Intended for **Transport for NSW**

Document type Report

Date September 2023

TARAGO, NSW JUNE 2023 SURFACE WATER MONITORING REPORT

TARAGO, NSW JUNE 2023 SURFACE WATER MONITORING REPORT

Project name	Tarago Surface Water Monitoring
Project no.	318001376-007
Recipient	TfNSW
Description	This report describes the methodology and results for quarterly surface water monitoring undertaken as part of the Tarago Lead Management Project at Tarago, NSW.

Ramboll
Level 2, Suite 18 Eastpoint
50 Glebe Road
PO Box 435
The Junction
NSW 2291
Australia

T +61 2 4962 5444 https://ramboll.com

Number				
0	Draft	24/07/2023		
1	Final	18/09/2023		

Revision Revision

Date

Prepared by Checked by Approved by

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

CONTENTS

Abbreviat	ions	3
1.	INTRODUCTION	4
1.1	Background	4
1.2	Objectives	4
2.	SCOPE OF WORK	6
2.1	Monitoring Scope	6
3.	SAMPLING and ANALYSIS QUALITY PLAN	8
4.	QUALITY ASSURANCE / QUALITY CONTROL PROGRAM	9
4.1	QA/QC Data Evaluation	9
5.	ASSESSMENT CRITERIA	13
5.1	Rationale for Application of Guidelines	13
6.	RESULTS	17
6.1	Monitoring Events	17
6.2	Physico-Chemical Results	19
6.3	Analytical Results	19
6.4	Time Series Charts	24
6.4.1	Lead Concentrations for On and Near Site	24
6.4.2	Zinc Concentration for Mulwaree River (Offsite)	39
6.5	Mann Kendall Trends	42
6.5.1	Trends for On and Near Site	42
6.5.2	Trends for Mulwaree River (Offsite)	42
7.	SUMMARY	43
8.	CONCLUSIONS	45
9.	LIMITATIONS	46
10.	REFERENCES	47

LIST OF TABLES	
Table 2-1: Surface Water Sampling Locations	6
Table 4-1: QA/QC –Assessment of DQIs	10
Table 5-1: Hardness Corrections for Tier 1 Freshwater Ecology	
Guidelines	14
Table 5-2: Guidelines Applied to Sampling Points	15
Table 5-3: Guideline Criteria (mg/L)	16
Table 6-1: Indicative Summary of Rainfall Preceding Sampling	
Events	18
Table 6-2: Summary of Surface Water Physico-Chemical Parameters	19
Table 6-3a: Summary of Onsite and Near Site Surface Water	
Analytical Results (SW1_UP, SW1, SW2, SW3, SW4, SW5, SW6,	
SW7) – Cumulative Since August 2019	20
Table 6-3b: Summary of Onsite and Near Site Surface Water	
Analytical Results (SW1_UP, SW1, SW2, SW3, SW4, SW5, SW6) -	
June 2023 Round	21
Table 6-4a: Summary of Mulwaree River Surface Water Analytical	
Results (SW8, SW9, SW10) – Cumulative Since January 2020	22
Table 6-4b: Summary of Mulwaree River Surface Water Analytical	
Results (SW8, SW9, SW10) – June 2023 Round	23
Table 7-1: CoC Results Summary (Lead, Copper, Zinc)	43

LIST OF FIGURES

Figure 2-1: Surface Water Monitoring Locations	
--	--

7

Figure 6-1: Upgradient and Onsite Total Lead Concentration Trend Figure 6-2: Upgradient and Onsite Dissolved Lead Concentration	25
Trend	26
Figure 6-3: Mulwaree River (Offsite) Total Lead Concentration Trend	28
Figure 6-4: Mulwaree River Offsite Dissolved Lead Concentration	
Trend	29
Figure 6-5: Upgradient and Onsite Total Copper Concentration Trend	31
Figure 6-6: Upgradient and Onsite Dissolved Copper Concentration	
Trend	32
Figure 6-7: Mulwaree River (Offsite) Total Copper Concentration	
Trend	34
Figure 6-8: Mulwaree River (Offsite) Dissolved Copper Concentration	
Trend	35
Figure 6-9: Upgradient and Onsite Total Zinc Concentration Trend	37
Figure 6-10: Upgradient and Onsite Dissolved Zinc Concentration	
Trend	38
Figure 6-11: Mulwaree River (Offsite) Total Zinc Concentration Trend	40
Figure 6-12: Mulwaree River (Offsite) Dissolved Zinc Concentration	
Trend	41

APPENDICES

Appendix 1 SAQP

Appendix 2 Field Sheets

Appendix 3

Summary of Results

Appendix 4

Calibration Certificate

Appendix 5

Laboratory Reports

Appendix 6

Mann-Kendall Results

ABBREVIATIONS

Measures	Description
ADWG	Australian Drinking Water Guidelines
ALS	Australian Laboratory Services
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines (for Fresh and Marine Water Quality)
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
COC	Contaminants of Concern
CoPC	Contaminants of Potential Concern
DEC	Department of Environment and Conservation
DO	Dissolved Oxygen
DQI	Data Quality Indicator
EC	Electrical Conductivity
EPA	Environment Protection Authority (NSW)
EnRiskS	Environmental Risk Sciences Pty Ltd
LCS	Laboratory Control Sample
Mercury	Inorganic mercury unless noted otherwise
mg/L	Milligrams per Litre
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NSW	New South Wales
ORP	Oxidation/Reduction Potential
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
Ramboll	Ramboll Australia Pty Ltd
SAQP	Sampling and Analysis Quality Plan
TDS	Total Dissolved Solids
TfNSW	Transport for New South Wales
VMP	Voluntary Management Proposal
-	On tables is "not calculated", "no criteria" or "not applicable"

1. INTRODUCTION

Ramboll Australia Pty Ltd (Ramboll) was engaged by Transport for New South Wales (TfNSW) to complete periodic surface water monitoring downstream of contamination identified with the Goulburn – Bombala rail corridor at Tarago, New South Wales (NSW).

Contamination has been identified along approximately 900 lineal meters of the rail corridor (Ramboll, 2019). This area is herein referred to as "the Site" and is presented with surface water monitoring locations on **Figure 2-1**.

1.1 Background

The Woodlawn Mines Ore Concentrate Load-Out Complex operated within the Goulburn – Bombala rail corridor at Tarago from the 1970s to the 1990s. Concentrates were produced at the Woodlawn Mine approximately 6.5 km west and included a zinc concentrate consisting mainly of sphalerite (zinc oxide), lead concentrate of galena (lead sulphide) and copper concentrate of chalcopyrite (copper iron sulphide).

On 25 March 2020, the NSW Environment Protection Authority (NSW EPA) declared the Site as significantly contaminated under Section 11 of the *Contaminated Land Management Act 1997* (Declaration Number 20201103). TfNSW is currently managing the contamination under a Voluntary Management Proposal (VMP) which includes further assessment of site contamination and remediation to address the potential risks to human health and the environment.

An extensive body of work has been completed to characterise contaminant impacts associated with historical operation of the Site. This work has included assessment of soil, groundwater and surface water across the Site and assessment of soil, groundwater, surface water and airborne dust within the surrounding area. A previous assessment completed by Ramboll (2020) identified contaminants of potential concern (CoPC) relevant to receiving surface waters were limited to metals which exceed relevant human health and ecological assessment criteria.

In 2020, Environmental Risk Sciences Pty Ltd (EnRiskS) were commissioned to undertake a review of the existing data and provide further advice in relation to the risk to human health and the environment due to lead and other metals in areas adjacent to the Site (EnRiskS, 2021). As part of the assessment EnRiskS (2021) developed site specific criteria for metals in soil, sediment, and surface water for the drainage features accessed during surface water monitoring. These site-specific criteria have been adopted for assessment of the surface water results presented in this report.

Periodic monitoring of onsite and offsite surface water commenced in 2019 and ceased in April 2021 following consistent observation that risks to the receiving environment from site contamination were low. On 6 September 2022 the NSW EPA issued a Prevention Notice to TfNSW relating to deficiencies in the implementation of the Tarago Lead Management Plan (Ramboll, 2019). In response, surface water monitoring was reinstated to further assess temporal and geographic trends in contaminant distribution from the Site.

1.2 Objectives

The objectives of the surface water monitoring program are to:

- Collect reliable water quality data, to provide a data continuum which forms the basis for assessment of impacts from the Site on surrounding surface water receptors.
- Use this continuum of data to assess historical trends in surface water quality and present conclusions regarding potential risks to site receptors.

- Present data on rainfall preceding sampling events and as monthly averages and actuals.
- Present data to date on a quarterly basis.

2. SCOPE OF WORK

2.1 Monitoring Scope

The scope of work for each surface water monitoring event includes:

- Collection of surface water samples at 11 predefined locations, as presented in Table 2-1 and Figure 2-1 (plus collection of quality assurance samples).
- Measurement of surface water physico-chemical properties including pH, temperature, electrical conductivity (EC), dissolved oxygen (DO), redox potential (ORP) and total dissolved solids (TDS).
- Submission of samples to a National Association of Testing Authorities (NATA) accredited laboratory for analysis of total and dissolved metals (aluminium, arsenic, barium, beryllium, cadmium, chromium, cobalt, iron, lead, manganese, mercury, nickel and zinc).
- Assessment of laboratory results against adopted assessment criteria, as presented in Section 5.
- Assessment of data quality and reliability.

Table 2-1: Surface Water Sampling Locations

Sample ID	Location
On and Near Site	
SW1	Adjacent to a culvert on the western side of the rail line at CH 262.600 on tributary of Mulwaree River.
SW1 – UP	Intended as an up-stream sample, located on a western tributary of the Mulwaree River, approximately 100 m west of the rail corridor at CH. 262.600.
SW2	Adjacent to a culvert on the eastern side of the rail line at CH 262.600 on tributary of Mulwaree River.
SW3	Adjacent to a culvert on the western side of the rail line at CH 262.300.
SW4	Adjacent to a culvert on the eastern side of the rail line at CH 262.300.
SW5	Adjacent to a culvert on the western side of the rail line at CH 262.000.
SW6	Adjacent to a culvert on the eastern side of the rail line at CH 262.000.
SW7	A dam located downgradient from the Site northern rail culvert forming part Lot A DP 440822.
Offsite – Mulwaree River	
SW8	Mulwaree River adjacent Lumley Road.
SW9	Mulwaree River off Braidwood Road.
SW10	Mulwaree River off Braidwood Road.

Legend

•	Surface water sampling location
-	Rail corridor
	Rail corridor fence
	Area of lead exceedance (within rail corridor)
	Indicative surface water flow path (ie: not ephemeral)
	Indicative ephemeral surface water flow path

Figure 2-1: Surface Water Monitoring Locations

3. SAMPLING AND ANALYSIS QUALITY PLAN

Prior to the commencement of routine surface water monitoring, Ramboll prepared a Sampling and Analysis Quality Plan titled '*Sampling Analysis and Quality Plan (SAQP) – Surface Water Monitoring, Tarago Lead Management'* (Ramboll, 2020).

The SAQP is attached as **Appendix 1**.

4. QUALITY ASSURANCE / QUALITY CONTROL PROGRAM

4.1 QA/QC Data Evaluation

An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NEPM 1999 Amendment (2013) guidelines. The DQI assessment for the June 2023 surface water monitoring event is provided in **Table 4-1**.

Overall, it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NEPM 1999 Amendment (2013) guidelines. Some uncertainty surrounds the mercury results due to PQLs above for all data to date however this uncertainty does not affect the conclusions of the report because mercury is not a contaminant of concern. However, it is considered that the data is of suitable quality to meet the project objectives.

Table 4-1: QA/QC –Assessment of DQIs

Assessment of DQIs (as per NSW EPA, 2020)	Ramboll's Assessment	Completeness	Comparability	Representativeness	Precision	Accuracy
Field QA/QC						
Sampling team	Sampling was completed by Ramboll experienced environmental scientists/engineers 16 June 2023.	x	x			
Reference to sampling plan/method, including any deviations from SAQP	Sampling was undertaken in general accordance with the SAQP. SW6 could not be sampled as the location was dry.	x				
Any information that could be required to evaluate measurement uncertainty for subsequent testing	Samples were collected from 11 pre-determined locations (unless dry) for consistency between the sampling rounds. Samples were collected from 100 mm below surface, where practical.				x	x
Decontamination procedures carried out between sampling events	Samples were collected directly into laboratory supplied sampling containers using dedicated disposable sampling equipment. Disposable nitrile gloves were worn during sample collection and were changed between sample locations. Field parameters were recorded after analytical samples had been collected. Non disposable sampling equipment (i.e., water quality meter probe) were rinsed between sampling locations with a solution of Decon®90 and potable water.			x	x	x
Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e., surroundings) conditions.	Each sample was labelled with a unique sample ID, as presented in Table 2-1 . Surface water parameters including pH, temperature, EC, DO and ORP were measured and recorded for each of the sampling locations using a calibrated multi-parameter water quality meter. Measurements of field parameters were recorded once parameters had stabilised. Field sheets are presented in Appendix 2 .		x	x		
Chain of custody fully identifying – for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s)	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples. All surface water samples were placed into laboratory-supplied bottles that were prepared with the required preservatives. Surface water samples were stored in an ice filled cooler in the field and during transportation to the laboratory.	x	x			
Field quality assurance/quality control results (e.g., field blank, rinsate blank, trip blank, laboratory prepared trip spike)	Intra- and inter-laboratory duplicate results, are presented in Table 13 , Appendix 3 . No trip spike/blanks were collected due to the targeted contaminants of the investigation not being volatile. Relative Percent Differences (RPDs) exceeded the RPD criteria (\leq 30%) for:				x	x

Assessment of DQIs (as per NSW EPA, 2020)	Ramboll's Assessment	Completeness	Comparability	Representativeness	Precision	Accuracy
	 Primary (TAR_SW3_160623) and interlaboratory duplicate (QC101_160623) - Barium (total and dissolved), copper (total), iron (total and dissolved), manganese (total and dissolved), and zinc (total and dissolved) Primary (TAR_SW3_160623) and inter-laboratory duplicate (QC201_160623) samples - aluminium (total and dissolved) and iron (dissolved) The exceedances in the RPD criteria are associated with low level concentrations less than 10-times the laboratory limit of reporting. The higher concentration was generally reported in the primary sample. These minor discrepancies are not considered to affect the reliability of the data. 					
Sample splitting techniques – subsampling, containers/preservation	The external duplicate samples were obtained by first gathering a larger volume of water and then decanting to create three identical sub samples. Field duplicate samples were labelled with a unique identification that does not reveal the association between the primary and duplicate samples e.g., D01.			x		x
Statement of duplicate frequency	Intra- and inter- laboratory duplicate samples were analysed at a rate of 10%.			x	x	
Field instrument calibrations	The water quality meter was hired from a rental company who calibrated the equipment prior to hire. The calibration certificate is included in Appendix 4 .				x	x
Sampling devices and equipment	The calibrated water quality meter was used to collect field data, including pH, temperature, EC, DO, ORP and TDS. These parameters were recorded once stabilised.	x	x			
Laboratory QA/QC						
A copy of signed chain-of-custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments	Copy of the signed chain of Custody forms are provided in Appendix 5.	x	x			
Record of holding times and a comparison with method specifications	Review of the Chain of Custody forms and laboratory certificates indicated that holding times were met.	x	x			
Analytical methods used, including any deviations	Summary analytical methods were included in the laboratory test certificates presented in Appendix 5 .	x	x			

Assessment of DQIs (as per NSW EPA, 2020)	Ramboll's Assessment	Completeness	Comparability	Representativeness	Precision	Accuracy
Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation	Eurofins MGT was used as the primary laboratory and ALS was used as the secondary laboratory. The laboratory certificates are NATA stamped.	x			x	
Laboratory performance for the analytical method using inter-laboratory duplicates	Analytical methods were comparable between laboratories.		x			x
Surrogates and spikes used throughout the full method process, or only in parts. Results are corrected for the recovery	All laboratory control samples and surrogates were acceptable.	x	x			
A list of what spikes and surrogates were run with their recoveries and acceptance criteria	Laboratory spike and surrogate recoveries are detailed in the laboratory certificates provided in Appendix 5.		x			x
Practical quantification limits (PQL)	The PQL for dissolved mercury (<0.0001 mg/L) exceeds the adopted ecological screening criteria for 95% species protection (0.00006 mg/L). Mercury was not detected above the PQL in any of the samples collected indicating that any exceedances of the criteria are anticipated to be minor (within 0.00004 mg/L). All remaining PQLs were below the adopted assessment criteria.	x	x			
Reference laboratory control sample (LCS) and check results	The results for LCS were acceptable and no detections were made in blank samples.	x				
Laboratory frequencies	Laboratory quality control samples including duplicates and blanks were undertaken by the laboratories at appropriate frequencies. Matrix spikes were below ALS QC standard and anonymous samples from the laboratory batch were adopted for comparison.	x				x
Laboratory results	The results for laboratory duplicates were acceptable and no detections were made in blank samples. Matrix spike recovery for mercury in inter-laboratory duplicate report (ALS) was lower than the DQO. This was an anonymous sample from the laboratory batch and not applicable to the sample results.	x				x

5. ASSESSMENT CRITERIA

The criteria adopted for the assessment of surface water contamination are sourced from the following references:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013).
- National Health and Medical Research Council (NHMRC) (2001) National Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version 3.6 updated March 2021 (ADWG, 2011).
- National Health and Medical Research Council (NHMRC), *National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water* (NHMRC, 2008).
- Department of Environment and Conservation (DEC) *Guidelines for the Assessment and Management of Groundwater Contamination* (DEC, 2007).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018) (available at <u>www.waterquality.gov.au/anz-guidelines).</u>
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).
- Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW, Site specific criteria Protection of human health and terrestrial and/or aquatic ecosystems (EnRiskS, 2021).

5.1 Rationale for Application of Guidelines

The relevance of guidelines was determined based on iterative screening from the broadest and most sensitive water usage scenario which occurs in the Mulwaree River back through agricultural land and public roads to the least sensitive scenario which occurs at the Site.

All results from Mulwaree River samples (SW8 to SW10) have been screened against Tier 1 / screening guidelines relevant to human health (incidental ingestion), freshwater ecology, irrigation and stock watering as each of these receptors occur within the receiving waters (the Mulwaree River). Should results exceed screening guidelines and indicate site contamination as the source, it would be appropriate to apply the guidelines that were exceeded to sampling locations upstream as this would inform further assessment of the Site as the potential source. Previous monitoring results do not indicate site contamination is adversely affecting the Mulwaree River. Ecological site-specific guidelines were developed for arsenic, cadmium, lead, manganese and nickel (EnRiskS, 2021) that integrate the ephemeral nature of surface water features between the Mulwaree River and the Site. Additionally, several technical refinements were identified and are relevant to guideline application. These were:

- ADWG (2011) Section 6.3.1 states that guideline values refer to the total amount of the substance present, regardless of its form (e.g., in solution or attached to suspended matter) and so analytical results from unfiltered samples should be assessed against human health criteria. The primary human health risk from contaminants in surface water from the Site is via recreational use. NHMRC (2008) suggests that 10-times the ADWG values may provide a conservative estimate of acceptable recreational exposure guidelines values. This approach was applied to derive recreational exposure criteria.
- ANZG (2018) guidelines for metals in freshwater are adopted from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000) which states the major toxic effect of metals comes from the dissolved fraction, so it is valid to filter

samples (e.g., to 0.45 $\mu m)$ and compare the filtered concentration against the trigger values.

 Water hardness is identified as a physical parameter with quantifiable effects. Correction factors are defined in the guidelines to address the effect of water hardness on the bioavailability of cadmium, chromium (III), lead, nickel and zinc.

To define appropriate hardness correction factors, surface water samples during the current monitoring round were analysed for Hardness (as CaCO₃) and compared to the hardness categories defined in Table 3.4.4 of the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC, 2000). CaCO3 reported 'soft' concentrations around the middle and northern culverts (SW3 – SW5) and 'moderate' in the dam downstream of the northern culvert (SW7). Sample locations upstream of the site, around the southern culvert and in the receiving Mulwaree River (SW1, SW1_UP, SW2, SW8, SW9 and SW10) reported 'extremely hard' concentrations (310 – 410 mg/L). Application of the hardness correction factors for each sample location and corrected guideline values are outlined in **Table 5-1**.

Locations	Water Hardness as CaCO3 (mg/l)	Metals	Original guideline value (mg/L)	Hardness Correction Factor	Corrected guideline value (mg/L)
		Cadmium	0.0002	10	0.002
SW1, SW1_UP, SW2, SW8, SW9, SW10		Chromium	0.001	8.4	0.0084
	310 - 410 (Extremely hard)	Lead	0.0034	26.7	0.091
		Nickel	0.011	9.0	0.099
		Zinc	0.008	9.0	0.072
		Cadmium	0.0002	TV	0.0002
		Chromium	0.001	TV	0.001
SW3 – SW5	39 - 55 (Soft)	Lead	0.0034	TV	0.0034
		Nickel	0.011	TV	0.011
		Zinc	0.008	TV	0.008
		Cadmium	0.0002	2.7	0.00054
		Chromium	0.001	2.5	0.0025
SW6* and SW7	110 (Moderate)	Lead	0.0034	4	0.0136
		Nickel	0.011	2.5	0.0275
		Zinc	0.008	2.5	0.02

 Table 5-1: Hardness Corrections for Tier 1 Freshwater Ecology Guidelines

TV – trigger values from ANZECC Freshwater Ecological guidelines to be used.

*Analysis for hardness was not undertaken at SW6 as it was dry at the time of sampling. It has been tentatively grouped with SW7 based on its location and will be updated once hardness data is obtained during the next monitoring round.

Application of guidelines at each sampling point is summarised in Table 5.2.

Sampling Point	Location	Human Health - Site Specific ¹	Ecology - Site Specific ¹	Human Health - Recreational Sceening ²	Ecology – Screening ³	Irrigation – Screening³	Stock Water – Screening³
SW1-UP	Upstream of Southern Culvert (offsite)	4	4	1	4	-	-
SW1	Upstream of Southern Culvert	1	1	1	1	-	-
SW2	Downstream of Southern Culvert	1	1	1	1	-	-
SW3	Upstream of Middle Culvert	1	1	1	1	-	-
SW4	Downstream of Middle Culvert	1	1	1	1	-	-
SW5	Upstream of Northern Culvert	1	1	1	1	-	-
SW6	Downstream of Northern Culvert	1	1	1	1	-	-
SW7	Dam on farm downstream of Northern Culvert (offsite)	-	-	1	1	1	~
SW8	Mulwaree River upstream of Middle and Northern Culvert Discharge	-	-	4	4	4	~
SW9	Mulwaree River upstream of Southern Culvert Discharge	-	-	¥	4	4	~
SW10	Mulwaree River downstream of Middle and Northern Culvert Discharge	-	-	1	1	1	√

Table 5-2: Guidelines Applied to Sampling Points

¹EnRiskS (2021)

² ANZG (2018)

³ ANZECC (2000)

Assessment criteria adopted under each guideline are presented in Table 5-3.

Contaminant	Human Health - Site Specific Criteria	Human Health - Recreation Criteria	Ecology - Site Specific Criteria	95% Fresh water (ANZG 2018)	STV in irrigation water	Stock Water - Screening
Total Metals						
Aluminium	-	2ª	NA	NA	NA	NA
Arsenic	7	0.1	NA	NA	NA	NA
Barium	-	2	NA	NA	NA	NA
Beryllium	-	0.6	NA	NA	NA	NA
Cadmium	1.4	0.002	NA	NA	NA	NA
Chromium	-	0.5	NA	NA	NA	NA
Cobalt	-	-	NA	NA	NA	NA
Copper	-	20	NA	NA	NA	NA
Iron	-	3	NA	NA	NA	NA
Lead	7	0.1	NA	NA	NA	NA
Manganese	350	5	NA	NA	NA	NA
Mercury	-	0.01	NA	NA	NA	NA
Nickel	14	0.2	NA	NA	NA	NA
Zinc	-	30 ^g	NA	NA	NA	NA
Dissolved Meta	ls					
Aluminium	NA	NA	5	0.055 ^b	20	5
Arsenic	NA	NA	0.5	0.024 ^c	2	0.5-5
Barium	NA	NA	-	-	-	-
Beryllium	NA	NA	-	0.00013	0.5	-
Cadmium	NA	NA	10	#	0.05	0.01
Chromium ^d	NA	NA	-	#	1	1
Cobalt	NA	NA	-	0.0014	0.1	1
Copper	NA	NA	0.5	0.0014	5	0.4-5
Iron	NA	NA	-	0.3	10	not sufficiently toxic
Lead	NA	NA	0.1	#	5	0.1
Manganese	NA	NA	-	1.9	10	not sufficiently toxic
Mercury	NA	NA	-	0.00006 ^{e, f}	0.002	0.002
Nickel	NA	NA	1	#	2	1
Zinc	NA	NA	20	#	5	20

Table 5-3: Guideline Criteria (mg/L)

NA – not applicable

blank cell denoted with - indicates no criterion available

- Hardness correction factor applied to the threshold value as detailed in ANZG 2018 See **Table 5-1** for more specific location guideline values

^a Aluminium calculated using the ADWG (2011) aesthetic guideline based on post-flocculation problems Insufficient data to set a guideline value based on health considerations

^b Aluminium guideline for pH > 6 5 was based on the average pH being above pH 6 5 at each surface water location

^c Guideline value for arsenic (III)

^d Guideline value for chromium (VI)

^e Guideline value for inorganic mercury

^f 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant ^g Zinc calculated using the ADWG (2011) aesthetic guideline Insufficient data to set a guideline value based on health considerations

STV - The short-term trigger value (STV) is the maximum concentration (mg/L) of contaminant in the irrigation water which can be tolerated for a shorter period of time (20 years) assuming the same maximum annual irrigation loading to soil as for LTV

6. **RESULTS**

6.1 Monitoring Events

Twelve monitoring events have been completed between August 2019 and June 2023. Surface water monitoring events were completed after a period of rainfall (where possible) as this is the only occasion where surface water is present in the drainage channels.

Table 6-1 includes information on rainfall conditions preceding each monitoring event. The table includes comparison of the rainfall over the 48-hour period preceding the sampling event to the design rainfall events for the Mulwaree catchment (Wollondilly and Mulwaree Rivers Flood Study WMA Water 2016) in order to provide an indication of the significance of the rainfall event. Average monthly rainfall data compared to actual monthly rainfall data is also included to indicate the general climate conditions in the month of sampling.

Table 6-1: Indicative Summary of Rainfall Preceding Sampling Events

Event	Max Rainfall over 48hr Critical Duration (mm)	Rainfall in 48 hrs preceding monitoring events (mm)												
		13-Aug- 19	24-Sep- 19	29-Jan- 20	1-Apr-20	11-Aug- 20	13-Oct- 20	28-Jan-21	14-Apr-21	13-Jul-21	12-Sep-22	12-Dec-22	16 June 2023	
>10% AEP	< 126	0	0	0	0	-	0	0	0	0	7.2	0		
10% AEP	126	-	-	-	-	-	-	-	-	-	-	-		
5% AEP	147	-	-	-	-	-	-	-	-	-	-	-		
2% AEP	175	-	-	-	-	163	-	-	-	-	-	-		
1% AEP	197	-	-	-	-	-	-	-	-	-	-	-		
Monthly Rainf	all Observed (mm)	19	41.2	22	79.2*	157.8	94.4	64	2.4	26	66.6	45.6	29.2	
Average Mont	hly Rainfall (mm)	42.9	44	49	40.4*	42.9	44	63.9	25.9	32.6	44.1	56.4	55.5	
Comment		Dry month, dry conditions precedent	Average rainfall month, dry conditions precedent	Dry month, dry conditions precedent	Wet month, dry conditions precedent	Wet month, high rainfall event precedent	Wet month, dry conditions precedent	Average rainfall month, dry conditions precedent	Dry month, dry conditions precedent	Average rainfall moth, dry conditions precedent	Wet month, low rainfall event precedent	Average rainfall, dry conditions precedent	Average rainfall, dry conditions precedent	

Notes: All rainfall data was sourced from the Australian Bureau of Meteorology. Daily rainfall was sourced from the closest weather station with rainfall records preceding each monitoring event (Lake Bathurst, Windellama and Goulburn Airport). Monthly averages and records were sourced from the closest weather station with rainfall records preceding each monitoring event (Lake Bathurst, Windellama and Goulburn Airport).

*Monthly observations and averages are for rainfall in the calendar month in which each monitoring event occurred except for the 1 April 2020 event for which March data is presented. Based on this the monthly data is not a direct representation of rainfall preceding monitoring though is considered as an indicator of general conditions around each monitoring event.

AEP – Annual Exceedance Probability

6.2 Physico-Chemical Results

Surface water physico-chemical parameters were measured in the field during most sampling rounds and are summarised in **Table 6-2**. The full physico-chemical parameter dataset for all data to date is provided as **Table 1** of **Appendix 3**.

			Temp.	SPC	DН	DO	ORP	TDS	
Sample ID	Records		°C	μS/cm	pH units	mg/L	mV	mg/L	Comments
On and Ne	ear Site								
		Minimum	7.8	206.1	6.35	0.04	23.6	133.9	
SW1	8	Maximum	17.4	783	7.77	11	175.8	434	Dry January 2020.
		Average	11.3	603.7	7.5	6.1	115.5	335.7	
		Minimum	8	205.6	7.05	0.1	-41.4	133.25	Dry January 2020.
SW1-UP	8	Maximum	19.94	795	7.8	10.86	186.9	431	Parameters not recorded
		Average	12.2	599.8	7.5	5.8	115.0	337.0	September 2019.
		Minimum	7	213.3	6.54	0.12	48.3	137.8	Dry January 2020.
SW2	9	Maximum	17.54	803	8.27	70.8	185.9	416	Parameters not recorded
		Average	11.2	576.1	7.7	12.2	142.6	320.9	September 2019.
		Minimum	6.8	128	6	4.7	28.1	92.3	Dry January 2020 and
SW3	7	Maximum	21.75	245	7.96	9.43	196.1	159	January 2021.
		Average	11.2	199.4	6.8	6.6	140.5	130.1	September 2019.
		Minimum	5.9	128.2	5.75	1.12	58.1	99.45	Dry January 2020.
SW4	10	Maximum	20.33	388.3	8.8	10.42	263.1	251.82	Parameters not recorded
		Average	11.6	222.8	7.2	6.3	163.3	167.1	September 2019.
		Minimum	6.2	117.9	6.45	4.06	-3	76.7	Dry January, April 2020,
SW5	5	Maximum	11.95	251.2	8.35	9.33	191	121	and January 2021, Sontombor 2022 and
		Average	9.9	193.6	7.1	6.9	94.0	98.9	December 2022 and
		Minimum	8.3	168.3	6.53	4.5	111	109.2	Dry January, April,
SW6	4	Maximum	17.6	201.2	9.07	9.73	205.8	117	October 2020, January,
		Average	11.7	180.8	7.6	7.4	170.0	113.1	2023
		Minimum	6.9	94.7	6.34	1.8	14.1	61.75	Evidence of property
SW7	10	Maximum	23.1	2342	8.92	8.76	168	396.6	owner pushing material
		Average	14.7	433.5	7.3	5.5	101.0	155.4	fill to the surface.
Offsite									
		Minimum	7.6	170.5	7.0	3.1	31.9	107.9	
SW8	9	Maximum	23.6	1165.0	8.5	9.3	136.1	656.5	
		Average	14.9	746.1	7.5	6.4	108.9	415.8	
		Minimum	7.2	125.3	7.2	0.3	35.7	115.7	
SW9	9	Maximum	25.0	1304.0	8.4	16.8	227.7	812.5	
		Average	14.8	679.7	7.7	8.6	128.1	452.6	
		Minimum	7.7	682.0	7.2	3.6	3.8	454.4	
SW10	6	Maximum	20.3	1060.0	7.6	9.7	148.7	564.0	
		Average	13.2	819.7	7.4	6.3	85.2	491.5	

Table 6-2: Summary of Surface Water Physico-Chemical Parameters

6.3 Analytical Results

A summary of the surface water analytical results for monitoring events from August 2019 to June 2023 is presented in **Table 6-3** for on and near site and **Table 6-5** for the Mulwaree River sampling locations, respectively. The corresponding results tables are presented in **Tables 2** through **12** of **Appendix 3**.

