

Kamay Ferry Wharves Seagrass Monitoring Program: Final baseline report

Prepared for Transport for NSW 2 February 2023

Document control

Project number	Client	Project manager	LGA
7476	Transport for NSW	Luke Stone	Randwick/Sutherland

Version	Author	Review	Status	Date	
D0	Dr David Cummings	Dr Will Macbeth	Draft	26/01/2023	
	Luke Stone			01/02/2023	
D1	Dr David Cummings	Transport for NSW	Draft	02/02/2023	
	Luke Stone				

© Niche Environment and Heritage Pty Ltd (ACN 137 111 721) 2018

Copyright protects this publication. All rights reserved. Except for purposes permitted by the Australian *Copyright Act* 1968, reproduction, adaptation, electronic storage, transmission and communication to the public by any means is prohibited without our prior written permission. Any third party material, including images, contained in this publication remains the property of the specified copyright owner unless otherwise indicated, and is used subject to their licensing conditions.

Disclaimer

While Niche Environment and Heritage Pty Ltd uses care and diligence in the preparation of this report, it is not responsible or liable for any mistakes, misprints, omissions or typographical errors. None of Niche Environment and Heritage Pty Ltd, nor its editors or authors are responsible for the results of any actions taken on the basis of information in this publication. Niche Environment and Heritage Pty Ltd and its editors and authors expressly disclaim all and any liability and responsibility to any person or organisation in respect of, or as a consequence of, anything done or omitted to be done by any person or organisation in reliance, whether wholly or partially, upon the whole or part of any of the contents of this publication, including any photographs, statements or descriptions. No representation is made as to the suitability of this publication for any particular purpose. The views expressed in this publication are not necessarily endorsed by this publication, its editors or authors, or the owners or management of Niche Environment and Heritage Pty Ltd.

Enquiries should be addressed to:

Sydney Head Office Niche Environment and Heritage 02 9630 5658 info@niche-eh.com PO Box 2443 North Parramatta NSW 1750 Australia

Glossary and list of abbreviations

Term or abbreviation	Definition
ANOVA	Analysis of Variance
ARUP	Arup Pty Ltd
Baseline Surveys	The four Baseline Surveys completed as part of the Kamay Ferry Wharves seagrass pre- construction monitoring program
Buffer Area	Temporary construction footprint comprising a 15 metre buffer around the Construction Footprint (permanent)
Cardno	Cardno Pty Ltd, now Stantec
CHIRP	Compressed High-Intensity Radiated Pulse
Construction Footprint	Permanent construction footprint for the wharf structures
СРСе	Coral Point Count with Excel extensions
DoD	Depth of Disturbance
DPI	The NSW Department of Primary Industries
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999
EIS	Environmental Impact Statement
EIS study area	Study area adopted in the Project EIS (TfNSW 2021a)
FM Act	Fisheries Management Act 1994 (NSW)
Halophila	Seagrass species from the genus <i>Halophila</i> , predominantly <i>Halophila ovalis</i> but may also include <i>Halophila decipiens</i>
Inner Transect	Transect extending across monitoring sites (PB-K05, PB-K06, PB-K07, PB-K08) along the inner edge (from the shoreline) of the largest seagrass bed at Kurnell, with monitoring sites positioned at increasing distances from the Construction Footprint
IOD	Indian Ocean Dipole
Monitoring sites	Monitoring sites established as part of the Kamay Ferry Wharves seagrass pre- construction monitoring program
Niche	Niche Environment and Heritage Pty Ltd
nMDS	Non-metric Multidimensional Scaling
Outer Transect	Transect extending across monitoring sites (PB-K01, PB-K02, PB-K03, PB-K04) along the outer edge (from the shoreline) of the largest seagrass bed at Kurnell, with monitoring sites positioned at increasing distances from the Construction Footprint
РСоА	Principle Coordinates Analysis
PERMANOVA	Permutational multivariate ANOVA
Posidonia	The seagrass species Posidonia australis
Project	The reinstatement of the ferry wharves at La Perouse and Kurnell in Botany Bay (the Project)
Project Boundary	Project area as delineated by Transport for New South Wales
Reference sites	Reference sites are identified within the Seagrass Monitoring Program as a basis to compare against trends or pattens identified among the potential impact sites. As it cannot be established that the reference sites are free from any other sources of

Term or abbreviation	Definition
	impact or stressors, other than the project construction, they cannot be considered 'control' sites.
Seagrass Monitoring Program	The Kamay Ferry Wharves seagrass pre-construction monitoring program
Survey Area	Survey area for the current assessment, incorporating subtidal areas of seagrass habitat within 50-100 metres of the Project Boundary
Shoot (seagrass)	A shoot is considered the section of seagrass from the sheath up and may consist of one or various leaves
TfNSW	Transport for New South Wales
The Ecology Lab	The Ecology Lab Pty Ltd
Zostera	Seagrass species from the genus Zostera, predominantly <i>Zostera capricorni</i> but may also include <i>Zostera muelleri</i>

Table of Contents

Glos	sary an	d list of abbreviations
1.	Introd	uction1
	1.1	Project background1
	1.2	Project description
	1.3	Monitoring purpose
	1.4	Baseline monitoring to date
2.	Reviev	v of existing information
	2.1	Past and present development in the locality
	2.2	Seagrass areal extent and EIS findings
	2.3	Baseline monitoring summary to date
3.	Metho	ds
	3.1	Overview
	3.2	Survey frequency and timing
	3.3	Baseline master dataset
	3.4	Seagrass mapping
	3.5	Drop camera surveys
	3.6	Posidonia bed monitoring
	3.7	Posidonia patch monitoring
	3.8	Limitations
4.	Result	s – Baseline 4 (summer 2022/23) 18
	4.1	Seagrass areal extent
	4.2	Zostera and Halophila seagrasses
	4.3	Posidonia seagrass
5.	Result	s – Temporal trends (Baseline 1 to Baseline 4)24
	5.1	Seagrass areal extent
	5.2	Zostera and Halophila seagrass beds
	5.3	Posidonia bed monitoring
6.	Discus	sion51
	6.1	Summary of baseline findings
	6.2	Drivers of change
	6.3	Suitability of the reference sites
7.	Recom	imendations

	7.1	Performance indicators
	7.2	Modifications to the monitoring program
	7.3	Other
8.	Conclu	isions
9.	Refere	nces
10.	Plates	
Арр	endix 1	: Monitoring site locations64
Арр	endix 2	: Epiphyte loading scale
Арр	endix 3	: Baseline monitoring master dataset66
Арр	endix 4	: Seagrass mapping, Zostera and Halophila monitoring results
	Baselir	ne 1 – Baseline 4: seagrass mapping results67
	Baselir	ne 1 – Baseline 4: drop camera survey results - seagrass species
	Baselir	ne 1 – Baseline 4: drop camera survey results – macroalgae, seagrass substrate
	Baselir	ne 1 – Baseline 4: drop camera survey results - epiphytic, algae turfing algae, sand silt
Арр	endix 5	: Summary <i>Posidonia</i> bed and patch monitoring data70
	Baselir	ne 1 – Baseline 4: Average shoot density results (O.25 m ²) 70
	Baselir	ne 1 – Baseline 4: Average leaf length (O.25 m ²)71
	Baselir	ne 1 - Baseline 4: Average epiphytic cover (O.25 m ²)72
	Baselir	ne 1 - Baseline 4: Average percentage of <i>P. australis</i> sheath visible (O.25 m ²)
Арр	endix 6	: Statistical analysis results Error! Bookmark not defined.

List of Figures

Figure 1: Survey site and habitat mapping: La Perouse – Baseline 4 (summer 2022/23)
Figure 2: Survey site and habitat mapping: Kurnell – Baseline 4 (summer 2022/23)
Figure 3: Baseline 4 (summer 2022/23) – mean <i>Halophila</i> and <i>Zostera</i> seagrasses cover (+/- SE total seagrass cover)
Figure 4: Mean shoot density of seagrass within the <i>Posidonia</i> bed monitoring sites in Baseline 4
Figure 5: <i>Posidonia / Posidonia</i> Mixed and <i>Halophila / Zostera</i> areas over all Baseline Surveys at La Perouse
Figure 6: <i>Posidonia / Posidonia</i> Mixed and <i>Halophila / Zostera</i> seagrass mapping at La Perouse over all Baseline Surveys
Figure 7: <i>Posidonia / Posidonia</i> Mixed and <i>Halophila / Zostera</i> areas over all Baseline Surveys at Kurnell 28
Figure 8: <i>Posidonia / Posidonia</i> Mixed and <i>Halophila / Zostera</i> seagrass mapping at La Perouse over all Baseline Surveys

Figure 9: Mean seagrass cover within the <i>Zostera</i> and <i>Halophila</i> dominated bed sites across the Baseline Surveys at La Perouse
Figure 10: PCoA Graphs for La Perouse. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by site
Figure 11: Mean seagrass cover within the <i>Zostera</i> and <i>Halophila</i> dominated bed sites across the Baseline Survey at Kurnell
Figure 12: PCoA Graphs for Kurnell. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by site
Figure 13: Mean shoot density of <i>Posidonia</i> shoots at the La Perouse <i>Posidonia</i> bed monitoring sites. Top: Between surveys. Bottom: Between sites
Figure 14: Mean leaf length of <i>Posidonia</i> at the La Perouse <i>Posidonia</i> bed monitoring sites
Figure 15: Mean epiphyte load scores of <i>Posidonia</i> at the La Perouse <i>Posidonia</i> bed monitoring sites between surveys
Figure 16: Mean epiphyte load scores of <i>Posidonia</i> at the La Perouse <i>Posidonia</i> bed monitoring sites 38
Figure 17: PCoA Graphs for seagrass composition at La Perouse <i>Posidonia</i> Bed monitoring sites. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by Site
Figure 18: Mean shoot density of <i>Posidonia</i> shoots at the Kurnell <i>Posidonia</i> bed monitoring sites
Figure 19: Relationship between <i>Posidonia</i> shoot density and distance from the Construction Footprint at Kurnell <i>Posidonia</i> bed monitoring sites, Outer Transect (Top), Inner Transect (Bottom). Indicative line-of- best-fit is shown for each Baseline survey and for all surveys combined, irrespective of whether the regression analysis was statistically significant or not
Figure 20: Relationship between <i>Posidonia</i> Leaf length and distance from the Construction Footprint at Kurnell <i>Posidonia</i> bed monitoring sites, Outer Transect (Top), Inner Transect (Bottom). Indicative line-of-best-fit is shown for each Baseline survey and for all surveys combined, irrespective of whether the regression analysis was statistically significant or not
Figure 21: Mean leaf length of <i>Posidonia</i> at the La Perouse <i>Posidonia</i> bed monitoring sites
Figure 22: Mean epiphyte load scores for <i>Posidonia</i> at the Kurnell <i>Posidonia</i> bed monitoring sites
Figure 23: PCoA Graphs for seagrass composition at Kurnell <i>Posidonia</i> Bed monitoring sites. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by Site
Figure 24: <i>Posidonia</i> patch size at the La Perouse <i>Posidonia</i> patch monitoring sites
Figure 25: Mean <i>Posidonia</i> shoots at the La Perouse <i>Posidonia</i> patch monitoring sites
Figure 26: <i>Posidonia</i> patch size at the Kurnell <i>Posidonia</i> patch monitoring sites
Figure 27: Mean <i>Posidonia</i> shoots at the Kurnell <i>Posidonia</i> patch monitoring sites

List of Tables

Table 1: Baseline monitoring surveys completed to date 2
Table 2: Baseline Surveys and previous EIS surveys 8
Table 3: Baseline 4 (Summer 2022/23) seagrass monitoring survey dates 9
Table 4: Major and sub-categories used with the CPCe Software. 11
Table 5: Experimental design applied to statistical analyses of the drop camera data. 12
Table 6: Experimental Design applied to statistical analyses of data from the <i>Posidonia</i> beds
Table 7: Experimental Design applied to statistical analyses of data from the <i>Posidonia</i> patches
Table 8: Areal extent of seagrass types mapped at Kurnell and La Perouse during Baseline 4 (summer2022/23) within the Survey Area, Project Boundary, Construction Footprint (area of direct impacts) andassociated Buffer area (area of indirect impacts).18
Table 9: Mean covers of sediment, turfing algae and epiphytic algae at each site during Baseline 4 (summer2022/23).2022/23).
Table 10: Average shoot density recorded at Posidonia bed monitoring sites and patches during Baseline 4.
Table 11: Mean values for leaf length measurements, visible seagrass sheaths (<i>P. australis</i> only) andepiphyte cover scores during Baseline 4 (summer 2022/2023)

Table 12: P. australis seagrass (including Posidonia, Posidonia / Halophila, Posidonia / Zostera and PosidoniaMixed beds) areas and Halophila / Zostera areas mapped during Baseline Surveys to date at La Perouse.24

Table 13: P. australis seagrass (including Posidonia, Posidonia / Halophila, Posidonia / Zostera and PosidoniaMixed beds) areas and Halophila / Zostera areas mapped during Baseline Surveys at Kurnell to date. 27

1. Introduction

1.1 Project background

Transport for New South Wales (TfNSW) is proposing to reinstate the ferry wharves at La Perouse and Kurnell in Botany Bay (the Project). The Project was classified State Significant Infrastructure (SSI) under the NSW Planning Framework and is a controlled action under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) (EPBC Act referral 2020/8825).

The Project would allow for an alternative to the road connection between La Perouse and Kurnell. Its main purpose would be to operate a public ferry service for visitors and the community. In addition, the Project would provide supplementary temporary moorings for tourism-related commercial vessels and recreational boating.

A Marine Biodiversity Assessment Report was prepared as part of the Environmental Impact Statement (EIS) (TfNSW 2021a). This report identified that the Project would result in impact to seagrasses, including the endangered *Posidonia australis* ecological community and population in Botany Bay, listed under the *Fisheries Management Act* 1994 (FM Act). Impacts on seagrasses will include some direct losses of seagrass within the permanent Construction Footprint and associated temporary 15 metre buffer (Buffer Area) from shading, along with disturbances during construction works and ongoing operation of the wharves and ferries (TfNSW 2021a). In addition, a large and significant bed of *P. australis* seagrass located adjacent to and beyond the Project Boundary at Kurnell is considered of ecological significance to the population in Botany Bay and an important conservation requirement of the Project.

The Project Boundary for the Baseline Surveys encompasses the Construction Footprints and Buffer Areas at Kurnell and La Perouse, as well as a broader area including the known seagrass areal extents in proximity to the Project works. The Baseline Surveys have been completed within this Project Boundary.

Investigations of seagrass in or nearby the Project Boundary at La Perouse and Kurnell have found seagrass bed areal extent and morphology (i.e. shoot density, leaf length) to be highly temporally and spatially variable, especially off Silver Beach at Kurnell. In some places, areal extent was wider than previously mapped (Larkum and West 1990, Otway and Macbeth 1999, NSW DPI 2021). At both La Perouse and Kurnell, several vessel moorings within or adjacent to the Project Boundaries are likely to be having, and may have ongoing, impacts on seagrass areal extent in these areas. At Kurnell in particular, exposure to large easterly swells is considered a major driver of temporal changes in seagrasses within the Project Boundary and expansion of the adjacent large *P. australis* bed to the east (Niche 2022b). The *Zostera* and *Halophila* species of seagrass are typically much more widely distributed within the Project Boundary. These species colonise new areas much earlier and more quickly than *P. australis* and undergo much greater temporal fluctuations in areal extent, density and dominance, which is typically driven by environmental conditions and establishment from the seed bank within the locality (Waycott et al 2014).

1.2 Project description

The Project includes the construction of two new wharves, one at La Perouse and one at Kurnell. The wharves would be designed to accommodate ferries up to 40 metres in length, along with recreational and commercial vessels up to 20 metres in length.

The total construction period is anticipated to take up to 13 months and will require the following:

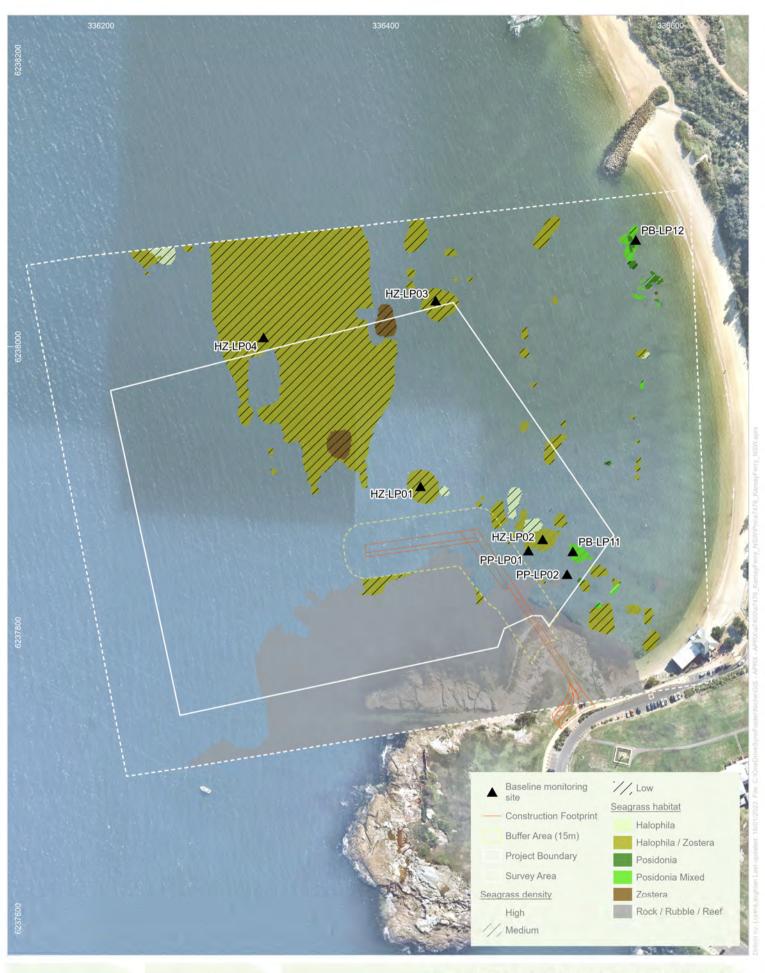
• Use of a temporary crane and rig platform (onshore) to install nearshore piles and piers at La Perouse.

- Construction of a causeway to provide piling shoot access to install nearshore piles and piers at Kurnell.
- Repositioning and anchoring of a jack-up barge to provide a platform for construction works for the wharves.

1.3 Monitoring purpose

The EIS (TfNSW 2021a) has identified the need for establishment of a Seagrass Monitoring Program that includes Baseline Surveys and is designed to determine construction and operation impacts associated with the Project.

The pre-construction monitoring requires four Baseline Surveys and two years of data collection to obtain a sufficient baseline dataset. It is required to determine baseline areal extent and condition of seagrasses both within and adjacent to the Project Boundary to guide final offset requirements and provide a foundation by which any changes in the adjacent large *P. australis* bed following construction can be detected. The purpose of the Seagrass Monitoring Program is to identify any large-scale changes in seagrass composition and areal extent within the Project Boundary and monitor for any changes in the adjacent large bed of *P. australis* at Kurnell during construction and operation that may be attributable to the Project.


To date, this Seagrass Monitoring Program has successfully completed the four Baseline Surveys over two years, as required by the EIS, to establish a sufficient baseline to determine construction and operation impacts. This report presents the findings of the fourth baseline monitoring survey (referred to as Baseline 4) completed in summer 2022/23 (section 4). The report also details temporal trends or changes that have occurred across the seagrass beds throughout the baseline monitoring period (complete baseline dataset) (section 5).

1.4 Baseline monitoring to date

This report details the methods and findings of the Baseline 4 survey completed in December 2022 (summer 2022/23). The Baseline 1 survey was completed in winter 2021 (Niche 2021a), Baseline 2 in summer 2022 (Niche 2022a) and Baseline 3 in winter 2022 (Niche 2022b), Table 1.

Survey	Season	Survey date	Period	Reference
Baseline 1	Winter 2021	July – September 2021	Pre-construction	Niche (2021a)
Baseline 2	Summer 2022	February – April 2022	Pre-construction	Niche (2022a)
Baseline 3	Winter 2022	August – September 2022	Pre-construction	Niche (2022b)
Baseline 4	Summer 2022/23	December 2022	Pre-construction	Current report

Table 1: Baseline monitoring surveys completed to date

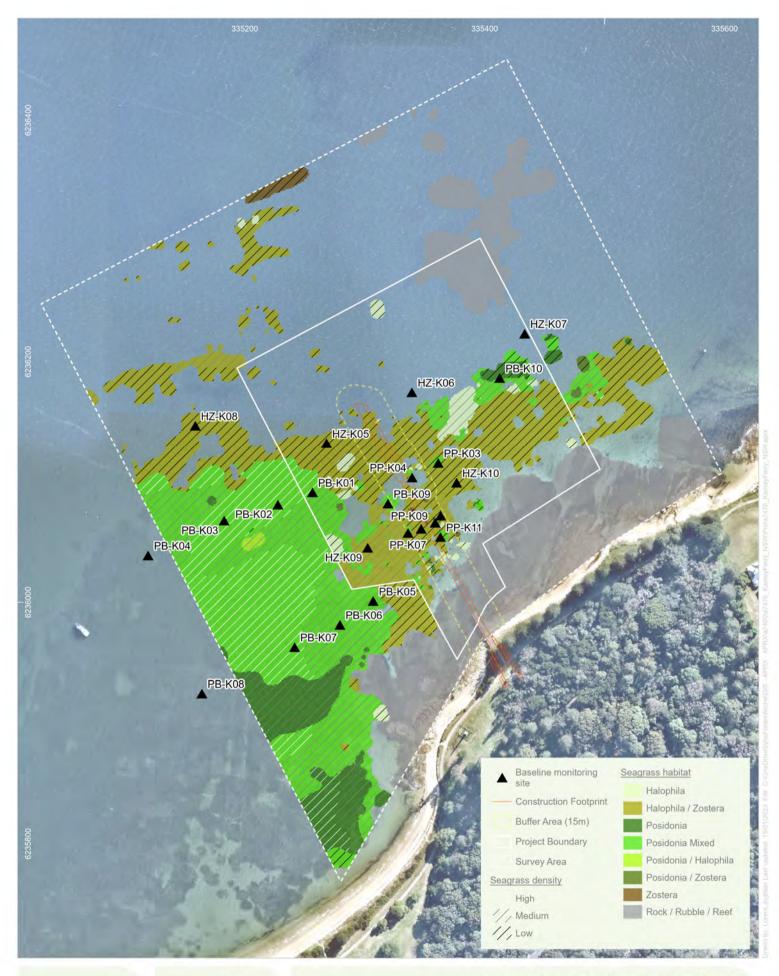
Survey sites and habitat mapping: La Perouse Baseline 4 (summer 2022/23) Kamay Ferry seagrass monitoring

Figure 1

Terrain: Multi-Directional Hillshade: Airbus, USGS, NGA, NASA, CGIAR, NCEAS, NLS, OS, NMA, Geodatastyrelsen, GSA, GSI and the GIS User Community | Watercourses, Waterbodies, Road and Rail alignments, Protected areas of NSW © Spatial Services 2021. | Niche uses GDA2020 as standard for all project-related data. In order to ensure that data from numerous sources and coordinate systems is aligned, on-the-fly transformation to WGS1984 Web Mercator Auxilliary Sphere is used in the map above. For ease of reference, the grid tick marks and labels shown around the border of the map are presented in GDA2020, using the relevant MGA zone.

Niche PM: Luke Stone

Client: Transport for NSW


Niche Proj. #: 7476

50

m

WGS 1984 Web Mercator

Environment and Heritage

Survey sites and habitat mapping: Kurnell Baseline 4 (summer 2022/23) Kamay Ferry seagrass monitoring

Figure 2

Terrain: Multi-Directional Hillshade: Airbus, USGS, NGA, NASA, CGIAR, NCEAS, NLS, OS, NMA, Geodatastyrelsen, GSA, GSI and the GIS User Community | Watercourses, Waterbodies, Road and Rail alignments, Protected areas of NSW @ Spatial Services 2021. | Niche uses GDA2020 as standard for all project-related data. In order to ensure that data from numerous sources and coordinate systems is aligned, on-the-fly transformation to WGS1984 Web Mercator Auxilliary Sphere is used in the map above. For ease of reference, the grid tick marks and labels shown around the border of the map are presented in GDA2020, using the relevant MGA zone.

Niche PM: Luke Stone

Client: Transport for NSW

Niche Proj. #: 7476

50

m

WGS 1984 Web Mercator

Environment and Heritage

2. Review of existing information

2.1 Past and present development in the locality

A public ferry service operated between the previous ferry wharves (located within the current Project Boundary) at La Perouse and Kurnell intermittently for 75 years until the wharves were damaged in 1974 by a heavy storm.

At both La Perouse and Kurnell, several vessel moorings located within or adjacent to the Project Boundaries are likely to be having, and may have ongoing, impacts on seagrass areal extent in these areas. A large seawall has been established at Frenchmans Beach immediately north of the Project Boundary at La Perouse, with wave refraction from this structure contributing to extensive shoreline erosion in 2022 (Niche 2022a).

There has also been a significant level of landscape modification in the wider locality of Botany Bay and across its catchment since European settlement. In recent times, major development projects within Botany Bay and along its shoreline include the:

- Port Botany Expansion project.
- Kurnell Ports and Berthing Facility, Prince Charles Parade, Kurnell and Botany Bay.
- Kurnell Desalination Plant and Associated Infrastructure.

The Port Botany Expansion project EIS (URS 2003) identified the following categories of human activities and potential effects relating to aquatic habitats and ecosystems within Botany Bay:

- Modification of aquatic habitats including port and airport developments, establishment of groyne fields at Lady Robinsons Beach and Silver Beach, stream realignment of waterways entering the Bay, dredging to facilitate navigation and fill material extraction as well as the widespread establishment of hard surfaces along intertidal and subtidal areas.
- Shipping activities and operations, including the potential for spillages, ballast water exchange, and the introduction of exotic species on ship hulls.
- Water quality and sediment contamination from industrial activities, resultant from catchment-wide activities as well as specific industrial contamination within the Bay.
- Fishing activities, both indirectly through habitat modification to support fishing activities and directly by removing individuals across a wide range of species.
- Introduction of exotic species associated with commercial shipping including toxic dinoflagellates, as well as *Caulerpa taxifolia* (an aquatic pest species under Schedule 1 of the *Biosecurity Regulation* 2017) for which the origin or source of introduction is unknown.

These human activities and developments have resulted in modifications to aquatic habitats ecosystems within Botany Bay.

Towra Point Aquatic Reserve is a marine protected area. The reserve is situated on the southern shores of Botany Bay, approximately 4 kilometres from the Project Boundary at Kurnell. The Towra Point Aquatic Reserve encompasses the majority of seagrass, mangroves and saltmarshes within Botany Bay (URS 2003). Previous capital works construction programs have altered erosion patterns at Towra Point, leading to the loss of seagrass beds. The key driver of change has been identified as dredging within the entrance to Botany Bay leading to increasing wave energy, height and direction at Towra Point (The Ecology Lab 2003).

Seagrass within Botany Bay

The aquatic ecological assessment undertaken by The Ecology Lab (2003) as part of the Port Botany Expansion project EIS presents a comprehensive summary of previous studies of seagrass within Botany Bay. The Ecology Lab (2003) identified four species of seagrass as being reported from Botany Bay, including *P. australis* along the southern shoreline, *Zostera capricorni* and *Halophila ovalis* along both the northern and southern shores, as well as *Halophila decipiens* occurring in Quibray Bay. The study compared the results of several studies completed between 1942 and 1995, finding fluctuations in the total area of seagrass beds in Botany Bay through time, including changes in the areal extent of individual seagrass beds throughout the bay. Key drivers of these changes in areal extent were identified as residential and industrial development, realignment of the Cooks River, and dredging to facilitate ship passage to and from the Caltex Oil Refinery terminal wharf altering wave patterns (The Ecology Lab 2003).

2.2 Seagrass areal extent and EIS findings

Chapter 10 of the Project EIS (TfNSW 2021a) described the seagrass community within the EIS study area prior to the commencement of this Seagrass Monitoring Program.

La Perouse

Seagrass areal extent within the La Perouse study area was described as patchy, with *Halophila* spp. being the main species. *Halophila* spp. was found throughout most of the soft sediment, particularly in the deeper areas. *Z. capricorni* was mainly confined to the southern corner along Frenchmans Bay and was intermixed with *Halophila* spp. Some small, isolated patches of *P. australis* were identified amongst the other seagrass species in the shallower areas closer to the shore.

Seasonal fluctuations in the density of *Halophila* spp. within Frenchmans Bay were observed between the two EIS seagrass surveys completed in autumn and spring 2020.

Kurnell

Seagrass areal extent was widespread throughout the study area at Kurnell, typically occurring in water depths of between one and five metres, with *P. australis, Z. capricorni* and *Halophila* spp. all identified within the study area. *Z. capricorni* and *Halophila* spp. were found in the deeper areas towards the east of the study area, with *Z. capricorni* also abundant in shallower waters close to the shoreline.

P. australis was typically confined to a large dense bed on the western side of the proposed wharf footprint in shallow water, with smaller isolated patches amongst other seagrasses in the shallow waters close to the shoreline to the east.

Seasonal fluctuations in the density of *Halophila* spp. were also observed at Kurnell between the EIS seagrass surveys completed in autumn and spring 2020 and attributed to storm damage occurring in winter 2020. A review of aerial imagery found that that the seagrass condition, areal extent and extent near Kurnell frequently changes due to storm events, as well as due to more regular seasonal fluctuations.

2.3 Baseline monitoring summary to date

Three Baseline Surveys were completed prior to Baseline 4. These were Baseline 1, completed in winter 2021 (Niche 2021a), Baseline 2 in summer 2022 (Niche 2022a) and Baseline 3 in winter 2022 (Niche 2022b).

Significant weather events during the baseline monitoring period in 2022

Above average rainfall conditions occurred throughout autumn and into winter 2022, with a significant weather event, including above average rainfall and a large easterly swell, occurring in July 2022, impacting upon Baseline 3 (Niche 2022b). This followed above average rainfall over summer and a large easterly swell

in early March (Niche 2022a). Rainfall associated with these events resulted in major flood levels in the Georges River and Cooks River that lowered salinities, increased turbidity levels and reduced light availability due to high sediment loads, for extended periods. The large and powerful easterly swells associated with these weather events also resulted in significant coastal erosion, further increasing sedimentation and reducing water quality, and directly impacting on some areas. This, at times, has included direct disturbance to more exposed areas to the east around Kurnell. At La Perouse, although very protected, refraction of waves back into Frenchmans Bay has also resulted in significant seabed and shoreline disturbances (Niche 2022b). At Kurnell in particular, exposure to large easterly swells is considered a major driver of temporal changes in seagrasses within the Project Boundary and the adjacent large *P. australis* bed to the east. The results collected for Baseline 2 and Baseline 3 therefore need to be interpreted with consideration to the significant weather conditions experienced throughout 2022, which have been more broadly attributed to the prevailing La Niña weather pattern.

Seagrass areal extent and density

Overall seagrass areal extent and density declined between Baseline 1 and Baseline 3 (Niche 2022b). These declines amounted to a reduction of greater than 50% during that period of time and was in most part due to the declining areal extent of *Halophila* and/or *Zostera* seagrass beds. Where *Halophila* and/or *Zostera* seagrass beds persisted in Baseline 3, the seagrass density also substantially declined to coverages of less than 1% at the majority of the monitoring sites. In Botany Bay, these *Zostera* and *Halophila* beds are known to be highly variable in areal extent, species composition and density (Larkum and West 1990). The significant weather events described above have coincided with known seasonal decreases in biomass of *Zostera* during the winter months (West 2000). Although less documented, seasonal fluctuations in *Halophila* in Botany Bay (Cummings Pers. Obs) is also likely responsible for much of these large reductions in seagrass areal extent and cover detected during Baseline 3.

Declines in *P. australis* areal extent were also described, but of a much lesser magnitude, and in most part were confined to Kurnell (Niche 2022b). The lesser impact of these weather events on *P. australis* areal extent is likely reflective of the deeper and much greater biomass of rhizomes of this species, which likely provide greater resilience to such disturbances. Although *P. australis* areal extent changes were considered relatively minimal in Baseline 3, a strong trend of reduced biomass was evident, with fewer shoot densities and reduced leaf lengths at the majority of sites. This is likely reflective of the poor environmental conditions for growth as a result of water quality disturbances such as reduced available light (Larkum 1976) and physical disturbances from sedimentation and seabed disturbance during and/or after these weather events.

Seagrass areal extent and biomass within the Project Boundary substantially decreased between Baseline 1 and Baseline 3, with the majority of this reduction associated with *Halophila* and *Zostera* beds. Changes in *P. australis* areal extent are much lesser and more variable, although a reduction in biomass does appear to be more evident. These changes are likely the result of seasonal reductions in biomass and weather-event-related disturbances.

3. Methods

3.1 Overview

The Seagrass Monitoring Program has been developed to align with the requirements identified within the Marine Biodiversity Offset Strategy (TfNSW 2021b). The program includes four survey approaches:

- Seagrass mapping: Seagrass areal extent mapping of seagrass composition and density within the Survey Area;
- Drop camera surveys: Collection of photo quadrats from within *Halophila* and *Zostera* seagrass beds for quantitative analysis of seagrass composition and density;
- Posidonia bed monitoring: Diver-based quadrat surveys of seagrass morphology (composition, biomass and condition) in *P. australis* beds (typically >100 m²); and
- Posidonia patch monitoring: Seagrass morphology surveys of smaller P. australis patches (typically <100 m²).

Specific monitoring sites are shown for La Perouse in Figure 1, and for Kurnell in Figure 2. A full list of site codes and GPS coordinates can be found in Appendix 1.

Four types/extents of survey area relative to the proposed construction works are defined within the overall area covered by the monitoring program (Figure 1 and Figure 2) to inform the assessment:

- Construction Footprint refers to the permanent construction footprint for the wharf structures and is the primary area of anticipated direct impacts to seagrass. Direct impacts occurring within the Construction Footprint are likely to be permanent, due to the nature of the structures.
- Buffer Area refers to the temporary construction footprint comprising a 15 m buffer around the Construction Footprint. Direct impacts to seagrass may occur within this area during construction, however no permanent structures will remain post-construction. Ongoing indirect impacts such as vessel wash and shading from vessels may also occur within this area.
- Project Boundary refers to the Project area as delineated by TfNSW.
- Survey Area refers to the area of survey for the current assessment, incorporating subtidal areas of seagrass habitat within 50-100 metres of the Project Boundary and including the Construction Footprint and Buffer Area.

3.2 Survey frequency and timing

Surveys are undertaken twice per year (biannually) with consideration of winter and summer seasons – this being the fourth baseline survey. The Baseline Surveys, including previous surveys associated with the EIS completed to date, are summarised in Table 2.

Survey	Season	Survey dates	Reference		
EIS survey surveys					
EIS survey	Winter 2020	June 2020	(Niche 2020a)		
EIS survey	Winter 2020	August – September 2020	(Niche 2020b)		
EIS survey	Summer 2020	December 2020	(Niche 2021b)		
Pre-construction Baselin	Pre-construction Baseline Surveys				
Baseline 1	Winter 2021	July – September 2021	Niche (2021a)		
Baseline 2	Summer 2022	February – April 2022	Niche (2022a)		
Baseline 3	Winter 2022	July – August 2022	Niche (2022b)		

Table 2: Baseline Surveys and previous EIS surveys

Survey	Season	Survey dates	Reference
Baseline 4	Summer 2022/23	December 2022	Current report

The Baseline 4 survey was completed throughout the month of December 2022 (summer 2022/23). Dates for each survey method undertaken are listed in Table 3.

Methodology	Survey date Kurnell	Survey date La Perouse
Seagrass mapping	01/12/22 - 13/12/22	01/12/22 - 13/12/22
Drop camera surveys	21/12/22	21/12/22
Posidonia Bed Monitoring	06/12/22 - 09/12/22	07/12/22
Posidonia Patch Monitoring	06/12/22 - 09/12/22	07/12/22

3.3 Baseline master dataset

Since collection of Baseline 4 field data, all data associated with the program has been consolidated into a master dataset and subject to additional quality assurance prior to statistical analysis.

The master dataset has been provided as an additional electronic appendix to this report (Appendix 3) and forms the basis of all data summary and analysis presented within this report.

The master dataset should be considered the most accurate and up-to-date dataset to be used for future iterations of monitoring program planning, sampling and reporting.

3.4 Seagrass mapping

3.4.1 Objective

To determine a baseline measure of seagrass composition and areal extent within the Survey Area.

3.4.2 Survey areas

La Perouse

Subtidal areas of seagrass habitat within 50-100 metres of the Project Boundary (Figure 1).

Kurnell

Subtidal areas of seagrass habitat within 50-100 metres of the Project Boundary (Figure 2).

3.4.3 Methodology

Preliminary desktop works included review of the most recent Nearmap imagery (captured: 02/08/2022) and previously-prepared polygons of seagrass areal extent from previous surveys (Niche 2021a, Niche 2022a, Niche 2022b).

Previously-developed layers and associated Nearmap imagery were displayed in a GIS-based field collection device with GPS accuracy of approx. +/-3m. Verification of habitat was recorded on the device as point data using customised applications within the Field Maps Software package.

Visual observations to verify the seabed habitat were made using a combination of towed camera (Plate 1) transects through the Survey Area and spot observations using a bathoscope, drop camera or, in the cases of shallow areas and during periods of clear water, observation from the side of the boat. The towed camera was towed within 1 metre of the seabed and positioned so imagery was being provided from directly under the survey vessel where seagrass boundaries occurred or within ~2 metres of the stern of the

survey vessel when verifying larger uniform areas. The towed and drop cameras allowed for *in situ* field verification of mapping by providing video imagery live to the topside monitor on the survey vessel. The vessel sonar, which included CHIRP ClearVu and SideVu sonar that incorporates a thin, wide beam to provide clear images of structure and any larger seagrasses (with lengths of approximately 10 cm or greater) below the vessel, was also used to aid mapping and target seabed areas with structure, especially during periods of reduced water visibility.

Field verification survey effort within seagrass habitat inside the Survey Area consisted of collection of 3,311 points at La Perouse and Kurnell during the Baseline 4 survey, with no greater than 22.6 metres between two verification points.

Post-collection analysis of field verification points was undertaken using ArcGIS Pro software to construct an updated set of habitat polygons. The dataset depicting the areal extent and extent of seagrass and nonseagrass habitats was created from interpolated point observations collected on site. Each point was assigned a value for the habitat type (seagrass or non-seagrass) and seagrass habitats were assigned a density value (Low, Medium, High). Polygon data were interpolated by distance, with spatially-associated points forming distinct patches of habitat and density. The data were then cleaned to remove errors, and a manual verification and editing pass was conducted by the Niche GIS team to better align boundaries to those observed in recent, high-resolution Nearmap imagery. Finally, the data were verified for accuracy by the Ecology team and edited where required to depict more detailed field notes for small patches of *P. australis* habitat, especially within the Construction Footprint and associated Buffer Area.

3.4.4 Data analysis

The following calculations were made using GIS Software for La Perouse and Kurnell:

- Seagrass area within the Survey Area
- Seagrass area within the Project Boundary
- Seagrass area within the Construction Footprint
- Seagrass area within the 15-m Buffer Area around the Construction Footprint.

3.5 Drop camera surveys

3.5.1 Objective

To determine the baseline community composition and density of *Zostera*- and *Halophila*-dominated seagrass beds in the Project Boundary.

3.5.2 Survey area

Each baseline monitoring site comprised a circular area with a radius of 10 metres from a central point, amounting to a total area of 314 m².

La Perouse

Four drop camera monitoring sites were re-surveyed at La Perouse (Figure 1):

- Two (2) potential 'impact' sites (HZ-LP-01 & HZ-LP-02) within the Project Boundary, established during the Baseline 1 survey.
- Two (2) 'reference' sites (HZ-LP-03 & HZ-LP-04) outside the Project Boundary, established during the Baseline 1 survey.

Kurnell

Six drop camera monitoring sites were re-surveyed at Kurnell (Figure 2):

- Four (4) potential impact sites, two in deeper areas near the seaward end of the wharf (HZ-K-05 & HZ-K-06) and two nearer to the shore in shallower water (HZ-K-09 & HZ-K-10), established during the Baseline 1 survey.
- Two (2) reference sites (HZ-K-07 & HZ-K-08) outside the Project Boundary, established during the Baseline 1 survey.

3.5.3 Methodology

The centre point of each monitoring site was located using handheld GPS. Once located, a temporary float was positioned at the centre of the site. Each photo quadrat image was collected at a haphazardly-located position within 10 metres of the centre of the site.

Photoquadrats were collected using a drop camera custom designed for seagrass surveys (Plate 1) that can obtain a high-resolution image of a known area of the seabed. Care was taken each survey to avoid collecting photographs of the seabed that overlapped.

Photos that were of poor quality, taken when the frame was not stationary on the seabed, duplicates or identified to have overlapping imagery were removed from the dataset. A subset of 30 photos were was then randomly selected from the dataset and uploaded into Coral Point Count with Excel Extensions (CPCe) Software for analysis. Within the CPCe software a digital photoquadrat of each image was created to form an area of 0.25 m² (0.5 x 0.5 m) and 30 points were randomly overlaid on the image. Under each point a habitat category was assigned (Table 1).

