PFASs) - Short				Result 1			
1H.1H.2H.2H-							
perfluorooctanesulfonic acid(6:2	000 4-0000000	NOD	0/	440	50.450	Dere	
Parfluereestereestfere's said	523-AD0062206	NCP	%	112	50-150	Pass	
(PFOS)	S23-Ap0062206	NCP	%	100	50-150	Pass	
Perfluorooctanoic acid (PFOA)	S23-Ap0062206	NCP	%	111	50-150	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			
TRH C6-C9	S23-My0014457	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S23-My0008601	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S23-My0008601	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S23-My0008601	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C6-C10	S23-My0014457	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S23-My0008601	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S23-My0008601	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S23-My0008601	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate							1		
BTEX	1			Result 1	Result 2	RPD			
Benzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S23-My0014457	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S23-My0014457	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate							1		
Volatile Organics	1			Result 1	Result 2	RPD			
1.1-Dichloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
2-Propanone (Acetone)	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
4-Chlorotoluene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Allyl chloride	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromobenzene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Carbon disulfide	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S23-Mv0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S23-My0014457	NCP	ma/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S23-Mv0014457	NCP	ma/l	< 0.005	< 0.005	<1	30%	Pass	
Chloroform	S23-Mv0014457	NCP	ma/l	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S23-Mv0014457	NCP	ma/l	< 0.005	< 0.005	<1	30%	Pass	I
cis-1.2-Dichloroethene	S23-Mv0014457	NCP	ma/l	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	



Duplicate							-	•	
Volatile Organics				Result 1	Result 2	RPD			
Dibromochloromethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
lodomethane	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Methylene Chloride	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Styrene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S23-My0014457	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vinyl chloride	S23-My0014457	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-My0014457	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate								-	
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Acenaphthene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S23-My0009829	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				1				1	
Per- and Polyfluoroalkyl Substanc	es (PFASs) - Shor	t		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorooctanesulfonic acid(6:2 FTSA)	S23-My0002591	NCP	ug/L	< 0.05	< 0.05	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	S23-My0002591	NCP	ug/L	0.12	0.13	5.3	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	S23-My0002591	NCP	ug/L	0.35	0.40	13	30%	Pass	
Perfluorooctanoic acid (PFOA)	S23-My0002591	NCP	ug/L	0.01	0.01	4.3	30%	Pass	



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

#### **Qualifier Codes/Comments**

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

- F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
- N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
- Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled N11 analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

#### Authorised by:

Andrew Black Roopesh Rangarajan Roopesh Rangarajan

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Organic

Senior Analyst-Volatile

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

			Eurofins Env ABN: 50 005 08	ironment Testing	J Australia Pty Ltd	Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Ltd					
eb: w mail: f	ww.eurofins.com.au	com	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong           d         19/8 Lewal           th         Grovedale           VIC 3216         5000           5000         Tel: +61 3           e# 1254         NATA# 120	Sydne an Street 179 Ma Girrawa NSW 2 8564 5000 Tel: +6 61 Site# 25403 NATA#	/ igowar R een 145 1 2 9900 1261 Si	oad 8400 te# 182	Canb Unit 1 Mitch ACT : Tel: + 17 NATA	Brisbane         Newcastle           treet         1/21 Smallwood Place         1/2 Frost Drive           Murarrie         Mayfield West NSW 2304           QLD 4172         Tel: +61 2 4968 8448           8091         Tel: +61 7 3902 4600         NATA# 1261           # 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Cavvanba C 1 / 66 Cente Byron Bay NSW 2481	Consulting Innial Cct				O R P F	order N eport hone: ax:	985222 02 6685 7811 02 6685 5083	Received: Due: Priority: Contact Name:	May 1, 2023 1:33 I May 8, 2023 5 Day Drew Wood	PM
Pro Pro	oject Name: oject ID:	20025.75							E	urofins Analytical Ser	vices Manager : Ai	ndrew Black
		Sa	ample Detail			Volatile Organics	Eurofins Suite B4	Per- and Polyfluoroalkyl Substances (PFASs) - Short				
Sydr	ney Laboratory -	NATA # 1261	Site # 18217	,		X	X	X				
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	QW02	Apr 26, 2023		Water	S23-My0001664	4 X	Х	Х				
<b>Fest</b>	Counts					1	1	1				



#### Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521						ABN: 9
Melbourne	Geelong	Sydney	Canberra	Brisbane	Newcastle	Perth
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place	1/2 Frost Drive	46-48
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie	Mayfield West NSW 2304	Welsh
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172	Tel: +61 2 4968 8448	WA 61
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600	NATA# 1261	Tel: +6
NATA# 1261 Site# 1254	NATA# 1261 Site# 25403	NATA# 1261 Site# 18217	NATA# 1261 Site# 25466	NATA# 1261 Site# 20794	Site# 25079 & 25289	NATA#

#### www.eurofins.com.au

EnviroSales@eurofins.com

### Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954

91 05 0159 898	NZBN: 9429046024954										
1	Auckland	Christchurch									
Banksia Road	35 O'Rorke Road	43 Detroit Drive									
pool	Penrose,	Rolleston,									
106	Auckland 1061	Christchurch 7675									
61 8 6253 4444	Tel: +64 9 526 45 51	Tel: 0800 856 450									
# 2377 Site# 2370	IANZ# 1327	IANZ# 1290									

### **Sample Receipt Advice**

Company name:	Cavvanba Consulting
Contact name:	Drew Wood
Project name:	Not provided
Project ID:	20025.75
Turnaround time:	5 Day
Date/Time received	May 1, 2023 1:33 PM
Eurofins reference	985222

#### **Sample Information**

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 3.2 degrees Celsius.
- ✓ All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- $\checkmark$  Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- ✓ Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Drew Wood - drew@cavvanba.com.

Note: A copy of these results will also be delivered to the general Cavvanba Consulting email address.

### Global Leader - Results you can trust

CHAIN OF CUSTODY					aug / - 1 - 1 - 1
	TURNING BEGINTEMENTI	<ol> <li>South Control Replace Address</li> </ol>		FOR LABORATORY USE ONLY ICITE	
DEFICE NEWSTRAND PROJECT 20026 TE DECETE NEWSTER 20026 TE	ALS GROTT AN	¹ L. DOI 100100 an Apple "AT Hes" in Sec. (1994).		Subcon Jorva	ni lab Splu WO
PROJECT WASAGER Drew Wreek	STREET PROJECT AND TRA			* Maginization 1 11	8 's
SAMPLER Dat Langton	1425FLER MOBILES 10020 1283-084	REPORTED BY	OF TRAFFIC BY	est wonished as	Julie State
1211 APR & A & A & A & A & A & A & A & A & A &	EDT FORMAT DE BORD	1	-A-B-	Telbrodika. (1	Lauro -
Email Pleases is a start of the second second	to be a design of the second state of the seco	Department 1		CALENDAR ON CALENDARY	Actual and a second sec
Early from an and an	internal sugaries in a	28 1 2	S. R. 49	Contrate Costa	16 ST 18 ST 18
NUMBER OF A DESCRIPTION				12/1	

COMMENTATION NATION ALCONT IN DEPOSIT

ALS DSE	SAMPLE DETAILS	MATRIX SOLID (5) WATER (W)		CONTAINER INFORMA	TION				COMPANIES AND	10-199 v.		2011	n mi	inclus	ilsy iPt v	Infuternal Sheet: Auda ana Information
AE (7			and even.	"-for European Avenue		FOTAL Amount Address	tonits and a start of the second s		<ul> <li>Security Manual Annual A</li></ul>	-000 14280 - 14V-014	distant and a second	Chumban approxime.	THREE A RIVE COLOR	MIADARCHIMEL IAS	14181 + 10101	
.2-		3504207					÷						×.			
7																
4	19072	2014/2011									21					
5		2014402001														
6	18593140	26/04/2011							×		51	2	x			defailered summer of the matter field (24.1)
7		26042221					X,		X,		x	×	×			
S.	-952878	£7104(20.2)							8		8					
4	$dM_{T_{k}}^{*} t^{-\alpha}$	2574(2027							×		×.	×	×			
12		$(=M(M^{-1}))$					i.	Х				8	x			
	4897.825	(heads)					N.	x		30		X	×			Environmental Distant
the.	2000-12	25/04/2020					Ŕ		X	x	X	00	x			S
170	ANVOLL	14/164/2511					×		8	×.	8	×	x			E\$2313046
14	M37.107	27104:20:0					8		X	х	х	x	х			E02010040
1.5	MAR 102	27.03(20)22					<i>8</i>	2	8	8	×.	8	8		- Westerland and the	目的になったと思い
12	MW 103	CONTRACTOR N					$\times$		×			8	*			
M							×									A. 6 (20)
	50002								in-nexter 2020	-16 W. 18		an water a		45 stimes		職にあるというには勝い