						No. abo specific	ove site- c criteria	No above Tier 1 criteria							
Analyte	No. of Samples (Cumulative)	No. of Detects	Minimum (mg/L)	Maximum (mg/L)	Average (mg/L)	Human Health	Ecology	Irrigation ¹	Stock Water ¹	Health-based Screening Criteria (Recreational Waters)	ANZG 95% Protection Fresh Water (CaCO3 - extremely hard)	ANZG 95% Protection Fresh Water (CaC03 -soft)	ANZG 95% Protection Fresh Water (CaC03 – moderate)		
Total Metal	S														
Aluminium	63	43	0.05	11	0.880	-	-	-	-	3	-	-	-		
Arsenic	64	35	0.001	0.016	0.003	0	-	-	-	0	-	-	-		
Barium	63	63	0.03	0.36	0.074	-	-	-	-	0	-	-	-		
Beryllium	64	0	-	-	-	-	-	-	-	0	-	-	-		
Cadmium	64	37	0.0003	0.04	0.005	0	-	-	-	2	-	-	-		
Chromium	63	33	0.001	0.011	0.002	-	-	-	-	0	-	-	-		
Cobalt	64	24	0.001	0.014	0.003	-	-	-	-	-	-	-	-		
Copper	64	54	0.001	0.31	0.043	-	-	-	-	0	-	-	-		
Iron	63	62	0.06	8.9	1.414	-	-	-	-	9	-	-	-		
Lead	69	53	0.001	0.17	0.024	0	-	-	-	2	-	-	-		
Manganese	64	64	0.009	1.1	0.162	0	-	-	-	0	-	-	-		
Mercury	64	4	0.0001	0.0001	0.000	-	-	-	-	0	-	-	-		
Nickel	64	46	0.001	0.451	0.020	0	-	-	-	1	-	-	-		
Zinc	64	58	0.005	7	0.548	-	-	-	-	0	-	-	-	_	
Dissolved M	letals				-										
Aluminium	61	35	0.05	3.6	0.652	-	-	0	0	-	3	20	10		
Arsenic	62	31	0.001	0.011	0.002	-	0	0	0	-	0	0	0		
Barium	61	61	0.03	0.12	0.061	-	-	-	-	-	-	-	-		
Beryllium	62	0	-	-	-	-	-	0	-	-	0	0	0		
Cadmium	62	32	0.0002	0.018	0.003	-	2	0	0	-	0	20	5		
Chromium	61	16	0.001	0.003	0.002	-	-	0	0	-	0	2	3		
Cobalt	62	16	0.001	0.005	0.002	-	-	0	0	-	0	7	0		
Copper	62	46	0.001	0.2	0.037	-	0	0	0	-	9	22	13		
Iron	61	44	0.06	2.6	0.834	-	-	-	-	-	2	19	12		
Lead	62	39	0.001	0.033	0.009	-	0	0	0	-	1	19	2		
Manganese	62	61	0.005	1	0.089	-	-	0	-	-	0	0	0		
Mercury	62	0	-	-	-	-	-	0	0	-	0	0	0		
Nickel	62	38	0.001	0.421	0.018	-	0	0	0	-	0	5	0		
Zinc	62	51	0.005	2.6	0.368	-	0	0	0	-	3	22	10		

Table 6-3a: Summary of Onsite and Near Site Surface Water Analytical Results (SW1_UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7) – Cumulative Since August 2019

¹ Applicable to SW7 only

CaC03 Extremely Hard Category, refer to Table 5-1- includes sampling locations SW1, SW_UP and SW2

CaC03 Soft Category, refer to Table 5-1- includes sampling locations SW3-SW5

CaC03 Moderate Category, refer to Table 5-1- includes sampling locations SW6-SW7

Table 6-4b: Summary of Onsite and Near Site Surface Water Analytical Results (SW1_UP, SW1, SW2, SW3, SW4, SW5, SW6) – June 2023 Round

						No. abo specific	ove site- criteria			No a	bove Tier 1 criteria		
Analyte	No. of Samples (Cumulative)	No. of Detects	Minimum	Maximum	Average	Human Health	Ecology	Irrigation ¹	Stock Water¹	Health-based Screening Criteria (Recreational Waters)	ANZG 95% Protection Fresh Water (CaC03 - extremely hard)	ANZG 95% Protection Fresh Water (CaC03 -soft)	ANZG 95% Protection Fresh Water (CaC03 – moderate)
Total Metal	s												
Aluminium	7	4	0.05	1.5	0.500	-	-	-	-	0	-	-	-
Arsenic	7	4	0.001	0.002	0.002	0	-	-	-	0	-	-	-
Barium	7	7	0.03	0.08	0.067	-	-	-	-	0	-	-	-
Beryllium	7	0	-	-	-	-	-	-	-	0	-	-	-
Cadmium	7	3	0.0002	0.0064	0.002	0	-	-	-	0	-	-	-
Chromium	7	2	0.001	0.002	0.002	-	-	-	-	0	-	-	-
Cobalt	7	2	0.001	0.002	0.002	-	-	-	-	-	-	-	-
Copper	7	5	0.001	0.11	0.026	-	-	-	-	0	-	-	-
Iron	7	7	0.09	9.5	2.016	-	-	-	-	0	-	-	-
Lead	7	4	0.001	0.043	0.016	0	-	-	-	0	-	-	-
Manganese	7	7	0.016	0.25	0.086	0	-	-	-	0	-	-	-
Mercury	7	0	-	-	-	-	-	-	-	0	-	-	-
Nickel	7	4	0.001	0.013	0.005	0	-	-	-	0	-	-	-
Zinc	7	5	0.005	1.3	0.300	-	-	-	-	0	-	-	-
			Dissolved N	1etals									
Aluminium	7	3	0.05	0.1	0.070	-	-	0	0	-	0	0	0
Arsenic	7	2	0.001	0.002	0.002	-	0	0	0	-	0	0	0
Barium	7	7	0.03	0.08	0.061	-	-	-	-	-	-	-	-
Beryllium	7	0	-	-	-	-	-	0	-	-	0	0	0
Cadmium	7	1	0.002	0.0057	0.006	-	0	0	0	-	0	0	0
Chromium	7	0	-	-	-	-	-	0	0	-	0	0	0
Cobalt	7	1	0.001	0.002	0.002	-	-	0	0	-	0	0	0
Copper	7	5	0.001	0.084	0.020	-	0	0	0	-	1	1	1
Iron	7	4	0.05	4.2	1.560	-	-	-	-	-	-	-	-
Lead	7	4	0.01	0.02	0.007	-	0	0	0	-	0	0	0
Manganese	7	7	0.014	0.15	0.065	-	-	0	-	-	0	0	0
Mercury	7	0	-	0	-	-	-	0	0	-	0	0	0
Nickel	7	4	0.001	0.011	0.004	-	0	0	0	-	0	0	0
Zinc	7	3	0.005	1.2	0.446	-	0	0	0	-	0	0	0

¹ Applicable to SW7 only

CaC03 Extremely Hard Category, refer to Table 5-1- includes sampling locations SW1, SW_UP and SW2

CaC03 Soft Category, refer to Table 5-1- includes sampling locations SW3-SW5

CaC03 Moderate Category, refer to Table 5-1- includes sampling locations SW6-SW7

Table 6-5a: Summary of Mulwaree River Surface Water Analytical Results (SW8, SW9, SW10) – Cumulative Since January 2020

						Health-based Screening	Ecological Screening	ANZECC (2000) Fresh Water Guidelines
Analyte	No. of Samples	No. of Detects	Minimum (mg/L)	Maximum (mg/L)	Average (mg/L)	Criteria (Recreational Waters)	Criteria (ANZG 95% Protection) Fresh Water	Irrigation	Stock Water
Total Metals			(((
Aluminium	26	8	0.05	0.72	0.279	0	-	-	-
Arsenic	27	7	0.001	0.001	0.001	0	-	-	-
Barium	26	25	0.02	0.12	0.078	0	-	-	-
Beryllium	27	0	-	-	-	0	-	-	-
Cadmium	27	2	0.0003	0.0004	0.000	0	-	-	-
Chromium	26	4	0.001	0.002	0.002	0	-	-	-
Cobalt	27	3	0.001	0.003	0.002	-	-	-	-
Copper	27	17	0.001	0.01	0.003	0	-	-	-
Iron	26	25	0.14	3.2	0.564	1	-	-	-
Lead	27	7	0.001	0.002	0.002	0	-	-	-
Manganese	27	27	0.02	1.9	0.235	0	-	-	-
Mercury	27	0	-	-	-	0	-	-	-
Nickel	27	22	0.001	0.002	0.002	0	-	-	-
Zinc	27	24	0.008	0.16	0.031	0	-	-	-
Dissolved Me	tals								
Aluminium	24	2	0.35	0.41	0.380	-	2	0	0
Arsenic	25	3	0.002	0.003	0.003	-	0	0	0
Barium	24	23	0.02	0.12	0.075	-	-	-	-
Beryllium	25	0	-	-	-	-	0	0	-
Cadmium	25	2	0.0002	0.0004	0.000	-	0	0	0
Chromium	24	1	0.001	0.001	0.001	-	0	0	0
Cobalt	25	1	0.001	0.001	0.001	-	0	0	0
Copper	25	15	0.001	0.008	0.003	-	13	0	0
Iron	24	21	0.07	0.8	0.222	-	3	0	-
Lead	25	0	-	-	-	-	0	0	0
Manganese	25	25	0.012	0.85	0.140	-	0	0	-
Mercury	25	0	-	-	-	-	0	0	0
Nickel	25	17	0.001	0.002	0.001	-	0	0	0
Zinc	25	20	0.006	0.14	0.027	-	2	0	0

NA = not applicable

CaC03 Extremely Hard Category, refer to Table 5-1- includes sampling locations SW8, SW9 and SW10

Table 6-6b: Summary of Mulwaree River Surface Water Analytical Results (SW8, SW9, SW10) – June 2023 Round

						Health-based Screening	Ecological Screening	ANZECC (2000) Fresh Water Guidelines
Analyte	No. of Samples	No. of Detects	Minimum	Maximum	Average	Criteria (Recreational Waters)	Criteria (ANZG 95% Protection) Fresh Water	Irrigation	Stock Water
Total Metals									
Aluminium	3	0	0.05	-	-	0	-	-	-
Arsenic	3	0	0.001	-	-	0	-	-	-
Barium	3	3	0.03	0.09	0.090	0	-	-	-
Beryllium	3	0	-	-	-	0	-	-	-
Cadmium	3	0	0.0002	-	-	0	-	-	-
Chromium	3	0	0.001	-	-	0	-	-	-
Cobalt	3	0	0.001	-	-	-	-	-	-
Copper	3	2	0.001	0.003	0.002	0	-	-	-
Iron	3	3	0.09	0.24	0.200	0	-	-	-
Lead	3	0	0.001	-	-	0	-	-	-
Manganese	3	3	0.016	0.11	0.077	0	-	-	-
Mercury	3	0	-	-	-	0	-	-	-
Nickel	3	0	0.001	-	-	0	-	-	-
Zinc	3	3	0.005	0.035	0.026	0	-	-	-
Dissolved Me	etals								
Aluminium	3	0	0.05	-	-	-	0	0	0
Arsenic	3	0	0.001	-	-	-	0	0	0
Barium	3	3	0.03	0.09	0.090	-	-	-	-
Beryllium	3	0	-	-	-	-	0	0	-
Cadmium	3	0	0.002	-	-	-	0	0	0
Chromium	3	0	-	-	-	-	0	0	0
Cobalt	3	0	0.001	-	-	-	0	0	0
Copper	3	1	0.001	0.001	0.001	-	0	0	0
Iron	3	3	0.05	0.2	0.170	-	0	0	0
Lead	3	0	0.01	-	-	-	0	0	0
Manganese	3	3	0.014	0.1	0.073	-	0	0	-
Mercury	3	0	-	-	-	-	0	0	0
Nickel	3	0	0.001	0	-	-	0	0	0
Zinc	3	3	0.005	0.034	0.024	-	0	0	0

NA = not applicable

CaC03 Extremely Hard Category, refer to Table 5-1- includes sampling locations SW8, SW9 and SW10

6.4 Time Series Charts

The following time series charts present total and dissolved concentrations of lead, copper and zinc for the 12 monitoring events completed between August 2019 and June 2023. Daily rainfall is presented for the same period.

6.4.1 Lead Concentrations for On and Near Site

Figure 6-1 presents total lead concentrations reported in surface water samples from on and near site sample locations (SW1-UP, SW1 through to SW7). All surface water samples collected on and near the site to date have reported total lead concentrations that have fluctuated below the site-specific criterion for human health (7 mg/L). Maximum total lead concentrations recorded to date are more than 40-times lower than the criterion.

Figure 6-2 presents dissolved lead concentrations reported for the on and near site samples locations (SW1-UP, SW1 through to SW7). Data is compared to the EnRiskS (2021) site-specific ecological criterion for lead (0.1 mg/L). All samples to date have reported fluctuating dissolved lead concentrations below the criterion.

Figure 6-1: Upgradient and Onsite Total Lead Concentration Trend

Figure 6-2: Upgradient and Onsite Dissolved Lead Concentration Trend

6.4.1.1 Lead Concentrations for Mulwaree River (Offsite)

Figure 6-3 presents total lead concentrations reported in surface water samples (SW8, SW9, SW10) collected from the Mulwaree River located offsite. Data is presented relative to the adopted human health criterion for recreational water (0.1 mg/L). All surface water samples collected from the Mulwaree River to date have reported total lead concentrations at least 50-times lower than the criterion.

Figure 6-4 presents dissolved lead concentrations in samples collected from the Mulwaree River (SW8, SW9 and SW10) compared to the adopted criterion for 95% protection of species protection in freshwater aquatic ecosystems (hardness correction factor applied 0.091 mg/L) and STV irrigation (0.1 mg/L). The freshwater guideline for stock watering (5 mg/L) has not been plotted on the y-axis of the graph in order to allow visual assessment of the low concentration trends. All samples collected from the Mulwaree River to date have reported dissolved lead concentrations below the laboratory PQL (<0.001 mg/L) and below adopted ecological criteria.

Figure 6-3: Mulwaree River (Offsite) Total Lead Concentration Trend

Figure 6-4: Mulwaree River Offsite Dissolved Lead Concentration Trend

6.4.1.2 Copper Concentrations for On and Near Site

Figure 6-5 presents total copper concentrations in surface water samples from on and near site sample locations (SW1-UP, SW1 through to SW7). All surface water samples collected on and near the site to date have reported fluctuating total copper concentrations below the human health recreational criterion (20 mg/L). Maximum total copper concentrations recorded to date are more than 60-times lower than the adopted human health criterion for recreational waters.

Figure 6-6 presents dissolved copper concentrations in surface water samples from on and near site sample locations (SW1-UP, SW1 through to SW7). All samples collected on and near the site to date have reported fluctuating dissolved copper concentrations below the site-specific ecological criterion (0.5 mg/L).

Figure 6-5: Upgradient and Onsite Total Copper Concentration Trend

Figure 6-6: Upgradient and Onsite Dissolved Copper Concentration Trend

6.4.1.3 Copper Concentrations for Mulwaree River (Offsite)

Figure 6-7 presents total copper concentrations reported in surface water samples (SW8, SW9, SW10) collected from the Mulwaree River located offsite. All samples collected from the Mulwaree River to date have reported total copper concentrations below the human health recreational criterion of 20 mg/L.

Figure 6-8 presents dissolved copper concentrations reported in surface water samples (SW8, SW9, SW10) collected from the Mulwaree River located offsite.

Concentrations of dissolved copper to date were well below the freshwater guideline for irrigation (5 mg/L) and stock watering (0.4 mg/L) and were no plotted on the graph in order to allow visual assessment of the low concentration trends relative to the adopted 95% protection of freshwater species criterion (0.0014 mg/L).

All samples reported fluctuating dissolved copper concentrations above and below the adopted 95% protection of freshwater species criterion (0.0014 mg/L). However the last three monitoring events have reported a decreasing trend in concentrations, with the most recent round reporting dissolved copper concentrations below the ecological criterion.

Dissolved copper concentrations in the Mulwaree River appear representative of background concentrations and not representative of impacts from the Site.

Figure 6-7: Mulwaree River (Offsite) Total Copper Concentration Trend

Figure 6-8: Mulwaree River (Offsite) Dissolved Copper Concentration Trend

6.4.1.4 Zinc Concentrations for On and Near Site

Figure 6-9 presents total zinc concentrations reported in surface water sample locations (SW1-UP, SW1 through to SW7) collected from on and near the site. All surface water samples to date have reported fluctuating total zinc concentrations below the human health recreational criterion of 30 mg/L.

Figure 6-10 presents dissolved zinc concentrations reported in surface water sample locations (SW1-UP, SW1 through to SW7) collected from on and near the site. All samples collected on and near the site to date have reported fluctuating dissolved zinc concentrations below the site specific ecological criterion of 20 mg/L.

Figure 6-9: Upgradient and Onsite Total Zinc Concentration Trend

Figure 6-10: Upgradient and Onsite Dissolved Zinc Concentration Trend

6.4.2 Zinc Concentration for Mulwaree River (Offsite)

Figure 6-7 presents total zinc concentrations reported in surface water samples (SW8, SW9, SW10) collected from the Mulwaree River located offsite. All samples collected from the Mulwaree River to date have reported total zinc concentrations below the human health recreational criterion of 30 mg/L.

Figure 6-8 presents dissolved zinc concentrations reported in surface water samples (SW8, SW9, SW10) collected from the Mulwaree River located offsite.

Concentrations of dissolved zinc to date were well below the freshwater guideline for irrigation (5 mg/L) and stock watering (0.4 mg/L) and were not plotted on the graph. This allowed for visual assessment of the low concentration trends relative to the adopted 95% protection of freshwater species criterion, corrected for hardness (0.072 mg/L).

All samples reported fluctuating dissolved zinc concentrations generally below the adopted 95% protection of freshwater species criterion (0.072 mg/L) except for SW8 and SW9 in August 2020.

Similar to copper, comparable zinc concentrations in the Mulwaree River both upstream and downstream of the Site indicate background conditions and are not representative of impacts from the Site.

SW7 is sampled from a dam receiving water from the Northern Culvert and is located at 2135 Braidwood Road. Based on repeated discussion with the owner of 2135 Braidwood Road Ramboll understands the dam is to be decommissioned and backfilled in the near future. Within this context elevated contaminant concentrations in surface water identified at this location are not considered to present a risk to human health or ecology

Figure 6-11: Mulwaree River (Offsite) Total Zinc Concentration Trend

Figure 6-12: Mulwaree River (Offsite) Dissolved Zinc Concentration Trend

6.5 Mann Kendall Trends

Ramboll applied the GSI Mann-Kendall Toolkit to analyse time-series surface water monitoring data for the purpose of quantitatively determining if the measured concentrations of a CoPC are increasing, decreasing, or stable over time. This is based upon use of the Mann-Kendall statistical method. The software was applied to data from August 2019 to June 2023 to evaluate the concentration trend of each CoPC at each monitoring location. A summary of the Mann-Kendall results is outlined below, and the results are presented in **Appendix 6.**

6.5.1 Trends for On and Near Site

- Total and dissolved lead concentration trends for SW1_UP, SW1-SW7 reported either "No Trend", "Stable" or "Decreasing" trends.
- Total and dissolved copper concentration trends for SW1_UP, SW1-SW7 reported either "No Trend", "Stable" or "Decreasing" trends.
- Total and dissolved zinc concentration trends for SW1_UP, SW1-SW7 reported either "No Trend", "Stable", "Prob. Decreasing" or "Decreasing" trends.

6.5.2 Trends for Mulwaree River (Offsite)

- Total and dissolved lead concentration trends for SW8-SW10 reported "Stable" trends.
- Total and dissolved copper concentration trends for SW8 and SW9 reported "No Trend". Total copper concentration for SW10 reported an "Increasing" trend, however the dissolved copper concentration for SW10 reported a "Stable" trend.
- Total and dissolved zinc concentration trends for (SW8-SW10 reported "No Trend".

The Mann-Kendall trend analysis reported an increasing trend at SW10 for total zinc, however the concentration is well below the human health recreational criterion of 30 mg/L. In addition, the dissolved zinc concentration at SW10 reported a stable trend The reported increase in total zinc concentration is not a concern and does not pose a risk to human health in the Mulwaree River.

7. SUMMARY

A summary of CoC results with regard for human health and ecological risk is presented in Table 7-1.

Metal	Total/ Dissolved	Sample Location	Criteria	Summary
	Total	On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)	Site-specific human health criterion of 7 mg/L (EnRiskS, 2021).	Concentrations of total lead were below the adopted human health criteria in all samples collected to date. Mann-Kendall Trend
		Mulwaree River/Offsite (SW8, SW9, SW10)	Recreational water criterion (0.1 mg/L).	decreasing trends. There is low risk to human health from lead in surface water.
Lead		On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)	Site-specific human health criterion of 7 mg/L (EnRiskS, 2021).Concentrations of total lead were below the adopted human health criteria in all sample collected to date. Mann-Kendall Trend analysis reported no trend, stable or decreasing trends. There is low risk to human health from lead in surface water.Site-specific ecological criterion of 0.1 mg/L (EnRiskS, 2021).Concentrations of dissolved lead were below the adopted ecological assessment criteria i all samples collected to date. Mann-Kendall Trend analysis reported no trend, stable or decreasing trends. There is low risk to human health from lead in surface water.95% species protection for freshwater ecosystems corrected for hardness (0.091 mg/L) (ANZG, 2018). ANZECC (2000) Freshwater guidelines for irrigation (5 mg/L) and stock water (0.1 mg/L).Concentrations of total copper were below the adopted human health criteria in all samples collected to date. Mann-Kendall Trend analysis reported an increasing trend at SW10 for total copper. All other sample locations reported no trend, stable or decreasing trends. The increase in SW10 is not a concern as concentrations were below the recreational criterion (20 mg/L). There 	
	Dissolved	Mulwaree River/Offsite (SW8, SW9, SW10)	95% species protection for freshwater ecosystems corrected for hardness (0.091 mg/L) (ANZG, 2018). ANZECC (2000) Freshwater guidelines for irrigation (5 mg/L) and stock water (0.1 mg/L).	the adopted ecological assessment criteria in all samples collected to date. Mann-Kendall Trend analysis reported no trend, stable or decreasing trends. There is low risk to ecological receptors from lead in surface water.
		On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)		Concentrations of total copper were below the adopted human health criteria in all samples collected to date. Mann-Kendall Trend analysis reported an increasing trend
Copper	Total	Mulwaree River/Offsite (SW8, SW9, SW10)	Recreational water criterion (20 mg/L).	at SW10 for total copper. All other sample locations reported no trend, stable or decreasing trends. The increase in SW10 is not a concern as concentrations were below the recreational criterion (20 mg/L). There is low risk to human health from copper in surface water.
	Dissolved	On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)	Site-specific ecological criterion of 0.5 mg/L (EnRiskS, 2021).	Concentrations of dissolved copper were below the adopted ecological criteria in all samples collected to date. Mann-Kendall Trend analysis reported stable or decreasing

Table 7-1: CoC Results Summary (Lead, Copper, Zinc)

Metal	Total/ Dissolved	Sample Location	Criteria	Summary
				trends. There is low risk to ecological receptors from copper in surface water.
		Mulwaree River/Offsite (SW8, SW9, SW10)	95% species protection for freshwater ecosystems (0.0014 mg/L) (ANZG, 2018). ANZECC (2000) Freshwater guidelines for irrigation (5 mg/L) and stock watering (lower limit 0.4 mg/L).	Concentrations of dissolved copper exceeded the adopted ecological criteria on several occasions during the reporting period. Mann- Kendall Trend analysis reported no trend or stable trends. Comparable concentrations upstream and downstream of the Site suggest concentrations of copper are derived from a background source and not a result of impacts from the Site.
	On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)Recreational water criterion (30 mg/L).		Concentrations of total zinc were below the adopted human health criteria in all samples collected to date. Mann-Kendall Trend	
		Mulwaree River/Offsite (SW8, SW9, SW10)		decreasing trends. There is low risk to human health from zinc in surface water.
Zinc		On and Near Site (SW1- UP, SW1, SW2, SW3, SW4, SW5, SW6, SW7)	Site-specific ecological criterion of 20 mg/L (EnRiskS, 2021).	Concentrations of dissolved zinc were below the adopted ecological criterion in all samples collected to date. Mann-Kendall Trend analysis reported decreasing or stable trends. There is low risk to ecological receptors from zinc in surface water.
	Dissolved	Mulwaree River/Offsite (SW8, SW9, SW10)	95% species protection for freshwater ecosystems (ANZG, 2018) corrected for hardness (0.072 mg/L). ANZECC (2000) Freshwater guidelines for irrigation (5 mg/L) and stock water (20 mg/L).	Concentrations of dissolved zinc were below the adopted ecological criterion in all samples collected to date except for August 2020. Mann-Kendall Trend analysis reported no trend. Comparable concentrations upstream and downstream of the Site suggest concentrations of zinc are derived from a background source and not a result of impacts from the Site.

8. CONCLUSIONS

Routine surface water monitoring was reinstated at Tarago NSW in September 2022 in response to a Prevention Notice issued by the NSW EPA to TfNSW. This was not mandated by the NSW EPA, however TfNSW commenced surface monitoring to assess the risks to community health and safety. Surface water monitoring was completed between 12 and 13 December 2022. Results were compared against historical observations and relevant assessment criteria.

Based on review of the most recent surface water monitoring results (June 2023) and historical data, the following conclusions have been drawn:

- No evidence of offsite migration of contaminants in surface water has been identified.
- No exceedances in the adopted human health criteria for the contaminants of concern have been reported.
- No exceedances in the ecological criteria for the contaminants of concern have been reported except for in zinc and copper concentrations within the Mulwaree River. Concentrations of copper and zinc observed in the Mulwaree River are considered consistent with background concentrations and not to indicate impacts from the Site.
- No significant increasing trends in surface water concentrations that would represent an unacceptable human health risk or ecology have been identified.

Further, the cumulative monitoring data set supports conclusion that barium, beryllium, manganese and mercury are not contaminants of concern and that future monitoring need not consider these metals.

9. LIMITATIONS

This report is produced by Ramboll at the request of the client for the purposes detailed herein. This report and accompanying documents are intended solely for the use and benefit of the client and the Transport Asset Holding Entity for this purpose only and may not be used by or disclosed to, in whole or in part, any other person without the express written consent of Ramboll. Ramboll neither owes nor accepts any duty to any third party and shall not be liable for any loss, damage or expense of whatsoever nature which is caused by their reliance on the information contained in this report.

10. REFERENCES

ADWG (2011). National Health and Medical Research Council (NHMRC) (2001) National Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version 3.5 updated August 2018.

ANZECC (2000). Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ)

ANZG (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at <u>www.waterquality.gov.au/anz-guidelines</u>

EnRiskS (2021). Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW.

Goulburn Mulwaree Council (2009). Goulburn Mulwaree Regional State of the Environment Report 2004-2009

NEPM (2013). National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013

NHMRC (2008). National Health and Medical Research Council (NHMRC), National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water

NSW DEC (2007). Contaminated Sites – Guidelines for the Assessment and Management of Groundwater Contamination, Department of Environment and Conservation NSW, Sydney, March 2007.

NSW EPA (2017). *Contaminated Land Management - Guidelines for the NSW Site Auditor Scheme (3rd Edition),* New South Wales Environment Protection Authority, Sydney, NSW, October 2017.

Ramboll (2019). *Tarago Loop Extension: Further Intrusive Assessment and Lead Management Plan*, document reference 318000780-01-Rev3, Ramboll Australia Pty Ltd, September 2019.

Ramboll (2020). *Sampling Analysis and Quality Plan (SAQP) – Surface Water Monitoring, Tarago Lead Management*, document reference 318000780-T24-01-Rev0, Ramboll Australia Pty Ltd, August 2020.

Ramboll - Tarago, NSW

APPENDIX 1 SAQP

Intended for Transport for New South Wales

Document type Plan

Date April 2023

Project Number Sampling Analysis and Quality Plan (SAQP) – Surface Water Monitoring

SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) – SURFACE WATER MONITORING TARAGO LEAD MANAGEMENT

TARAGO LEAD MANAGEMENT SAMPLING ANALYSIS AND QUALITY PLAN (SAQP) – SURFACE WATER MONITORING

Project name	Tarago Lead Management
Project no.	318001376-Т6-
Recipient	Joanne McLoughlin - Transport for New South Wales
	E: Joanne.Mcloughlin@transport.nsw.gov.au
Document type	Plan
Description	This document comprises the Sampling Analysis and Quality Plan
	(SAQP) for surface water monitoring associated with
	management of lead contamination from the Tarago rail corridor.

Ramboll Level 2, Suite 18 Eastpoint 50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

Revision	Update	Date	Prepared by	Checked by	Approved by
0	Draft	6/08/2020	J Kirsch	S Maxwell	F Robinson
1	Revised draft	7/10/2022	J Kirsch	S Maxwell CEnvP	F Robinson
2	Updated	08/02/2023	N Gilbert	S Maxwell CEnvP	F Robinson
3	Final	18/04/2023	N Gilbert	S Maxwell CEnvP (SC) 41184	F Robinson

This document is issued in confidence to Transport for New South Wales for the purposes of providing a Sampling Analysis and Quality Plan for surface water monitoring at Tarago NSW, and subject to NSW EPA Accredited Site Auditor review. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Ramboll Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Ramboll Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Ramboll Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© Ramboll Australia Pty Ltd

Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

CONTENTS

1.	INTRODUCTION	1
1.1	Preamble	1
1.2	Background	1
1.3	Regulation	1
1.4	Objective	1
2.	SITE IDENTIFICATION	2
3.	REGULATORY REQUIREMENTS	3
4.	SUMMARY OF CONCEPTUAL SITE MODEL	4
5.	ASSESSMENT CRITERIA	5
5.1	Rationale for Application of Guidelines	5
6.	DATA QUALITY OBJECTIVES	9
6.1	Step 1: State the problem	9
6.1.1	Contaminants of Concern	9
6.2	Step 2: Identify the decisions / goal of the study	9
6.3	Step 3: Identify the information inputs	9
6.4	Step 4: Definition of the Study Boundary	10
6.5	Step 5: Develop the decision rules or analytical approach	10
6.6	Step 6: Specify the performance or acceptance criteria	10
6.6.1	The tolerable limits on decision errors are as follows:	10
6.6.2	Evaluation of Analytical Data	11
6.7	Step 7: Develop a plan for obtaining data	13
7.	SAMPLING PLAN	14
7.1.1	Water Quality Monitoring Performance Criteria	14
8.	REPORTING	16
9.	REFERENCES	17

LIST OF TABLES

Table 2-1: Site Identification	. 2
Table 4-1 Conceptual Site Model Summary	. 4
Table 5-1: Guidelines Applied to Sampling Points	. 6
Table 5-2: Guideline Criteria (mg/L)	. 7
Table 7-1 Performance Criteria	14

APPENDICES

Appendix 1

Figures

1. INTRODUCTION

1.1 Preamble

Ramboll Australia Pty Ltd (Ramboll) was engaged by Transport for NSW (TfNSW) to complete periodic surface water monitoring upstream and downstream of contamination within the Goulburn – Bombala rail corridor at Tarago, New South Wales, Australia.

1.2 Background

The site is identified as part Lot 22 Deposited Plan (DP) 1202608 and is located in Tarago, NSW. The site occupies an area of approximately three hectares and is located approximately 32 km south of Goulburn.

The Woodlawn Mines Ore Concentrate Load-Out Complex operated within the Goulburn – Bombala rail corridor at Tarago from the 1970s – 1990s. Concentrates were produced at the Woodlawn Mine approximately 6.5 km west and included a zinc concentrate consisting mainly of sphalerite (zinc sulphide), a lead concentrate of galena (lead sulphide) and copper concentrates of chalcopyrite (copper iron sulphide).

An extensive body of work has been completed to characterise contaminant impacts associated with historic operation of the site. This work has included assessment of soil, groundwater and surface water across the site and assessment of soil, groundwater, surface water and airborne dust within the surrounding area. Recent assessments identified contaminants within approximately 900 lineal meters of the rail formation at Tarago. This area is herein referred to as the 'site' and is presented on **Figure 1**, **Appendix 1**.

Offsite discharge of surface water appears to be generally related to three culverts which pass beneath the rail formation onsite. Contaminants of potential concern (CoPC) relevant to receiving surface waters appear limited to metals (aluminium, cadmium, copper, lead, nickel, zinc) which exceed the adopted relevant health and/or ecological assessment criteria.

1.3 Regulation

On 25 March 2020 the NSW Environment Protection Authority (NSW EPA) declared the site as significantly contaminated under Section 11 of the Contaminated Land Management Act 1997 (Declaration Number 20201103). Transport for NSW is currently managing the contamination under a Voluntary Management Proposal (VMP) which includes further assessment of site contamination and remediation to address the potential risks to human health and the environment posed by the contamination.

1.4 Objective

The objective of the surface water monitoring is to collect reliable water quality data, providing a data continuum which forms a basis for assessment of impacts from the site on surrounding surface water receptors.

2. SITE IDENTIFICATION

The site locality is shown in Figure 1, Appendix 1.

The site details are presented in Table 2-1.

Table 2-1: Site Identification

Information	Description
Street Address:	Accessed from Stewart Street and Goulburn Street Tarago NSW
Identifier:	Part Lot 1 DP 595856
Site Area:	Approximately 7.5 ha
Local Government:	Goulburn Mulwaree Shire
Owner:	Transport for NSW
Current Site Use:	Forms part of the Goulburn to Bombala rail line and the Country Regional rail Network (CRN)

Ramboll - Tarago Lead Management

3. REGULATORY REQUIREMENTS

This SAQP has been prepared in general accordance with the following guidance documents:

- 1. Australia and New Zealand Environment and Conservation Council, *Guidelines for Fresh and Marine Water Quality* (ANZECC, 2018)
- 2. National Environment Protection Council (NEPC), *National Environment Protection* (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPM, 2013)
- 3. NSW EPA, Contaminated Sites: *Guidelines for Consultants Reporting on Contaminated Lands* (NSW EPA 2020)
- 4. NSW EPA, Guidelines for the Site Auditor Scheme (3rd Edition) (NSW EPA, 2017)

4. SUMMARY OF CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) was prepared as part of a Detailed Site Investigation prepared by Ramboll (2020). The CSM provides a summary of the source-pathway-receptor linkages for surface water and is summarised in **Table 4-1**.

Table 4-1 Conceptual Site Model Summary

Exposure Pathway	Onsite Workers	Onsite Ecology	Residents	Community Activities	Offsite Workers	Offsite Ecology	Irrigation and Livestock
Surface Water							
Direct contact	N	р	N	Ν	N	р	Р
Incidental ingestion	N	р	N	N	N	р	р
Root uptake	N/A	Р	N/A	N/A	N/A	Р	N/A
Migration to groundwater	N	р	N	N	N	р	р

N/A – not applicable

N – no exposure route

P – possible exposure route

5. ASSESSMENT CRITERIA

The criteria adopted for the assessment of surface water contamination are sourced from the following references:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999, as amended 2013 (NEPC, 2013).
- National Health and Medical Research Council (NHMRC) (2001) National Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version 3.6 updated March 2021, (ADWG, 2011).
- National Health and Medical Research Council (NHMRC), *National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water* (NHMRC, 2008).
- Department of Environment and Conservation (DEC) *Guidelines for the Assessment and Management of Groundwater Contamination* (DEC, 2007).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018) (available at www.waterquality.gov.au/anz-guidelines).
- Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC, 2000).
- Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW, Site specific criteria Protection of human health and terrestrial and/or aquatic ecosystems (EnRiskS, 2020).

5.1 Rationale for Application of Guidelines

The relevance of guidelines was determined based on iterative screening from the broadest and most sensitive water usage scenario which occurs in the Mulwaree River back through agricultural land and public roads to the least sensitive scenario which occurs at the Site.

All results from Mulwaree River samples (SW8 to SW10) have been screened against Tier 1 / screening guidelines relevant to human health (incidental ingestion), freshwater ecology, irrigation and stock watering as each of these receptors occur within the receiving waters (the Mulwaree River). Should results exceed screening guidelines and indicate site contamination as the source, it would be appropriate to apply the guidelines that were exceeded to sampling locations upstream as this would inform further assessment of the Site as the potential source. Previous monitoring results do not indicate site contamination is adversely affecting the Mulwaree River. Site-specific guidelines were developed for Arsenic, Cadmium, Lead, Manganese and Nickel (EnRiskS, 2020) that integrate the ephemeral nature of surface water features between the Mulwaree River and the Site. Additionally, several technical refinements were identified and are relevant to guideline application. These were:

- ADWG (2011) Section 6.3.1 states that guideline values refer to the total amount of the substance present, regardless of its form (e.g., in solution or attached to suspended matter) and so analytical results from unfiltered samples should be assessed against human health criteria. The primary human health risk from contaminants in surface water from the Site is via recreational use. NHMRC (2008) suggests that 10-times the ADWG values may provide a conservative estimate of acceptable recreational exposure guidelines values. This approach was applied to derive recreational exposure criteria.
- ANZG (2018) guidelines for metals in freshwater are adopted from the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000) which states the major toxic effect of metals comes from the dissolved fraction, so it is valid to filter samples (e.g., to 0.45 µm) and compare the filtered concentration against the trigger values.
- Water hardness is identified as a physical parameter with quantifiable effects. Correction factors are defined in the guidelines to address the effect of water hardness on the chemical toxicity and hence the trigger value of cadmium, chromium, lead, nickel and zinc.

To define appropriate hardness correction factors, three surface water samples will be collected and analysed for hardness as CaCO3 to validate the use of the hardness correction factor. The factors will be applied to refine Tier 1 trigger values per guidance presented in Table 3.4.4 of the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC, 2000) Application of guidelines at each sampling point is summarised in **Table 5-1**.