Major category	Sub-categories
SEAGRASS (S)	Halophila, Zostera, Posidonia
ALGAE (A)	Macroalgae, Turfing Algae, Epiphytic Algae (when identified to be attached to the seagrass)
CORAL (C)	Hard Coral, Soft Coral
SUBSTRATE (SU)	Gravel & Shell, Rock & Rubble, Sand & Silt
OTHER BIOTA (OB)	Sessile Invertebrate
TAPE WAND SHADOW (TWS)	Tape, Wand (frame), Shadow (insufficient resolution), Macroalgae Wrack, Seagrass Wrack, Other Debris.

Table 4: Major and sub-categories used with the CPCe Software.

3.5.4 Data analysis

For each photoquadrat percent cover was calculated for each of the categories (except Tape, Wand and Shadow) and sub-categories (Plate 1), while Tape, Wand and Shadow were excluded from the percent cover calculations. Summaries for each site, including means and standard errors (SEs), were then calculated for:

- Seagrass cover by type;
- Sediment/silt cover;
- Turfing algae cover; and
- Epiphytic algae cover.

3.5.5 Statistical Analysis

Statistical analysis was performed using the PERMANOVA+ for Primer statistical software package (Anderson *et al.* 2008). PERMANOVA is a permutational approach to ANOVA that has a number of advantages over traditional statistical methods. The PERMANOVA procedure was used for both univariate (single variable) and multivariate (many variables) analyses. For univariate analyses parameters were

investigated using the Euclidean distance matrix, while the multivariate analyses were based on Bray-Curtis similarities. Pairwise comparisons were performed to further investigate any significant results identified in the PERMANOVA for factors/terms of interest. In the case where the number of unique permutations for a particular test was less than 100, Monte Carlo probability values were used to assess the significance of the test as outlined by Anderson *et al.* (2008). The significance level was set at p < 0.05 for all statistical tests.

For multivariate datasets such as the full set of percent cover data collected via CPCe here and then analysed using multivariate PERMANOVA, Principal Coordinates Analysis (PCoA) can be used to provide a graphical representation. The PCoA analysis itself provides a measure of the amount of variation in the data that can be captured by the first two axes. Vector overlays based on the Spearman's Correlation Coefficients are added to the graphical output base to display the strongest drivers of differences. The PCoA routine allows for the multivariate dataset to be visualised using metric multidimensional scaling. This approach is more appropriate than traditional uses of non-metric Multidimensional Scaling (nMDS) when PERMANOVA is applied, as it models the actual dissimilarities of interest that provide a direct projection of the points considered using PERMANOVA (Anderson *et al.* 2008).

Spatial and temporal patterns in differences among the of *Zostera*- and *Halophila*-dominated seagrass beds were investigated using a three-factor design (Table 5) in the first instance. The three-factor design allowed for and considered seasonal effects. Following three-factor analysis, the Season term was excluded and a simplified two-factor design (Table 5) applied when:

- The p values associated with terms involving the Season factor (i.e., both Se and Se x Si) were greater then 0.25, as suggested by Winer *et al.* (1991) and Underwood (1997) as a conservative approach to pooling interaction terms and/or discarding main effects terms.
- When plots of data (for univariate analyses) did not show any seasonal patterns.

Where the simplified two-factor design was applied, it allowed for focused investigation of differences among the sequence of Surveys irrespective of Season.

Statistical analyses focused on temporal changes and included:

- Univariate PERMANOVA for Total Seagrass Cover.
- Multivariate PERMANOVA and PCoA (full data set and centroids) using the subcategories (Table 4) that included any records across the four surveys. Note: As the Epiphytic Algae subcategory was collected with Turfing Algae in the Baseline 2 survey, these two sub-categories were combined for these analyses.

Table 5: Experimental design applied to statistical analyses of the drop camera data.

Term	Туре	Levels
THREE-FACTOR DESIGN		
Season - Se	Fixed	2 Seasons - Winter and Summer
Survey(Season) - Su(Se)	Nested/Random	2 Baseline surveys nested in each Season
Site - Si	Random	2 Sites at La Perouse, 6 Sites at Kurnell
Se x Si	Interaction Term	
Su(Se) x Si	Interaction term	
TWO-FACTOR DESIGN		
Survey - Su	Random	4 Baseline surveys
Site - Si	Random	2 Sites at La Perouse, 6 Sites at Kurnell

Term	Туре	Levels
Su x Si	Interaction Term	

3.6 Posidonia bed monitoring

3.6.1 Objective

To determine the baseline community composition, biomass (density and leaf lengths) and condition of *P. australis* seagrass beds (>100 m²) with potential to be impacted during construction and operation.

3.6.2 Survey area

Each monitoring site comprised a circular area with a radius of 5 metres from a central point, amounting to a total area of 79 m².

La Perouse

Two *P. australis* bed monitoring sites were re-surveyed at La Perouse (Figure 1):

- One (1) potential impact site (PB-LP11) within the Project Boundary, established during the Baseline 1 survey.
- One (1) reference site (PB-LP12) outside the Project Boundary, established during the Baseline 1 survey.

Kurnell

Ten *P. australis* bed monitoring sites were re-surveyed at Kurnell (Figure 2):

- Eight (8) potential impact sites within the large extensive bed of *P. australis* to the west of the Project Boundary (PB-K01 to PB-K08), established during the Baseline 1 survey. These sites are positioned to allow for a gradient-based approach to monitoring for impacts to the large bed of *P. australis* to the west of the Project Boundary. Sites are located along two longshore transects (one near shore and one offshore) at a range of distances from the Construction Footprint (to represent approximate intervals of 75 m, 100 m, 150 m and 230 m).
- Two (2) additional potential impact sites within much smaller beds of *P. australis* inside the Project Boundary (PB-K09 and PB-K10), established during the Baseline 1 survey.
- Reference sites will be determined at the completion of the baseline monitoring. It is envisaged they will be selected from monitoring sites in the main western bed outside the Project Boundary (e.g., PB-K03, -K04, -K07 and -K08). There is also potential to include the most easterly site in the Project Boundary as a reference site, where impact from the proposal is considered unlikely.

3.6.3 Methodology

The centre point of each monitoring site was located using handheld GPS. Once located a temporary float was positioned at the centre of the site. Seagrass was surveyed via five 0.25 m² ($0.5 \times 0.5 m$) quadrats, each haphazardly positioned within 5 metres of the centre of the site.

Within each quadrat the following data were recorded by experienced Scientific Divers:

- Shoot Density (counted from the sheath) for each seagrass species present (Note: *Halophila* also counted as shoots).
- Proportion (%) of shoots with visible sheaths for 10 randomly selected *P. australis* shoots.
- Visible Sheath Length for 10 randomly-selected *P. australis* shoots.
- Epiphyte Load (scored 1-5, see Appendix 2) for 10 randomly-selected leaves for each seagrass species present.

In addition to the above measurements a photograph was taken above each quadrat for archiving purposes.

3.6.4 Data analysis

Data calculations and summaries included means and SEs for the following:

- Shoot (*Posidonia*) count per 0.25 m².
- Leaf length (cm).
- Epiphyte load score.

In the cases of the Baseline 1 and 2 surveys, many seagrass sheaths for *P. australis* shoots were found to be covered by sediment and sheath measurements could not be obtained. For the purposes of the program it was deemed more appropriate to present sheath data as percent of shoots with visible sheaths rather than as measurements of sheath length. As such, sheath length is no longer recorded.

3.6.5 Statistical Analysis

Statistical analysis was performed using the PERMANOVA+ for Primer statistical software package (see Section 3.4.5).

Spatial and temporal patterns in differences among the *Posidonia* seagrass bed monitoring sites were investigated using a three-factor design (Table 6) in the first instance. The three-factor design allowed for and considered seasonal effects. Following the three-factor analysis, the Season term was excluded, and a simplified two-factor design (Table 6) applied when:

- The p values associated with terms involving the Season factor (i.e., both Se and Se x Si) were greater then 0.25, as suggested by Winer *et al.* (1991) and Underwood (1997) as a conservative approach to pooling interaction terms and/or discarding main effects terms.
- When plots of data (for univariate analyses) did not show any seasonal patterns.

Where the simplified two-factor design was applied, it allowed for focused investigation of differences among the sequence of Surveys irrespective of Season.

For analyses where the two-factor design could not be adopted (i.e., p < 0.25 for one or both of the terms involving Season), where appropriate the sums of squares and degrees of freedom for the lower interaction term (i.e., Su(Se) x Si) were pooled with those of the Residual term (i.e., where the p value for Su(Se) x Si was greater than 0.25 – Winer *et al.* 1991, Underwood 1997).

Statistical analyses focused on temporal changes and included:

- Univariate PERMANOVA for *Posidonia* shoots.
- Univariate PERMANOVA for Posidonia leaf length.
- Univariate PERMANOVA for *Posidonia* epiphyte ranking.
- Multivariate PERMANOVA and PCoA (full data set and centroids) for shoots of all three seagrass types (*Posidonia, Zostera* and *Halophila*).

For *Posidonia* Bed monitoring sites positioned along both the Inner and Outer Transects, regression analyses were also performed using the Excel Data Analysis Toolpack Add-on to investigate any linear relationships between response variables (seagrass parameters) and distance from the Construction FootprintOuter Transect. Regression analysis was done by Survey and for all Surveys combined, where a linear relationship between distance and a response variable (e.g. shoot density, leaf length) of interest was identified in the charts.

Table 6: Experimental Design applied to statistical analyses of data from the Posidonia beds.

Term	Туре	Levels
THREE-FACTOR DESIGN		
Season - Se	Fixed	2 Seasons - Winter and Summer
Survey(Season) - Su(Se)	Nested/Random	2 Baseline surveys nested in each Season
Site - Si	Random	2 Sites at La Perouse, 10 Sites at Kurnell
Se x Si	Interaction Term	
Su(Se) x Si	Interaction Term	
TWO-FACTOR DESIGN		
Survey - Su	Random	4 Baseline surveys
Site - Si	Random	2 Sites at La Perouse, 10 Sites at Kurnell
Su x Si	Interaction Term	

3.7 Posidonia patch monitoring

3.7.1 Objective

To determine the baseline community composition, biomass (shoot density and leaf lengths) and condition of *P. australis* seagrass patches (<100 m²) in close proximity to the Construction Footprint.

3.7.2 Survey area

Patches (<100 m²) of *P. australis* seagrass that met the following criteria were surveyed:

- Inside or within 15 m of the Construction Footprint.
- Shoot density of at least five shoots per 1 m².
- Has an extent of at least 10 m² and minimum width of 2 m.

La Perouse

Two *P. australis* patches were re-surveyed at La Perouse, established during the Baseline 1 survey (Figure 1):

- PP-LP-01: Approximately 10 m east of the 15 m buffer.
- PP-LP-02: Approximately 15 m east of the 15 m buffer.

Kurnell

Six *P. australis* patches were re-surveyed at Kurnell, established during the Baseline 1 survey. (Figure 2):

- PP-K-03: Approximately 15 m east of the 15 m buffer.
- PP-K-04: Inside the Construction Footprint and 15 m buffer.
- PP-K-07: Approximately 3 m west of the 15 m buffer.
- PP-K-08: On the western edge of the 15 m buffer.
- PP-K-09: On the eastern edge of the 15 m buffer.
- PP-K-11: On the eastern edge of the 15 m buffer (note that this site has a *Zostera* patch in the middle that is not sampled).

3.7.3 Methodology

The centre point of each monitoring site was located using handheld GPS. Once located a temporary float was positioned at the centre of the site. Seagrass was haphazardly surveyed via up to five 0.25 m² (0.5×0.5 metre) quadrats, each haphazardly positioned within 5 metres of the centre of the site.

Within each quadrat the following data were recorded by experienced Scientific Divers:

- Shoot density (counted from the sheath) for each seagrass species present (Note: *Halophila* counted as shoots).
- Leaf length of 10 randomly-selected leaves for both *Zostera* and *P. australis*.
- Percent of shoots with visible sheaths for 10 randomly-selected *P. australis* shoots.
- Epiphyte load (scored 1-5, see Appendix 2) for 10 randomly-selected leaves for each seagrass species present.

In addition to the above measurements a photograph was taken above each quadrat for archiving purposes.

3.7.4 Data analysis

Data calculations and summaries included means and standard errors for the following:

- Shoot (Shoot Posidonia) count per 0.25 m²
- Leaf length (cm)
- Percent of shoots with visible sheaths
- Epiphyte load score.

3.7.5 Statistical Analysis

Statistical analysis was performed using the PERMANOVA+ for Primer statistical software package (see Section 3.4.5)

Temporal patterns in differences within the *Posidonia* seagrass patches were investigated for each patch separately using a two-factor design (Table 7) in the first instance. The two-factor design allowed for and considered seasonal effects. Following two-factor analysis, the Season term was excluded and a simplified one-factor design (Table 7) was used when:

- The p value associated with Season was greater than 0.25, as suggested by Winer *et al* (1991) and Underwood (1997) as a conservative approach to pooling interaction terms and/or discarding main effects terms.
- When plots of data (for univariate analyses) did not show any seasonal patterns.

Where the simplified one-factor design was applied, it allowed for focused investigation of differences among the sequence of Surveys irrespective of Season.

Statistical tests were limited to temporal changes in *Posidonia* shoot counts at each patch, which required a univariate PERMANOVA.

Table 7: Experimental Design applied to statistical analyses of data from the Posidonia patches

Term	Туре	Levels
TWO-FACTOR DESIGN		
Season - Se	Fixed	2 Seasons - Winter and Summer
Survey(Season) - Su(Se)	Nested/Random	2 Baseline surveys nested in each Season

Term	Туре	Levels
ONE-FACTOR DESIGN		
Survey	Random	4 Baseline surveys

3.8 Limitations

The monitoring program has been identified as subject to the following limitations:

- Seagrass mapping is subject to the accuracy of the GPS-enabled equipment utilised during the surveys (up to ± 5 metres) and dependent on the limitations of aerial photo rectification and registration, which is also limited to the resolution and clarity of the most recent imagery available.
- The significant weather events and associated rainfall in 2022 presented a limitation to the program. The effect of these significant weather events was most acute during the Baseline 2 and Baseline 3 surveys and had the following implications:
 - Disrupting the ability to sample on consecutive days and under similar conditions within the survey. This resulted in some survey methods being completed at different times across the survey due to the limited survey windows within climatic seasons (Table 2).
 - During Baseline 2, the seagrass mapping was completed prior to the drop camera surveys, resulting in some apparently contradictory results, such as mapped seagrass no longer being present or highly diminished (due to the significant weather events) at the time of the drop camera surveys (Niche 2022a).
 - Seagrass mapping at La Perouse during Baseline 2 was also impacted by adverse weather, resulting in the delayed collection of some data following the frequent weather events. Seagrass areal extents mapped during these two separate survey days are likely to have been different because of the high rainfall events and storms that occurred between those two days (Niche 2022a).
- Depth of Disturbance (DoD) rods were established at each of the *Posidonia* bed monitoring sites during Baseline 1 (Niche 2021a). Following significant weather events in summer 2021, 80% of the DoD rods were missing or disturbed at the time of Baseline 2 (Niche 2022a). Given the flooding events that occurred in the locality and lack of reliability in the data, the methodology was considered unlikely to be suitable for this program and discontinued (Niche 2022a).
- Seagrass area calculations presented in this report are based upon the GDA2020 MGA56 coordinate system. Therefore, there may be minor discrepancies between areas presented in this report and those in Baseline 1 and 2 (Niche 2022a, 2022b), which are based upon the GDA94 MGA56 coordinate system. The area calculations presented in this report and included in the master dataset (Appendix 3) should be considered to be the most accurate and up to date results.

The methods of data collection and analysis are considered to be comprehensive to the aims of the baseline monitoring program and the program is not subject to any significant limitations.

4. Results – Baseline 4 (summer 2022/23)

4.1 Seagrass areal extent

During the Baseline 4 monitoring surveys completed in summer 2022/23, a combined total of 30,880 m² of seagrasses was mapped within the Project Boundaries at La Perouse and Kurnell (Table 8, Figure 1, Figure 2). This total included 740 m² of seagrasses within Kurnell Construction Footprint (no seagrass was present within the La Perouse Construction Footprint) and an additional 3,137 m² within the two Buffer Areas combined. Outside of the Project Boundaries, an additional 48,130 m² of seagrass was mapped within the broader Survey Area at Kurnell, and 11,386 m² of seagrass at La Perouse.

At Kurnell, 740 m² of seagrass was mapped within the Construction Footprint, with 3086 m² of seagrass occurring within the Buffer Area. At La Perouse, no seagrass was recorded within the Construction Footprint, with only 51 m² of seagrass mapped within the Buffer Area.

The majority of seagrass mapped within the Project Boundaries at La Perouse and Kurnell combined was comprised of *Halophila* beds and *Zostera / Halophila* beds (Table 8, Figure 1, Figure 2). Sand or silt were the dominant habitats mapped within the Project Boundaries.

Table 8: Areal extent of seagrass types mapped at Kurnell and La Perouse during Baseline 4 (summer 2022/23) within the Survey Area, Project Boundary, Construction Footprint (area of direct impacts) and associated Buffer area (area of indirect impacts).

Area	Baseline 4 (summer 2022/23)				
Aled	Kurnell (m²)	La Perouse (m ²)	Total (m ²)		
Survey Area					
Posidonia	6743	165	6908		
Posidonia / Halophila	192	0	192		
Posidonia / Zostera	176	0	176		
Posidonia Mixed	28264	246	28511		
Zostera	538	117	655		
Zostera / Halophila	11992	10684	22676		
Halophila	224	174	398		
Rock / Rubble / Reef	22789	12238	35027		
Sand or silt	64923	64636	129560		
Project Boundary					
Posidonia	456	9	464		
Posidonia / Halophila	0	0	0		
Posidonia / Zostera	30	0	30		
Posidonia Mixed	3492	151	3643		
Zostera	26	462	488		
Zostera / Halophila	12151	8294	20445		
Halophila	1618	316	1934		
Rock / Rubble / Reef	6337	9489	15826		
Sand or silt	22199	42810	65009		

A	Baseline 4 (summer 2022/23)				
Area	Kurnell (m²)	La Perouse (m ²)	Total (m²)		
Buffer Area - temporary construction footprint (15 m buffer)					
Posidonia	42	0	42		
Posidonia / Halophila	0	0	0		
Posidonia / Zostera	0	0	0		
Posidonia Mixed	209	0	209		
Zostera	72	0	72		
Zostera / Halophila	2595	51	2645		
Halophila	168	0	168		
Rock / Rubble / Reef	1667	1626	3293		
Sand or silt	2421	3762	6184		
Construction Footprint - permanent					
Posidonia	0	0	0		
Posidonia / Halophila	0	0	0		
Posidonia / Zostera	0	0	0		
Posidonia Mixed	7	0	7		
Zostera	19	0	19		
Zostera / Halophila	677	0	677		
Halophila	37	0	37		
Rock / Rubble / Reef	229	518	747		
Sand or silt	374	1035	1409		

Further data are provided in section 5.1 and Appendix 4.

4.2 Zostera and Halophila seagrasses

The key results for seagrass cover of *Zostera*- and *Halophila*-dominated beds in the Baseline 4 survey (summer 2022/23) are summarised below, with further data provided in Appendix 5:

- At Kurnell at least one species of seagrass was detected at eight of the ten *Zostera-* and *Halophila-* dominated beds, with no seagrass detected at sites HZ-K06 and HZ-K07 (Figure 3).
- At La Perouse there appeared to be no clear difference in overall seagrass cover between monitoring sites inside (HZ-LP01 and HZ-LP02) and those outside the Project Boundary (HZ-LP03 and HZ-LP04) (Figure 3).
- No P. australis seagrass was detected at any of the monitoring sites for both locations.
- Zostera and Halophila cover was very low at La Perouse (0.2% 0.7%). Where present, Zostera and Halophila cover at Kurnell was higher, ranging between 4.4% and 25.5%).
- The monitoring sites for *Zostera* and *Halophila*-dominated beds closer to shore at Kurnell (HZ-K09 and HZ-K10) recorded higher seagrass cover than the sites further from the shore (Figure 3). These beds closer to the shore feature relatively greater covers of *Zostera* than the other beds, with *Zostera* cover particularly high at HZ-K10.

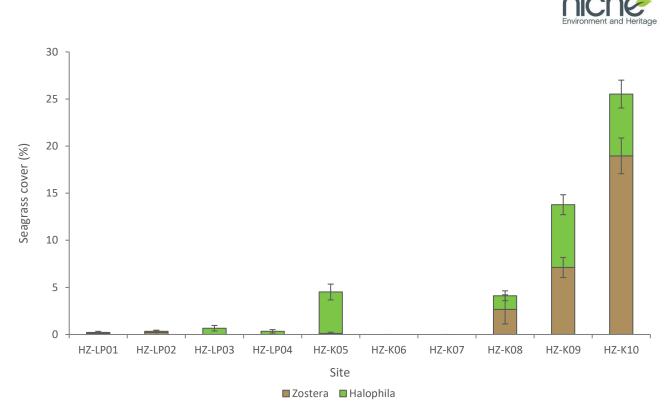


Figure 3: Baseline 4 (summer 2022/23) – mean Halophila and Zostera seagrasses cover (+/- SE total seagrass cover).

The results for sediment cover, turfing algae and epiphytic algae during Baseline 4 are presented in Table 9. The key findings include:

- At La Perouse, sediment cover was high in Baseline 4, ranging between 62.1% 97.6% cover. Sediment cover at Kurnell was also generally high, ranging between 46.4% - 98.9% cover.
- Turfing algae was absent at almost all sites, with the exception being HZ-K-05 at Kurnell, where it was present in minor amounts.
- Epiphytic algae was recorded at two of the four sites at La Perouse (HZ-LP-02 and HZ-LP-03). In contrast, epiphytic algae was recorded at all monitoring sites at Kurnell.

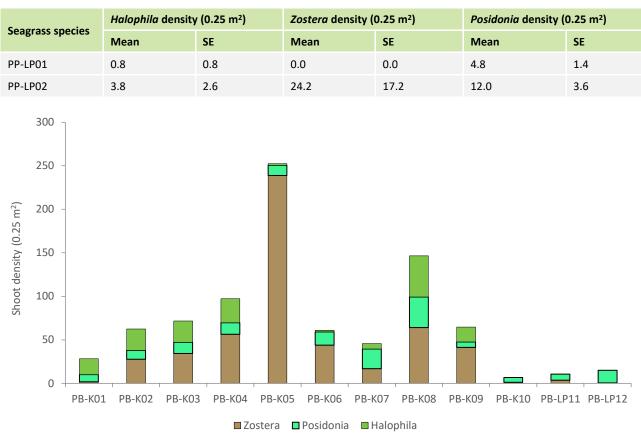
Site	Epiphytic algae (E	Epiphytic algae (EA) (%)		Turfing algae (TA) (%)		Sediment (SS) (%)	
Site	Mean Standard error		Mean	Standard error	Mean	Standard error	
HZ-LP-01	0.0	0.0	0.0	0.0	82.3	3.8	
HZ-LP-02	2.6	1.0	0.0	0.0	62.1	5.2	
HZ-LP-03	0.1	0.1	0.0	0.0	94.3	1.2	
HZ-LP-04	0.0	0.0	0.0	0.0	97.6	0.8	
HZ-K-05	13.9	2.4	0.1	0.1	81.5	3.2	
HZ-K-06	1.1	0.6	0.0	0.0	98.9	0.6	
HZ-K-07	1.2	0.5	0.0	0.0	98.7	0.5	
HZ-K-08	7.0	2.5	0.0	0.0	88.9	3.7	
HZ-K-09	26.8	2.5	0.0	0.0	59.4	2.9	
HZ-K-10	28.1	2.6	0.0	0.0	46.4	3.7	

Table 9: Mean covers of sediment, turfing algae and epiphytic algae at each site during Baseline 4 (summer2022/23).

4.3 Posidonia seagrass

4.3.1 Shoot density

The key results from the shoot density surveys at *Posidonia* bed monitoring sites (PB-) and *Posidonia* patch monitoring sites (PP-) in Baseline 4 (summer 2022/23) (Table 10, Figure 4) are summarised below:


- All three species of seagrass were detected at the majority of monitoring beds and patches.
 - *P. australis* was present at all monitoring beds and patches.
 - *Zostera* was present at almost all monitoring beds and patches, with the exception being patch PP-LP01.
 - *Halophila* was absent at monitoring beds PB-K10, PB-LP11 and PB-LP12.
- Average *P. australis* shoot density in *Posidonia* beds at La Perouse and Kurnell ranged between 4.5 shoots per 0.25 m² (PP-LP01) and 35.2 shoots per 0.25 m² (PB-K08).
 - The highest *P. australis* densities were recorded at monitoring sites towards the centre of the main *Posidonia* bed at Kurnell (southwest of the Project Boundary), with the smaller *Posidonia* beds within the Project Boundary and to the east recording relatively lower densities.
 - At La Perouse the monitoring site within the Project Boundary (PB-LP-11) had a lower *P. australis* shoot density (7.0 shoots per 0.25 m²) than the reference site (PB-LP12) (14.6 shoots per 0.25 m²).
 - No *Halophila* seagrass was recorded at either of the La Perouse monitoring beds during this survey.

Further data are provided in sections 5.3 and 5.4, and Appendix 5.

Seagrass species	Halophila density (0.25 m ²)		Zostera density (0.25 m ²)		Posidonia density (0.25 m ²)			
Seagrass species	Mean SE		Mean	SE	Mean	SE		
Posidonia beds								
РВ-К01	18.2	5.7	1.8	1.2	8.2	1.4		
РВ-К02	24.6	7.8	27.6	24.7	10.2	1.8		
РВ-КОЗ	24.4	7.1	34.2	12.0	13.0	2.3		
РВ-КО4	27.6	8.2	56.4	23.4	13.2	1.7		
РВ-К05	1.8	1.1	238.8	33.2	11.8	1.0		
РВ-КО6	1.8	0.9	43.8	13.9	15.4	1.6		
РВ-К07	6.2	3.3	16.8	11.6	22.6	2.8		
РВ-КО8	47.4	28.4	64.0	36.5	35.2	6.3		
РВ-КО9	17.0	8.9	41.2	24.1	6.4	0.9		
РВ-К10	0.0	0.0	1.2	1.2	5.4	2.0		
PB-LP11	0.0	0.0	3.6	3.1	7.0	0.6		
PB-LP12	0.0	0.0	0.4	0.4	14.6	1.4		
Posidonia patches								
РР-КОЗ	5.0	2.4	121.6	14.2	8.2	0.9		
РР-КО4	2.8	2.1	27.4	11.1	10.6	1.1		
РР-КО7	3.2	1.8	134.4	18.7	8.0	0.9		
РР-К08	9.0	6.8	97.4	17.0	6.0	0.5		
РР-К09	8.0	4.6	117.3	15.4	10.3	2.9		
PP-K11	0.2	0.2	180.2	54.5	9.8	2.2		

Table 10: Average shoot density recorded at Posidonia bed monitoring sites and patches during Baseline 4.

Figure 4: Mean shoot density of seagrass within the *Posidonia* bed monitoring sites in Baseline 4.

4.3.2 Leaf lengths

The key results for leaf lengths in *Posidonia* bed monitoring sites and patches in the Baseline 4 survey (Table 11) are summarised below:

- Average leaf lengths for *P. australis* were somewhat variable across monitoring sites at Kurnell, ranging between 11.7 cm (PB-K03) and 38.6 cm (PB-K09). Those monitoring beds with lowest average leaf lengths (PB-K03, PB-K04) occur towards the outer edges of the main seagrass bed located to the west of the Construction footprint (Figure 2), while those within this main bed recorded relatively higher average leaf lengths (PB-K05, PB-K06, PB-K07, PB-K08).
- Average leaf lengths for *P. australis* at La Perouse were more consistent, ranging between 29.2 cm (PP-LP01) and 38.6 cm (PB-LP11).
- The average leaf lengths recorded for *Zostera* across both locations ranged between 3.3 (PP-K11) and 30.6 (PB-K03).

Table 11: Mean values for leaf length measurements, visible seagrass sheaths (*P. australis* only) and epiphyte cover scores during Baseline 4 (summer 2022/2023).

Average	Leaf length (cm)		Epiphytic cover score			Sheath visible (%)	
Species	Zostera	Posidonia	Halophila	Zostera	Posidonia	Posidonia	
Posidonia beds							
РВ-К01	5.3	25.3	2.4	1.0	3.1	0.0	
РВ-К02	8.7	33.6	2.0	1.8	3.3	4.0	
РВ-К03	30.6	11.7	2.8	1.4	4.5	0.0	
РВ-К04	29.1	16.9	2.1	1.8	3.0	0.0	
РВ-К05	5.5	38.4	1.6	1.3	2.8	2.0	

Average	Leaf length (cm)		Epiphytic cover score			Sheath visible (%)	
Species	Zostera	Posidonia	Halophila	Zostera	Posidonia	Posidonia	
РВ-К06	9.2	31.3	2.0	2.3	3.5	42.0	
РВ-К07	10.5	30.5	2.7	2.3	2.9	52.0	
PB-K08	10.4	30.8	1.4	1.2	2.5	20.0	
РВ-К09	15.2	38.6	3.1	2.3	3.4	36.2	
PB-K10	4.2	27.0	-	1.0	2.3	0.0	
PB-LP11	4.4	38.6	-	1.9	3.1	0.0	
PB-LP12	4.6	34.6	-	2.0	3.3	-	
Posidonia patches							
РР-КОЗ	7.9	32.6	1.8	1.9	2.9	28.1	
РР-К04	9.1	25.8	2.1	1.8	3.1	14.0	
РР-К07	8.4	28.1	2.1	2.1	3.0	45.0	
РР-К08	8.2	23.5	2.4	2.1	2.7	69.5	
РР-К09	10.6	38.4	2.1	1.9	2.8	-	
PP-K11	3.3	30.5	1.0	1.2	2.0	2.5	
PP-LP01	-	31.0	2.2	-	3.0	0.0	
PP-LP02	5.2	29.2	2.0	1.8	3.5	100.0	

Further data are provided in sections 5.3 and 5.4, and Appendix 5.

4.3.3 Seagrass sheaths

The average percentage of visible sheaths was found to be highly variable across the sites in Baseline 4 (Table 11). For *Posidonia* beds, PB-K07 recorded the highest average percentage of visible sheaths at 52.0%. A number of *Posidonia* beds recorded no visible sheaths (PB-K01, PB-K03, PB-K04, PB-K10, PB-LP11). Average percentage of visible sheaths was also found to be highly variable across *Posidonia* patches. The highest average percentage of visible sheaths among these monitoring patches was 100.0% (PP-LP02) and the lowest was 0.0% (PP-LP01).

4.3.4 Epiphyte cover

The epiphyte cover results for Baseline 4 (Table 11) show that epiphytic growth was typically higher on *P. australis* shoots than on *Halophila* or *Zostera*. The epiphyte cover scores across the *Posidonia* bed and patch monitoring sites ranged between 2.0 (PB-K11) and 4.5 (PB-K03) for *P. australis*. For *Zostera*, the range was between 1.0 (PB-K01 and PB-K10) and 2.3 (PB-K06, PB-K07, PB-K09), while the range for *Halophila* seagrass was between 1.0 (PP-K11) and 3.1 (PB-K09).

5. Results – Temporal trends (Baseline 1 to Baseline 4)

5.1 Seagrass areal extent

5.1.1 La Perouse

The combined total mapped areal extent of all seagrass beds with *P. australis* present '*Posidonia / Posidonia mixed*' (including *Posidonia, Posidonia / Halophila, Posidonia / Zostera* and *Posidonia* mixed beds) at La Perouse for each of the four Baseline Surveys are presented in Table 12, with areal extents for the remaining seagrass categories combined presented as '*Halophila / Zostera*'. Time series comparisons across the baseline monitoring period are presented in Figure 5, with mapped seagrass areal extents presented in Figure 6.

The key results of *P. australis* mapping at La Perouse include the following:

- No *P. australis* has been identified within the Construction Footprint or Buffer Area at La Perouse (Table 12).
- Within the Project Boundary at La Perouse, an overall decline in the area of *P. australis* has occurred between Baseline 1 and Baseline 4, despite a relative increase in Baseline 4 when compared to the Baseline 2 and Baseline 3 surveys (Figure 5).
- Similar trends among surveys appear to have occurred within the Survey Area and within the Project Boundary in the cases of *P. australis* seagrass areas and *Halophila / Zostera* areas (Figure 5).

 Table 12: P. australis seagrass (including Posidonia, Posidonia / Halophila, Posidonia / Zostera and Posidonia Mixed beds) areas and Halophila / Zostera areas mapped during Baseline Surveys to date at La Perouse.

Seagrass area (m²)	Baseline 1	Baseline 2	Baseline 3	Baseline 4	
Buffer Area					
Halophila / Zostera	3526	2505	78	51	
Posidonia / Posidonia mixed	0	0	0	0	
Construction Footprint					
Halophila / Zostera	991	673	0	0	
Posidonia / Posidonia mixed	0	0	0	0	
Project Boundary					
Halophila / Zostera	27235	24921	9502	9072	
Posidonia / Posidonia mixed	170	135	137	159	
Survey Area					
Halophila / Zostera	29480	22359	10241	10975	
Posidonia / Posidonia mixed	550	431	254	411	

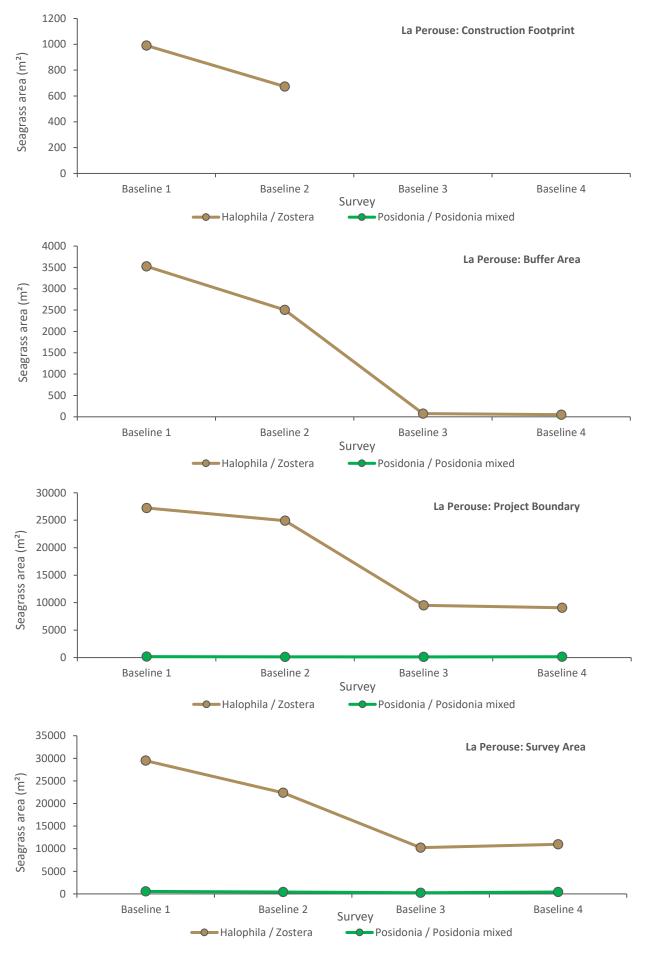
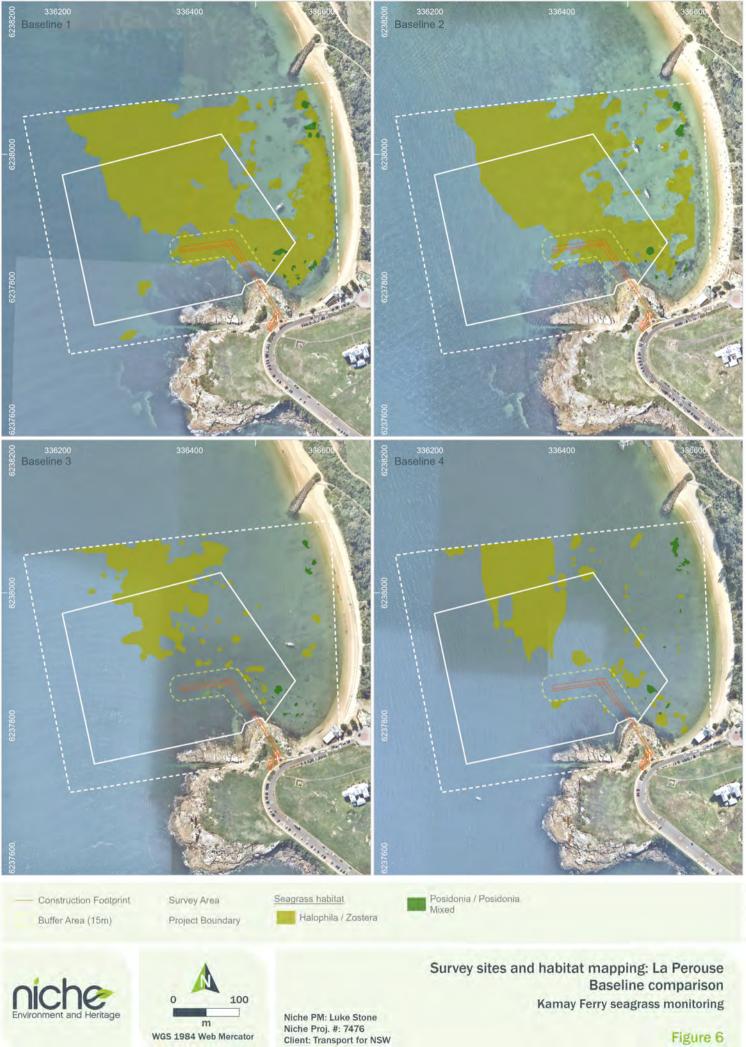



Figure 5: Posidonia / Posidonia Mixed and Halophila / Zostera areas over all Baseline Surveys at La Perouse

Terrain: Multi-Directional Hillshade: Airbus, USGS, NGA, NASA, CGIAR, NCEAS, NLS, OS, NMA, Geodatastyreisen, GSA, GSI and the GIS User Community | Watercourses, Waterbodies, Road and Rail alignments, Protected areas of NSW @ Spatial Services 2021. | Niche uses GDA2020 as standard for all project-related data. In order to ensure that data from numerous sources and coordinate systems is aligned, on-the-fly transformation to WGS1984 Web Mercator Auxilliary Sphere is used in the map above. For ease of reference, the grid tick marks and labels shown around the border of the map are presented in GDA2020, using the relevant MGA zone.

5.1.2 Kurnell

The combined total mapped areal extent of all seagrass beds with *P. australis* present '*Posidonia / Posidonia mixed*' (including *Posidonia, Posidonia / Halophila, Posidonia / Zostera* and *Posidonia* mixed beds) at Kurnell for each of the four Baseline Surveys are presented in Table 13, with areal extents for the remaining seagrass categories combined presented as '*Halophila / Zostera*'. Time series comparisons across the baseline monitoring period are presented in Figure 7, with mapped seagrass areal extents presented in Figure 8.

The key results of *P. australis* mapping at Kurnell include the following:

- In Baseline 4, a total 258 m² of *P. australis* seagrass was mapped within the Construction Footprint and Buffer Area combined (Table 12, Figure 6), with a total of 7 m² within the Construction Footprint alone.
- There has been an overall decline in the mapped areal extent of *P. australis* within the Construction Footprint during the Baseline Surveys (Figure 7). In contrast, there has been an overall increase in area of *P. australis* within the Buffer Area since Baseline 2. An overall decrease in *P. australis* areal extent has also been detected within the Project Boundary from Baseline 1 to Baseline 4, despite a relative increase between Baseline 1 and Baseline 2.
- In the Survey Area there has been a relatively minor overall increase in *P. australis* seagrass area across the surveys, despite a spike detected in Baseline 2 and subsequent decrease in Baseline 3.
- Similar trends of declining *Halophila / Zostera* areas occurred in the Survey Area and within the Project Boundary, with this decline most acute between Baseline 2 and Baseline 3 (Figure 7). However, a more acute decline in areas of *Halophila / Zostera* appears to have continued from Baseline 3 to Baseline 4 in the Survey Area compared to within the Project Boundary.

Table 13: P. australis seagrass (including Posidonia, Posidonia / Halophila, Posidonia / Zostera and Posidonia Mixed beds) areas and Halophila / Zostera areas mapped during Baseline Surveys at Kurnell to date.