With Centre Charles

					0.0200020000000000000000000000000000000							Note v selen			
						EP						COR LABO	UNITED STATES	DNLS (Circ	ie)
962.110					57E NO	(159.27			122 10.008			1017-5391-0		ing a clear	in the
CINDER /	MERTER EXECUTION NEW WITH EXECUTION		-01/1107	D11 0400 00					1			T. Hubber Care	e ferrerarie	Fin Republic	
SAMP DI	1206 1 Highlan		SUPPLED	PH: 0403 68	19 755	DE MUNICIPIT			C.	1		* )===;c===+			
10.0 ema	IN LAST OF		(COLUMN)	UST 16- dieta		4-			AL.						1002/101/1251 开 P
ento il Prop	efficiency and a set of					CENTER AND					10				
Carlell II fr	deal and the state of														
COMMEL	TREESEN HANDLEARSTO	Ave: an instruction		11-0-1											
ALS USE	SAMPLE DETAILS	MATRIAL SOLID (S) V	(A)(EP (W)		CONTAINER INFO	RMATION									Augustanas Reformation
	1100.1			284 [110	I YTE & RRESERVATIVE	107Al	NINGTEXTINOUS	We ASPREMANNER	Well Sound Wellington technical fortage Southand		Mangatoeta	rection of the second s	Pr. Digeneration.		
18						of Lansa and Land									
1240	1000														
- 10 - 10-5			C4:1017												
31			942211												
33	BB2														
1.7													×		
1.4													×.		
-12															
- 66	111-9eau														
			****	(Cabi											
				Water											
				Yr zte											

## Appendix I

### Asbestos Management Letter (June 2023 Hand-picking Event)



22 / 33 Darling Street Carrington NSW 2294

PO Box 322 Newcastle, NSW 2300 t (02) 6685 7811

Mark Curran Senior Environmental Specialist Australian Rail Track Corporation Dyraaba Street, Casino NSW 2470

Via email: MCurran@ARTC.com.au

Ref: 20025.76 L03

30 June 2023

### Asbestos Management – Goulburn Roundhouse 12 Braidwood Road, Goulburn NSW 2580

### **1.0** Introduction

Cavvanba Consulting Pty Ltd (Cavvanba) was engaged by Australian Rail Track Corporation Limited (ARTC) to conduct a site inspection and asbestos containing material (ACM) handpicking exercise at the Goulburn Roundhouse, located at 12 Braidwood Road, Goulburn, New South Wales (NSW) 2580 (herein referred to as the site). The site location is presented on Figure 1.

This letter should be read in its entirety, including Cavvanba's *General limitations to environmental information*, included as Attachment A and the following attachments:

Figure 1: Site Location Figure 2: Asbestos Inspection Area Figure 3: Site Overview Figure 4a to 4c: Asbestos Locations

Attachment A: General limitations to environmental informationAttachment B: Photographic LogAttachment C: Asbestos Removal Control Plan and Disposal Documentation

### **1.1** Background and purpose

The site is currently used as a railway museum and actively operated as a Roundhouse by the Goulburn Locomotive Roundhouse Preservation Society Incorporated (GLRPS) for storage, restoration and maintenance of locomotives and rolling stock.

ACM has been identified on the ground surface over a large portion of the site. The highest concentrations observed are within the immediate vicinity of the Roundhouse building and within the southern portion of the site. ACM has also been identified in soil fill material which extends beyond the fenced boundary in the southern portion of the site, and is evident by the raised area in the western portion of the site, as presented on Figure 2. The findings of previous environmental investigations pertinent toa asbestos in and on soils

are contained within the below reports, and it is assumed that the reader has an understanding of the broader contamination status of the site:

- Detailed Site Investigation Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580 (Cavvanba, January 2021); and
- Additional Environmental Site Assessment Goulburn Roundhouse, 12 Braidwood Road, Goulburn, NSW 2580 (Cavvanba, August 2021).