Sampling Point	Location	Human Health - Site Specific ¹	Ecology - Site Specific ¹	Human Health - Recreational Sceening ²	Ecology – Screening ³	Irrigation – Screening ³	Stock Water – Screening³
SW1-UP	Upstream of Southern Culvert (offsite)	4	1	1	1	-	-
SW1	Upstream of Southern Culvert	1	1	1	~	-	-
SW2	Downstream of Southern Culvert	1	1	1	~	-	-
SW3	Upstream of Middle Culvert	1	1	1	~	-	-
SW4	Downstream of Middle Culvert	1	1	1	~	-	-
SW5	Upstream of Northern Culvert	1	1	1	~	-	-
SW6	Downstream of Northern Culvert	1	1	1	~	-	-
SW7	Dam on farm downstream of Northern Culvert (offsite)	-	-	4	4	1	~
SW8	Mulwaree River upstream of Middle and Northern Culvert Discharge	-	-	4	*	4	~
SW9	Mulwaree River upstream of Southern Culvert Discharge	-	-	*	4	1	✓
SW10	Mulwaree River downstream of Middle and Northern Culvert Discharge	-	-	1	~	~	~

Table 5-1: Guidelines Applied to Sampling Points

¹ EnRiskS (2021)

² ANZG (2018)

³ ANZECC (2000)

Assessment criteria adopted under each guideline are presented in Table 5-2.

Human Human Ecology 95% Fresh Health - Site Irrigation -Health -Stock Water Contaminant Site Specific water (ANZG Recreation Specific Screening - Screening Criteria 2018) Criteria Screening **Total Metals** Aluminium 2ª NA NA NA NA Arsenic 7 NA NA NA NA 0.1 Barium 2 NA NA NA NA Beryllium _ 0.6 NA NA NA NA Cadmium 0.002 NA NA 1.4 NA NA Chromium 0.5 NA NA NA NA Cobalt NA NA NA NA Copper 20 NA NA NA NA Iron 3 NA NA NA NA Lead 7 0.1 NA NA NA NA 350 Manganese 5 NA NA NA NA Mercury 0.01 _ NA NA NA NA Nickel 14 NA NA NA 0.2 NA Zinc 30^h NA NA NA NA **Dissolved Metals** Aluminium NA NA 5 0.055^b 20 5 Arsenic NA NA 0.5 0.024^c 2 0.5-5 Barium NA NA Beryllium NA NA 0.5 Cadmium NA 10 0.000549 0.05 0.01 NA Chromium NA NA 0.0025 ^{d g} 1 1 _ Cobalt 0.0014 0.1 NA NA 1 Copper NA NA 0.5 0.0014 5 0.4-5 not sufficiently Iron NA NA 10 _ toxic Lead NA NA 0.1 0.0136^g 5 0.1 not sufficiently Manganese NA NA 1.9 10 toxic Mercury NA NA 0.00006^{e, f} 0.002 0.002 Nickel 0.02759 2 NA NA 1 1 Zinc NA NA 20 0.029 5 20

Table 5-2: Guideline Criteria (mg/L)

NA – not applicable

blank cell denoted with - indicates no criterion available

^a Aluminium calculated using the ADWG (2011) aesthetic guideline based on post-flocculation problems Insufficient data to set a guideline value based on health considerations

^b Aluminium guideline for pH > 6 5 was based on the average pH being above pH 6 5 at each surface water location

^c Guideline value for arsenic (III)

^d Guideline value for chromium (VI)

e Guideline value for inorganic mercury

^f 99% species protection level DGV has been adopted to account for the bioaccumulating nature of this contaminant

^g Hardness correction factor applied to the threshold value as detailed in ANZG 2018

^h Zinc calculated using the ADWG (2011) aesthetic guideline Insufficient data to set a guideline value based on health considerations

Ramboll - Tarago Lead Management

6. DATA QUALITY OBJECTIVES

To achieve the objectives and purpose of the surface water monitoring program, both the field and laboratory programs must result in data that is representative of the conditions at the site. As such, specific Data Quality Objectives (DQOs) have been developed for the tasks to be completed to validate the remediation of the site. The DQO process is a systematic, seven step process that defines the criteria that the validation sampling should satisfy in accordance with the *Guidelines for the NSW Site Auditor Scheme (3rd Edition)* (NSW EPA 2017).

The seven step DQOs process comprises:

- 1. Step 1: State the problem;
- 2. Step 2: Identify the decisions/ goal of the study;
- 3. Step 3: Identify the information inputs;
- 4. Step 4: Define the boundaries of the study;
- 5. Step 5: Develop the decision rules or analytical approach;
- 6. Step 6: Specify the performance or acceptance criteria;
- 7. Step 7: Develop the plan for obtaining data.

The seven step DQO process has been completed for surface water monitoring to be completed before, during and after site remediation.

6.1 Step 1: State the problem

Due to historic loadout of ore concentrate surface water flow over ore impacted soils has been identified to result in migration of total and dissolved metal concentrations from the site. The site has been declared significantly contaminated land by the NSW EPA and a VMP has been prepared to describe how associated risks to human health and the environment will be managed.

6.1.1 Contaminants of Concern

Contaminant of Concern relevant to receiving surface waters appear limited to metals (aluminium, cadmium, copper, lead, nickel, zinc) which exceed the adopted relevant health and/or ecological assessment criteria.

6.2 Step 2: Identify the decisions / goal of the study

The goal of the study is to assess the migration of metal(loid) contamination from the site in surface waters and the impact of migration to surface waters off site.

Based on the decision-making process for assessing urban redevelopment sites, detailed in the *NSW Site Auditor Guidelines, 3rd Edition 2017*, the following decisions must be made with respect to the targeted validation goals:

- 1. Is the data collected of sufficient quality to meet the project objectives?
- 2. Is the data reliable?
- 3. What is the fate and transport of contaminant offsite?
- 4. What are the potential risks to human health and the environment?

6.3 Step 3: Identify the information inputs

Inputs to the decisions will be sourced from:

- 1. Review of historical surface water monitoring results
- 2. Physico-chemical properties collected for each of the 10 surface water sampling locations
- 3. Sampling of surface water and analysis for contaminants of concern

- 4. Analytical results for metal(loid)s in surface water samples from each of the 10 sampling locations
- 5. Quality Assurance / Quality Control data review
- 6. Comparison of the above samples to the assessment criteria outlined in **Section 5**.
- 7. All sample analyses conducted using National Association of Testing Authorities (NATA) registered methods in accordance with ANZECC (1996) and NEPC (1999) guidelines
- 8. All samples appropriately preserved and handled in accordance with the sampling methodology
- 9. PQLs less that the adopted assessment criteria

6.4 Step 4: Definition of the Study Boundary

The spatial boundaries are shown on **Figure 1** and include:

- 1. Three tributaries of the Mulwaree River, one located approximately 100 m west of the rail corridor at CH. 262.600, one adjacent to a culvert on the western side of the rail line at CH 262.600 and one adjacent a culvert on the eastern side of the rail line at CH 262.600.
- Four locations adjacent to culverts, one western side of the rail line at CH 262.300, one on the eastern side of the rail line at CH 262.300, one on the western side of the rail line at CH 262.000 and one on the eastern side of the rail line at CH 262.000.
- 3. The dam located downgradient from the site northern rail culvert forming part Lot A DP 440822, and three locations along the Mulwaree River

The vertical boundaries are limited to the depth of surface waters encountered and accessible.

The temporal boundary includes historical surface water results as well as data collected under this SAQP comprising quarterly monitoring events over pre-remediation, remediation and postremediation periods. Two post remediation surface water monitoring events will be included in the validation report.

6.5 Step 5: Develop the decision rules or analytical approach

The decisions rules for this investigation are as follows:

- 1. Has contaminant migration via surface water been adequately assessed?
- 2. Have contaminant impacts to surface water off site been adequately assessed?
- 3. Is the data reliable?
- 4. Does the data define clear presence / absence of unacceptable risk when assessed against Tier 1 criteria?
- 5. If Tier 1 assessment of risk is not clear, then does Tier 2 / Tier 3 risk assessment define absence of unacceptable risk?
- 6. Are there any remaining data gaps?

6.6 Step 6: Specify the performance or acceptance criteria

- 6.6.1 The tolerable limits on decision errors are as follows:
 - 1. Probability that 95% of data will satisfy the DQIs, therefore a limit on decision error will be 5% that a conclusive statement may be incorrect:
 - a. A 5% probability of a false negative (i.e. assessing that the average concentration of contaminants of concern are less than the assessment criteria when they are not); and
 - b. A 5% probability of a false positive (i.e. assessing that the average concentration of contaminants of concern are more than the assessment criteria when they are not).

The potential for significant errors will be minimised by:

- 1. Completion of QA/QC measures of the investigation data to assess if the data satisfies the DQIs.
- 2. Assessment of whether appropriate sampling and analytical densities were completed for the purposes of the investigation.
- 3. Ensuring that the criteria set for the investigation were appropriate for the land use.

DQIs have been established to set acceptance limits on field and laboratory data collected as part of the investigation and are discussed further below.

6.6.2 Evaluation of Analytical Data

Acceptable limits and the manner of addressing possible decision errors for laboratory analysis associated with water quality monitoring and verification of imported materials are outlined below.

Accuracy: Accuracy is defined as the nearness of a result to the true value, where all random errors have been statistically removed. Internal accuracy is measured using percent recovery '%R' and external accuracy is measured using the Relative Percent Difference '%RPD'.

Internal accuracy will be tested utilising:

Surrogates	Surrogates are QC monitoring spikes, which are added to all field and QA/QC samples at the beginning of the sample extraction process in the laboratory, where applicable. Surrogates are closely related to the organic target analytes being measured, are to be spiked at similar concentrations, and are not normally found in the natural environment;
Laboratory control samples	An externally prepared and supplied reference material containing representative analytes under investigation. These will be undertaken at a frequency of one per analytical batch.
Matrix spikes	Field samples which are injected with a known concentration of contaminant and then tested to determine the potential for adsorption onto the matrix. These will be undertaken at a frequency of 5%.

Recovery data shall be categorised into one of the following control limits:

 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

External accuracy will be determined by the submission of inter-laboratory duplicates at a frequency of 5%. Data will be analysed in accordance with the following control limits:

 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

Precision: The degree to which data generated from replicate or repetitive measurements differ from one another due to random errors. Precision is measured using the standard deviation 'SD' or Relative Percent Difference '%RPD'.

Internal precision will be determined by the undertaking of laboratory duplicates, where two sub samples from a submitted sample are analysed. These will be undertaken at a frequency of 10%. A RPD analysis is calculated and results compared to:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

External precision will be determined by the submission of intra-laboratory duplicates at a frequency of 5%. The external duplicate samples are to be obtained by mixing and then splitting the primary sample to create two identical sub samples. Field duplicate samples are to be labelled with a unique identification that does not reveal the association between the primary and duplicate samples e.g., QA1.

It must be noted that significant variation in duplicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity or concentrations reported near the Practical Quantification Limit (PQL).

A RPD analysis is calculated and results compared to:

• 70%-130%R confirming acceptable data, note that there are some larger %R for intractable substances.

Any data which does not conform to these acceptance criteria will be examined for determination of suitability for the purpose of site characterisation.

Blank samples will be submitted with the analytical samples and analysed for the contaminants of concern One field blank will be collected and analysed per matrix type for each batch samples/each day.

The laboratory will additionally undertake a method blank with each analytical batch of samples. Laboratory method blank analyses are to be below the PQLs. Results shall be examined, and any positive results shall be examined. Positive blank results may not be subtracted from sample results.

Positive results may be acceptable if sample analyte concentrations are significantly greater than the amount reported in the blank (ten times for laboratory reagents such as methylene chloride, chloroform, and acetone etc., and five times for all other analytes). Alternatively, the laboratory PQL may be raised to accommodate blank anomalies provided that regulatory guidelines are not compromised by any adjustment made to the PQL.

Completeness: The completeness of the data set shall be judged as:

- 1. The percentage of data retrieved from the field compared to the proposed scope of works. The acceptance criterion is 95%.
- The percentage of data regarded as acceptable based on the above data quality objectives.
 95% of the retrieved data must be reliable.
- 3. The reliability of data based on cumulative sub-standard performance of data quality objectives.
- 4. All PQLs are below adopted assessment criteria.

Where two or more data quality objectives indicate less reliability than what the acceptance criteria dictates, the data will be considered with uncertainty.

Representativeness: Sufficient samples must have been collected.

Samples must be collected and preserved in accordance with the sampling methodology proposed in Step 7 to ensure that the sample is representative of the assessed stratum.

Comparability: The data must show little to no inconsistencies with results and field observations and include likely associates e.g. TPH C6-C9 and BTEX.

Decision Error Protocol

If the data received is not in accordance with the defined acceptable limits outlined in Step 6, it may be considered to be an estimate or be rejected. Determination of whether this data may be used or if re-sampling is required will be based on the following considerations:

- 1. Closeness of the result to the guideline concentrations.
- 2. Specific contaminant of concern (e.g. response to carcinogens may be more conservative).
- 3. The area of site and the potential lateral and vertical extent of questionable information.
- 5. Whether the uncertainty can be effectively incorporated into site management controls.

6.7 Step 7: Develop a plan for obtaining data

The overall design of the sampling plan considers migration of surface water from the site. Further detail is provided in **Section 7**.

7. SAMPLING PLAN

The sampling plan for surface water quality will be based on quarterly monitoring events over pre-remediation, remediation and post-remediation periods. Two post remediation surface water monitoring events will be included in the validation report.

Surface water sampling will target conditions upstream and downstream of three culverts which direct surface water beneath the rail formation onsite. Surface water at the site only occurs after rainfall and is received to the surrounding environment as follows:

- 1. Water passing through the northern culvert discharges to an adjacent agricultural property and during high rainfall events to a dam on the agricultural property.
- 2. Water passing through the middle culvert discharges across a causeway on Boyd Street to an adjacent vacant block.
- 3. Water passing through the southern culvert discharges beneath Goulburn Street to agricultural land in a tributary to the Mulwaree River (approximately 550m east of site)

Surface water samples will be collected upstream and downstream of each culvert and in receiving water bodies as shown on **Figure 1**, **Appendix 1**.

7.1.1 Water Quality Monitoring Performance Criteria

Surface water sampling will be completed in accordance with performance criteria defined in **Table 7-1**.

Table 7-1 Performance Criteria

Category	Validation Criteria
Accuracy: Accuracy in the collection of field data will be	 Calibrated measurement equipment used. The water quality meter will be calibrated by the technical rental company prior to use.
controlled by:	2. Appropriate sampling methodologies utilised and complied with. Works to be completed with regard for AS NZS 5667.6-1998 Water quality - Sampling - Guidance on sampling of rivers and streams.
	3. Collection of one intra-laboratory duplicate for surface water.
	4. Rinsate samples are not proposed to be collected due to surface water samples being collected directly into dedicated sampling containers (or field filtered using single use syringes and filters) using disposable nitrile gloves.
Precision: The degree to which	1. A new pair of disposable nitrile gloves to handle each sample.
data generated from replicate or repetitive measurements differ	Samples will be placed immediately into laboratory supplied and appropriately preserved sampling vessels.
errors. Precision of field data will be maintained by:	Samples will be stored in chilled, insulated containers with ice for transportation to the laboratory.
	Sample numbers, preservation and analytical requirements will be recorded on chain of custody documents.
	5. Samples will be transported to the laboratory under chain of custody conditions.
Completeness: The completeness of the data set shall be judged by:	1. All locations sampled as outlined in Sections 7.1.1 and Figure 1, Appendix 1.
	2. Sampling completed by experienced personnel.
	3. Field documentation completed correctly.
Representativeness: The representativeness of the field data will be judged by:	 Non-disposable sampling equipment, such as the grab sampler and water quality meter, will be thoroughly decontaminated between locations using Decon 90 solution and deionised rinsate water.
	At each location, a pair of disposable nitrile gloves will be worn while sampling and handling the sample; gloves will be replaced between each successive sample.
	Surface water analytical samples will be collected directly into the sampling vessels using an extendable pole sampler where appropriate.
Comparability: Comparability to	1. Use of the same appropriate sampling methodologies.
existing field data will be maintained by:	2. Same sampling depths for surface water (where practical).
	3. Field water quality parameters will be obtained using a calibrated water quality meter and recorded on a field sheet, comprising pH, temperature, total dissolved solids (TDS), dissolved oxygen (DO), redox potential and electrical conductivity (EC).

Category	Validation Criteria
	4. Samples for dissolved metal analysis and CaCO ₃ will be collected in dedicated disposable 50 mL plastic syringes. Metals will be field filtered through 0.45 μm filters directly into a sample bottle containing acid preservative.
	5. Visual and olfactory observations will also be recorded on the field sheet.
	Photographs will be taken of sampling location conditions at the time of sampling.

8. **REPORTING**

On completion of each monitoring event, a report will be prepared documenting the completed sampling, trend analysis, quality assurance / quality control and laboratory reports.

The report shall include the following:

- 1. Executive summary
- 2. Introduction
- 3. Objectives and scope of work
- 4. Summary of completed field sampling and laboratory analysis
- 5. QA/QC review
- 6. Temporal trend analysis
- 7. Conclusions

9. **REFERENCES**

ADWG (2011). National Health and Medical Research Council (NHMRC) (2001) National Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 6, Version 3.5 updated August 2018.

ANZECC (2000). Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ)

ANZG (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines

EnRiskS (2021). Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW.

NEPM (2013). National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013

NHMRC (2008). National Health and Medical Research Council (NHMRC), National Resource Management Ministerial Council (NRMMC) Guidelines for Managing Risks in Recreational Water

NSW DEC (2007). Contaminated Sites – Guidelines for the Assessment and Management of Groundwater Contamination, Department of Environment and Conservation NSW, Sydney, March 2007.

NSW EPA (2017). *Contaminated Land Management - Guidelines for the NSW Site Auditor Scheme (3rd Edition),* New South Wales Environment Protection Authority, Sydney, NSW, October 2017.
APPENDIX 1 FIGURES

Legend

•

Rail corridor fence Area of lead exceedance (within rail corridor) Indicative surface water flow path (ie: not ephemeral) Indicative ephemeral surface water flow path

A4

APPENDIX 2 FIELD SHEETS

Surface Water Sampling Sheet

Project Name: TARAGO SU	NM Ramb	Ramboll Personnel:					
Project No: 318001376-00	7	JA/IM					
Date: 16 06/23		- 1					
Start time:	Subco	ontractors:					
Finish time:		nla					
	Equipmen	t					
Water Quality Meter ID:							
	Water Quality	Parameters					
Sample ID	STAR SWI	-160623					
Sampling Method	Surface grab	water sample					
Time	8:13	am					
Intake Depth From Surface (mm)	100						
Temperature (°C)	7.8° c						
Dissolved Oxygen (mg/L)	10.29	3					
рН	7.6						
Oxido Reduction Potential (mV)	57.6						
Turbidity	/						
Specific Conductivity US/CM	783						
Comments	clear, colo no furbidity odour	WY/ESS, , NO					
No. of Contrainers used	2						
)						
are air bubbles present in vials?		list /A					
Vas sample for metals field filtered?	Y DN DN tal	/A					
Duplicate Samples Collected?	Y N N	Duplicate Sample ID:					
insate Blank Collected?	Y 🗹 N	Primary Sample ID:					

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Padfic Highway North Sydney NSW 2060 Ph: 02 9954 8100

HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

1

Surface Water Sampling Sheet

Project Name: TARAGO SWM	Ramboll Personnel:					
Project No: 318001376-007	TALIM					
Date: 16/06/23	Stort Provide August Au					
Start time:	Subcontractors:					
Finish time:	na					
	7					
	Equipment					
Water Quality Meter ID:						
	ater Quality Parameters					
Sample ID	TAR_SW1_UP_ 160623					
Sampling Method	SW Arab Sample					
Time	8:30am					
Intake Depth From Surface (mm)	600					
Temperature (°C)	8.0					
Dissolved Oxygen (mg/L)	6.92					
pН	7.3					
Oxido Reduction Potential (mV)	66.6					
Turbidity						
Specific Conductivity	795					
Comments	clear, colourless,					
	no turbidity					
No. of Contrainers used	vater body					
	OA (OC Checklist					
Are air hubbles present in vision 2						
Are air bubbles present in viais?						
Was sample for metals field filtered?						
Duplicate Samples Collected?	N Duplicate Sample ID:					
Rinsate Blank Collected?	N Primary Sample ID:					
	Rinsate Blank ID:					

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surface Water Sampling Sheet

		Ramboll Personnel:				
Project No: 318001376-00	1	JA/IM				
Date: 16/06/23						
Start time:	Su	Subcontractors:				
Finish time:		n/a				
	Equipm	ent				
Water Quality Meter ID:						
	Water Qualit	ty Parameters				
Sample ID	TAR_S	W2_16062023				
Sampling Method	Sur	face water grab sample				
Time	8	. 02				
Intake Depth From Surface (mm)	£	100				
Femperature (°C)	1°4					
Dissolved Oxygen (mg/L) %	70	- 8				
ЭΗ	7.	31				
Oxido Reduction Potential (mV)	170	7.0				
Furbidity	_					
Specific Conductivity	80	3				
Comments						
	clear, of turb	no signs iolity,				
lo of Contrainers used	algac	at best				
to. of contrainers used	2					
	OA/OC Ch	ecklist				
re air bubbles present in vials?	Y IN E	T N/A				
Vas sample for metals field filtered? ビー・ 学 すっ	tal metal	I N/A Both total & dissolved				
uplicate Samples Collected?	Y N	Duplicate Sample ID:				
insate Blank Collected?	Y 🖾 N	Primary Sample ID:				

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Project Name: 318001376 - 00	7 5 Ramboll Personnel:	
Project No: TARAGO SWM	JA/IM	
Date: 16/06/23		
Start time:	Subcontractors:	
rinish time:	n ya	
	Equipment	
Water Ouality Meter ID:	Equipment	
V	ater Quality Parameters	Jup
Sample ID	TAR_SW3_ 160623	
Sampling Method	Surface water Orab sample	
Time	8.57an	
Intake Depth From Surface (mm)	200	
Temperature (ºC)	6-8	
Dissolved Oxygen (mg/L)	7-15	
рН	6.17	4
Oxido Reduction Potential (mV)	28-1	
Turbidity		
Specific Conductivity	128.0	
Comments	Clear, and slight turbidity, algae prosent	
No. of Contrainers used	9	
	QA/QC Checklist	
Are air bubbles present in vials?	□ N □∕N/A	
Was sample for metals field filtered? V	DN DN/A	
Duplicate Samples Collected?	Duplicate Sample ID	23
Rinsate Blank Collected?	N Primary Sample ID:	TRIP

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surface Water Sampling Sheet

Project Name: TR TARAGO	SW	M	Ramboll Personnel:						
Project No: 318 00 1376-0	207		E	JA/IM					
Date: 16/06/23									
Start time:			Subcontr	ractors:					
Finish time:				na					
	•								
		Equi	pment						
Water Quality Meter ID:									
	V	Vater Qu	ater Quality Parameters						
Sample ID		TAR_S	SW# 16	0623					
Sampling Method		SW- gra	4 b sar	nple					
Time		9:	46am						
Intake Depth From Surface (mm	ו)	2	00						
Temperature (°C)		S	9.9						
Dissolved Oxygen (mg/L)		8	8.99						
рН		6.72							
Oxido Reduction Potential (mV)		58.1							
Turbidity			/						
Specific Conductivity)	176.5						
Comments	clear, low turbidity. slightly brown, NOC								
No. of Contrainers used		3							
		04/00	Checklie	•					
Are air bubbles present in vials?	Υ		N/A						
Was sample for metals field filtered?	Y	□ N	₩ N/A	total + dissolved					
Duplicate Samples Collected?	ΠY	I N		Duplicate Sample ID:					
Rinsate Blank Collected?	ΡY	N N		Primary Sample ID:					
			Rinsate Blank ID:						

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surface Water Sampling Sheet

Project Name: TARAGO SAN	Ramboll Personnel:					
Project No: 318001376-00-						
Date: 16/06/23	ORITIV					
Start time:	Subcontractors:					
Finish time:	Subcontractors.					
	77~					
	Fauinment					
Water Quality Meter ID:	Equipment					
(unit) (1000 12)	Water Quality Parameters					
Sample ID	TAR_SW5, 160623					
Sampling Method	SW- Grab Sample					
Time	9:22					
Intake Depth From Surface (mm)	50					
Temperature (°C)	6-2					
Dissolved Oxygen (mg/L)	4.47					
рН	6.50					
Oxido Reduction Potential (mV)	43.7					
Turbidity						
Specific Conductivity	220 - 1					
Comments	Clear, Slightly yeilow, Static					
No. of Contrainers used	3					
	04/0C Checklist					
Are air bubbles present in vials?	$Y \square N \square N/A$					
Nas sample for metals field filtered?						
Duplicate Samples Collected?	Y PN Duplicate Sample ID:					
Rinsate Blank Collected?	Y V Primary Sample ID:					
	KINSATE BIANK ID:					

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199

SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surfac	e W	ate	r S	ar	np	ling Sheet
Project Name: TARACO	SIN	1	R	2am	boll F	Personnel:
Project No: 318/2013/16-9	0-1		-	Carri		TA/IM
Date: 16 Ablo 3						Orif
Start time:			c	Subc	ontra	actors:
Finish time:				, abc	onere	
				_		- I w
	· · · · ·	Ea	nin	mai		
Water Quality Meter ID:		Eq	uip	illei		
Water Quality Meter 10.	14	lator (liter	Dars	motore
Carata ID	vv	ater	Zua		Pare	ameters
Sample ID		S	sw	6		
Sampling Method						
Time						
Intake Depth From Surface (mi	m)			2		
Temperature (°C)			-	/	/	
Dissolved Oxygen (mg/L)		/	_	Ī		
рН	/					
Oxido Reduction Potential (mV))			T		
Turbidity						
Specific Conductivity						
Comments		No	S	ur-	fac ev	e
No. of Contrainers used						
		04/1		ho	klie	•
Are air bubbles present in vials?	ΠY		N		N/A	
Was sample for metals field filtered?	ΠY		N		N/A	
Duplicate Samples Collected?	ΠY		N	1		Duplicate Sample ID:
Rinsate Blank Collected?	ΠY		N			Primary Sample ID:
						Rinsate Blank ID:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

100

Surface Water Sampling Sheet

Project Name: TARAGO			Ram	boll	Personnel:				
Project No: 318001376 -			- Curr		JAIM				
Date: 16/06/23		,					C III		
Start time:				Sub	contr	actors:			
Finish time:							na		
							1		
			E	qui	pme	nt			
Water Quality Meter ID:									
	_	W	ater	Qu	ality	Para	ameters		
Sample ID		0	TAP		SWT	11	00623		
Sampling Method			SU	<i>ა</i> ,	9'	ialo Sa	ample		
Time			10):	Ha	m			
Intake Depth From Surface (mm)				10	0				
Temperature (°C)				6	.9				
Dissolved Oxygen (mg/L)			4.55						
рН			7.1						
Oxido Reduction Potential (mV)		14.1						
Turbidity									
Specific Conductivity			325.8						
Comments			clear, brown/red tint, low turbiaity, NOC						
No. of Contrainers used					3		2		
		_	04/	00	Che	klie	k		
Are air bubbles present in vials?				N	M	N/A			
Was sample for metals field filtered?		Y		N	Ø	N/A			
Duplicate Samples Collected?				N			Duplicate Sample ID:		
Rinsate Blank Collected?		Y	Ø	N			Primary Sample ID:		
	Ì						Rinsate Blank ID:		

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Sulte 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surface Water Sampling Sheet

Project Name: JARAGo SWM	Ram	Ramboll Personnel:				
Project No: 318001376-00	7	JA / IM				
Date: 6/06/23						
Start time:	Subo	contractors:				
Finish time:		RJA				
	Equipme	nt				
Water Quality Meter ID:	Equipine					
	Water Quality	Parameters				
Sample ID	TAR_SW	8-160623				
Sampling Method	sw-gr	ab sample				
Time	10:28	Ban				
Intake Depth From Surface (mm)	300					
Temperature (°C)	7.6					
Dissolved Oxygen (mg/L)	7.7	7.78				
рН	7.4	2				
Oxido Reduction Potential (mV)	31.9	9				
Turbidity	_	-				
Specific Conductivity	[16	5				
Comments	clear, c no furb	olourless, idity, NOC				
No. of Contrainers used		2				
	OA/OC Cheo	cklist				
Are air bubbles present in vials?	Y DN Ø	N/A				
Nas sample for metals field filtered?	eved 1 toto	N/A zl				
Duplicate Samples Collected?	Y ØN	Duplicate Sample ID:				
Rinsate Blank Collected?	Y ØN	Primary Sample ID:				
		Rinsate Blank ID:				

PERTH

Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

Surface Water Sampling Sheet

Project Name: TARAGO SOM		Ramboll	Personnel:
Project No: 3(8001376-007		ć	TA/IM
Date: 16/06/23			
Start time:		actors:	
Finish time:			na
			1
	Equi	pment	
Water Quality Meter ID:			
w N	/ater Qu	ality Para	ameters
Sample ID	TAR-S	w9_160	062023
Sampling Method	SW-	grab	sample
Time		0.58	
Intake Depth From Surface (mm)		200	
Temperature (°C)		7-2	
Dissolved Oxygen (mg/L)		9.40	
рН		7-71	
Oxido Reduction Potential (mV)		35.7	
Turbidity			
Specific Conductivity		13 04	
Comments	cieau color Bligh	r urless nt orai	nge tint in water booky
No. of Contrainers used		3	
	OA/OC	Checklist	L
Are air bubbles present in vials?		⊠ N/A	
Was sample for metals field filtered? I Y No, needs lab filter	N	□ N/A	
Duplicate Samples Collected?	N		Duplicate Sample ID:
Rinsate Blank Collected?	₽ N		Primary Sample ID:
			Rinsate Blank ID:

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Sulte 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444 Ramboll Au⁺ ACN 0° ABN 49 t www.rambo.

Surface Water Sampling Sheet

Project Name: TADACo	Realm		Ram	Ramboll Personnel:				
Project No: 318001376 -	007		T Carri	TA Lass IM				
Date: 16/06/03	00 /							
Start time:			Sub	contra	actors:			
Finish time:					n/α			
		Eq	uipme	nt				
Water Quality Meter ID:								
	V	Nater (Quality	Para	ameters			
Sample ID		TAR	SWIO	- 160	062023			
Sampling Method		SW	gra	69	cumple			
Time		(0.3	82	~			
Intake Depth From Surface (m	m)		20	0				
Temperature (°C)			7-	7				
Dissolved Oxygen (mg/L)			9	72				
рН			7.60					
Oxido Reduction Potential (mV)		28-2					
Turbidity				-				
Specific Conductivity		(0	560	7				
Comments		cle no col	turi	oid ries ve	ity s 9 next to sample location			
No. of Contrainers used			3	T				
		04/0	C Che	cklie				
Are air bubbles present in vials?	ΠY		N V	N/A				
Was sample for metals field filtered?	ΠY		N 🗆	N/A	flera fittered			
Duplicate Samples Collected?	ΠY		Ń		Duplicate Sample ID:			
Rinsate Blank Collected?	ΠY	P	N		Primary Sample ID:			
					Rinsate Blank ID:			

PERTH Level 2, 200 Adelaide Terrace East Perth WA 6004 Ph: 08 9225 5199 SYDNEY Level 3, 100 Pacific Highway North Sydney NSW 2060 Ph: 02 9954 8100 HUNTER Suite 18, 50 Glebe Road The Junction NSW 2291 Ph: 02 4962 5444