Seagrass area (m ²)	Baseline 1	Baseline 2	Baseline 3	Baseline 4		
Buffer Area						
Halophila / Zostera	3975	4365	3597	2835		
Posidonia / Posidonia mixed	228	220	263	251		
Construction Footprint						
Halophila / Zostera	975	1027	818	733		
Posidonia / Posidonia mixed	20	14	5	7		
Project Boundary						
Halophila / Zostera	24363	21491	13852	13795		
Posidonia / Posidonia mixed	4231	4876	4362	3978		
Survey Area						
Halophila / Zostera	37417	35959	22957	12754		
Posidonia / Posidonia mixed	34825	36995	34841	35376		

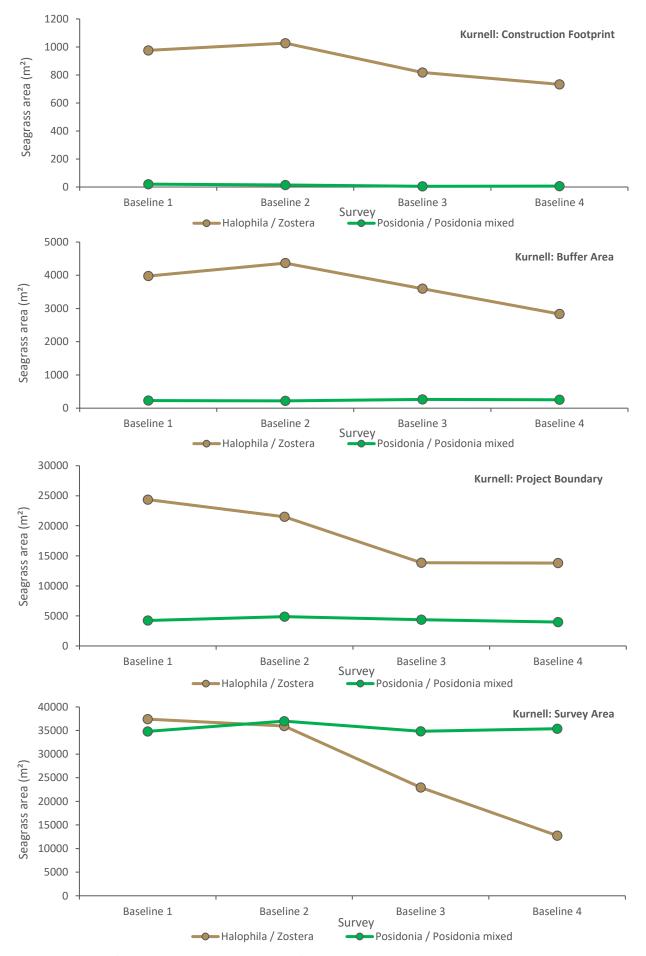


Figure 7: Posidonia / Posidonia Mixed and Halophila / Zostera areas over all Baseline Surveys at Kurnell

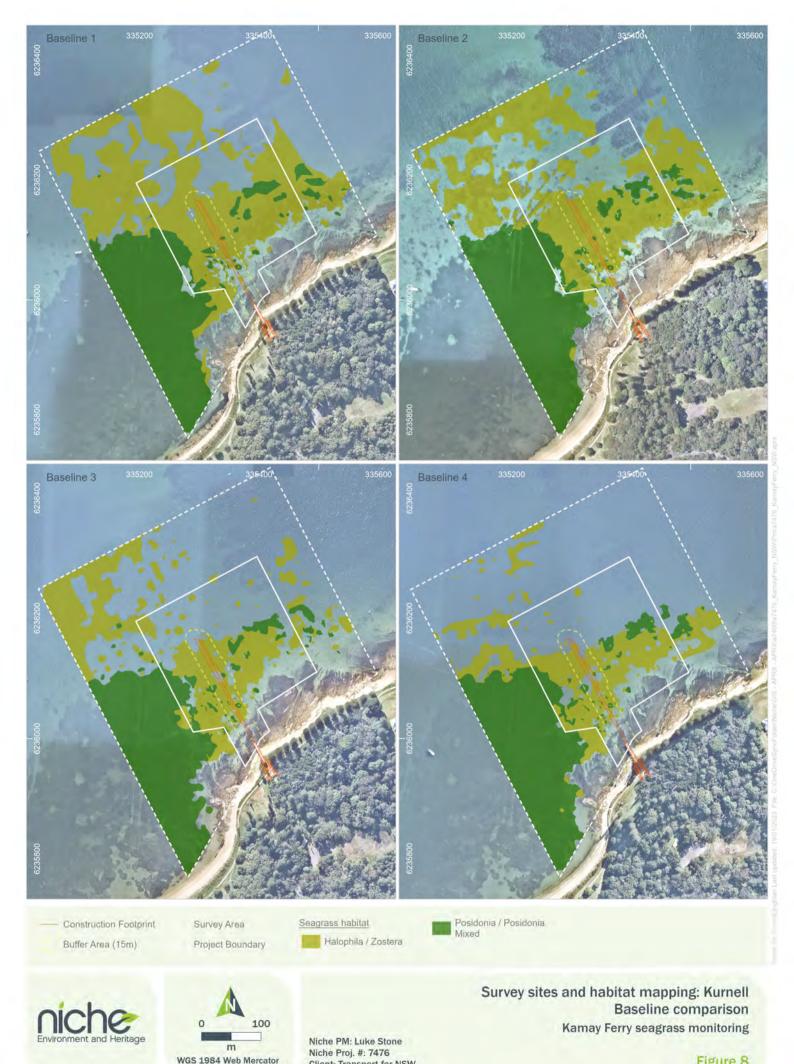


Figure 8

Terrain: Multi-Directional Hillshade: Airbus, USGS, NGA, NASA, CGIAR, NCEAS, NLS, OS, NMA, Geodatastyrelsen, GSA, GSI and the GIS User Community | Watercourses, Waterbodies, Road and Rail alignments, Protected areas of NSW @ Spatial Services 2021. | Niche uses GDA2020 as standard for all project-related data. In order to ensure that data from numerous sources and coordinate systems is aligned, on-the-fly transformation to WGS1984 Web Mercator Auxiliary Sphere is used in the map above. For ease of reference, the grid tick marks and labels shown around the border of the map are presented in GDA2020, using the relevant MGA zone.

Client: Transport for NSW

5.2 Zostera and Halophila seagrass beds

5.2.1 La Perouse

At La Perouse drop camera monitoring sites there has been a large decrease in *Zostera* and *Halophila* seagrass cover, from between 14% and 24% cover in Baseline 1 down to 7% or less in Baseline 4 (Figure 9). The two-factor univariate PERMANOVA found a significant interaction term (df=9, f=4.75, p=0.0001, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and among sites were dependent on survey. The Pairwise Tests confirmed that significant differences among surveys were between Baseline 1 and all other surveys across all sites, while there were some further significant differences among surveys from Baseline 2 to Baseline 4 for some (e.g., LP04), but not all sites (Appendix 6). That is, *Zostera* and *Halophila* seagrass cover decreased similarly and significantly from Baseline 1 to Baseline 2 for all sites (Figure 9). Those decreases were then sustained from Baseline 2 through to Baseline 4, although some sites exhibited further significant decreases during that time, albeit to a lesser extent than the Baseline 1 to 2 decreases (e.g., LP04).

Another notable observed difference was that *Zostera* and *Halophila* seagrass cover was found to be greater at the sites outside the Project Boundary (HZ-LP03 and HZ-LP04) than those within the Project Boundary (HZ-LP01 and HZ-LP02) during the first two Baseline surveys (Figure 9). This was supported by the general pattern of statistically significant differences detected between pairs of sites during the first two surveys for seagrass cover, as indicated by the paired tests (Appendix 6).

Analysis of the full set of percent cover data via three-factor multivariate PERMANOVA also found a significant interaction term (df=6, f=15.70, p=0.0001, Appendix 6), indicating patterns of differences between surveys (within season) were dependent on site, and among sites were dependent on survey. The PCoA graph shows that while there is some limited overlap of the clusters of data points for Baseline 1 (green) and Baseline 2 (blue), there is clearly a degree of separation overall (Figure 10). In contrast, there is almost no overlap of clustering between Baseline 1 and Baselines 3 (aqua) or 4 (red), which substantially overlap each other. The length and direction of the radiating *Halophila* line matches the direction of disparity of the Baseline 1 cluster, indicating that the difference is primarily being driven by temporal differences in the presence of *Halophila*.

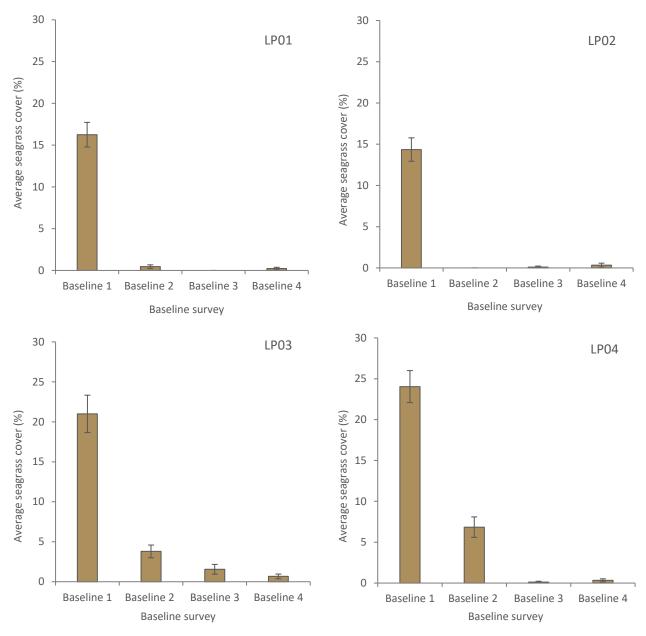


Figure 9: Mean seagrass cover within the *Zostera* and *Halophila* dominated bed sites across the Baseline Surveys at La Perouse.

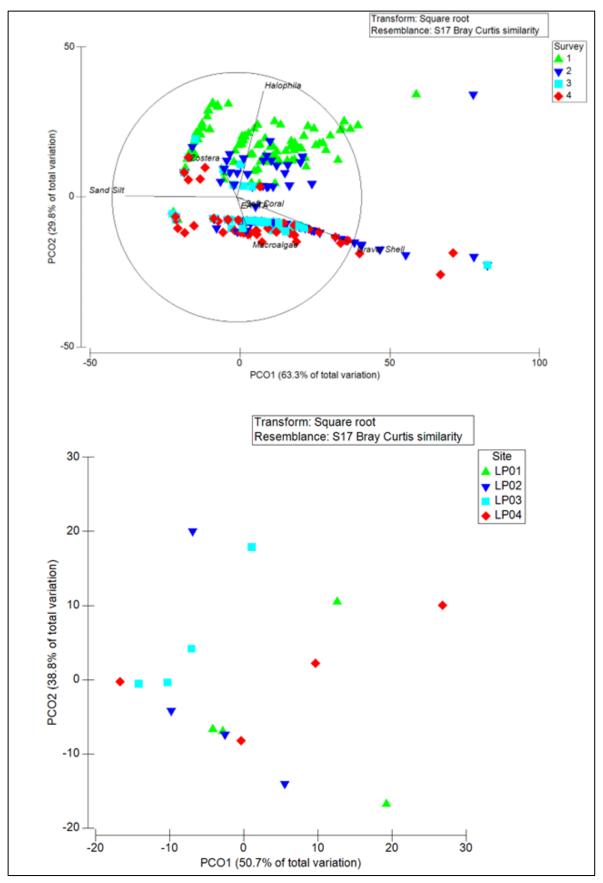


Figure 10: PCoA Graphs for La Perouse. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by site.

5.2.2 Kurnell

At Kurnell drop camera monitoring sites the *Zostera* and *Halophila* seagrass cover has been much more variable. At the sites further from shore (HZ-K05 to HZ-K08) cover has remained less than 5%, while two sites close to shore (HZ-K09 and HZ-K10) have displayed much greater change, ranging from cover above 40% to less than 5%. In general, there appears to have been a common pattern of decline in cover between Baseline 1 and 3, then a trend of increase to the most recent survey (Figure 11). As was the case for La Perouse, the statistical analysis detected a significant interaction term (df=15, f=39.85, p=0.0001, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and among sites were dependent on survey. The Pairwise Tests confirmed that these differences were typically between Baseline 3 and other surveys, with the exception of HZ-K06 where no significant differences between surveys were detected (Appendix 6).

In general, seagrass cover was found to be greater at the shallower sites closer to shore (HZ-K09 and HZ-K10) than those further from shore (Figure 11). Statistically significant differences were also detected among sites for seagrass cover and the full set of percent cover data in the cases of each of the four surveys (Appendix 6).

Analysis of the full set of percent cover data via three-factor multivariate PERMANOVA resulted in a similar finding (df=10, f=28.895, p=0.0001, Appendix 6), with patterns of differences among surveys dependent on site, and among sites dependent on survey. The PCoA graph indicates that the most recent survey (Baseline 4) was much more variable than earlier surveys, with both *Zostera* and *Halophila* having a strong negative relationship with the X Axis (Figure 12).

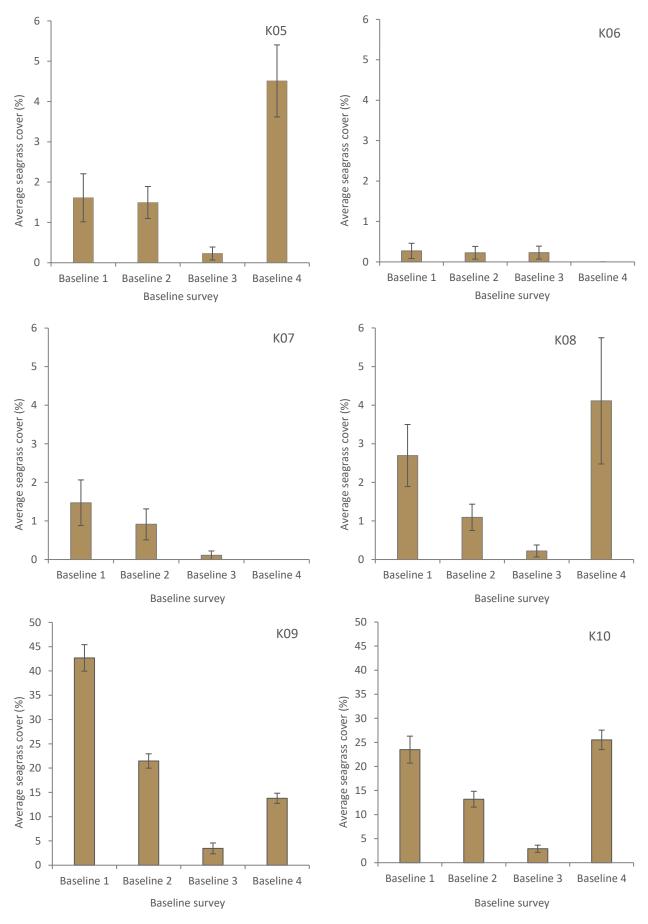


Figure 11: Mean seagrass cover within the *Zostera* and *Halophila* dominated bed sites across the Baseline Survey at Kurnell.

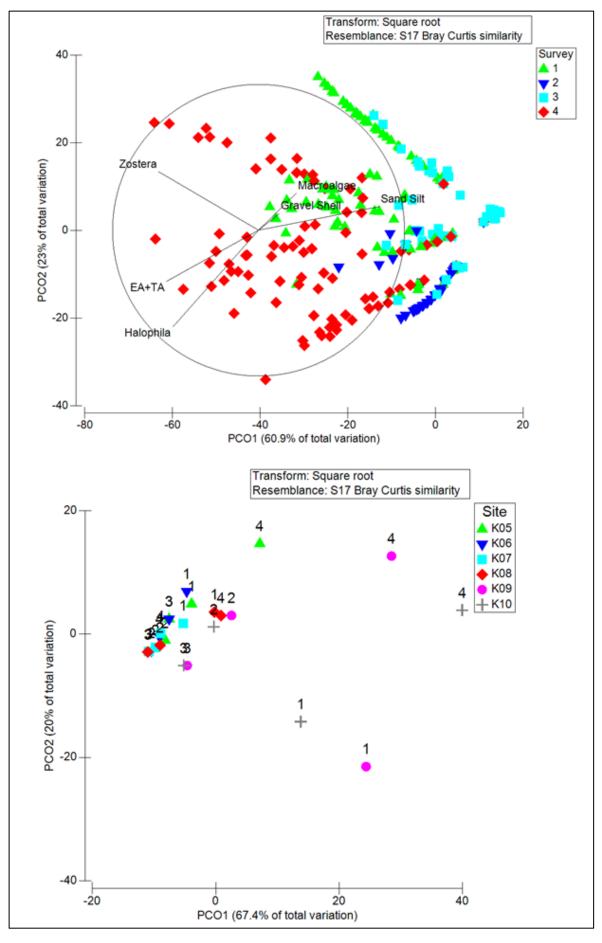


Figure 12: PCoA Graphs for Kurnell. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by site.

5.3 Posidonia bed monitoring

5.3.1 La Perouse

Posidonia Shoots

Posidonia shoot density within the *Posidonia* Bed monitoring sites at La Perouse was generally higher for the first two Baseline Surveys than later surveys, and at site PB-LP12 than at PB-LP11 (Figure 13). The statistical analysis detected significant differences for the Survey (df=3, f=41.48, p=0.0092) and Site (df=1, f=24.35, p=0.0257) main effects terms, indicating differences across the four surveys irrespective of site, and differences between the two sites irrespective of survey (Appendix 6). Subsequent Pairwise Tests determined that the significant temporal difference detected was driven by a general decrease in shoot density from Baseline 1 in comparison with Baseline 4 at both sites (i.e., B1=B2>B3>B4, Appendix 6).

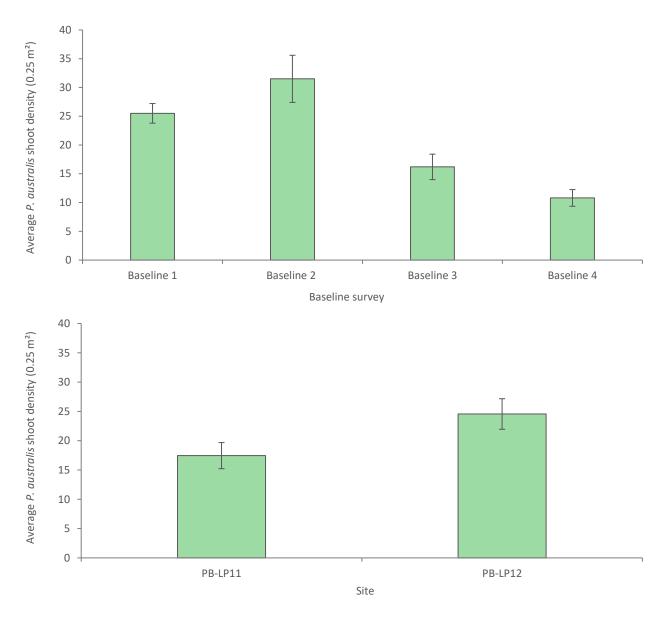


Figure 13: Mean shoot density of *Posidonia* shoots at the La Perouse *Posidonia* bed monitoring sites. Top: Between surveys. Bottom: Between sites.

Posidonia Leaf Length

At La Perouse, leaf lengths at PB-LP11 notably decreased from the first two Baseline surveys (which were generally similar) to the last two Baseline Surveys (also generally similar), while leaf lengths at PB-LP12 were generally more variable across the four surveys (Figure 14). The statistical analysis detected a significant interaction (df=3, f=7.73, p=0.0005, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and between sites were dependent on survey. The Pairwise Tests showed that at PB-LP11 leaf lengths were significantly different among all surveys, while at PB-LP12 leaf lengths were significantly shorter for the Baseline 3 survey than for all other surveys (Appendix 6).

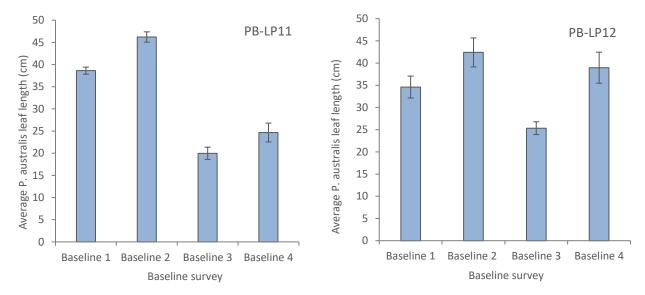


Figure 14: Mean leaf length of Posidonia at the La Perouse Posidonia bed monitoring sites.

Posidonia epiphytes

At La Perouse, epiphyte load scores indicated moderate to high epiphyte cover across all Baseline Surveys (Figure 15), with scores at PB-LP12 higher and more variable for winter surveys (Baseline 1 and 3) than for summer surveys (Baseline 2 and 4) (Figure 16). The three-factor PERMANOVA detected a significant interaction for Season x Site (df=1, f=27.44, p= 0.0002, Appendix 6), indicating that patterns of differences between seasons were dependent on site, and between sites were dependent on seasons, while a significant difference between Surveys (within Seasons) was also detected (df=2, f=6.57, p=0.0038, Appendix 6). The Pairwise Tests did not detect any significant differences between Seasons for either Site, only between Sites within the Winter Season but not Summer (Appendix 6). Pairwise tests also detected a significant difference between the two Winter Surveys irrespective of Site, but not for the Summer Surveys.

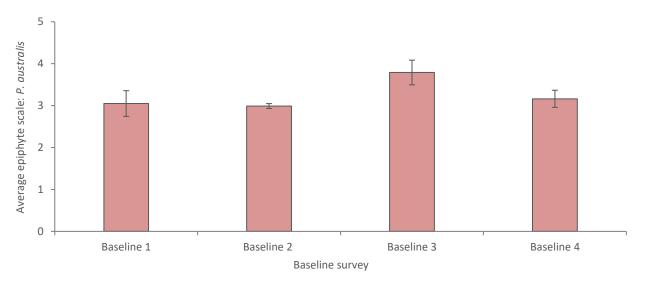


Figure 15: Mean epiphyte load scores of *Posidonia* at the La Perouse *Posidonia* bed monitoring sites between surveys.

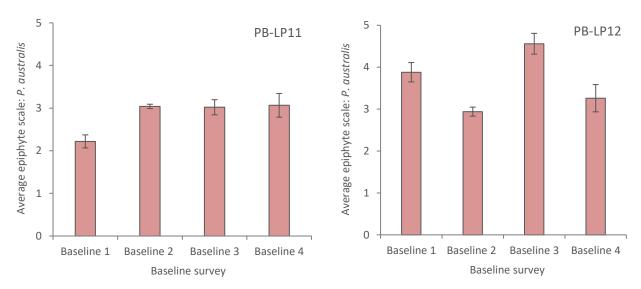


Figure 16: Mean epiphyte load scores of Posidonia at the La Perouse Posidonia bed monitoring sites.

Posidonia Bed composition

The *Posidonia* beds at La Perouse consisted primarily of *Posidonia*, with the level of presence of *Zostera* and *Halophila* amongst the *Posidonia* being much more variable (Figure 6, Appendix 4). Multivariate analysis of the data detected a significant interaction (df=3, f=5.19, p=0.0007, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and between sites were dependent on survey. Pairwise Tests indicated that bed composition at PL-LP11 significantly differed among most surveys, with the exception being Baseline 3 and Baseline 4 surveys, which did not significantly differ from each other (Appendix 6). In contrast, bed composition at PB-LP12 was found to be significantly different only for the Baseline 4 vs Baseline 1 and Baseline 4 vs Baseline 2 comparisons. Significant differences between sites were also detected for Surveys 1, 3 and 4 (Appendix 6).

The PCoA graph indicates that lower *Zostera* and *Halophila* shoot counts in Baseline 3 and Baseline 4 were a major driver of differences in seagrass bed composition within the La Perouse *Posidonia* Bed monitoring sites. Differences in seagrass composition between sites is illustrated by the PCoA of the Centroid data, which shows PB-LP11 to be much more variable (Figure 17).

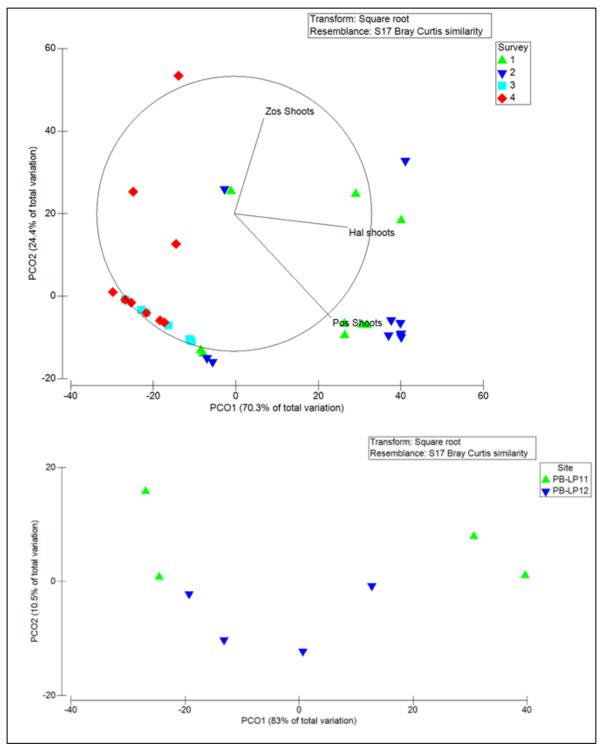


Figure 17: PCoA Graphs for seagrass composition at La Perouse *Posidonia* Bed monitoring sites. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by Site.

5.3.2 Kurnell

Posidonia shoots

Posidonia shoot density within the *Posidonia* Bed monitoring sites at Kurnell was variable among Baseline surveys and among sites (Figure 18). The statistical analysis detected a significant interaction (df=27, f=12.96, p=0.0001, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and between sites were dependent on survey. Pairwise Tests determined that the patterns of significant differences among surveys varied by site, and vice versa (Appendix 6).

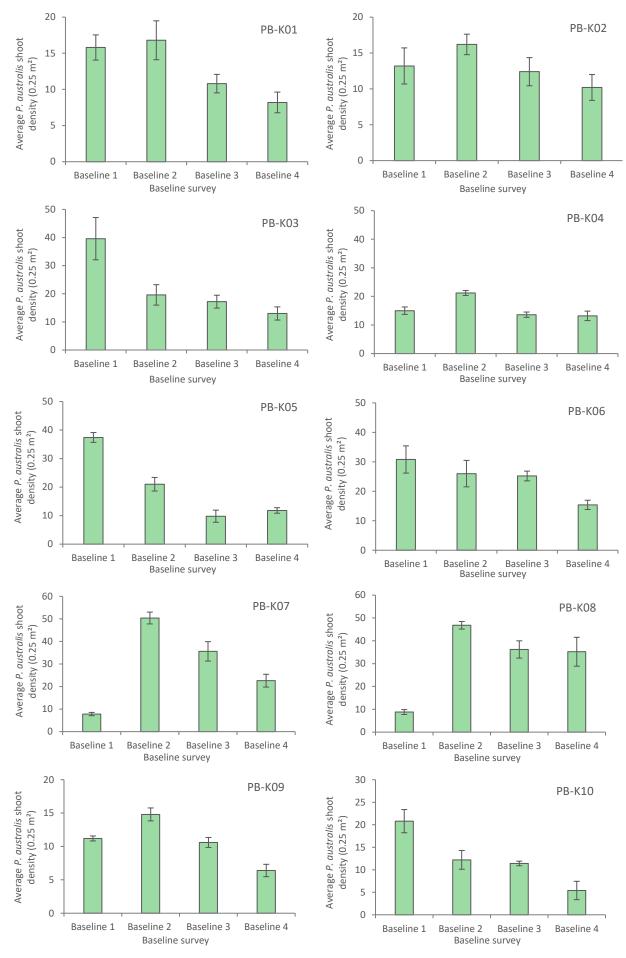


Figure 18: Mean shoot density of Posidonia shoots at the Kurnell Posidonia bed monitoring sites.

Significant linear regression relationships between shoot density (response variable) and distance from the proposed Construction Footprint (independent variable) were detected for the Inner Transect across all Baseline surveys, while no significant liner relationships were detected at all for the Outer Transect (Figure 19, Appendix 6). For the mostly positive linear relationships detected for the Inner Transect, the coefficient of determination measure of goodness-of-fit (i.e., R-squared) was of moderate strength (< 0.5) for the first two surveys (but note that shoot density was found to have a negative relationship with distance in Baseline 1), and weak (0.4-0.5) in the last two surveys. However, the relationship between distance and the combined data was very weak (<0.1), likely due to the negative linear relationship that occurred for Baseline 1 (Appendix 6).

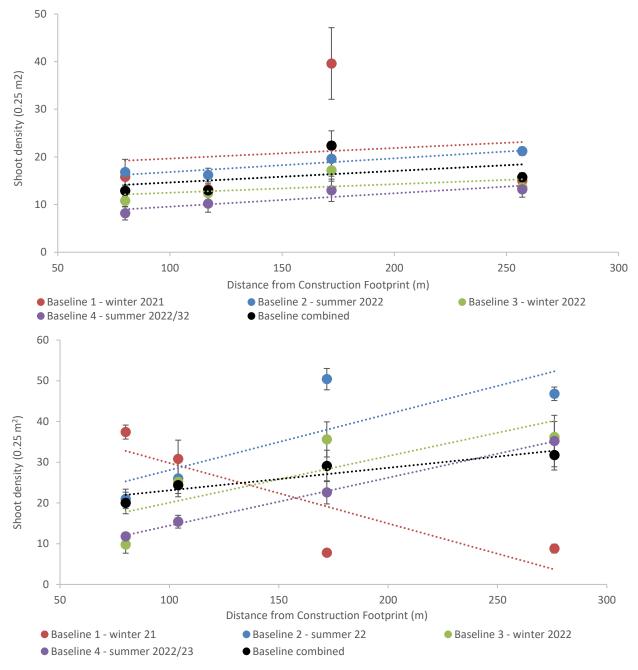
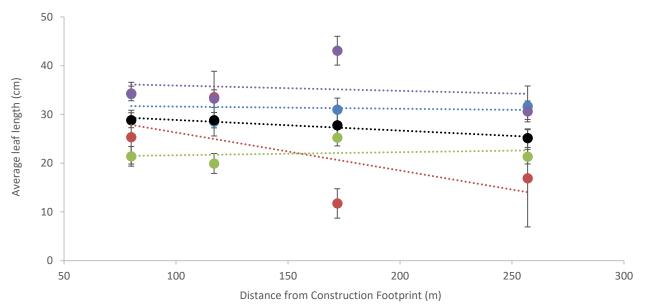
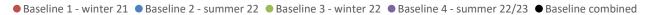
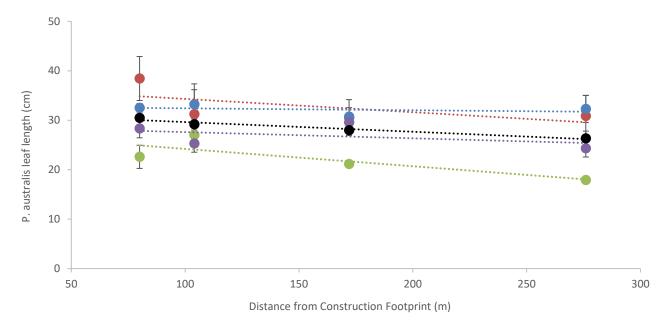





Figure 19: Relationship between *Posidonia* shoot density and distance from the Construction Footprint at Kurnell *Posidonia* bed monitoring sites, Outer Transect (Top), Inner Transect (Bottom). Indicative line-of-best-fit is shown for each Baseline survey and for all surveys combined, irrespective of whether the regression analysis was statistically significant or not.

Baseline 1 - winter 21
 Baseline 2 - summer 22
 Baseline 3 - winter 22
 Baseline 4 - summer 22/23
 Baseline combined

Figure 20: Relationship between *Posidonia* Leaf length and distance from the Construction Footprint at Kurnell *Posidonia* bed monitoring sites, Outer Transect (Top), Inner Transect (Bottom). Indicative line-of-best-fit is shown for each Baseline survey and for all surveys combined, irrespective of whether the regression analysis was statistically significant or not.

Posidonia leaf length

At Kurnell, *Posidonia* leaf lengths were variable among surveys and among sites, however a pattern of reduced leaf length in Baseline 3 in comparison to Baseline 2 and Baseline 4 was evident across almost all sites, with the exception being PB-K06 (Figure 21). The three-factor PERMANOVA detected a significant interaction (df=18, f=7.76, p=0.0001, Appendix 6), indicating that patterns of differences between surveys (within seasons) were dependent on site, and among sites were dependent on survey. Pairwise Tests found that leaf length for surveys within both the Winter season (Baselines 1 and 3) and Summer season (Baselines 2 and 4) were significantly different from each other at some sites (Appendix 6).

A significant negative linear regression relationship between leaf length (response variable) and distance from the proposed Construction Footprint (independent variable) was detected for the Outer Transect only for Baseline 1, with analyses for the other three surveys and the combined data not indicating any significant relationships (Figure 20, Appendix 6). A similar result, but with Baseline 3 having the significant negative linear relationship, was evident for the Inner Transect. The coefficient of determination measure of goodness-of-fit (i.e., R-squared) was of weak strength for the Outer Transect in Baseline 1 and Inner Transect in Baseline 3 (<0.4) (Appendix 6).

Posidonia Epiphytes

At Kurnell the epiphyte load scores indicated moderate to high epiphyte cover across all surveys (Figure 22). The statistical analysis detected a significant interaction (df=27, f=6.69, p=0.0001, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and among sites were dependent on survey. Pairwise Tests determined that there were significant differences among surveys for almost all sites, with the exceptions being PB-K02 and PB-K09, while significant differences occurred among some pairs of sites for most Surveys, with the exception being Baseline 3 (Appendix 6).

Posidonia bed composition

The *Posidonia* beds at Kurnell consisted primarily of *Posidonia*, with *Zostera* and *Halophila* also present, albeit much more variably so (Figure 8, Appendix 4). Multivariate analysis of the data detected a significant interaction (df=27, f=5.47, p=0.0001, Appendix 6), indicating that patterns of differences among surveys were dependent on site, and among sites were dependent on survey. The Pairwise Tests detected significant differences among surveys at all sites, and vice versa (Appendix 6).

The PCoA graph indicates that higher *Zostera* and *Halophila* shoot counts (especially *Halophila* in Baseline 2) were the major drivers of temporal differences in seagrass composition within Kurnell *Posidonia* Bed monitoring sites. Differences in seagrass composition among sites is illustrated by the PCoA of the Centroid data, which shows sites PB-K01 to PB-K05 to typically be less variable than Sites PB-K06 to PB-K10 (Figure 23).

Ŧ

1

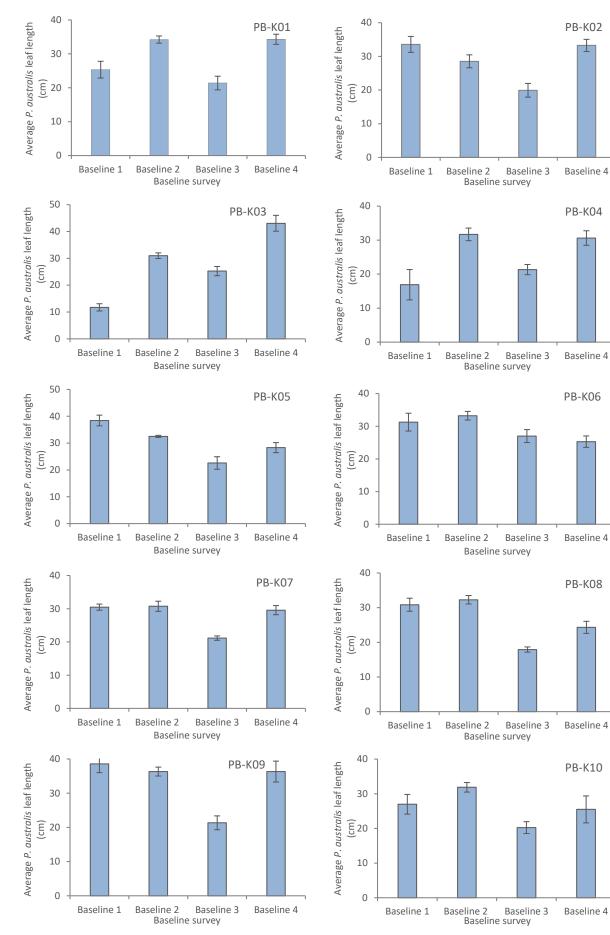


Figure 21: Mean leaf length of Posidonia at the La Perouse Posidonia bed monitoring sites.

PB-K02

Baseline 4

PB-K04

Baseline 4

PB-K06

Baseline 4

Baseline 4

PB-K10

Baseline 4

PB-K08

Baseline 3

Baseline 3

Baseline 3

Baseline 3

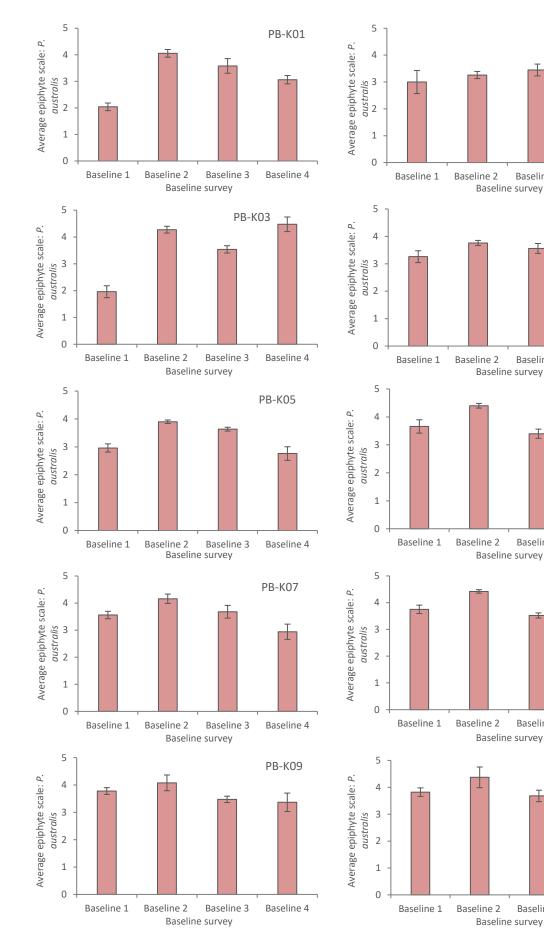


Figure 22: Mean epiphyte load scores for Posidonia at the Kurnell Posidonia bed monitoring sites.

Baseline 3

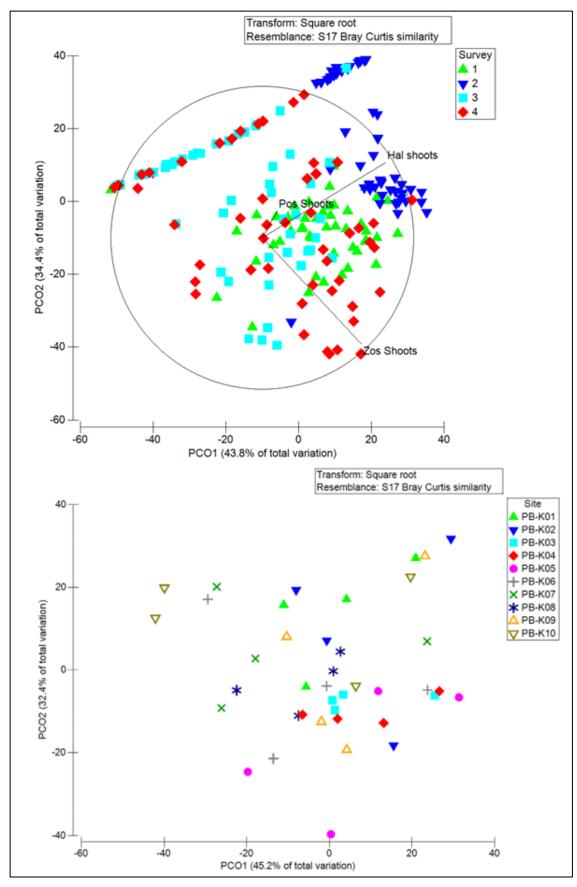


Figure 23: PCoA Graphs for seagrass composition at Kurnell *Posidonia* Bed monitoring sites. Top: All data displayed by survey. Bottom: Centroids of Site and Survey combined displayed by Site.

5.4 Posidonia patches

5.4.1 La Perouse

PP-LP01

PP-LP01 Is a patch of *Posidonia* approximately 25 metres to the east of the Construction Footprint.

An overall decline in *Posidonia* patch size has occurred between Baseline 1 and Baseline 4. The greatest decline occurred between Baseline 1 and Baseline 2. While patch size increased from Baseline 2 to Baseline 3, a minor decline then occurred between Baseline 3 and Baseline 4 (Figure 24).

There was a trend of decreasing *Posidonia* shoot counts from Baseline 2 to Baseline 4 within this patch (Figure 25). This was supported by the detection of a significant difference among surveys (df=3, f=5.59, p=0.0223). Subsequent pairwise tests then found significant differences between Baseline 4 and Baseline 1, and between Baseline 4 and Baseline 2, while all other pairs of surveys did not significantly differ (Appendix 6).

PP-LP02

PP-LP02 is a patch of *Posidonia* approximately 40 metres to the east of the Construction Footprint.

There has been a trending decline in *Posidonia* patch size between Baseline 1 and Baseline 4, with the greatest decline occurring between Baseline 1 and Baseline 2 (Figure 24).

Posidonia shoot counts at this site have remained relatively similar across most surveys, at 10-15 shoots per 0.25m², with the exception being Baseline 2, where counts were over 20 shoots per 0.25 m² (Figure 25). This was supported by the detection of a significant difference among surveys (df=3, f=4.73, p=0.0198). Pairwise tests found that shoot counts for Baseline 2 were significantly higher than for all other surveys (Appendix 6).

