

T: +61 2 9406 1000 f: +61 2 9406 1002

coffey.com

Maria Doumit Transport for New South Wales Level 9, 10-14 Smith Street Parramatta, NSW 2150

Ref: SYDEN279944-L01

13 January 2021

Attention: Maria Doumit

Dear Maria,

RE: Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW

1. Introduction

Coffey Services Australia Pty Ltd (Coffey) was engaged by Transport for New South Wales (TfNSW) to carry out an in-situ Waste Classification Assessment for the proposed road upgrade at Pennant Hills Road and North Rocks Road, NSW (the site). The location of the site is shown on Figure 1 (Attachment B).

Coffey understands that TfNSW is proposing to carry out road improvements on Pennant Hills Road and North Rocks Road. These improvements involved the provision of an additional through lane and new intersection configurations on Pennant Hills Road and North Rocks Road, which would ease congestion and improve traffic flow along the corridor.

1.1. Description of Proposed Works

It is understood that the works at the Pennant Hills Road and North Rocks Road Intersection may include:

North Rocks Road (westbound).

- Proposed 80m right turn bay.
- Proposed widen median.

North Rocks Road (eastbound).

• Proposed dual right turn from North Rocks Road West.

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW

· Proposed 80m right turn bay.

Pennant Hills Road (northbound).

- Conversion of left turn lane into a through and left lane.
- Existing indented bus bay to be relocated as shelter within verge.
- Conversion of existing lane merge (north of North Rocks Road) into third lane on Pennant Hills Road northbound.

Pennant Hills Road (southbound)

- Proposed 120m long kerb side lane (south of North Rocks Road).
- Proposed raised median and traffic island.
- Existing indented bus bay to be relocated as shelter within verge.
- Proposed left turn slip lane onto North Rocks Road.
- Proposed additional through lane (north of North Rocks Road).

At the time of writing this report, the depth of excavations and the approximate volume of excess material requiring disposal had not been provided.

2. Background

EMM consulting Pty Ltd (EMM) was engaged by TfNSW to undertake a preliminary site investigation (PSI) of the BP Carlingford service station at 712-714 Pennant Hills Road, Carlingford. TfNSW was intending to acquire approximately 260m² of the property as part of the upgrade project and requested the PSI to inform potential contamination risks for the potential acquisition.

Review of the PSI indicated that the site was developed as a service station in the 1960's with the investigation also identifying two previous fuel service stations at 639 and 710 Pennant Hills Road. While the report notes that there is a potential for hydrocarbon contamination to be present at the site, it goes on to state that this would typically be at depths within the saturated zone (gauging documentation indicated that this was at approximately 3.3 to 4.4 metres below ground level). The report considered that construction works would be represent a low risk of contamination to human and/or ecological receptors and remediation and management measures could be implemented to manage and mitigate potential risks during construction.

A web search of the NSW EPA List of Notified Sites and the NSW EPA Contaminated Land Record did not identify the BP Service Station on either listing or record.

3. Objective

The objective of the in-situ waste classification assessments was to classify the soil at the site for offsite disposal at an appropriately licensed landfill facility in accordance with the NSW EPA Waste Classification Guidelines (2014).

Coffey Services Australia Pty Ltd ABN: 55 139 460 521 13 January 2021

4. Scope of Works

To fulfil the objectives, Coffey undertook the following scope of works:

- Fieldwork Preliminaries comprising:
 - Development of a Site Safety Plan (SSP) and Safe Work Method Statements (SWMS);
 - Dial Before You Dig (DBYD) search;
- Fieldwork comprising:
 - Walkover of the Site to identify potentially contaminating features and/or suspected asbestoscontaining materials (ACM).
 - Underground service locating using a Telstra Accredited Service Locator;
 - Progression of 23 boreholes using a hand auger in accessible portions of the site.
 - Collection of soil samples from each borehole.
 - Collection of soil samples at six boreholes drilled by TfNSW subcontractor for geotechnical purposes, from the solid flight auger.
 - Logging of ground conditions at each borehole.
 - Field screening of soil samples from the boreholes using a photo-ionisation detector (PID).
 - Backfilling of the boreholes in reverse order of excavation.
- Laboratory analysis of a selection of soil samples at a National Association of Testing Authorities (NATA) accredited laboratory for contaminants of potential concern (CoPC) typically associated with uncontrolled fill.
- Preparation of this Waste Classification Assessment letter report.

5. Technical Framework/Standards

Works were carried out in general accordance with Coffey's Standard Operating Procedures which are based on industry practice and the following:

- NSW Work Health and Safety Act 2011 (WHS Act 2011);
- NSW Work Health and Safety Regulation 2011 (WHS Regulation 2017);
- Protection of the Environment Operations (POEO) Act 1997 (POEO Act 1997);
- National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (April 2013) (NEPM 2013);
- NSW Environment Protection Authority (EPA) Waste Classification Guidelines: Part 1 Classifying Waste, 2014 (NSW EPA Waste Classification Guidelines 2014);
- NSW Environment Protection Authority (EPA) Protection of the Environment Operations (Waste) Regulations, 2014 (NSW EPA 2014);
- Australian Standard (AS) 4482.1, Guide to Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile Compounds, 2005 (AS 4482.1);
- AS 4482.2, Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, 1999 (AS 4482.2); and
- AS 1726 Geotechnical Site Investigations, 2017 (AS 1726).

6. Site Description

The following site description is based on observations made during a walkover of the site carried out by an Environmental Consultant from Coffey on 20 November 2020:

- The Site along Pennant Hills Road and North Rocks Road was largely comprised the grassed road verge located on either side of each roadway.
- The northern portion of Pennant Hills Road was largely flat, and then began to increase in elevation south of Roselea Community centre to North Rocks Road.
- At the north end of the site along Pennant Hills Road, a large embankment was present on the
 western side of the road, although appeared to conform largely to the natural topography of the
 surrounding area suggesting that this portions of Pennant Hills Road in this area had been cut
 into the surrounding landscape.
- The site was largely surrounded by low-density residential housing, although a BP service station was noted on the western side of Pennant Hills Road, along with a car wash on the western side near the northern end of the site. Across the road on the eastern side there was a small number of commercial businesses and the Roselea Community Centre present.
- North Rocks Road appeared to slope down from the intersection of Pennant Hills road, both to the east and west.
- The proposed construction compound area (comprised of Lot's 1 − 3 in Deposited Plan 205746) was largely grass covered, with two large trees observed near the centre of the property.
 - Suspected asbestos containing materials (ACM) in the form of fibre cement fragments were observed on the ground surface at the base of the southern large tree. The fragments appeared to be in relatively good condition, angular in appearance and were not pulverisable by hand pressure. The fragments also appeared to be confined to the soil surface. A sample of the suspected ACM was collected as ACM1 for laboratory analysis.
 - What appeared to be footings and foundation slab were noted at the surface at several locations suggesting that structures (likely residential) had previously been situated on the property.
- No stained or mal-odorous soils were identified during the site walkover.

The layout of the site is shown on Figure 1. Photographs taken during the site walkover are presented in Attachment C.

7. Fieldwork and Observations

Fieldwork was carried out at night by an environmental consultant from Coffey on 23 November, 1, 2 and 9 December 2020.