An Interim Environmental Management Plan (IEMP) – Goulburn Roundhouse (Cavvanba, May 2023) has been prepared for the management of contamination within the site boundary. A requirement of the IEMP is to conduct routine hand-picking of ACM on a biannual basis to prevent movement of ACM and reduce the load across the site and this letter describes the first of those biannual events.

### 2.0 Site inspection

The inspection was undertaken on 31 May and 1 June 2023 by personnel from Cavvanba and Enviropacific Services Pty Ltd (EPS) and comprised of a structured and systematic (grid based) site walkover and ACM hand-picking exercise across the site area. The scope of the inspection is depicted on Figure 2.

EPS hold a Class A/ASA/Class B/ASB Asbestos Licence No. 211328, and were responsible for undertaking the removal of materials identified during the inspection.

Cavvanba personnel are SafeWork NSW licensed asbestos assessors (LAA), and were responsible for assessing the nature of asbestos identified and providing advice regarding the findings:

- Drew Wood LAA01297 and
- Ben Wackett LAA000132.

### 3.0 Findings

A number of fragments of potential ACM fragments were identified on the ground surface during the inspection, ranging in size and were assessed as non-friable. This included isolated areas where an individual fragment was observed and areas where multiple ACM fragments (> 1 < 50) were observed. The areas are depicted on Figures 4a and 4b and a photographic log has been provided as Attachment B. More detailed observations are described below:

- Large portions of the site were unsealed with the exception of some small sections of asphalt and concrete in the central and northern portions of the site.
- Thick grass and vegetation limited a clear visual appraisal of soils within the southeastern corner of the site, as presented on Photograph 1.
- All ACM fragments were identified to be non-friable and generally within areas where other anthropogenic materials such as glass, metal, brick, plastic and/or timber were observed.
- Areas of `multiple ACM fragments' were identified in the following areas as presented on Figures 4a and 4b:
  - south-western portion adjacent the south-western corner of the roundhouse;
  - central-eastern portion within the eastern portion of the roundhouse and within the vehicle parking area adjacent to the former office / fitter's amenities building;
  - southern portion to the southwest of the Wellington Building; and
  - north-western portion adjacent to the western side of Building 8.
Gross ACM fragments were identified on the surface in the central-eastern and southern portion of the site within the vehicle parking area, adjacent to the former office / fitter's amenities building and southwest of the Wellington Building.

Potential ACM fragments were also identified beneath rolling stock in the eastern portion of the roundhouse which were unable to be safely removed from the surface due to accessibility issues.

• There were no visible ACM fragments on the ground surface within the accessible areas assessed following the inspection and hand-picking exercise. However, ACM is present in fill material at the site. ACM will be exposed at a later date through natural erosion / weather events / mechanical disturbance. A high concentration of ACM was observed at and removed from the surface within two areas, being the vehicle parking area within the area adjacent to the former office / fitter's amenities building and the area southwest of the Wellington Building. Despite the effort made to remove the visible ACM fragments, it is likely that single ACM fragments may remain at the surface, however the concentration has been reduced to a temporarily acceptable condition and relies on the continuation of routine hand-picking.

## 4.0 Conclusions and recommendations

The site inspection and ACM hand-picking exercise was limited to surface soils within the site boundary, as defined on Figure 2.

A total of approximately 80 kg of ACM and potential ACM was identified within the site boundary and removed as part of the works. All fragments removed from the site were lawfully disposed of by EPS. Waste tracking documentation has been provided within Attachment C.

## Higher risk areas

Areas where multiple fragments of non-friable ACM are present creates a higher risk of generating airborne fibres if disturbed. Therefore, these have been highlighted as higher risk areas, represented by blue hatching on Figures 4a and 4b. Whilst every effort was made to remove these fragments at the time of inspection, ACM is present within fill material (i.e. soils below the ground surface) and will be exposed if:

- the grass cover is removed or dies during drought / unforeseen events;
- erosion occurs, either naturally or during severe weather events;
- erosion over the natural course of 6 months; and/or
- disturbance occurs by mechanical excavation.