APPENDIX 3 SUMMARY OF RESULTS

_	-	_	_	 _	
- 12		m			

Sample Location	Sample Date	Time	Sample Depth (mm below surface)	Temperature (°C)	Spec Conductivity (µScm-1)	рН	Dissolved Oxygen (mg/L)	Redox (mV)	TDS (ppm)	Turbidity (NTU)	Comments
SW1_UP	13/Aug/19	7 45	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not aco dad
SW1_U SW1_U	24/Sep/19 29/Jan/20	Not eco ded	100	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded Not eco ded	Clea /sl ghtly b own ogs audible DR
SW1_U SW1_U	1/Ap /20 11/Aug/20	13 25 Not eco ded	200	19 94 8	584 205 6	7 05	4 72	154 170 7	374 133 3	Not eco ded	Clea Notubd ty Noodou Noflow Clea toslightly bown lowing
SW1_U SW1_U	13/Oct/20 28/Jan/21	7 37 8 15	400	11 89 16 9	673 587	7 39	2 6 0 1	94 186 9	431 375 7	Not eco ded Not eco ded	Wa e clea /b own lowing Clea , low-no odou , no obse vable contamination
SW1_U SW1_U	14/Ap /21 13/Jul/21	8 01 13 47	100 300	13 6 8 18	704	7 42	10 86 6 12	-41 4 162	Not eco ded Not eco ded	Not eco ded	Clea , no odou ence panel stack at downst earn end lowing Clea , colou less, no odou Reeds g ow ng adjacent to pond low ng
SW1_U SW1_U	12/Sep/22 13/Dec/22	14 20 8 46	100	11 10 12 40	570	78	4 9 5 47	107	371 0 Not eco ded	-1 0 Not eco ded	Clea , not mu ky, not tu b d, ve y mino suspended solids, no obv ous smells o odou s, natu al unn ng st eam
SW1_U SW1	16/Jun/23	8 30	500	8 00	795	73	6 92	67	Not eco ded	Not eco ded	Clea , colou less, no tu bid ty, sediment on bottom of wate body
SW1 SW1	29/Jan/20 1/Ap /20	 12 45		 17 4	575	6 35	5 88		 368	Not eco ded Not eco ded	DR Clea to b own, low/no tu bidity, mino suspended sol ds No odou No low
SW1 SW1	11/Aug/20 13/Oct/20	Not eco ded 7 35	100	78	206 1 678	7 44	11 00 2 71	169 5 125	133 9 434	Not eco ded Not eco ded	B own, dightly tu bid, continuous flow Wate flowing, tu b d, yellow/b own, wate level shallow
SW1 SW1	28/Jan/21 14/Ap /21	8 35 8 28	Not eco ded	16 5 12 2	618	7 35	0 04 9 81	175 8 23 6	395 5 Not eco ded	Not eco ded Not eco ded	Clea , no obse vable contaminat on, amongst eeds Clea , no odou , some suspended sol ds Shallow sampled at upst eam end of culve t
SW1	13/Jul/21	13 56	100	7 93	733	7 77	5 29	76	Not eco ded	Not eco ded	Clea , colou less, no odou Reeds up st eam Sampled at culve t ent ance Couldn't get completely 10cm unde neath wate body due to shallow depth, dea and mu las not to hid up within surrounder collide no dwar movile o odes c
SW1	12/Sep/22 13/Dec/22	14 45	10	92	533 623 6	7 67	4 7	157	347 0 Not eco ded	0 6 Not eco ded	smal natural strained over the prime of subparaneur abance in other outer animal or observations smal natural strain flow in the subparaneur abance of the all co ido, some vegetation and moss on the su face and within he wate body
SW1	16/Jun/23	8 13	100	78	783	76	10 28	57 6	Not eco ded	Not eco ded	Clea , colou less, no tu bidity, no odou
SW2	24/Sep/19	Not eco ded	Su face Sha low wate	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Clea
SW2	1/Ap /20	13 50	100	17 5	358	7 25	3 84	163	233	Not eco ded	B own, low-medium u b d ty, some suspended sol ds. No odou. No flow
SW2	11/Aug/20	Not eco ded	100	73	213 3	813	10 59	185 2	137.8	Not eco ded	Clea to sightly tu bid I low ng
SW2	28/Jan/21	8 45	Not eco ded	17	614	8 07	0 12	166 7	393	Not eco ded	ght b own, low tu bidity, no obse vable contaminat on
SW2	13/Jul/21	14 05	100	7 56	670	7 98	5 66	108	Not eco ded	Not eco ded	Clea , colou less, no odou Sampled at culve t
SW2 SW2	12/Sep/22 13/Dec/22	15 05	100	9 40 12 90	545 625 5	7 81	4 7	172	354 Not eco ded	17 1 Not eco ded	odou s, small wate body lowing f om a culve t adjacent to the a I co ido , some vegetation and moss on the su face and within he wate body
SW2	16/Jun/23	8 02	100	7 00	803	7 31	70.8	170	Not eco ded	Not eco ded	Clea , no s gns of tu bid ty, colou less
SW3 SW3	24/Sep/19 29/Jan/20	Not eco ded	50	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Not eco ded	Mode ate tu bid ty ogs audible DR
SW3 SW3	1/Ap /20 11/Aug/20	14 20 Not eco ded	100	21 8 8 9	245 142 5	6 23 7 43	5 24 9 43	178	159 92 3	Not eco ded	B own to yellow, med um tu bidity, some b own matte at su face B own to clea
SW3 SW3	13/Oct/20 28/Jan/21	8 36	100	11 63	229	7 96	4 84	137	149	Not eco ded	Wate clea /b own to slightly tu b.d, low ng DR
SW3 SW3	14/Ap /21 13/Jul/21	9 10 13 17	100	10 7	242 4	7	8 06	64 8 186	Not eco ded	Not eco ded	ale ye low, no odou Clea , colou less to pale g een/b own, no odou Algae and eeds g owing in
SW3	12/Sep/22	15 32	10	9 80	184	6 8	4 7	159	120 0	11 5	Couldn't get completely 10cm unde neath the wate body due to sha low depth, b own to light b own, slightly mu ky, slightly tu bid, some suspended solids, no obvious sme is o odou s, small st eam f om d ain leading into a cuive t adjacent to the all or other of the all or other other of the solic of the
SW3	13/Dec/22	9 47	100	11 80	243 5	6	5 95	196	Not eco ded	Not eco ded	
SW3	16/Jun/23	8 57	200	6 80	128	6 17	7 15	28	Not eco ded	Not eco ded	Clea , slight tu bid ty, algae p esent
SW4 SW4	6/Aug/19 24/Sep/19	11 35 Not eco ded	100	12 4 Not eco ded	128 2 Not eco ded	8 8 Not eco ded	9 74 Not eco ded	200 Not eco ded	Not eco ded Not eco ded	Not eco ded	Stagnant pond, clea to slightly yellow u trid ogs audible
SW4 SW4	29/Jan/20 1/Ap /20	15 00	200	20 33	297	6 73	5 24			Not eco ded	DR ight b own, low tu bidity No odou No flow
SW4 SW4	30/Ap /20 11/Aug/20	17 30 Not eco ded	50	9	388 3 153 4	5 75	3 53 10 42	263 1 210 9	251 8 99 5	Not eco ded	Co lected at Boyd St eet culve t lowing B own, slightly tu bid, full but flow not ev dent
SW4 SW4	13/Oct/20 28/Jan/21	8 50 9 10	300	13 1 17 4	307 227 3	8 19 7 93	5 73	107	200	Not eco ded	Wate flowing, tu bid, b own, no odou B own-o ange, stagnant, low-mode ate tu bidity, no obse vable contaminat on
SW4 SW4	14/Ap /21 13/Jul/21	9 38 13 28	100 300	11 5 7 95	231 1 192	7 35	9 77 5 41	70	Not eco ded Not eco ded	Not eco ded	ale yellow, no odou Clea , colou less, no odou Not flow ng
SW4	12/Sep/22	15 45	100	9	174 3	6 79	4 9	198	113 0	13 9	B own, mu ky, tu bid, suspended sol ds, no obvious sme is o odou s, small st eam and wate body com ng f om a culve t adjacent to all co ido , vegetation and moss on the su face and within the wate body
SW4 SW4	13/Dec/22 16/Jun/23	9 49 9 46	200	13 2 5 9	175 5 176 5	6 54	4 6 8 99	168 1 58 1	Not eco ded	Not eco ded	 Clea , low tu bidity, sl ghtly b own
SW5	29/Jan/20									Not eco ded	DR
SWS SWS	1/Ap /20 11/Aug/20	Not eco ded		 11 2	 117 9	7 33	7 94	 163 2	 76 7	Not eco ded	DR B own, tu b d, flow at culve t evident beneath c ushed ock
SW5 SW5	13/Oct/20 28/Jan/21	9 06	50	11 95 	187	8 35	4 06	-3	121	Not eco ded Not eco ded	Wate not flow ng, ve y sha low, tu bid, i ght b own, no odou DR
SW5 SW5	14/Ap /21 13/Jul/21	10 20 12 50	100	11 6 8 71	251 2 192	6 85 6 45	8 75 9 33	74 9	Not eco ded Not eco ded	Not eco ded	ale yellow, no odou Sma I pool of wate no th of culve t, est of a ea d y u bid, pale b own, no odou Sample taken f om puddle adjacent o culve t Not flowing
SW5	12/Sep/22 13/Dec/22										DR DR
SW5	16/Jun/23	9 22	50	6 2	220 1	6 5	4.47	43 7			Clea , si ghtly yellow, static
SW6 SW6	29/Jan/20 1/Ap /20									Not eco ded	DR DR
SW6 SW6	11/Aug/20 13/Oct/20	Not eco ded	50	8 3		7 47	9 61			Not eco ded	B own, slightly tu b d Not flowing DR
SW6 SW6	28/Jan/21 14/Ap /21									Not eco ded	DR DR
SW6 SW6	13/Jul/21 12/Sep/22	12 58	50	9 08	173	7 32 9 07	9 73	176	Not eco ded 117 0	Not eco ded 83 5	Clea to slightly tu bid, pale yellow/b own, no odou lowing slightly Couldn't get completely 10cm unde neath the wate body due to sha low depth, b own, slightly mu ky, slightly tu bid, some suspanded solids, no obvicus smells
C MAG	13/Dec/22	10.19	100	17.6	201.2	653	5.7	205.8	Not are ded	Not ero ded	o odou s, small st earn coming t om a culve t M no vegetation on the banks an su face of the wate body
SW6	16/Jun/23									Not eco ded	DR
SW7	29/Jan/20	10 00	50	23 1	609	8 92	8 46	83	396 6	Not eco ded	S ity, f om dam, low level wate
SW7 SW7	2/Ap /20 11/Aug/20	Not eco ded	10	18 1 12 5	2342 94 7	7 23 7 26	4 45 7 80	114 2 109 8	152 1 61 8	Not eco ded Not eco ded	Highly tu bid B own, tu bid
SW7 SW7	12/Oct/20 28/Jan/21	17 46 11 30	200	21 34 18 4	172 148 6	7 69 7 4	5 35 1 80	56 168	112 95 1	Not eco ded Not eco ded	Wate slightly u b d, b own, not flowing ight b own, low-mode ate tu b dity, no obse vable contamination
SW7 SW7	14/Ap /21 13/Jul/21	10 51 14 25	100 200	11 5 7 38	140 7 183	6 57 7 41	8 76 5 62	86 7	Not eco ded Not eco ded	Not eco ded Not eco ded	ale b own, da k colou to dam, ea thy odou Sligh ly tu b.d, pale yellow/b own, no odou Reeds g ow ng in pond. Not flow ng
SW7	12/Sep/22	9 04	100	9.9	177	6 91	5 10	123	115 0	86	ight b own to b own, mu ky, tu b d, suspended solids, no obvious smells o odou s, wate body within p vate p ope ty conn ng f om a d ain adjacent to the a to ido and frence line M no vegeta ion and mosso nthe su face and within the wate body. Ev dence of p ope ty owne push ng mate ial into the wate body to f it to the original sector.
SW7	13/Dec/22	10 25	100	17 5	142 6 325 P	6 34 7 1	3 18 4 55	135 5	Not eco ded	Not eco ded	Clea , b own/ ed tint, low tu bidity, no obso usado yester a star
5W8	2017 UNI 23	ad 24				~ *	+ 33	49.4			Logit gauge contact figure to even by the traver value contain nation
5W8 5W8	2:9/Jan/20 2/Ap /20	9 30am	100	18	425 7	7 23	5 42 4 39	121 6	276 9	Not eco ded	G ease at su face, lots of algae g ow ng on plants Wate flowing, level high, tu bid, sediment sample collected higher in
5W8 5W8	12/Oct/20	-rus eco ded	200	9 1 20 12	1/0 5	8 53	9 34 7 58	84	542	Not eco ded	embanisment than p evious ound due to water level Wate flowing, clea /b own Cles low to bat
5W8	14/Ap /21	10 30	100	10 9	712	7 15	8 61	116 2	Not eco ded	Not eco ded	Clea , nor su on ty, no user vable contaminat on
54/8 5W8	12/Sep/22	9 17	100	9 5	683	7 24	5 1	123	444 0	2 8	Clea , not mu ky, not tu b d, ve y mino suppande solids, no dvo us smells o odou s, natu al unning st cam, mino vegetandin and mos on the banks of the st earm and with n the wate body
SW8 SW8	12/Dec/22 16/Jun/23	18 07	100	20 7 6	727	6 98 7 42	5 35	131 32	Not eco ded	Not eco ded	
SW9	29/Jac / 20	12 22	200	25.0	125.3	8.35	16.9	00 A	817 E	Not are ded	Stagnant cond Algae and fich is event. Elicobile in and
549 SW9	02/Ap /20	Not eco ded	10	18 2	381 7	7 62	6 29	124 5	247 7	Not eco ded	Non-tu bid, slightly b own, not flowing but full
SW9 SW9	10/Aug/20 12/Oct/20	Not eco ded	200	89	178 2 852	7 84	10 73	83	545	Not eco ded	mign level, o own, si ghtly tu bid, bubbles at su face Wa e flow ng, clea /b own, slightly tu bid
5W9 5W9	28/Jan/21 14/Ap /21	10 00	100	18 7	820 639 4	7 5	0 32	227 7	524 8 Not eco ded	Not eco ded	crea , low tu bid ty, no obse vable contaminat on Ve y pale yellow, no odou
SW9 SW9	13/Jul/21 12/Sep/22	15 32 8 32	200	7 66 9 1	1030	7 77	11 53 5 1	130	Not eco ded 470 0	Not eco ded	Clea, colou less, no odou lowing ght b own to b own, si ghtly ma ky, si ghtly tu bid, some suspended solids, no obvious sme is o odou s, natu al unn ng st eam, mino vegetation and moss on he hanks of the second solution of the second solution.
SW9	12/Dec/22	18 50	100	18 7	742	7 19	5 6	171	Not eco ded	Not eco ded	
SW9 SW10	16/Jun/23	10 58	200	72	1304	7 71	9 49	36	Not eco ded	Not eco ded	Clea , colou less, slight o ange t nt in wate body
SW10 SW10	13/Oct/20 28/Jan/21	12 26 10 30	400	16 02 18 2	881 710	7 19	3 58 4 1	79 3 8	564 454 4	Not eco ded	Wate low ng, clea /b own, slightly tu b d, no odou Clea , low tu bid ty, no obse vable contaminat on
SW10 SW10	14/Ap /21 13/Jul/21	11 33 15 00	100	12 9 7 87	682 978	7 35	8 18	103 5	Not eco ded Not eco ded	Not eco ded	Clea , no odou Clea to slight tu bid, colou less, no odou ilowing
SW10	12/Sep/22	9 28	100	93	702	7 45	5 1	125	456 0	31	No discha ge downst eam of d ainage i ne (no th), clea , not mu ky, not tu bid, ve y mino suspended sol ds, no obv ous smells o odou s, natu al unning st eam, m no vegetation and moss on the bank of the st eam and within he wate body
SW10	12/Dec/22	18 27	100	20 3	725	7 35	6.4	149	Not eco ded	Not eco ded	

Notes = it e ppm = p att pe m lion pGm-1 = m c oS enens pe cen imat e mV = m III Volta n/a = not applicable

					Sample Type	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		-	S20-Ap12286	S20-Au23115	S20-Oc25141	S21-Ja34960	S21-Ap22332	N21-JI30451	S22-Se00368	N22-De0031035	S23-Jn0046774
					Sample date	:	29/Jan/20	1/Apr/20	11/Aug/20	13/Oct/20	28/Jan/21	14/Apr/21	13/Jul/21	12/Sep/22	13/Dec/22	16/Jun/23
					Sample ID:		SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	SW1	TAR SW1 160623
					Project Nam	ie:	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
					Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor
		Site Specific		Ecological	Sampling M	ethod:	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines	Site Specific Human Health Criteria ^a	Ecology Criteria (Southern Culvert) ^a	Health-based Screening Criteria (Recreational Waters) ^b	Sceening Criteria (ANZG 95%) Protection) Fresh Water ^c	Sample Des	cription:	DRY	Clear to brown, low/no turbidity, minor suspendid solids. No odour.	Brown, slightly turbid, continuous flow.	Water flowing, turbid, yellow/brown, water level shallow.	Clear, no observable contamination, amongst reeds	Clear, no odour, some suspended solids. Shallow sampled at upstream end of culvert	Clear, colourless, no odour. Reeds up stream. Sampled at culvert entrance.	Clear, colourless, very minor suspended solids, no odour. Reeds up stream, minor vegetation on the surface and within the waterbody. Sampled at culvert entrance, unable to completely submerge sample container 10cm below water surface.	Clear, colourless, no odour. Reeds up stream. Sampled at culvert entrance.	Clear, colourless, no turbidity, no odour. Reeds up stream. Sampled at culvert entrance.
Analyte grouping/Analyte					Units	LOR										
						L	<u> </u>							I		
Total Metals					1	1			I	1	1	1	1	1		
Aluminium	-	NA	2ª	NA	mg/L	0.05	-	0.13	0.88	0.61	< 0 05	< 0.05	< 0.05	0.17	< 0.05	< 0.05
Arsenic	/	NA	NA	NA	mg/L	0.001	-	0.004	< 0.001	0.004	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Barium	-	NA	20	NA	mg/L	0.001	-	0.15	0.04	0.36	0.12	0.08	0.0/	0.06	0.0/	0.08
Beryllium	-	NA	0.6	NA	mg/L	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Cadmium	1.4	NA	NA	NA	mg/L	0.0002		0.0013	< 0.0002	0.0021	0.0005	< 0.0002	< 0 0002	<0.0002	< 0.0002	< 0.0002
Chromium	-	NA	0.5	NA	mg/L	0.001	-	< 0.001	0.002	0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Cobalt	-	NA	-	NA	mg/L	0.001	-	0.014	< 0.001	0.007	0.002	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Copper	-	NA	20	NA	mg/L	0.001	-	0.019	0.003	0.014	0.005	0.001	0.002	0.002	0.001	< 0 001
Iron	-	NA	3	NA	mg/L	0.05	-	4.5	0.91	1.41	1.1	0.07	0.18	0.94	0.23	0.4
Lead	/	NA	NA	NA	mg/L	0.001	-	0.056	0.001	0.032	0.007	< 0.001	0.002	0.005	< 0.001	< 0 001
Manganese	350	NA	NA 0.01	NA	mg/L	0.005	-	0.76	0.024	0.706	0.28	0.032	0.036	0.093	0.026	0 042
Mercury	- 14	NA NA	0.01	NA NA	mg/L	0.0001	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001
NICKEI Zina	14	NA NA	20	NA NA	mg/L	0.001	-	0.003	0.002	0.002	< 0.001	< 0.001	< 0.001	0.001	0.001	< 0.001
ZIIIC		INA		INA	IIIg/L	0.005	-	0.2	0.02	0.32	0.080	0.009	0.023	0.020	0.019	< 0 003
Dissolved Metals						1						•		1		
Dissolved Aluminium	NA	5	NA	NA	ma/L	0.05	-	-	0.54	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dissolved Arsenic	NA	0.5	NA	NA	ma/L	0.001	-	-	< 0.001	< 0.001	0.003	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Dissolved Barium	NA	-	NA	-	ma/L	0.001	-	-	0.04	0.11	0.12	0.08	0.06	0.05	0.06	0.08
Dissolved Bervllium	NA	-	NA	-	mg/L	0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0 001
Dissolved Cadmium	NA	0.01	NA	0.002	mg/L	0.0002	-	-	0.0003	0.0005	0.0002	< 0.0002	< 0 0002	< 0.0002	< 0.0002	< 0.0002
Dissolved Chromium	NA	NA	NA	0.0084	mg/L	0.001	-	-	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Dissolved Cobalt	NA	NA	NA	0.0014	mg/L	0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Dissolved Copper	NA	0.5	NA	NA	mg/L	0.001	-	-	0.003	0.002	0.005	< 0.001	0.001	<0.001	< 0.001	< 0 001
Dissolved Iron	NA	-	NA	-	mg/L	0.05	-	-	0.34	< 0.05	0.13	< 0.05	0.14	0.16	0.1	< 0.05
Dissolved Lead	NA	0.1	NA	0.09078	mg/L	0.001	-	-	0.004	< 0.001	< 0.001	< 0.001	0.001	<0.001	< 0.001	< 0 001
Dissolved Manganese	NA	NA	NA	1.9	mg/L	0.005		-	0.018	0.044	0.12	0.029	0.035	0.048	0.024	0 036
Dissolved Mercury	NA	NA	NA	0.00006	mg/L	0.0001		-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0 0001	<0.0001	< 0.0001	< 0.0001
Dissolved Nickel	NA	1	NA	0.099	mg/L	0.001		-	0.002	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Dissolved Zinc	NA	20	NA	0.072	mg/L	0.005	-	-	0.045	0.073	0.058	0.005	0.025	0.02	0.016	< 0 005

- indicates no criterion available
 NA indicates non-applicable
 LOR = Limit of Reporting
 Concentrations below the LOR noted as <value
 NOC = No observed contamination
 Australian and New Zealand Guidelines for Fresh and Marine Water
 Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water
 Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Guidelines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^{ch}The recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health.
 Concentrations in blue bold font exceed human health recreational screening or site specific criteria
 Concentrations in grey box exceed ecological screening or site specific criteria

							-			-		-						
					Sample Type	e:	Surface Water	Surface Water										
	_				Lab ID		S19-Au17273	S19-Se37061	-	S20-Ap12287	S20-Au23116	S20-Oc25321	S21-Ja34959	S21-Ap22331	N21-JI30450	S22-Se00368	N22-De0031034	S23-Jn0046775
	_				Sample date	:	13/Aug/19	24/Sep/19	29/Jan/20	1/Apr/20	11/Aug/20	13/Oct/20	28/Jan/21	14/Apr/21	13/Jul/21	12/Sep/22	13/Dec/22	16/Jun/23
	-				Sample ID:		SW1-UP	SW1-UP	SWI UP	SW1-UP	SWI UP	TAR SW1 UP 160623						
					Project Nam	e:	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring								
				Ecological	Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000781	318001376	318001376-001	318001376-007
	Site Specific	Site Specific	Health-based	Sceening Criteria				Tarra Dalla				Tarra Dalla ar				Tamas Dall Camidan	Tourse Dail Coulder	Taura Dall Camidan
	Human Health	Ecology Criteria	Screening Criteria	(ANZG 95%	Sample Loca	ition	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor								
	Criteria ^a	(Southern Culvert) ^a	(Recreational Waters) ^b	Protection) Fresh	Compling M	athod.	Crah Camala	Crah Camala		Creb Comela	Crah Camala	Creb Comolo	Crah Camala	Crah Comala	Creh Comple	Creh Comple	Crah Camala	Crah Cample
		Cuiverty	watersj	Water ^c	Samping M	etilou.	Grab Sample	Grab Sample	-	Grab Sample	Grab Sample							
														<i>a</i> 1	a	Clear, colourless, verv	Clear, colourless, verv	
								Clean/aliabbly		Clear. No	Clear to alightly	Water clear/brown	Clear, low-no odour,	Clear, no odour.	Clear, colourless, no	minor suspended solids	minor suspended solids	Clear, colourless, no
Guidelines					Sample Des	cription:	Not recorded.	Clear/slightly	DRY	turbidity. No	brown Elowing	flowing	no observable	downstroom and	ouour. Reeus	no odour. Reeds	no odour. Reeds	turbidity, sediment on
								DIOWII.		odour.	brown. Flowing.	nowing.	contamination	Elowing	pond Flowing	growing adjacent to	growing adjacent to	bottom of water body.
														riowing	pond. Howing.	pond. Flowing.	pond. Flowing.	
Analyte grouping/Analyte					Units	LOR												
Inorganics	1	1	0.5	0.0	1 ma/l	0.01	0.01	+0.01	1	1		1	1	1	1	1	1	
Conductivity (at 25@°C)		-	0.5	0.9	uS/cm	100	820	730	-	-	-		-	-	-	-	-	-
Nitrate & Nitrite (as N)	-	-			mg/l	0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	-	-	50	3.5	mg/L	0.02	< 0.02	< 0.02	-	-	-	-	-	-	-	-	-	-
Nitrite (as N)	-	-	30	-	mg/L	0.02	< 0.02	< 0.02	-	-	-	-	-	-	-	-	-	-
pH (at 25@°C)	-	-	-	-	pH units	0.1	7.9	7.6	-	-	-	-	-	-	-	-	-	-
Phosphate total (as P)	-	-	-	-	mg/L	0.05	< 0.05	< 0.05	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0 005	0.42	0.37	-	-	-	-	-	-	-	-	-	-
Total Kjeldahl Nitrogen (as N)	-	-	0.8	-	mg/L	02	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N) Total Susponded Solide Dried at 10590	-	-	-	0.7	mg/L	0.005	<0.005	<0.2 5.6	-	-	-	-	-	-	-	-	-	-
Turbidity	-	-		-	NTU	1	1	1.3	-	-	-	-	-	-	-	-	-	-
- and a state y							-	110		1		1	1			1		
Total Metals														•			•	•
Aluminium	-	NA	2 ^d	NA	mg/L	0.05	-	-	-	< 0.05	0 85	< 0.05	< 0.05	< 0.05	< 0.05	<0 05	< 0.05	< 0.05
Arsenic	7	NA	NA	NA	mg/L	0.001	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Barium	-	NA	20	NA	mg/L	0.001	-	-	-	0.1	0 05	0.1	0.11	0 08	0 07	0 05	0.06	0.08
Beryllium	-	NA	0.6	NA	mg/L	0.001	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	1.4	NA NA	0.5	NA	mg/L	0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.001	< 0.0002	< 0.0002
Cobalt	-	NA	-	NA	mg/L	0.001	-	-	-	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Copper	-	NA	20	NA	mg/L	0.001	-	-	-	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	0.001	< 0.001
Iron	-	NA	3	NA	mg/L	0.05	-	-	-	0.26	0.93	0.12	0.19	0 07	0 06	0 07	0.12	0.09
Lead	7	NA	NA	NA	mg/L	0.001	-	< 0.001	-	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	350	NA	NA	NA	mg/L	0.005	-	-	-	0.044	0.026	0.022	0.054	0.037	0.009	0 01	0.024	0.016
Mercury	-	NA	0.01	NA	mg/L	0.0001	-	-	-	< 0 0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0 0001	< 0.0001	< 0.0001
Nickel	14	NA	NA	NA	mg/L	0.001	-	-	-	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001
Zinc	-	NA	30	NA	mg/L	0.005	-	-	-	0.011	0.011	0.009	< 0.005	0.005	< 0.005	< 0.005	< 0.005	< 0.005
Dissolved Metals	NA	F	NA	NA		0.05	< 0.0E	< 0.0E	1	1	0.45	< 0.0E	< 0.0E	1 4 0 05	< 0.0F	1 +0.0F	< 0.0E	10.05
Dissolved Aluminium	NA NA	0.5	NA NA	NA	mg/L	0.05	< 0.05	< 0.05	-	-	0.45	< 0.001	< 0.05	< 0.05	< 0.05	<0.001	< 0.001	< 0.03
Dissolved Arsenic	NA	-	NA	-	mg/L	0.001	0.001	0.001	-	-	0.04	0.1	0.005	0.001	0.001	0.05	0.07	0.07
Dissolved Bervllium	NA	-	NA	-	ma/L	0.001	< 0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Cadmium	NA	0.01	NA	0.002	mg/L	0.0002	< 0.0002	< 0.0002	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0 0002	< 0.0002	< 0.0002
Dissolved Chromium	NA	NA	NA	0.0084	mg/L	0.001	< 0.001	0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Cobalt	NA	NA	NA	0.0014	mg/L	0.001	< 0.001	< 0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Copper	NA	0.5	NA	NA	mg/L	0.001	< 0.001	< 0.001	-	-	0.002	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Iron	NA	-	NA	-	mg/L	0.05	< 0.05	< 0.05	-	-	0.3	< 0.001	< 0.05	< 0.05	< 0.05	<0.001	0.001	< 0.05
Dissolved Lead	NA NA	0.1 NA	NA NA	1.9	mg/L	0.001	< 0.001	0.001	-	-	< 0.001	0.022	0.056	0.034	0.001	0.001	0.001	0.001
Dissolved Marcury	NΔ	NΔ	NΔ	0.00006	mg/L	0.0001	< 0.000	< 0.000	-	-	<0.0001	< 0.0001	< 0.0001	< 0.001	< 0.007	<0.000	< 0.0001	< 0.001
Dissolved Mercury	NA	1	NA	0.00000	mg/L	0.0001	< 0.0001	< 0.0001	-	-	0.002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001	< 0.0001	< 0.0001
Dissolved Zinc	NA	20	NA	0.072	ma/l	0.005	< 0.001	0.005	-	-	0.008	< 0.001	< 0.001	< 0.001	< 0.001	<0.005	< 0.001	< 0.001
Dissolved Zine		20		0.072		0.005	101005	0.000			0.000	101005	1 01000	4 0.005	. 0.005	40.000	1 01005	1 01000
Total Recoverable Hydrocarbons - 2013 NEPM	A Fractions				••	• •	•	•	•							•	•	
Naphthalene	-	-	17	16	µg/L	10	<10	<10	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16	-	-	-	-	µg/L	50	<50	<50	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16 less Naphthalene (F2)	-	-	-	-	µg/L	50	<50	<50	-	-	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-	-	µg/L	100	<100	<100	-	-	-	-	-	-	-	-	-	-
TRH >C16-C34	-	-	-	-	µg/L	100	<100	<100	-	-	-	-	-	-	-	-	-	-
TRH >C34-C40	-	-	-	-	µg/L	100	<100	<100	-		-	-	-		-	-	-	-
TRH C6-C10 loss BTEY (E1)	-	-	-	-	µg/L	20	<20	<20	-		-	-			-		-	-
TKIT CO-CTU IESS DTEA (F1)	-	-	-	-	µу/с	20	<2U	< <u>2</u> 0	-		-				-		-	-
BTEX					••	• •	•	•	•	•		•		•	•	•	•	•
Benzene	-	-	10	950	µg/L	1	<1	<1	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	-	-	3000	80	µg/L	1	<1	<2	-		-	-	-	-	-	-	-	-
m&p-Xylenes	-	-	-	-	µg/L	2	<2	<2	-	-	-	-	-		-	-	-	-
o-xylene	-	-	-	-	μg/L	1	<1	<2	-	-	-	-	-	-	-	-	-	-
Xylenes - Total	-	-	6000	200	μg/L μα/Ι	2	~1	<2	-								-	-
Agreened Total	-	-		200	LI 49/5	J	~ ~ ~ ~	~5	-		-			-	-		-	-

- indicates no criterion available NA indicates non-applicable LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australian and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^cThe recreational criteria for aluminium is based on aesthtic issues post floculation and is not indicative of risks to human health. Concentrations in blue bold font exceed human health recreational screening or site specific criteria Concentrations in grey box exceed ecological screening or site specific criteria

																I	
					Sample Type:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID	\$19-Se37062	-	S20-Ap12288	S20-My01341	S20-Au23117	S20-Oc25143	S21-Ja34961	S21-Ap22333	N21-JI30452	S22-Se00368	N22-De0031036	S23-Jn0046776
					Sample date:	24/Sep/19	29/Jan/20	1/Apr/20	30/Apr/20	11/Aug/20	13/Oct/20	28/Jan/21	14/Apr/21	13/Jul/21	12/Sep/22	13/Dec/22	16/Jun/23
					Sample ID:	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	SW2	TAR SW2 160623
					Project Name:	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
						·	rarage of rionicoring			· • · • • • • • • • • • • • • • • • • •			raiage of homeoning	ranago ott Homeoning	rarage off rioricering	rarage str rioncering	raiago Str Homeoning
		Cite Creatifie	Health based	Ecological	Project No:	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000781	318001376	318001376-001	318001376-007
	Site Specific	Site Specific	Fieduli-Daseu	Sceening Criteria	Sample Location	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarrago Rail Corridor	Tarrago Rail Corridor
	Human Health	Ecology Criteria	Screening Criteria	(ANZG 95%													
	Criteria ^A	(Southern	(Recreational	Protection) Fresh	Sampling Method:	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
		Culvert)"	Waters) ⁻	Water ^c	g												
															Clear colourless no	Clear colourless no odour	
								Brown low-medium							odour Sampled at	Sampled at culvert reeds	
								turbidity, some	Collected at Goulburn	Clear to slightly turbid.	Water clear, flowing,	Light brown, low		Clear, colourless, no	culvert, minor	and minor vegetation	Clear, colourless, no odour.
Guidelines					Sample Description:	Clear.	DRY	suspended solids. No	Street footbridge. Not	Flowing.	water level low.	turbidity, no observable	Clear, no odour	odour. Sampled at	vegeatation and moss on	within waterbody. Small	No signs of turbidity, algae
								odour.	flowing.	3		contamination		culvert.	the surface and within	piece of sheet metal at	at base of water body.
															the waterbody.	mouth of culvert.	
Analyte grouping (Analyte					Unite LOD												
Analyte groubing/Analyte																	
Inorganics					·· · ·		•	1	•	1	•	•	•				
Ammonia (as N)			0.5	0.0	mg/l 0.01	0.15	F -	L .							-		-
Conductivity (at 25@°C)			0.5	-	uS/cm 100	520				-					-		-
Nitrate & Nitrite (as N)			-		mg/l 0.05	0.22				-					-		-
Nitrate (as N)	-	-	50	3.5	mg/L 0.02	0.22	-	-	-	-	-	-	-	-	-	-	-
Nitrite (as N)	-	-	30	-	mg/L 0.02	<0.02	-	-	-	-	-	-	-		-	-	-
pH (at 25@°C)	-	-	-	-	pH units 0.1	8		-	-		-	-	-		-	-	-
Phosphate total (as P)	-	-	-	-	mg/L 0.05	<0.05		-	-		-	-	-		-	-	-
Total Dissolved Solids Dried at 180°C + 2°C	-	-	-	-	mg/L 0.005	0.29		-	-		-	-	-		-	-	-
Total Kieldahl Nitrogen (as N)	-	-	0.8	-	mg/L 0.2	<0.2	-	-	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	-	-	-	-	mg/l 0.2	0.22	-	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids Dried at 105°C	-	-	-	0.7	mg/L 0.005	< 0.005	-	-	-	-	-	-	-	-	-	-	-
Turbidity	-	-	-	-	NTU 1	3	-	-	-	-	-	-	-	-	-	-	-
								•						•			
Total Metals					· · · · · · · · · · · · · · · · · · ·		•						•			•	
Aluminium	-	NA	2 ^d	NA	mg/L 0.05	-	-	0.08	0.06	0.95	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic	7	NA	NA	NA	mg/L 0.001	-	-	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Barium	-	NA	20	NA	mg/L 0.001	-	-	0.1	0.08	0.05	0.11	0.1	0.08	0.07	0.05	0.06	0.07
Beryllium	-	NA	0.6	NA	mg/L 0.001	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	1.4	NA	NA	NA	mg/L 0.0002	-	-	0.0019	0.0004	< 0.0002	0.0007	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	-	NA	0.5	NA	mg/L 0.001		-	0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.006	< 0.001	0.001	< 0.001
Cobalt	-	NA	-	NA	mg/L 0.001	-	-	0.004	0.002	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Copper	-	NA	20	NA	mg/L 0.001	-	-	0.023	0.006	0.004	0.004	0.004	< 0.001	0.001	< 0.001	0.001	0.001
Iron	-	NA	3	NA	mg/L 0.05	-	-	0.94	0.75	1	< 0.05	0.41	0.14	0.14	0.19	0.24	0.15
Lead	7	NA	NA	NA	mg/L 0.001	0.003	-	0.02	0.006	0.003	0.004	0.002	< 0.001	< 0.001	<0.001	0.001	< 0.001
Manganese	350	NA	NA	NA	mg/L 0.005	-	-	0.41	0.26	0.043	0.017	0.21	0.062	0.015	0.024	0.036	0.027
Mercury	-	NA	0.01	NA	mg/L 0.0001		-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	14	NA	NA	NA	mg/L 0.001		-	0.002	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.001	<0.001	0.002	< 0.001
Zinc	-	NA	30	NA	mg/L 0.005		-	0.35	0.16	0.028	0.096	0.033	0.011	0.014	0.006	0.008	0.023
Dissolved Metals						•	•	•	•	•	•	•	•	•		•	•
Aluminium (filtered)	NA	5	NA	NA	mg/L 0.05	< 0.05	-	-	-	0.47	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsenic (filtered)	NA	0.5	NA	NA	mg/L 0.001	< 0.001	-	-	-	< 0.001	< 0.001	0.004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	NA	-	NA	-	mg/L 0.001	0.07	-	-	-	0.04	0.11	0.11	0.08	0.06	0.05	0.06	0.07
Beryllium (filtered)	NA	-	NA	-	ma/L 0.001	< 0.001	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	NA	0.01	NA	0.002	mg/L 0.0002	0.0014	-	-	-	< 0.0002	0.0007	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	NA	NA	NA	0.0084	mg/L 0.001	< 0.001	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	NA	NA	NA	0.0014	mg/L 0.001	< 0.001	-	-	-	< 0.001	< 0.001	0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Copper (filtered)	NA	0.5	NA	NA	mg/L 0.001	0.015	-	-	-	0.003	0.003	0.007	< 0.001	< 0.001	<0.001	< 0.001	0.001
Iron (filtered)	NA	-	NA	-	mg/L 0.05	< 0.05	-	-	-	0.31	< 0.05	< 0.05	< 0.05	< 0.05	0.08	0.06	< 0.05
Lead (filtered)	NA	0.1	NA	0.09078	mg/L 0.001	0.014	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Manganese (filtered)	NA	NA	NA	1.9	mg/L 0.005	0.014	-	-	-	0.015	0.017	0.22	0.06	0.011	0.028	0.034	0.025
Mercury (filtered)	NA	NA	NA	0.00006	mg/L 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	NA	1	NA	0.099	ma/L 0.001	< 0.001	-	-	-	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	NA	20	NA	0.072	mg/L 0.005	0.2	-	-	-	0.02	0.13	0.028	0.009	0.006	0.021	< 0.005	0.019
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions																
Naphthalene	-	-	17	16	μg/L 10	<10	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16	-	-	-	-	µg/L 50	<50	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16 less Nanhthalene (E2)	-	-	-	-	µg/L 50	< 50	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-	-	µg/L 100	<100	-	- 1	-		- 1	-		- 1	-	-	-
TRH >C16-C34	-	-	-	-	μg/L 100	<100	-	- 1	-		- 1	-		- 1	-	-	-
TRH >C34-C40	-	-	-		μg/L 100	<100	-	-	-	-	-	-	-		-	-	-
TRH C6-C10	-	-	-		μg/L 20	<20	-	-	-	-	-	-	-	-	-	-	-
TRH C6-C10 less BTEX (F1)	-	-	-	-	μg/L 20	<20	-	-	-	-	-	-	-	-	-	-	-
																	_
BTEX	1								1		1	1	-				1
Benzene	-	-	10	950	μg/L 1	<1	-		-			-			-	-	-
Ethylbenzene	-	-	3000	80	µg/L 1	<2			-	-		-			-	-	-
m&p-Xylenes	-	-	-	-	μq/L 2	<2			-			-			-	-	-
o-Xylene	-	-	-	-	μq/L 1	<2			-			-			-	-	-
Toluene	-	-	8000	180	μq/L 1	<2	-		-			-			-	-	-
xyienes - Total	-	-	6000	200	µg/∟ 3	<3	-	-	-		-	-		-	-		-

indicates no criterion available
 NA indicates non-applicable
 LOR = Limit of Reporting
 Concentrations below the LOR noted as <value
 NOC = No observed contamination
 Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018)
 Australian and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Guidelines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Guidelines ADWG (2011)
 ^cANZG (2016) Australian for aluminium is based on easthtic issues post flocculation and is not indicative of risks to human health.
 Concentrations in blue bold font exceed human health recreational screening or site specific criteria
 Concentrations in grey box exceed ecological screening or site specific criteria