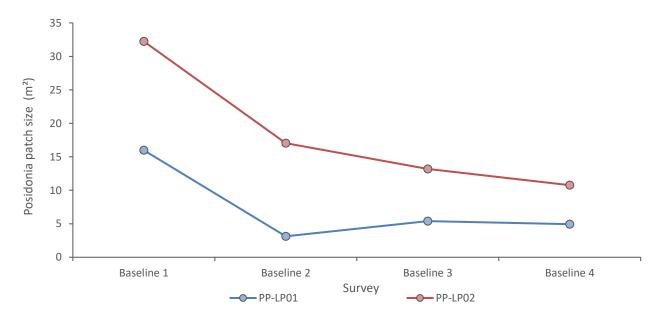


Figure 24: Posidonia patch size at the La Perouse Posidonia patch monitoring sites

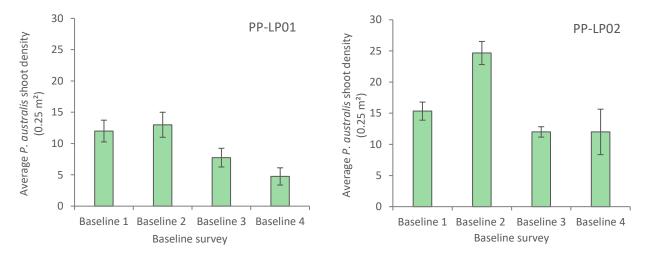


Figure 25: Mean Posidonia shoots at the La Perouse Posidonia patch monitoring sites.

5.4.2 Kurnell

РР-КОЗ

PP-K03 is a patch of *Posidonia* approximately 30 metres to the east of the Construction Footprint.

Posidonia patch size at PP-K03 has been relatively stable across the four Baseline surveys. A small trending increase occurred between Baseline 1 and Baseline 3, before a decline to Baseline 4 (Figure 26).

There was a trend of decreasing *Posidonia* shoot counts from Baseline 1 to Baseline 3 within this patch (Figure 27). This was supported by the detection of a significant difference between surveys (df=3, f=13.78, p=0.0006). Pairwise tests found that this difference was due to shoot counts being significantly higher for Baseline 1 than all other surveys, and significantly higher for Baseline 2 than Baselines 3 and 4 (Appendix 6).

РР-КО4

PP-K04 is a patch of *Posidonia* that extends from the eastern side of the Construction Footprint.

Posidonia patch size at PP-K04 has been relatively stable across the four Baseline surveys. A small trending increase occurred between Baseline 1 and Baseline 3, before declining in Baseline 4 (Figure 26).

Posidonia shoot counts were similar across all surveys, ranging between 10-14 shoots per 0.25 m² (Figure 27). This was supported by the statistical analysis, which did not detect any significant difference among surveys (df=3, f=0.91, p=0.465 Appendix 6).

РР-КО7

PP-K07 is a patch of *Posidonia* approximately 10 metres to the west of the Construction Footprint.

Posidonia patch size at PP-K07 declined substantially between Baseline 1 and Baseline 2. A small increase then occurred between Baseline 2 and Baseline 3, before a decline to Baseline 4 (Figure 26).

Posidonia shoot counts were typically between 5-10 shoots per 0.25 m² for each survey, with the exception being a higher shoot density in Survey 2 (Figure 27). However, the statistical analysis did not detect any significant difference among surveys (df=3, f=2.86, p=0.059 Appendix 6).

PP-K08

PP-K08 is a patch of *Posidonia* adjacent to the western edge of the Construction Footprint.

Posidonia patch size at PP-K08 declined substantially between Baseline 1 and Baseline 2. A small increase then occurred between Baseline 2 and Baseline 3, before a decline to Baseline 4 (Figure 26).

Posidonia shoot counts for the most recent two surveys (Baseline 3 and Baseline 4) were similar, but substantially lower than counts for Baseline 1 and Baseline 2, which were also similar (Figure 27). This was supported by the detection of a significant difference among surveys (df=3, f=12.46, p=0.0008). Pairwise tests collectively indicated that the decrease in shoot counts from Baseline 2 to Baseline 3 was significant (Appendix 6).

РР-КО9

PP-K09 is a patch of *Posidonia* adjacent to the eastern edge of the Construction Footprint.

Posidonia patch size at PP-K09 declined substantially between Baseline 1 and Baseline 2. A small increase then occurred between Baseline 2 and Baseline 3, before a decline to Baseline 4 (Figure 26).

Posidonia shoot counts were typically similar, ranging between 10-15 shoots per 0.25 m² across surveys (Figure 27). This was supported by the statistical analysis, which did not detect any significant difference among surveys (df=3, f=1.11, p=0.3487 Appendix 6).

PP-K11

PP-K11 is a patch of *Posidonia* approximately 5 metres to the east of the Construction Footprint.

Posidonia patch size at PP-K11 declined substantially between Baseline 1 and Baseline 2. A small increase then occurred between Baseline 2 and Baseline 3, before a decline to Baseline 4 (Figure 26).

Posidonia shoot counts were typically very similar (approx. 15 shoots per 0.25 m²) across the first three surveys, although there was a notable decline in shoot density from Baseline 3 to Baseline 4 (Figure 27). The statistical analysis did not detect any significant difference between Surveys (df=3, f=1.11, p=0.3487 Appendix 6), indicating that declines observed in the most recent survey were not statistically significant.

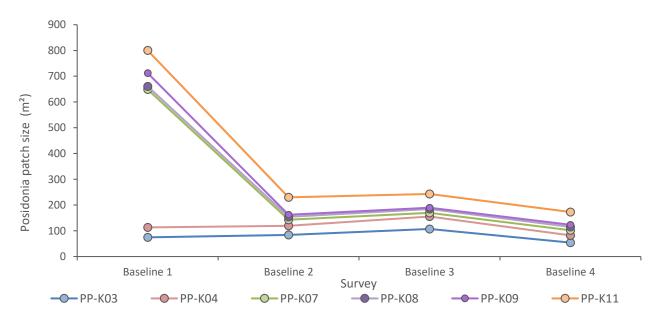


Figure 26: Posidonia patch size at the Kurnell Posidonia patch monitoring sites

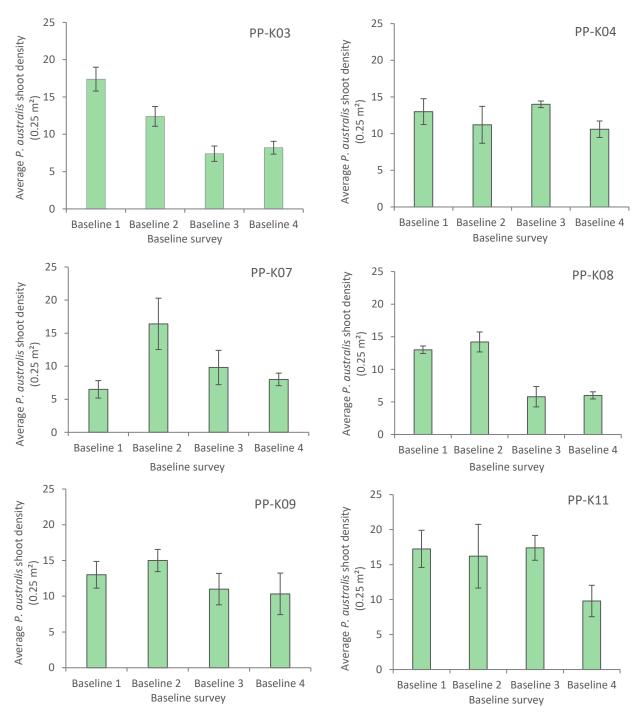


Figure 27: Mean Posidonia shoots at the Kurnell Posidonia patch monitoring sites.

6. Discussion

6.1 Summary of baseline findings

6.1.1 Seagrass areal extent

Seagrasses within the Project Boundaries at both La Perouse and Kurnell are dominated by *Halophila* and *Zostera* beds, which have typically declined in areal extent since the start of Baseline Surveys. *Posidonia* seagrass beds have a much lesser contribution to areal extent of seagrasses within both Project Boundaries, although the areal extent and extent of *Posidonia* remained relatively stable across the Baseline Surveys.

At La Perouse only 51 m² of seagrass (all *Halophila/Zostera*) was present by the end of the Baseline Surveys – all confined to the Buffer Area and expected to be impacted by the Project. This represented approximately 1% of the total areal extent of seagrass mapped in this area by the end of Baseline 1. Notably, the magnitude of declines in seagrasses at La Perouse were not as large in the wider Survey Area, with declines since Baseline 1 of approximately 33%. Mapping indicates these declines were the greatest in the nearer-to-shore areas associated with the rock platform and Frenchmans Beach.

Declines in seagrass cover were generally not as great at Kurnell, with seagrass area inside the Construction Footprint and Buffer Area peaking during the Baseline 2 Survey at 5,626 m², and reducing to 3,826 m² by the end of the Baseline Surveys (i.e., a decrease of around 32%). This included 258 m² of *Posidonia* within the Construction Footprint and Buffer Area in Baseline 4, which represents a small overall trend of increase from the 248 m² recorded in Baseline 1. These patterns in seagrass areal extent change were similar in the wider Project Boundary and Study Area at Kurnell, although declines (resulting from a reduction in *Halophila / Zostera*) appeared to be marginally greater in those areas.

6.1.2 Halophila / Zostera seagrasses

Monitoring of the *Halophila / Zostera* seagrass beds found that the seagrass beds at both La Perouse and Kurnell were characterised by, in most instances throughout the Baseline surveys, very low seagrass cover (less than 5%), with these levels of cover also highly variable through time. These seagrass beds changed substantially through time irrespective of season at both La Perouse and Kurnell, while spatial variability was also highly evident, especially with respect to differences according to proximity to the shoreline.

At La Perouse, seagrass cover was substantially greater in Baseline 1 than in the other Baseline surveys, with some sites having up to 25% cover in the former survey. By Baseline 4 substantial decreases from Baseline 1 became evident with, for example, levels below 1% cover at monitoring sites adjacent to the Construction Footprint and 5% at potential reference sites. This indicates a clear general decline in *Halophila / Zostera* cover at La Perouse since the commencement of the Baseline Surveys. Interestingly, seagrass cover estimates at the reference sites, which are further from shore, were typically greater but similarly variable.

At Kurnell, the variability in seagrass cover among the *Halophila / Zostera* seagrass beds was much greater than at La Perouse, with temporal trends across the Baseline Surveys less evident. In spatial terms, the original sites located nearer to the shore, including the potential impact and reference sites, appeared very different to the additional near-to-shore sites added in Baseline 1 following the establishment of much denser seagrass bed. Those original sites recorded lower levels of variability and seagrass cover. The additional sites were found to be much more variable and, with the exception of Baseline 3, supported *Halophila / Zostera* seagrass cover of greater than 10%.

6.1.3 Posidonia seagrass

Across the Baseline Surveys there was a general trend of decreasing *Posidonia* shoot density within the *Posidonia* beds and patches over time at both locations. These reductions were not consistent across all monitoring sites, indicating that the drivers of any decrease in shoot density were not acting on the *Posidonia* beds and patches equally across the two Survey Areas. The *Posidonia* seagrass beds and patches at both La Perouse and Kurnell typically consist of mixed seagrasses. *P. australis*, the canopy forming species, typically had leaf lengths in excess of 20 cm. *Halophila* and/or *Zostera* occupied the lower stratum and were typically much more variable in occurrence and density.

At La Perouse the *Posidonia* beds declined in shoot density from 100-120 *Posidonia* shoots per m² in the first year of monitoring to 40-60 shoots per m² in the second year. Shoot density was also typically higher at the reference site. Declines in *Posidonia* shoot density were also notable amongst the smaller patches, which may be more vulnerable to edge effects and overall declines in patch size found amongst the patches of *Posidonia* monitored at La Perouse.

Posidonia seagrass at Kurnell included the main bed that commences near to the Project Boundary to the west and various scattered smaller beds and patches that occur across and beyond the Project Boundary to the east. In the main bed, *Posidonia* shoot density was higher (up to 200 shoots per m²) in shallower areas, typically increasing with distance from the Construction Footprint. In the two monitoring sites amongst the smaller beds and patches to the east, *Posidonia* shoot density was typically lower and more variable, at 20-120 shoots per m². Declines in *Posidonia* shoot density across Baseline Surveys were also evident at some monitoring sites, especially those nearer to the edge of the main bed and those amongst beds to the east, as well as some of the patches. Furthermore, detailed observations of individual patch size during the dive surveys at Kurnell indicated that a decline in *Posidonia* areal extent and extent through time at much smaller scales undetected by mapping occurred amongst smaller patches of *Posidonia* within the Project Boundary after Baseline 1.

6.2 Drivers of change

There are a number of potential drivers of change in seagrass areal extent, extent and morphology, including reproductive capacity, environmental conditions, natural environmental disturbances and direct human disturbances that act on seagrasses in Botany Bay. Historical review of aerial imagery since the 1930s has attributed major changes in seagrass areal extent to various stressors that have included oyster shell dredging, release of pollutants, catchment inputs, changes in sedimentary conditions and processes, and large storm events (Larkum and West 1990). These various stressors have resulted in not only seagrass loss but also community composition change, with faster colonising and growing *Zostera* seagrasses typically displacing the slower colonising and growing *P. australis* (Larkum and West 1990), with more recent research indicating the rate of annual change in *P. australis* in Botany Bay is as high as -2.5% (West and Glasby 2021).

Seagrasses can exhibit both asexual and sexual reproduction. Asexual reproduction typically includes the spread of underground rhizomes and roots that produce new shoots (Waycott et al. 2014), while on occasions this may also include dispersal of broken-away fragments that establish in new locations (McMahon et al. 2014). Sexual reproduction, like all plants, includes flowering, pollination, setting and germinating of seeds (Waycott et al. 2014), with many seagrasses having the ability to lay dormant in the sediments until optimal environmental conditions occur (Orth et al. 2000). In Botany Bay, *P. australis* is believed to be typically reliant on asexual reproduction so, given the slow rates of rhizome growth for this species (Larkum and West 1990), any increases in areal extent may take years to detect. In comparison, species of *Halophila* and *Zostera* in Botany Bay may at times display much more rapid growth rates and cyclic changes, taking advantage of seed dormancy. The seeds of *Halophila* and *Zostera* seagrasses may lie dormant for up to 24 and 12 months

respectively (Orth et al. 2000), with the latter typically being negatively buoyant, limiting dispersal to close proximities (approx. 10 m) but allowing for rapid settlement into the sediment for later germination when environmental conditions allow (Smith et al 2014). Rapid increases in *Halophila* and *Zostera* seagrass establishment and areal extent were apparent at times during the Baseline Surveys, especially during Baseline 1 in shallower areas fringing the shoreline at Kurnell. While not detected in the EIS surveys (TfNSW 2021a), this is likely reflective of the ability of these species to rapidly establish from the seed bank in Botany Bay.

Botany Bay has undergone significant disturbances and changes over the decades and, in its present state, is a highly modified estuary. These disturbances and changes have included dredging of the entrance, which has increased wave penetration and height, and extensive catchment development resulting in increased catchment runoff and inputs – all subsequently impacting on seagrass beds (Larkum and West 1990). Land reclamation in Botany Bay has altered coastal processes including sediment transport and shoreline erosional patterns (URS 2003), while armouring of shorelines to protect natural and built assets has altered wave climate and increased the risk of refraction to protected areas (Aijaz and Treloar 2003).

The Baseline Surveys for the Seagrass Monitoring Program were undertaken through a strong La Nina weather pattern that impacted on the eastern Australian coastline for 18-24 months, bringing above average rainfall that lowered salinities, increased turbidity levels and reduced light availability due to high sediment loads in Botany Bay for extended periods. Furthermore, this long-term weather pattern resulted in a number of significant weather and flood events within the Botany Bay catchment and coincided with a number of low pressure systems that formed off the Sydney Coast, resulting in large, powerful easterly swells entering Botany Bay. Turbidity is a major stressor of seagrass health, with light penetration considered one of the most important variables controlling the areal extent and abundance of seagrass in estuaries (Cardno 2018). These weather events appear to have had significant influence on seagrass assemblages and has likely driven decline of seagrasses within the Project Boundaries at both locations. At La Perouse, significant shoreline erosion occurred following storm and major Georges River flooding events that occurred during the Baseline 2 survey (i.e., between Feb to April 2022) (Niche 2022a) and the Baseline 3 survey (i.e., between July and August 2022) (Niche 2022b). Further, seagrass mapping had to be finalised and the drop camera survey completed after the major weather event in February / March 2022 (Baseline 2). This weather event included unprecedented rainfall for the Sydney Region that resulted in prolonged flooding and sedimentation, as well as extensive shoreline erosion as a result of refraction of waves into Frenchmans Bay from the seawall between Molineux Point and Bumbora Points. At the time of April 2022 sampling for the Baseline 2 survey at La Perouse, a usually uniform and gradually sloping seabed that supported low density seagrasses was unusually found to be highly variable, undulating with clear scour and deposition marks (Cummings Pers Ob). In contrast, mapping works for Baseline 2 at Kurnell were completed before the onset of that weather event, however drop camera surveys were not undertaken until April. Notably, the limited observations of seagrasses and the seabed made during the drop camera surveys at Kurnell in April did indicate that physical disturbance of the seabed appeared less acute in comparison with observations made at La Perouse. Data collected following that weather event across Baseline 2 and 3 indicated that large declines in seagrass extent occurred, especially at La Perouse in shallower nearshore areas with mixed Halophila and Zostera beds. Interestingly, beds and patches of P. australis were in most cases found to persist, although disturbance of the seabed was still perceptible. The Baseline data and observations indicate that the deeper-rooted P. australis (Waycott et al. 2014) is likely more tolerant and has greater capacity to persist in such adverse conditions than shallower rooted species such as Halophila and Zostera.

Other human-induced disturbances with potential to impact on seagrasses at La Perouse and Kurnell may include reduced water quality, vessel propeller scarring in shallow areas, and recreational and commercial vessel moorings. Reduced water quality can result in increased turbidity and nutrients, promoting growth of epiphytic and smothering algal species that can gradually reduce seagrass health (Abal and Dennison 1996), and increase susceptibility to leaf loss (Horn et al. 2009), especially for the slower growing species such as P. australis. Epiphyte data collected across the Baseline Surveys typically indicated that P. australis was consistently moderately- to heavily-fouled by epiphytic growth. This may lead to further declines in P. australis health in coming surveys or may be reflective of typical epiphytic growth that occurs on P. australis in Botany Bay. Small scale disturbances may also occur to P. australis beds from propeller scarring in shallow waters. Beds occurring in very shallow areas adjacent to sandy beaches are likely to be at most risk, especially in the reference site at La Perouse and shallower areas within the main bed to the west of the Project Boundary at Kurnell. Vessel moorings have been found to have significant impacts on seagrasses, especially P. australis in estuaries within the Sydney Region, including Botany Bay (West 2011). Throughout the Baseline Surveys various recreational vessel moorings were found to occur in seagrass habitat in Frenchmans Bay at La Perouse, while at Kurnell some commercial moorings appear to occur very close to and potentially encroach into the north-western side of the main P. australis bed. These moorings have potential to further impact on seagrasses, especially within the Project Boundary at La Perouse, where regular repositioning and or relocation appears to be occurring.

6.3 Suitability of the reference sites

6.3.1 Halophila / Zostera beds

At La Perouse the proposed reference sites (HZ-LP03 and HZ-LP04), which had slightly greater seagrass densities then the potential impact sites (HZ-LP01 and HZ-LP02), are considered to be suitable reference sites. The reference sites are expected to provide robust comparisons between Baseline Surveys and the during- and post- construction surveys.

At Kurnell the proposed reference sites (HZ-K07 and HZ-K08) were found to be similar in seagrass densities and variability to the potential impact sites further from shore (HZ-K05 and HZ-K06), however both seagrass density and variability were observed to be relatively much greater at the potential impact sites closer to shore (HZ-K09 and HZ-K10). The relative suitability of the latter sites for comparison with the reference sites, which are further from shore and not as variable, may be lower. Thus, interpretations of comparisons between Baseline surveys and during- and post-construction surveys will need to be done with some caution and consideration of these differences.

6.3.2 Posidonia beds

At La Perouse *P. australis* has a very limited areal extent, being mostly confined to small beds – one within and one outside the Project Boundary. The sizes of these beds are only sufficient for one monitoring site within each. As a result of this, replication of monitoring sites and capture of spatial variability inside and outside the Project Boundary at La Perouse is not possible. Thus, for these *P. australis* beds at La Perouse the BACI approach will not be as robust and so interpretation of analysis results will be more reliant on comparisons among periods and among surveys within periods. Furthermore, the reference site (PB-LP-12) is in very shallow water and close proximity to the beach, where it is more vulnerable to erosional impacts, wave energy and human disturbances. This may also be reflected by the increased variability in seagrass assemblage found at this site during the Baseline surveys. This will need to be considered when comparing any future changes in *P. australis* in this bed against patterns of change at the site within the Project Boundary.

At Kurnell, *P. australis* monitoring sites included two smaller beds – one inside the Project Boundary and one to the east of the Project Boundary – and eight sites within the main bed along two (east-west) transects that commence near the western side of the Project Boundary. The monitoring site to the east of the Project Boundary (PB-K10) was established as a potential reference site, as it provides for a measure of environmental disturbance as a result of easterly swell that may at times wrap around Kurnell Point and impact on *P. australis* within the eastern sections of the Project Boundary. Additional reference sites can be adopted from sites within the main bed to the west. This may include most of those western sites, with the two most easterly sites (PB-K01 and PB-K05) along these transects being possible exclusions.

7. Recommendations

7.1 Performance indicators

Data collected across the two years of Baseline surveys indicate that the spatial extent of *Halophila* and *Zostera* seagrasses can be highly variable and susceptible to substantial weather-event-induced declines within both Project Boundaries, while *P. australis* areal extent is much more stable with minimal decline, although some reductions in shoot density and small-scale edge effects around smaller patches have been evident. Furthermore, the significance of disturbances that have at times occurred across the Baseline period may have reduced the health and resilience of these seagrass assemblages (e.g., reductions in growth, reproductive potential, health and density) to well below average. Thus, there is the possibility of further declines as a result of similar or more extreme events that may occur into the post-baseline monitoring periods. In light of this, it must be acknowledged that the lower extreme of natural variability still remains unknown, and as such performance indicators may need to be adjusted to be reflective of results of those future surveys.

The performance measures will also need to consider any major environmental events, such as extremely destructive weather events, that may occur from now onwards, which have the inherent potential to impact on seagrass assemblages within the Survey Areas. For extreme events in particular this may require additional surveys in an attempt to capture any changes in seagrass extent and assemblages and separate their influence from any potential impacts attributable to the proposal.

7.1.1 Seagrass areal extent

The Seagrass Monitoring Program requires an acceptable rate of change in seagrass areal extent within the Project Boundary (excluding Construction Footprint and Buffer) to be established. This rate of change should also consider wider scale changes detected in the Survey Area, which are expected to be independent of future construction and operational activities within the Project Boundary.

The following performance indicators for seagrass areal extent are proposed. These have been chosen to allow for natural variability and the reduced precision when mapping large areas in GIS.

Any decrease in *Halophila* and *Zostera* extent within the Project Boundary (excluding the Buffer Area and Construction Footprint) shall not exceed 20% of:

- The areal extent measured in the Baseline 4 survey.
- Decline resulting from natural variability. To be estimated for the same period of time based on change in areal extent within the Survey Area (excluding Project Boundary).

Any decrease in *P. australis* areal extent within the Project Boundary (excluding the Buffer Area and Construction Footprint) shall not be greater than 10% of:

- The areal extent measured in the Baseline 4 survey.
- Decline resulting from natural variability. To be estimated for the same period of time based on change in areal extent within the Study Area (excluding Project Boundary)

7.1.2 Halophila and Zostera beds

The performance indicator for *Halophila* and *Zostera* beds shall be based on seagrass percent cover. Any decrease since the Baseline 4 survey at the potential impact sites shall not exceed 20%.

The BACI framework should also be suited to apply appropriate multivariate and univariate statistical procedures to detect more subtle changes that may potentially be attributable to the project and, additionally or alternatively, determine the contribution of natural variability and other independent stressors.

7.1.3 Posidonia beds

The performance indicator for seagrass shall be based on *P. australis* density. Any decrease since the Baseline 4 survey at the potential impact locations shall not exceed 10%. The potential impact locations should include the monitoring sites within the Project Boundary, and at Kurnell the most eastern sites along the two transects.

The BACI framework should also be suited to apply appropriate multivariate and univariate statistical procedures to detect more subtle changes that may potentially be attributable to the project. At Kurnell, additional statistical analysis to detect any changes in the relationship of *P. australis* density in the main bed with distance along the transects from the Construction Footprint should be investigated.

At Kurnell the potential impact site PB-K09 is mapped to encroach into the Buffer Area, any transplanting of areas of this bed that occur within the Buffer Area will need to be considered in future analysis of this site.

7.2 Modifications to the monitoring program

Consideration should be given to establish an additional *P. australis* bed monitoring site between the eastern perimeter of the Buffer Area and the monitoring site PB-K10.

7.3 Other

The period between the completion of the final Baseline survey (Baseline 4) and the first during construction survey should not exceed 15 months.

A decision will need to be made to either retain or transplant the area of the *P. australis* bed at monitoring site PB-K09 at Kurnell, which occurs within the Buffer Area. It is recommended that transplanting is avoided within 10 metres of the monitoring site to minimise edge effects.

During construction, detailed mapping of positions of all seabed works, anchors and moorings supported by real-time tracking of construction vessels and barges should be incorporated into the CEMP and considered when considering if any impacts can be attributed to the project.

8. Conclusions

In conclusion the baseline period of the Seagrass Monitoring Program has included four surveys completed over approximately two years. This has provided a measure of baseline variability in seagrass extent, coverage, composition and density within the Survey Areas at La Perouse and Kurnell, providing a robust BACI framework to investigate changes that may occur during and after the completion of construction.

The Baseline Surveys have found that the *Halophila* and *Zostera* seagrass beds that dominate the Survey Areas are highly variable in spatial and temporal extent, all the while having declined substantially over the last two years. In comparison, *P. australis* areal extent and condition remained relatively stable, although declines in shoot density were evident in some areas. The large-scale changes and reductions in seagrass extent in the Survey Area across the Baseline Surveys is attributed to environmental disturbances as a result of extreme weather events that occurred along the Australian East Coast over the last two years.

As of the completion of the Baseline 4 survey, seagrass within the Construction Footprint and Buffer Area at La Perouse was found to have an areal extent of 51 m² (all *Halophila* and *Zostera*), while at Kurnell the areal extent was 3,826 m², which included 258 m² of *P. australis* seagrass (Endangered Population). This 258 m² consists of typically low to moderate densities of *P. australis*. Furthermore, the *P. australis* shoot densities outside the established monitoring bed and patches were as low as 1-2 plants per m² and interspersed amongst other seagrasses that may dominate the seagrass community.

Performance measures have been derived based on the variability that has detected through Baseline Surveys. The performance measures will require regular review and interpretation with consideration of the statistical analysis, qualitative information sources, and major weather events with potential for environmental disturbances. These considerations will be essential to allow for any changes potentially attributable to the project to be accurately separated from those that represent natural variability and other disturbances that may act as stressors within the Survey Areas.

9. References

Abal, E.G., and Dennison, W.C. (1996). Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Marine and Freshwater Research. 47(6), 763-771.

Aijaz, S., and Treloar, D. (2003). Beach management options at Lady Robinsons Beach, Botany Bay, Australia. In Oceans 2003. Celebrating the Past... Teaming Toward the Future (IEEE Cat. No. 03CH37492).Vol. 1, 238-245.

Anderson, M.J., Gorley, R.N., and Clarke K.R. (2008). PERMANOVA+ for PRIMER – Guide to software and Statistical Methods. PRIMER-E: Plymouth, UK.

Cardno (2018). Port Botany Long-term Seagrass Monitoring. Reference: 59918182. Date: 04 September 2018. Prepared for Port Authority of New South Wales.

Cumming, E., Jarvis, J., Sherman, C., and York, P. (2017). Seed germination in a southern Australian temperate seagrass. PeerJ. 5(3): e3114.

Horn, L.E., Paling, E.I., and van Keulen, M. (2009). Photosynthetic recovery of transplanted *Posidonia sinuosa*, Western Australia. Aquatic botany. 90(2), 149-156.

Inglis, G. (2000). Variation in the recruitment behaviour of seagrass seeds: Implications for population dynamics and resource management. Pacific Conservation Biology. 5. 256-259.

Larkum, A.W.D. and West, R.J. (1990). Long-term changes of seagrass meadows in Botany Bay, Australia. Aquatic Botany 37: 55-70.

Larkum, A.W.D. (1976). Ecology of Botany Bay. I. Growth of *Posidonia australis* (Brown) Hook. F. in Botany Bay and other bays of Sydney Basin. Marine and Freshwater Research, 27(1): 117-127.

McMahon, K., van Dijk, K.J., Ruiz-Montoya, L., Kendrick, G.A., Krauss, S.L., Waycott, M., Verduin, J, Lowe, R., Statton, J., Brown, E. and Duarte, C. (2014). The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences. 281(1795), 20140878.

NSW DPI (2021). NSW Fisheries Spatial Data Portal. NSW Department of Primary Industries. Accessed online at <u>https://www.dpi.nsw.gov.au/about-us/science-and-research/spatial-data-portal</u>

Niche (2020a). Kamay Ferry project – Survey results. Prepared for Arup Pty Ltd. Report dated 12 June 2020.

Niche (2020b). Kamay Ferry project – Survey results. Prepared for Arup Pty Ltd. Report dated 13 October 2020.

Niche (2021a). Kamay Ferry Wharves Seagrass Monitoring Report – Winter 2021. Prepared for Transport for NSW. Report dated 4 November 2021.

Niche (2021b). Kamay Ferry project – Survey results. Prepared for Arup Pty Ltd. Report dated 13 October 2020.

Niche (2022a). Kamay Ferry Wharves Seagrass Pre-construction Monitoring Report: Baseline 2 (Summer 2022). Prepared for Transport for NSW. Report dated 5 July 2022.

Niche (2022b). Kamay Ferry Wharves Seagrass Pre-construction Monitoring Report: Baseline 3 (Winter 2022). Prepared for Transport for NSW. Report dated 11 November 2022.

Orth, R. J., Harwell, M. C., Bailey, E. M., Bartholomew, A., Jawad, J. T., Lombana, A. V., Moore, K.A., Rhode, J.M. and Woods, H. E. (2000). A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration. Marine Ecology Progress Series. 200, 277-288.

Otway, N.M. and Macbeth, W.G. (1999). Physical effects of hauling on seagrass beds. Final report to Fisheries Research & Development Corporation, Projects 95/149 & 96/286. NSW Fisheries Final Report Series No. 15. ISSN 1440-3544.

Rasheed, M.A., McKenna, S.A., Carter, A.B. and Coles, R.G. (2014). Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Marine Pollution Bulletin, 83(2): 491-499.

Smith, T. M., York, P. H., Macreadie, P. I., Keough, M. J., Ross, D. J., and Sherman, C. D. (2016). Spatial variation in reproductive effort of a southern Australian seagrass. Marine environmental research. 120, 214-224.

The Ecology Lab (2003). Port Botany Expansion: Aquatic Ecology, Conservation & Fisheries. Volume 1: Main Report. Report to Sydney Ports Corporation. The Ecology Lab Pty Ltd. Report no. 41/0102B, May 2003.

Transport for NSW (2021a). Kamay Ferry Wharves EIS – Marine Biodiversity Assessment Report. Prepared by ARUP, June 2021.

Transport for NSW (2021b). Kamay Ferry Wharves EIS – Marine Biodiversity Offset Strategy. Prepared by Andrea McPherson (Arup Australia Pty Ltd), David Cummings (Niche, H2O Consulting Group) and Adriana Verges (University of New South Wales), October 2021.

Underwood, A. (1997). Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge: Cambridge University Press.

URS (2003). Port Botany expansion: environmental impact statement. Prepared by URS Australia Pty Ltd for Sydney Ports Corporation. November 2003.

Waycott, M., McMahon, K. and Lavery P. (2014). A Guide to Southern Temperate Seagrasses. CSIRO Publishing, Collingwood, VIC.

West, R. (2012). Impacts of recreational boating activities on the seagrass *Posidonia* in SE Australia. Wetlands Australia Journal. 26(2), 3-13.

West (2000). The Seagrasses of New South Wales Embayments. Article, NSW State Fisheries, Sydney, NSW.

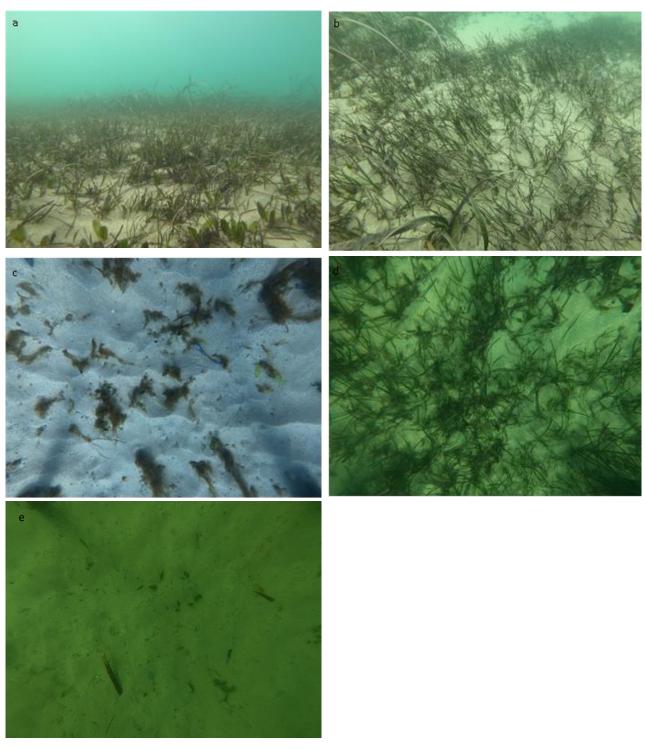
West, G. J., & Glasby, T. M. (2022). Interpreting long-term patterns of seagrasses abundance: how seagrass variability is dependent on genus and estuary type. Estuaries and Coasts. 45(5), 1393-1408.

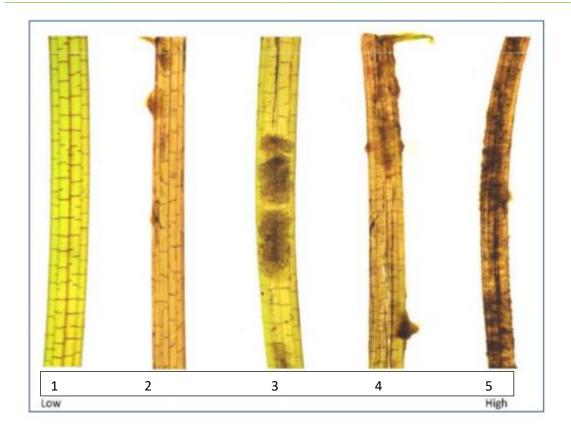
Winer B. J. Donald R. Brown and Kenneth M. Michels. 1991. Statistical Principles in Experimental Design. 3rd ed. New York: McGraw-Hill.

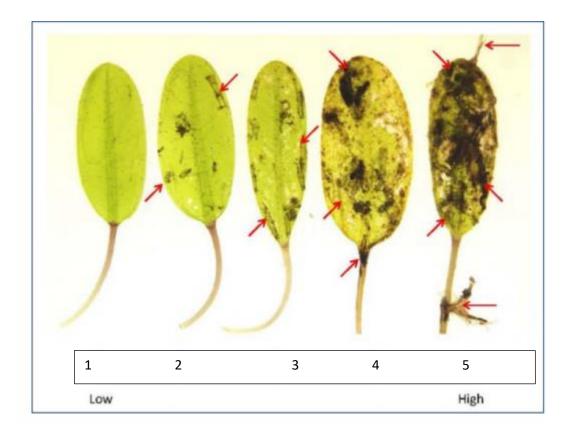
10. Plates

Plate 1: Survey equipment and methodologies a) Towed camera used to map seagrasses, b) Drop camera used to collect photoquadrats, c) CPCe digital photoquadrat analysis screen, d) DoD rod installed within the main *P. australis* seagrass bed at Kurnell, e) dive survey, f) 0.25 m² quadrat.

Plate 2: Seagrasses in the Project Area at La Perouse, a) Low density *Halophila* dominated seagrass within *Zostera / Halophila* beds, b) *Posidonia australis*, c) low density *Halophila*, d) medium density *Halophila*, e) reduced *Halophila* density in summer 2022 (HZ-LP02), previously *Zostera / Halophila* in winter 2021 (Niche 2021a).




Plate 3: Seagrasses in the Project Area at Kurnell, a) Medium density *Zostera* dominated seagrass within *Zostera / Halophila* beds with *P. australis* in the background, b) Medium density *Zostera* dominated seagrass within *Zostera / Halophila* beds adjoining a low density patch of *P. australis*, c) low density *Halophila* with heavy epiphytic fouling and d) Medium density *Zostera* dominated seagrass within *Zostera / Halophila* bed in shallow areas close to the proposal footprint, e) reduced *Halophila* density in summer 2022 (HZ-K07).



Appendix 1: Monitoring site locations

Site	Location	Status	Easting (GDA94 MGA56)	Northing (GDA94 MGA56)
Halophila / Z	ostera monitor	ing (drop camera)		
HZ-LP01	La Perouse	Potential impact	336429.98	6237907.4
HZ-LP02	La Perouse	Potential impact	336516.36	6237871.92
HZ-LP03	La Perouse	Reference	336438.35	6238037.7
HZ-LP04	La Perouse	Reference	336317.97	6238009.92
HZ-K05	Kurnell	Potential impact	335274.25	6236137.09
HZ-K06	Kurnell	Potential impact	335344.73	6236180.62
HZ-K07	Kurnell	Reference	335437.75	6236230.96
HZ-K08	Kurnell	Reference	335164.51	6236149.72
HZ-K09	Kurnell	Potential impact	335310.06	6236050.64
HZ-K10	Kurnell	Potential impact	335383.27	6236105.94
Posidonia bed monitoring (ADAS scientific divers)				
РВ-КО1	Kurnell	Potential impact	335263.13	6236095.86
РВ-К02	Kurnell	Potential impact	335234.62	6236085.28
РВ-КОЗ	Kurnell	Potential impact, possible reference	335189.91	6236071.11
РВ-КО4	Kurnell	Potential impact, possible reference	335127.2	6236041.22
РВ-К05	Kurnell	Potential impact	335315.43	6236006.55
РВ-КО6	Kurnell	Potential impact	335287.92	6235986.41
РВ-КО7	Kurnell	Potential impact, possible reference	335250.49	6235967.27
РВ-КО8	Kurnell	Potential impact, possible reference	335173.89	6235927.58
РВ-КО9	Kurnell	Potential impact	335326.24	6236087.61
PB-K10	Kurnell	Potential impact, possible reference	335417.71	6236193.76
PB-LP11	La Perouse	Potential impact	336545.65	6237861.53
PB-LP12	La Perouse	Reference	336578.02	6238082.55
<i>Posidonia</i> pa	tch monitoring	(ADAS scientific divers)		
PP-LP01	La Perouse	Potential impact	336506.15	6237863.79
PP-LP02	La Perouse	Potential impact	336533.9	6237847.83
РР-КОЗ	Kurnell	Potential impact	335367.57	6236122.05
РР-КО4	Kurnell	Potential impact	335346.18	6236109.77
РР-КО7	Kurnell	Potential impact	335340.22	6236069.58
РР-КО8	Kurnell	Potential impact	335355.6	6236062.17
РР-КО9	Kurnell	Potential impact	335366.1	6236071.99
PP-K11	Kurnell	Potential impact	335370.57	6236060.62

Appendix 2: Epiphyte loading scale

Appendix 3: Baseline monitoring master dataset

The baseline monitoring master dataset has been provided as an electronic appendix with this report, titled: 7476_Kamay_Baseline_Masterdata_20230201

Appendix 4: Seagrass mapping, Zostera and Halophila monitoring results

Baseline 1 – Baseline 4: seagrass mapping results

A **	Baseline 1 (win	ter 2021)		Baseline 2 (sum	mer 2022)		Baseline 3 (winte	er 2022)		Baseline 4 (sum	mer 2022/23)	
Area	Kurnell (m²)	La Perouse (m ²)	Total (m ²)	Kurnell (m ²)	La Perouse (m ²)	Total (m ²)	Kurnell (m ²)	La Perouse (m ²)	Total (m ²)	Kurnell (m ²)	La Perouse (m ²)	Total (m ²)
Survey Area												
Posidonia	34407	51	34459	36119	112	36231	13902	213	14115	6743	165	6908
Posidonia / Halophila	401	404	805	275	150	425	3074	0	3074	192	0	192
Posidonia / Zostera	17	94	111	0	0	0	3655	41	3696	176	0	176
Posidonia Mixed				601	168	770	14214	0	14214	28264	246	28511
Zostera				0	0	0	210	366	576	538	117	655
Zostera / Halophila	36418	12203	48621	20328	1025	21353	10237	867	11104	11992	10684	22676
Halophila	999	17277	18276	15630	21335	36965	12513	9010	21523	224	174	398
Rock / Rubble / Reef	12887	3594	16480	13616	4503	18120	25323	12187	37510	22789	12238	35027
Sand or silt	-	-	-	-	-	-	52838	49757	102594	64923	64636	129560
Project Boundary												
Posidonia	2791	0	2791	3555	0	3555	19	137	156	456	9	464
Posidonia / Halophila	804	170	975	838	3	841	3175	0	3175	0	0	0
Posidonia / Zostera	0	0	0	0	0	0	85	0	85	30	0	30
Posidonia Mixed	635	0	635	484	132	616	1083	0	1083	3492	151	3643
Zostera	0	0	0	0	0	0	247	135	382	26	462	488
Zostera / Halophila	22630	6367	28997	2249	7053	9302	7728	295	8023	12151	8294	20445
Halophila	1733	20868	22601	19242	17868	37110	5880	9073	14952	1618	316	1934
Rock / Rubble / Reef	5174	7778	12952	5336	8871	14207	5959	9463	15421	6337	9489	15826
Sand or silt	-	-	-	-	-	-	22140	42777	64917	22199	42810	65009
Buffer Area - temporary	construction footpr	rint (15 m buffer)										
Posidonia	70	0	70	106	0	106	6	0	6	42	0	42
Posidonia / Halophila	22	0	22	23	0	23	65	0	65	0	0	0
Posidonia / Zostera	0	0	0	0	0	0	49	0	49	0	0	0
Posidonia Mixed	136	0	136	91	0	91	143	0	143	209	0	209
Zostera	146	0	146	0	0	0	22	0	22	72	0	72
Zostera / Halophila	3745	51	3796	7	0	7	1691	0	1691	2595	51	2645
Halophila	84	3474	3558	4358	2505	6863	1884	78	1962	168	0	168
Rock / Rubble / Reef	817	670	1487	773	680	1453	1696	1626	3322	1667	1626	3293
Sand or silt	-	-	-	-	-	-	1636	3736	5372	2421	3762	6184
Construction footprint -	permanent											
Posidonia	4	0	4	0	0	0	0	0	0	0	0	0
Posidonia / Halophila	16	0	16	14	0	14	5	0	5	0	0	0
Posidonia / Zostera	0	0	0	0	0	0	0	0	0	0	0	0
Posidonia Mixed	0	0	0	0	0	0	0	0	0	7	0	7
Zostera	52	0	52	0	0	0	18	0	18	19	0	19
Zostera / Halophila	866	0	866	42	0	42	365	0	365	677	0	677
Halophila	57	991	1048	985	673	1658	435	0	435	37	0	37
Rock / Rubble / Reef	103	114	217	103	114	218	229	519	747	229	518	747
Sand or silt	-	-	-	-	-	-	274	1035	1309	374	1035	1409

*Niche (2022a) presented seagrass within the Project Boundary inclusive of seagrass totals within the Construction Footprint and Buffer Area. The totals presented in this table are for each discreet individual area (i.e. not inclusive of other areas).