Therefore, areas where multiple ACM fragments have been identified, in addition to those areas previously identified (yellow hatching on Figures 4a and 4b) should be demarcated as exclusion zones in accordance with the IEMP, meaning restricting access and movements with these areas.

#### Lower risk areas

ACM fragments were identified in a number of isolated locations on-site , and represented by a red 'X' on Figures 4a and 4b. These fragments have been removed and the location presents a lower risk due to the incidental presence and non-friable nature. No additional management measures beyond that stipulated within the IEMP, are required for these locations.

## Ongoing management

It is recommended that ACM on-site continues to be managed under the current interim environmental management plan until such time that remedial works and/or more permanent measures are in place. The IEMP includes biannual inspections and handpicking. Cavvanba acknowledges that the presence of thick grass and vegetation limited a visual appraisal of surface soils across some portions of the site, however this also provides natural protection from erosion and discourages direct access by site personnel. Therefore, it is not recommended to change or disturb these areas, however should conditions change (i.e. removal or thinning of vegetation cover), addition inspections and hand-picking exercises are recommended.

Please do not hesitate to contact the undersigned on (02) 6685-7811 should you require additional information or clarification.

Yours sincerely Cavvanba Consulting Pty Ltd

K

Drew Wood Principal Environmental Scientist SafeWork NSW LAA (LAA001297)



Ben Wackett Principal Environmental Scientist SafeWork NSW LAA (LAA000132)



Figures











# Attachment A

# **General Limitations to Environmental Information**

## General limitations to environmental information

The findings of this reporting are based on the objectives and scope of the services provided. Cavvanba Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties or guarantees, expressed or implied, are made.

Cavvanba's review/assessment is strictly limited to identifying the environmental conditions associated with the subject property in regard to site contamination, and does not seek to provide an opinion regarding other aspects of the environment not related to site contamination, or to the suitability of the site in regard to: landuse planning and legal use of the land; and/or regulatory responsibilities or obligations (for which a legal opinion should be sought); and/or the occupational health and safety legislation; and/or the suitability of any engineering design. Reviews of such information are only in relation to the contaminated land aspects of any project or site. If specialist technical review of such documents is required, these should be obtained by an appropriate specialist.

The reporting and conclusions are based on the information obtained at the time of the assessments. Changes to the subsurface conditions may occur subsequent to the investigation described, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

Field monitoring, sampling and chemical analysis of environmental media and structures are based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate, based on regulatory requirements, site history, and the proposed landuse, not on sampling and analysis of all media, at all locations, for all potential contaminants.

Limited field monitoring, and environmental sampling and laboratory analyses, were undertaken as part of the investigations reviewed or conducted by Cavvanba, as described. Ground conditions, contaminants, and material types/composition can vary between sampling locations, and this should be considered when extrapolating between sampling locations. Except at each sampling location, the nature, extent and concentration of contamination is inferred only.

Furthermore, the test methods used to characterise the contamination at each sampling location are subject to limitations and provide only an approximation of the contaminant concentrations. Monitoring and chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

The absence of any identified hazardous or toxic materials at the site should not be interpreted as a warranty or guarantee that such materials do not exist at the site. Therefore, future work at the site which involves subsurface excavation or removal of structures or parts thereof, should be conducted based on appropriate management plans. These should include, *inter alia*, environmental management plans, including unexpected findings protocols, hazardous building materials management plans, and occupational health and safety plans.

If additional certainty is required, then additional site history information should be obtained, or additional exploration and sampling and analysis should be conducted. This decision should be made by the user of this information based on an appropriate risk management process, and the user should commission additional services if required.

# **Attachment B**

# **Photographic Log**



Potential ACM observed in the western portion of the site, adjacent to the roundhouse structure.



**Photograph 4** View southwest towards the eastern portion of the site and the location where multiple potential ACM fragments were identified.



**Photograph 6** View north towards the north-western portion of the site and the location where multiple potential ACM fragments were identified.



**Photograph 7** View southwest towards a location where multiple potential ACM fragments were identified on the surface prior to collection.