Twenty-three boreholes (BH01 – BH23) were advanced at the site using a hand auger. The locations (as shown on Figure 2 attached) were placed to provide general coverage across the Site. Locations BH08 – BH11A were situated within the proposed construction compound. Six geotechnical boreholes (GBH02 – BH06 & GBH08) were drilled by TfNSW geotechnical engineers, or their subcontractors at the site.

In summary, soil at the Site was noted to consist of the following:

 Fill material generally consisting largely of dark brown sandy silt topsoils, dark brown reworked silty clays, and/or road base to approximately 0.1 – 0.6 mBGL. Sandy silt was generally noted to Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW

consist of fine to medium to coarse grained sand, with silty clays. Road base was largely comprised of large, angular blue-metal gravels with little fines.

- Residual material was generally comprised of red to brown clay with low plasticity and was stiff and dry, which was underlain by highly weathered yellow to white sandstone.
- Bedrock was generally comprised of highly weathered sandstone.

Samples were collected from the hand auger or drilling auger at each borehole using disposable nitrile gloves. Samples were placed in laboratory supplied soil jars (250mL) with teflon lids and ziplock bags, where appropriate. Samples were collected from the ground surface and at regular intervals to the base of the borehole.

A PID was used to screen the soil samples for the presence of ionisable volatile organic compounds (VOC). The PID readings were less than 10 parts per million (ppm) indicating a low likelihood that volatile organic compounds were present.

The PID calibration certificate is presented in Attachment D.

8. Laboratory Analysis and Analytical Results

Samples were analysed by Eurofins (primary laboratory) and ALS (secondary laboratory) using NATA accredited methods for the analytical suite outlined in Table 1. Samples were selected from each borehole to provide general coverage, both spatially and at depth for different soil types encountered. The laboratory reports

(Ref: ES2043529_0, 754-SYDEN279944, 759675, 761623, 762036, 761999, 763628, 763264, 765392) are provided in Attachment F.

The analytical suite carried out is typically associated with uncontrolled fill.

A review of the analytical results against waste classification criteria (NSW EPA 2014) indicates that:

- With the exception of benzo(a)pyrene (BaP) and total polycyclic aromatic hydrocarbons (PAH) in sample BH13_0.5_0.6, concentrations of analytes in soil tested were less than the relevant CT1, SCC1 and/or TCLP1 values for general solid waste.
 - Concentrations of BaP in sample BH13_0.5_0.6 exceeded SCC2 criteria for Hazardous Waste.
 - Concentrations of PAHs in sample BH13_0.5_0.6 exceeded SCC1 criteria for Restricted Waste.
 - Subsequent Toxicity Characteristic Leaching Procedure (TCLP) analysis indicated that leachable concentrations of BaP were less than the laboratory limit of reporting and TCLP results for total PAHs indicated a low potential for leachability (0.002 mg/kg)¹.
 - Associated PID readings for this sample were 0.9 ppm.
 - Review of the associated field logs relating to this sample did not identify malodourous soils, nor was asphalt visually identified within the sampled material.

_

¹ The associated TCLP analysis was undertaken outside of the holding time for the associated sample; this was due to an error in ESDAT when uploading the data initially. However, this would not affect the conclusion of the waste classification.

- Concentration of Total Petroleum Hydrocarbons (TPH) were also noted at this location, subsequent laboratory analysis using silica-gel clean-up indicates that the concentrations of TPH were unlikely to be attributed to a vegetative source and are likely the cause of hydrocarbon impact.
- Asbestos was not detected in the soil samples analysed at the reporting limit of 0.1g/kg, or by trace analysis.
- Asbestos was detected in sample ACM1, collected from fibre cement fragments identified on the soil surface at the base of a tree situated within the proposed compound area.
- With the exception of PAH at BH13_0.5-0.6, samples analysis undertaken on natural material
 comprised of clay and underlying sandstone bedrock were less than the laboratory LOR for TPH,
 PAH and BTEX, concentrations of metals in these samples were considered to be representative
 of background conditions for natural materials.

9. Quality Assurance and Quality Control

Sampling was conducted in general accordance with Coffey's Standard Operating Procedures, which are based on relevant regulatory guidelines and Australian standards.

Samples were stored in ice-cooled eskies following collection and transported to the laboratory with 'chain of custody' documentation.

A review of the analytical reports indicates that:

- · The samples were chilled and correctly preserved.
- Appropriate sample containers were used.
- Samples were received within the recommended holding times.
- Results were NATA endorsed.
- Review of Relative Percent Differential (RPD) results between the primary sample and duplicate and triplicate samples were considered acceptable with the exception of the following:
 - RPD for zinc between primary sample BH11A_0.0_0.1 and interlaboratory sample QC2 was 51%. It is considered that the difference can likely be attributed to heterogeneity within the fill and is not considered to affect the outcome of the assessment.
- Concentrations of CoPC in the rinsate blanks (denoted as R1 and R2) were less than the laboratory limit of reporting.
- Concentration of CoPC in the trip blank were less than the laboratory limit of reporting.
- The trip spike recoveries were considered to be acceptable.

In summary, the data is considered to be usable for the objective of the works.

10. Waste Classification

The waste classification was conducted in general accordance with the procedures for classifying waste as detailed in the *Waste Classification Guidelines - Part 1: Classifying Waste (NSW EPA, 2014*).

According to the Waste Classification procedure:

- Step 1: With the exception of surface ACM in the compound, the materials assessed are not considered to be Special Waste (Asbestos Waste).
- Step 2: The materials assessed are not considered to be a liquid waste;
- Step 3: The materials observed are considered not to be pre-classified;
- Step 4: The materials assessed are not considered to possess hazardous characteristics;
- Step 5: Based on chemical characterisation against relevant chemical threshold values listed in Tables 1 and 2 of the NSW EPA (2014) guidelines, the materials assessed meet the relevant General Solid Waste criteria (CT1, SCC1 and/or TCLP1) with the exception of BH13. BaP at BH13 0.5-0.6 exceeded the Hazardous Waste criteria and is considered to be an anomaly.
- Step 6: Coffey considered that the assessed soil was non-putrescible because it did not include timber, garden trimmings, agricultural, forestry and crop materials, and natural fibrous organic and vegetative materials.

Contaminant threshold (CT) and specific contaminant concentration (SCC) values were adopted from NSW EPA Waste Classification Guidelines to provide an indication of waste classification status of soil for disposal to landfill. The CT values adopted are outlined in Table 1 and in Attachment E.

11. Conclusions and Recommendations

Coffey recommends the following:

- Additional characterisation/delineation of (1) the ACM impact on the surface of the compound; and (2) the BaP/PAH anomaly in the vicinity of BH13.
- Subject to findings of the additional characterisation/delineation and implementation of an
 unexpected finds protocol, the assessed fill materials may be managed as General Solid Waste
 (non-putrescible) for offsite disposal purposes. The underlying natural clays and sandstone, if not
 mixed with other materials, may be managed as virgin excavated natural material (VENM),
- This Waste Classification Assessment report is sent to the proposed receiving facility to confirm acceptance of the soil prior to off-site disposal.
- Waste must be transported by an appropriately licensed waste contractor and disposed to a facility that is licensed to receive that class of waste.
- An environmental consultant should be in attendance during excavation of the road and verge in
 front of the service station and car wash properties to assist in confirming the material present is
 consistent with this classification or if additional sampling may be required.
- If any unexpected finds of contamination are discovered during future handling of this material, these materials should be segregated and assessed separately. If ACM is identified within the soil during excavation and the ACM cannot be segregated/removed, then the soil in which it was identified shall be classified as Special Waste (Asbestos Waste).