Table 5: SW3 Analytical Results

					Sample Typ	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		S19-Se37063	-	S20-Ap12289	S20-Au23118	S20-Oc25145	-	S21-Ap22334	N21-JI30453	S22-Se00368	N22-De0031037	S23-Jn0046777
					Sample date	e:	24/Sep/19	29/Jan/20	1/Apr/20	11/Aug/20	13/Oct/20	28/Jan/21	14/Apr/21	13/Jul/21	12/Sep/22	13/Dec/22	16/Jun/23
					Sample ID:		SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	SW3	TAR SW3 160623
					Project Nam	ne:	Tarago SW Monitoring	Tarago SW Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
				Ecological	Sample Loca	ation	Tarago Pail Loop	Tarago Rail Loop	Tarago Pail Loop	Tarago Pail Loop	Tarago Rail Loop	Tarago Pail Loop	Tarago Pail Loop	Tarago Pail Loop	Tarago Pail Corridor	Tarago Pail Corridor	Tarago Rail Corridor
	611 - 61 - 11 F	Site Specific	Health-based	Sceening	Sample Loca	ation	Tarago Kali Loop	Tarago Kali Loop	Tatago Kali Loop	Talago Kali Loop	Tarago Kali Loop	Tatago Kali Loop	Tarago Kali Loop	Talago Kali Loop	Talago Rail Corrigoi	Talago Kali Corrigoi	Tarago Kali Corridoi
	Site Specific	Ecology Criteria	Screening Criteria	Criteria (ANZG	Sampling M	ethod:	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
	Criteria ^a	Northern	(Recreational	95%													
Guidelines		Culverts)*	Waters) ⁶	Protection) Fresh Water ^c	Sample Des	cription:	Moderate turbidity.	DRY	Brown to yellow, medium turbidity, some brown matter at surface.	Brown to clear.	Water clear/brown to slightly trubid, flowing.	DRY	Pale yellow, no odour	Clear, colourless to pale green/brown, no odour. Algae and reeds growing in drainage line. Not flowing.	Slightly murky, slightly turbid, light brown to brown, some suspended solids, no odour. Algae and reeds growing in drainage line, unable to completely submerge sample container 10cm below water surface. Not flowing.	Clear, colouriess to pale yellow/brown. Low flow, staining observed in culvert	Clear, colourless to pale yellow/brown. Slight turbidity, algae present in water body.
Analyte grouping/Analyte					Units	LOR											
Inorganics					11		•	<u> </u>	I					ļ	•		
Ammonia (as N)	-	-	0.5	0.9	mg/L	0 01	0 001	-	-	-	-	-	-	-	-	-	-
Conductivity (at 25@°C)	-	-	-	-	µS/cm	100	170	-	-	-	-	-	-	-	-	-	-
Nitrate & Nitrite (as N)	-	-	-	-	mg/L	0 05	3.8	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	-	-	50	3.5	mg/L	0 02	3.7	-		-	-	-			-	-	-
NITITE (as N)	-	-	30	-	mg/L nH unite	0.02	<0.02	-	-	-	-	-	-	-	-	-	-
Phosphate total (as P)	-	-	-		ma/L	0.1	0.06	-		-					-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0.005	0.13	-	-	-	-	-	-	-	-	-	-
Total Kjeldahl Nitrogen (as N)	-	-	0.8	-	mg/L	0.2	0.6	-	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	-	-	-	-	mg/L	0.2	4.4	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids Dried at 105°C	-	-	-	0.7	mg/L	0.005	0.0072	-	-	-	-	-	-	-	-	-	-
Turbidity	-	-	-	-	NTU	1	37	-	-	-	-	-	-	-	-	-	-
Total Metals			ed.			0.05	1	1	0.02	0.61	0.46	1	0.16	0.0	0.20	0.35	0.05
Aluminium	- 7	NA	20	NA	mg/L	0.05	-	-	0.92	0.61	0.46	-	0.16	0.3	0.002	0.25	0.001
Arsenic	/	NA NA	20	NA	mg/L	0.001	-	-	0.004	< 0.001	0.003	-	0.002	< 0.001	0.002	0.001	0.001
Benyllium	-	NA	0.6	NA	mg/L	0.001		-	< 0.001	< 0.001	< 0.001	-	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Cadmium	14	NA	NA	NA	mg/L	0.0002	-		0.021	0.0011	0.0036	-	0.0011	0.0003	0.0016	0.0045	0.0003
Chromium	-	NA	0.5	NA	mg/L	0.001	-	-	0.002	0.001	0.001	-	0.001	< 0.001	<0.001	0.002	< 0.001
Cobalt	-	NA	-	NA	mg/L	0.001	-	-	0.006	< 0.001	< 0.001	-	0.001	< 0.001	0.004	0.003	0.002
Copper	-	NA	20	NA	mg/L	0.001	-	-	0.18	0.018	0.12	-	0.043	0.012	0.039	0.046	0.013
Iron	-	NA	3	NA	mg/L	0.05	-	-	18	0.6	1.4	-	1.4	0 82	1.4	0.67	1.1
Lead	7	NA	NA	NA	mg/L	0.001	0 014	-	0.17	0.011	0.051	-	0.017	0.008	0.024	0.015	0.014
Manganese	350	NA	NA	NA	mg/L	0.005	-	-	0.52	0.017	0.042	-	0.071	0.011	0.24	0 3	0.15
Mercury	-	NA	0.01	NA	mg/L	0 0001	-	-	< 0.0001	< 0 0001	< 0 0001	-	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001
Nickel	14	NA	NA	NA	mg/L	0.001	-	-	0.036	0.002	0.011	-	0.004	0.001	0.004	0.008	0.002
Zinc	-	NA	30	NA	mg/L	0.005	-	-	4	0.22	0.74	-	0 25	0.054	0.34	0.97	0.13
Dissolved Metals					1 0	0.05	L 0.0		1			1			0.04	0.00	0.05
Aluminium (filtered)	NA	5	NA	NA	mg/L	0.05	0.3	-	-	0.69	0.4	-	0.08	0.28	0.26	0.08	0.05
Arsenic (filtered) Barium (filtered)	NA NA	0.5	NA NA	NA -	ing/L ma/l	0.001	0.00	-	-	< 0.001	0.002	-	0.002	< 0.001	0.001	0.001	< 0.001 0.02
Beryllium (filtered)	NA NA	-	ΝA		mg/L	0.001	<0.00	-	-	< 0.05	< 0.07	-	< 0.001	< 0.001	<0.05	< 0.07	< 0.001
Cadmium (filtered)	NA	0.01	NA	0,0002	mg/L	0.001	0,0053	-	-	0.001	0 0033	-	0.001	0 0002	0.0015	0.0038	< 0,0002
Chromium (filtered)	NA	NA	NA	0.001	ma/L	0.001	0 001	-	-	0.001	0.001	-	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Cobalt (filtered)	NA	NA	NA	0.0014	mg/L	0.001	0 005	-	-	< 0.001	< 0.001	-	0.001	< 0.001	0.004	0.003	0.002
Copper (filtered)	NA	0.5	NA	NA	mg/L	0.001	0 027	-	-	0.016	0.1	-	0.037	0.009	0.033	0.038	0.009
Iron (filtered)	NA	-	NA	-	mg/L	0.05	0.33	-	-	0.46	1.1	-	1.1	0 54	0.98	0.31	0 51
Lead (filtered)	NA	0.1	NA	0.0034	mg/L	0.001	0 011	-	-	0.009	0.023	-	0.013	0.003	0.012	0.006	0.005
Manganese (filtered)	NA	NA	NA	1.9	mg/L	0.005	0 015	-	-	0.014	0.029	-	0.065	0.008	0.23	0.27	U.14
Mercury (filtered)	NA	NA	NA	0.00006	mg/L	0 0001	< 0.0001	-	-	< 0 0001	< 0 0001	-	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001
Nickel (filtered)	NA	1	NA	0.011	mg/L	0.001	0 002	-	-	0.002	0.011	-	0.003	0.001	0.004	0.007	0.002
Zinc (filtered)	NA	20	NA	0.008	mg/L	0.005	0.95	-	-	0.2	U./	-	U 23	0.048	0.32	0.87	0.12
The Land Land Land Land	E				11	I			L				I	L			
Iotal Recoverable Hydrocarbons - 2013 NEPM	Fractions		17	16	110/1	10	<10				-			-			
	-	-		10	μg/L μα/l	10	<10	-				-				-	
TPH >C10-C16 loss Nanhthalana (52)	-	-	-	-	10/L	50	~50	-	I	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-		μα/Ι	100	<100	-	-	-	-	-	-	-	-	-	-
TRH >C16-C34	-	-	-	-	μα/L	100	<100	-	-	-	-	-	-	-	-	-	-
TRH >C34-C40	-	-	-	-	μq/L	100	<100	-	- 1	-	-	-	-	-	-	-	-
TRH C6-C10	-	-	-	-	µg/L	20	<20	-	-	-	-	-	-	-	-	-	-
TRH C6-C10 less BTEX (F1)	-	-	-	-	µg/L	20	<20	-	-	-	-	-	-	-	-	-	-
BIEX	1		10	050		1	1 .		1		1	1	1	1			
Benzene	-	-	10	950	µg/L	1	<1	-		-					-	-	
EUIVIDENZENE m&p-Yvlenes	-	-	3000	80		1	<2		-	-	-	-	-	-	-	-	-
	-	-	-		μg/L μα/l	2	<2	-				-				-	
Toluene	-	-	8000	180	μα/L	1	<2	-	-	-	-	- 1	-	- 1	-	-	-
Xylenes - Total	-	-	6000	200	μq/L	3	<3	-	- 1	-	-	-	-	-	-	-	-
		•													1		

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRisKS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^aThe recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health. Concentrations in blue bold font exceed human health recreational screening or site specific criteria Concentrations in grey box exceed ecological screening or site specific criteria

Client TfNSW
lob No 318001376-007
Project Name June 2023 Surface Water Monitoring Report
23/07/2023

Table 6: SW4 Analytical Results

					Sample Typ	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		S19-Au07234	S19-Se37064	- 29/lap/20	S20-Ap12290	S20-My01342	S20-Au23119	S20-Oc25147	S21-Ja34962	S21-Ap22335	N21-JI30453	S22-Se00368	N22-De0031039	S23-Jn0046778
					Sample ID:		SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	SW4	TAR SW4 160623
					Project Nam	ne:	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
	Site Specific	Site Specific	Health-based	Ecological Sceening Criteria	Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor
	Human Health	Ecology Criteria	Screening Criteria	(ANZG 95%															
	Criteria ^a	Northern Culverts) ^a	Waters) ^b	Protection) Fresh	Sampling M	ethod:	Grab Sample	Grab Sample	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines				Water"	Sample Des	cription:	Stagnant pond, clear to slightly yellow.	Turbid.	DRY	Light brown, low turbidity. No odour.	Collected at Boyd Street culvert. Flowing.	Brown, slightly trubid, full but flow not evident.	Water flowing, turbid, brown, no odour.	Brown-orange, stagnant, low- moderate turbidity, no observable contamination	Pale yellow, no odour	Clear, colourless, no odour. Not flowing.	Brown, murky, turbid, some suspended solids, no odour. Not flowing, minor vegetation on the surface and within the water body	Brown, murky, turbid, some suspended solids, no odour. Not flowing, water appears to pool at this location	Clear, low turbidity, slightly brown. No odour.
Analyte grouping/Analyte					Units	LOR													
Inorganics						II													
Ammonia (as N)	-	-	0 5	0.9	mg/L	0 01	< 0.01	0.09	-	-	-	-	-	-	-	-	-	-	-
Conductivity (at 25@°C)	-	-	-	-	µS/cm	100	170	180	-	-	-	-	-	-	-	-	-	-	-
Nitrate & Nitrite (as N) Nitrate (as N)		-	- 50	- 3.5	mg/L mg/l	0 05	< 0.05	2.1	-	-	-	-	-	-	-	-	-	-	-
Nitrite (as N)	-	-	30	-	mg/L	0.02	<0.02	<0.02	-	-	-	-	-	-	-	-	-	-	-
pH (at 25@°C)	-	-	-	-	pH units	0.1	6.9	6 5	-	-	-	-	-	-	-	-	-	-	-
Phosphate total (as P)	-	-	-	-	mg/L	0 01	0.03	< 0.01	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L mg/l	0 01	<0.01	0 014	-	-	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	-	-	-	-	mg/L	0.2	1.2	3.7	-	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids Dried at 105°C	-	-	-	0.7	mg/L	0.005	0.007	0 012	-	-	-	-	-	-	-	-	-	-	-
Turbidity	-	-	-	-	NTU	1	6	39	-	-	-	-	-	-	-	-	-	-	-
Total Metals					1	1 1	1	1										l	
Aluminium	-	NA	2 ^d	NA	ma/L	0.05	-	-	-	0.18	0.49	0.59	0.36	0.23	0.18	0.25	0.28	0 66	0.39
Arsenic	7	NA	NA	NA	mg/L	0.001	-	-	-	0.002	0.002	< 0 001	0.003	0 003	0.003	< 0.001	0.002	0.002	0.001
Barium	-	NA	20	NA	mg/L	0.001	-	-	-	0.07	0 07	0.05	0.08	0.07	0.06	0.04	0 05	0 07	0.06
Beryllium	-	NA	0.6	NA	mg/L	0.001	-	-	-	< 0.001	< 0.001	< 0 001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Chromium		NA	0.5	NA	mg/L	0.001	-	-	-	< 0.019	0.001	0.003	0.019	< 0.000	0.0023	0.0023	0.002	0.002	0.0004
Cobalt	-	NA	-	NA	mg/L	0.001	-	-	-	0.005	0.009	0.001	0.004	0 002	< 0.001	< 0.001	0.002	0.001	< 0.001
Copper	-	NA	20	NA	mg/L	0.001	-	-	-	0.13	0 31	0.04	0.19	0.13	0.09	0.032	0.044	0.059	0.11
Iron	- 7	NA	3	NA	mg/L	0.05	- 0.013	- 0.055	-	0.68	0 83	0.57	1.3	18	1.4	0.64	1.3	0.88	0.67
Manganese	350	NA	NA	NA	mg/L	0.005	-	-	-	0.42	0.13	0.045	0.37	0 3	0.024	0.016	0.13	0.13	0.034
Mercury	-	NA	0.01	NA	mg/L	0.0001	-	-	-	< 0 0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0 0001	< 0.0001	< 0.0001	< 0.0001
Nickel	14	NA	NA	NA	mg/L	0.001	-	-	-	0.037	0.12	0.006	0.038	0 027	0.451	0.004	0.004	0.009	0.013
Zinc	-	NA	30	NA	mg/L	0.005	-	-	-	3.2	7	0.56	2.6	12	1.27	0.5	0 29	0 63	1.3
Dissolved Motols						I I										I		I	
Aluminium (filtered)	NA	5	NA	NA	mg/L	0.05	0.17	0.38	-	-	-	0.63	0.28	0.05	0.19	0.34	0 32	0.19	0.06
Arsenic (filtered)	NA	0.5	NA	NA	mg/L	0.001	0.001	0 001	-	-	-	< 0 001	0.002	0 005	0.002	< 0.001	0.001	< 0.001	< 0.001
Barium (filtered)	NA	-	NA	-	mg/L	0.001	0.04	0.05	-	-	-	0.04	0.08	0.07	0.05	0.04	0 04	0 06	0.05
Beryllium (filtered)	NA	-	NA	-	mg/L	0.001	<0.001	< 0.001		-	-	< 0 001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Chromium (filtered)	NA	NA	NA	0.0002	mg/L	0.001	0.001	0 001	-	-	-	< 0 001	< 0.001	< 0.001	< 0.001	0.001	<0.001	< 0.001	< 0.001
Cobalt (filtered)	NA	NA	NA	0.0014	mg/L	0.001	< 0.001	0 003	-	-	-	< 0 001	0.004	0 001	< 0.001	< 0.001	0.002	0.001	< 0.001
Copper (filtered)	NA	0.5	NA	NA	mg/L	0.001	0.15	0 2	-	-	-	0.035	0.18	0.07	0.073	0.032	0.037	0.049	0.084
Iron (filtered)	NA	- 0.1	NA	- 0.0034	mg/L mg/l	0.05	0.22	0.37	-	-	-	0.4/	0.89	0.28	0.89	0.52	0.91	0.43	0.23
Manganese (filtered)	NA	NA	NA	1.9	mg/L	0.001	0.015	0 2	-	-	-	0.041	0.38	0.26	0.010	0.015	0.12	0.11	0.019
Mercury (filtered)	NA	NA	NA	0.00006	mg/L	0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0 0001	< 0.0001	< 0.0001	< 0.001
Nickel (filtered)	NA	1	NA	0.011	mg/L	0.001	0.014	0 019	-	-	-	0.006	0.038	0 022	0.421	0.004	0.004	0.008	0.011
Zinc (filtered)	NA	20	NA	0.008	mg/L	0.005	1.2	2 6	-	-	-	0.5	2.5	0.82	0.95	0.52	0 26	0 58	1.2
Tatal Deservable Hudesershame 2012 NEDM	-				1		I												
Naphthalene	-	-	17	16	mg/L	10	<10	<10	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16	-	-	-	-	mg/L	50	<50	<50	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16 less Naphthalene (F2)	-	-	-	-	mg/L	50	<50	<50	-	-	-	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-		mg/L	100	<100	<100	-	-	-	-	-	-	-	-	-	-	-
TRH >C34-C40	-	-			mg/L mg/l	100	<100	<100	-		-	<u> </u>	-				+	-	-
TRH C6-C10	-	-			mg/L	20	<20	<20	-		-	-	-	-	-	-	-	-	-
TRH C6-C10 less BTEX (F1)	-	-	-	-	mg/L	20	<20	<20	-	-	-	-	-	-	-	-	-	-	-
BTEX																			
Benzene	-	-	10	950	mg/L	1	<1	<1	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	-	-	3000	80	mg/L	1	<1	<2	-	-	-	-	-	-	-	-	-	-	-
m&p-Xylenes	-	-	-		mg/L	2	<2	<2	-	-	-		-	-	-		-	-	-
Toluene	-	-	8000	180	mg/L		<1	<2	-	- 1	-	-	-	-	-		-	-	-
Xylenes - Total	-	-	6000	200	mg/L	3	<3	<3	-	-	-	-	-	-	-	-	-	-	-

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australian and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury. [®]EnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW [®]Rereational criteria adopted are 10 x Australian Drinking Water Guidelines ADWG (2011) ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Ouality. [®]The recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health. Concentrations in blue bold font exceed human health recreational screening or site specific criteria Concentrations in grey box exceed ecological screening or site specific criteria

Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

					Sample Type	:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		-	-	S20-Au23120	S20-Oc25149	-	S21-Ap22336	N21-JI30455	S22-Se00368	-	S23-Jn0046779
	-				Sample date	:	29/Jan/20 SW5	I/Apr/20 SW5	11/Aug/20 SW5	13/0ct/20 SW5	28/Jan/21 SW5	14/Apr/21 SW5	13/Jul/21 SW5	12/Sep/22 SW5	13/Dec/22 SW5	TAR SW5 160623
					Project Nam	e.	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
	-	Site Specific		Ecological	Project Nam	с.	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring				
	Site Specific	Ecology Criteria	Health-based	Sceening Criteria	Project No:	A	318000780	318000785	318000785	318000785	318000780	318000780	318000780	318001376	318001376-001	318001376-007
	Human Health	(Middle and	(Recreational	(ANZG 95%	Sample Loca	tion	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Kall Loop	Tarago Rall Corridor	Tarago Rall Corridor	Tarago Rail Corridor
	Criteria	Culverts) ^a	Waters) ^b	Water ^c	Sampling Me	ethod:	-	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines					Sample Dese	cription:	DRY	DRY	Brown, turbid, flow at culvert evident beneath crushed rock.	Water not flowing, very shallow, turbid, light brown, no odour.	DRY	Pale yellow, no odour. Small pool of water north of culvert, rest of area dry	Turbid, pale brown, no odour. Sample taken from puddle adjacent to culvert. Not flowing.	DRY	DRY	Clear, low turbidity, slightly yellow, static. Sample taken from small puddle pooled to the north of the culvert.
Analyte grouping/Analyte					Units	LOR										
Inorganics	-	-	0.5	0.0	ma/l	0.01	-	-	-	-	-	-	-	-	-	
Conductivity (at 25@°C)	-	-	-	-	uS/cm	100	-	-	-	-	-	-				
Nitrate & Nitrite (as N)	-	-	-	-	mg/L	0.05	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	-	-	50	3.5	mg/L	0.02	-	-	-	-	-	-	-	-	-	
nH (at 25@°C)	-	-		-	pH units	0.02	-	-	-	-	-	-	-	-	-	-
Phosphate total (as P)	-	-	-	-	mg/L	0.05	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0.005	-	-	-	-	-	-	-	-	-	
Total Kjeldahl Nitrogen (as N)	-	-	0.8	-	mg/L	0.2	-	-	-	-	-	-				
Total Suspended Solids Dried at 105°C	-	-	-	0.7	mg/L	0.005	-	-	-	-	-	-	-	-	-	-
Turbidity	-	-	-	-	NTU	1	-	-	-	-	-	-	-	-	-	-
Total Motals					I											1
Aluminium	_	NA	2 ^d	NA	ma/L	0.05	-	-	1.8	11	-	0.29	1.3	-	-	1.5
Arsenic	7	NA	NA	NA	mg/L	0.001	-	-	0.001	0.005	-	0.002	0.001	-	-	0.002
Barium	-	NA	20	NA	mg/L	0.001	-	-	0.03	0.17	-	0.08	0.04	-	-	0.08
Beryllium	-	NA	0.6	NA	mg/L	0.001	-	-	< 0.001	< 0.001	-	< 0.001	< 0.001	-	-	< 0.001
Chromium	-	NA	0.5	NA	mg/L	0.0002	-	-	0.0009	0.0021	-	0.0009	0.0008	-	-	0.0003
Cobalt	-	NA	-	NA	mg/L	0.001	-	-	< 0.001	0.003	-	< 0.001	< 0.001	-	-	0.001
Copper	-	NA	20	NA	mg/L	0.001	-	-	0.019	0.074	-	0.022	0.021	-	-	0.005
I ead	- 7	NA	3 NA	NA	mg/L mg/l	0.05	-	-	0.01	0.031	-	0.97	0.005	-		9.5
Manganese	350	NA	NA	NA	mg/L	0.005	-	-	0.012	0.15	-	0.061	0.017	-	-	0.25
Mercury	-	NA	0 01	NA	mg/L	0.0001	-	-	< 0.0001	< 0 0001	-	< 0 0001	< 0 0001	-	-	< 0.0001
Nickel	14	NA	NA	NA	mg/L	0.001	-	-	0.002	0.007	-	0.004	0.003	-	-	0.002
ZINC	-	NA	30	NA	mg/L	0.005	-	-	0.11	0.3	-	0.19	0.16	-	-	0.039
Dissolved Metals					1	11		1	1	1	1	I	I		I	
Aluminium (filtered)	NA	5	NA	NA	mg/L	0.05	-	-	3.2	0.28	-	0.25	1.1	-	-	0.1
Arsenic (filtered)	NA	0 5	NA	NA	mg/L	0.001	-	-	0.001	0.002	-	0.001	< 0.001	-	-	0.001
Bervllium (filtered)	NA	-	NA	-	mg/L	0.001	-	-	< 0.001	< 0.001	-	< 0.001	< 0.04	-	-	< 0.001
Cadmium (filtered)	NA	0.01	NA	0.0002	mg/L	0.0002	-	-	0.0009	0.001	-	0.0006	0.0006	-	-	< 0.0002
Chromium (filtered)	NA	NA	NA	0 001	mg/L	0.001	-	-	0.003	< 0.001	-	< 0.001	0.002	-	-	< 0.001
Copper (filtered)	NA NA	0.5	NA	0.0014 NA	mg/L mg/l	0.001	-	-	< 0.001	0.001		< 0.001	< 0.001	-	-	< 0.001
Iron (filtered)	NA	-	NA	-	mg/L	0.05	-	-	1.4	0.54	-	0.74	0.78	-	-	4.2
Lead (filtered)	NA	0.1	NA	0.0034	mg/L	0.001	-	-	0.006	0.007	-	0.002	0.003	-	-	0.003
Manganese (filtered)	NA	NA	NA	1.9	mg/L	0.005	-	-	0.008	0.09	-	0.044	0.013	-	-	0.15
Mercury (filtered)	NA NA	NA 1	NA NA	0.00006	mg/L mg/l	0.0001	-	-	< 0.0001	< 0 0001	-	< 0 0001	< 0 0001			< 0.0001
Zinc (filtered)	NA	20	NA	0 008	mg/L	0.005	-	-	0.094	0.14	-	0.17	0.13	-	-	< 0.001
	•							•	•	•	•		•			
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	1	17	16		10		1	1	1	1	1	1			
TRH >C10-C16	-	-	1/	16	µg/L	10	-	-	-	-	-					
TRH >C10-C16 less Naphthalene (F2)	-	-	-	-	µg/L	50	-	-	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-	-	µg/L	100	-	-	-	-	-	-	-	-	-	-
TRH >C16-C34	-	-	-	-	µg/L	100	-	-	-	-	-	-	-	-	-	
ткп >C34-C40 ТВН C6-C10	-	-	-	-	μg/L μα/Ι	100	-	-	-	-	-	-		-		+ -
TRH C6-C10 less BTEX (F1)	-	-	-	-	µg/L	20	-	-	-	-	-	-	<u>-</u> -	-	-	-
BTEX																
Benzene	-	-	10	950	μg/L	1	-	-	-	-	-	-	-		-	-
Ethylbenzene	-	-	3000	80	µg/L	1	-	-	-	-	-	-	-	-	-	
m&p-Xylenes	-	-	-		µg/L	2	-	-	-	-	-			-		
Toluene	-	-	8000	180	µg/L	1	-	-	-	-	-	-	-		-	-
Xylenes - Total	-	-	6000	200	µg/L	3	-	-	-	-	-	-	-	-	-	-
1												1			1	1

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^dThe recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health. Concentrations in blue bold font exceed human health recreational screening or site specific criteria Concentrations in grey box exceed ecological screening or site specific criteria

Client: TfNSW

Client: TfNSW Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

Table 8: SW6 Analytical Results

				-	Sample Type	:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
				-	Sample date		29/Jan/20 SW6	1/Apr/20 SW6	11/Aug/20 SW6	13/Oct/20 SW6	28/Jan/21 SW6	14/Apr/21 SW6	13/Jul/21 SW6	12/Sep/22 SW6	13/Dec/22 SW6	13/Jun/23 SW6
				-	Project Nam	e:	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
					Project No:		318000780	318000785	318000785	318000785	318000785	318000785	318000785	318001376	318001376-001	318001376-007
		Site Specific	Health-based	Ecological	Sample Loca	tion	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor
	Site Specific Human Health	Ecology Criteria (Middle and	Screening Criteria (Recreational	Criteria (ANZG	Sampling Me	thod:	-	-	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines	Criteria"	Culverts) ^a	Waters) ^b	Fresh Water ^c	Sample Desc	ription:	DRY	DRY	Brown, slightly turbid. Not flowing.	DRY	DRY	DRY	Clear to slightly turbid, pale yellow/brown, no odour. Flowing slightly.	Brown, slightly murky, slightly turbid, some suspended solids, no odour. Flowing slightly, minor vegetation on the surface and banks of the water body. Unable to completely submerge sample container 10cm below water surface	Cloudy yellow/brown with some suspended solids, no odour. Not flowing. Minor vegetation on the banks and within water body.	DRY
Analyte grouping/Analyte					Units	LOR										
Inorganics					1					1						
Ammonia (as N)	-	-	0.5	0.9	mg/L	0 01	-	-	-	-	-	-	-	-	-	-
Conductivity (at 25@°C)	-	-	-	-	µS/cm	100	-	-	-	-	-	-	-	-	-	-
Nitrate & Nitrite (as N)	-	-	-	-	mg/L	0 05	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	-	-	50	3.5	mg/L	0 02	-	-	-	-	-	-	-	-	-	-
ntrite (as N) nH (at 25@°C)	-	-		-	nH units	0.02	-	-	-	-	-	-	-			
Phosphate total (as P)	-	-	-	- 1	ma/L	0.05	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0.005	-	-	-	-	-	-	-	-	-	=
Total Kjeldahl Nitrogen (as N)	-	-	0.8	-	mg/L	0.2	-	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	-	-	-	-	mg/L	0.2	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids Dried at 105°C	-	-	-	0.7	mg/L	0.005	-	-	-	-	-	-	-	-	-	-
lurbidity	-	-	-	-	NIU	1	-	-	-	-	-	-	-	-	-	-
Total Metals					<u> </u>	I	I									
Aluminium	-	NA	2 ^d	NA	mg/L	0.05	-	-	1.8	-	-	-	2.4	1.1	4	_
Arsenic	7	NA	ŇA	NA	mg/L	0.001	-	-	0.002	-	-	-	0.002	0.002	0.003	-
Barium	-	NA	20	NA	mg/L	0.001	-	-	0.06	-	-	-	0.05	0.07	0.08	-
Beryllium	-	NA	0.6	NA	mg/L	0.001	-	-	< 0.001	-	-	-	< 0.001	<0.001	< 0.001	-
Cadmium	1.4	NA	NA	NA	mg/L	0.0002	-	-	0.0072	-	-	-	0.004	0.002	0.0037	-
Chromium	-	NA	0.5	NA	mg/L	0.001	-	-	0.003	-	-	-	0.003	0.002	0.004	-
Cobalt	-	NA	-	NA	mg/L	0.001	-	-	< 0.001	-	-	-	< 0.001	0.002	0.002	-
Iron	-	NA	20	NA NA	mg/L	0.001	-	-	1.4	-	-	-	1.0	1.0	0.089	-
Lead	7	NA	NA	NA	mg/L	0.001	-	-	0.022	-	-	-	0.022	0.022	0.052	-
Manganese	350	NA	NA	NA	mg/L	0.005	-	-	0.018	-	-	-	0.021	0.1	0.17	-
Mercury	-	NA	0.01	NA	mg/L	0.0001	-	-	< 0 0001	-	-	-	< 0.0001	0.0001	< 0.0001	-
Nickel	14	NA	NA	NA	mg/L	0.001	-	-	0.029	-	-	-	0 022	0.012	0.012	-
Zinc	-	NA	30	NA	mg/L	0.005	-	-	0.9	-	-	-	0.67	0.43	1.2	-
Dissolved Metals																
Aluminium (filtered)	NA	5	NA	NA	mg/L	0.05	-	-	2.4	-	-	-	3.2	3.6	0.34	-
Arsenic (filtered)	NA	0.5	NA	NA	mg/L	0.001	-	-	0.001	-	-	-	0 002	0.002	0.001	-
Barium (filtered)	NA	-	NA	-	mg/L	0.001	-	-	0.05	-	-	-	0.04	0.04	0.05	-
Cadmium (filtered)	NA NA	0.01	NA NA	- NA	mg/L mg/l	0.001			0.0063	-	-	-	< 0.001	<0.001	< 0.001	-
Chromium (filtered)	NA	NA	NA	0.0025	mg/L	0.0002	-	-	0.003	-	-	-	0.003	0.0013	< 0.0025	-
Cobalt (filtered)	NA	NA	NA	0.0014	ma/L	0.001	- 1	-	< 0.001	- 1	-	-	< 0.001	0.001	0.001	-
Copper (filtered)	NA	0.5	NA	NA	mg/L	0.001	-	-	0.088	-	-	-	0.11	0.056	0.043	-
Iron (filtered)	NA	-	NA	-	mg/L	0.05	-	-	1.1	-	-	-	1.7	2	0.82	-
Lead (filtered)	NA	0.1	NA	NA	mg/L	0.001	-	-	0.013	-	-	-	0 013	0.01	0.016	-
Manganese (filtered)	NA	NA	NA	1.9	mg/L	0.005	-	-	0.013	-	-	-	0.012	0.04	0.12	-
Mercury (filtered)	NA	NA	NA	0.00006	mg/L	0.0001	-	-	< 0 0001	-	-	-	< 0.0001	<0.0001	< 0.0001	-
	NA	1	NA	-	mg/L	0.001	-	-	0.026	-	-	-	0.019	0.012	0.008	-
Zinc (filtered)	NA	20	NA	-	mg/L	0.005	-	-	0.79	-	-	-	0.53	0.25	0.79	-
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions	1		I	•	I I	1		1	1	1			I		
Naphthalene	-	-	17	16	µg/L	10	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16	-	-	-	-	µg/L	50	-	-	-	-	-	-	-	-	-	-
TRH >C10-C16 less Naphthalene (F2)	-	-	-	-	µg/L	50	-	-	-	-	-	-	-	-	-	-
TRH >C10-C40 (total)*	-	-	-		µg/L	100	-	-	-	-	-	-	-	-	-	-
TRH >C16-C34	-	-	-	-	µg/L	100	-	-	-	-	-	-	-	-	-	-
IKH >C34-C40	-	-	-	-	µg/L	100		-	-	-	-	-	-	-	-	-
TPH C6-C10 less BTEX (E1)	-	-	-	-		20		-	-	-	-	-	-	-	-	-
TIAT CO CIU IESS DILA (I I)	-	-	-	-	<u> µ9/с</u>	20	-	-	-	-	-	-	-	-		
BTEX		•				I	•		•					•		
Benzene	-	-	10	950	µg/L	1	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	-	-	3000	80	µg/L	1	-	-	-	-	-	-	-	-	-	-
m&p-Xylenes	-	-	-	-	µg/L	2	-	-	-	-	-	-	-	-	-	-
o-Xylene	-	-	-	- 100	µg/L	1		-	-	-	-	-	-	-	-	-
roluene Vulenes - Tetal	-	-	8000	180	µg/L	1	-	-	-	-	-	-	-	-	-	-
Aylenes - Tuldi	-	-	0000	200	1 µ9/L	ن	-	-	-	-	-	-	-	-	-	-