# Attachment C

## Asbestos Removal Control Plan and Disposal Documentation

# Delivery Docket

Summerhill Waste Management Centre City of Newcastle

25 242 068 129 ABN : 02 49856600 Phone: Mon - Fri 7.30am - 5.00pm Sat - Sun 9.00am - 3.00pm HOURS 30599267-SH Ticket No: Voucher No: Date Out: 2/06/2023 11:00:30 AM ERJ18A Vehicle Rego: client:Enviropacific Services Pty Ltd 2275-80KGS Order Number: weighed Waste Asbestos chargeable weight: Price Qty single Items 2.58t GROSS Weight: 2.48t TARE weight: 0.10t NET Weight: Total Charge Fee: GST: 뛗鸅ኣ省爭己邦罪政竭效認為教教教教育的認識和非常な思想致患者的思想和非常な Total Price: Payments: change Given: There is a 0.75% surcharge on credit card transactions

#### 1. PROJECT DETAILS

Project Name:	Goulburn Roundhouse Henpecking	Project No:	105126
Scope of work:	Henpecking bonded asbestos fragments		
Start date:	29/05/23	Estimated finish date:	2/06/23

### 2. CLIENT DETAILS

Client Name:	Cavvanba Consulting
Address:	Unit 22/23 Darling St Carrington
Client Contact:	Drew Wood
Contact Number:	0403 689 755
Email Address:	drew@cavvanba.com

#### 3. SITE DETAILS

Address:	12 Braidwood Rd Goulburn NSW
Site Contact:	Zac Laughlan
Contact Number:	0428 288 854
Email Address:	zac@cavvanba.com

## 4. EMERGENCY CONTACT DETAILS

Contact Name	Contact Number
Police, Ambulance, Fire Brigade	000 for landline / 112 from mobile
Hospital	Goulburn Base Hospital – (02) 4825 4000
Electrical company	AUSGRID – 13 13 65
Water company	Goulburn Mulwaree Council – (02) 4823 4444
Telecommunications company	Telstra – 132 203
EPA (Environment line)	131 555
First Aid Officer	Hayden Coleman
Regulator	13 10 50
Police Station	Goulburn Police Station – (02) 4824 0799
Federal Safety Commission	Hotline 1800 652 500

#### 5. <u>REMOVALIST DETAILS</u>

Removal type:	□ Domestic □   ⊠ Commercial □   □ School	Public Other (please d	etail):
Name of Removalist (as shown on Licence):	Enviropacific Services Ltd	Licence No:	211328

Issue Date: 12/07/2021

#### 6. ENVIROPACIFIC SITE MANAGEMENT

Project Manager:	
Contact Number:	0409 323 056
Email Address:	hayden@enviropacific.com.au

Asbestos Supervisor:	Hayden Coleman
Contact Number:	0409 323 056
Email Address:	hayden@enviropacific.com.au

#### 7. PROJECT PERSONNEL

Regional Manager:	Mitch Anthony
HSE Advisor:	Evan Kidd
Project Director:	Mitch Anthony
Project Team:	Asbestos Supervisor, Asbestos Labour

Responsibilities for assigned workers are detailed in the Enviropacific Asbestos Removal Procedure.

#### 8. OCCUPATIONAL HYGIENIST/ASBESTOS ASSESSOR

Company Name:	Cavvamba Consulting
Contact Name:	Drew Wood
Contact Number:	0403 689 755
Email Address:	drew@cavvanba.com

#### 9. INDEPENDENT CONTRACTORS ENGAGED

Company Name	Task
N/A	

#### 10. PRELIMINARY CHECKLIST

	Item	Yes	No	NA
1.	Notified Regulator (i.e. SafeWork/WorkSafe) (5 days prior to the start of removal work)?	$\boxtimes$		
2.	Obtained a copy of the asbestos register or a hygienist report for the workplace from the person with management or control of the workplace?	$\boxtimes$		
3.	For workplaces – the person who commissioned the work has notified the workplace about the work and the date it is to commence?	$\boxtimes$		
4.	Before work commences, has the licensed asbestos removalist consulted the person who commissioned the work, the PCBU, occupiers of the premises, owners of the premises and anyone occupying in the immediate vicinity of the workplace (including neighbours and other businesses) about the asbestos removal work and when it will commence?	$\boxtimes$		
5.	Health monitoring records for employees and subcontractors available?	$\boxtimes$		
6.	Copies of asbestos removal workers training records available?	$\boxtimes$		