Baseline 1 - Baseline 4: drop camera survey results - seagrass species

Survey	Baseline 1						Baseline 2						Baseline 3						Baseline 4					
	Halophila ('HS)	Zostera (ZC)	Posidonia	(PA)	Halophila (HS)	Zostera (Zo	c)	Posidonia ((PA)	Halophila ((HS)	Zostera (Zo	c)	Posidonia (PA)	Halophila	(HS)	Zostera (Zo	c)	Posidonia	(PA)
Species	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error
HZ- LP01	15.6	1.4	0.7	0.4	0.0	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0
HZ- LP02	10.7	1.4	3.7	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.2	0.0	0.0
HZ- LP03	20.2	2.2	0.8	0.6	0.0	0.0	3.8	0.8	0.0	0.0	0.0	0.0	1.4	0.6	0.1	0.1	0.0	0.0	0.7	0.3	0.0	0.0	0.0	0.0
HZ- LP04	24.0	2.0	0.0	0.0	0.0	0.0	6.8	1.3	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.3	0.2	0.0	0.0	0.0	0.0
HZ-K05	1.5	0.5	0.1	0.1	0.0	0.0	1.5	0.4	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	4.4	0.8	0.1	0.1	0.0	0.0
HZ-K06	0.3	0.2	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HZ-K07	0.7	0.3	0.8	0.5	0.0	0.0	0.9	0.4	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HZ-K08	1.0	0.4	1.7	0.6	0.0	0.0	1.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	1.4	0.5	2.7	1.5	0.0	0.0
HZ-K09	3.8	1.1	38.9	2.8	0.0	0.0	21.1	1.5	0.3	0.2	0.0	0.0	0.6	0.3	2.9	1.1	0.0	0.0	6.7	1.1	7.1	1.1	0.0	0.0
HZ-K10	2.3	0.6	21.2	2.5	0.0	0.0	12.6	1.7	0.6	0.3	0.0	0.0	0.9	0.5	2.0	0.7	0.0	0.0	6.6	1.5	19.0	1.9	0.0	0.0

Baseline 1 – Baseline 4: drop camera survey results – macroalgae, seagrass substrate

Survey	Baseline 1						Baseline 2						Baseline 3						Baseline 4					
	MACROAL	GAE (MA)	SEAGRASS	(S)	SUBSTRAT	E (SU)	MACROAL	GAE (MA)	SEAGRASS	(S)	SUBSTRAT	E (SU)	MACROAL	GAE (MA)	SEAGRASS	(S)	SUBSTRATE	E (SU)	MACROAL	GAE (MA)	SEAGRASS	(S)	SUBSTRAT	E (SU)
Species	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error
HZ- LP01	0.0	0.0	16.3	1.5	83.7	1.5	0.0	0.0	0.5	0.2	99.2	0.3	0.1	0.1	0.0	0.0	99.6	0.3	0.0	0.0	0.2	0.2	99.8	0.2
HZ- LP02	0.0	0.0	14.4	1.4	83.6	1.5	0.0	0.0	0.0	0.0	96.0	3.3	0.4	0.3	0.1	0.1	99.3	0.3	20.9	4.9	0.3	0.2	76.2	4.8
HZ- LP03	0.3	0.2	21.0	2.3	78.6	2.4	0.8	0.4	3.8	0.8	95.4	0.8	0.1	0.1	1.6	0.6	98.0	0.6	1.7	0.8	0.7	0.3	97.6	0.9
HZ- LP04	0.0	0.0	24.0	2.0	75.5	1.9	0.0	0.0	6.8	1.3	92.7	1.3	0.3	0.2	0.1	0.1	99.1	0.4	0.0	0.0	0.3	0.2	99.7	0.2
HZ-K05	0.0	0.0	1.6	0.6	95.0	1.4	0.0	0.0	1.5	0.4	98.4	0.4	0.6	0.3	0.2	0.2	97.8	0.5	0.0	0.0	4.5	0.9	81.5	3.2
HZ-K06	0.5	0.3	0.3	0.2	95.3	0.9	0.2	0.2	0.2	0.2	99.5	0.2	0.6	0.3	0.2	0.2	97.8	0.5	0.0	0.0	0.0	0.0	98.9	0.6
HZ-K07	0.0	0.0	1.5	0.6	96.8	0.8	0.7	0.3	0.9	0.4	98.4	0.5	0.3	0.2	0.1	0.1	99.6	0.2	0.1	0.1	0.0	0.0	98.7	0.5
HZ-K08	0.1	0.1	2.7	0.8	92.6	1.6	0.0	0.0	1.1	0.3	98.9	0.3	3.1	0.7	0.2	0.2	96.4	0.7	0.0	0.0	4.1	1.6	88.9	3.7
HZ-K09	0.2	0.2	42.7	2.7	57.0	2.7	0.0	0.0	21.5	1.5	78.4	1.5	2.2	0.5	3.5	1.1	93.8	1.5	0.0	0.0	13.8	1.0	59.4	2.9
HZ-K10	0.0	0.0	23.5	2.8	76.2	2.8	0.0	0.0	13.2	1.6	86.8	1.6	0.7	0.3	2.9	0.7	96.3	0.9	0.0	0.0	25.5	2.0	46.4	3.7

Baseline 1 – Baseline 4: drop camera survey results - epiphytic, algae turfing algae, sand silt

Survey	Baseline 1						Baseline 2						Baseline 3						Baseline 4					
Site	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment ((SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment (SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment (SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment	(SS) (%)
Site	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error
HZ-LP-01	0.0	0.0	0.0	0.0	67.8	2.2	N.D.	-	0.3	0.3	52.0	5.0	0.0	0.0	0.3	0.3	85.4	2.8	0.0	0.0	0.0	0.0	82.3	3.8
HZ-LP-02	2.1	0.6	0.0	0.0	83.0	1.5	N.D.	-	4.0	3.3	82.1	4.6	0.0	0.0	0.1	0.1	93.3	1.3	2.6	1.0	0.0	0.0	62.1	5.2
HZ-LP-03	0.0	0.0	0.1	0.1	75.5	2.7	N.D.	-	0.0	0.0	91.4	1.0	0.0	0.0	0.3	0.2	92.7	1.2	0.1	0.1	0.0	0.0	94.3	1.2
HZ-LP-04	0.1	0.1	0.3	0.2	46.9	3.0	N.D.	-	0.0	0.0	74.3	3.2	0.0	0.0	0.4	0.3	82.8	3.6	0.0	0.0	0.0	0.0	97.6	0.8
HZ-K-05	2.0	0.6	1.3	0.6	94.9	1.4	N.D.	-	0.1	0.1	98.4	0.4	0.0	0.0	1.3	0.3	90.2	2.1	13.9	2.4	0.1	0.1	81.5	3.2
HZ-K-06	3.6	0.8	0.3	0.2	95.1	0.9	N.D.	-	0.0	0.0	99.5	0.2	0.0	0.0	1.3	0.3	90.2	2.1	1.1	0.6	0.0	0.0	98.9	0.6

Survey	Baseline 1						Baseline 2						Baseline 3						Baseline 4					
Cite	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment (SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment (SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment (SS) (%)	Epiphytic a (%)	lgae (EA)	Turfing alg	ae (TA) (%)	Sediment	(SS) (%)
Site	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error	Mean	Standard error
HZ-K-07	1.8	0.5	0.0	0.0	96.6	0.8	N.D.	-	0.0	0.0	98.4	0.5	0.0	0.0	0.0	0.0	99.3	0.3	1.2	0.5	0.0	0.0	98.7	0.5
HZ-K-08	2.3	0.8	2.3	1.1	92.4	1.6	N.D.	-	0.0	0.0	98.9	0.3	0.0	0.0	0.2	0.2	95.9	0.8	7.0	2.5	0.0	0.0	88.9	3.7
HZ-K-09	0.1	0.1	0.0	0.0	57.0	2.7	N.D.	-	0.1	0.1	78.4	1.5	0.5	0.3	0.1	0.1	90.7	2.0	26.8	2.5	0.0	0.0	59.4	2.9
HZ-K-10	0.3	0.2	0.0	0.0	76.2	2.8	N.D.	-	0.0	0.0	86.8	1.6	0.1	0.1	0.0	0.0	92.4	1.6	28.1	2.6	0.0	0.0	46.4	3.7

Note: N.D. not recorded

Appendix 5: Summary Posidonia bed and patch monitoring data

Baseline 1 – Baseline 4: Average shoot density results (0.25 m²)

			Baseline 1 (winter 2021)					Baseline 2 (s	ummer 2022)	1				Baseline 3	(winter 2022)				В	aseline 4 (su	mmer 2022/2	3)	
Seagrass	Halo	phila	Zos	tera	Posi	donia	Halo	ophila	Zos	tera	Posi	donia	Halo	phila	Zo	stera	Posi	donia	Halo	ophila	Zos	tera	Posi	idonia
	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error
PB-K01	15.2	2.9	15.8	3.7	15.8	1.7	124.8	18.0	0.8	0.8	16.8	2.7	45.2	13.4	2.2	1.3	10.8	1.3	18.2	5.7	1.8	1.2	8.2	1.4
РВ-КО2	35.2	5.4	109.6	8.4	13.2	2.5	335.2	32.9	0.0	0.0	16.2	1.4	20.2	4.0	0.8	0.8	12.4	2.0	24.6	7.8	27.6	24.7	10.2	1.8
РВ-КОЗ	19.2	2.9	24.8	2.0	39.6	7.5	113.6	9.0	78.4	20.4	19.6	3.6	19.8	4.9	33.6	9.2	17.2	2.3	24.4	7.1	34.2	12.0	13.0	2.3
РВ-КО4	43.2	13.2	68.8	13.8	15.0	1.3	145.6	22.7	76.0	13.1	21.2	0.9	10.2	1.7	24.0	4.3	13.6	0.9	27.6	8.2	56.4	23.4	13.2	1.7
РВ-К05	56.0	15.7	42.4	11.4	37.4	1.7	217.6	29.7	137.6	35.5	21.0	2.4	1.2	1.2	23.4	6.0	9.8	2.1	1.8	1.1	238.8	33.2	11.8	1.0
РВ-КО6	24.8	11.2	19.2	4.3	30.8	4.6	112.8	12.2	62.4	12.4	26.0	4.5	1.8	1.0	0.4	0.4	25.2	1.7	1.8	0.9	43.8	13.9	15.4	1.6
РВ-К07	2.4	1.6	12.0	3.8	7.8	0.7	139.2	18.9	33.6	14.4	50.4	2.6	2.6	1.5	0.0	0.0	35.6	4.3	6.2	3.3	16.8	11.6	22.6	2.8
PB-K08	12.0	4.0	37.6	10.4	8.8	1.1	58.4	27.4	20.8	11.0	46.8	1.7	0.8	0.6	11.6	5.0	36.2	3.8	47.4	28.4	64.0	36.5	35.2	6.3
РВ-К09	19.2	7.1	62.4	8.4	11.2	0.4	164.8	32.1	0.8	0.8	14.8	1.0	14.8	2.2	6.4	3.4	10.6	0.7	17.0	8.9	41.2	24.1	6.4	0.9
PB-K10	34.4	3.7	24.0	4.4	20.8	2.6	108.8	13.9	2.4	1.6	12.2	2.1	1.0	0.6	0.0	0.0	11.4	0.5	0.0	0.0	1.2	1.2	5.4	2.0
PB-LP11	44.0	7.0	4.8	2.9	22.0	1.8	96.0	4.0	0.0	0.0	29.8	3.0	0.0	0.0	0.0	0.0	11.0	0.8	0.0	0.0	3.6	3.1	7.0	0.6
PB-LP12	5.6	5.6	4.0	4.0	29.0	1.9	28.8	17.7	6.4	3.9	33.2	8.1	0.0	0.0	0.0	0.0	21.4	2.8	0.0	0.0	0.4	0.4	14.6	1.4
РР-КОЗ	32.8	2.7	32.8	9.0	17.4	1.6	428.0	69.4	4.8	3.2	12.4	1.3	8.6	3.0	2.6	1.6	7.4	1.0	5.0	2.4	121.6	14.2	8.2	0.9
РР-КО4	83.2	9.7	62.4	7.0	13.0	1.8	230.4	12.8	4.0	2.2	11.2	2.5	1.4	1.4	0.2	0.2	14.0	0.4	2.8	2.1	27.4	11.1	10.6	1.1
РР-К07	155.0	35.3	146.0	29.6	6.5	1.3	310.4	86.1	5.6	3.0	16.4	3.9	2.2	1.4	15.0	7.4	9.8	2.6	3.2	1.8	134.4	18.7	8.0	0.9
PP-K08	50.7	21.9	104.0	18.9	13.0	0.6	199.2	34.9	10.4	3.0	14.2	1.5	6.4	4.5	71.0	22.5	5.8	1.6	9.0	6.8	97.4	17.0	6.0	0.5
РР-К09	24.0	10.3	71.0	10.0	13.0	1.9	144.8	55.1	41.6	17.7	15.0	1.5	6.8	2.1	13.0	3.4	11.0	2.2	8.0	4.6	117.3	15.4	10.3	2.9
PP-K11	42.0	13.1	76.0	12.5	17.3	2.7	152.0	45.3	24.8	9.4	16.2	4.6	15.8	4.4	53.6	7.7	17.4	1.8	0.2	0.2	180.2	54.5	9.8	2.2
PP-LP01	140.0	26.6	4.0	4.0	12.0	1.7	152.0	36.7	0.0	0.0	13.0	2.0	0.0	0.0	0.0	0.0	7.8	1.5	0.8	0.8	0.0	0.0	4.8	1.4
PP-LP02	97.3	15.4	13.3	13.3	15.3	1.5	128.0	6.9	0.0	0.0	24.7	1.9	0.0	0.0	0.0	0.0	12.0	0.8	3.8	2.6	24.2	17.2	12.0	3.6

Baseline 1 – Baseline 4: Average leaf length (0.25 m²)

Survey		Baseline 1 (v	winter 2021)			Baseline 2 (s	ummer 2022)	1		Baseline 3 (winter 2022)		B	aseline 4 (sur	nmer 2022/2	3)
	Zos	tera	Posid	lonia	Zos	tera	Posid	lonia	Zos	tera	Posid	lonia	Zos	tera	Posid	donia
Species	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error	Average	Standard error
PB-K01	5.3	0.8	25.3	2.5	16.0	0.0	34.2	1.1	2.3	0.2	5.3	1.6	12.2	0.3	34.3	1.5
РВ-КО2	8.7	1.2	33.6	2.4	-	-	28.5	1.9	2.4	0.2	8.5	-	16.9	4.8	33.3	1.8
РВ-КОЗ	30.6	1.4	11.7	1.3	11.3	4.8	31.0	1.1	2.2	0.1	10.9	1.1	13.5	0.9	43.1	3.0
РВ-КО4	29.1	5.9	16.9	4.5	13.6	3.4	31.7	1.9	1.5	0.1	9.7	0.7	9.3	0.8	30.6	2.1
РВ-КО5	5.5	0.4	38.4	2.0	9.1	0.8	32.5	0.4	2.2	-	8.0	1.0	3.3	0.2	28.3	1.9
РВ-КО6	9.2	2.4	31.3	2.7	7.5	1.1	33.2	1.3	2.5	0.2	5.0	-	7.2	0.6	25.3	1.7
РВ-К07	10.5	0.7	30.5	0.9	10.4	1.9	30.7	1.5	1.3	0.1	-	-	6.1	0.7	29.6	1.4
PB-K08	10.4	0.6	30.8	1.9	16.1	3.0	32.3	1.2	1.5	0.3	5.0	0.6	6.8	0.4	24.3	1.7
РВ-КО9	15.2	1.8	38.6	2.6	14.0	-	36.3	1.3	2.2	0.1	7.3	0.9	7.7	2.3	36.3	3.1
PB-K10	4.2	0.8	27.0	2.8	14.7	4.8	31.9	1.4	1.9	0.4	-	-	4.3	-	25.5	3.9
PB-LP11	4.4	0.3	38.6	0.8		-	46.2	1.2	-	-	-	-	5.8	0.0	24.7	2.1
PB-LP12	4.6	-	34.6	2.5	12.2	1.9	42.4	3.3	-	-	-	-	8.0	-	39.0	3.5
РР-КОЗ	6.2	1.1	36.9	3.0	7.9	1.2	27.8	1.1	8.8	0.0	25.6	1.2	7.9	1.1	32.6	1.3
РР-КО4	8.7	1.0	27.7	1.6	12.2	2.4	37.5	2.4	12.3	-	21.5	1.1	9.1	0.4	25.8	1.5
РР-К07	9.9	0.8	34.8	2.8	7.7	1.5	31.5	1.4	7.9	1.5	21.4	1.3	8.4	0.7	28.1	1.0
РР-КО8	11.9	1.9	37.0	1.8	8.1	0.7	36.2	1.3	6.6	0.6	22.9	1.6	8.2	2.2	23.5	6.3
РР-КО9	11.7	0.3	37.1	1.5	6.6	1.2	33.1	1.9	7.9	1.2	24.4	2.2	10.6	0.3	38.4	0.2
PP-K11	10.1	0.9	58.5	2.7	20.5	11.0	40.6	2.0	7.3	0.6	32.2	2.7	3.3	0.5	30.5	2.4
PP-LP01	13.9	-	32.7	3.3		-	35.8	0.9		-	21.5	1.5	-	-	31.0	1.9
PP-LP02	2.1	-	27.2	2.2		-	39.0	1.6		-	21.7	1.6	5.2	0.4	29.2	2.4

Baseline 1 - Baseline 4: Average epiphytic cover (0.25 m²)

Survey			Baseline 1 (winter 2021)					Baseline 2 (s	ummer 2022)					Baseline 3	(winter 2022)				В	aseline 4 (sun	nmer 2022/2	3)	
	Halo	phila	Zos	tera	Posie	donia	Halo	phila	Zos	tera	Posi	donia	Halo	phila	Zos	stera	Posic	lonia	Halo	phila	Zos	tera	Posic	donia
Species	Average Epiphyte Scale	Standard error																						
PB-K01	2.2	0.2	2.7	0.2	2.0	0.1	2.8	0.3	4.0	0.0	4.1	0.1	2.1	0.1	2.0	0.4	3.6	0.3	2.4	0.4	1.0	0.0	3.1	0.2
РВ-КО2	2.6	0.2	1.7	0.2	3.0	0.4	2.2	0.1	-	-	3.3	0.1	2.4	0.1	3.0	-	3.4	0.2	2.0	0.3	1.8	0.1	3.3	0.0
РВ-КОЗ	2.5	0.4	3.3	0.3	2.0	0.2	2.7	0.2	3.0	0.4	4.3	0.1	2.0	0.2	1.9	0.1	3.5	0.1	2.8	0.2	1.4	0.2	4.5	0.3
РВ-КО4	3.0	0.0	3.0	0.0	3.3	0.2	2.3	0.3	2.5	0.2	3.8	0.1	1.8	0.2	1.9	0.2	3.6	0.2	2.1	0.3	1.8	0.2	3.0	0.1
PB-K05	2.6	0.4	1.3	0.0	3.0	0.1	2.7	0.3	2.6	0.1	3.9	0.1	1.0	-	1.6	0.3	3.6	0.1	1.6	0.1	1.3	0.1	2.8	0.2
РВ-КО6	3.1	0.3	1.5	0.1	3.7	0.2	3.2	0.2	2.6	0.3	4.4	0.1	1.7	0.3	1.0	-	3.4	0.2	2.0	0.2	2.3	0.2	3.5	0.2
РВ-К07	4.0	0.3	1.7	0.0	3.6	0.1	2.8	0.4	2.1	0.1	4.2	0.2	2.3	0.1	-	-	3.7	0.2	2.7	0.2	2.3	0.1	2.9	0.3
PB-K08	3.6	0.3	1.9	0.1	3.8	0.2	2.5	0.2	3.6	0.5	4.4	0.1	1.2	0.1	1.6	0.1	3.5	0.1	1.4	0.1	1.2	0.1	2.5	0.2
РВ-К09	2.5	0.5	2.1	0.1	3.8	0.1	2.6	0.2	2.7	-	4.1	0.3	3.0	0.2	2.6	0.4	3.5	0.1	3.1	0.4	2.3	0.3	3.4	0.3
PB-K10	3.9	0.2	2.9	0.4	3.8	0.2	2.6	0.2	2.1	0.1	4.4	0.4	2.3	0.2	-	-	3.7	0.2	-	-	1.0	-	2.3	0.2
PB-LP11	2.3	0.1	1.7	0.3	2.2	0.2	3.3	0.3		-	3.0	0.1	-	-	-	-	3.0	0.2	-	-	1.9	0.3	3.1	0.3
PB-LP12	2.9	-	2.8	-	3.9	0.2	1.9	0.4	1.7	0.3	2.9	0.1	-	-	-	-	4.6	0.2	-	-	2.0	-	3.3	0.3
PP-K03	4.1	0.3	3.8	0.3	4.2	0.3	2.3	0.2	2.2	0.2	3.7	0.2	2.9	0.1	1.7	-	2.7	0.3	1.8	0.3	1.9	0.1	2.9	0.1
РР-КО4	3.4	0.2	2.7	0.5	4.1	0.2	3.0	0.3	3.7	0.3	4.2	0.2	2.3	-	1.0	-	2.7	0.2	2.1	0.1	1.8	0.2	3.1	0.1
РР-К07	2.1	0.2	1.9	0.1	2.2	0.0	2.3	0.3	1.7	0.2	3.5	0.1	2.7	-	2.3	0.2	3.8	0.3	2.1	0.1	2.1	0.1	3.0	0.2
PP-K08	3.0	0.5	2.3	0.1	4.1	0.1	2.8	0.3	1.8	0.7	3.9	0.2	2.3	0.4	2.4	0.2	3.6	0.2	2.4	0.5	2.1	0.2	2.7	0.3
РР-КО9	3.7	0.2	2.7	0.2	4.0	0.2	2.3	0.1	2.9	0.2	3.7	0.1	2.1	0.4	2.6	0.2	3.7	0.4	2.1	0.1	1.9	0.3	2.8	0.2
PP-K11	2.6	0.3	2.6	0.3	3.0	0.2	2.1	0.2	2.6	0.4	4.2	0.1	1.8	0.1	2.3	0.2	4.3	0.3	1.0	-	1.2	0.1	2.0	0.3
PP-LP01	1.7	0.3	2.0	-	2.3	0.1	3.1	0.6		-	3.5	0.3		-		-	3.0	0.1	2.2	-	-	-	3.0	0.3
PP-LP02	1.8	0.3	1.0	-	1.9	0.2	3.4	0.1		-	3.0	0.4		-		-	4.2	0.1	2.0	0.0	1.8	0.2	3.5	0.1

Survey	Baseline 1 (winter 2021)	Baseline 2 (summer 2022)	Baseline 3 (winter 2022)	Baseline 4 (summer 2022/23)
РВ-КО1	46.0	34.0	0.0	0.0
РВ-К02	42.7	12.0	25.1	4.0
РВ-КОЗ	42.0	28.0	0.0	0.0
РВ-КО4	0.0	12.0	26.0	0.0
РВ-К05	68.0	18.0	14.0	2.0
РВ-КО6	44.0	34.0	12.0	42.0
РВ-К07	40.7	30.0	0.0	52.0
РВ-К08	47.0	88.0	30.0	20.0
РВ-К09	4.0	24.2	0.0	36.2
PB-K10	55.0	6.1	0.0	0.0
PB-LP11	6.0	50.0	14.9	0.0
PB-LP12	50.0	28.0	0.0	-
РР-КОЗ	46.0	10.0	0.0	28.1
РР-КО4	-	25.3	4.0	14.0
РР-КО7	14.6	32.0	0.0	45.0
РР-КО8	0.0	63.6	0.0	69.5
РР-КО9	67.5	72.0	0.0	-
PP-K11	25.0	26.0	0.0	2.5
PP-LP01	30.7	75.2	2.5	0.0
PP-LP02	3.3	40.0	-	100.0

Baseline 1 - Baseline 4: Average percentage of *P. australis* sheath visible (0.25 m²)

Appendix 6: Statistical analysis results

Halophila / Zostera seagrasses: La Perouse

Univariate PERMANOVA for Total Seagrass Cover

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	28667	9555.8	65.534	0.0002	9960
Si	3	1414	471.34	3.2325	0.0699	9953
SuxSi	9	1312.3	145.82	4.7504	0.0001	9927
Res	464	14243	30.695			
Total	479	45636				

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'LP01' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	10.607	0.0001	4868	0.0001
1, 3	11.03	0.0001	1891	0.0001
1, 4	10.82	0.0001	1973	0.0001
2, 3	2.1112	0.1135	6	0.041
2, 4	0.88104	0.387	10	0.3817
3, 4	1.4392	0.4908	2	0.1553

Within level 'LP02' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	10.087	0.0001	2618	0.0001
1, 3	9.9785	0.0001	2935	0.0001
1, 4	9.7099	0.0001	3655	0.0001
2, 3	1	1	1	0.3201
2, 4	1.3605	0.488	2	0.1762
3, 4	0.82605	0.7444	3	0.4145

Within level 'LP03' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		6.9595	0.0001	7766	0.0001
1, 3		8.0355	0.0001	4273	0.0001
1, 4		8.6188	0.0001	4318	0.0001

			Unique		
Groups	t	P(perm)	perms	P(MC)	
2, 3		2.227	0.0253	80	0.0291
2, 4		3.6846	0.0007	74	0.0007
3, 4		1.3061	0.2713	10	0.1934

Within level 'LP04' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		7.3915	0.0001	8585	0.0001
1, 3		12.193	0.0001	2647	0.0001
1, 4		12.045	0.0001	2701	0.0001
2, 3		5.3467	0.0001	469	0.0001
2, 4		5.1345	0.0001	489	0.0001
3, 4		1.0269	0.6118	3	0.3044

Term 'SuxSi' for pairs of levels of factor 'Site'

Within level '1' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP02	0.92628	0.352	4333	0.3562
LP01, LP03	1.7145	0.0943	5070	0.0897
LP01, LP04	3.1757	0.0025	4441	0.003
LP02, LP03	2.4239	0.0184	5954	0.0211
LP02, LP04	3.9985	0.0003	5745	0.0004
LP03, LP04	0.99737	3.15E-01	6007	0.3307

Within level '2' of factor 'Survey'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
LP01, LP02		2.1112	0.1109	6	0.0381
LP01, LP03		4.0471	0.0001	152	0.0003
LP01, LP04		5.0185	0.0001	876	0.0001
LP02, LP03		4.767	0.0001	68	0.0001
LP02, LP04		5.4562	0.0001	469	0.0001
LP03, LP04		2.0536	4.33E-02	548	0.0427

Within level '3' of factor 'Survey'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
LP01, LP02		1	1	1	0.3183

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP03	2.5357	0.0096	8	0.0141
LP01, LP04	1	1	1	0.3159
LP02, LP03	2.3169	0.0288	8	0.0222
LP02, LP04	7.80E-09	1	2	1
LP03, LP04	2.3169	2.81E-02	8	0.0253

Within level '4' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP02	0.38368	1	3	0.7052
LP01, LP03	1.3359	0.3286	5	0.1837
LP01, LP04	0.46009	1	3	0.6406
LP02, LP03	0.86978	0.5729	5	0.3873
LP02, LP04	1.04E-08	1	4	1
LP03, LP04	0.95697	0.541	5	0.3426

Within level '1' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP02	9.26E-01	0.352	4333	0.3562
LP01, LP03	1.7145	0.0943	5070	0.0897
LP01, LP04	3.18E+00	0.0025	4441	0.003
LP02, LP03	2.4239	0.0184	5954	0.0211
LP02, LP04	4	0.0003	5745	0.0004
LP03, LP04	0.99737	0.315	6007	0.3307

Within level '2' of factor 'Survey'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
LP01, LP02	2.11E+00	0.1109	6	0.0381	
LP01, LP03	4.0471	0.0001	152	0.0003	
LP01, LP04	5.02E+00	0.0001	876	0.0001	
LP02, LP03	4.767	0.0001	68	0.0001	
LP02, LP04	5.4562	0.0001	469	0.0001	
LP03, LP04	2.0536	0.0433	548	0.0427	

Within level '3' of factor 'Survey'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
LP01, LP02		1	1	1	0.3183

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP03	2.5357	0.0096	8	0.0141
LP01, LP04	1	1	1	0.3159
LP02, LP03	2.3169	0.0288	8	0.0222
LP02, LP04	7.80E-09	1	2	1
LP03, LP04	2.3169	0.0281	8	0.0253

Within level '4' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
LP01, LP02	0.38368	1	3	0.7052
LP01, LP03	1.3359	0.3286	5	0.1837
LP01, LP04	0.46009	1	3	0.6406
LP02, LP03	0.86978	0.5729	5	0.3873
LP02, LP04	1.04E-08	1	4	1
LP03, LP04	0.95697	0.5414	5	0.3426

Multivariate PERMANOVA

PERMANOVA ta	PERMANOVA table of results					
						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Se	1	12396	12396	0.52964	1	3
Si	3	26619	8872.9	2.3097	0.0604	9951
Su(Se)	2	46811	23406	95.638	0.0001	9960
SexSi	3	20033	6677.6	1.7383	0.1577	9957
Su(Se)xSi	6	23049	3841.6	15.697	0.0001	9948
Res	464	1.14E+05	244.73			
Total	479	2.42E+05				

Halophila / Zostera seagrasses: Kurnell

Univariate PERMANOVA for Total Seagrass Cover

PERMANOVA table of results

							Unique
Source	df		SS	MS	Pseudo-F	P(perm)	perms
Su		3	10876	3625.3	2.2305	0.1097	9960
Si		5	48163	9632.7	5.9267	0.0037	9945
SuxSi		15	24380	1625.3	39.85	0.0001	9923
Res		696	28387	40.786			
Total		719	1.12E+05				

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'K05' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.16234	0.8911	1252	0.8722
1, 3	2.2387	0.005	47	0.0261
1, 4	2.6995	0.0069	828	0.0108
2, 3	2.9557	0.0051	107	0.0045
2, 4	3.0843	3 0.003	1074	0.0039
3, 4	4.716	0.0001	176	0.0002

Within level 'K06' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.18775	0.7436	8	0.8565
1, 3	0.16976	0.7432	8	0.8609
1, 4	1.4389	0.4842	2	0.152
2, 3	1.83E-02	1	6	0.9869
2, 4	1.439	0.4862	2	0.1535
3, 4	1.4383	0.4962	2	0.1625

Within level 'K07' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.78366	0.4708	345	0.4299
1, 3	2.2617	0.0102	22	0.0266
1, 4	2.4892	0.0091	11	0.0149
2, 3	1.92E+00	0.0654	20	0.0593
2, 4	2.2736	0.0232	16	0.0266
3, 4	1	1	1	0.3192

Within level 'K08' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	1.8337	0.0659	2364	0.0722
1, 3	3.0195	0.0006	115	0.0048
1, 4	0.77745	0.4862	414	0.4381
2, 3	2.32E+00	0.0133	216	0.0234
2, 4	1.8069	0.053	1546	0.0717
3, 4	2.3677	0.0025	19	0.0227

Within level 'K09' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	6.8352	0.0001	9817	0.0001
1, 3	13.3	0.0001	9842	0.0001
1, 4	9.8878	0.0001	9843	0.0001
2, 3	9.72E+00	0.0001	3728	0.0001
2, 4	4.2438	0.0002	2965	0.0001
3, 4	6.7546	0.0001	95	0.0001

Within level 'K10' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	3.1609	0.0021	9812	0.0029
1, 3	7.0836	0.0001	9816	0.0001
1, 4	0.58915	0.5585	9815	0.5495
2, 3	5.70E+00	0.0001	909	0.0001
2, 4	4.7313	0.0001	1694	0.0001
3, 4	10.507	0.0001	528	0.0001

Term 'SuxSi' for pairs of levels of factor 'Site'

Within level '1' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
K05, K06	2.1421	0.0272	26	0.0352
К05, К07	0.16599	0.8839	38	0.8677
К05, К08	1.082	0.2978	122	0.279
ко5, ко9	14.695	0.0001	9818	0.0001
K05, K10	7.62E+00	0.0001	9747	0.0001
K06, K07	1.9325	8.48E-02	18	0.0541
K06, K08	2.9325	0.0017	56	0.0042
ко6, ко9	15.494	0.0001	9815	0.0001
K06, K10	8.2441	0.0001	9642	0.0001
ко7, ко8	1.2245	0.2155	74	0.2225
ко7, ко9	14.75	0.0001	9823	0.0001
К07, К10	7.6675	0.0001	9750	0.0001
ко8, ко9	14.048	0.0001	9831	0.0001
K08, K10	7.1149	0.0001	9747	0.0001
К09, К10	4.9017	0.0001	9803	0.0001

Within level '2' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
K05, K06	2.9729	0.0052	103	0.0044
K05, K07	1.0333	0.2896	215	0.3104
K05, K08	0.76893	0.4414	1742	0.4429
K05, K09	13.039	0.0001	5573	0.0001
K05, K10	6.91E+00	0.0001	3317	0.0001
K06, K07	1.5924	1.46E-01	30	0.1151
K06, K08	2.3077	0.0162	216	0.0245
K06, K09	14.279	0.0001	3832	0.0001
K06, K10	7.8407	0.0001	893	0.0001
K07, K08	0.34309	0.751	1007	0.7356
K07, K09	13.411	0.0001	4406	0.0001
K07, K10	7.2475	0.0001	1722	0.0001
K08, K09	13.421	0.0001	8707	0.0001
K08, K10	7.1969	0.0001	7896	0.0001
K09, K10	3.7364	0.0003	5063	0.0007

Within level '3' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
K05, K06	8.40E-09	1	5	1
K05, K07	0.61109	0.7459	3	0.5447
K05, K08	3.57E-02	1	4	0.9728
K05, K09	2.8686	0.0009	83	0.0048
K05, K10	3.50E+00	0.0003	68	0.0008
K06, K07	0.61109	7.46E-01	3	0.5427
K06, K08	3.57E-02	1	4	0.9732
K06, K09	2.8686	0.0005	81	0.0072
K06, K10	3.4981	0.0002	65	0.0013
K07, K08	0.5841	1	2	0.5645
K07, K09	2.99	0.0004	42	0.0053
K07, K10	3.6967	0.0002	36	0.0006
K08, K09	2.8777	0.0002	41	0.0067
K08, K10	3.5139	0.0001	35	0.0016
K09, K10	0.42011	0.6822	124	0.6846

Within level '4' of factor 'Survey'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
K05, K06		5.05E+00	0.0001	90	0.0001
K05, K07		5.0486	0.0001	91	0.0001
K05, K08		2.15E-01	0.8393	170	0.8273

				Unique	
Groups	t		P(perm)	perms	P(MC)
ко5, ко9		6.7408	0.0001	201	0.0001
K05, K10	9	.51E+00	0.0001	1089	0.0001
K06, K07	Denominator is 0				
K06, K08	2	.51E+00	0.0004	19	0.0149
ко6, ко9		13.187	0.0001	36	0.0001
K06, K10		12.632	0.0001	216	0.0001
ко7, ко8		2.5141	0.0004	19	0.0155
к07, к09		13.187	0.0001	36	0.0001
K07, K10		12.632	0.0001	214	0.0001
K08, K09		4.9816	0.0001	37	0.0001
K08, K10		8.2381	0.0001	211	0.0001
K09, K10		5.1642	0.0001	155	0.0001

Multivariate PERMANOVA

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Se	1	11961	11961	0.58363	0.7997	9938
Si	5	68571	13714	3.4455	0.0131	9937
Su(Se)	2	45612	22806	5.7295	0.0008	9958
SexSi	5	22545	4509	1.1328	0.3587	9930
Su(Se)xSi	10	3.98E+04	3980.4	28.895	0.0001	9906
Res	696	95876	137.75			
Total	719	2.84E+05				

PAIR-WISE TESTS

Term 'Su(Se)xSi' for pairs of levels of factor 'Survey'

Within level 'Winter' of factor 'Season'

Within level 'K05' of factor 'Site'

			Unique		
Groups	t	P(perm)) perms	P(MC)	
1, 3		3.118	0.0003	9962	0.0002

Within level 'Winter' of factor 'Season'

Within level 'K06' of factor 'Site'

			Unique		
Groups	t	P(perm) perms	P(MC)	
1, 3		2.7177	0.0021	9964	0.0019

Within level 'Winter' of factor 'Season'

Within level 'K07' of factor 'Site'

C		D/			Unique			
Groups	t		perm)	0.0001	perms	0270	P(MC)	0.0001
1, 3		3.1976		0.0001		8270		0.0001
Within level 'Wi	nter' of factor 'Se	ason'						
Within level 'K08	9' of factor 'Sito'							
	S OF TACLOF SILE							
					Unique			
Groups	t		perm)		perms		P(MC)	
1, 3		4.2462		0.0001		9967		0.0001
Within level 'Wi	nter' of factor 'Se	ason'						
Within level 'K09	9' of factor 'Site'							
					Unique			
Groups	t	P(perm)		perms		P(MC)	
1, 3		9.1521		0.0001		9951		0.0001
Within level 'Wi	nter' of factor 'Se	ason'						
Within level 'K10	0' of factor 'Site'							
					Unique			
Groups	t	P()	perm)		perms		P(MC)	
1, 3		5.8046		0.0001		9946		0.0001
Within level 'Sur	mmer' of factor 's	Season'						
Within level 'KO!	5' of factor 'Site'							
		_ (,		Unique			
Groups	t	<u>P(ا</u> 6.3152	perm)	0.0001	perms	9946	P(MC)	0.0001
2, 4		0.5152		0.0001		9940		0.0001
Within level 'Sur	mmer' of factor 's	Season'						
Within level 'K00	6' of factor 'Site'							
					Unique			
Groups	t	P(perm)		perms		P(MC)	
2, 4		2.368		0.0039		120		0.0104

Within level 'Summer' of factor 'Season'

Within level 'K07' of factor 'Site'

			Un	ique	
Groups	t	P(perm)	ре	rms	P(MC)
2, 4		2.832	0.0006	3980	0.0009
Within level 'S	ummer' of fact	or 'Season'			
Within level 'K	08' of factor 'S	ite'			
			Un	ique	
Groups	t	P(perm)	ре	rms	P(MC)
2, 4		3.1114	0.0005	9738	0.0019
Within level 'S	ummer' of fact	or 'Season'			
Within level 'K	09' of factor 'S	ite'			
			Un	ique	
Groups	t	P(perm)	ре	rms	P(MC)
2, 4		11.976	0.0001	9950	0.0001
Within level 'S	ummer' of fact	or 'Season'			
Within level 'K	10' of factor 'S	ite'			
			Un	ique	
Groups	t	P(perm)	ре	rms	P(MC)
2, 4		13.049	0.0001	9957	0.0001
Posidonia Beo					
Univariate PE	RMANOVA for	Shoot Count			
PERMANOVA ta	ble of results				
					Unique
Source	df	SS M	S Pseudo	o-F P(perm)	perms

Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	2575.8	858.6	41.478	0.0092	797
Si	1	504.1	504.1	24.353	0.0257	794
SuxSi	3	62.1	20.7	0.36078	0.7805	9941
Res	32	1836	57.375			
Total	39	4978				

PAIR-WISE TESTS

Term 'Su'