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^dThe recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health. Concentrations in blue bold font exceed human health recreational screening or site specific criteria Concentrations in grey box exceed ecological screening or site specific criteria

Client: TfNSW Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

Table 9: SW7 Analytical Results

					Sample Typ	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		S20-1a29060	S20-An12291	S20-Au23122	S20-0c25163	S21-1a34963	S21-An22337	N21-1130457	S22-Se00368	N22-De0031040	S23-1n0046781
	-				Sample date		29/Jan/20	2/Apr/20	11/Aug/20	12/Oct/20	28/Jan/21	14/Apr/21	13/10/21	13/Sen/22	13/Dec/22	16/lun/23
					Sample ID:		SW7	SW7	SW7	SW7	SW7	SW7	SW7	SW7	SW7	TAR SW7 160623
							Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	· · · · · · · · · · · · · · · · · · ·		
					Project Nam	ie:	Monitoring	Mon toring	Mon toring	Mon toring	Monitorina	Mon toring	Mon toring	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
	Health-bacod	Ecological			Comulation		Terres Deilless	Tarras Daillann	Tana Dail Laan	Terrere Deil Leen	Terrere Deillerer	Terrere Deil Leen	Terrere Deillerer	Tanana Bail Cam dan	Tana a Dail Cam dan	Tanaa Dail Cam dan
	Screening	Sceening	ANZECC Fresh	ANZECC Erech	Sample Loca	ation	Tarago Kali Loop	Tarago kali Loop	Tarago Rali Loop	Tarago Rali Loop	Tarago Kali Loop	Tarago Rali Loop	Tarago Kali Loop	Tarago Rall Corr dor	Tarago Rall Corr dor	Tarago Rall Corr dor
	Criteria	Criteria (ANZG	Water	Water Guidelines -												
	(Recreational	95%	Guidelines -	Stock Water ^c	Sampling M	etnoa:	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
	Waters) ^b	Protection) Fresh Water ^c	Irrigation ^c				Silby from dom			Water slightly trub d	Light brown, low-	Pale brown, dark	Slightly turb d, palye yellow/brown, no	Light brown to brown, slightly murky, slightly turb d, suspended sol ds, no odour. Reeds	Clear, slightly brown, no odour. Reeds and	Clear, brown with red
Guidelines					Sample Des	cription:	Silty, from dam, low level water.	Highly turb d.	Brown, turb d.	water slightly trub d, brown, not flowing.	no observable contaminat on	colour to dam, earthy odour	odour. Reeds growing in pond. Not flowing.	growing in pond. Not flowing, minor vegetat on on the surface and w thin the waterbody.	vegetat on growing throuhgout water body. Dead vegetation at bottom of water body	int, low turbialty, no odour. Reeds growing in pond.
Analyte grouping/Analyte					Units	LOR								<u> </u>		
Inorganics														<u> </u>	·/	·
Ammonia (ac N)	0.5	0.0			ma/l	0.01	0.02		-	-	-	-				-
Conductivity (at 25@°C)	0.5	0.9	<u> </u>	-	uS/cm	100	580	-		-		-		+,	<u> </u>	t
N trate & N tr te (as N)	-	-	400	100	ma/l	0.05	<0.05	-	-	-	-	-	-	+,		
N trate (as N)	50	3.5	30	100	mg/L	0.03	< 0.02	-	-	-	-	-	-	+ <u> </u>		-
N tr te (as N)	30	-		-	ma/l	0.02	<0.02	-	-	-	-	-	-	+,		-
pH (at 25@°C)	-	-	-	800-1200	pH units	0.1	7.4	- 1	-	-	-	-	-	1 - /		-
Phosphate total (as P)	-	-	-	-	ma/L	0.05	0.69	- 1	-	-	-	-	-	1 - /		-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-		-	ma/L	0.005	0.56	-	-	-	-	-	-	1 -	-	-
Total Kieldahl N trogen (as N)	0.8	-	-	25-125	ma/L	0.2	15	-	-	-	-	-	-	- '	-	-
Total N trogen (as N)	-	-	- 1	-	mg/L	0.2	15	-	-	-	-	-	-	- ,	- '	-
Total Suspended Solids Dried at 105°C	-	0.7	- '	-	mg/L	0.005	0.25	-	-	-	-	-	-	- '	-	-
Turb d ty	-	-			NTU	1	160	-	-	-	-	-	-		- ''	-
															'	1
Total Metals		1					-				1	1	1	·		
Aluminium	2 ^d	NA	NA	NA	mg/L	0.05	-	0.29	1.7	0.33	0.41	0.15	0.46	0.2	0.22	0.06
Arsen c	NA	NA	NA	NA	mg/L	0.001	0.016	0.004	0.003	0.005	0.003	0.002	0.002	0.002	0.003	0.002
Barium	20	NA	NA	NA	mg/L	0.001	-	0.08	0.04	0.05	0.09	0.04	0.04	0.03	0.03	0.07
Beryllium	0.6	NA	NA	NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Cadmium	NA	NA	NA	NA	mg/L	0.0002	0.0016	0.0009	0.0014	0.0003	< 0.0002	0.0004	< 0.0002	<0.0002	< 0.0002	< 0.0002
Chromium	0.5	NA	NA	NA	mg/L	0.001	-	0.001	0.002	0.001	< 0.001	< 0.001	0.001	<0.001	0.001	< 0.001
Cobalt	-	NA	NA	NA	mg/L	0.001	0.002	0.002	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Copper	20	NA	NA	NA	mg/L	0.001	0.021	0.022	0.027	0.014	0.006	0.009	0.011	0.004	0.004	0.002
Iron	3	NA	NA	NA	mg/L	0.05	-	4.22	1.8	3	4	3.3	3.8	3.3	5	2.2
Lead	NA	NA	NA	NA	mg/L	0.001	0.037	0.02	0.025	0.012	0.009	0.006	0.006	0.003	0.004	0.002
Manganese	NA	NA	NA	NA	mg/L	0.005	1.1	0.41	0.032	0.063	1	0.072	0.083	0.04	0.16	0.08
Mercury	0.01	NA	NA NA	NA	rng/L	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001
N ckel	NA	NA	NA	NA	mg/L	0.001	0.012	0.006	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.001
Zinc	30	NA	NA	NA	mg/L	0.005	0.28	0.15	0.36	0.065	0.044	0.082	0.1	0.014	0.026	0.006
			'											/	<u> </u>	L
Dissolved Metals							1									
Dissolved Aluminium	NA	0.055	5	20	mg/L	0.05	-	-	0.95	0.18	0.52	0.14	0.37	0.08	< 0.05	< 0.05
Dissolved Arsen c	NA	NA	0.5	2	mg/L	0.001	0.011	-	0.001	0.004	0.005	0.001	0.001	0.002	0.002	0.002
Dissolved Barium	NA	-		-	mg/L	0.001	-	-	0.03	0.05	0.05	0.03	0.04	0.03	0.03	0.07
Dissolved Beryllium	NA	0.00054		0.5	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Dissolved Cadmium	NA NA	0.00054	0.01	0.05	mg/L	0.0002	0.0005	-	0.001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002
Dissolved Chromium	INA NA	0.0025		1	ing/L	0.001	0.002	-	0.002	< 0.001	0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Dissolved Copper	NA NA	0.0014		0.1	mg/L	0.001	0.002	-	0.001	0.001	0.002	0.001	0.001	0.001	0.001	< 0.001
Dissolved Copper	NA NA	0.0014		10	ma/l	0.001	0.009	-	0.019	2.4	1.8	1.6	2.5	2.6	2.6	1 3
Dissolved Lead	NA	0.0136	0.1	5	mg/L	0.03	0.017	-	0.07	0.000	0.004	0.003	0.004	0.002	0.002	0.001
Dissolved Manganese	NΔ	1 9	10	25	ma/l	0.005	0.68	-	0.003	0.056	1	0.063	0.004	0.035	0.002	0.001
	NA	0.00006	0.002	0.002	ma/l	0.0001	< 0.001		< 0.001	< 0.0001	< 0.0001	< 0.000	< 0.001	<0.0001	< 0.0001	< 0.000
Dissolved Mercury	NA	0.00000	1	0.002	mg/L	0.0001	0.0001		0.003	0.003	0.0001	0.002	0.0001	0.0001	0.001	0.001
Dissolved Nickel	NA	0.0275	20	5	mg/L	0.001	0.003		0.005	0.003	0.002	0.002	0.002	0.001	0.001	< 0.001
Dissolved zinc	NA NA	0.02	20	5	IIIg/L	0.005	0.007	-	0.20	0.031	0.051	0.037	0.002	0.01	0:018	< 0.005
Total Recoverable Hydrocarbons - 2013 NEPM	1 Fractions															1
Naphthalene	17	16	'	-	µg/L	10	<10	-	-	-		-	-	<u> </u>	'	
TRH >C10-C16	-	-		-	µg/L	50	<50	-	-	-	-	-	-	/	·'	
TRH >C10-C16 less Naphthalene (F2)	-	-	- '	-	µg/L	50	<50	-	-	-	-	-	-		- '	
TRH >C10-C40 (total)*				-	µg/L	100	<100	-	-	-		-	-			
TRH >C16-C34		-	<u> </u>	-	µg/L	100	<100	-	-	-	-	-	-		· · · · · · · · · · · · · · · · · · ·	
TRH >C34-C40	-	-	<u> </u>	-	µg/L	100	<100	-	-	-	-	-	-	<u> </u>		
TRH C6-C10	-		<u> </u>	-	µg/L	20	<20	-	-	-		-	-	<u> </u>		
TRH C6-C10 less BTEX (F1)		-	<u> </u>	-	µg/L	20	<20	-	-	-	-	-	-	<u> </u>		
			<u> </u>												L	L
BTEX																
Benzene	10	950	<u> </u>	-	µg/L	1	< 1	-	-	-	-	-	-	<u> </u>		
Ethylbenzene	3000	80	- '	-	µg/L	1	< 1	-	-	-	-	-	-	<u> </u>	- '	
m&p-Xylenes	-	-	<u> </u>	-	µg/L	2	< 2	-	-	-			-	<u> </u>	- '	
o-Xylene	-	-	· · · · · · · · · · · · · · · · · · ·	-	µg/L	1	< 1	-	-			-	-	<u>+</u> /	· · · · · · · · · · · · · · · · · · ·	
Ioluene	8000	180	·'	-	µg/L	1	2	-	-	-		-	-	+ <u> </u>	· · · · · · · · · · · · · · · · · · ·	
xyienes - Total	6000	200	<u> </u>	-	µg/L	1 3	< 3	-	-	-	-	-	-	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
												1		,	1	1

- ind cates no cr ter on available LOR = Lim t of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australian and New Zealand Gu delines for Fresh Australia and New Zealand Environment and Conservat on Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC gu delines for mercury are based on total mercury.
 ^aEnRiskS (2020) Adv ce on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational cr teria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZE (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

⁶ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ⁶The recreat onal criteria for aluminium is based on aesthtic issues post flocculat on and is not ind cative of risks to human health. Concentrations in blue font exceed human health recreat onal screening criteria Concentrations in grey box exceed ecological screening criteria

Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

Table 10: SW8 Analytical Results

					Sample Type	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Lab ID		S20-Ja29061	S20-Ap12292	S20-Au23123	S20-Oc25165	S21-Ja34964	S21-Ap22338	N21-JI30457	S22-Se00368	N22-De0031041	S23-Jn0046782
	-				Sample date		29/lan/20	2/Anr/20	10/Aug/20	12/Oct/20	28/lan/21	14/Apr/21	13/10/21	13/Sen/22	12/Dec/22	16/lun/23
	-				Sample ID:		SW8	SW8	SW/8	SW8	SW/8	SW8	SW8	SW/8	SW8	TAP SW8 160623
	-				Sample ID.		300	300	300	300	500	300	300	3₩6	3₩8	TAR_3W8_100023
					Project Nam	e:	Tarago Sw	Tarago Sw	Tarago Sw	Tarago Sw	Tarago SW	Tarago Sw	Tarago Sw	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
						-	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring			
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
	Health-based	Ecological Sceening														
	Screening Criteria	Critoria (ANZG	ANZECC Fresh	ANZECC Fresh	Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor
	Screening criteria		Water Guidelines -	Water Guidelines -												
	(Recreational	95% Protection)	Irrigation ^c	Stock Water ^c	Sampling M	ethod:	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidalinas	waters)	Fresh water			Sample Dec	crintion	Clear, vegetation.	Grease at surface,	Water flowing,	Water flowing,	Clear, low turbidity, no	Clear, no odour, leaf	Clear, colourless, no odour. Reeds	Clear, colourless, very minor suspended solids, no odour. Reeds growing in rivor. Flowing minor	Clear, colourless, no odour. Reeds growing on river bank.	Clear, colourless, no
Guidelines						cription:	Not flowing.	growing on plants.	level high, turbid.	clear/brown.	observable contamination	litter on surface	growing in river. Flowing.	of the stream and within the water body	Flowing. Very minor vegetation within water body.	odour. No turbidity.
	-															
Analyte grouping/Analyte					Units	LOR										
Inorganics																
Ammonia (as N)	0.5	0.9	-	-	mg/L	0.01	< 0.01	-	-	-	-	-	-	-	-	-
Conductivity (at 25@°C)	-	-	-	-	µS/cm	100	1000	-	-	-	-	-	-	-	-	-
Nitrate & Nitrite (as N)	-	-	400	100	ma/L	0.05	< 0.05	-	-	-	-	-	-	-	-	-
Nitrate (as N)	50	35	30	10	ma/l	0.02	<0.02	-	- 1	-	- 1	-	-	-	-	-
Nitrite (as N)	30	-			mg/L	0.02	<0.02	-		-	-	-	-	-	-	
	JU	-	-	000 1000	nig/L	0.02	×0.02					-		+ -	-	
pn (dl 20@°C)			-	800-1200	pri units	0.1	/./	-				-				-
Phosphate total (as P)			-	-	mg/L	0.05	0.04	-		-	-	-	-			-
Iotal Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0.005	0.55	-	-	-	-	-	-			-
Total Kjeldahl Nitrogen (as N)	0.8	-	-	25-125	mg/L	0.2	0 5	-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	-	-	-	-	mg/L	0.2	0 5	-	-	-	-	-	-	-	-	
Total Suspended Solids Dried at 105°C	-	0.7	-	-	mg/L	0.005	0.0064	-	-	-	-	-	-	-	-	-
Turbidity	-	-			NTU	1	2.7	-	-	-	-	-	-	-	-	-
						•		•	•	•						
Total Metals													•	•	•	
Aluminium	bc	NA	NA	NA	ma/l	0.05		< 0.05	0.72	< 0.05	< 0.05	< 0.05	< 0.05	0.00	0.26	< 0.05
Aluminium	2	NA	NA NA	NA NA	TTIG/L	0.03	1 0 001	0.001	0.72	< 0.0J	< 0.0J	< 0.03	< 0.03	0.03	0.20	< 0.03
Arsenic	0.1	INA	NA NA	NA	mg/L	0.001	< 0.001	0 001	< 0.001	0 001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Barium	2	NA	NA	NA	mg/L	0.001	-	0.12	0.02	0.08	0.1	0.06	0.06	0.07	0.08	0.09
Beryllium	0.6	NA	NA	NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.002	NA	NA	NA	mg/L	0.0002	< 0 0002	< 0.0002	0.0003	< 0.0002	< 0.0002	< 0.0002	< 0 0002	<0.0002	< 0.0002	< 0.0002
Chromium	0.5	NA	NA	NA	mg/L	0.001	-	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001
Cobalt	-	NA	NA	NA	mg/L	0.001	< 0.001	0 003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001
Copper	20	NA	NA	NA	ma/L	0.001	< 0.001	< 0.001	0.008	< 0.001	< 0.001	0.001	0.002	0.003	0.003	< 0.001
Iron	3	NA	NA	NA	ma/l	0.05	-	3.2	0.76	0.51	0.27	0.17	0.3	0.51	0.66	0.22
Lead	0.1	NA	NA	NA	ma/L	0.001	< 0.001	< 0.001	0.002	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001
Manganasa	5	NA	NA	NA	mg/L	0.001	0.27	1.0	0.002	0.066	0.12	0.022	0.07	0.12	0.002	0.11
Manganese	0.01	NA NA		NA NA	nig/L	0.000	0.57	1.9	0.0001	10,0001	0.12	0.0001	0.07	10,0001	10,0001	10,0001
Mercury	0.01	NA	NA	NA	mg/L	0.0001	< 0 0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0 0001	<0.0001	< 0.0001	< 0.0001
Nickel	0.2	NA	NA	NA	mg/L	0.001	0.001	0 002	0.002	0 001	< 0.001	0.002	0.001	0.002	0.002	< 0.001
Zinc	30	NA	NA	NA	mg/L	0.005	< 0.005	0 022	0.12	0 009	< 0.005	0.011	0.024	0.029	0.023	0.022
Dissolved Metals						1		1	1	1			1	1		
Dissolved Aluminium	NA	0.055	20	5	ma/l	0.05		-	0.41	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Dissolved Aldininian	NA NA	0.033	20	055	IIIg/L	0.001	1.0.001	-	0.41	< 0.05	0.003	< 0.05	< 0.03	<0.05	< 0.03	< 0.05
Dissolved Arsenic	NA	0.024	2	0.5-5	rng/L	0.001	< 0.001	-	< 0.001	< 0.001	0.003	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Dissolved Barium	NA	-		-	mg/L	0.001	-	-	0.02	0.09	0.11	0.06	0.06	0.07	0.07	0.09
Dissolved Beryllium	NA	-	0.5	-	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Cadmium	NA	0.002	0.05	0.01	mg/L	0.0002	< 0 0002		0.0002	< 0.0002	< 0.0002	< 0.0002	< 0 0002	<0.0002	< 0.0002	< 0.0002
Dissolved Chromium	NA	0.0084	1	1	mg/L	0.001	-	-	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Cobalt	NA	0.0014	0.1	1	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Copper	NA	0.0014	5	0.4-5	mg/L	0.001	< 0.001	-	0.007	< 0.001	0.003	< 0.001	0.002	0.003	0.002	< 0.001
Dissolved Iron	NA	-	10	not sufficiently toxic	ma/L	0.05	-	-	0.31	0.15	0.09	0.07	0.18	0.23	0.09	0.19
Dissolved Lead	NA	0.09078	5	0.1	ma/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dissolved Manganese	NΔ	19	10	not sufficiently toxic	ma/l	0.005	0.32	-	0.028	0.064	0.11	0.03	0.061	0.12	0.33	0.1
Disset of Hungunese		0.00000	0.000			0.0001	4 0 0001		< 0.020	< 0.0001	< 0.0001	< 0.001	< 0.001	<0.0001	4 0 0001	< 0.0001
Dissolved Mercury	NA	0.00006	0.002	0.002	rng/L	0.0001	< 0 0001	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0 0001	<0.0001	< 0.0001	< 0.0001
Dissolved Nickel	NA	0.099	2	1	mg/L	0.001	< 0.001	-	0.002	0 001	< 0.001	0.002	0.001	0.001	0.001	< 0.001
Dissolved Zinc	NA	0.072	5	20	mg/L	0.005	< 0.005	-	0.1	0.01	< 0.005	0 008	0.018	0.023	0.011	0.02
Total Recoverable Hydrocarbons - 2013 NFPM	Fractions							•					•	•	•	
Nanhthalene	17	16		-	μα/Ι	10	<10	-	I -	-	I - I	-	I -	-	-	-
	±/		-	-	P9/5	50	250	-	-	-	-	-	-	-	_	-
	+	1 -	-	-	µg/L	50	~30			-		-	-	+	-	-
IRH >C10-C16 less Naphthalene (F2)		-	-	-	µg/L	50	<50	-		-	-	-	-	-	-	-
TRH >C10-C40 (total)*			-	-	µg/L	100	<100	-	-	-	-	-	-	-		-
TRH >C16-C34	-	-	-	-	µg/L	100	<100	-	-	-	-	-	-	-	-	-
TRH >C34-C40	-	-	-	-	µq/L	100	<100	-	-	-	-	-	-	-	-	-
TRH C6-C10	-	-	-	-	ца/L	20	<20	-	-	-	-	-	-	-	-	-
TBH C6-C10 less BTEX (E1)	-	- 1	-	-	10/1	20	<20	-	- 1	-	-	-	-	-	-	-
TIAT CO CTO 1635 DTEA (11)	-	-	-	-	µy/L	20	×20	-		-	-	-	-	-	-	-
	1					L			L	l				1	1	L
DTEY																
	10	050				1 .		1	1							
Benzene	10	950	-		µg/L	1	< 1			-	-	-	-			-
Etnyidenzene	3000	80	-	-	µg/L	1	< 1	-	-	-	-	-	-	-	-	-
m&p-Xylenes	-	-	-	-	µg/L	2	< 2				-	-	-	-	-	-
o-Xylene	-	-	-	-	µg/L	1	< 1	-	-	-	-	-	-	-	-	
Toluene	8000	180	-	-	µg/L	1	< 1	-	-	-	-	-	-	-	-	-
Xylenes - Total	6000	200	-	-	µq/L	3	< 3	-	-	-	-	-	-	-	-	-
· · · · · · · · · · · · · · · · · · ·			•	•				•	-	•	-			1		

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australian and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury. ¹/²/₂ForBield: (2020) Advise an arise to human boolth and the environment. Band Charles and publicly assessible areas. Tampo NGW

^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW

^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011) ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

The recreational criteria for aluminium is based on aesthic issues post flocculation and is not indicative of risks to human health. Concentrations in blue font exceed human health recreational screening criteria

Concentrations in grey box exceed ecological screening criteria

Client: TfNSW

Client: TfNSW Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

Table 11: SW9 Analytical Results

					Sample Type	:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
					Sample date	:	29/Jan/20	2/Apr/20	20/Aug/20	12/Oct/20	28/Jan/21	521-Ap22339 14/Apr/21	13/Jul/21	13/Sep/22	12/Dec/22	16/Jun/23
					Sample ID:		SW9	SW9	SW9	SW9	SW9	SW9	SW9	SW9	SW9	TAR_SW9_160623
					Project Nam	e:	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW Monitoring	Tarago SW Monitoring	Tarago SW Monitoring
					Project No:		318000780	318000780	318000780	318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
					Sample Loca	tion	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corridor	Tarago Rail Corridor	Tarago Rail Corridor
	Health-based	Ecological Sceening	ANZECC Fresh	ANZECC Fresh			i i i i i i i i i i i i i i i i i i i	·	·	· • • • • • • • • • • • • • • •	·	· • • • 9 • · • • • • • • •	·			·
	Screening Criteria (Recreational	Criteria (ANZG 95% Protection)	Water Guidelines - Irrigation ^D	Water Guidelines - Stock Water ^E	Sampling Me	ethod:	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines	waters)*	Fresh Water"			Sample Desc	cription:	Stagnant pond. Algae and fish present. Slightly turbid.	Non-turbid, slightly brown, not flowing but full.	High level, brown, slightly turbid, bubbles at surface.	Water flowing, clear/brown, slightly turbid.	Clear, low turbidity, no observable contamination	Very pale yellow, no odour	Clear, colourless, no odour. Flowing.	Light brown to brown, slightly murky, slightly turbid, no odour. Flowing, minor vegetation and moss on the banks of the stream and within the waterbody.	Clear, slightly brown, very slightly turbid, no odour. Grasses growing along river bank. River flowing. Erosion observed on river bank from recent heavy rainfall	Clear, colourless, slight organse tint in water body. No odour.
Analyte grouping/Analyte					Units	LOR										
Inorganics																
Ammonia (as N)	0.5	0.9	-	-	mg/L	0.01	- 11	-	-	- 1	-	-	-	-	-	-
Conductivity (at 25@°C)	-	-	-	-	µS/cm	100	-	-	-	-	-	-	-	-	-	-
Nitrate & Nitrite (as N)	-	-	400	100	mg/L	0.05	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	50	3.5	30	10	mg/L mg/l	0.02		-		-	-		-	-	-	-
pH (at 25@°C)		-	-	800-1200	pH units	0.02	-	-	-	-	-	-	-	-	-	-
Phosphate total (as P)	-	-	-	-	mg/L	0.05	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids Dried at 180°C ± 2°C	-	-	-	-	mg/L	0.005		-	-	-	-	-	-	-	-	-
Total Nitrogen (as N)	0.8	-	-	- 25-125	mg/L mg/l	0.2	-	-	-	-	-	-	-	-	-	-
Total Suspended Solids Dried at 105°C	-	0.7	-	-	mg/L	0.005		-	-	-	-	-	-	-	-	-
Turbidity	-	-			NTU	1	-	-	-	-	-	-	-	-	-	-
Total Metals																
Aluminium	2 ^d	NA	NA	NA	mg/L	0.05	- 11	0.05	0.53	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05
Arsenic	0.1	NA	NA	NA	mg/L	0.001	0.001	0 001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	<0.001	0.001	< 0 001
Barium	2	NA	NA	NA	mg/L	0.001	-	0.08	0.02	0.09	0.11	0.06	0.07	0.07	0.1	0.09
Beryllium	0.6	NA	NA	NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Chromium	0.002	NA	NA	NA	mg/L	0.0002	-	< 0.0002	0.002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002
Cobalt	-	NA	NA	NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0 001
Copper	20	NA	NA	NA	mg/L	0.001	< 0.001	0 001	0.01	< 0.001	< 0.001	0.001	0.002	0.003	0.001	0.001
Iron	3	NA	NA	NA	mg/L	0.05	-	0.54	0.6	0.15	0.15	0.25	0.29	0.46	1.5	0.14
Manganese	5	NA	NA	NA	mg/L	0.001	0.19	0.33	0.002	0.001	0.24	0.044	0.001	0.084	0.96	0.02
Mercury	0.01	NA	NA	NA	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001
Nickel	0.2	NA	NA	NA	mg/L	0.001	0.002	0 002	0.002	0.001	0.001	0.002	0.002	0.001	0.002	< 0 001
Zinc	30	NA	NA	NA	mg/L	0.005	0.009	0 015	0.16	0.008	0.008	0.014	0.038	0.042	0.013	0.035
Dissolved Metals	NA	0.055	20	5	ma/l	0.05	11 -		0.25	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05
Dissolved Arsenic	NA	0.033	20	0.5-5	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	0.003	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Dissolved Barium	NA	-	-	-	mg/L	0.001	-	-	0.02	0.09	0.12	0.06	0.06	0.06	0.08	0.09
Dissolved Beryllium	NA	-	0.5	-	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0 001
Dissolved Cadmium	NA	0.002	0.05	0.01	mg/L	0.0002	< 0.0002	-	0.0004	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dissolved Chromium Dissolved Cobalt	NA NA	0.0084	0.1	1	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Dissolved Copper	NA	0.0014	5	0.4-5	mg/L	0.001	< 0.001	-	0.008	< 0.001	0.004	< 0.001	0.002	0.003	0.001	0.001
Dissolved Iron	NA	-	10	not sufficiently toxic	mg/L	0.05	-	-	0.29	< 0.05	< 0.05	0.12	0.19	0.26	0.69	0.12
Dissolved Lead	NA	0.09078	5	0.1	mg/L	0.001	< 0.001	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0 001
Dissolved Manganese	NA	0.00006	10		mg/L	0.005	0.012	-	0.036	0.023	0.17	0.04	0.03	0.078	0.85	0.02
Dissolved Mercury	NA	0.00000	2	1	mg/L	0.0001	< 0.0001	-	0.002	0.001	0.001	0.002	0.001	0.001	0.002	< 0.0001
Dissolved Zinc	NA	0.072	5	20	mg/L	0.005	< 0.005	-	0.14	< 0.005	0.006	0.01	0.034	0.038	0.007	0.034
						•	••				•	•		•		
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions										1			1		1
Naphthalene	17	16	-	-	µg/L	10	<10	-	-		-	-	-	-	-	-
TRH SC10-C16 less Nanhthalene (E2)			-	-	µg/L 110/l	50	~50							-		
TRH >C10-C40 (total)*	-	-	- 1	-	µg/L	100	<100	- 1	-	- 1	-	-	-	-	-	-
TRH >C16-C34	-	-	-	-	µg/L	100	<100	-	-	-	-	-	-	-	-	-
TRH >C34-C40	-		-	-	µg/L	100	<100	-	-	-	-	-	-	-	-	-
TRH C6-C10 less BTEX (F1)	-	-	-	-	µg/L	20	<20		-	+ -		-	-	-	-	
		1			P9/ L	20		_	-	-		_	_	_	_	_
Benzene	10	950	_	_	ua/!	1	· · · ·	-	-	-	-	-	-	-	-	-
Ethylbenzene	3000	80	-	-	ug/L	1	<1							-		
m&p-Xylenes	-	-	-	-	µg/L	2	< 2	-	-	-	-	-	-	-	-	-
o-Xylene	-	-	-	-	µg/L	1	< 1	-	-	-	-	-	-	-	-	-
Toluene	8000	180	-	-	µg/L	1	<1	-	-	-	-	-	-	-	-	-
Aylenes - Total	6000	200	-	-	µg/L	5	11 < 3	-	-	-	-	-		-	-	-
		1													1	

- indicates no criterion available LOR = Limit of Reporting Concentrations below the LOR noted as <value NOC = No observed contamination Australia and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018) Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.
 ^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW
 ^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)
 ^cANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 ^dThe recreational criteria for aluminium is based on aesthtic issues post flocculation and is not indicative of risks to human health. Concentrations in blue font exceed human health recreational screening criteria Concentrations in grey box exceed ecological screening criteria

	_				Sample Type	e:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
	_				Lab ID		S20-Oc25153	S21-Ja34966	S21-Ap22340	N21-JI30460	S22-Se00368	N22-De0031043	S23-Jn0046784
	_				Sample date	2:	13/Oct/20	28/Jan/21	14/Apr/21	13/Jul/21	13/Sep/22	12/Dec/22	16/Jun/23
	_				Sample ID:		SW10	SW10	SW10	SW10	SW10	SW10	SW10
					Project Nam	ne:	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW	Tarago SW
	_						Mon toring	Monitoring	Monitoring	Monitoring	Mon toring	Monitoring	Mon toring
	-				Project No:		318000780	318000780	318000780	318000780	318001376	318001376-001	318001376-007
	Health-based	Ecological Sceening	ANZECC Eresh	ANZECC Erech	Sample Loca	ation	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Loop	Tarago Rail Corr dor	Tarago Rail Corridor	Tarago Rail Corr dor
	Screening Criteria (Recreational	Criteria (ANZG 95% Protection) Fresh	Water Guidelines - Irrigation ^D	Water Guidelines - Stock Water ^E	Sampling Me	ethod:	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample	Grab Sample
Guidelines	waters)	Water			Sample Des	cription:	Water flowing, clear/brown, slightly turbid, no odour.	Clear, low turbidity, no observable contamination	Clear, no odour	Clear to slighty turbid, colourless, no odour. Flowing.	Clear, colourless, very minor suspended solids, no odour. Flowing, minor vegetation and moss on the banks of the stream and within the waterbody.	Clear, colourless, no odour. Flowing. Reeds and grasses growing on river bank	Clear, colourless, no turbidity, no odour. Aquatic vegetation in water next to sample location.
Analyte grouping/Analyte					Units	LOR							
I Otal Metals	Dd .	NA	NA	NA		0.05	1 40.05	10.05	< 0.0E	1 0.05	0.00	0.42	<0.0F
Aluminium	20	NA NA	NA NA	NA	mg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	0.42	< 0.05
Arsen c	0.1	NA NA	NA NA	NA	mg/L	0.001	0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Barium	2	NA	NA	NA	mg/L	0.001	0.1	0.1	0.06	0.07	0.07	0.09	0.09
Cadmium	0.00	NA NA	NA NA	NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Chromium	0.002	NA NA	NA NA	NA	mg/L	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002
Cobalt	0.5	NA NA	NA NA	NA NA	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.002	< 0.001	< 0.001
Coppor	20	NA	NA	NA	mg/L	0.001	< 0.001	< 0.001	0.001	0.001	0.001	0.001	0.001
Iron	20	NA	NA	NA	mg/L	0.001	0.55	0.70	0.001	0.002	0.003	0.003	0.003
		NA NA	NA NA	NA NA	mg/L	0.05	0.00	0.79	0.24	0.29	0.55	0.79	0.24
Manganasa	5	NA NA	NA NA	NA NA	mg/L	0.001	0.002	0.001	0.001	0.066	0.12	0.002	< 0.001
Mangaliese	0.01	NA NA	NA	NA	mg/L	0.003	< 0.009	< 0.0001	< 0.0001	< 0.000	<0.001	< 0.0001	< 0.0001
	0.01	NA NA	NA NA	NA	mg/L	0.0001	0.001	< 0.0001	0.0001	0.0001	0.0001	0.0001	< 0.0001
Nickel	0.2	NA NA	NA	NA	mg/L	0.001	0.001	< 0.001	0.002	0.002	0.002	0.002	< 0.001
	30	NA	NA	NA	mg/L	0.005	0.013	< 0.005	0.013	0.032	0.031	0.023	0.021
Dissolved Metals						•		•	•		•	•	•
Aluminium (filtered)	NA	0.055	20	5	mg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Arsen c (filtered)	NA	0.024	2	0.5-5	mg/L	0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Barium (filtered)	NA	-	-	-	mg/L	0.001	0.11	0.11	0.06	0.06	0.07	0.08	0.09
Bervllium (filtered)	NA	-	0.5	-	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	NA	0.002	0.05	0.01	mg/L	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	NA	0.0084	1	1	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt (filtered)	NA	0.0014	0.1	1	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	NA	0.0014	5	0.4-5	mg/L	0.001	< 0.001	0.003	< 0.001	0.002	0.003	0.002	< 0.001
Iron (filtered)	NA	-	10	not sufficiently tox c	mg/L	0.05	0.11	0.8	0.08	0.18	0.24	0.08	0.2
Lead (filtered)	NA	0.09078	5	0.1	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Manganese (filtered)	NA	1.9	10	not sufficiently tox c	mg/L	0.005	0.089	0.33	0.023	0.057	0.12	0.35	0.1
Mercury (filtered)	NA	0.00006	0.002	0.002	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	NA	0.099	2	1	mg/L	0.001	< 0.001	< 0.001	0.001	0.001	0.001	0.002	< 0.001
Zinc (filtered)	NA	0.072	5	20	ma/L	0.005	0.006	< 0.005	0.008	0.025	0.025	0.007	0.018

- indicates no criter on available

LOR = Limit of Reporting

Concentrat ons below the LOR noted as <value

NOC = No observed contamination

Australia and New Zealand Gu delines for Fresh and Marine Water Quality (ANZG 2018) Australia and New Zealand Environment and Conservation Council (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Qual ty.

ANZECC, NEPM and NHMRC guidelines for mercury are based on total mercury.

^aEnRiskS (2020) Advice on risks to human health and the environment: Boyd Street and publicly accessible areas, Tarago NSW

^bRecreational criteria adopted are 10 x Australian Drinking Water Gudielines ADWG (2011)

^cANZG (2018) Australian and New Zealand Gu delines for Fresh and Marine Water Qual ty.

^dThe recreational cr teria for aluminium is based on aestht c issues post flocculation and is not indicative of risks to human health.