# **ENVIROPACIFIC**

#### **ASBESTOS REMOVAL CONTROL PLAN (ARCP)**

#### DOC NO: EP-HSE-13-FRM-01 SPONSOR: MARTIN WEBB

7.	Copy of asbestos removalist licence available?	$\boxtimes$	
8.	Air monitoring arranged (mandatory for Friable)?		$\boxtimes$
9.	Project specific Safe Work Method Statement developed?	$\boxtimes$	
10.	Equipment (HEPA vac / Negative-air unit / decontamination unit (filters etc.) / respirators) maintained/checked and records/logs kept (Friable only)?		$\boxtimes$

#### 11. IDENTIFICATION OF ASBESTOS TO BE REMOVED

	Туре	Details (e.g. soil, roof, sheeting, board, pipe etc.)	Site location	<b>Quantity</b> (m²/m³)
	Friable			
$\boxtimes$	Non-friable	Fragments	Goulburn Roundhouse	15m2

## 12. OTHER HAZARDS

Hazards	Location of hazard	Controls
Heat	Weather / Fatigue	Drink breaks, fatigue management
Cold	Weather / sprains & strains	Warm up/move for life stretches before starting work
Other:		
Other:		
Other:		

#### 13. AIR MONITORING

Is air monitoring required?	🗆 Yes	🛛 No
-----------------------------	-------	------

#### 14. PERSONAL PROTECTIVE EQUIPMENT

$\boxtimes$	Disposable coveralls (type 5, category 3)	Full face powered air purifying respirator
$\boxtimes$	Disposable gloves	Full face respirator (airline)
	Booties or gumboots	Respirator fit checks conducted
$\boxtimes$	Half face respirators (P2/disposable/cartridge)	Protective eyewear
	Full face respirators (P3)	Other:

#### 15. BARRICADING AND SIGNAGE REQUIRED FOR SECURING AREA

$\boxtimes$	Asbestos warning signs	Security fencing to prevent unauthorised access to removal area
$\boxtimes$	Barricades / safety tape	Other:

#### 16. REMOVAL METHODS

$\boxtimes$	Wet spray method
	Wrap and cut removal
	Soil

#### 17. AIRBORNE ASBESTOS FIBRES CONTROL METHODS

Use of non-powered tools (i.e. hammers, pinch	Negative air unit (mandatory for friable achestos)
bars, scrapers etc.) - power tools must not be	Negative all unit (manualory for mable aspestos)
used	

#### ASBESTOS REMOVAL CONTROL PLAN (ARCP)

# **ENVIROPACIFIC**

#### DOC NO: EP-HSE-13-FRM-01 SPONSOR: MARTIN WEBB

	Seal air vents/windows/entrances/openings		Decontamination unit (mandatory for friable asbestos)
$\boxtimes$	Wet methods (water / PVA solution spray)		Clean up debris throughout removal using either an asbestos vacuum cleaner fitted with HEPA filter and/or wet wipe
	No unnecessary breakage - sheets removed in whole (as far as practical)		DOP testing in date
	Full enclosure	$\boxtimes$	Other: Bagging of Fragments
	Other:		Other:

### 18. ENCLOSURE DETAILS (FRIABLE ONLY)

Is an enclosure required?		□ Yes	🛛 No	
Pro	vide the details of required enclosures, including siz	ze, shape, stru	cture etc.	
	Number of negative pressure exhaust units:			

#### 19. TEMPORARY BUILDINGS

Are temporary buildings required?			′es	🖾 No
Details of temporary buildings required (e.g. decontamination units):				
	Water supply details:			
	Lighting and power supply details:			
	Negative pressure exhaust units (number):			

### 20. PLANT REQUIRED AND DECONTAMINATION

Plant required		Decontamination details (e.g. wet wipe, wash, dispose of asbestos waste, hygienist clearance)
	Mobile plant	N/A
	Watercart	N/A
	Generator	N/A
	Other:	