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW

Should the description of the soil differ materially from that described in this letter report, then further assessment for waste classification purposes may be required prior to off-site disposal.

12. Limitations

We draw your attention to the attached sheets titled "Important Information about your Coffey Environmental Report" (Attachment A) which should be read in conjunction with this letter. Our waste classification is applicable to the tested locations. Areas outside of the tested locations are not covered by this waste classification. Assessment of land use suitability in accordance with the NEPM approach is outside the scope of this waste classification.

13. Closure

We trust this waste classification assessment meets your requirements. Please do not hesitate to contact Sam Gunasekera or the undersigned if you have any questions.

For and on Behalf of Coffey

Simon Hay

Environmental Scientist

Attachments:

Attachment A - Important Information About Your Coffey Environmental Report

Attachment B -Figures

Attachment C - Photographs

Attachment D - Calibration Certificate

Attachment E - Tables

Attachment F - Laboratory Reports

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW

Attachment A: Important Information about your Coffey Environmental Report

Important information about your Coffey Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice.

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

Coffey Page 1 of 2

Issued: 5 July 2017

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be reviewed and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see

how other professionals have incorporated the report findings.

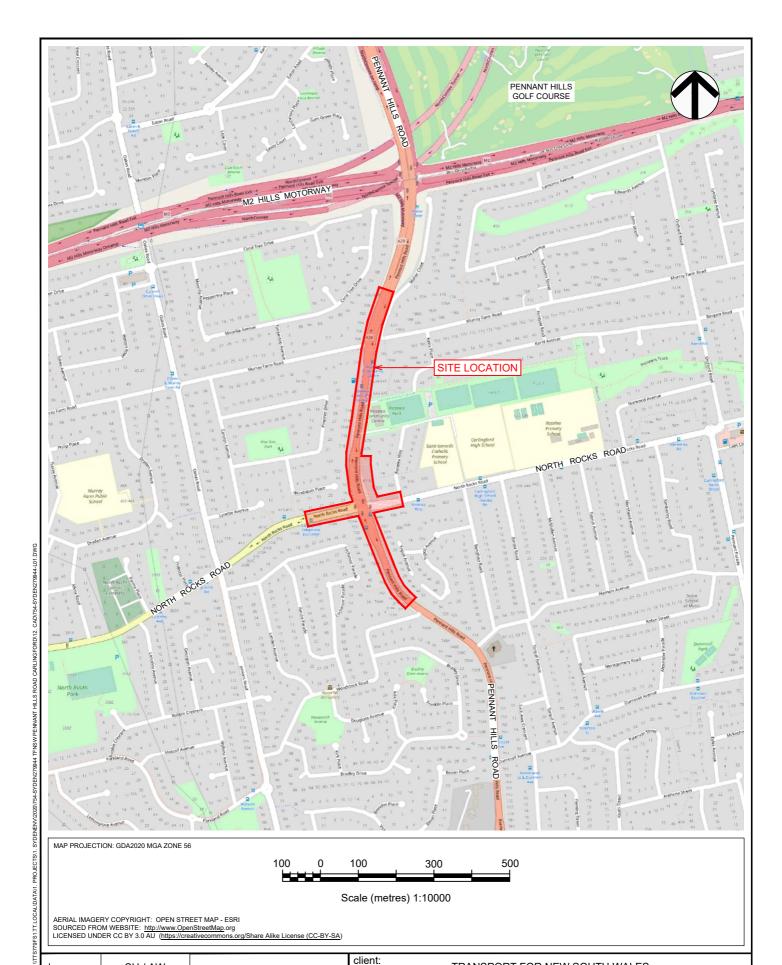
Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility

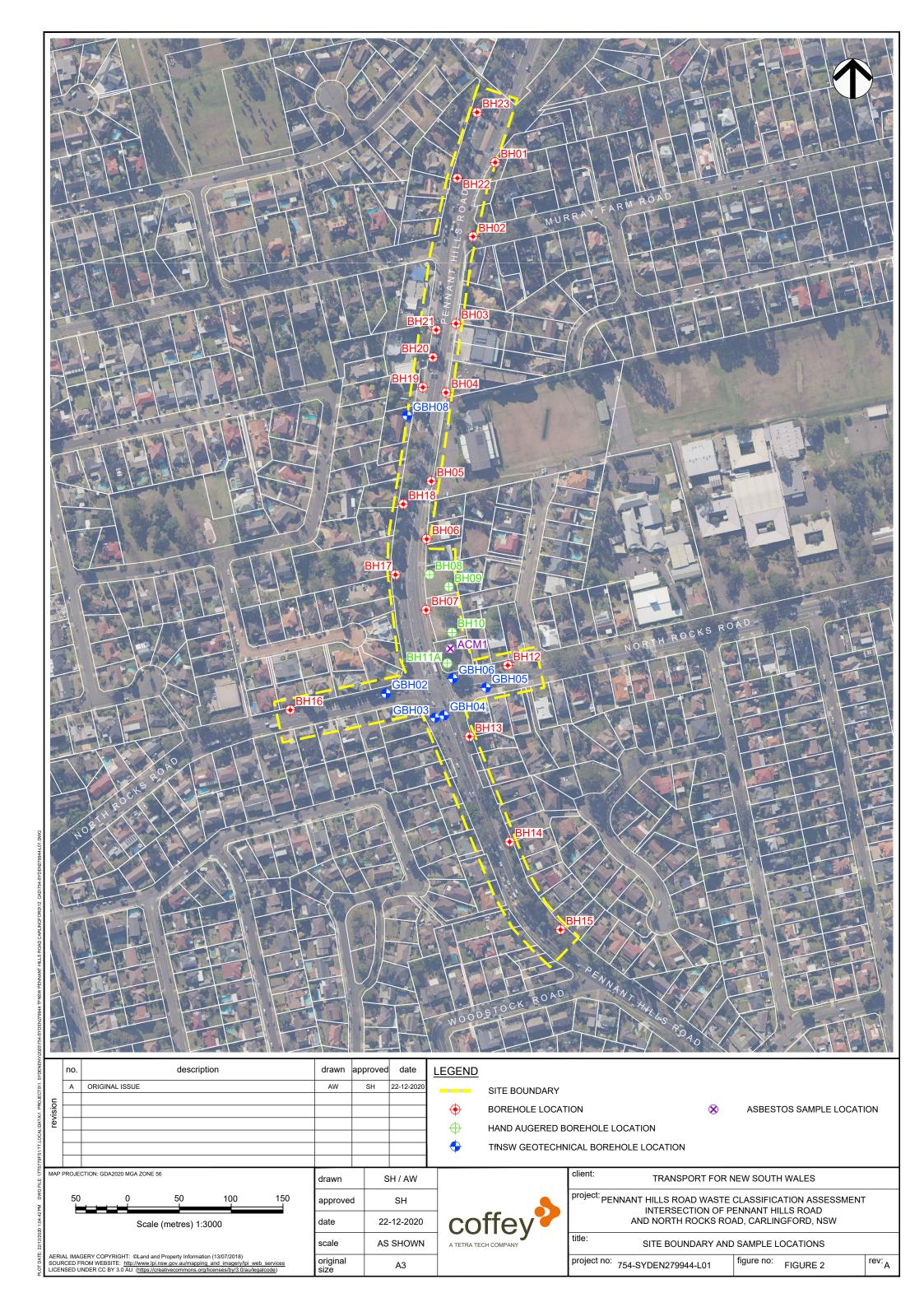

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

Coffey Page 2 of 2

Issued: 5 July 2017

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW $\,$

Attachment B: Figures


drawn	SH / AW
approved	SH
date	22-12-2020
scale	AS SHOWN
original size	A4

 TRANSPORT FOR NEW SOUTH WALES

project: PENNANT HILLS ROAD WASTE CLASSIFICATION ASSESSMENT INTERSECTION OF PENNANT HILLS ROAD AND NORTH ROCKS ROAD, CARLINGFORD, NSW

title: SITE LOC	CATION PLAN	
project no: 754-SYDEN279944-L01	figure no: FIGURE 1	ev: A

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW $\,$

Attachment C: Photographs

Photo 1. 20.11.2020 Looking North along Pennant Hills Road (western side).

Photo 2. 20.11.2020 Looking south along Pennant Hills Road (western side) with BP service station in background.

Photo 3. 20.11.2020 Looking south along Pennant Hills Road (western side) at approximate location of GBH08.

Photo 4. 20.11.2020 Looking east down North Rock Road (northern side) adjacent BH16.

Photo 5. 20.11.2020 Looking east down North Rock Road (northern side) adjacent BH12.

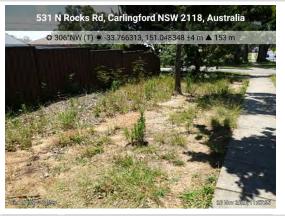


Photo 6. 20.11.2020 Looking east down North Rock Road (northern side) near intersection of Roselea Way.

Photo 7. 20.11.2020 Looking south along Pennant Hills Road (eastern side) near BH14.

Photo 8. 20.11.2020 Looking south along Pennant Hills Road (eastern side).

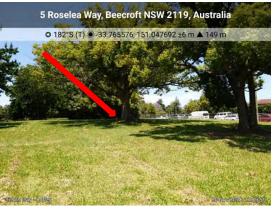

Photo 9. 20.11.2020 Looking north along Pennant Hills Road (eastern side) north of BH06.

Photo 10. 20.11.2020 Looking north-east across proposed construction compound area near BH11A.

Photo 11. 20.11.2020 Looking north across proposed construction compound area near BH10.

Photo 12. 20.11.2020 Looking south across proposed construction compound area near BH9with arrow denoting approximate location of ACM1.

Photo 13. 20.11.2020 Looking down at sample ACM01.

Photo 14. 20.11.2020 Close-up of ACM01.

Photo 15. 20.11.2020 Looking north along Pennant Hills Road near BH03.

Photo 16. 23.11.2020 Looking west at BH12 located on Pennant Hills Road prior to sampling (borehole progressed in grass verge).

Photo 17. 01.12.2020 Close-up of BH10 with silty sand topsoil.

Photo 18. 01.12.2020 Looking at Location BH08.

Photo 19. 02.12.2020 Looking south-east from Pennant Hills Road to sample location GBH02 on North Rocks Road.

Photo 20. 02.12.2020 Looking south-east at sample location GBH08.

Photo 21. 02.12.2020 Close-up of soil in auger at GBH08 with gravelly sand fill overlying red residual clay.

Photo 22. 09.12.2020 Looking south-west at GBH03.

Photo 23. 09.12.2020 Looking north at GBH04.

Photo 24. 09.12.2020 Close-up of material in auger at GBH04, with road base comprised of large angular gravels overlying highly weather white sandstone.

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW $\,$

Attachment D: PID Calibration Certificate

PID Calibration Certificate

Instrument

PhoCheck Tiger

Serial No.

T-115201

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	3
Battery	Charge Condition	✓				
	Fuses	✓				
	Capacity	✓				
	Recharge OK?	✓				
Switch/keypad	Operation	✓				
Display	Intensity	✓				
	Operation	✓				
	(segments)					
Grill Filter	Condition	✓				
	Seal	✓				
Pump	Operation	✓				
	Filter	✓				
	Flow	✓				
	Valves, Diaphragm	✓				
PCB	Condition	✓				
Connectors	Condition	✓				
Sensor	PID	✓	10.6 ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm		
Software	Version	✓				
Data logger	Operation	✓	1 1		- 1	
Download	Operation	✓				
Other tests:						

Post sampling results

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp			NATA	SY245	100.4ppm

Calibrated by:

Timothy Potter

Calibration date:

30/11/2020

Next calibration due:

30/12/2020

PID Calibration Certificate

Instrument

PhoCheck Tiger

Serial No.

T-105759

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comment	S
Battery	Charge Condition	√				
	Fuses	✓				
	Capacity	✓				
	Recharge OK?	✓				
Switch/keypad	Operation	✓				
Display	Intensity	✓				
	Operation (segments)	1				
Grill Filter	Condition	✓				
	Seal	✓				
Pump	Operation	✓				
	Filter	✓				
	Flow	✓				
	Valves, Diaphragm	✓				
PCB	Condition	✓				
Connectors	Condition	✓				
Sensor	PID	✓	10.6eV			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm	N/A	N/A
Software	Version	✓				
Data logger	Operation					
Download	Operation	✓				
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp		100ppm Isobutylene	NATA	SY245	99.8ppm

Calibrated by:	Lauren	Tompkins
----------------	--------	----------

Calibration date:

9/12/2020

Next calibration due:

7/06/2021

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW $\,$

Attachment E: Tables

A TETRA TECH COMPANY																																			
				Asbestos					Heavy N	/letal					Inorganic												ОСР								
				Asbestos	Arsenic	Cadmium	Chromium	Соррег	pead	Lead TCLP	Mercury	Nickel	Nickel TCLP	Zinc	Moisture Content (dried @ 103°C)	4,4-DDE	а-ВНС	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	д-ВНС	QQQ	рот	00T+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide Hexachlorobenzene
no				g/kg								mg/kg			%			mg/kg										mg/kg				mg/kg			
PQL CT1 NSW 2014 General S	Solid Waste (No Leaching)			0.1	100	0.4	5 100	5	100	0.01	0.1	40	0.01	5	1	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05 0.05
	d Solid Waste (No Leaching)	z)			400	80	400		400		16																								
SCC1 NSW 2014 General		51			500	100	1900		1500	5	50	1050	2																						
SCC2 NSW 2014 Restrict	ed Solid Waste (leached)				2000	400	7600		6000	20	200	4200	8																						
etald in	County Barrier		Matter Based of																																
Field_ID	Sample_Depth_Range	·	Matrix_Description Fill	NAD	0.2	-0.4	22	20	20		-O 1	12		240	22	<0.0F	40.0F	<0.0F	40.0F	40.0F	4O 1	<0.0F	40.0F	40.0F	-0.0F	40.0F	1 40 OF	-0.0F	40.0F	-0.0F	<0.0F	<0.0F	-0.0F	<0.0F	-0.0F
BH01_0.0-0.1 BH01_0.5-0.6		23-11-20 23-11-20	Fill	NAD -	8.2 6.8	<0.4	22 15	39 14	30 29	-	<0.1	12	-	240 52	22 13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
BH02_0.0-0.1		23-11-20	Fill	-	7.8	<0.4	14	19	130	-	<0.1	6.9	-	100	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GBH02_0.4-0.6		02-12-20	Fill (roadbase fines)	-	<2	<0.4	20	82	<5	-	<0.1		0.17	74	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	
BH03_0.0-0.1	0-0.1	23-11-20	Fill	NAD	4.3	<0.4	27	38	110	-	<0.1	32	-	250	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	
BH03_0.5-0.6	0.5-0.6	23-11-20	Natural (residual clay)	-	11	<0.4	19	26	41	-	<0.1	10	-	69	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH04_0.0-0.1		23-11-20	Fill	NAD	8.3	<0.4	21	50	180	0.04	<0.1	8.7	-	94	22	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
BH04_0.5-0.6		23-11-20	Natural (residual clay)	-	11	<0.4	27	14	23	-	<0.1	5.3	-	23	20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH05_0.0-0.1		23-11-20	Fill	NAD	5.5	0.4	31	77		0.19	<0.1	25	-	320	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	
BH06_0.0-0.1		23-11-20	Fill	-	7.3	<0.4	24	91		0.45	<0.1	13	-	210	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GBH06_0.0-0.1	0-0.1	02-12-20	Fill	NAD	81	<0.4	86	76		0.22	<0.1	11	-	180	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH07_0.0-0.1	0-0.1 0.5-0.6	24-11-20	Fill	NAD	9.5	<0.4	20	23	190	-	<0.1	7	-	100	19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH07_0.5-0.6 BH08_0.0-0.1		24-11-20 23-11-20	Natural (residual clay)	- NAD	12 8.1	<0.4	22	5.1	17 150	-	0.1	<5 10	-	<5 66	21	<0.05	- -0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05 <0.05
GBH08 0.0-0.1	0-0.1	02-12-20	Fill	NAD	5.1	<0.4	16	45	55	-	<0.1	9	-	250	44	<0.03	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.03	<0.03	<0.05	<0.03	<0.05	<0.03	<0.05	<0.03	<0.05		_	<0.05	<0.5 <0.5
GBH08 0.8-1.0		02-12-20	Fill	-	11	<0.4	24	18	51	-	<0.1	6.3	-	45	31	-	-	-		-	-		-		-	-	-		-			-	-	-	
BH12_0.0-0.1	0-0.1	24-11-20	Fill	NAD	3.9	<0.4	51	63		0.63	<0.1		0.05	450	5.7	<0.05	<0.05		<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	<0.05			<0.05	<0.05 <0.05
BH12_0.5-0.6		24-11-20	Natural (residual clay)	-	21	<0.4	28	17	33	-	<0.1	<5	-	23	23	-	-	- 40.03	-		-	-	-	-	-	-	-	-	-	- 40.03	-	-	-	-	
BH13_0.0-0.1	0-0.1	24-11-20	Fill	-	7.3	<0.4	16	47		0.42	<0.1	7	-	200	9.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH13_0.5-0.6		24-11-20	Natural (residual clay)	-	5.4	<0.4	9.2	15	100	-	<0.1	7.5	-	96	8.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH14_0.0-0.1	0-0.1	24-11-20	Fill	NAD	11	<0.4	17	31	73	-	<0.1	6.5	-	78	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH14_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	6.7	<0.4	12	16	17	-	<0.1	<5	-	21	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH15_0.0-0.1	0-0.1	24-11-20	Fill	NAD	3.6	<0.4	35	38	180	-	<0.1	33	-	130	9.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
BH16_0.0-0.1		25-11-20	Fill	NAD	11	0.6	17	63	120	-	<0.1	12	-	210	19	<0.05		<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
BH16_0.5-0.6	0.5-0.6	25-11-20	Natural (residual clay)	-	14	<0.4	18	36	43	-	<0.1	<5	-	35	21	- 0.05	-	-	-	- 0.05	-	-	-	-	-	-	-	-	-		-	-	-	-	
BH17_0.0-0.1		25-11-20	Fill	NAD	3	<0.4	12	24	26	- 0.00	<0.1	8	-	110	20	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
BH18_0.0-0.1 BH18_0.5-0.6		25-11-20 25-11-20	Natural (residual clay)	-	8.3	<0.4		10	180		<0.1		-	430 60	22 18	-	-	-		-	-	-	-	-	-	-	-	-	-	 -	-	-	-	-	
BH19 0.0-0.1		25-11-20	Fill	-	4.6	_		_	150	-	<0.1	_	-	420	11	<0.05		<0.05	<0.05	<0.05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05 <0.05
BH20_0.0-0.1		25-11-20	Fill	-	4.9			_		-	<0.1	_	-	94	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH21 0.0-0.1		25-11-20	Fill	-	9.7	_		25	36	-	<0.1	_	-	110	27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH21_0.5-0.6	0.5-0.6	25-11-20	Natural (silty clay)	-	11	<0.4	21	_	21	-	<0.1		-	130	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH22_0.0-0.1	0-0.1	25-11-20	Fill	NAD	7.7	0.4	43	85	57	-	0.2	25	-	480	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH23_0.0-0.1	0-0.1	25-11-20	Fill	NAD	4.1	<0.4	7.2	29	24	-	<0.1	<5	-	62	7.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
GBH03_0.3-0.4	0.3-0.4	09-12-20	Natural (sandstone fines)	-	<2			_	9.1	-]	<0.1	<5	-	13	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GBH04_0.6-0.7		09-12-20	Natural (sandstone fines)	-	2			<5	11	-	<0.1		-	22	24	· .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GBH05_0.2-0.3	0.2-0.3	09-12-20	Natural (sandstone fines)	-	3.2	_		<5	16	-	<0.1	<5	-	24	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
QC1	BH11A	02-12-20	Fill	-	12	_		20	340	-	<0.1		-	180	27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
QC2	BH11A	02-12-20	Fill	-	7			14	198	-	<0.1	3	-	83	15		-0.05						-0.05			-0.05			-0.05						
BH09_0.0_0.1		01-12-20	Fill	=	8.7						<0.1	11	-	190	15	<0.05		<0.05	<0.05	<0.05			<0.05			<0.05	<0.05			_	<0.05	_	<0.05		<0.05 <0.05
BH09_0.5_0.6 BH10 0.0 0.1	0.6	01-12-20 01-12-20	Fill	- NAD	18 2.3			10 16	16 32	-	<0.1	<5 18	-	11 51	18 2.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH11A 0.0 0.1		02-12-20	Fill	- NAD	_				260			_	-	140	2.4	-	-			-		-	-	-	-	-	-	-	-	-	-	-	-	-	
5.111/1_0.0_0.1		102 12 20	1		11	-∪.∓	10	/	200	3.07	~U.1			140	-1				-	_										لــــــــــــــــــــــــــــــــــــــ			-	-	