Concentrat ons in blue font exceed human health recreational screening criteria

Concentrat ons in grey box exceed ecological screening criteria

Client: TfNSW Job No: 318001376-007 Project Name: June 2023 Surface Water Monitoring Report 23/07/2023

	Sample Type	:	Surface Water	Surface Water		Surface Water	Surface Water	
	Duplicate Ty	pe:	Primary	intralaboratory dupl cate		Primary	inter-laboratory duplicate	
	Lab ID		S23-Jn0046777	S23-Jn0046785		S23-Jn0046777	ES2320808001	
	Sample date		16/Jun/23	13/Dec/23		16/Jun/23	16/Jun/23	
	Sample ID:		TAR_SW3_160623	QC101_160623		TAR_SW3_160623	QC201_160623	
	Project Nam	e:	Tarago SW Monitoring	Tarago SW Monitoring		Tarago SW Monitoring	Tarago SW Monitoring	
	Project No:		318001376-007	318001376-001	KFD 70	318001376-007	318001376-007	KFD 70
	Sample Loca	tion	Tarago Rail Corridor	Tarago Rail Corr dor		Tarago Rail Corridor	Tarago Rail Corridor	
	Sampling Me	thod:	Grab Sample	Grab Sample		Grab Sample	Grab Sample	
Analyte grouping/Analyte	Units	LOR						
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3	mg/L	1	39	38	2.6	39	40	2.5
Total Metals								
Aluminium	mg/L	0.05	0.05	< 0.05	пс	0.05	0.15	100.0
Arsen c	mg/L	0.001	0.001	< 0.001	пс	0.001	<0.001	пс
Barium	mg/L	0.001	0.03	0.06	66.7	0.03	0.032	6.5
Beryllium	mg/L	0.001	< 0.001	< 0.001	пс	< 0.001	<0.001	пс
Cadmium	mg/L	0.0002	0.0003	< 0.0002	пс	0.0003	0.0003	0.0
Chromium	mg/L	0.001	< 0.001	< 0.001	пс	< 0.001	<0.001	nc
Cobalt	mg/L	0.001	0.002	< 0.001	пс	0.002	0.002	0.0
Copper	mg/L	0.001	0.013	0.001	171.4	0.013	0.012	8.0
Iron	mg/L	0.05	1.1	0.23	130.8	1.1	1.01	8.5
Lead	mg/L	0.001	0.014	< 0.001	пс	0.014	0.013	7.4
Manganese	mg/L	0.005	0.15	0.03	137.1	0.15	0.144	4.1
Mercury	mg/L	0.0001	< 0.0001	< 0.0001	nc	< 0.0001	<0.0001	пс
Nickel	mg/L	0.001	0.002	< 0.001	nc	0.002	0.002	0.0
Zinc	mg/L	0.005	0.13	0.02	151.4	0.13	0.128	1.6
Dissolved Metals								
Aluminium (filtered)	mg/L	0.05	0.05	< 0.05	пс	0.05	0.07	33.3
Arsen c (filtered)	mg/L	0.001	< 0.001	< 0.001	пс	< 0.001	<0.001	nc
Barium (filtered)	mg/L	0.001	0.03	0.06	66.7	0.03	0.03	0.0
Beryllium (filtered)	mg/L	0.001	< 0.001	< 0.001	пс	< 0.001	<0.001	nc
Cadmium (filtered)	mg/L	0.0002	< 0.0002	< 0.0002	пс	< 0.0002	0.0002	nc
Chromium (filtered)	mg/L	0.001	< 0.001	< 0.001	пс	< 0.001	<0.001	nc
Cobalt (filtered)	mg/L	0.001	0.002	< 0.001	nc	0.002	0.002	0.0
Copper (filtered)	mg/L	0.001	0.009	< 0.001	nc	0.009	0.009	0.0
Iron (filtered)	mg/L	0.05	0.51	0.09	140.0	0.51	0.37	31.8
Lead (filtered)	mg/L	0.001	0.005	< 0.001	пс	0.005	0.004	22.2
Manganese (filtered)	mg/L	0.005	0.14	0.02	143.6	0.14	0.139	0.7
Mercury (filtered)	mg/L	0.0001	< 0.0001	< 0.0001	пс	< 0.0001	<0.0001	пс
Nickel (filtered)	mg/L	0.001	0.002	< 0.001	пс	0.002	0.002	0.0
Zinc (filtered)	mg/L	0.005	0.12	0.02	152.9	0.12	0.125	4.1

LOR = Limit of Reporting NC = not calculated as one or more results are below the LOR. Bold and Shaded cells exceed RPD >30%

 $\ensuremath{\textbf{Bold}}$ indicates when above the acceptance criteria for Trip Spikes/Blanks and Rinsates Blank Cell ind cates not analysed

APPENDIX 4 CALIBRATION CERTIFICATE

Confidential

InstrumentYSI Quatro Pro PlusSerial No.12D100009

Item	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	\checkmark	
	Capacity	1	
Switch/keypad	Operation	√	
Display	Intensity	√	
	Operation	1	
	(segments)		
Grill Filter	Condition	1	
	Seal	1	
PCB	Condition	1	
Connectors	Condition	1	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	1	
	4. D.O	1	
	5. Temp	1	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. D.O		0%		12110	-0.2%
2. Conductivity		2760mS		401089	2767mS
3. pH7		pH 7.00		399304	pH 7.02
4. pH4		pH 4.00		399527	pH 3.97
5. ORP		235.16mV		A393379/B400204	236.1mV
6. Actual Temp		22.2°C		Instrument Temp	22.2°C

Calibrated by:

Guido Camera

Calibration date:

Next calibration due:

10/12/2023

13/06/2023

APPENDIX 5 LABORATORY REPORTS

Spent Ranger Stor R
Rodid Folded Opple Indedications Indedications Indedications Indedications Indeferration Indeferration <thindeferration< th=""> <thindeferration< th=""> <thind< td=""></thind<></thindeferration<></thindeferration<>
Enail for moto Dialog Di Di<
Полиции <
Contraction
All of brine? All of brine?<
State State <th< td=""></th<>
Solution Solut
1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1
Image: Sector
Image: Section of the section of t
Image: Sector
Image: Section of the section of t
Image: Section of the section of t
Image: Signature Signature <t< td=""></t<>
Image: Signature Signature <t< td=""></t<>
Image: New York Image: New
Image: Non-state Image: Non-state<
rshall Signature Date CV Time 6/16/2023 Te
rshall Signature Date 6/16/2023 Ta
Date 10% Time 7.26 Te
Date

2
2
8
8
õ
Ø

ā

	CHAIN OF CUSTODY Eurofine (Eliveranteri Teetrag ABN 50.0	RECORD	Sy Chill	dney Labora 1 F3 Bid.F 161 9900 8400	ftory Mars Road Lar EnviroSampleN	a Cove West N SW@eurofins.	SW 2066 20m	Unit 1 Unit 1 1 Unit 1 1	ane Labora 21 Smallwoo 2 4600 En	story d Piace Murame wiroSampleQLDV	QLD 4172 Geurofins.com	ш -	Certh La Unit 2 911 08 9251 9	Iboratory Leach Highway 600 EnviroSi	r Kewdale VV	v 6105 Inofins.com			6 Molt 03 8:	oume La nterey Road	tboratory Id Dandenong South VIC 3175 EnviroSampleVir@eurofins.com	
Company	Ramboll		Project N	<u>a</u>	18001376-	101			Proje	ct Manager	Stephe	n Maxwell				Samp	oler(s)	ę	nny Aul	/isobel	Marshall	
Addrace	31100 Parific Hindraw Marth Sun	dnew 2060 MCUV	Project Na	em	Farago Sur	ace Water A	onitoring		EDI	D Format I. EOUS etc	EQUIS					Handed	over by	S	bel Mi	arshall		
		toos foor fairs	/baieti	(0H 10)	18			1,10								Email fo	r Invoice	an l	Id@ram	boll.com	n; aslapac-accounts@ramboll	com
ontact Name	Jenny Auld		grian allate Prioria ∃T	2 IN 4	m la ch											Email for	, Results	je, is	ld@ram laxwell@	boll.com	n; imarshalfl@ramboll.com; I.com	
Phone Ne	0421 672 019		aT" yhdeqe IU2 toentii IU2 toentii	Fe, Ph. M													Cor container t	ntainers type & size	lessatatu j		Required Turnaround Time Default withe 5 days if not ticke	(TAT) d.
cial Directions	Page 2 of 2		esevisnA eseet, beteuper e di bezu ed teum e	Cd, Cr, Su, Co,	50080 88 88003	ider of metals								SJA of bri	слон		54		(3		Overnight (reporting by 9am Same day Cay	+(i Ajdae
rchase Order			ere eletar bos 37105	,98,66 18, 94, 1	nbrah	y qey								۹S		plastic	Plastic Plastic	lsiv A0	INOB ZA	fieg s	2 days • 1 3 days	•
Quote ID Ne			S a ðau <u>M</u>	, 2Å , IÅ) ¤ ⇒∆ , IÅ	a la che											SSOME I	I Jmčst	00 TW09	(Glass	ctedaA	Dther((
		Sampled Date/Time ddam yy hh mm	Matrix Solid (S) Water (WS	benetti-i sisteM VetoT eleteM													500	,	191		Sample Comments / Dangerous Goods Hazard W	arning
	TAR_SW10_160623	16/06/23	M	×	×	×											N				Please lab filter for filtered r analysis	metals
	QC101_160623	16/06/23	M	×	×										-		0					
	QC201_160623	18/06/23	*	×	×									×			2				please send to ALS for same a	nalysis
	QC301_160623	16/06/23	M	×	~										-		3					
																			-			
		Total C	ounts	14 14	13					2				+		-	28					
od of Shipment	t 🗔 Gourier (#	1 2 (Hand Delivered		Postal	Nan	e	Isobe	el Marshi	lie	Signatu	2				a	ate	6/	16/202	m	Time	
thorstoov ties O	Received By		0	ND BNE	NEL PER	ADL NTL	DRW	Signature					Date			1	eu				Temperature	
	Received By			SYD BNE	NEL PER	TIN NOL	DRW	Signature					Date			Ĩ	94				Report Na	
Inter Environments 1.	To stime Assessed a Basel And					Children in the second second	A name las in 1	And a state of the second	ALL DI WALLER		-		-									

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521					
Melbourne	Geelong	Sydney	Canberra	Brisbane	Nev
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place	1/2 F
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie	May
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172	Tel:
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600	NAT
NATA# 1261 Site# 1254	NATA# 1261 Site# 25403	NATA# 1261 Site# 18217	NATA# 1261 Site# 25466	NATA# 1261 Site# 20794	Site

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

	ABN: 91 05 0159 898	NZBN: 9429046024954	•
Newcastle	Perth	Auckland	Christchurch
1/2 Frost Drive	46-48 Banksia Road	35 O'Rorke Road	43 Detroit Drive
Mayfield West NSW 2304	Welshpool	Penrose,	Rolleston,
Tel: +61 2 4968 8448	WA 6106	Auckland 1061	Christchurch 7675
NATA# 1261	Tel: +61 8 6253 4444	Tel: +64 9 526 4551	Tel: +64 3 343 5201
Site# 25079 & 25289	NATA# 2377 Site# 2370	IANZ# 1327	IANZ# 1290

Sample Receipt Advice

Company name:	Ramboll Australia Pty Ltd
Contact name:	Jenny Auld
Project name:	Tarago Surface Water Monitoring
Project ID:	318001376-007
Turnaround time:	5 Day
Date/Time received	Jun 16, 2023 4:46 PM
Eurofins reference	1000862

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. ./
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

TAR_SW6_160623 and QC301_160623 not received.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Jenny Auld - jauld@ramboll.com.

Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

Global Leader - Results you can trust

	ourof	Fine	Eurofins Env ABN: 50 005 08	ironment Testir 5 521	ng Australia Pty Lto														Eurofins ARL Pty Ltd Eurofins Environment T ABN: 91 05 0159 898 NZBN: 9429046024954				ment Testing NZ Ltd
web: w email:	WW.eurofins.com.au	com	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong d 19/8 Lew th Grovedal VIC 3216 5000 5000 Tel: +61 e# 1254 NATA# 1	Sydn. ralan Street 179 M le Girrav b NSW 3 8564 5000 Tel: + 261 Site# 25403 NATA	ey agowar F 2145 31 2 9900 # 1261 S	Road) 8400 ite# 182	Canl Unit Mitch ACT Tel: - 17 NAT	berra 1,2 Dac nell 2911 +61 2 61 A# 1261	re Stree 113 809 Site# 2	B et 1, M Q 1 T 25466 N	risbane /21 Sma lurarrie LD 417 el: +61 ATA# 1	e allwood 72 7 3902 - 261 Site	Place 4600 e# 2079	Newc 1/2 Fr Mayfie Tel: + NATA 4 Site#	astle rost Driveld Wes 61 2 49 # 1261 25079 6	ve 68 8448 & 25289	2304	Perth 46-48 Welsh WA 6 Tel: + NATA	Banksia R npool 106 61 8 6253 # 2377 Sit	2oad 4444 e# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
Co Ad	mpany Name: Idress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Ltc Pacific Highv ey	l way			C R P F	order eport hone ax:	No.: : #: :	(10008 02 999 02 999	62 54 81 54 81	18 50						Recei Due: Priori Conta	ved: ty: ict Nam	e:	Jun 16, 2023 4:4 Jun 23, 2023 5 Day Jenny Auld	6 PM
Pro Pro	oject Name: oject ID:	Tarago Surf 318001376-	ace Water M 007	onitoring														Eu	rofins	Analyt	ical Serv	vices Manager : /	Andrew Black
		Sa	ample Detail			Aluminium	Aluminium (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cobalt	Cobalt (filtered)	Hardness mg equivalent CaCO3/L	Iron	Iron (filtered)	Manganese	Manganese (filtered)	Metals M8	Metals M8 filtered			
Melk	oourne Laborato	ory - NATA # 12	261 Site # 12	54															Х	х			
Syd	ney Laboratory -	• NATA # 1261	Site # 18217	7		X	X	Х	X	X	Х	X	X	X	X	Х	Х	X	Х	Х			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		
1	TAR_SW1_16	Jun 16, 2023		Water	S23-Jn004677	4 x	x	х	х	x	х	x	х	х	x	х	х	x	х	х			
2	TAR_SW1_UP 160623	Jun 16, 2023		Water	S23-Jn004677	5 x	x	x	x	x	x	x	x	х	x	х	х	x	х	x			
3	TAR_SW2_16 0623	Jun 16, 2023		Water	S23-Jn004677	³ x	x	x	x	x	x	x	x	x	x	x	х	x	х	x			
4	TAR_SW3_16 0623	Jun 16, 2023		Water	S23-Jn004677	7 x	x	х	x	х	х	x	х	х	x	х	х	х	х	x			
5	TAR_SW4_16 0623	Jun 16, 2023		Water	S23-Jn004677	³ x	x	х	x	х	х	х	х	х	x	х	х	x	х	x			
6	TAR_SW5_16 0623	Jun 16, 2023		Water	S23-Jn004677	x	x	х	x	х	х	х	х	х	x	х	х	х	х	x			
7	TAR_SW6_16 0623	Jun 16, 2023		Water	S23-Jn004678	x	x	х	x	х	х	х	х	х	x	х	х	х	х	x			

web: www.eurofins.com.au email: EnviroSales@eurofins.com			Eurotins Environment Testing Australia Pty Ltd ABN: 50 005 085 521														Eurofins ARL Pty Ltd			Eurofins Envi	ronmer	t Testing NZ Ltd		
			Method Social Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Mago Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2144 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261				owar Road en 45 2 9900 8400 1261 Site# 1821		Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 17 NATA# 1261 Site# 254			Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 :466 NATA# 1261 Site# 2079			Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289			Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4 IANZ# 1327	1 551	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290	
Company Name: Ramboll Australia Pty Ltd Address: Level 3/100 Pacific Highway North Sydney NSW 2060						O R(PI Fa	Order No.: Report #: 10 Phone: 02 Fax: 02			10008 02 99: 02 99:	00862 9954 8118 9954 8150								ved: ty: ict N	ame:	Jun 16, 2023 4:46 Pl Jun 23, 2023 5 Day Jenny Auld		Μ	
Project Name:Tarago Surface Water MonitoringProject ID:318001376-007																		Eu	rofins	Ana	lytical Ser	vices Manager	: And	rew Black
		s	ample Detail			Aluminium	Aluminium (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cobalt	Cobalt (filtered)	Hardness mg equivalent CaCO3/L	Iron	Iron (filtered)	Manganese	Manganese (filtered)	Metals M8	Metals M8 filtered				
Melbourne Laboratory - NATA # 1261 Site # 1254																			Х	х				
Sydney Laboratory - NATA # 1261 Site # 18217					Х	X	Х	X	X	Х	X	X	Х	X	Х	Х	X	Х	Х	4				
8	TAR_SW7_16 0623	Jun 16, 2023	Wa	er S23-Jn00	46781	х	x	Х	х	х	х	X	Х	Х	X	х	х	x	Х	x				
9	TAR_SW8_16 0623	Jun 16, 2023	Wa	er S23-Jn00	46782	х	х	х	х	x	х	х	x	х	x	х	х	x	х	x				
10	TAR_SW9_16 0623	Jun 16, 2023	Wa	er S23-Jn00	46783	x	x	x	x	x	x	x	x	х	x	x	x	x	x	x				
11	TAR_SW10_1 60623	Jun 16, 2023	Wa	er S23-Jn00	46784	х	х	х	х	x	х	х	х	х	х	х	х	x	х	x				
12	QC101_16062 3	Jun 16, 2023	Wa	er S23-Jn00	46785	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х				
13	QC301_16062	Jun 16, 2023	Wa	er S23-Jn00	46786	х	х	х	х	x	х	х	x		x	х	х	x	x	х				
Test Counts							13	13	13	13	13	13	13	12	13	13	13	13	13	13				

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060

44 ac-MR/ "Intal

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	

Jenny Auld

Report Project name Project ID **Received Date** 1000862-W Tarago Surface Water Monitoring 318001376-007 Jun 16, 2023

Client Sample ID			TAR_SW1_160 623	TAR_SW1_UP _160623	TAR_SW2_160 623	TAR_SW3_160 623
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S23-Jn0046774	S23-Jn0046775	S23-Jn0046776	S23-Jn0046777
Date Sampled			Jun 16, 2023	Jun 16, 2023	Jun 16, 2023	Jun 16, 2023
Test/Reference	LOR	Unit				
Hardness mg equivalent CaCO3/L	1	mg/L	320	330	310	39
Heavy Metals						
Aluminium	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.05
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.05
Arsenic	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Barium	0.02	mg/L	0.08	0.08	0.07	0.03
Barium (filtered)	0.02	mg/L	0.08	0.07	0.07	0.03
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	0.0003
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Copper	0.001	mg/L	< 0.001	< 0.001	0.001	0.013
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	0.009
Iron	0.05	mg/L	0.40	0.09	0.15	1.1
Iron (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.51
Lead	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.014
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.005
Manganese	0.005	mg/L	0.042	0.016	0.027	0.15
Manganese (filtered)	0.005	mg/L	0.036	0.014	0.025	0.14
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Zinc	0.005	mg/L	< 0.005	< 0.005	0.023	0.13
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	0.019	0.12

Client Sample ID			TAR_SW4_160 623	TAR_SW5_160 623	TAR_SW7_160 623	TAR_SW8_160 623
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S23-Jn0046778	S23-Jn0046779	S23-Jn0046781	S23-Jn0046782
Date Sampled			Jun 16, 2023	Jun 16, 2023	Jun 16, 2023	Jun 16, 2023
Test/Reference	LOR	Unit				
Hardness mg equivalent CaCO3/L	1	mg/L	45	55	110	370
Heavy Metals						
Aluminium	0.05	mg/L	0.39	1.5	0.06	< 0.05
Aluminium (filtered)	0.05	mg/L	0.06	0.10	< 0.05	< 0.05
Arsenic	0.001	mg/L	0.001	0.002	0.002	< 0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	0.002	< 0.001
Barium	0.02	mg/L	0.06	0.08	0.07	0.09
Barium (filtered)	0.02	mg/L	0.05	0.06	0.07	0.09
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	0.0064	0.0003	< 0.0002	< 0.0002
Cadmium (filtered)	0.0002	mg/L	0.0057	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.001	0.002	< 0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper	0.001	mg/L	0.11	0.008	0.002	< 0.001
Copper (filtered)	0.001	mg/L	0.084	0.005	0.002	< 0.001
Iron	0.05	mg/L	0.67	9.5	2.2	0.22
Iron (filtered)	0.05	mg/L	0.23	4.2	1.3	0.19
Lead	0.001	mg/L	0.043	0.007	0.002	< 0.001
Lead (filtered)	0.001	mg/L	0.020	0.003	0.001	< 0.001
Manganese	0.005	mg/L	0.034	0.25	0.080	0.11
Manganese (filtered)	0.005	mg/L	0.019	0.15	0.069	0.10
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.013	0.002	0.001	< 0.001
Nickel (filtered)	0.001	mg/L	0.011	< 0.001	0.001	< 0.001
Zinc	0.005	mg/L	1.3	0.039	0.006	0.022
Zinc (filtered)	0.005	mg/L	1.2	0.017	< 0.005	0.020

Client Sample ID Sample Matrix			TAR_SW9_160 623 Water	TAR_SW10_16 0623 Water	QC101_160623 Water
Eurofins Sample No.			S23-Jn0046783	S23-Jn0046784	S23-Jn0046785
Date Sampled			Jun 16, 2023	Jun 16, 2023	Jun 16, 2023
Test/Reference	LOR	Unit			
Hardness mg equivalent CaCO3/L	1	mg/L	410	360	38
Heavy Metals					
Aluminium	0.05	mg/L	< 0.05	< 0.05	0.06
Aluminium (filtered)	0.05	mg/L	< 0.05	< 0.05	< 0.05
Arsenic	0.001	mg/L	< 0.001	< 0.001	0.001
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Barium	0.02	mg/L	0.09	0.09	0.03
Barium (filtered)	0.02	mg/L	0.09	0.09	0.03
Beryllium	0.001	mg/L	< 0.001	< 0.001	< 0.001
Beryllium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001

Client Sample ID Sample Matrix			TAR_SW9_160 623 Water	TAR_SW10_16 0623 Water	QC101_160623 Water
Eurofins Sample No.			S23-Jn0046783	S23-Jn0046784	S23-Jn0046785
Date Sampled			Jun 16, 2023	Jun 16, 2023	Jun 16, 2023
Test/Reference	LOR	Unit			
Heavy Metals					
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	0.0003
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Cobalt	0.001	mg/L	< 0.001	< 0.001	0.002
Cobalt (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002
Copper	0.001	mg/L	0.001	0.003	0.013
Copper (filtered)	0.001	mg/L	0.001	< 0.001	0.009
Iron	0.05	mg/L	0.14	0.24	1.1
Iron (filtered)	0.05	mg/L	0.12	0.20	0.48
Lead	0.001	mg/L	< 0.001	< 0.001	0.014
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.005
Manganese	0.005	mg/L	0.020	0.10	0.14
Manganese (filtered)	0.005	mg/L	0.020	0.10	0.14
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	< 0.001	0.002
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	0.002
Zinc	0.005	mg/L	0.035	0.021	0.13
Zinc (filtered)	0.005	mg/L	0.034	0.018	0.12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Hardness mg equivalent CaCO3/L	Sydney	Jun 21, 2023	28 Days
- Method: E020.1 Hardness in water			
Heavy Metals	Sydney	Jun 22, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals (filtered)	Sydney	Jun 22, 2023	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8	Sydney	Jun 21, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals M8 filtered	Sydney	Jun 21, 2023	28 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

•	ouro	fine	Eurofins Env ABN: 50 005 08	r <mark>ironment Testir</mark> 5 521	ng Australia Pty Ltd														Euro ABN:	o <mark>fins AR</mark> 91 05 01	2 Pty Ltd 59 898	Eurofins Environ	ment Testing NZ Ltd
web: w email:	ww.eurofins.com.au	.com	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	Geelong d 19/8 Lew tth Grovedal VIC 3216 5000 5000 Tel: +61 te# 1254 NATA# 1	Sydney alan Street 179 Mag e Girrawe 5 NSW 21 3 8564 5000 Tel: +61 261 Site# 25403 NATA#	gowar Ro en 45 2 9900 1261 Sit	Canberra Dad Unit 1,2 Dacre Mitchell ACT 2911 8400 Tel: +61 2 61 e# 18217 NATA# 1261			Brisbane rre Street 1/21 Smallwood Place Murarrie QLD 4172 113 8091 Tel: +61 7 3902 4600 I Site# 25466 NATA# 1261 Site# 20794			Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289			Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370			Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290			
Co Ad	mpany Name: dress:	Ramboll Au Level 3/100 North Sydne NSW 2060	stralia Pty Lto Pacific Highv y	d way			O R Pi Fa	rder N eport hone: ax:	No.: #:	1 () ()	10008)2 995)2 995	62 54 81 54 81	18 50						Recei Due: Priori Conta	ved: ty: act Nar	ne:	Jun 16, 2023 4:4 Jun 23, 2023 5 Day Jenny Auld) PM
Pro Pro	oject Name: oject ID:	Tarago Surf 318001376-	ace Water M 007	onitoring														Eu	rofins	Analy	tical Serv	vices Manager : /	Andrew Black
		Sa	ample Detail			Aluminium	Aluminium (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cobalt	Cobalt (filtered)	Hardness mg equivalent CaCO3/L	Iron	Iron (filtered)	Manganese	Manganese (filtered)	Metals M8	Metals M8 filtered			
Melk	ourne Laborato	ory - NATA # 12	261 Site # 12	54															Х	х			
Syd	ney Laboratory	- NATA # 1261	Site # 18217	7		X	X	X	Х	Х	Х	X	X	X	X	Х	Х	X	Х	X			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																		
1	TAR_SW1_16 0623	Jun 16, 2023		Water	S23-Jn0046774	х	x	х	x	x	х	x	x	х	x	х	х	x	х	x			
2	TAR_SW1_UP _160623	Jun 16, 2023		Water	S23-Jn0046775	х	x	х	х	х	х	x	х	х	x	х	х	x	х	x			
3	TAR_SW2_16 0623	Jun 16, 2023		Water	S23-Jn0046776	х	x	х	x	x	х	x	x	х	x	x	х	x	х	x			
4	TAR_SW3_16 0623	Jun 16, 2023		Water	S23-Jn0046777	x	x	х	х	х	х	х	х	х	х	х	х	х	х	x			
5	TAR_SW4_16 0623	Jun 16, 2023		Water	S23-Jn0046778	х	x	х	x	x	х	х	x	х	x	x	х	x	x	x			
6	TAR_SW5_16 0623	Jun 16, 2023		Water	S23-Jn0046779	x	x	х	х	х	х	х	х	х	х	х	х	х	х	x			
7	TAR_SW6_16 0623	Jun 16, 2023		Water	S23-Jn0046780	х	x	х	х	х	х	х	х	х	x	х	х	x	х	x			

•	ourof	Fine	Eurofins Environm ABN: 50 005 085 521	ent Testing Australia Pt	y Ltd														Euro ABN:	fins 91 05	ARL Pty Ltd 0159 898	Eurofins E NZBN: 9429	nvironn 04602495	nent Testing NZ Ltd
web: w email:	ww.eurofins.com.au	com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 125	Geelong 3 19/8 Lewalan Street 6 Grovedale 7 VIC 3216 1 Tel: +61 3 8564 5000 3 4 NATA# 1261 Site# 25403	Sydney 179 Magov Girraween NSW 2145 Tel: +61 2 NATA# 12	war Ro 5 9900 8 61 Site	oad 3400 9# 1821	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 17 NATA# 1261 Site# 2546		B N C 1 1 5466 N	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 36 NATA# 1261 Site# 20794		Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289			Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370		Auckland 35 O'Rorke I Penrose, Auckland 10 Tel: +64 9 52 IANZ# 1327	Road 61 26 4551	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290				
Co Ad	mpany Name: Idress:	Ramboll Au Level 3/100 North Sydn NSW 2060	istralia Pty Ltd) Pacific Highway ey				O Re Pi Fa	rder N eport hone: ax:	No.: #:	(10008)2 99!)2 99!	62 54 81 54 81	18 50						Recei Due: Priori Conta	ved: ty: act N	ame:	Jun 16, 20 Jun 23, 20 5 Day Jenny Auld	23 4:46 23	PM
Pro Pro	oject Name: oject ID:	Tarago Sur 318001376	face Water Monito -007	ring														Eu	rofins	: Ana	lytical Ser	vices Mana	ger : A	ndrew Black
		s	ample Detail			Aluminium	Aluminium (filtered)	Barium	Barium (filtered)	Beryllium	Beryllium (filtered)	Cobalt	Cobalt (filtered)	Hardness mg equivalent CaCO3/L	Iron	Iron (filtered)	Manganese	Manganese (filtered)	Metals M8	Metals M8 filtered				
Mell	ourne Laborato	ory - NATA # 1	261 Site # 1254																х	Х				
Syd	ney Laboratory -	NATA # 1261	Site # 18217			Х	х	Х	Х	x	х	x	х	х	x	Х	Х	X	x	Х	_			
8	TAR_SW7_16 0623	Jun 16, 2023	Wat	er S23-Jn004	6781	х	x	х	х	x	х	x	х	х	x	х	х	x	х	х				
9	TAR_SW8_16 0623	Jun 16, 2023	Wat	er S23-Jn004	6782	х	x	х	х	x	х	x	x	х	x	х	х	x	х	х				
10	TAR_SW9_16 0623	Jun 16, 2023	Wat	er S23-Jn004	6783	Х	x	х	x	x	x	x	x	х	x	x	х	x	x	x				
11	TAR_SW10_1 60623	Jun 16, 2023	Wat	er S23-Jn004	6784	х	x	х	x	x	х	x	x	х	x	х	х	x	х	x				
12	QC101_16062	Jun 16, 2023	Wat	er S23-Jn004	6785	х	x	х	x	х	х	x	x	x	x	х	х	x	x	х				
13	QC301_16062	Jun 16, 2023	Wat	er S23-Jn004	6786	х	x	х	х	х	х	x	х		x	х	х	x	x	x	1			
Test	Counts			•		13	13	13	13	13	13	13	13	12	13	13	13	13	13	13	1			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg milligrams per kilogram	mg/L milligrams per litre	μg/L micrograms per litre
ppm parts per million	ppb parts per billion	% Percentage
org/100 mL Organisms per 100 millilitres	NTU Nephelometric Turbidity Units	MPN/100 mL Most Probable Number of organisms per 100 millilitres
CFU Colony forming unit		

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6 2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			-	-		
Heavy Metals						
Aluminium	mg/L	< 0.05		0.05	Pass	
Aluminium (filtered)	mg/L	< 0.05		0.05	Pass	
Arsenic	mg/L	< 0.001		0.001	Pass	
Arsenic (filtered)	mg/L	< 0.001		0.001	Pass	
Barium	mg/L	< 0.02		0.02	Pass	
Barium (filtered)	mg/L	< 0.02		0.02	Pass	
Beryllium	mg/L	< 0.001		0.001	Pass	
Beryllium (filtered)	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Cadmium (filtered)	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Chromium (filtered)	mg/L	< 0.001		0.001	Pass	
Cobalt	mg/L	< 0.001		0.001	Pass	
Cobalt (filtered)	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Copper (filtered)	mg/L	< 0.001		0.001	Pass	
Iron	mg/L	< 0.05		0.05	Pass	
Iron (filtered)	mg/L	< 0.05		0.05	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Lead (filtered)	mg/L	< 0.001		0.001	Pass	
Manganese	mg/L	< 0.005		0.005	Pass	
Manganese (filtered)	mg/L	< 0.005		0.005	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Mercury (filtered)	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Nickel (filtered)	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
Zinc (filtered)	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery		1	 	1		
Heavy Metals	1					
Aluminium	%	85		80-120	Pass	
Aluminium (filtered)	%	88		80-120	Pass	
Arsenic	%	94		80-120	Pass	
Arsenic (filtered)	%	92		80-120	Pass	
Barium	%	98		80-120	Pass	
Barium (filtered)	%	94		80-120	Pass	
Beryllium	%	82		80-120	Pass	
Cadmium	%	92		80-120	Pass	
Cadmium (filtered)	%	88		80-120	Pass	
Chromium	%	96		80-120	Pass	
Chromium (filtered)	%	95		80-120	Pass	
Cobalt	%	98		80-120	Pass	
Cobalt (filtered)	%	94		80-120	Pass	
Copper	%	94		80-120	Pass	
Copper (filtered)	%	91		80-120	Pass	
Iron	%	103		80-120	Pass	
Iron (filtered)	%	98		80-120	Pass	
Lead	%	96		80-120	Pass	
Lead (filtered)	%	94		80-120	Pass	
Manganese	%	92		80-120	Pass	

Test	Test						Acceptance Limits	Pass Limits	Qualifying Code
Manganese (filtered)			%	90			80-120	Pass	
Mercury			%	98			80-120	Pass	
Mercury (filtered)			%	93			80-120	Pass	
Nickel			%	95			80-120	Pass	
Nickel (filtered)			%	95			80-120	Pass	
Zinc			%	92			80-120	Pass	
Zinc (filtered)			%	90			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	1								
Heavy Metals				Result 1					
Aluminium	S23-Jn0037678	NCP	%	85			75-125	Pass	
Aluminium (filtered)	S23-Jn0050947	NCP	%	87			75-125	Pass	
Arsenic	S23-Jn0037678	NCP	%	93			75-125	Pass	
Arsenic (filtered)	S23-Jn0050947	NCP	%	91			75-125	Pass	
Barium	S23-Jn0037678	NCP	%	95			75-125	Pass	
Barium (filtered)	S23-Jn0050947	NCP	%	91			75-125	Pass	
Beryllium	S23-Jn0037678	NCP	%	82			75-125	Pass	
Beryllium (filtered)	S23-Jn0050947	NCP	%	81			75-125	Pass	
Cadmium	S23-Jn0037678	NCP	%	90			75-125	Pass	
Cadmium (filtered)	S23-Jn0050947	NCP	%	89			75-125	Pass	
Chromium	S23-Jn0037678	NCP	%	94			75-125	Pass	
Chromium (filtered)	S23-Jn0050947	NCP	%	93			75-125	Pass	
Cobalt	S23-Jn0037678	NCP	%	95			75-125	Pass	
Cobalt (filtered)	S23-Jn0050947	NCP	%	92			75-125	Pass	
Copper	S23-Jn0037678	NCP	%	93			75-125	Pass	
Copper (filtered)	S23-Jn0050947	NCP	%	89			75-125	Pass	
Iron	S23-Jn0037678	NCP	%	88			75-125	Pass	
Iron (filtered)	S23-Jn0050947	NCP	%	96			75-125	Pass	
Lead	S23-Jn0037678	NCP	%	97			75-125	Pass	
Lead (filtered)	S23-Jn0050947	NCP	%	92			75-125	Pass	
Manganese	S23-Jn0037678	NCP	%	93			75-125	Pass	
Manganese (filtered)	S23-Jn0050947	NCP	%	87			75-125	Pass	
Mercury	S23-Jn0037678	NCP	%	101			75-125	Pass	
Mercury (filtered)	S23-Jn0050947	NCP	%	92			75-125	Pass	
Nickel	S23-Jn0037678	NCP	%	94			75-125	Pass	
Nickel (filtered)	S23-Jn0050947	NCP	%	93			75-125	Pass	
Zinc	S23-Jn0037678	NCP	%	89			75-125	Pass	
Zinc (filtered)	S23-Jn0050947	NCP	%	88			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium	S23-Jn0045471	NCP	mg/L	1.0	0.98	1.5	30%	Pass	
Arsenic	S23-Jn0045471	NCP	mg/L	0.001	0.001	<1	30%	Pass	
Barium	S23-Jn0045471	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Beryllium	S23-Jn0045471	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Beryllium (filtered)	S23-Jn0036112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S23-Jn0045471	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Cadmium (filtered)	S23-Jn0036112	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S23-Jn0045471	NCP	mg/L	0.003	0.003	11	30%	Pass	
Cobalt	S23-Jn0045471	NCP	mg/L	0.001	0.001	1.3	30%	Pass	
Copper	S23-Jn0045471	NCP	mg/L	0.004	0.002	72	30%	Fail	Q15
Iron	S23-Jn0045471	NCP	mg/L	0.13	0.11	17	30%	Pass	
Lead	S23-Jn0045471	NCP	mg/L	0.002	0.002	4.4	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead (filtered)	S23-Jn0036112	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Manganese	S23-Jn0045471	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Mercury	S23-Jn0045471	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S23-Jn0045471	NCP	mg/L	0.003	0.003	5.4	30%	Pass	
Zinc	S23-Jn0045471	NCP	mg/L	0.76	0.77	1.8	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Aluminium (filtered)	S23-Jn0046782	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Arsenic (filtered)	S23-Jn0046782	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Barium (filtered)	S23-Jn0046782	CP	mg/L	0.09	0.09	<1	30%	Pass	
Chromium (filtered)	S23-Jn0046782	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cobalt (filtered)	S23-Jn0046782	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S23-Jn0046782	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	S23-Jn0046782	CP	mg/L	0.19	0.18	1.9	30%	Pass	
Manganese (filtered)	S23-Jn0046782	CP	mg/L	0.10	0.10	<1	30%	Pass	
Mercury (filtered)	S23-Jn0046782	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S23-Jn0046782	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S23-Jn0046782	CP	mg/L	0.020	0.020	1.4	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Ursula Long Mickael Ros Analytical Services Manager Senior Analyst-Metal