#### 21. EQUIPMENT REQUIRED AND DECONTAMINATION

	Equipment required	Decontamination details (e.g. wet wipe, wash, dispose of asbestos waste, hygienist clearance)			
	Vacuum cleaner fitted with HEPA filter	N/A			
	Small hand tools	N/A			
	Other:				
	Other:				
	Non-disposable PPE and RPE decontamination				
$\boxtimes$	Spray with water / wet wipe and stored in a safe place				
	Launder at commercial laundry (please specify name):				
	Other (please specify):				

# **ENVIROPACIFIC**

#### ASBESTOS REMOVAL CONTROL PLAN (ARCP)

#### DOC NO: EP-HSE-13-FRM-01 SPONSOR: MARTIN WEBB

#### 22. PERSONNEL DECONTAMINATION

	Full decontamination unit for friable (maybe required on some large non-friable projects)
$\boxtimes$	Water spray / HEPA vacuum

#### 23. WASTE CONTAINMENT

$\boxtimes$	Double bagged (with 200 $\mu$ m thick plastic) / twisted / taped and labelled
	Waste skips-double lined with heavy-duty plastic sheeting (200 $\mu m$ minimum thickness) and sealed
	Other (please specify):

#### 24. WASTE DISPOSAL

	Trucks with non-friable asbestos are covered with all weathered tarp (soil). Trucks with friable asbestos are covered with all weathered tarp and sealed (soil). Victoria Only: Trucks are double lined with plastic and completely sealed with tarps tied down.		
	Asbestos waste will be covered and transported via an EPA approved/licensed carrier (please specify):		
$\boxtimes$	Licenced asbestos disposal site (please specify): Summerhill Waste Management Facility		
$\boxtimes$	EPA Waste Locate (over 100kg) (NSW only): Enviropacific		

#### 25. EMERGENCY RESPONSE PLAN

In the event of an emergency situation occurring in an asbestos area it may be necessary for emergency services or trades persons who are not asbestos qualified to enter the asbestos area.

Should such an event occur the following procedure will be followed.

- 1. First responder to raise alarm with Emergency Response Coordinator (Site Manager / Supervisor) and advise of situation;
- 2. Emergency Response Coordinator to contact Enviropacific Project Manager;
- 3. Enviropacific Project Manager / Site Manager to inform the client site representative;
- 4. First responder or other worker as required to request first aider and any other required assistance;
- 5. Based on the severity of the incident, Emergency Response Coordinator or delegated person to ring Emergency Services on 000 (or 112 from mobile phone). Do not hang up until you have provided requested information;
- 6. Emergency Response Coordinator to arrange person to meet/guide emergency service to incident site if required;
- 7. Emergency Response Coordinator to raise evacuation alarm if persons at risk from hazard;
- 8. Emergency Response Coordinator to coordinate evacuation if required. Workers to decontaminate if safe to do so;
- 9. Emergency Response Coordinator to account for all workers at muster point;
- 10. No one to attempt to rescue any person unless competent and safe to do so and using appropriate PPE;
- **11.** Should the emergency involve a hazardous service i.e. gas or electricity, notify Enviropacific Project Manager:
- **12.** Enviropacific Project Manager to inform the client to call appropriate provider to isolate service pending notification to Health Infrastructure of interruption of service;
- 13. Once area is deemed safe from hazard, asbestos workers are to re-enter to make area safe from asbestos;
- **14.** Make the area safe for access for service provider workers to enter the area and/or trades personnel;
- **15.** Once area has been deemed made safe by site asbestos supervisor, Emergency Services and/or trades personnel may enter area wearing appropriate PPE and under supervision of site asbestos supervisor;
- 16. Environmental Consultant to place air monitor to monitor asbestos content of atmosphere if/as required.

Page 6 of 9

#### DOC NO: EP-HSE-13-FRM-0

SPONSOR: MARTIN WEBB

#### 26. SITE SETUP MAP



#### 27. SITE SETUP MAP

## 28. ARCP ACKNOWLEGEMENT SHEET

.

I acknowledge that I understand the contents of the Asbestos Control Removal Plan (ARCP) and specific risks in relation to the asbestos works.						
Name (please print)	Employer name	Signature	Date			

Issue Date: 12/07/2021

This document is uncontrolled when printed, refer to the Integrated Management System (IMS) for current version of all documents