			Unique	2	
Groups	t	P(perm	i) perms	P(MC)	
1, 2	3.3	3333	0.1655	6	0.1846
1, 3	5.4	1706	0.1676	6	0.1083
1, 4		49	0.1731	6	0.0136
2, 3	4.3	3714	0.1698	6	0.1404
2, 4	9.8	3571	0.1632	6	0.0631
3, 4	3.8	3571	0.3328	6	0.1612

Univariate PERMANOVA for Leaf Length

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	2464.1	821.36	4.3032	0.1581	839
Si	1	87.32	87.32	0.45748	0.5462	835
SuxSi	3	572.61	190.87	7.7315	0.0005	9954
Res	32	790	24.688			
Total	39	3914				

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'PB-LP11' of factor 'Site'

			U	nique	
Groups	t	P(pern	n) p	erms	P(MC)
1, 2		5.3797	0.0082	77	0.0015
1, 3		11.662	0.007	84	0.0001
1, 4		6.1426	0.0076	97	0.0002
2, 3		14.516	0.0101	95	0.0001
2, 4		8.8927	0.0076	112	0.0001
3, 4		1.8446	0.1016	78	0.1004

Within level 'PB-LP12' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	1.9052	0.0765	81	0.0957
1, 3	3.236	0.0075	77	0.0128
1, 4	1.0185	0.3805	63	0.3448
2, 3	4.779	0.0074	102	0.0013
2, 4	0.71919	0.5026	67	0.4929

			Unique		
Groups	t	P(perm)	perms	P(MC)	
3, 4		3.6009	0.0069	70	0.0073

Univariate PERMANOVA for Epiphytes

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Se	1	1.1804	1.1804	0.81763	0.6685	3
Si	1	6.7827	6.7827	30.87	0.0001	9654
Su(Se)	2	2.8874	1.4437	6.5708	0.0038	9952
SexSi	1	6.0284	6.0284	27.437	0.0002	9649
Pooled	34	7.4703	0.21972			
Total	39	24.349				

PAIR-WISE TESTS

Term 'SexSi' for pairs of levels of factor 'Season'

Within level 'PB-LP11' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
Winter, Summer		1.0816	0.3346	3	0.4017

Within level 'PB-LP12' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
Winter, Summer		2.9806	0.331	3	0.1031

Term 'SexSi' for pairs of levels of factor 'Site'

Within level 'Winter' of factor 'Season'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
PB-LP11, PB-LP12		7.9836	0.0001	2417	0.0001

Within level 'Summer' of factor 'Season'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
PB-LP11, PB-LP12		0.2158	0.8337	2140	0.828

Multivariate PERMANOVA for Composition

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	19679	6559.5	4.0162	0.092	840
Si	1	2802.2	2802.2	1.7157	0.2729	839
SuxSi	3	4899.7	1633.2	5.1896	0.0007	9959
Res	32	10071	314.72			
Total	39	37451				

PERMANOVA table of results

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'PB-LP11' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		3.0663	0.0076	126	0.0064
1, 3		9.7221	0.0086	66	0.0001
1, 4		5.1704	0.0084	91	0.0003
2, 3		25.947	0.009	66	0.0001
2, 4		6.8194	0.0087	91	0.0001
3, 4		1.8798	0.0252	30	0.0841

Within level 'PB-LP12' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.94415	0.3381	126	0.4374
1, 3	1.4466	0.0228	56	0.144
1, 4	2.2659	0.0088	126	0.0114
2, 3	1.9359	0.0093	91	0.0639
2, 4	2.1833	0.0099	126	0.0288
3, 4	1.6577	0.081	91	0.1006

Posidonia Bed: Kurnell

Univariate PERMANOVA for Shoot Count

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	2762	920.65	1.9809	0.1373	9958
Si	9	9991.6	1110.2	2.3886	0.0361	9939
SuxSi	27	12549	464.78	12.964	0.0001	9895
Res	160	5736	35.85			
Total	199	31038				

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'PB-K01' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.31189	0.7859	14	0.7655
1, 3	2.3113	0.0408	14	0.0506
1, 4	3.372	0.0145	19	0.0097
2, 3	2.0135	0.1196	19	0.0774
2, 4	2.8231	0.0298	24	0.0226
3, 4	1.3553	0.2242	13	0.2113

Within level 'PB-K02' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	1.0363	0.3644	17	0.3262
1, 3	0.25049	0.8755	18	0.8079
1, 4	0.96926	0.3816	19	0.3674
2, 3	1.5644	0.1806	16	0.164
2, 4	2.6112	0.0394	18	0.0318
3, 4	0.82565	0.4878	15	0.4305

Within level 'PB-K03' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	2.395	3 0.0325	52	0.0432
1, 3	2.851	7 0.0161	49	0.0223
1, 4	3.379	3 0.0141	56	0.0102
2, 3	0.5579	9 0.6242	24	0.5922
2, 4	1.523	8 0.1711	27	0.1646

		Unique			
Groups	t	P(perm)	perms	P(MC)	
3, 4		1.2816	0.267	18	0.242

Within level 'PB-K04' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	3.9691	0.0167	16	0.0047
1, 3	0.875	0.4681	10	0.4007
1, 4	0.85424	0.4764	13	0.4165
2, 3	6.0083	0.0076	19	0.0001
2, 4	4.2885	0.0146	20	0.0031
3, 4	0.21082	0.9214	11	0.8417

Within level 'PB-K05' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	5.572	0.0077	32	0.0004
1, 3	10.07	0.0067	45	0.0001
1, 4	12.96	0.0076	29	0.0001
2, 3	3.	5 0.0231	30	0.0074
2, 4	3.570	0.0072	23	0.0063
3, 4	0.8543	6 0.4246	13	0.4186

Within level 'PB-K06' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.74564	0.492	35	0.4738
1, 3	1.1412	0.3207	29	0.294
1, 4	3.1567	0.0229	36	0.0138
2, 3	0.16739	0.8982	26	0.8737
2, 4	2.2317	0.0761	32	0.0549
3, 4	4.2976	0.0136	24	0.0029

Within level 'PB-K07' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		15.66	0.0076	42	0.0001
1, 3		6.361	0.0076	48	0.0002
1, 4		5.0468	0.0073	32	0.0006
2, 3		2.9354	0.0292	37	0.0199
2, 4		7.1971	0.0091	46	0.0001

		Unique			
Groups	t	P(perm)	perms	P(MC)	
3, 4		2.5196	0.0457	35	0.0331

Within level 'PB-K08' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	19.292	0.0073	39	0.0001
1, 3	6.9641	0.0071	39	0.0001
1, 4	4.119	0.009	51	0.0029
2, 3	2.5648	0.0471	31	0.0321
2, 4	1.7756	0.1464	39	0.1146
3, 4	0.13573	0.8803	38	0.8993

Within level 'PB-K09' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	3.4641	0.0217	10	0.0095
1, 3	0.71714	0.7023	5	0.4894
1, 4	4.8	0.007	12	0.0014
2, 3	3.4293	0.0233	11	0.008
2, 4	6.261	0.0079	19	0.0002
3, 4	3.5246	0.0252	11	0.0068

Within level 'PB-K10' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		2.5954	0.0477	25	0.0279
1, 3		3.5785	0.0213	20	0.0072
1, 4		4.6861	0.0093	32	0.002
2, 3		0.373	0.7901	12	0.7234
2, 4		2.3324	0.0767	19	0.0463
3, 4		2.8539	0.0293	17	0.0218

Term 'SuxSi' for pairs of levels of factor 'Site'

Within level '1' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО1, РВ-КО2	0.84893	0.4518	17	0.422
РВ-КО1, РВ-КОЗ	3.0854	0.0151	53	0.0141
РВ-КО1, РВ-КО4	0.36745	0.7763	13	0.7284

		Un	ique	
Groups	t	P(perm) pe	rms P(M	IC)
РВ-КО1, РВ-КО5	8.8182	0.007	35	0.0001
РВ-КО1, РВ-КО6	3.0379	0.0262	34	0.0159
РВ-КО1, РВ-КО7	4.2281	0.0067	20	0.003
РВ-КО1, РВ-КО8	3.4238	0.0167	17	0.0098
РВ-КО1, РВ-КО9	2.5796	0.0241	12	0.0322
РВ-КО1, РВ-К10	1.6071	0.1731	17	0.1526
РВ-КО2, РВ-КОЗ	3.3314	0.0099	56	0.0092
РВ-КО2, РВ-КО4	0.63481	0.5815	17	0.5394
РВ-КО2, РВ-КО5	7.9355	0.0081	42	0.0002
РВ-КО2, РВ-КО6	3.3453	0.0228	42	0.0111
РВ-КО2, РВ-КО7	2.0587	0.1195	18	0.0727
РВ-КО2, РВ-КО8	1.6088	0.1775	18	0.1447
РВ-КО2, РВ-КО9	0.78567	0.4884	15	0.4579
РВ-КО2, РВ-К10	2.1095	0.0723	26	0.0699
РВ-КОЗ, РВ-КО4	3.2257	0.0081	50	0.0119
РВ-КОЗ, РВ-КО5	0.2854	0.7981	34	0.7777
РВ-КОЗ, РВ-КО6	0.99768	0.3485	41	0.3506
РВ-КОЗ, РВ-КО7	4.212	0.0087	54	0.004
РВ-КОЗ, РВ-КО8	4.0583	0.0078	57	0.0037
РВ-КОЗ, РВ-КО9	3.7749	0.0092	42	0.0045
РВ-КОЗ, РВ-К10	2.3667	0.0403	36	0.0457
РВ-КО4, РВ-КО5	10.377	0.009	39	0.0001
РВ-КО4, РВ-КО6	3.2917	0.0237	37	0.0097
РВ-КО4, РВ-КО7	4.8107	0.0088	18	0.0013
РВ-КО4, РВ-КО8	3.679	0.0164	17	0.0061
РВ-КО4, РВ-КО9	2.8014	0.0398	11	0.0234
РВ-КО4, РВ-К10	2.0084	0.0936	20	0.0821
РВ-КО5, РВ-КО6	1.3389	0.2644	27	0.2162
РВ-КО5, РВ-КО7	15.822	0.0087	35	0.0001
РВ-КО5, РВ-КО8	14.125	0.0082	39	0.0001
РВ-КО5, РВ-КО9	14.881	0.0068	27	0.0001
PB-K05, PB-K10	5.3576	0.0102	30	0.0015
РВ-КО6, РВ-КО7	4.917	0.0077	44	0.0011
РВ-КО6, РВ-КО8	4.6401	0.0081	45	0.0018
РВ-КО6, РВ-КО9	4.229	0.0094	37	0.0028
PB-K06, PB-K10	1.8905	0.1024	32	0.0923
РВ-КО7, РВ-КО8	0.77152	0.587	8	0.4602
РВ-КО7, РВ-КО9	4.1231	0.0154	9	0.0028
РВ-КО7, РВ-К10	4.8516	0.0073	28	0.0013
РВ-КО8, РВ-КО9	2.1213	0.1134	9	0.0675
РВ-КО8, РВ-К10	4.3022	0.0149	27	0.0022
РВ-КО9, РВ-К10	3.6869	0.0248	18	0.0063

Within level '2' of factor 'Survey'

		Unique		
Groups	t I	P(perm) perms	P(M0	C)
РВ-КО1, РВ-КО2	0.19696	0.9301	15	0.8512
РВ-КО1, РВ-КОЗ	0.61842	0.5333	25	0.5551
РВ-КО1, РВ-КО4	1.5576	0.1593	16	0.1625
РВ-К01, РВ-К05	1.1676	0.3117	21	0.2765
РВ-КО1, РВ-КО6	1.7595	0.1252	32	0.1164
РВ-КО1, РВ-КО7	8.9481	0.0087	47	0.0001
РВ-КО1, РВ-КО8	9.4963	0.0076	47	0.0001
РВ-К01, РВ-К09	0.69928	0.5488	15	0.5109
РВ-КО1, РВ-К10	1.3518	0.2353	21	0.2093
РВ-КО2, РВ-КОЗ	0.86923	0.4482	23	0.4083
РВ-КО2, РВ-КО4	2.9988	0.0224	14	0.0172
РВ-КО2, РВ-КО5	1.7253	0.1394	20	0.1225
РВ-КО2, РВ-КО6	2.0828	0.1003	32	0.0736
РВ-КО2, РВ-КО7	11.464	0.0094	49	0.0001
РВ-КО2, РВ-КО8	13.996	0.0084	42	0.0001
РВ-КО2, РВ-КО9	0.811	0.4878	11	0.4349
РВ-КО2, РВ-К10	1.5836	0.1678	18	0.1473
РВ-КОЗ, РВ-КО4	0.42762	0.8703	18	0.682
РВ-КОЗ, РВ-КО5	0.32152	0.8077	22	0.7541
РВ-КОЗ, РВ-КО6	1.1081	0.3335	31	0.3022
РВ-КОЗ, РВ-КО7	6.8665	0.0068	49	0.0002
РВ-КОЗ, РВ-КО8	6.8	0.0065	48	0.0001
РВ-КОЗ, РВ-КО9	1.2738	0.2597	23	0.242
РВ-КОЗ, РВ-К10	1.7639	0.1329	28	0.1099
РВ-КО4, РВ-КО5	7.88E-02	1	15	0.9375
РВ-КО4, РВ-КО6	1.0515	0.3634	27	0.3184
РВ-КО4, РВ-КО7	10.592	0.0075	45	0.0002
РВ-КО4, РВ-КО8	13.723	0.0077	37	0.0001
РВ-КО4, РВ-КО9	4.9377	0.0102	16	0.0007
РВ-КО4, РВ-К10	3.9931	0.0096	23	0.0044
РВ-КО5, РВ-КО6	0.98437	0.3651	29	0.3536
РВ-КО5, РВ-КО7	8.2957	0.0073	48	0.0001
РВ-КО5, РВ-КО8	8.8807	0.0081	46	0.0001
РВ-КО5, РВ-КО9	2.4061	0.0815	18	0.0483
PB-K05, PB-K10	2.7773	0.0486	25	0.0248
РВ-КОб, РВ-КО7	4.6993	0.0089	44	0.0015
РВ-КО6, РВ-КО8	4.3523	0.0073	42	0.0029
РВ-КО6, РВ-КО9	2.4417	0.0628	30	0.0408
PB-K06, PB-K10	2.7914	0.0328	38	0.0229
PB-K07, PB-K08	1.1619	0.3222	18	0.2842
РВ-КО7, РВ-КО9	12.747	0.0076	39	0.0001
PB-K07, PB-K10	11.414	0.0075	55	0.0001
PB-K08, PB-K09	16.681	0.0074	34	0.0001
PB-K08, PB-K10	13.003	0.0079	50	0.0001

			Unique		
Groups	t	P(perm)	perms	P(MC)	
РВ-КО9, РВ-К10		1.1315	0.3408	14	0.2972

Within level '3' of factor 'Survey'

C			Unique	
Groups	t	P(perm)	perms	P(MC)
PB-K01, PB-K02	0.68224	0.5773	14	0.5186
РВ-КО1, РВ-КОЗ	2.44	0.0244	12	0.0419
РВ-КО1, РВ-КО4	1.7709	0.1435	10	0.112
РВ-КО1, РВ-КО5	0.40226	0.788	15	0.7084
РВ-КО1, РВ-КО6	6.8806	0.0075	29	0.0002
РВ-КО1, РВ-КО7	5.5179	0.0077	42	0.0008
РВ-КО1, РВ-КО8	6.354	0.0084	33	0.000
РВ-КО1, РВ-КО9	0.13484	1	8	0.894
РВ-КО1, РВ-К1О	0.43529	0.8692	7	0.673
РВ-КО2, РВ-КОЗ	1.5912	0.1669	19	0.150
РВ-КО2, РВ-КО4	0.55234	0.6449	13	0.593
РВ-КО2, РВ-КО5	0.89709	0.419	17	0.396
РВ-КО2, РВ-КО6	4.9824	0.0082	30	0.000
РВ-КО2, РВ-КО7	4.8997	0.007	47	0.001
РВ-КО2, РВ-КО8	5.5788	0.0082	44	0.00
РВ-КО2, РВ-КО9	0.85617	0.5333	12	0.421
РВ-КО2, РВ-К10	0.49266	0.7544	11	0.63
РВ-КОЗ, РВ-КО4	1.4576	0.173	14	0.1
РВ-КОЗ, РВ-КО5	2.3663	0.0559	21	0.044
РВ-КОЗ, РВ-КО6	2.832	0.0404	22	0.023
РВ-КОЗ, РВ-КО7	3.7716	0.0187	39	0.00
РВ-КОЗ, РВ-КО8	4.2939	0.0087	39	0.00
РВ-КОЗ, РВ-КО9	2.7405	0.0081	17	0.02
РВ-КОЗ, РВ-К1О	2.4731	0.0158	15	0.038
РВ-КО4, РВ-КО5	1.64E+00	0.1628	15	0.145
РВ-КО4, РВ-КО6	6.1137	0.0076	26	0.000
РВ-КО4, РВ-КО7	4.9923	0.0076	43	0.00
РВ-КО4, РВ-КО8	5.7968	0.0075	32	0.000
РВ-КО4, РВ-КО9	2.5175	0.0457	8	0.037
РВ-КО4, РВ-К10	2.0788	0.0876	7	0.070
РВ-КО5, РВ-КО6	5.7076	0.0082	33	0.000
РВ-КО5, РВ-КО7	5.368	0.0084	49	0.000
РВ-КО5, РВ-КО8	6.0758	0.0082	48	0.000
РВ-КО5, РВ-КО9	0.35425	0.8199	14	0.732
РВ-КО5, РВ-К10	0.7303	0.5726	13	0.485
РВ-КО6, РВ-КО7	2.2534	0.0641	32	0.05
РВ-КО6, РВ-КО8	2.6616	0.0077	28	0.028
РВ-КО6, РВ-КО9	8.037	0.0089	30	0.000
PB-K06, PB-K10	7.9674	0.0081	29	0.000

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО7, РВ-КО8	0.10461	0.9661	30	0.9233
РВ-КО7, РВ-КО9	5.7174	0.0086	46	0.0004
РВ-КО7, РВ-К10	5.5783	0.0073	46	0.0007
РВ-КО8, РВ-КО9	6.632	0.0088	31	0.0001
РВ-КО8, РВ-К10	6.4905	0.0094	28	0.0001
РВ-КО9, РВ-К10	0.88345	0.5428	6	0.4071

Within level '4' of factor 'Survey'

circupstP(perm)permsP(MC)PB-K01, PB-K020.870390.45881.40.4092PB-K01, PB-K031.74810.13571.80.1162PB-K01, PB-K052.08540.10131.30.0685PB-K01, PB-K052.08540.10131.30.0685PB-K01, PB-K052.08540.00641.30.0075PB-K01, PB-K063.39410.00641.30.0027PB-K01, PB-K084.16720.00855.40.0037PB-K01, PB-K081.12450.3137160.2915PB-K02, PB-K030.947110.421170.3657PB-K02, PB-K041.22680.31181.30.557PB-K02, PB-K050.782590.52081.20.4579PB-K02, PB-K062.1780.0714160.063PB-K02, PB-K050.782590.52081.20.4579PB-K02, PB-K062.1780.0714160.063PB-K02, PB-K050.782590.52081.20.4579PB-K02, PB-K050.78250.1357190.1135PB-K03, PB-K060.80560.4612170.0214PB-K03, PB-K060.876621150.9485PB-K03, PB-K060.47270.7403140.6029PB-K03, PB-K060.964760.3385140.3628PB-K03, PB-K060.964760.3385140.3628PB-K03, PB-K060.964760.3385140.3628PB-K03				Unique	
PB-K01, PB-K03 1.7481 0.1357 18 0.1162 PB-K01, PB-K04 2.2869 0.0792 15 0.053 PB-K01, PB-K05 2.0854 0.0113 13 0.0685 PB-K01, PB-K06 3.3911 0.0166 19 0.0075 PB-K01, PB-K07 4.5311 0.0084 33 0.0277 PB-K01, PB-K08 4.1672 0.0085 54 0.0377 PB-K01, PB-K09 1.057 0.3811 11 0.3209 PB-K02, PB-K03 0.94711 0.421 7 0.3651 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K07 3.6688 0.0157 7 0.0669 PB-K02, PB-K07 3.6688 0.0157 7 0.0669 PB-K02, PB-K07 3.6688 0.0157 15 0.456 PB-K02, PB-K07 1.8767 0.1266 14 0.0804 PB-K03, PB-K07	Groups	t	P(perm)	perms	P(MC)
PB-K01, PB-K04 2.2869 0.0792 15 0.053 PB-K01, PB-K05 2.0854 0.1013 13 0.0685 PB-K01, PB-K06 3.3941 0.0166 19 0.0075 PB-K01, PB-K07 4.5311 0.0084 33 0.0027 PB-K01, PB-K08 4.1572 0.0085 54 0.0371 PB-K01, PB-K08 1.1245 0.3137 16 0.2915 PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K04 1.2268 0.3138 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0157 27 0.0669 PB-K02, PB-K06 2.178 0.1357 19 0.153 PB-K02, PB-K07 3.688 0.0157 2.0609 0.4529 PB-K02, PB-K06 0.47287 0.7403 14 0.6964 PB-K03, PB-K05 0.47287 0.7403 14 0.6929 PB-K03, PB-K05	РВ-КО1, РВ-КО2	0.87039	0.4588	14	0.4092
PE-K01, PE-K05 2.0854 0.1013 13 0.0685 PB-K01, PE-K07 4.5311 0.0084 33 0.0027 PB-K01, PE-K08 4.1672 0.0085 54 0.0337 PB-K01, PE-K08 4.1672 0.0085 54 0.0329 PB-K01, PB-K08 1.1245 0.3137 16 0.2915 PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K03 0.78259 0.5208 12 0.4579 PB-K02, PB-K05 0.78259 0.5208 13 0.056 PB-K02, PB-K09 1.8767 0.1266 14 0.056 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K05 </td <td>РВ-КО1, РВ-КОЗ</td> <td>1.7481</td> <td>0.1357</td> <td>18</td> <td>0.1162</td>	РВ-КО1, РВ-КОЗ	1.7481	0.1357	18	0.1162
PE-K01, PE-K06 3.3941 0.0166 19 0.0075 PB-K01, PE-K08 4.5311 0.0084 33 0.0027 PB-K01, PE-K08 4.1672 0.0085 54 0.037 PB-K01, PE-K08 1.057 0.3811 11 0.3020 PB-K01, PB-K09 1.057 0.3811 11 0.3020 PB-K01, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K03 0.94711 0.421 0.759 0.5208 12 0.4579 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 0.663 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 13 0.0169 PB-K02, PB-K08 3.8045 0.0066 48 0.0053 PB-K02, PB-K08 0.47287 0.7403 14 0.6462 PB-K03, PB-K04 0.47287 0.7403 14	РВ-КО1, РВ-КО4	2.2869	0.0792	15	0.053
PB-K01, PB-K07 4.5311 0.0084 33 0.0027 PB-K01, PB-K08 4.1672 0.0085 54 0.0037 PB-K01, PB-K09 1.057 0.3811 11 0.3209 PB-K01, PB-K09 1.027 0.3811 11 0.3209 PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K08 3.8045 0.0096 48 0.0538 PB-K03, PB-K08 1.8767 0.1266 14 0.0986 PB-K03, PB-K04 6.97F-02 1 15 0.9455 PB-K03, PB-K05 0.47287 0.7403 14 0.6662 PB-K03, PB-K06 0.47287 0.7403 14 0.6167 PB-K03, PB-K05	РВ-КО1, РВ-КО5	2.0854	0.1013	13	0.0685
PB-K01, PB-K08 4.1672 0.0085 54 0.0037 PB-K01, PB-K09 1.057 0.3811 11 0.3209 PB-K01, PB-K10 1.1245 0.3137 16 0.2915 PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 7 0.0669 PB-K02, PB-K08 3.8045 0.0096 48 0.053 PB-K02, PB-K08 3.8045 0.0357 19 0.1153 PB-K03, PB-K08 0.47287 0.7403 14 0.6662 PB-K03, PB-K05 0.47287 0.7403 14 0.66162 PB-K03, PB-K08 3.2933 0.0245 17 0.0316 PB-K03, PB-K08 3.2933 0.0245 0.0316 PB-K03, PB-K08 0.03167 <t< td=""><td>РВ-КО1, РВ-КО6</td><td>3.3941</td><td>0.0166</td><td>19</td><td>0.0075</td></t<>	РВ-КО1, РВ-КО6	3.3941	0.0166	19	0.0075
P8-K01, P8-K09 1.057 0.3811 11 0.3209 P8-K01, P8-K10 1.1245 0.3137 16 0.2915 P8-K02, P8-K03 0.94711 0.421 17 0.3657 P8-K02, P8-K04 1.2268 0.3118 13 0.2516 P8-K02, P8-K05 0.78259 0.5208 12 0.4579 P8-K02, P8-K06 2.178 0.0714 16 0.063 P8-K02, P8-K06 2.178 0.0714 16 0.063 P8-K02, P8-K07 3.6888 0.0157 27 0.0069 P8-K02, P8-K08 3.8045 0.0096 48 0.0036 P8-K02, P8-K09 1.8767 0.1266 14 0.0986 P8-K03, P8-K04 6.97-62 1 15 0.9455 P8-K03, P8-K05 0.47287 0.7403 14 0.6462 P8-K03, P8-K06 0.85066 0.4612 17 0.0214 P8-K03, P8-K07 2.607 0.0449 22 0.0371 P8-K04, P8-K05	РВ-КО1, РВ-КО7	4.5311	0.0084	33	0.0027
PB-K01, PB-K10 1.1245 0.3137 16 0.2915 PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 27 0.0069 PB-K02, PB-K08 3.8045 0.0096 48 0.0538 PB-K02, PB-K08 3.8045 0.0096 48 0.0538 PB-K02, PB-K08 3.8045 0.1557 19 0.1153 PB-K03, PB-K04 6.97E-02 1 15 0.9485 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K05 0.47287 0.7403 14 0.6426 PB-K03, PB-K05 0.85066 0.4612 17 0.0216 PB-K03, PB-K05 7.30E-01 0.5602 0.0392 0.8502 0.0312 0.3528	РВ-КО1, РВ-КО8	4.1672	0.0085	54	0.0037
PB-K02, PB-K03 0.94711 0.421 17 0.3657 PB-K02, PB-K04 1.2268 0.3118 13 0.2516 PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 27 0.0069 PB-K02, PB-K08 3.8045 0.0096 48 0.0533 PB-K02, PB-K09 1.8767 0.1266 14 0.0986 PB-K03, PB-K04 6.97E-02 1 15 0.9485 PB-K03, PB-K05 0.47287 0.7403 14 0.6662 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K05 2.607 0.0449 27 0.0316 PB-K04, PB-K05 7.30E-01 0.021 17 0.0212 PB-K04, PB-K05	РВ-К01, РВ-К09	1.057	0.3811	11	0.3209
P8-K02, P8-K04 1.2268 0.3118 13 0.2516 P8-K02, P8-K05 0.78259 0.5208 12 0.4579 P8-K02, P8-K06 2.178 0.0714 16 0.068 P8-K02, P8-K07 3.6888 0.0157 27 0.0069 P8-K02, P8-K08 3.8045 0.0096 48 0.0533 P8-K02, P8-K09 1.8767 0.1266 14 0.0986 P8-K02, P8-K10 1.7645 0.1357 19 0.1153 P8-K03, P8-K04 6.97E-02 1 15 0.9485 P8-K03, P8-K05 0.47287 0.7403 14 0.6462 P8-K03, P8-K06 0.85066 0.4612 17 0.4216 P8-K03, P8-K07 2.607 0.0449 27 0.0316 P8-K03, P8-K08 3.2933 0.0249 46 0.0137 P8-K03, P8-K09 2.6171 0.021 17 0.0292 P8-K03, P8-K09 2.6473 0.0358 14 0.3628 P8-K04, P8-K05	PB-K01, PB-K10	1.1245	0.3137	16	0.2915
PB-K02, PB-K05 0.78259 0.5208 12 0.4579 PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 27 0.0069 PB-K02, PB-K08 3.8045 0.0096 48 0.053 PB-K02, PB-K09 1.8767 0.1266 14 0.0986 PB-K02, PB-K10 1.7645 0.1357 19 0.1153 PB-K03, PB-K04 6.97E-02 1 15 0.9485 PB-K03, PB-K05 0.47287 0.7403 14 0.6462 PB-K03, PB-K06 0.85066 0.4612 17 0.4216 PB-K03, PB-K07 2.607 0.0449 27 0.0316 PB-K03, PB-K08 3.2933 0.0249 46 0.0137 PB-K03, PB-K08 3.2933 0.0249 46 0.0316 PB-K03, PB-K08 7.30E-01 0.5802 10 0.4896 PB-K04, PB-K05 7.30E-01 0.5802 10 0.817 PB-K04, PB-K06	РВ-КО2, РВ-КОЗ	0.94711	0.421	17	0.3657
PB-K02, PB-K06 2.178 0.0714 16 0.063 PB-K02, PB-K07 3.6888 0.0157 27 0.0069 PB-K02, PB-K08 3.8045 0.0096 48 0.0053 PB-K02, PB-K09 1.8767 0.1266 14 0.0986 PB-K02, PB-K09 1.7645 0.1357 19 0.1153 PB-K03, PB-K04 6.97E-02 1 15 0.9485 PB-K03, PB-K05 0.47287 0.7403 14 0.6662 PB-K03, PB-K06 0.85066 0.4612 17 0.4216 PB-K03, PB-K07 2.607 0.0449 27 0.0316 PB-K03, PB-K08 3.2933 0.0249 46 0.0137 PB-K03, PB-K08 2.6171 0.021 17 0.0292 PB-K03, PB-K08 7.30E-01 0.5802 10 0.4896 PB-K04, PB-K06 0.96476 0.3985 14 0.3628 PB-K04, PB-K07 2.8603 0.0358 26 0.0211 PB-K04, PB-K08	РВ-КО2, РВ-КО4	1.2268	0.3118	13	0.2516
PB-K02, PB-K07 3.6888 0.0157 27 0.0069 PB-K02, PB-K08 3.8045 0.0096 48 0.0053 PB-K02, PB-K09 1.8767 0.1266 14 0.086 PB-K02, PB-K10 1.7645 0.1357 19 0.1153 PB-K03, PB-K04 6.97E-02 1 15 0.9485 PB-K03, PB-K05 0.47287 0.7003 14 0.6662 PB-K03, PB-K06 0.85066 0.4612 17 0.4216 PB-K03, PB-K07 2.607 0.0449 27 0.0316 PB-K03, PB-K08 3.2933 0.0249 46 0.0137 PB-K03, PB-K08 3.2933 0.0249 46 0.0318 PB-K03, PB-K08 3.2933 0.0214 17 0.0292 PB-K03, PB-K09 2.6171 0.021 17 0.0292 PB-K04, PB-K05 7.30E-01 0.5802 10 0.4896 PB-K04, PB-K06 0.96476 0.3985 14 0.3628 PB-K04, PB-K08	РВ-КО2, РВ-КО5	0.78259	0.5208	12	0.4579
PB-k02, PB-k083.80450.0096480.0053PB-k02, PB-k091.87670.1266140.0986PB-k02, PB-k101.76450.1357190.1153PB-k03, PB-k046.97E-021150.9485PB-k03, PB-k050.472870.7403140.6462PB-k03, PB-k060.850660.4612170.4216PB-k03, PB-k083.29330.0249460.0137PB-k03, PB-k083.29330.0249460.0137PB-k03, PB-k082.61710.021170.0292PB-k03, PB-k092.61710.021170.0292PB-k03, PB-k083.29330.056220.0392PB-k04, PB-k057.30E-010.5802100.4896PB-k04, PB-k060.964760.3985140.3628PB-k04, PB-k083.36750.0083460.0071PB-k04, PB-k093.58390.008180.0076PB-k04, PB-k061.95240.1124110.0881PB-k05, PB-k061.95240.124110.0881PB-k05, PB-k073.60.0071250.007PB-k05, PB-k083.65980.0083380.006	РВ-КО2, РВ-КО6	2.178	0.0714	16	0.063
PB-K02, PB-K091.87670.1266140.0986PB-K02, PB-K101.76450.1357190.1153PB-K03, PB-K046.97E-021150.9485PB-K03, PB-K050.472870.7403140.6462PB-K03, PB-K060.850660.4612170.4216PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K057.30E-010.5802100.4896PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.076PB-K04, PB-K061.95240.1124110.081PB-K05, PB-K063.65980.0083380.0063	РВ-КО2, РВ-КО7	3.6888	0.0157	27	0.0069
PB-K02, PB-K101.76450.1357190.1153PB-K03, PB-K046.97E-021150.9485PB-K03, PB-K050.472870.7403140.6462PB-K03, PB-K060.850660.4612170.4216PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K083.36750.0083460.0017PB-K04, PB-K093.58390.008180.0766PB-K04, PB-K061.95240.1124110.8811PB-K05, PB-K063.65980.0083380.0023	РВ-КО2, РВ-КО8	3.8045	0.0096	48	0.0053
PB-K03, PB-K046.97E-021150.9485PB-K03, PB-K050.472870.7403140.6462PB-K03, PB-K060.850660.4612170.4216PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K092.61710.056220.0392PB-K03, PB-K057.30E-010.5802100.4896PB-K04, PB-K050.964760.3985140.3628PB-K04, PB-K083.36750.0083460.0071PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K061.95240.1124110.0881PB-K05, PB-K063.65980.0083380.0071	РВ-КО2, РВ-КО9	1.8767	0.1266	14	0.0986
PB-K03, PB-K050.472870.7403140.6462PB-K03, PB-K060.850660.4612170.4216PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K083.36750.0083460.0071PB-K04, PB-K093.58390.008180.0766PB-K04, PB-K061.95240.1124110.0881PB-K05, PB-K063.65980.0083380.006	PB-K02, PB-K10	1.7645	0.1357	19	0.1153
PB-K03, PB-K060.850660.4612170.4216PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K093.58390.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K061.95240.1124110.0881PB-K05, PB-K063.65980.0083380.0062	РВ-КОЗ, РВ-КО4	6.97E-02	1	15	0.9485
PB-K03, PB-K072.6070.0449270.0316PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.0083180.0717PB-K04, PB-K102.96940.1124110.0811PB-K05, PB-K061.95240.1124110.0813PB-K05, PB-K083.65980.0083380.00171	РВ-КОЗ, РВ-КО5	0.47287	0.7403	14	0.6462
PB-K03, PB-K083.29330.0249460.0137PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.0083180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K083.65980.0083380.0062	РВ-КОЗ, РВ-КО6	0.85066	0.4612	17	0.4216
PB-K03, PB-K092.61710.021170.0292PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КОЗ, РВ-КО7	2.607	0.0449	27	0.0316
PB-K03, PB-K102.44530.056220.0392PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.65980.0083380.0062	РВ-КОЗ, РВ-КО8	3.2933	0.0249	46	0.0137
PB-K04, PB-K057.30E-010.5802100.4896PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КОЗ, РВ-КО9	2.6171	0.021	17	0.0292
PB-K04, PB-K060.964760.3985140.3628PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КОЗ, РВ-К10	2.4453	0.056	22	0.0392
PB-K04, PB-K072.86030.0358260.0211PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КО4, РВ-КО5	7.30E-01	0.5802	10	0.4896
PB-K04, PB-K083.36750.0083460.0087PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КО4, РВ-КО6	0.96476	0.3985	14	0.3628
PB-K04, PB-K093.58390.008180.0076PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КО4, РВ-КО7	2.8603	0.0358	26	0.0211
PB-K04, PB-K102.96940.0214200.0177PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.60.0071250.007PB-K05, PB-K083.65980.0083380.0062	РВ-КО4, РВ-КО8	3.3675	0.0083	46	0.0087
PB-K05, PB-K061.95240.1124110.0881PB-K05, PB-K073.6 0.0071 250.007PB-K05, PB-K083.6598 0.0083 380.0062	РВ-КО4, РВ-КО9	3.5839	0.008	18	0.0076
PB-K05, PB-K07 3.6 0.0071 25 0.007 PB-K05, PB-K08 3.6598 0.0083 38 0.0062	РВ-КО4, РВ-К10	2.9694	0.0214	20	0.0177
PB-K05, PB-K08 3.6598 0.0083 38 0.0062	РВ-КО5, РВ-КО6	1.9524	0.1124	11	0.0881
	РВ-КО5, РВ-КО7	3.6	0.0071	25	0.007
PB-K05, PB-K09 4.0249 0.0224 13 0.0032	РВ-КО5, РВ-КО8	3.6598	0.0083	38	0.0062
	РВ-КО5, РВ-КО9	4.0249	0.0224	13	0.0032

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО5, РВ-К10	2.834	0.0321	19	0.0217
РВ-КО6, РВ-КО7	2.2199	0.0673	24	0.0577
РВ-КО6, РВ-КО8	3.0408	0.0239	42	0.0179
РВ-КО6, РВ-КО9	4.9394	0.0066	20	0.0015
РВ-КО6, РВ-К10	3.8866	0.0077	26	0.0041
РВ-КО7, РВ-КО8	1.8187	0.127	40	0.1086
РВ-КО7, РВ-КО9	5.4242	0.0077	33	0.0005
РВ-КО7, РВ-К10	4.9203	0.0075	36	0.0016
РВ-КО8, РВ-КО9	4.5088	0.0066	49	0.0028
РВ-КО8, РВ-К10	4.4874	0.0099	53	0.0023
РВ-КО9, РВ-К10	0.44632	0.7229	14	0.669

Univariate PERMANOVA for Leaf Length

PERMANOVA table of results

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Se	1	2134.5	2134.5	3.1672	0.0711	9954
Si	9	963.65	107.07	0.65591	0.7356	9939
Su(Se)	2	1119.8	559.9	3.4299	0.0603	9958
SexSi	9	1490.4	165.6	1.0144	0.4607	9948
Su(Se)xSi	18	2938.3	163.24	7.7628	0.0001	9919
Res	160	3364.6	21.029			
Total	199	12011				

PAIR-WISE TESTS

Term 'Su(Se)xSi' for pairs of levels of factor 'Survey'

Within level 'Winter' of factor 'Season'

Within level 'PB-K01' of factor 'Site'

			Unique		
Groups	t	P(perm) perms	P(MC)	
1, 3		1.2373	0.2592	58	0.2466

Within level 'Winter' of factor 'Season'

Within level 'PB-K02' of factor 'Site'

			Unique		
Groups	t	P(pern	n) perms	P(MC)	
1, 3		4.3594	0.0077	115	0.0021

Within level 'Winter' of factor 'Season'

Within level 'PB-K03' of factor 'Site'

				Unique			
Groups	t	P(perm)		perms		P(MC)	
1, 3		6.1864	0.0065		83		0.0008
Within level 'Wi	nter' of factor 'Se	ason'					
Within level 'PB	-K04' of factor 'Sit	ce'					
				Unique			
Groups	t	P(perm)		perms		P(MC)	
1, 3		0.94461	0.3915		122		0.373
Within level 'Wi	nter' of factor 'Se	ason'					
Within level 'PB	-K05' of factor 'Si	ce'					
				Unique			
Groups	t	P(perm)		perms		P(MC)	
1, 3		5.1561	0.0092		103		0.0007
Within level 'PB	-K06' of factor 'Sit	e'					
Groups	t	P(perm)		Unique perms		P(MC)	
1, 3		1.263	0.2377	perms	53	(((())))	0.2469
	nter' of factor 'Se -K07' of factor 'Sil						
				Unique			
Groups	t	P(perm)		perms		P(MC)	
1, 3		8.1897	0.0083		126		0.0001
	nter' of factor 'Se -K08' of factor 'Sit						
				Unique			
Groups	t	P(perm)		perms		P(MC)	
1.3		6.4022	0.0087		116		0.0002

Within level 'Winter' of factor 'Season'

Within level 'PB-K09' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 3		5.2819	0.0095	126	0.0006
Within level 'Wi	nter' of factor 'Se	ason'			
Within level 'PB	-K10' of factor 'Si	te'			
			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 3		2.0222	0.0789	76	0.0789
Within level 'Su	mmer' of factor 'S	eason'			
Within level 'PB	-K01' of factor 'Si	te'			
			Unique		
Groups	t	P(perm)	perms	P(MC)	
2, 4		4.49E-02	0.9853	113	0.9653
	-K02' of factor 'Si		Unique		
Groups	t	P(perm)	perms	P(MC)	
2, 4		1.78E+00	0.1018	100	0.1149
Within level 'Su	mmer' of factor 'S	eason'			
Within level 'PB	-K03' of factor 'Si	te'			
			Unique		
Groups	t	P(perm)	perms	P(MC)	
2, 4		3.85E+00	0.0086	126	0.0044
Within level 'Su	mmer' of factor 'S	Season'			
Within level 'PB	-K04' of factor 'Si	te'			
			Unique		
Groups	t	P(perm)	perms	P(MC)	
2, 4		3.81E-01	0.7761	72	0.7126

Within level 'Summer' of factor 'Season'

Within level 'PB-K05' of factor 'Site'