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order	ES2320808	Page	: 1 of 4
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: JENNY AULD	Contact	: Customer Services ES
Address	: PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NORTH SYDNEY NSW, AUSTRALIA 2060		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: 318001376-007 Tarago Surface Water Monitoring	Date Samples Received	: 22-Jun-2023 13:45
Order number	:	Date Analysis Commenced	: 26-Jun-2023
C-O-C number	:	Issue Date	: 28-Jun-2023 13:43
Sampler	: Isobel Marshall, JENNY AULD		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Acception Management
No. of samples received	1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG035: Poor matrix spike recovery was obtained for Mercury on sample ES2320713 #1. Confirmed by re-analysis.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.</p>

Analytical Results

Sub-Matrix: WATER			Sample ID	QC201_160623	 	
		Sampli	na date / time	16-Jun-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2320808-001	 	
Compound	CAS Number	LON	Unit .	Deput	 	
ED002E: CAD and Handrage Colouisticus				Result		
ED093F. SAR and Hardness Calculations		1	ma/l	40	 	
			ilig/L	40		
EG020F: Dissolved Metals by ICP-MS	7400 00 5	0.01	ma/l	0.07		
Arconio	7429-90-5	0.001	mg/L	<0.01	 	
Bapyllium	7440-38-2	0.001	mg/L	<0.001	 	
Barium	7440-41-7	0.001	mg/L	0.030	 	
Cadmium	7440-39-3	0.001	mg/L	0.0002	 	
Chromium	7440-43-9	0.001	mg/L	<0.001	 	
Copper	7440-47-3	0.001	mg/L	0.009	 	
Cobalt	7440-30-0	0.001	mg/L	0.002	 	
Nickel	7440-02-0	0.001	ma/L	0.002	 	
Lead	7439-92-1	0.001	mg/L	0.004	 	
Zinc	7440-66-6	0.005	mg/L	0.125	 	
Manganese	7439-96-5	0.001	mg/L	0.139	 	
Iron	7439-89-6	0.05	mg/L	0.37	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.15	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.032	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0003	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.012	 	
Cobalt	7440-48-4	0.001	mg/L	0.002	 	
Nickel	7440-02-0	0.001	mg/L	0.002	 	
Lead	7439-92-1	0.001	mg/L	0.013	 	
Zinc	7440-66-6	0.005	mg/L	0.128	 	
Manganese	7439-96-5	0.001	mg/L	0.144	 	
Iron	7439-89-6	0.05	mg/L	1.01	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury by F	IMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	

QUALITY CONTROL REPORT

Work Order	: ES2320808	Page	: 1 of 5
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: JENNY AULD	Contact	: Customer Services ES
Address	: PO BOX 560	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NORTH SYDNEY NSW, AUSTRALIA 2060		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: 318001376-007 Tarago Surface Water Monitoring	Date Samples Received	: 22-Jun-2023
Order number	:	Date Analysis Commenced	: 26-Jun-2023
C-O-C number	:	Issue Date	: 28-Jun-2023
Sampler	: Isobel Marshall, JENNY AULD		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

Ankit Joshi

Senior Chemist - Inorganics

Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 5	132884)							
ES2320598-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.077	0.078	0.0	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.261	0.260	0.4	0% - 20%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	9.76	9.85	1.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.176	0.175	0.0	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.087	0.086	1.6	0% - 50%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.06	0.06	0.0	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.46	0.47	0.0	No Limit
ES2321021-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.070	0.068	2.8	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.011	0.011	0.0	0% - 50%
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.019	0.019	0.0	0% - 50%
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.010	0.010	0.0	0% - 50%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.007	0.007	0.0	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.055	0.054	2.8	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.016	0.016	0.0	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.044	0.043	0.0	No Limit

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved M	letals by ICP-MS (QC Lot: 5	132884) - continued							
ES2321021-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	7.47	7.91	5.8	0% - 20%
		EG020A-F: Iron	7439-89-6	0.05	mg/L	2.25	2.41	6.7	0% - 20%
EG020T: Total Metals	by ICP-MS (QC Lot: 51329	67)							
EW2302663-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.008	0.008	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.017	0.008	70.1	No Limit
ES2320780-001 Anonym		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.03	0.03	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
ES2320780-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.067	0.069	3.0	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.028	0.029	0.0	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.034	0.029	13.5	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.12	0.14	15.2	No Limit
EG035F: Dissolved M	lercury by FIMS (QC Lot: 51	32885)							
ES2320808-001	QC201_160623	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
WN2307715-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 5132971)							
ES2320792-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
WN2307715-003	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 5132884)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	84.8	80.0	116	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	89.4	85.0	114	
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	101	85.0	115	
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	90.3	82.0	110	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	87.6	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	87.9	85.0	111	
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	87.6	82.0	112	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	87.3	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	86.8	83.0	111	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	89.6	82.0	110	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	86.8	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	92.3	81.0	117	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	89.1	82.0	112	
EG020T: Total Metals by ICP-MS (QCLot: 5132967)									
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	88.1	82.0	120	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	93.9	82.0	114	
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	105	79.0	119	
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	95.8	84.0	116	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	91.7	84.0	112	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.2	86.0	116	
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	93.0	84.0	116	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.4	83.0	118	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.8	85.0	115	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	91.1	85.0	113	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	92.5	84.0	116	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.3	79.0	117	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.5	85.0	117	
EG035F: Dissolved Mercury by FIMS (QCLot: 5132885)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	101	83.0	105	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 5	132971)								

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report								
	Report Spike Spike Recovery (%)					Acceptable Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG035T: Total Recoverable Mercury by FIMS (QCLot: 5132971) - continued										
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	79.5	77.0	111		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

T

Sub-Matrix: WATER		I	Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 5132884)						
ES2320609-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	118	70.0	130
		EG020A-F: Beryllium	7440-41-7	1 mg/L	111	70.0	130
		EG020A-F: Barium	7440-39-3	1 mg/L	116	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	71.7	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	95 8	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	122	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	81 9	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	97 8	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	126	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	114	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	98 2	70.0	130
EG020T: Total Meta	als by ICP-MS (QCLot: 5132967)						
ES2320780-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	92 9	70.0	130
		EG020A-T: Beryllium	7440-41-7	1 mg/L	94 2	70.0	130
		EG020A-T: Barium	7440-39-3	1 mg/L	92 0	70.0	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	90.1	70.0	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	93.4	70.0	130
		EG020A-T: Cobalt	7440-48-4	1 mg/L	98 3	70.0	130
		EG020A-T: Copper	7440-50-8	1 mg/L	96.1	70.0	130
		EG020A-T: Lead	7439-92-1	1 mg/L	98.4	70.0	130
		EG020A-T: Manganese	7439-96-5	1 mg/L	93 2	70.0	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	90.1	70.0	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	90 8	70.0	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 5132885)						
ES2320713-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	# 60.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: ES2320808	Page	: 1 of 4					
Client	: RAMBOLL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney					
Contact	: JENNY AULD	Telephone	: +61-2-8784 8555					
Project	: 318001376-007 Tarago Surface Water Monitoring	Date Samples Received	: 22-Jun-2023					
Site	:	Issue Date	: 28-Jun-2023					
Sampler	: Isobel Marshall, JENNY AULD	No. of samples received	: 1					
Order number	:	No. of samples analysed	: 1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample D	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG035F: Dissolved Mercury by FIMS	ES2320713001	Anonymous	Mercury	7439-97-6	60.8 %	70.0-130%	Recovery less than lower data quality
							objective

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	U				
Matrix Spikes (MS)					
Total Mercury by FIMS	0	18	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; o hers 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: 🗶 = Holding time	breach ; ✓ = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F SAR and Hardness Calculations							
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) QC201_160623	16-Jun-2023				26-Jun-2023	14-Jul-2023	~
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) QC201_160623	16-Jun-2023				26-Jun-2023	13-Dec-2023	~
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle Nitric Acid; Unfiltered (EG020A T) QC201_160623	16-Jun-2023	26-Jun-2023	13-Dec-2023	~	26-Jun-2023	13-Dec-2023	~
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) QC201_160623	16-Jun-2023				27-Jun-2023	14-Jul-2023	~
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) QC201 160623	16-Jun-2023				28-Jun-2023	14-Jul-2023	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within he analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

atrix: WATER Evaluation: * = Quality Control frequency not within specification ; 🗸 = Quality Control frequency within specificat											
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification				
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation					
Laboratory Duplicates (DUP)											
Dissolved Mercury by FIMS	EG035F	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard				
Laboratory Control Samples (LCS)											
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Method Blanks (MB)											
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Matrix Spikes (MS)											
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	 Image: A second s	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	0	18	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

APPENDIX 6 MANN-KENDALL RESULTS

	for Constituent Trend Analysis												
Evaluation Date	21-Jul-23			1	Job ID:	318001376-007							
Facility Name	Tarago Surf	ace Water Mon	itoring	Constituent: Lead (Total)									
Conducted By	Natalie Gilb	ert		Concentration Units: mg/L									
,				-		ing/=	1						
Sam	Sampling Point ID: SW1 SW1 UP			SW2	SW3	SW4	SW5	SW6					
Sampling Event	Sampling Date			LEAD (TOT	LEAD (TOTAL) CONCENTRATION (mg/L)								
1	06/Aug/19					0.013							
2	24/Sep/19		0.0005	0.003	0.014	0.055							
3	29/Jan/20												
4	1/Apr/20	0.056	0.0005	0.02	0.17	0.055							
5	30/Apr/20			0.006		0.13							
6	11/Aug/20	0.001	<u>0.0005</u>	0.003	0.011	0.015	0.01	0.022					
7	13/Oct/20	0.032	0.001	0.004	0.051	0.038	0.031						
8	28/Jan/21	0.007	<u>0.0005</u>	0.002		0.045							
9	14/Apr/21	0.0005	<u>0.0005</u>	0.0005	0.017	0.027	0.003						
10	13/Jul/21	0.002	0.0005	0.0005	0.008	0.01	0.005	0.022					
11	12/Sep/22	0.005	<u>0.0005</u>	<u>0.0005</u>	0.024	0.029		0.022					
12	13/Dec/22	<u>0.0005</u>	<u>0.0005</u>	0.001	0.015	0.033		0.052					
13	16/Jun/23	<u>0.0005</u>	<u>0.0005</u>	<u>0.0005</u>	0.014	0.043	0.004						
14													
15													
16													
17													
18	↓ ↓												
19													
20													
Coefficier	nt of Variation:	1.68	0.29	1.53	1.44	0.78	1.11	0.51					
Mann-Kenda	II Statistic (S):	-19	-3	-34	-7	-7	-4	3					
Conf	idence Factor:	97.0%	56.9%	99.6%	72.8%	65.6%	75.8%	72.9%					
Concer	ntration Trend:	Decreasing	Stable	Decreasing	No Trend	Stable	No Trend	No Trend					

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

 Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable

 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales, Ground Water, 41(3):355-367, 2003.

	for Constituent Trend Analysis											
Evaluation Date Facility Name Conducted By	: 21-Jul-23 : Tarago Surf : Natalie Gilbo	ace Water Mon ert	itoring	Job ID: 318001376-007 Constituent: Lead (Dissolved) Concentration Units: mg/L								
Sam	Sampling Point ID: SW1 SW1 UP				SW3	SW4	SW5	SW6				
Sampling Event	Sampling Date		LEAD (DISSOLVED) CONCENTRATION (mg/L)									
1 2	06/Aug/19 24/Sep/19		0.001	0.014	0.011	0.008						
3	29/Jan/20 1/Apr/20											
5	30/Apr/20	0.004	0.0005	0.0005	0.000	0.011	0.000	0.012				
7	13/Oct/20	0.004	0.0005	0.0005	0.009	0.011	0.008	0.015				
8 9	28/Jan/21 14/Apr/21	0.0005 0.0005	0.0005 0.0005	0.0005 0.0005	0.013	0.007	0.002					
10 11	13/Jul/21 12/Sep/22	0.001 0.0005	0.0005 0.0005	0.0005 0.0005	0.003 0.012	0.006	0.003	0.013 0.01				
12 13	13/Dec/22 16/Jun/23	0.0005	0.0005 0.0005	0.0005 0.0005	0.006	0.01 0.02	0.003	0.016				
14 15												
16 17												
18												
20												
Coefficie Mann-Kenda	nt of Variation: all Statistic (S):	1.22 -7	0.30 -8	2.25 -8	0.61 -10	0.57 -3	0.52 -3	0.19				
Cont Conce	Confidence Factor:		76.2% Stable	76.2% No Trend	86.2% Stable	56.9% Stable	67.5% Stable	50.0% No Trend				

GSI MANN-KENDALL TOOLKIT

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales,

Ground Water, 41(3):355-367, 2003.

Constituent: Copper (Total) Constituent: Copper (Total) Sampling Point ID: SW1 SW1 SW2 SW3 SW4 SW5 Sampling Date COPPER (TOTAL) CONCENTRATION (mg/L) 1 06/Aug/19 COPPER (TOTAL) CONCENTRATION (mg/L) 2 24/Sep/19 COPPER (TOTAL) CONCENTRATION (mg/L) 3 29/Jan/20 COPPER (TOTAL) CONCENTRATION (mg/L) 4 1/Apr/20 0.019 0.0005 0.023 0.18 0.13 5 30/Apr/20 COUNCE ONCENTRATION (mg/L) 7 13/Oct/20 0.014 0.0005 0.006 0.31 6 11/Aug/20 0.001 0.0022 0.004 0.12 0.19 0.074 8 28/Jan/21 0.002 0.0005 0.001 0.012 0.032 0.021 10 13/Jul/21 0.002 0.0005 0.001 0.013 <th>ation Date:</th> <th>21-Jul-23</th> <th></th> <th></th> <th>]</th> <th>Job ID:</th> <th>318001376-007</th> <th></th> <th></th>	ation Date:	21-Jul-23]	Job ID:	318001376-007			
Sampling Point ID: SW1 SW1 UP SW2 SW3 SW4 SW5 Sampling Date COPPER (TOTAL) CONCENTRATION (mg/L) COPPER (TOTAL) CONCENTRATION (mg/L) 1 06/Aug/19	ility Name:	Tarago Surf	ace Water Moni	toring		Constituent:				
Sampling Point ID: SW1 SW1 SW1 SW2 SW3 SW4 SW5 Sampling Event Date COPPER (TOTAL) CONCENTRATION (mg/L) <th>ducted by.</th> <th></th> <th></th> <th></th> <th></th> <th>ncentration onits.</th> <th>mg/∟</th> <th></th> <th></th>	ducted by.					ncentration onits.	mg/∟			
Bampling Event Sampling Date COPPER (TOTAL) CONCENTRATION (mg/L) 1 06/Aug/19	Samp	ing Point ID:	SW1	SW1 UP	SW2	SW3	SW4	SW5	SW6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ampling Event	Sampling Date			COPPER (TOTAL) CONCENTRATION (mg/L)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	06/Aug/19								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	24/Sep/19								
4 $1/Apr/20$ 0.019 0.0005 0.023 0.18 0.13 5 $30/Apr/20$ 0.006 0.31 6 $11/Aug/20$ 0.003 0.002 0.004 0.018 0.04 0.019 7 $13/Oct/20$ 0.014 0.0005 0.004 0.12 0.19 0.074 8 $28/Jan/21$ 0.005 0.0005 0.004 0.13 1 9 $14/Apr/21$ 0.001 0.0005 0.001 0.012 0.032 0.021 10 $13/Jul/21$ 0.002 0.0005 0.001 0.012 0.032 0.021 11 $12/Sep/22$ 0.002 0.0005 0.001 0.014 1 12 $13/Dec/22$ 0.001 0.001 0.001 0.044 1 12 $13/Dec/22$ 0.001 0.001 0.013 0.11 0.005 13 $16/Jun/23$ 0.0005 0.001 0.013 0.11 0.005 14 14 14 14 14 14 14 14 1	3	29/Jan/20								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1/Apr/20	0.019	0.0005	0.023	0.18	0.13			
6 11/Aug/20 0.003 0.002 0.004 0.018 0.04 0.019 7 13/0ct/20 0.014 0.0005 0.004 0.12 0.19 0.074 8 28/Jan/21 0.005 0.0005 0.004 0.13 0.13 9 14/Apr/21 0.001 0.0005 0.0005 0.043 0.09 0.022 10 13/Jul/21 0.002 0.0005 0.001 0.012 0.032 0.021 11 12/Sep/22 0.002 0.0005 0.0005 0.039 0.044 12 13 16/Jun/23 0.0005 0.001 0.013 0.11 0.005 14 10 10 0.005 0.001 0.013 0.11 0.005 13 16/Jun/23 0.0005 0.001 0.013 0.11 0.005 15 10 10 10 11 10 11 11 16 11 10 10 10 11 10 11 17 10 14 10 10 <td>5</td> <td>30/Apr/20</td> <td></td> <td></td> <td>0.006</td> <td></td> <td>0.31</td> <td></td> <td></td>	5	30/Apr/20			0.006		0.31			
7 13/0ct/20 0.014 0.0005 0.004 0.12 0.19 0.074 8 28/Jan/21 0.005 0.0005 0.0004 0.13 0.13 9 14/Apr/21 0.001 0.0005 0.0005 0.043 0.09 0.022 10 13/Jul/21 0.002 0.0005 0.001 0.012 0.032 0.021 11 12/Sep/22 0.002 0.0005 0.0005 0.039 0.044 12 12 13/Dec/22 0.001 0.001 0.0046 0.059 13 13 16/Jun/23 0.0005 0.0005 0.001 0.013 0.11 0.005 14 - - - - - - - 14 -	6	11/Aug/20	0.003	0.002	0.004	0.018	0.04	0.019	0.1	
8 28/Jan/21 0.005 0.0005 0.004 0.13 9 14/Apr/21 0.001 0.0005 0.0015 0.043 0.09 0.022 10 13/Jul/21 0.002 0.0005 0.001 0.012 0.032 0.021 11 12/sep/22 0.002 0.0005 0.001 0.044 14 12 13/Dec/22 0.001 0.001 0.046 0.059 14 12 13/Dec/22 0.001 0.001 0.046 0.059 14 13 16/Jun/23 0.0005 0.001 0.013 0.11 0.005 14 <td>7</td> <td>13/Oct/20</td> <td>0.014</td> <td><u>0.0005</u></td> <td>0.004</td> <td>0.12</td> <td>0.19</td> <td>0.074</td> <td></td>	7	13/Oct/20	0.014	<u>0.0005</u>	0.004	0.12	0.19	0.074		
9 14/Apr/21 0.001 0.0005 0.0005 0.043 0.09 0.022 10 13/Jul/21 0.002 0.0005 0.001 0.012 0.032 0.021 11 12/sep/22 0.002 0.0005 0.0005 0.039 0.044 10 12 13/bec/22 0.001 0.001 0.001 0.046 0.059 10 13 16/Jun/23 0.0005 0.001 0.013 0.11 0.005 14 16 16 10 10 11 0.005 11 16 16 16 16 16 16 16 16 16 17 17 16 16 16 16 16 16 16 16 19 10 1.25 0.70 1.51 1.02 0.75 0.94 20 12 1.25 0.70 1.51 1.02 0.75 0.94 20 10 1.4 -4 -4 -4 -4 -4 20 10 1.4	8	28/Jan/21	0.005	0.0005	0.004		0.13			
10 13/Jul/21 0.002 0.0005 0.001 0.012 0.032 0.021 11 12/Sep/22 0.002 0.0005 0.0005 0.039 0.044 12 12 13/Dec/22 0.001 0.001 0.001 0.046 0.059 13 13 16/Jun/23 0.0005 0.0005 0.001 0.013 0.11 0.005 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 16 16 16 16 16 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 <td>9</td> <td>14/Apr/21</td> <td>0.001</td> <td><u>0.0005</u></td> <td>0.0005</td> <td>0.043</td> <td>0.09</td> <td>0.022</td> <td></td>	9	14/Apr/21	0.001	<u>0.0005</u>	0.0005	0.043	0.09	0.022		
11 12/Sep/22 0.002 0.0005 0.039 0.044 12 13/Dec/22 0.001 0.001 0.001 0.046 0.059 13 16/Jun/23 0.0005 0.0005 0.001 0.013 0.11 0.005 14 15 16 16 16 17 16 16 16 17 16 16 16 16 16 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 17 17 17 17 17 17 17 17 17 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	10	13/Jul/21	0.002	0.0005	0.001	0.012	0.032	0.021	0.12	
12 13/Dec/22 0.001 0.001 0.0046 0.059 13 16/Jun/23 0.0005 0.0005 0.001 0.013 0.11 0.005 14 14 15 16 18 20 20 20 20 20 20 20 20 <	11	12/Sep/22	0.002	<u>0.0005</u>	<u>0.0005</u>	0.039	0.044		0.068	
13 16/Jun/23 0.0005 0.001 0.013 0.11 0.005 14 14 14 14 14 14 15 16 17 16 16 17 16 17 16 17 16 16 16 17 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 16 17 16 17 16 17 16 17 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16	12	13/Dec/22	0.001	0.001	0.001	0.046	0.059		0.069	
14 14 14 14 14 14 15 15 16 16 16 16 16 17 16 16 16 17 18 16 17 17 18 19 16 17 16 20 10 10 10 20 10 1.25 0.70 1.51 1.02 0.75 0.94 ann-Kendall Statistic (S): -26 -1 -28 -10 -14 -4 Constitutions 99.4% 292.0% 27.2% 75.9% <td>13</td> <td>16/Jun/23</td> <td>0.0005</td> <td><u>0.0005</u></td> <td>0.001</td> <td>0.013</td> <td>0.11</td> <td>0.005</td> <td></td>	13	16/Jun/23	0.0005	<u>0.0005</u>	0.001	0.013	0.11	0.005		
15 16 17 17 17 17 18 19 19 10 20 10 1.25 0.70 1.51 1.02 0.75 0.94 Coefficient of Variation: ann-Kendall Statistic (S): Coefficients Factors -26 -1 -28 -10 -14 -4	14									
16 17 17 17 17 18 18 18 19 19 10 10 20 10 1.25 0.70 1.51 1.02 0.75 0.94 Coefficient of Variation: ann-Kendall Statistic (8): Coefficience Search -26 -1 -28 -10 -14 -4	15									
17 18 19 19 10 10 10 20 20 1.25 0.70 1.51 1.02 0.75 0.94 ann-Kendall Statistic (S): -26 -1 -28 -10 -14 -4 Coefficients Factors 99.4% 99.4% 99.2% 75.9%	16								l	
16 16 16 17 19 20 </td <td>1/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1/									
19 19 10<	18									
20 Coefficient of Variation: 1.25 0.70 1.51 1.02 0.75 0.94 ann-Kendall Statistic (S): -26 -1 -28 -10 -14 -4 Coefficients of variations: 99.7% 50.0% 99.4% 26.2% 75.9%	19									
Coefficient of Variation: 1.25 0.70 1.51 1.02 0.75 0.94 ann-Kendall Statistic (S): -26 -1 -28 -10 -14 -4 Coefficience Factories 99.7% 50.0% 99.4% 26.2% 77.5%	20									
ann-rengan Statistic (5): -26 -1 -28 -10 -14 -4 -	Coefficient	of Variation:	1.25	0.70	1.51	1.02	0.75	0.94	0.28	
	ann-rendall	Statistic (S):	-26	-1	-28	-10	-14	-4	-2	
Commence Factor. 33.1 // 30.0 // 33.4 // 00.2 // 01.0 // 13.0 //	Confid	ence Factor:	99.7%	50.0%	99.4%	86.2%	87.3%	/5.8%	62.5%	

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

 Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable. 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales, Ground Water, 41(3):355-367, 2003.

Aducted By: Nata Sampling Sam Event C 1 06// 2 24/5 3 29/2 4 1/A 5 30// 6 11// 7 13/0 8 28/2 9 14// 10 13// 11 12/2 12 13/16/2 14 15 16 17 18 40	Alie Gilbe Point ID: Date /Aug/19 /Jan/20 /Apr/20 /Apr/20 /Aug/20 /Oct/20	SW1 0.003 0.002	<u>0.0005</u>	Copper (Disso 0.015 0.003	SW3 SW3 DLVED) CONCENTR 0.027	RATION (mg/L) 0.15 0.2	ŚW5	SW6
Sampling Sam ampling San Event C 1 06/// 2 24/5 3 29/2 4 1/A 5 30// 6 11// 7 13/0 8 28/2 9 14// 10 13// 11 12/2 12 13/16/2 14 15 16 17 18 16 17 18	Point ID: impling Date /Aug/19 /Jan/20 /Apr/20 /Apr/20 /Aug/20 /Oct/20	SW1	<u>SW1 UP</u>	SW2 COPPER (DISSO 0.015 0.003	SW3 DLVED) CONCENTR 0.027	SW4 RATION (mg/L) 0.15 0.2	SW5	SW6
ampling Event San Event 1 06// 2 24/9 3 29/1 4 1/A 5 30// 6 11// 7 13// 9 14// 10 13// 11 12/5 12 13/1 13 16/2 14 15 16 17 18 49	Impling Date Date ////////////////////////////////////	0.003 0.002	0.0005	COPPER (DISSO	0.027	RATION (mg/L) 0.15 0.2		
1 06// 2 24/5 3 29/2 4 1/A 5 30// 6 11// 7 13/0 8 28/2 9 14// 10 13// 11 12/2 12 13/16/2 14 15 16 17 17 18	/Aug/19 /Sep/19 /Jan/20 /Apr/20 /Apr/20 /Aug/20 /Oct/20	0.003 0.002	0.0005	0.015	0.027	0.15 0.2		
2 24/5 3 29/2 4 1/A 5 30// 6 11// 7 13/(8 28/1 9 14// 10 13// 11 12/2 12 13/16 13 16/2 14 15 16 17 18 49	/Sep/19 /Jan/20 Apr/20 /Apr/20 /Aug/20 /Oct/20	0.003 0.002	0.0005	0.015	0.027	0.2		
3 29/3 4 1/A 5 30// 6 11/A 7 13/A 9 14/J 10 13/. 11 12/S 12 13/C 13 16/S 14 15 16 17 18 40	/Jan/20 Apr/20 /Apr/20 /Aug/20 /Oct/20	0.003	0.002	0.003	0.016			
4 1/A 5 30// 6 11// 7 13/0 8 28/0 9 14// 10 13/ 11 12/5 12 13/0 13 16/2 14 15 16 17 18 40	Apr/20 /Apr/20 /Aug/20 /Oct/20	0.003 0.002	0.002	0.003	0.016			
5 30// 6 11// 7 13// 8 28// 9 14// 10 13/ 11 12/5 12 13/1 13 16/2 15 16 17 18 40 40	/Apr/20 /Aug/20 /Oct/20	0.003 0.002	0.002	0.003	0.016			
6 11/// 7 13// 8 28// 9 14// 10 13// 11 12/5 12 13// 13 16/2 14 15 16 17 18 40	/Aug/20 /Oct/20	0.003	0.002	0.003	0.016			
7 13/0 8 28/1 9 14/1 10 13/2 11 12/2 12 13/1 13 16/2 14 15 15 16 17 18	/Oct/20	0.002	0.0005		0.016	0.035	0.016	0.088
8 28/1 9 14// 10 13// 11 12/5 12 13/1 13 16/1 14 15 16 17 18 10			0.0005	0.003	0.1	0.18	0.045	
9 14// 10 13/. 11 12/5 12 13/1 13 16/2 14 15 16 17 18 10	/Jan/21	0.005	0.003	0.007		0.07		
10 13/. 11 12/5 12 13/0 13 16/2 14 15 16 17 18 10	/Apr/21	0.0005	0.0005	0.0005	0.037	0.073	0.019	
11 12/5 12 13/1 13 16/2 14 15 16 17 18 10	/Jul/21	0.001	0.0005	0.0005	0.009	0.032	0.018	0.11
12 13/1 13 16/2 14 15 16 17 18 10	/Sep/22	0.0005	<u>0.0005</u>	0.0005	0.033	0.037		0.056
13 16/2 14 15 16 17 18 10	/Dec/22	0.0005	0.0005	0.0005	0.038	0.049		0.043
14 15 16 17 18	/Jun/23	0.0005	0.0005	0.001	0.009	0.084	0.005	
15 16 17 18								
16 17 18								
1/ 18								
18								
				ļ ļ				
19								
20		1.04	0.07	1 4 0	0.07	0.00	0.70	0.44
Coefficient of Va	ariation:	1.01	0.97	1.40	0.87	0.69	0.72	0.41
ann-nendall Stati	usuc (S):	-16	-/	-1/	-3	-11	-4	-4
Confidence	e Factor:	96.9%	72.8%	95.1%	59.4%	81.0%	/ 5.8%	83.3%

GSI MANN-KENDALI TOOLKIT

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales, Ground Water, 41(3):355-367, 2003.

			for Con	stituent Tre	end Analys	sis				
Evaluation Date Facility Name Conducted By	: <mark>21-Jul-23</mark> : Tarago Suri : Natalie Gilb	face Water Mon ert	itoring	Job ID: 318001376-007 Constituent: Zinc (Total) Concentration Units: mg/L						
Sam	pling Point ID:	SW1	SW1 UP	SW2	SW3	SW4	SW5	SW6		
Sampling Event	Sampling Date		ZINC (TOTAL) CONCENTRATION (mg/L)							
1	06/Aug/19									
2	24/Sep/19									
3	29/Jan/20									
4	1/Apr/20	0.2	0.011	0.35	4	3.2				
5	30/Apr/20			0.16		7				
6	11/Aug/20	0.02	0.011	0.028	0.22	0.56	0.11	0.9		
7	13/Oct/20	0.32	0.009	0.096	0.74	2.6	0.3			
8	28/Jan/21	0.086	0.0025	0.033		1.2				
9	14/Apr/21	0.009	0.005	0.011	0.25	1.27	0.19			
10	13/Jul/21	0.025	0.0025	0.014	0.054	0.5	0.16	0.67		
11	12/Sep/22	0.026	<u>0.0025</u>	0.006	0.34	0.29		0.43		
12	13/Dec/22	0.019	<u>0.0025</u>	0.008	0.97	0.63		1.2		
13	16/Jun/23	<u>0.0025</u>	<u>0.0025</u>	0.023	0.13	1.3	0.039			
14										
15										
16	I									
17	+					++				
18	+					++				
19	+ +									
20	t of Voriations	1.40	0.74	1 57	1 10	0.01	0.44			
Mann-Kond	Il Statistic (S):	-18	-23	-29	1.57	-17	-4	0.41		
wann-nenga	idence Easter	96.2%	99.1%	99.5%	72.6%	92.2%	75.8%	37.5%		
0011	dence ractor.	50.2 //	55.1%	55.5%	12.0%	52.2 /0	13.6 //	01.5%		
Conce	ntration Trend:	Decreasing	Decreasing	Decreasing	No Trend	Prob. Decreasing	Stable	Stable		

GSI MANN-KENDALL TOOLKIT

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales, Ground Water, 41(3):355-367, 2003.

for Constituent Trend Analysis											
Evaluation Date Facility Name	: <mark>21-Jul-23</mark> : Tarago Surf	face Water Moni	toring	Job ID: 318001376-007 Constituent Zinc (Dissolved)							
Conducted By	INATAILE GILD	eπ		Concentration Units: mg/L							
Sam	pling Point ID:	SW1	SW1 UP	SW2	SW3	SW4	SW5	SW6			
Sampling Event	Sampling Date		ZINC (DISSOLVED) CONCENTRATION (mg/L)								
1	06/Aug/19					1.2					
2	24/Sep/19		0.005	0.2	0.95	2.6					
3	29/Jan/20										
4	1/Apr/20										
5	30/Apr/20										
6	11/Aug/20	0.045	0.008	0.02	0.2	0.5	0.094	0.79			
7	13/Oct/20	0.073	<u>0.0025</u>	0.13	0.7	2.5	0.14				
8	28/Jan/21	0.058	0.0025	0.028		0.82					
9	14/Apr/21	0.005	0.0025	0.009	0.23	0.95	0.17				
10	13/Jul/21	0.025	0.0025	0.006	0.048	0.52	0.13	0.53			
11	12/Sep/22	0.02	0.0025	0.021	0.32	0.26		0.25			
12	13/Dec/22	0.016	0.0025	0.0025	0.87	0.58		0.79			
13	16/Jun/23	0.0025	0.0025	0.019	0.12	1.2	0.0025				
14											
15											
16											
17											
18											
19											
20											
Coefficie	nt of Variation:	0.83	0.57	1.42	0.83	0.73	0.60	0.44			
Mann-Kenda	Il Statistic (S):	-18	-13	-20	-6	-12	-2	-1			
Con	idence Factor:	98.4%	89.0%	97.8%	72.6%	83.2%	59.2%	50.0%			
Conce	ntration Trend:	Decreasing	Stable	Decreasing	Stable	Stable	Stable	Stable			

GSI MANN-KENDALL TOOLKIT

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J R. Gonzales, Ground Water, 41(3):355-367, 2003.

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi.net.com

party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

party shall be hade for any direct, indirect, consequential, incluential of durer damages resulting from the dae of this product of the mormation contained herein. this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com