A TETRA TECH COMPWNY																																					
					_					_		_										0	PP													=	_
				Methoxychlor	oxaphene	4zinophos methyl	Bolstar (Sulprofos)	Chlorfenvinphos	Chlorpyrifos	Chlorpyrifos-methyl	Coumaphos	Jemeton-O	Demeton-S	Diazinon	Dichlorvos	Jimethoate	Jisulfoton	Ndi	Ethion	Ethoprop	enitrothion	ensulfothion	enthion	Malathion	Merphos	Methyl parathion	Mevinphos (Phosdrin)	Monocrotophos	Valed (Dibrom)	Omethoate	arathion	horate	^p irimiphos-methyl	yrazophos	konnel	rerbufos e e e e e e e e e e e e e e e e e e e	richloronate
				mg/kg	mg/kg	_		_			g mg/k	g mg/kg		g mg/kg	mg/kg	g mg/kg	g mg/k	g mg/k			g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg	ng/kg	mg/kg
PQL				0.2	0.1	0.2	0.2	0.2		0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	ral Solid Waste (No Leachin icted Solid Waste (No Leach	•							16																												
	eral Solid Waste (leached)	iiiig)							7.5																												
	ricted Solid Waste (leached)							30																												
Field_ID BH01 0.0-0.1	Sample_Depth_Range 0-0.1	Sampled_Date-Time	Matrix_Description Fill	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2	<0.2
BH01_0.0-0.1 BH01_0.5-0.6	0.5-0.6	23-11-20	Fill	- 40.2	- 0.1	- 40.2	- 40.2	- 40.2	- 40.2	- <0.2	-	- 40.2	- 40.2	- 40.2	- 40.2	- <0.2	- <0.2	- <0.2	- 40.2	- 40.2	- <0.2	- 40.2	- 40.2	- 40.2	- 0.2	- 40.2	- 0.2	-	- 40.2	-	- 40.2					-	
BH02_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
GBH02_0.4-0.6	0.4-0.6	02-12-20	Fill (roadbase fines)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03_0.0-0.1	0-0.1	23-11-20	Fill	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH03_0.5-0.6	0.5-0.6	23-11-20	Natural (residual clay)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH04_0.0-0.1 BH04_0.5-0.6	0-0.1 0.5-0.6	23-11-20 23-11-20	Fill Natural (residual clay)	<0.2	_	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2 -	<0.2	<2 -	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2
BH05_0.0-0.1	0-0.1	23-11-20	Fill	-	+ -	-	 -	-	-	1	+ -	+ -	·	+ -	1	+ -	+ -	+ -	+ -	+ -	+ -	-	-	-	-		-		-	-	-	-	-			-	-
BH06_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GBH06_0.0-0.1	0-0.1	02-12-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07_0.0-0.1	0-0.1	24-11-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH08_0.0-0.1	0-0.1	23-11-20	Fill Fill	<0.2		<0.2		<0.2	<0.2		<2	_			<0.2		<0.2	_				<0.2	<0.2	<0.2 <0.5		<0.2	<0.2	<2	<0.2	<2	<0.2 <0.5		<0.2			_	<0.2
GBH08_0.0-0.1 GBH08_0.8-1.0	0-0.1	02-12-20 02-12-20	Fill	<0.5	_	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.5	<0.5	<0.5	<2	- <0.5	<2 -	<u.5< th=""><th><0.5</th><th><0.5</th><th><0.5</th><th></th><th><0.5</th><th><0.5</th></u.5<>	<0.5	<0.5	<0.5		<0.5	<0.5
BH12_0.0-0.1	0-0.1	24-11-20	Fill	<0.2		<0.2	_	<0.2	<0.2	_	<2		_	<0.2	<0.2	_	<0.2	_	_	<0.2	_	<0.2	<0.2	<0.2		<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2			_	<0.2
BH12_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH13_0.0-0.1	0-0.1	24-11-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH13_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH14_0.0-0.1	0-0.1 0.5-0.6	24-11-20 24-11-20	Fill	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH14_0.5-0.6 BH15_0.0-0.1	0-0.1	24-11-20	Natural (residual clay) Fill	<0.2	_	<0.2	_	<0.2	<0.2	_	<2	<0.2	<0.2	<0.2	<0.2	_	<0.2	_	_	<0.2	. <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2		<0.2	<0.2		_	<0.2
BH16_0.0-0.1	0-0.1	25-11-20	Fill	<0.2		<0.2		<0.2	<0.2		<2		_		<0.2		<0.2					<0.2	<0.2	<0.2	_	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2			_	<0.2
BH16_0.5-0.6	0.5-0.6	25-11-20	Natural (residual clay)	-	-	<u> </u>	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH17_0.0-0.1	0-0.1	25-11-20	Fill	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	_	<2	<0.2	<0.2	<0.2	<0.2	+	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2	<0.2
BH18_0.0-0.1	0-0.1	25-11-20	Fill	-	+-	<u> </u>	-	-	+ -	-	+-	+-	+ -	+ -	-	-	-	-	-	+-	-	-	-	-	-	-	-	-	-	-	 -	-	-		-	-+	
BH18_0.5-0.6 BH19 0.0-0.1	0.5-0.6 0-0.1	25-11-20 25-11-20	Natural (residual clay) Fill	<0.2		<0.2	<n 2<="" th=""><th><0.2</th><th><0.2</th><th><0.2</th><th><2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th>2 <0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><2</th><th><0.2</th><th><2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th></th><th><0.2</th><th><0.2</th></n>	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2
BH20_0.0-0.1	0-0.1	25-11-20	Fill	- <0.2	_	<0.2	<0.2 -	<u.z< th=""><th><0.2</th><th><0.2</th><th>-</th><th></th><th>_</th><th>- <0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th></th><th>_</th><th></th><th></th><th><0.2</th><th><0.2 -</th><th>- <0.2</th><th>- <0.2</th><th>- <0.2</th><th>- <0.2</th><th>-</th><th>- <0.2</th><th>-</th><th>- <0.2</th><th><u.z< th=""><th><u.2< th=""><th></th><th></th><th>-</th><th></th></u.2<></th></u.z<></th></u.z<>	<0.2	<0.2	-		_	- <0.2	<0.2	<0.2	<0.2		_			<0.2	<0.2 -	- <0.2	- <0.2	- <0.2	- <0.2	-	- <0.2	-	- <0.2	<u.z< th=""><th><u.2< th=""><th></th><th></th><th>-</th><th></th></u.2<></th></u.z<>	<u.2< th=""><th></th><th></th><th>-</th><th></th></u.2<>			-	
BH21_0.0-0.1	0-0.1	25-11-20	Fill	-	_	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
BH21_0.5-0.6	0.5-0.6	25-11-20	Natural (silty clay)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH22_0.0-0.1	0-0.1	25-11-20	Fill	-		<u> </u>	-	-	-	+	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-
BH23_0.0-0.1	0-0.1	25-11-20	Fill		<0.1	<0.2	+	<0.2	<0.2	_	_		_		_		_		_	<0.2			<0.2		<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2		<0.2			_	
GBH03_0.3-0.4 GBH04 0.6-0.7	0.3-0.4	09-12-20 09-12-20	Natural (sandstone fines) Natural (sandstone fines)	-	_	-	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
GBH04_0.6-0.7 GBH05 0.2-0.3	0.6-0.7	09-12-20	Natural (sandstone fines)	-	_	-	-	-	-	-	-	-	-	+ -	-	+ -	-		-	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	+		-	-
QC1	BH11A	02-12-20	Fill	+ -	_	<u> </u>	 -	-	 -	-	+ -		_	+ -	-	+ -	+ -		+ -	_	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-
QC2	BH11A	02-12-20	Fill	-	_	L -	-		-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-			-	-
BH09_0.0_0.1	0.1	01-12-20	Fill	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2	<0.2	<2	<0.2	<0.2	<0.2	<0.2	<0.2 <	<0.2	<0.2
BH09_0.5_0.6	0.6	01-12-20	Fill	-	_	-	-	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-
BH10_0.0_0.1	0.1	01-12-20	Fill	-	_	-	-	-	-	-	-		_	-	-	-	-		-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-
BH11A_0.0_0.1		02-12-20	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A TETPA TECH COMPANY																																				
										Organic						_									PAH					_						
				etrachlorvinphos	okuthion	laphthalene	2-NAPHTHALENE	.e - C9	:10 - C40 (Sum of total)	:6-C10 less BTEX (F1)	C10-C16	16-C34	:34-C40	56 - C10	cenaphthene	cenaphthylene	nthracene	enzo(a)anthracene	ienzo(a)pyrene	ienzo(a)pyrene TCLP	ienzo(a)pyrene TEQ (lower bound) *	enzo(a)pyrene TEQ (medium bound) *	enzo(a)pyrene TEQ (upper bound) *	ienzo(g,h,i)perylene	enzo(k)fluoranthene	hrysene	ienzo[b+j]fluoranthene iibenz(a,h)anthracene	luoranthene	luorene	ndeno(1,2,3-c,d)pyrene	laphthalene	henanthrene	yrene	otal PAHs otal PAH TCLP	rochlor 1221	roclor 1016
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg									MG/KG	mg/kg	mg/kg	mg/kg m	ng/kg mg/	kg mg/k		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/	/L mg/kg	kg mg/kg
PQL	Calid Masta (No Loophing)			0.2	0.2	0.5	50	20	100	20	50	100	100	20	0.5	0.5	0.5	0.5		0.001	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.00)1 0.1	0.5