			Uniqu	ie		
Groups	t	P(perm)	perm	IS	P(MC)	
2, 4		2.19E+00	0.082	76		0.0649
Vithin level 'Su	mmer' of factor 'Se	eason'				
	-K06' of factor 'Site					
			Uniqu	10		
Groups	t	P(perm)	perm		P(MC)	
2, 4		3.62E+00	0.0176	94		0.0071
Nithin level 'Su	mmer' of factor 'Se	eason'				
Within level 'PB	-K07' of factor 'Site	2'				
			Unique	2		
Groups	t	P(perm)	perms	5	P(MC)	
2, 4		5.62E-01	0.6106	77		0.5871
Vithin level 'Su	mmer' of factor 'Se	eason'				
	mmer' of factor 'Se -K08' of factor 'Site					
Within level 'PB	-K08' of factor 'Site	2'	Uniqu		P(MC)	
			Uniqu perm 0.0142		P(MC)	0.0051
Within level 'PB Groups 2, 4	-K08' of factor 'Site	P(perm) 3.74E+00	perm	IS		0.0051
Within level 'PB Groups 2, 4 Within level 'Su	-K08' of factor 'Site	P(perm) 3.74E+00 2ason'	perm	IS		0.0051
Within level 'PB Groups 2, 4 Within level 'Su	-K08' of factor 'Site t mmer' of factor 'Se	P(perm) 3.74E+00 2ason'	perm	<u>87</u>		0.0051
Within level 'PB Groups 2, 4 Within level 'Su	-K08' of factor 'Site t mmer' of factor 'Se	P(perm) 3.74E+00 2ason'	0.0142	2		0.0051
Within level 'PB <u>Groups</u> 2, 4 Within level 'Su Within level 'PB	-K08' of factor 'Site t mmer' of factor 'Se -K09' of factor 'Site	e' <u>P(perm)</u> 3.74E+00 eason' e'	0.0142 Unique	2		
Within level 'PB <u>Groups</u> 2, 4 Within level 'Sur Within level 'PB <u>Groups</u> 2, 4 Within level 'Sur	-K08' of factor 'Site t mmer' of factor 'Se -K09' of factor 'Site	e' <u>P(perm)</u> 3.74E+00 eason' e' <u>P(perm)</u> 6.45E-04 eason'	0.0142 Unique perms	<u>87</u> 87		
Within level 'PB <u>Groups</u> 2, 4 Within level 'Sur Within level 'PB <u>Groups</u> 2, 4 Within level 'Sur	-K08' of factor 'Site t mmer' of factor 'Se -K09' of factor 'Site t	e' <u>P(perm)</u> 3.74E+00 eason' e' <u>P(perm)</u> 6.45E-04 eason'	0.0142 Unique perms	15 87 9 5 126		0.0051

Univariate PERMANOVA for Epiphytes

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	28.047	9.3491	6.9604	0.0012	9970
Si	9	6.0262	0.66957	0.4984	0.8616	9938
SuxSi	27	36.29	1.3441	6.6921	0.0001	9896
Res	159	31.935	0.20085			
Total	198	103.18				

PERMANOVA table of results

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'PB-K01' of factor 'Site'

			Unique		
Groups	t	P(pern	n) perms	P(MC)	
1, 2		9.8822	0.0075	46	0.0001
1, 3		4.9446	0.0056	31	0.0013
1, 4		4.8055	0.0164	40	0.0014
2, 3		1.5201	0.1798	30	0.1674
2, 4		4.646	0.0078	60	0.0017
3, 4		1.6288	0.1756	31	0.1418

Within level 'PB-K02' of factor 'Site'

	Unique					
Groups	t	P(perm)	pe	erms	P(MC)	
1, 2	0.57	764	0.6152	24	0.5759	
1, 3	0.92	434	0.3987	40	0.3953	
1, 4	0.7	706	0.3538	27	0.4662	
2, 3	0.72	599	0.5025	22	0.4902	
2, 4	0.52	233	0.7435	13	0.6162	
3, 4	0.50	372	0.6985	14	0.6291	

Within level 'PB-K03' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	9.029	0.0088	56	0.0001
1, 3	6.0501	0.0063	33	0.0003
1, 4	6.8458	0.0073	56	0.0002
2, 3	3.9399	0.0077	28	0.0043
2, 4	0.66551	0.5868	36	0.5316
3, 4	3.0318	0.0151	38	0.0191

Within level 'PB-K04' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	2.1281	0.0841	17	0.0669
1, 3	1.066	0.3274	17	0.3116
1, 4	1.0733	0.4238	12	0.3189
2, 3	0.98533	0.4603	12	0.3621
2, 4	6.7552	0.0081	16	0.0002
3, 4	2.846	0.0384	15	0.0256

Within level 'PB-K05' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	5.875	0.0086	21	0.0002
1, 3	4.1541	0.0172	27	0.0033
1, 4	0.70186	0.5589	17	0.4968
2, 3	2.8411	0.0609	14	0.0221
2, 4	4.5204	0.008	26	0.0019
3, 4	3.4466	0.015	37	0.0065

Within level 'PB-K06' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	2.9115	0.0069	11	0.0219
1, 3	0.8939	0.4833	14	0.3883
1, 4	0.6	0.6017	13	0.5683
2, 3	5.4233	0.0089	20	0.0004
2, 4	4.6349	0.0076	21	0.002
3, 4	0.32824	0.7932	15	0.7501

Within level 'PB-K07' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	2.7332	0.0318	47	0.0273
1, 3	0.44217	0.6723	47	0.665
1, 4	1.9771	0.1014	62	0.0817
2, 3	1.6464	0.1676	18	0.1339
2, 4	3.6919	0.0165	30	0.0058
3, 4	2.014	0.0857	24	0.0758

Within level 'PB-K08' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	3.924	5 0.008	3 6 38	0.004
1, 3	1.252	.5 0.239	8 34	0.2376
1, 4	4.635	9 0.007	'3 79	0.0014
2, 3	7.661	.3 0.006	5 20	0.0001
2, 4	8.58	31 0.007	7 6 34	0.0003
3, 4	4.256	68 0.008	8 22	0.0026

Within level 'PB-K09' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.95929	0.4033	20	0.369
1, 3	1.7903	0.133	20	0.1129
1, 4	1.1472	0.2745	80	0.2898
2, 3	1.9524	0.1142	32	0.0866
2, 4	1.6084	0.1527	100	0.1463
3, 4	0.29931	0.8231	68	0.7728

Within level 'PB-K10' of factor 'Site'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	1.3216	0.2303	44	0.2179
1, 3	0.52615	0.6597	16	0.6026
1, 4	5.5922	0.0074	49	0.0007
2, 3	1.5695	0.1708	46	0.1561
2, 4	4.6468	0.0068	78	0.002
3, 4	4.4872	0.0087	53	0.002

Term 'SuxSi' for pairs of levels of factor 'Site'

Within level '1' of factor 'Survey'

		I	Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-К01, РВ-К02	2.1172	0.0654	29	0.0694
РВ-К01, РВ-К03	0.30194	0.7524	14	0.7684
РВ-К01, РВ-К04	4.7063	0.0075	25	0.0014
РВ-К01, РВ-К05	4.4785	0.0178	20	0.0026
РВ-К01, РВ-К06	5.7931	0.0071	18	0.0003
РВ-К01, РВ-К07	7.6715	0.0074	64	0.0003
РВ-К01, РВ-К08	8.044	0.0074	64	0.0002
РВ-К01, РВ-К09	9.1706	0.0083	34	0.0001

			Unique	
Groups	t	P(perm)	perms	P(MC)
PB-K01, PB-K10	8.2993	0.0091	33	0.0002
РВ-КО2, РВ-КОЗ	2.1472	0.0669	28	0.0655
РВ-КО2, РВ-КО4	0.54026	0.6338	27	0.5985
РВ-КО2, РВ-КО5	8.80E-02	0.977	24	0.9345
РВ-КО2, РВ-КО6	1.34	0.2066	23	0.2175
РВ-КО2, РВ-КО7	1.2402	0.2594	72	0.2491
РВ-КО2, РВ-КО8	1.6404	0.1558	86	0.1349
РВ-КО2, РВ-КО9	1.7424	0.1511	29	0.1163
PB-K02, PB-K10	1.7877	0.143	30	0.1091
РВ-КОЗ, РВ-КО4	4.1914	0.0095	28	0.0029
PB-K03, PB-K05	3.7477	0.0341	13	0.0051
РВ-КОЗ, РВ-КО6	5.1922	0.0157	19	0.0018
PB-K03, PB-K07	6.1236	0.0074	81	0.0002
PB-K03, PB-K08	6.5732	0.0083	81	0.0004
РВ-КОЗ, РВ-КО9	7.1386	0.0088	37	0.0002
PB-K03, PB-K10	6.7918	0.0075	36	0.0001
PB-K04, PB-K05	1.1488	0.3372	16	0.2786
PB-K04, PB-K06	1.2392	0.2562	17	0.2435
PB-K04, PB-K07	1.1733	0.2713	34	0.2772
РВ-КО4, РВ-КО8	1.8399	0.1142	43	0.1002
РВ-КО4, РВ-КО9	2.0884	0.0893	19	0.0711
PB-K04, PB-K10	2.087	0.0893	20	0.0709
РВ-КО5, РВ-КО6	2.4873	0.0701	17	0.0369
PB-K05, PB-K07	2.9894	0.0235	54	0.0156
PB-K05, PB-K08	3.6786	0.0155	54	0.0059
РВ-К05, РВ-К09	4.263	0.0081	21	0.0031
PB-K05, PB-K10	3.9669	0.0102	22	0.003
РВ-КО6, РВ-КО7	0.36331	0.771	27	0.7228
PB-K06, PB-K08	0.31769	0.7581	28	0.7594
РВ-КО6, РВ-КО9	0.44414	0.8382	11	0.6687
PB-K06, PB-K10	0.55537	0.6868	12	0.5919
РВ-КО7, РВ-КО8	0.92005	0.3993	51	0.3765
РВ-К07, РВ-К09	1.1941	0.2926	32	0.2652
РВ-КО7, РВ-К10	1.2404	0.2917	36	0.2493
РВ-КО8, РВ-КО9	0.14436	0.9236	34	0.8865
PB-K08, PB-K10	0.30793	0.7948	38	0.7652
РВ-КО9, РВ-К10	0.19803	0.9301	12	0.847

Within level '2' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
PB-K01, PB-K02	4.04	56 0.0176	37	0.0048
PB-K01, PB-K03	1.138	39 0.317	25	0.2981
PB-K01, PB-K04	1.72	0.1216	18	0.1196
PB-K01, PB-K05	0.9768	33 0.3953	15	0.3547

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-К01, РВ-К06	2.068	0.0851	14	0.0745
РВ-КО1, РВ-КО7	0.4702	0.6741	20	0.6495
РВ-КО1, РВ-КО8	2.2971	0.079	14	0.0493
РВ-КО1, РВ-КО9	8.00E-02	0.9493	30	0.938
РВ-КО1, РВ-К10	0.76966	0.5008	40	0.4536
РВ-КО2, РВ-КОЗ	5.5245	0.0069	35	0.0009
РВ-КО2, РВ-КО4	3.089	0.0216	14	0.0165
РВ-КО2, РВ-КО5	4.35E+00	0.008	17	0.0033
РВ-КО2, РВ-КО6	7.2684	0.008	23	0.0001
РВ-КО2, РВ-КО7	4.1426	0.0089	22	0.0038
РВ-КО2, РВ-КО8	7.8207	0.007	23	0.0002
РВ-КО2, РВ-КО9	2.5931	0.055	25	0.03
PB-K02, PB-K10	2.7263	0.0419	52	0.0257
РВ-КОЗ, РВ-КО4	3.2699	0.0076	19	0.0125
РВ-КОЗ, РВ-КО5	2.6369	0.0822	11	0.0316
РВ-КОЗ, РВ-КО6	0.83441	0.417	17	0.4267
РВ-КОЗ, РВ-КО7	0.53047	0.6271	21	0.6116
РВ-КОЗ, РВ-КО8	1.0258	0.3416	15	0.3301
РВ-КОЗ, РВ-КО9	0.61619	0.6154	29	0.548
РВ-КОЗ, РВ-К10	0.24104	0.7867	62	0.8053
РВ-КО4, РВ-КО5	1.2472	0.351	7	0.2446
РВ-КО4, РВ-КО6	5.1241	0.0068	14	0.0012
РВ-КО4, РВ-КО7	2.0466	0.1082	13	0.0734
РВ-КО4, РВ-КО8	5.7886	0.0084	15	0.0003
РВ-КО4, РВ-КО9	1.0608	0.351	16	0.3227
РВ-КО4, РВ-К10	1.5418	0.2043	38	0.1581
РВ-КО5, РВ-КО6	4.7673	0.0072	11	0.0012
РВ-КО5, РВ-КО7	1.4184	0.2427	11	0.1927
РВ-КО5, РВ-КО8	5.6737	0.006	12	0.0009
РВ-КО5, РВ-КО9	0.61237	0.5946	15	0.5548
РВ-КО5, РВ-К10	1.2064	0.3053	33	0.2618
РВ-КО6, РВ-КО7	1.2545	0.276	12	0.2469
РВ-КО6, РВ-КО8	0.18732	1	7	0.8624
РВ-КО6, РВ-КО9	1.0702	0.3938	16	0.3098
РВ-КО6, РВ-К10	7.33E-02	0.9079	23	0.9406
РВ-КО7, РВ-КО8	1.41	0.2514	12	0.1998
РВ-КО7, РВ-КО9	0.23905	0.8782	19	0.8156
РВ-КО7, РВ-К10	0.50024	0.6552	40	0.6284
РВ-КО8, РВ-КО9	1.154	0.3553	15	0.2819
PB-K08, PB-K10	0.12503	0.8759	28	0.9036
РВ-КО9, РВ-К10	0.60582	0.5874	44	0.5588

Within level '3' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО1, РВ-КО2	0.37726	0.7629	32	0.7212
РВ-КО1, РВ-КОЗ	0.12978	0.9544	19	0.9019
РВ-КО1, РВ-КО4	6.06E-02	1	18	0.9547
PB-K01, PB-K05	0.19057	0.8953	30	0.8512
РВ-К01, РВ-К06	0.55977	0.7113	18	0.5910
PB-K01, PB-K07	0.27545	0.8284	21	0.7902
РВ-КО1, РВ-КО8	0.20484	0.7937	13	0.836
РВ-КО1, РВ-КО9	3.50E-01	0.7516	31	0.74
РВ-КО1, РВ-К10	0.28653	0.8241	20	0.784
РВ-КО2, РВ-КОЗ	0.36028	0.7674	23	0.732
РВ-КО2, РВ-КО4	0.39794	0.7073	25	0.696
РВ-КО2, РВ-КО5	8.13E-01	0.4863	34	0.440
РВ-КО2, РВ-КО6	0.16982	0.8757	23	0.86
РВ-КО2, РВ-КО7	0.72385	0.5252	29	0.487
РВ-КО2, РВ-КО8	0.30473	0.8639	15	0.76
РВ-КО2, РВ-КО9	0.11366	0.941	38	0.918
РВ-КО2, РВ-К10	0.76141	0.5055	29	0.461
РВ-КОЗ, РВ-КО4	8.84E-02	1	12	0.93
РВ-КОЗ, РВ-КО5	0.61707	0.6373	17	0.55
РВ-КОЗ, РВ-КОб	0.65561	0.5831	11	0.528
РВ-КОЗ, РВ-КО7	0.51465	0.647	16	0.616
РВ-КОЗ, РВ-КО8	0.11952	1	10	0.903
РВ-КОЗ, РВ-КО9	0.36209	0.7491	20	0.725
PB-K03, PB-K10	0.5534	0.6392	15	0.59
РВ-КО4, РВ-КО5	0.3844	0.798	18	0.704
РВ-КО4, РВ-КОб	0.65539	0.5879	15	0.530
РВ-КО4, РВ-КО7	0.40452	0.7419	17	0.693
РВ-КО4, РВ-КО8	0.19518	0.9484	12	0.852
РВ-КО4, РВ-КО9	0.39535	0.7323	21	0.707
PB-K04, PB-K10	0.42967	0.7268	16	0.674
PB-K05, PB-K06	1.3149	0.2654	14	0.224
PB-K05, PB-K07	0.1864	0.8682	26	0.855
PB-K05, PB-K08	0.96086	0.4283	14	0.356
PB-K05, PB-K09	1.1752	0.3178	29	0.269
PB-K05, PB-K10	0.20414	0.8599	23	0.839
РВ-КОб, РВ-КО7	0.20414	0.4236	15	0.35
PB-K06, PB-K08	0.62897	0.6051	9	0.540
PB-K06, PB-K09	0.3721	0.8037	23	0.715
PB-K06, PB-K10	1.04E+00	0.4009	11	0.321
РВ-КО7, РВ-КО8	0.62854	0.6306	13	0.541
РВ-КО7, РВ-КО9	0.78028	0.4751	30	0.458
РВ-КО7, РВ-К10	1.05E-08	1	19	
РВ-КО8, РВ-КО9	0.29656	0.8052	16	0.768
РВ-КО8, РВ-К1О	0.68349	0.5587	14	0.517

				Unique		
Groups	t	P(p	erm)	perms	P(MC)	
РВ-КО9, РВ-К10		0.84379	0.4225		27	0.4211

Within level '4' of factor 'Survey'

-			Jnique	2(140)
Groups	t		perms	P(MC)
PB-K01, PB-K02	1.6573	0.1336	23	0.1399
PB-K01, PB-K03	4.4044	0.0075	71	0.0036
PB-K01, PB-K04	2.52E-01	0.8356	17	0.8093
PB-K01, PB-K05	1.0412	0.2983	33	0.3234
PB-K01, PB-K06	1.7491	0.1474	30	0.1152
PB-K01, PB-K07	0.37854	0.7129	32	0.7165
PB-K01, PB-K08	1.999	0.0877	31	0.0772
РВ-КО1, РВ-КО9	8.24E-01	0.5585	66	0.4353
РВ-КО1, РВ-К10	2.7858	0.0383	50	0.0229
РВ-КО2, РВ-КОЗ	4.1994	0.0078	36	0.0039
РВ-КО2, РВ-КО4	4.2207	0.0062	15	0.0017
РВ-КО2, РВ-КО5	2.31E+00	0.0543	27	0.0509
РВ-КО2, РВ-КО6	0.7895	0.4911	18	0.456
РВ-КО2, РВ-КО7	1.376	0.1691	20	0.2071
РВ-КО2, РВ-КО8	3.7106	0.0085	32	0.0072
РВ-КО2, РВ-КО9	0.10299	0.9921	41	0.9224
РВ-КО2, РВ-К10	4.5938	0.008	34	0.0019
РВ-КОЗ, РВ-КО4	5.29E+00	0.007	34	0.0006
РВ-КОЗ, РВ-КО5	4.4606	0.01	53	0.0033
РВ-КОЗ, РВ-КО6	2.9619	0.0167	37	0.0225
РВ-КОЗ, РВ-КО7	3.6848	0.0164	52	0.0074
РВ-КОЗ, РВ-КО8	5.4243	0.0088	38	0.0014
РВ-КОЗ, РВ-КО9	2.3759	0.0637	91	0.0454
РВ-КОЗ, РВ-К1О	5.953	0.0079	56	0.0009
РВ-КО4, РВ-КО5	1.0359	0.3692	14	0.3269
РВ-КО4, РВ-КО6	2.4312	0.0637	14	0.0452
РВ-КО4, РВ-КО7	0.27768	0.8277	16	0.7925
РВ-КО4, РВ-КО8	2.2141	0.0398	14	0.0591
РВ-КО4, РВ-КО9	1.0193	0.4479	31	0.3342
РВ-КО4, РВ-К10	3.1354	0.0228	25	0.0158
РВ-КО5, РВ-КО6	2.3738	0.0591	23	0.0464
РВ-КО5, РВ-КО7	0.48245	0.6816	19	0.6443
РВ-КО5, РВ-КО8	0.68483	0.5493	20	0.5225
РВ-КО5, РВ-КО9	1.4627	0.1927	83	0.1817
РВ-КО5, РВ-К10	1.356	0.1828	36	0.2125
РВ-КО6, РВ-КО7	1.6136	0.1542	22	0.1438
РВ-КО6, РВ-КО8	3.4097	0.0155	25	0.0084
РВ-КО6, РВ-КО9	0.29247	0.8056	62	0.7774
PB-K06, PB-K10	4.13E+00	0.0088	48	0.0032

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО7, РВ-КО8	1.1396	0.3136	21	0.2864
РВ-КО7, РВ-КО9	0.97505	0.3652	68	0.3582
РВ-КО7, РВ-К10	1.75E+00	0.1007	38	0.1185
РВ-КО8, РВ-КО9	2.0907	0.0397	64	0.0711
РВ-КО8, РВ-К10	0.73926	0.4662	31	0.4743
PB-K09, PB-K10	2.6253	0.0249	91	0.0315

Multivariate PERMANOVA for Composition

PERMANOVA	PERMANOVA table of results							
							Unique	
Source	df	SS		MS	Pseudo-F	P(perm)	perms	
Su	3		58411	19470	11.664	0.0001		9941
Si	9		49257	5473	3.2787	0.0002		9911
SuxSi	27		45070	1669.2	5.4706	0.0001		9844
Res	160		48821	305.13				
Total	199		2.02E+05					

PAIR-WISE TESTS

Term 'SuxSi' for pairs of levels of factor 'Survey'

Within level 'PB-K01' of factor 'Site'

	Unique						
Groups	t	P(per	m) per	ms P(MC)			
1, 2		6.2633	0.0081	126	0.0001		
1, 3		2.9412	0.0091	126	0.0069		
1, 4		2.3229	0.0085	126	0.0162		
2, 3		2.6003	0.0236	126	0.013		
2, 4		3.5732	0.0079	126	0.0006		
3, 4		1.3155	2.06E-01	126	0.2054		

Within level 'PB-K02' of factor 'Site'

	Unique						
Groups	t	P(perm)	perms	P(MC)		
1, 2	15.	411	0.0081	126	0.0001		
1, 3	7.2	307	0.0081	126	0.0002		
1, 4	2.1	866	0.046	126	0.0386		
2, 3	8.	306	0.0095	126	0.0001		
2, 4	3.7	364	0.0079	125	0.001		
3, 4	0.90	936	4.91E-01	126	0.4414		

Within level 'PB-K03' of factor 'Site'

	Unique						
Groups	t	P(perm) perms	P(MC)			
1, 2		5.6231	0.0083	126	0.0002		
1, 3		1.7881	0.0405	126	0.0569		
1, 4		1.6647	0.0171	126	0.0955		
2, 3		3.7521	0.008	126	0.0005		
2, 4		2.4695	0.0081	126	0.0078		
3, 4		0.54904	0.695	126	0.6847		

Within level 'PB-K04' of factor 'Site'

	Unique						
Groups	t	P(perm)	perms	P(MC)			
1, 2	2.822	0.0079	126	0.0043			
1, 3	3.6046	0.0073	126	0.0017			
1, 4	1.0312	0.3892	126	0.3391			
2, 3	7.5189	0.008	126	0.0001			
2, 4	2.3374	0.0096	126	0.0272			
3, 4	0.98176	3.69E-01	126	0.3583			

Within level 'PB-K05' of factor 'Site'

	Unique					
Groups	t	P(perr	n) perm	s P(MC)		
1, 2		3.9279	0.0092	126	0.0018	
1, 3		3.4403	0.0076	126	0.0015	
1, 4		6.4343	0.0075	126	0.0001	
2, 3		5.2591	0.0073	126	0.0003	
2, 4		6.517	0.0082	126	0.0001	
3, 4		3.9702	7.10E-03	126	0.0004	

Within level 'PB-K06' of factor 'Site'

	Unique					
Groups	t	P(perm	n) perms	P(MC)		
1, 2		3.8044	0.0072	126	0.0014	
1, 3		4.4138	0.0093	126	0.0009	
1, 4		2.5212	0.0083	126	0.0065	
2, 3		8.2857	0.0076	126	0.0001	
2, 4		4.2053	0.008	126	0.0004	
3, 4		4.0512	8.20E-03	126	0.0004	

Within level 'PB-K07' of factor 'Site'

	Unique					
Groups	t	P(peri	m) perm	ns P(MC)		
1, 2		4.5765	0.007	126	0.0007	
1, 3		3.6492	0.0082	126	0.0011	
1, 4		1.7763	0.0654	126	0.0662	
2, 3		6.9295	0.0078	126	0.0001	
2, 4		3.2028	0.0084	126	0.0016	
3, 4		1.645	8.59E-02	126	0.1061	

Within level 'PB-K08' of factor 'Site'

			Unique		
Groups	t	P(perm)	perms	P(MC)	
1, 2		2.0158	0.0244	126	0.0402
1, 3		2.3871	0.0389	126	0.0229
1, 4		1.4769	0.1355	126	0.1455
2, 3		1.7346	0.1012	126	0.0839
2, 4		0.42766	0.7717	126	0.7917
3, 4		1.4901	1.55E-01	126	0.1506

Within level 'PB-K09' of factor 'Site'

	Unique						
Groups	t	P(per	m) pei	rms	P(MC)		
1, 2		8.1863	0.0066	126	0.0001		
1, 3		3.8598	0.0089	126	0.0011		
1, 4		1.195	0.2152	126	0.2759		
2, 3		4.9651	0.007	126	0.0001		
2, 4		3.98	0.0081	126	0.0009		
3, 4		1.7598	9.02E-02	126	0.0898		

Within level 'PB-K10' of factor 'Site'

	Unique						
Groups	t	P(perm)	perms	P(MC)			
1, 2		5.5385	0.0083	126	0.0001		
1, 3		9.5981	0.0098	126	0.0001		
1, 4		4.3052	0.0072	91	0.0005		
2, 3		8.309	0.0076	126	0.0001		
2, 4		4.3387	0.0078	91	0.0007		
3, 4		1.9077	0.0227	66	0.0536		

Term 'SuxSi' for pairs of levels of factor 'Site'

Within level '1' of factor 'Survey'

Groups	t	P(perm)	perms	P(MC)
PB-K01, PB-K02	5.5478	0.0066	126	0.000
РВ-КО1, РВ-КОЗ	2.6637	0.0082	126	0.011
РВ-КО1, РВ-КО4	3.434	0.0077	126	0.002
PB-K01, PB-K05	3.3297	0.0149	126	0.004
РВ-К01, РВ-К06	1.5305	0.1035	126	0.117
PB-K01, PB-K07	2.1599	1.60E-02	126	0.03
PB-K01, PB-K08	1.0725	0.3504	126	0.323
PB-K01, PB-K09	3.3986	0.0076	126	0.001
PB-K01, PB-K10	2.5648	0.0075	126	0.012
РВ-КО2, РВ-КОЗ	6.2705	0.0093	126	0.000
РВ-КО2, РВ-КО4	1.7142	0.0324	126	0.074
РВ-КО2, РВ-КО5	3.4642	0.0081	126	0.001
РВ-КО2, РВ-КО6	4.4303	0.0093	126	0.000
РВ-КО2, РВ-КО7	3.9805	0.0069	126	0.001
PB-K02, PB-K08	1.8939	0.0078	126	0.069
в-ко2, РВ-ко9	2.6654	0.0083	126	0.007
PB-K02, PB-K10	5.1886	0.009	126	0.000
В-КОЗ, РВ-КО4	3.5651	0.0086	126	0.002
В-КОЗ, РВ-КО5	1.8396	0.0764	126	0.066
В-КОЗ, РВ-КОб	0.75967	0.6807	126	0.622
В-КОЗ, РВ-КО7	3.0882	0.0108	126	0.004
РВ-КОЗ, РВ-КО8	1.6015	0.0079	126	0.119
в-Коз, РВ-Ко9	4.1246	0.0082	126	0.000
В-КОЗ, РВ-К10	2.4588	0.0173	126	0.010
В-КО4, РВ-КО5	2.0564	0.0156	1.26E+02	0.034
В-КО4, РВ-КО6	2.917	0.0072	126	0.00
В-КО4, РВ-КО7	3.4361	0.0093	126	0.00
В-КО4, РВ-КО8	1.4649	0.0152	126	0.164
в-ко4, Рв-ко9	1.4783	0.1188	126	0.13
В-КО4, РВ-К10	2.6096	0.017	126	0.00
в-коз, рв-коб	1.5658	0.146	126	0.122
B-K05, PB-K07	3.4933	0.0075	1.26E+02	0.000
B-K05, PB-K08	1.8413	0.0087	126	0.066
В-КО5, РВ-КО9	3.0131	0.0094	126	0.002
B-K05, PB-K10	1.9409	0.0384	126	0.04
в-коб, РВ-кот	2.6281	0.0066	126	0.00
В-КОб, РВ-КО8	1.508	0.0391	126	0.13
В-КОб, РВ-КО9	3.2455	0.0081	126	0.002
В-КОб, РВ-К10	1.5881	0.1166	126	0.113
В-КО7, РВ-КО8	1.1487	0.3203	126	0.283
РВ-КО7, РВ-КО9	2.9307	0.0078	120	0.004
в-ко7, РВ-коз	3.0969	0.0092	120	0.003
в-коу, рв-ко	1.0195	0.4136	125	0.341
PB-K08, PB-K10	1.5687	0.01	125	0.129
PB-K09, PB-K10	3.8973	0.0076	125	0.002

Within level '2' of factor 'Survey'

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО1, РВ-КО2	3.7713	0.0082	126	0.001
РВ-КО1, РВ-КОЗ	4.0183	0.0079	126	0.000
РВ-К01, РВ-К04	4.2314	0.0082	126	0.000
РВ-К01, РВ-К05	5.0386	0.0075	126	0.000
РВ-КО1, РВ-КО6	4.1396	0.0077	126	0.000
РВ-КО1, РВ-КО7	3.1644	1.39E-02	126	0.003
РВ-КО1, РВ-КО8	2.8425	0.0089	126	0.014
РВ-КО1, РВ-КО9	0.7617	0.4708	126	0.487
РВ-КО1, РВ-К10	0.68177	0.5521	126	0.598
РВ-КО2, РВ-КОЗ	7.773	0.0083	126	0.000
РВ-КО2, РВ-КО4	7.7748	0.008	126	0.000
РВ-КО2, РВ-КО5	6.016	0.0081	126	0.000
РВ-КО2, РВ-КО6	8.4688	0.0071	126	0.000
В-КО2, РВ-КО7	5.7279	0.0053	126	0.000
В-КО2, РВ-КО8	3.8325	0.0082	126	0.002
РВ-КО2, РВ-КО9	2.8437	0.0258	126	0.012
B-K02, PB-K10	4.6313	0.0073	126	0.000
В-КОЗ, РВ-КО4	0.4097	0.8997	126	0.865
В-КОЗ, РВ-КО5	2.0022	0.0279	126	0.030
В-КОЗ, РВ-КОб	0.52861	0.8066	126	0.757
В-КОЗ, РВ-КО7	2.5376	0.0243	126	0.016
В-КОЗ, РВ-КО8	2.4475	0.0071	126	0.033
В-КОЗ, РВ-КО9	4.3296	0.0068	126	0.000
В-КОЗ, РВ-К10	3.9734	0.0106	126	0.001
В-КО4, РВ-КО5	1.7127	0.0868	1.26E+02	0.084
в-ко4, РВ-ко6	0.88336	0.5108	126	0.492
в-ко4, РВ-ко7	2.6271	0.0133	126	0.013
В-КО4, РВ-КО8	2.4708	0.0081	126	0.027
В-КО4, РВ-КО9	4.3371	0.0079	126	0.000
В-КО4, РВ-К10	4.4349	0.0078	126	0.000
B-K05, PB-K06	2.4617	0.0148	126	0.012
B-K05, PB-K07	3.3799	0.0078	1.26E+02	0.00
B-K05, PB-K08	2.9038	0.0085	1202.02	0.008
B-K05, PB-K09	4.7158	0.0075	120	0.000
В-КО5, РВ-К10	5.2695	0.0079	126	0.000
B-K06, PB-K07	2.3458	0.0162	120	0.030
B-K06, PB-K07 B-K06, PB-K08	2.1282	0.0102	120	0.056
B-K06, PB-K09	4.4417	0.0078	126	0.000
B-K06, PB-K10	4.0623	0.0073	126	0.001
B-K07, PB-K08	1.4586	0.1745	126	0.176
B-K07, PB-K09	3.3347	0.008	126	0.00
В-КО7, РВ-К10	3.4652	0.0085	126	0.002
В-КО8, РВ-КО9	3.0834	0.0086	126	0.009

			Unique		
Groups	t	P(perm	n) perms	P(MC)	
РВ-КО9, РВ-К10		1.2442	0.2706	126	0.2415

Within level '3' of factor 'Survey'

round		D(norm)	Unique	
Broups	t	P(perm)	perms	P(MC)
PB-K01, PB-K02	1.6148	0.0878	126	0.109
PB-K01, PB-K03	3.2182	0.0085	126	0.004
PB-K01, PB-K04	4.0632	0.0071	126	0.001
PB-K01, PB-K05	4.3794	0.0071	126	0.001
PB-K01, PB-K06	4.8993	0.0084	126	0.000
PB-K01, PB-K07	5.2883	8.30E-03	126	0.000
PB-K01, PB-K08	4.9203	0.0085	126	0.000
РВ-К01, РВ-К09	1.815	0.024	126	0.062
РВ-КО1, РВ-К10	5.3568	0.0085	126	0.000
РВ-КО2, РВ-КОЗ	3.8383	0.0085	126	0.001
РВ-КО2, РВ-КО4	4.7394	0.0095	126	0.000
РВ-КО2, РВ-КО5	4.9046	0.0074	126	0.000
РВ-КО2, РВ-КО6	4.5087	0.0083	126	0.00
РВ-КО2, РВ-КО7	4.8811	0.0081	126	0.000
РВ-КО2, РВ-КО8	5.1685	0.0077	126	0.000
РВ-КО2, РВ-КО9	1.2443	0.2593	126	0.230
РВ-КО2, РВ-К10	4.9495	0.0084	126	0.000
РВ-КОЗ, РВ-КО4	1.2685	0.2433	126	0.225
РВ-КОЗ, РВ-КО5	2.2084	0.0399	126	0.031
РВ-КОЗ, РВ-КО6	5.4397	0.0097	126	0.000
В-КОЗ, РВ-КО7	6.0201	0.007	126	0.000
РВ-КОЗ, РВ-КО8	3.702	0.008	126	0.002
РВ-КОЗ, РВ-КО9	2.5686	0.0173	126	0.012
РВ-КОЗ, РВ-К10	7.1359	0.008	126	0.000
РВ-КО4, РВ-КО5	1.583	0.1399	1.26E+02	0.140
РВ-КО4, РВ-КО6	6.1323	0.0071	126	0.000
РВ-КО4, РВ-КО7	6.9963	0.0086	126	0.000
РВ-КО4, РВ-КО8	3.9429	0.0087	126	0.002
РВ-КО4, РВ-КО9	2.5449	0.0169	126	0.016
РВ-КО4, РВ-К10	7.7279	0.0076	126	0.000
РВ-КО5, РВ-КО6	4.2865	0.0082	126	0.001
РВ-КО5, РВ-КО7	4.8796	0.0076	1.26E+02	0.000
РВ-КО5, РВ-КО8	2.499	0.0325	126	0.021
РВ-КО5, РВ-КО9	3.3685	0.0236	126	0.00
РВ-КО5, РВ-К10	4.3229	0.0104	126	0.000
РВ-КО6, РВ-КО7	1.1576	0.2881	126	0.28
РВ-КОб, РВ-КО8	2.3406	0.023	126	0.022
РВ-КО6, РВ-КО9	4.2581	0.007	126	0.001
PB-K06, PB-K10	3.0171	0.0058	126	0.00

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО7, РВ-КО8	2.29	29 0.0426	126	0.0204
РВ-КО7, РВ-КО9	4.7	37 0.0066	126	0.0006
РВ-КО7, РВ-К10	3.77	14 0.0086	126	0.0025
РВ-КО8, РВ-КО9	4.11	48 0.0073	126	0.002
РВ-КО8, РВ-К10	4.56	66 0.0091	126	0.0008
РВ-КО9, РВ-К10	4.49	0.0084	126	0.0007

Within level '4' of factor 'Survey'

croups t P(perm) perms P(MC) PB-K01, PB-K02 0.53871 0.8467 126 0.0397 PB-K01, PB-K03 1.9686 0.04 126 0.0397 PB-K01, PB-K03 1.9686 0.04 126 0.0397 PB-K01, PB-K03 6.6505 0.008 126 0.0001 PB-K01, PB-K06 3.7571 0.0096 126 0.0282 PB-K01, PB-K08 2.199 0.0137 126 0.0286 PB-K01, PB-K08 2.199 0.0317 126 0.0513 PB-K01, PB-K08 2.819 0.0083 91 0.004 PB-K02, PB-K04 1.1144 0.3183 126 0.0112 PB-K02, PB-K04 1.134 0.3183 126 0.0111 PB-K02, PB-K04 1.2878 0.0203 126 0.0215 PB-K02, PB-K04 1.2878 0.0025 126 0.0111 PB-K02, PB-K04 0.4374 0.0325 126 0.0225 PB-K02, PB-K04				Unique	
PB-K01, PB-K03 1.9686 0.04 126 0.0397 PB-K01, PB-K04 2.3013 0.0251 126 0.0167 PB-K01, PB-K05 6.6505 0.008 126 0.0007 PB-K01, PB-K07 2.1005 2.47c-2 126 0.00262 PB-K01, PB-K07 2.1005 2.47c-2 126 0.0253 PB-K01, PB-K07 2.8919 0.0137 126 0.0553 PB-K02, PB-K03 0.82768 0.4523 126 0.0553 PB-K02, PB-K04 1.1184 0.3183 126 0.0114 PB-K02, PB-K05 2.6426 0.0253 126 0.0114 PB-K02, PB-K07 1.7344 0.075 126 0.0114 PB-K02, PB-K07 1.7344 0.075 126 0.0277 PB-K02, PB-K09 1.2878 0.2024 126 0.2027 PB-K02, PB-K07 1.7344 0.075 126 0.0111 PB-K02, PB-K07 1.7344 0.077 126 0.027 PB-K03, PB-	Groups	t	P(perm)	perms	P(MC)
PE-K01, PB-K04 2.3013 0.0251 126 0.0167 PB-K01, PB-K05 6.6505 0.008 126 0.0001 PB-K01, PB-K06 3.7571 0.0096 126 0.00262 PB-K01, PB-K08 2.199 0.0137 126 0.0262 PB-K01, PB-K08 1.9046 0.0319 126 0.0353 PB-K01, PB-K08 0.82768 0.4523 126 0.4898 PB-K02, PB-K03 0.82768 0.4523 126 0.3175 PB-K02, PB-K04 1.1184 0.3183 126 0.0112 PB-K02, PB-K05 4.2345 0.0083 126 0.0112 PB-K02, PB-K06 2.6426 0.0233 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0112 PB-K02, PB-K06 1.2878 0.2004 126 0.2225 PB-K02, PB-K06 1.2878 0.0085 1.266 0.027 PB-K03, PB-K05 1.9375 0.0686 126 0.0017 PB-K0	РВ-КО1, РВ-КО2	0.53871	0.8467	126	0.7809
PE-K01, PB-K05 6.6505 0.008 126 0.0001 PB-K01, PB-K06 3.7571 0.0096 126 0.0077 PB-K01, PB-K07 2.1005 2.47E-02 126 0.0262 PB-K01, PB-K08 1.99 0.0137 125 0.0186 PB-K01, PB-K08 1.904 0.0319 126 0.0533 PB-K01, PB-K10 2.8919 0.0083 126 0.4988 PB-K02, PB-K03 0.82768 0.4233 126 0.3175 PB-K02, PB-K03 4.2345 0.0083 126 0.0112 PB-K02, PB-K05 4.2345 0.0083 126 0.0111 PB-K02, PB-K06 2.6426 0.0253 126 0.0111 PB-K02, PB-K07 1.7344 0.0755 126 0.0111 PB-K02, PB-K08 1.4383 0.1321 126 0.0207 PB-K02, PB-K08 1.2878 0.0082 126 0.0207 PB-K03, PB-K07 1.9375 0.666 126 0.664 PB-K03, PB	PB-K01, PB-K03	1.9686	0.04	126	0.0397
PE-K01, PE-K06 3.7571 0.0096 126 0.0077 PE-K01, PE-K08 2.1005 2.47E-02 126 0.0262 PE-K01, PE-K08 2.199 0.0137 126 0.0553 PE-K01, PE-K08 2.8919 0.0083 91 0.0084 PE-K02, PE-K03 0.82768 0.4523 126 0.4315 PE-K02, PE-K04 1.1184 0.1313 126 0.0112 PE-K02, PE-K04 1.1184 0.0133 126 0.0111 PE-K02, PE-K04 1.1184 0.0133 126 0.0111 PE-K02, PE-K05 2.6426 0.0253 126 0.0111 PE-K02, PE-K06 2.6426 0.0253 126 0.0111 PE-K02, PE-K07 1.7344 0.0755 126 0.0111 PE-K02, PE-K08 1.4383 0.321 0.0227 0.014 0.2225 PE-K02, PE-K10 2.9031 0.0077 126 0.0211 PE-K03, PE-K04 0.2127 0.008 126 0.0211	РВ-КО1, РВ-КО4	2.3013	0.0251	126	0.0167
PB-K01, PB-K07 2.1005 2.47E-02 126 0.0262 PB-K01, PB-K08 2.199 0.0137 126 0.0186 PB-K01, PB-K09 1.9046 0.0319 126 0.0553 PB-K01, PB-K10 2.8919 0.0083 91 0.004 PB-K02, PB-K03 0.82768 0.4523 126 0.4898 PB-K02, PB-K04 1.1184 0.3183 126 0.0114 PB-K02, PB-K05 2.6426 0.0253 126 0.0112 PB-K02, PB-K06 2.6426 0.0253 126 0.0111 PB-K02, PB-K07 1.7344 0.0755 126 0.0111 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K03, PB-K08 1.4383 0.1321 126 0.0275 PB-K03, PB-K08 1.2931 0.0082 91 0.0027 PB-K03, PB-K08 1.2935 0.0686 126 0.0611 PB-K03, PB-K08 1.2051 0.0686 126 0.0676 PB-K03,	РВ-КО1, РВ-КО5	6.6505	0.008	126	0.0001
PE-K01, PE-K08 2.199 0.0137 126 0.0186 PB-K01, PE-K09 1.9046 0.0319 126 0.0553 PB-K01, PE-K03 0.82768 0.4523 126 0.4898 PB-K02, PE-K03 0.82768 0.4523 126 0.4898 PB-K02, PE-K04 1.1184 0.3183 126 0.0117 PB-K02, PE-K05 4.2345 0.00253 126 0.0112 PB-K02, PB-K06 2.6426 0.0253 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0111 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K03, PB-K04 0.45749 0.3335 126 0.2011 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0886 126 0.0646 PB-K03, PB-K05 1.4086 0.1572 126 0.0161 PB-K	РВ-КО1, РВ-КО6	3.7571	0.0096	126	0.0007
P8-K01, P8-K09 1.9046 0.0319 126 0.0553 P8-K01, P8-K10 2.8919 0.0083 91 0.004 P8-K02, P8-K03 0.82768 0.4523 126 0.4898 P8-K02, P8-K04 1.1184 0.3183 126 0.0117 P8-K02, P8-K05 4.2345 0.0083 126 0.0112 P8-K02, P8-K06 2.6426 0.0253 126 0.0112 P8-K02, P8-K07 1.7344 0.0755 126 0.0111 P8-K02, P8-K08 1.4383 0.1321 126 0.2225 P8-K02, P8-K09 1.2878 0.0002 91 0.0027 P8-K03, P8-K04 0.45749 0.9335 126 0.0011 P8-K03, P8-K05 4.3931 0.0077 126 0.0011 P8-K03, P8-K04 0.45749 0.9335 126 0.0011 P8-K03, P8-K05 2.2127 0.0088 126 0.0011 P8-K03, P8-K06 1.9375 0.0686 126 0.2057 P8-K03,	РВ-КО1, РВ-КО7	2.1005	2.47E-02	126	0.0262
P8-K01, P8-K10 2.8919 0.0083 91 0.0044 P8-K02, P8-K03 0.82768 0.4523 126 0.4898 P8-K02, P8-K04 1.1184 0.3183 126 0.3175 P8-K02, P8-K05 4.2345 0.0083 126 0.0014 P8-K02, P8-K06 2.6426 0.0253 126 0.0112 P8-K02, P8-K07 1.7344 0.0755 126 0.0111 P8-K02, P8-K08 1.4383 0.1321 126 0.1411 P8-K02, P8-K09 1.2878 0.2004 126 0.2225 P8-K03, P8-K04 0.45749 0.0335 126 0.0011 P8-K03, P8-K05 4.3931 0.0077 126 0.0011 P8-K03, P8-K05 4.3931 0.0077 126 0.0011 P8-K03, P8-K05 1.9375 0.0686 126 0.0666 P8-K03, P8-K05 2.8943 0.0085 1.266 0.2297 P8-K04, P8-K05 2.8943 0.0085 1.266 0.2297 P8	РВ-КО1, РВ-КО8	2.199	0.0137	126	0.0186
PB-K02, PB-K03 0.82768 0.4523 126 0.4898 PB-K02, PB-K04 1.1184 0.3183 126 0.0117 PB-K02, PB-K05 4.2345 0.0083 126 0.0014 PB-K02, PB-K06 2.6426 0.0253 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0771 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K03, PB-K04 0.45749 0.9335 126 0.841 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0088 126 0.664 PB-K03, PB-K07 1.9375 0.6686 126 0.664 PB-K03, PB-K08 1.4086 0.1572 126 0.664 PB-K03, PB-K03 0.5274 0.0086 126 0.6043 PB-K04, PB-K05 2.8943 0.0085 1.266±02 0.0043 PB-K	РВ-КО1, РВ-КО9	1.9046	0.0319	126	0.0553
PB-K02, PB-K04 1.1184 0.3183 126 0.3175 PB-K02, PB-K05 4.2345 0.0083 126 0.0014 PB-K02, PB-K06 2.6426 0.0253 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0771 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K03, PB-K04 0.45749 0.9335 126 0.841 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0088 126 0.0011 PB-K03, PB-K07 1.9375 0.0686 126 0.0167 PB-K03, PB-K08 1.4086 0.1572 126 0.0277 PB-K03, PB-K08 1.2684 0.0085 1.268+02 0.0046 PB-K03, PB-K05 2.8943 0.0085 1.268+02 0.0041 <	PB-K01, PB-K10	2.8919	0.0083	91	0.004
PB-K02, PB-K05 4.2345 0.0083 126 0.0014 PB-K02, PB-K06 2.6426 0.0253 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0771 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K02, PB-K10 2.9031 0.0082 91 0.0027 PB-K03, PB-K04 0.45749 0.9335 126 0.841 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0088 126 0.0011 PB-K03, PB-K07 1.9375 0.0686 126 0.0167 PB-K03, PB-K08 1.4086 0.1572 126 0.1677 PB-K03, PB-K09 0.90196 0.4693 126 0.2027 PB-K03, PB-K08 1.2684 0.0086 126 0.2027 PB-K04, PB-K05 1.2684 0.2017 126 0.2027 PB-K04,	РВ-КО2, РВ-КОЗ	0.82768	0.4523	126	0.4898
PB-K02, PB-K06 2.6426 0.0253 126 0.0112 PB-K02, PB-K07 1.7344 0.0755 126 0.0771 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K02, PB-K09 2.9031 0.0082 91 0.0027 PB-K03, PB-K04 0.45749 0.9335 126 0.841 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0088 126 0.0277 PB-K03, PB-K07 1.9375 0.0686 126 0.0647 PB-K03, PB-K08 1.4086 0.1572 126 0.1677 PB-K03, PB-K08 1.4086 0.1572 126 0.2297 PB-K03, PB-K09 0.90196 0.4693 126 0.2297 PB-K04, PB-K05 2.8943 0.0085 1.26E+02 0.0043 PB-K04, PB-K06 1.2746 0.2297 126 0.2155 PB	РВ-КО2, РВ-КО4	1.1184	0.3183	126	0.3175
PB-K02, PB-K07 1.7344 0.0755 126 0.0771 PB-K02, PB-K08 1.4383 0.1321 126 0.1411 PB-K02, PB-K09 1.2878 0.2004 126 0.2225 PB-K02, PB-K10 2.9031 0.0082 91 0.0027 PB-K03, PB-K04 0.45749 0.9335 126 0.841 PB-K03, PB-K05 4.3931 0.0077 126 0.0011 PB-K03, PB-K06 2.2127 0.0088 126 0.027 PB-K03, PB-K06 2.2127 0.0088 126 0.0011 PB-K03, PB-K06 1.9375 0.0686 126 0.064 PB-K03, PB-K07 1.9375 0.0686 126 0.064 PB-K03, PB-K08 1.4086 0.1572 126 0.1677 PB-K03, PB-K09 0.90196 0.4693 126 0.2097 PB-K04, PB-K05 2.8943 0.0085 1.26E+02 0.0043 PB-K04, PB-K06 1.2746 0.2071 126 0.2157 PB-K0	РВ-КО2, РВ-КО5	4.2345	0.0083	126	0.0014
PB-K02, PB-K081.43830.13211260.1411PB-K02, PB-K091.28780.20041260.2225PB-K02, PB-K012.90310.0082910.0027PB-K03, PB-K040.457490.93351260.841PB-K03, PB-K054.39310.00771260.0011PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K043.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0433PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K081.28330.20711260.2157PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.017PB-K04, PB-K063.65890.0091260.0017PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K073.87040.00821.26E+020.0011PB-K05, PB-K082.78760.0111260.0091	РВ-КО2, РВ-КО6	2.6426	0.0253	126	0.0112
PB-K02, PB-K091.28780.20041260.2225PB-K02, PB-K102.90310.0082910.0027PB-K03, PB-K040.457490.93351260.841PB-K03, PB-K054.39310.00771260.0011PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K052.89430.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0431PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K081.28330.00711260.0749PB-K04, PB-K081.28330.0084910.0017PB-K04, PB-K090.558460.79611260.011PB-K05, PB-K063.65890.00821.26E+020.0017PB-K05, PB-K073.87040.00821.26E+020.0017PB-K05, PB-K082.78760.0111260.009	РВ-КО2, РВ-КО7	1.7344	0.0755	126	0.0771
PB-K02, PB-K102.90310.0082910.0027PB-K03, PB-K040.457490.93351260.841PB-K03, PB-K054.39310.00771260.0011PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0004PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2157PB-K04, PB-K081.28330.00811260.0174PB-K04, PB-K081.23310.0084910.0017PB-K04, PB-K063.65890.0091260.0017PB-K05, PB-K063.87040.00821.26E+020.0011PB-K05, PB-K082.78760.0111260.009	РВ-КО2, РВ-КО8	1.4383	0.1321	126	0.1411
PB-K03, PB-K040.457490.93351260.841PB-K03, PB-K054.39310.00771260.0011PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2157PB-K04, PB-K081.28330.00811260.0749PB-K04, PB-K090.558460.79611260.2157PB-K04, PB-K090.558460.0091260.0017PB-K04, PB-K093.65890.0091260.0017PB-K05, PB-K063.65890.00821.26E+020.0021PB-K05, PB-K073.87040.0111260.009	РВ-КО2, РВ-КО9	1.2878	0.2004	126	0.2225
PB-K03, PB-K054.39310.00771260.0011PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K081.28330.00811260.0749PB-K04, PB-K081.28330.0084910.0017PB-K04, PB-K063.558460.79611260.7456PB-K04, PB-K063.65890.0091260.0017PB-K05, PB-K063.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.009	РВ-КО2, РВ-К10	2.9031	0.0082	91	0.0027
PB-K03, PB-K062.21270.00881260.027PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.2071260.2297PB-K04, PB-K081.28330.00811260.0749PB-K04, PB-K090.558460.79611260.215PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K082.78760.0111260.0297	РВ-КОЗ, РВ-КО4	0.45749	0.9335	126	0.841
PB-K03, PB-K071.93750.06861260.064PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.017PB-K04, PB-K063.65890.0091260.0017PB-K05, PB-K063.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.099	РВ-КОЗ, РВ-КО5	4.3931	0.0077	126	0.0011
PB-K03, PB-K081.40860.15721260.1677PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.021PB-K05, PB-K082.78760.0111260.099	РВ-КОЗ, РВ-КО6	2.2127	0.0088	126	0.027
PB-K03, PB-K090.901960.46931260.4266PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КОЗ, РВ-КО7	1.9375	0.0686	126	0.064
PB-K03, PB-K103.52740.0086910.0006PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0021PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.111260.0099	РВ-КОЗ, РВ-КО8	1.4086	0.1572	126	0.1677
PB-K04, PB-K052.89430.00851.26E+020.0043PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0021PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.111260.0099	РВ-КОЗ, РВ-КО9	0.90196	0.4693	126	0.4266
PB-K04, PB-K061.27460.22071260.2297PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0021PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КОЗ, РВ-К10	3.5274	0.0086	91	0.0006
PB-K04, PB-K071.8050.08811260.0749PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0021PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КО4, РВ-КО5	2.8943	0.0085	1.26E+02	0.0043
PB-K04, PB-K081.28330.20711260.215PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КО4, РВ-КО6	1.2746	0.2207	126	0.2297
PB-K04, PB-K090.558460.79611260.7456PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КО4, РВ-КО7	1.805	0.0881	126	0.0749
PB-K04, PB-K103.23310.0084910.0017PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КО4, РВ-КО8	1.2833	0.2071	126	0.215
PB-K05, PB-K063.65890.0091260.0017PB-K05, PB-K073.87040.00821.26E+020.0021PB-K05, PB-K082.78760.0111260.0099	РВ-КО4, РВ-КО9	0.55846	0.7961	126	0.7456
PB-K05, PB-K07 3.8704 0.0082 1.26E+02 0.0021 PB-K05, PB-K08 2.7876 0.011 126 0.0099	РВ-КО4, РВ-К10	3.2331	0.0084	91	0.0017
PB-K05, PB-K08 2.7876 0.011 126 0.0099	РВ-КО5, РВ-КО6	3.6589	0.009	126	0.0017
	РВ-КО5, РВ-КО7	3.8704	0.0082	1.26E+02	0.0021
PB-K05, PB-K09 3.4774 0.0087 126 0.0049	РВ-КО5, РВ-КО8	2.7876	0.011	126	0.0099
	РВ-КО5, РВ-КО9	3.4774	0.0087	126	0.0049

			Unique	
Groups	t	P(perm)	perms	P(MC)
РВ-КО5, РВ-К10	4.5639	0.0079	91	0.0001
РВ-КО6, РВ-КО7	1.709	0.0771	126	0.0909
РВ-КО6, РВ-КО8	1.6946	0.0812	126	0.0785
РВ-КО6, РВ-КО9	1.8078	0.0772	126	0.0716
РВ-КО6, РВ-К10	3.2287	0.0082	91	0.0024
РВ-КО7, РВ-КО8	1.1122	0.2968	126	0.3006
РВ-КО7, РВ-КО9	2.0446	0.0484	126	0.038
РВ-КО7, РВ-К10	2.4639	0.009	91	0.0095
РВ-КО8, РВ-КО9	1.6501	0.0638	126	0.0879
РВ-КО8, РВ-К10	2.8591	0.0068	91	0.0038
РВ-КО9, РВ-К10	3.0615	0.0052	91	0.0023

Posidonia patches: La Perouse

Univariate PERMANOVA for Shoot Count: LP01

PERMANOVA table of results

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	
Su	3	153.43	51.143	5.5894	0.0223		982
Res	10	91.5	9.15				
Total	13	244.93					

PAIR-WISE TESTS

Term 'Su'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.37796	1	3	0.7232
1, 3	1.86	0.1341	17	0.1219
1, 4	3.3251	0.0552	21	0.0188
2, 3	2.1576	0.1409	12	0.0784
2, 4	3.5326	0.0336	20	0.0169
3, 4	1.4771	0.2034	11	0.1881

Univariate PERMANOVA for Shoot Count: LP02

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	
Su	3	370.67	123.56	4.7319	0.0198		1998
Res	12	313.33	26.111				
Total	15	684					

PERMANOVA table of results

PAIR-WISE TESTS

Term 'Su'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	3.9598	0.0948	9	0.015
1, 3	2.1651	0.0727	15	0.0727
1, 4	0.66975	0.622	25	0.5264
2, 3	7.2158	0.0192	30	0.0005
2, 4	2.5093	0.0717	34	0.044
3, 4	Negative			

Posidonia patches: Kurnell

Univariate PERMANOVA for Shoot Count: PP-K03

PERMANOVA table of results

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	
Su	3	316.15	105.38	13.776	0.0006		613
Res	16	122.4	7.65				
Total	19	438.55					

PAIR-WISE TESTS

Term 'Su'

			Unique		
Groups	t	P(perm) perms	P(MC)	
1, 2	2.4	056	0.0771	14	0.043
1, 3	5.2	2559	0.0086	24	0.0009
1, 4	5.0	644	0.0063	23	0.0012
2, 3	2.9	775	0.0289	15	0.0206
2, 4	2.6	563	0.0485	13	0.0293
3, 4	0.59	628	0.6641	9	0.5599

Univariate PERMANOVA for Shoot Count: PP-K03

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	
Su	3	37.2	12.4	0.91009	0.4565		336
Res	16	218	13.625				
Total	19	255.2					

PERMANOVA table of results

Univariate PERMANOVA for Shoot Count: PP-K07

PERMANOVA t	PERMANOVA table of results									
							Unique			
Source	df	SS	MS		Pseudo-F	P(perm)	perms			
Su	3	271.4	12	90.474	2.8571	0.0585		2043		
Res	15	4	75	31.667						
Total	18	746.4	12							

Univariate PERMANOVA for Shoot Count: PP-K08

PERMANOVA table of results

						Unique	
Source	df	SS	MS	Pseudo-F	P(perm)	perms	
Su	3	276.68	92.226	12.463	0.0008		1009
Res	14	103.6	7.4				
Total	17	380.28					

Term 'Su'

			Unique	
Groups	t	P(perm)	perms	P(MC)
1, 2	0.57617	0.5977	16	0.5867
1, 3	3.3883	0.0377	15	0.0164
1, 4	8.301	0.0168	19	0.0002
2, 3	3.8421	0.0167	22	0.0057
2, 4	5.0468	0.008	19	0.0012
3, 4	0.12082	1	9	0.907

Univariate PERMANOVA for Shoot Count: PP-K09

PERMANOVA table of results									
							Unique		
Source	df	SS		MS	Pseudo-F	P(perm)	perms		
Su	3		55.083	18.361	1.1091	0.3847		1720	
Res	12		198.67	16.556					
Total	15		253.75						

Univariate PERMANOVA for Shoot Count: PP-K11

						Unique
Source	df	SS	MS	Pseudo-F	P(perm)	perms
Su	3	191.4	63.799	1.4422	0.27	2325
Res	15	663.55	44.237			
Total	18	854.95				

PERMANOVA table of results

Outer Transect - shoot count

All surveys

Regression Statistics	
Multiple R	0.1926
R Square	0.0371
Adjusted R Square	0.0246
Standard Error	8.7393
Observations	79.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	226.6348	226.6348	2.9674	0.0890
Residual	77.0000	5880.9095	76.3754		
Total	78.0000	6107.5443			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	11.8297	2.5722	4.5990	0.0000	6.7077	16.9516	6.7077	16.9516
75	0.0296	0.0172	1.7226	0.0890	-0.0046	0.0638	-0.0046	0.0638

Baseline 1

Regression Statistics	
Multiple R	0.1170
R Square	0.0137
Adjusted R Square	-0.0443
Standard Error	14.6487
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F			
Regression	1.0000	50.6061	50.6061	0.2358	0.6334			
Residual	17.0000	3647.9202	214.5835					
Total	18.0000	3698.5263						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	Coefficients 16.8689	Standard Error 8.8450	<i>t Stat</i> 1.9072	<i>P-value</i> 0.0735	<i>Lower 95%</i> -1.7924	<i>Upper 95%</i> 35.5301	<i>Lower 95.0%</i> -1.7924	<i>Upper 95.0%</i> 35.5301

Regression Statistics	
Multiple R	0.2788
R Square	0.0777
Adjusted R Square	0.0235
Standard Error	4.7217
Observations	19.0000

ANOVA

7110171					
	df	SS	MS	F	Significance F
Regression	1.0000	31.9463	31.9463	1.4329	0.2477
Residual	17.0000	379.0011	22.2942		
Total	18.0000	410.9474			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	15.8958	2.8510	5.5755	0.0000	9.8807	21.9108	9.8807	21.9108
	80 0.0197	0.0164	1.1971	0.2477	-0.0150	0.0543	-0.0150	0.0543

Baseline 3

Kamay Ferry Wharves Seagrass Monitoring Program: Final baseline report

Regression Statistics	
Multiple R	0.3827
R Square	0.1465
Adjusted R Square	0.0962
Standard Error	3.8987
Observations	19.0000

	df	SS	MS	F	Significance F
Regression	1.0000	44.3363	44.3363	2.9169	0.1059
Residual	17.0000	258.4005	15.2000		
Total	18.0000	302.7368			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	7.8073	2.3541	3.3165	0.0041	2.8407	12.7740	2.8407	12.7740
	80 0.0232	0.0136	1.7079	0.1059	-0.0055	0.0518	-0.0055	0.0518

Baseline 4

Regression Statistics	
Multiple R	0.3827
R Square	0.1465
Adjusted R Square	0.0962
Standard Error	3.8987
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	44.3363	44.3363	2.9169	0.1059
Residual	17.0000	258.4005	15.2000		
Total	18.0000	302.7368			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		7.8073	2.3541	3.3165	0.0041	2.8407	12.7740	2.8407	12.7740
	80	0.0232	0.0136	1.7079	0.1059	-0.0055	0.0518	-0.0055	0.0518

Outer Transect – leaf length

All surveys

Regression Statistics	
Multiple R	0.1801
R Square	0.0324
Adjusted R Square	0.0199
Standard Error	8.8035
Observations	79.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	200.1276	200.1276	2.5823	0.1122
Residual	77.0000	5967.5656	77.5009		
Total	78.0000	6167.6932			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	31.5099	2.5466	12.3732	0.0000	26.4389	36.5809	26.4389	36.5809
	80 -0.0239	0.0149	-1.6069	0.1122	-0.0536	0.0057	-0.0536	0.0057

	Regression Statistics	
М	ultiple R	0.5482
R	Square	0.3006
Ac	djusted R Square	0.2594
St	andard Error	9.1672
O	bservations	19.0000

ANOVA

Allow A					
	df	SS	MS	F	Significance F
Regression	1.0000	613.9661	613.9661	7.3058	0.0151
Residual	17.0000	1428.6530	84.0384		
Total	18.0000	2042.6191			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	35.8536	5.5353	6.4773	0.0000	24.1752	47.5319	24.1752	47.5319
	80 -0.0862	0.0319	-2.7029	0.0151	-0.1535	-0.0189	-0.1535	-0.0189

Baseline 2

Regression Statistics	
Multiple R	0.0661
R Square	0.0044
Adjusted R Square	-0.0542
Standard Error	3.9628
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	1.1715	1.1715	0.0746	0.7880

Kamay Ferry Wharves Seagrass Monitoring Program: Final baseline report

Residual		17.0000	266.9614	15.7036					
Total		18.0000	268.1330						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		31.9133	2.3928	13.3375	0.0000	26.8650	36.9616	26.8650	36.9616
	80	-0.0038	0.0138	-0.2731	0.7880	-0.0329	0.0253	-0.0329	0.0253

Regression Statistics	
Multiple R	0.1168
R Square	0.0136
Adjusted R Square	-0.0444
Standard Error	4.4793
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	4.7202	4.7202	0.2353	0.6338
Residual	17.0000	341.0900	20.0641		
Total	18.0000	345.8102			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	20.7269	2.7046	7.6635	0.0000	15.0206	26.4332	15.0206	26.4332
	80 0.0076	0.0156	0.4850	0.6338	-0.0253	0.0404	-0.0253	0.0404

Baseline 4

Regression Statistics

Multiple R

Kamay Ferry Wharves Seagrass Monitoring Program: Final baseline report

0.1011

R Square	0.0102
Adjusted R Square	-0.0480
Standard Error	6.8729
Observations	19.0000

	df	SS	MS	F	Significance F
Regression	1.0000	8.2900	8.2900	0.1755	0.6805
Residual	17.0000	803.0160	47.2362		
Total	18.0000	811.3060			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		36.8314	4.1499	8.8753	0.0000	28.0759	45.5869	28.0759	45.5869
	80	-0.0100	0.0239	-0.4189	0.6805	-0.0605	0.0404	-0.0605	0.0404

Inner Transect - shoot count

All surveys

Regression Statistics							
Multiple R	0.262353						
R Square	0.068829						
Adjusted R Square	0.056736						
Standard Error	14.12778						
Observations	79						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1136.011	1136.011	5.691607	0.019504
Residual	77	15368.75	199.5941		

Total		78	16504.76						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		18.46698	3.611095	5.113957	2.25E-06	11.27637	25.65759	11.27637	25.65759
	80	0.046721	0.019584	2.385709	0.019504	0.007725	0.085717	0.007725	0.085717

Regression Statistics								
Multiple R	0.792396							
R Square	0.627892							
Adjusted R Square	0.606003							
Standard Error	9.104223							
Observations	19							

ANOVA

df		df SS MS			
Regression	1	2377.66	2377.66	28.68561	5.24E-05
Residual	17	1409.077	82.88687		
Total	18	3786.737			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		44.44675	4.930447	9.014751	6.92E-08	34.04442	54.84908	34.04442	54.84908
	80	-0.14756	0.027551	-5.35589	5.24E-05	-0.20569	-0.08943	-0.20569	-0.08943

Baseline 2

Regression Sto	atistics
Multiple R	0.739086
R Square	0.546249

Adjusted R Square	0.519558
Standard Error	10.15914
Observations	19

	df	SS	MS	F	Significance F
Regression	1	2112.2	2112.2	20.46546	0.0003
Residual	17	1754.537	103.208		
Total	18	3866.737			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		13.98072	5.501741	2.541145	0.021091	2.373061	25.58838	2.373061	25.58838
	80	0.13908	0.030744	4.523877	0.0003	0.074217	0.203943	0.074217	0.203943

Baseline 3

Regression Statistics				
Multiple R	0.67968			
R Square	0.461965			
Adjusted R Square	0.430315			
Standard Error	9.51857			
Observations	19			

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	1322.483	1322.483	14.59643	0.001368	
Residual	17	1540.254	90.60318			
Total	18	2862.737				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		9.633917	5.154839	1.868907	0.078965	-1.24184	20.50968	-1.24184	20.50968
	80	0.110051	0.028805	3.820527	0.001368	0.049277	0.170824	0.049277	0.170824

Regression Statistics				
Multiple R 0.66039				
R Square	0.436121			
Adjusted R Square	0.402951			
Standard Error	9.174605			
Observations	19			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1106.737	1106.737	13.1483	0.002087
Residual	17	1430.947	84.17337		
Total	18	2537.684			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		5.945616	4.836898	1.229221	0.235732	-4.25935	16.15058	-4.25935	16.15058
	80	0.083343	0.022984	3.626059	0.002087	0.03485	0.131835	0.03485	0.131835

Inner Transect – leaf length

All surveys

Regression Statistics

Multiple R

0.193185

R Square	0.037321
Adjusted R Square	0.024818
Standard Error	5.771299
Observations	79

ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	99.42717	99.42717	2.985093	0.088043	
Residual	77	2564.708	33.3079			
Total	78	2664.135				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		30.59355	1.475158	20.73916	2.99E-33	27.65614	33.53097	27.65614	33.53097
	80	-0.01382	0.008	-1.72774	0.088043	-0.02975	0.002108	-0.02975	0.002108

Baseline 1

Regression Statistics						
Multiple R	0.330882					
R Square	0.109483					
Adjusted R Square	0.0571					
Standard Error	4.627191					
Observations	19					

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	44.74951	44.74951	2.090034	0.166446	
Residual	17	363.9853	21.4109			
Total	18	408.7348				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		35.46575	2.505883	14.15299	7.76E-11	30.1788	40.7527	30.1788	40.7527
	80	-0.02024	0.014003	-1.4457	0.166446	-0.04979	0.0093	-0.04979	0.0093

Regression Statistics						
Multiple R	0.102886					
R Square	0.010585					
Adjusted R Square	-0.04762					
Standard Error	2.75813					
Observations	19					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	1.383603	1.383603	0.181879	0.675115
Residual	17	129.3238	7.60728		
Total	18	130.7074			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		32.7244	1.493682	21.90855	6.71E-14	29.57301	35.87579	29.57301	35.87579
	80	-0.00356	0.008347	-0.42647	0.675115	-0.02117	0.01405	-0.02117	0.01405

Baseline 3

Regression Statistics	
Multiple R	0.591043
R Square	0.349332
Adjusted R Square	0.311058

Standard Error	4.013251
Observations	19

	df	SS	MS	F	Significance F	
Regression	1	147.0012	147.0012	9.127007	0.0077	
Residual	17	273.8051	16.10618			
Total	18	420.8063				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		28.08988	2.1734	12.92439	3.21E-10	23.50441	32.67536	23.50441	32.67536
	80	-0.03669	0.012145	-3.02109	0.0077	-0.06231	-0.01107	-0.06231	-0.01107

Baseline 4

Regression Statistics						
Multiple R	0.096969					
R Square	0.009403					
Adjusted R Square	-0.04887					
Standard Error	4.041336					
Observations	19					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	2.635529	2.635529	0.161368	0.692905
Residual	17	277.6508	16.3324		
Total	18	280.2863			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		25.77151	2.130613	12.09582	8.91E-10	21.27631	30.26671	21.27631	30.26671
	80	0.004067	0.010124	0.401707	0.692905	-0.01729	0.025428	-0.01729	0.025428

Outer Transect - shoot count

All surveys

Regression Statistics	
Multiple R	0.1926
R Square	0.0371
Adjusted R Square	0.0246
Standard Error	8.7393
Observations	79.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	226.6348	226.6348	2.9674	0.0890
Residual	77.0000	5880.9095	76.3754		
Total	78.0000	6107.5443			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	11.8297	2.5722	4.5990	0.0000	6.7077	16.9516	6.7077	16.9516
75	0.0296	0.0172	1.7226	0.0890	-0.0046	0.0638	-0.0046	0.0638

Baseline 1

Regression Statistics	
Multiple R	0.1170
R Square	0.0137
Adjusted R Square	-0.0443
Standard Error	14.6487

Observations

19.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	50.6061	50.6061	0.2358	0.6334
Residual	17.0000	3647.9202	214.5835		
Total	18.0000	3698.5263			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	16.8689	8.8450	1.9072	0.0735	-1.7924	35.5301	-1.7924	35.5301
80	0.0248	0.0510	0.4856	0.6334	-0.0828	0.1323	-0.0828	0.1323

Baseline 2

Regression Statistics	
Multiple R	0.2788
R Square	0.0777
Adjusted R Square	0.0235
Standard Error	4.7217
Observations	19.0000

	df	SS	MS	F	Significance F			
Regression	1.0000	31.9463	31.9463	1.4329	0.2477			
Residual	17.0000	379.0011	22.2942					
Total	18.0000	410.9474						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%

Intercept	15.8958	2.8510	5.5755	0.0000	9.8807	21.9108	9.8807	21.9108
80	0 0.0197	0.0164	1.1971	0.2477	-0.0150	0.0543	-0.0150	0.0543

Regression Statisti	cs								
Multiple R	0.38	27							
R Square	0.14	65							
Adjusted R Square	0.09	62							
Standard Error	3.89	87							
Observations	19.0	000							
ANOVA									
	df		SS	MS	F	Significance F			
Regression	1.00	00	44.3363	44.3363	2.9169	0.1059			
Residual	17.0	000	258.4005	15.2000					
Total	18.0	000	302.7368						
	Coef	ficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	7.80	73	2.3541	3.3165	0.0041	2.8407	12.7740	2.8407	12.7740
	80 0.02	32	0.0136	1.7079	0.1059	-0.0055	0.0518	-0.0055	0.0518

Baseline 4

,
0

	df	SS	MS	F	Significance F			
	1.0000	44.3363	44.3363	2.9169	0.1059			
	17.0000	258.4005	15.2000					
	18.0000	302.7368						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	7.8073	2.3541	3.3165	0.0041	2.8407	12.7740	2.8407	12.7740
80	0.0232	0.0136	1.7079	0.1059	-0.0055	0.0518	-0.0055	0.0518
	80	1.0000 17.0000 18.0000 Coefficients 7.8073	1.0000 44.3363 17.0000 258.4005 18.0000 302.7368 Coefficients Standard Error 7.8073 2.3541	1.0000 44.3363 44.3363 17.0000 258.4005 15.2000 18.0000 302.7368 5 Coefficients Standard Error t Stat 7.8073 2.3541 3.3165	1.0000 44.3363 44.3363 2.9169 17.0000 258.4005 15.2000 18.0000 18.0000 302.7368	1.0000 44.3363 44.3363 2.9169 0.1059 17.0000 258.4005 15.2000 15.200	1.0000 44.3363 44.3363 2.9169 0.1059 17.0000 258.4005 15.2000 15.2000 15.2000 18.0000 302.7368 Upper 95% 10000 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 7.8073 2.3541 3.3165 0.0041 2.8407 12.7740	1.0000 44.3363 44.3363 2.9169 0.1059 17.0000 258.4005 15.2000 15.2000 18.0000 302.7368

Outer Transect – leaf length

All surveys

0.1801
0.0324
0.0199
8.8035
79.0000

ANOVA

	df	SS	MS	F	Significance F			
Regression	1.0000	200.1276	200.1276	2.5823	0.1122			
Residual	77.0000	5967.5656	77.5009					
Total	78.0000	6167.6932						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	31.5099	2.5466	12.3732	0.0000	26.4389	36.5809	26.4389	36.5809

60 -0.0255 0.0145 -1.0005 0.1122 -0.0550 0.0057 -0.0550 0.0057		80	-0.0239	0.0149	-1.6069	0.1122	-0.0536	0.0057	-0.0536	0.0057
--	--	----	---------	--------	---------	--------	---------	--------	---------	--------

Regression Statistics	
Multiple R	0.5482
R Square	0.3006
Adjusted R Square	0.2594
Standard Error	9.1672
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F
Regression	1.0000	613.9661	613.9661	7.3058	0.0151
Residual	17.0000	1428.6530	84.0384		
Total	18.0000	2042.6191			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		35.8536	5.5353	6.4773	0.0000	24.1752	47.5319	24.1752	47.5319
	80	-0.0862	0.0319	-2.7029	0.0151	-0.1535	-0.0189	-0.1535	-0.0189

Baseline 2

Regression Statistics	
Multiple R	0.0661
R Square	0.0044
Adjusted R Square	-0.0542
Standard Error	3.9628
Observations	19.0000

		df	SS	MS	F	Significance F			
Regression		1.0000	1.1715	1.1715	0.0746	0.7880			
Residual		17.0000	266.9614	15.7036					
Total		18.0000	268.1330						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		31.9133	2.3928	13.3375	0.0000	26.8650	36.9616	26.8650	36.9616
	80	-0.0038	0.0138	-0.2731	0.7880	-0.0329	0.0253	-0.0329	0.0253

Baseline 3

Regression	Statistics	
Multiple R		0.1168
R Square		0.0136
Adjusted R S	quare	-0.0444
Standard Err	or	4.4793
Observations	5	19.0000

ANOVA

	df	SS	MS	F	Significance F			
Regression	1.0000	4.7202	4.7202	0.2353	0.6338			
Residual	17.0000	341.0900	20.0641					
Total	18.0000	345.8102						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	20.7269	2.7046	7.6635	0.0000	15.0206	26.4332	15.0206	26.4332
Intercept								

Regression Statistics	
Multiple R	0.1011
R Square	0.0102
Adjusted R Square	-0.0480
Standard Error	6.8729
Observations	19.0000

ANOVA

	df	SS	MS	F	Significance F			
Regression	1.0000	8.2900	8.2900	0.1755	0.6805			
Residual	17.0000	803.0160	47.2362					
Total	18.0000	811.3060						

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		36.8314	4.1499	8.8753	0.0000	28.0759	45.5869	28.0759	45.5869
	80	-0.0100	0.0239	-0.4189	0.6805	-0.0605	0.0404	-0.0605	0.0404

Outer Transect - shoot count

All surveys

Regression Statistics							
Multiple R	0.262353						
R Square	0.068829						
Adjusted R Square	0.056736						
Standard Error	14.12778						
Observations	79						

	df	SS	MS	F	Significance F
Regression	1	1136.011	1136.011	5.691607	0.019504
Residual	77	15368.75	199.5941		
Total	78	16504.76			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		18.46698	3.611095	5.113957	2.25E-06	11.27637	25.65759	11.27637	25.65759
	80	0.046721	0.019584	2.385709	0.019504	0.007725	0.085717	0.007725	0.085717

Baseline 1

Regression Stati	stics
Multiple R	0.792396
R Square	0.627892
Adjusted R Square	0.606003
Standard Error	9.104223
Observations	19

ANOVA									
		df	SS	MS	F	Significance F			
Regression		1	2377.66	2377.66	28.68561	5.24E-05			
Residual		17	1409.077	82.88687					
Total		18	3786.737						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		44.44675	4.930447	9.014751	6.92E-08	34.04442	54.84908	34.04442	54.84908
	80	-0.14756	0.027551	-5.35589	5.24E-05	-0.20569	-0.08943	-0.20569	-0.08943

Regression Statistics							
Multiple R	0.739086						
R Square	0.546249						
Adjusted R Square	0.519558						
Standard Error	10.15914						
Observations	19						

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	2112.2	2112.2	20.46546	0.0003	
Residual	17	1754.537	103.208			
Total	18	3866.737				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		13.98072	5.501741	2.541145	0.021091	2.373061	25.58838	2.373061	25.58838
	80	0.13908	0.030744	4.523877	0.0003	0.074217	0.203943	0.074217	0.203943

Baseline 3

Regression Statistics							
Multiple R	0.67968						
R Square	0.461965						
Adjusted R Square	0.430315						
Standard Error	9.51857						
Observations	19						

ANOVA

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	1322.483	1322.483	14.59643	0.001368

Residual		17	1540.254	90.60318					
Total		18	2862.737						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		9.633917	5.154839	1.868907	0.078965	-1.24184	20.50968	-1.24184	20.50968
	80	0.110051	0.028805	3.820527	0.001368	0.049277	0.170824	0.049277	0.170824

Regression Statistics							
Multiple R	0.660394						
R Square	0.436121						
Adjusted R Square	0.402951						
Standard Error	9.174605						
Observations	19						

ANOVA

df	SS	MS	F	Significance F			
1	1106.737	1106.737	13.1483	0.002087			
17	1430.947	84.17337					
18	2537.684						
Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
5.945616	4.836898	1.229221	0.235732	-4.25935	16.15058	-4.25935	16.1505
0.083343	0.022984	3.626059	0.002087	0.03485	0.131835	0.03485	0.13183
	0.083343	0.083343 0.022984	0.083343 0.022984 3.626059	0.083343 0.022984 3.626059 0.002087	0.083343 0.022984 3.626059 0.002087 0.03485	0.083343 0.022984 3.626059 0.002087 0.03485 0.131835	0.083343 0.022984 3.626059 0.002087 0.03485 0.131835 0.03485

Outer Transect – leaf length

Kamay Ferry Wharves Seagrass Monitoring Program: Final baseline report

All surveys

Regression Statistics	
Multiple R	0.193185
R Square	0.037321
Adjusted R Square	0.024818
Standard Error	5.771299
Observations	79

ANOVA

	df	SS	MS	F	Significance F
Regression	1	99.42717	99.42717	2.985093	0.088043
Residual	77	2564.708	33.3079		
Total	78	2664.135			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		30.59355	1.475158	20.73916	2.99E-33	27.65614	33.53097	27.65614	33.53097
_	80	-0.01382	0.008	-1.72774	0.088043	-0.02975	0.002108	-0.02975	0.002108

Baseline 1

Regression Statistics	
Multiple R	0.330882
R Square	0.109483
Adjusted R Square	0.0571
Standard Error	4.627191
Observations	19

ANOVA

	df	SS	MS	F	Significance F
Regression	1	44.74951	44.74951	2.090034	0.166446
Residual	17	363.9853	21.4109		

Total		18	408.7348						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		35.46575	2.505883	14.15299	7.76E-11	30.1788	40.7527	30.1788	40.7527
	80	-0.02024	0.014003	-1.4457	0.166446	-0.04979	0.0093	-0.04979	0.0093

Regression Statistics	
Multiple R	0.102886
R Square	0.010585
Adjusted R Square	-0.04762
Standard Error	2.75813
Observations	19

ANOVA

/									
		df	SS	MS	F	Significance F			
Regression		1	1.383603	1.383603	0.181879	0.675115			
Residual		17	129.3238	7.60728					
Total		18	130.7074						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		32.7244	1.493682	21.90855	6.71E-14	29.57301	35.87579	29.57301	35.87579
	80	-0.00356	0.008347	-0.42647	0.675115	-0.02117	0.01405	-0.02117	0.01405

Baseline 3

Regression Statistics

Observations	19
Standard Error	4.013251
Adjusted R Square	0.311058
R Square	0.349332
Multiple R	0.591043

	df	SS	MS	F	Significance F	
Regression	1	147.0012	147.0012	9.127007	0.0077	
Residual	17	273.8051	16.10618			
Total	18	420.8063				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		28.08988	2.1734	12.92439	3.21E-10	23.50441	32.67536	23.50441	32.67536
	80	-0.03669	0.012145	-3.02109	0.0077	-0.06231	-0.01107	-0.06231	-0.01107

Baseline 4

Regression Statistics						
Multiple R	0.096969					
R Square	0.009403					
Adjusted R Square	-0.04887					
Standard Error	4.041336					
Observations	19					

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	2.635529	2.635529	0.161368	0.692905	
Residual	17	277.6508	16.3324			
Total	18	280.2863				

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		25.77151	2.130613	12.09582	8.91E-10	21.27631	30.26671	21.27631	30.26671
	80	0.004067	0.010124	0.401707	0.692905	-0.01729	0.025428	-0.01729	0.025428

Contact Us

Niche Environment and Heritage 02 9630 5658 info@niche-eh.com

NSW Head Office – Sydney PO Box 2443 North Parramatta NSW 1750 Australia

QLD Head Office – Brisbane PO Box 540 Sandgate QLD 4017 Australia

Sydney Illawarra Central Coast Newcastle Mudgee Port Macquarie Brisbane Cairns

© Niche Environment and Heritage, 2018

Our services

Ecology and biodiversity

Terrestrial Freshwater Marine and coastal Research and monitoring Wildlife Schools and training

Heritage management

Aboriginal heritage Historical heritage Conservation management Community consultation Archaeological, built and landscape values

Environmental management and approvals

Impact assessments Development and activity approvals Rehabilitation Stakeholder consultation and facilitation Project management

Environmental offsetting

Offset strategy and assessment (NSW, QLD, Commonwealth) Accredited BAM assessors (NSW) Biodiversity Stewardship Site Agreements (NSW) Offset site establishment and management Offset brokerage Advanced Offset establishment (QLD)