	Solid Waste (No Leaching) ed Solid Waste (No Leaching	z)						650 2600											3.2															200 800		
SCC1 NSW 2014 Genera		57						650											10	0.04														200 200	0	
SCC2 NSW 2014 Restrict	ted Solid Waste (leached)							2600											23	0.16														800 800)	
Field_ID	Sample Depth Range	Sampled Date-Time	Matrix_Description																																	
BH01 0.0-0.1	0-0.1	, <u> </u>	Fill	<0.2	<0.2	<0.5	62	<20	542	<20	62	330	150	<20	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	L <0.5
BH01_0.5-0.6	0.5-0.6		Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	_	_	_	<0.5	_	<0.5	0.6	1.2	<0.5	<0.5	_	<0.5 <0.	_		<0.5	<0.5	<0.5	<0.5	<0.5 -	-	
BH02_0.0-0.1	0-0.1		Fill	-	-	<0.5	130	<20	1540	<20	130	1000	410	<20	<0.5		<0.5	<0.5	0.6	-	0.6	1	1.3	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6 -	-	-
GBH02_0.4-0.6	0.4-0.6		Fill (roadbase fines)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	_	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5		<0.5 <0.		_	<0.5	<0.5	<0.5	<0.5	<0.5 -	-	
BH03_0.0-0.1 BH03_0.5-0.6	0-0.1 0.5-0.6	23-11-20 23-11-20	Natural (residual clay)	-	-	<0.5 <0.5	54 <50	<20 <20	534 <100	<20 <20	54 <50	310 <100	170 <100	<20 <20	<0.5 <0.5	_	<0.5	_	<0.5 <0.5	-	<0.5 <0.5	0.6	1.2	<0.5 <0.5	<0.5	-	<0.5 <0.5 <0.5 <0.5	-	_	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 - <0.5 -	-	-
BH04_0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	_	_	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	-	<0.5 <0.1	_	_	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	_
BH04_0.5-0.6	0.5-0.6		Natural (residual clay)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5		_	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	-	<0.5 <0.		_	<0.5	<0.5	<0.5	<0.5	<0.5 -	-	
BH05_0.0-0.1	0-0.1	23-11-20	Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	<0.5	<0.5	0.6	0.8	-	<2	<2	<2	0.6	0.5	0.7	<2 <0.	5 1	<0.5	<0.5	<0.5	<0.5	1.1	5.3 -	-	-
BH06_0.0-0.1	0-0.1		Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	<0.5	<0.5	<0.5	<0.5	-	<1	<1	1.3	<0.5	<0.5	<0.5	<1 <0.	5 0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.1 -	-	-
GBH06_0.0-0.1	0-0.1	-	Fill	-	-	-	<50	<20	905	<20	75	540	290	<20	<0.5	_	_	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	-	<0.5 <0.	_	_	<0.5	<0.5	<0.5	<0.5	<0.5 -	-	-
BH07_0.0-0.1 BH07_0.5-0.6	0-0.1 0.5-0.6	24-11-20 24-11-20	Fill Natural (residual clay)	-	-	<0.5 <0.5	<50 <50	<20 <20	<100 <100	<20 <20	<50 <50	<100	<100 <100	<20 <20	<0.5 <0.5	_	_	_	<0.5 <0.5	-	<0.5 <0.5	0.6	1.2	<0.5	<0.5	_	<0.5 <0.5 <0.5 <0.5	_		<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 - <0.5 -	-	-
BH08 0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5		<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	-	<0.5 <0.1		_	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	
GBH08 0.0-0.1	0-0.1		Fill	<0.5	<0.5	<0.5	2000	<20	11,200	<20	2000	7800	1400	<20	<0.5	_	<0.5	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5		<0.5 <0.1		_	<0.5	<0.5	<0.5	<0.5	<0.5 -	<1	
GBH08_0.8-1.0	0.8-1	02-12-20	Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-	-
BH12_0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	_	_	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	_	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	L <0.5
BH12_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5		<0.5	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5		<0.5 <0.			<0.5	<0.5	<0.5	<0.5	<0.5 -	-	-
BH13_0.0-0.1 BH13_0.5-0.6	0-0.1 0.5-0.6	24-11-20 24-11-20	Natural (residual clay)	-	-	<0.5 <5	<500	<20 <200	<1000	<20 <200	<500 <2500	<1000 5800	<1000 <5000	<20 <200	<0.5 0.5		1.3 5.1	1.9 5.1		<0.001 <0.001*	- 6	6.2	6.5	2.8	78		<5 0.7 63 18		0.6 <0.5	2.1 55	<0.5 <5	<0.5 3.2	2.5 67	28.4 - 557.9 0.002	-	-
BH14_0.0-0.1	0-0.1		Fill	+ -	-	<0.5	<50	<200	140	<200	<50	140	<100	<200	<0.5				<0.5		<0.5	0.6	1.2	<0.5	<0.5	_	<0.5 <0.1			<0.5	<0.5	<0.5	<0.5	<0.5	-	-
BH14_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	_	_	_	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	-	<0.5 <0.	_	_	<0.5	<0.5	<0.5	<0.5	<0.5 -	+-	-
BH15_0.0-0.1	0-0.1	24-11-20	Fill	<0.2	<0.2	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	L <0.5
BH16_0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5	<50	<20	120	<20	<50	120	<100	<20	<0.5	_	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5		<0.5 <0.		_	<0.5	<0.5	<0.5	<0.5	<0.5 -	<0.1	
BH16_0.5-0.6 BH17 0.0-0.1	0.5-0.6 0-0.1	25-11-20 25-11-20	Natural (residual clay)			<0.5	<50	<20	<100	<20	<50	<100	<100	<20	<0.5 <0.5		_	_	<0.5 <0.5	-	<0.5 <0.5	0.6	1.2	<0.5	<0.5	_	<0.5 <0.5	_		<0.5	<0.5	<0.5	<0.5	<0.5 - <0.5 -		L <0.5
BH17_0.0-0.1 BH18_0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5 <0.5	<50 <50	<20 <20	190 170	<20 <20	<50 <50	190 170	<100 <100	<20 <20	<0.5	_	_	_	_		<0.5	0.6	1.2	<0.5 <0.5	<0.5	_	<0.5 <0.5 <0.5 <0.5	_		<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 -	<0.1	- <0.5
BH18 0.5-0.6	0.5-0.6	25-11-20	Natural (residual clay)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	_		<0.5		<0.5			<0.5	0.6	1.2	<0.5			<0.5 <0.1						<0.5	<0.5 -	+-	+ -
BH19_0.0-0.1	0-0.1	25-11-20	Fill	<0.2	<0.2	<0.5	82	<20	652	<20	82	470	100	<20	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 0.7	<0.5	<0.5	<0.5	<0.5	0.5	1.2 -	<0.1	L <0.5
BH20_0.0-0.1	0-0.1		Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	_	<0.5			_	_		<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5			<0.5	<0.5	<0.5	<0.5 -	-	-
BH21_0.0-0.1	0-0.1		Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	_	_	<0.5		<0.5			<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.			_	_	<0.5	<0.5	<0.5 -	-	_
BH21_0.5-0.6 BH22 0.0-0.1	0.5-0.6 0-0.1	25-11-20 25-11-20	Natural (silty clay)	-	-	<0.5 <0.5	<50 75	<20 <20	<100 535	<20 <20	<50 75	<100 460	<100 <100	_		<0.5 <0.5		<0.5 <0.5			<0.5 <0.5	0.6	1.2	<0.5 <0.5	_		<0.5 <0.5 <0.5 <0.5			<0.5	_	<0.5 <0.5	<0.5 <0.5	<0.5 - <0.5 -	-	_
BH23 0.0-0.1	0-0.1		Fill	<0.2	<0.2	<0.5	<50	<20	130	<20	<50	130	<100	_	<0.5			_	_		<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.1	_		<0.5		<0.5	<0.5	<0.5 -	<0.1	
GBH03 0.3-0.4	0.3-0.4	09-12-20	Natural (sandstone fines)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	_	<0.5		_	_	_		<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.	_		<0.5	_	<0.5	<0.5	<0.5 -	-	
GBH04_0.6-0.7	0.6-0.7	09-12-20	Natural (sandstone fines)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	<20	_	<0.5		<0.5			<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5 <0.	5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 -	-	-
GBH05_0.2-0.3	0.2-0.3		Natural (sandstone fines)	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100			<0.5		_			<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.	_		<0.5		<0.5	<0.5	<0.5 -	-	-
QC1	BH11A	-	Fill	-	-	<0.5	<250	<20	<500	<20	<250	<500	<500	_	_	<0.5		<0.5	_		<0.5	0.6	1.2	<0.5	_		<0.5 <0.	_		<0.5	_	<0.5	<0.5	<0.5 -	-	_
QC2 BH09 0.0 0.1	BH11A 0.1		Fill	<0.2	<0.2	<0.5 <0.5	<50 <50	<10 <20	<50 150	<10 <20	<0 <50	<100 150	<100 <100	_	<0.5	<0.5 <0.5	_	_	_		<0.5 <0.5	0.6	1.2	<0.5 <0.5	_	_	<0.5 <0.5 <0.5 <0.5	_		<0.5	<0.5 <0.5	<0.5	<0.5 0.7	<0.5 - 0.7 -	<0.1	_
BH09_0.5_0.6	0.6	1.	Fill	- <0.2		<0.5	<50	<20	<100	<20	<50	<100	<100			<0.5	_	<0.5	_		<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.5	_		<0.5	_	<0.5	<0.7	<0.5 -	- <0.1	
BH10_0.0_0.1	0.1		Fill	-	-	<0.5	<50	<20	<100	<20	<50	<100	<100	_	_	<0.5		<0.5	_		<0.5	0.6	1.2	<0.5	_	_	<0.5 <0.1	_		<0.5			<0.5	<0.5	-	
BH11A_0.0_0.1			Fill	-	-	-	<250		<500	<20		<500	<500	_	_	<0.5		_			<0.5	0.6	1.2				<0.5 <0.				<0.5			<0.5 -	-	<u> </u>

Table T1: Pennant Hills Road Waste Classification

					P	СВ					Т	PH			TPH	Followin	ng Silica	Gel Clea	ın-up				Vol	atile		_
				Aroclor 1232	Aroclor 1242	Aroclor 1248	, Aroclor 1254	Aroclor 1260	PCBs (Sum of total)	C10 - C14	. C15 - C28	. C29 - C36	. C10 - C36 (Sum of total)	C10-C16	, C16-C34	, C34-C40	, C10 - C36 (Sum of total)	, C10 - C14	, C15 - C28	, C29 - C36	Benzene	Ethylbenzene	Toluene	, Xylene (m & p)	, Xylene (o)	
201				mg/kg						mg/kg		mg/kg		mg/kg		mg/kg	mg/kg	mg/kg		mg/kg		mg/kg		_		_
PQL	al Calid Masta (No Lasabina)			0.5	0.5	0.5	0.5	0.5	0.5	20	50	50	50	50	100	100	50	50	100	100	0.1	0.1	0.1	0.2	0.1	
	al Solid Waste (No Leaching) cted Solid Waste (No Leaching	~1							50 50				10000 40000								10 40	600 2400	288 1152			+
	eral Solid Waste (leached)	<u>5/ </u>							50				10000								18	1080	518			+
	ricted Solid Waste (leached)								50				40000								72	4320	2073			
3002 N3W 2014 N03H	reted solid Waste (redefied)								30				40000								72	4320	2073			_
Field_ID	Sample_Depth_Range	Sampled_Date-Time	Matrix_Description																							
BH01 0.0-0.1	0-0.1	23-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	46	210	220	610	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	T
BH01_0.5-0.6	0.5-0.6	23-11-20	Fill	-	-	-	-	-	-	<20	54	<50	54	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH02_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	120	550	680	1350	-	-	-	-	=	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
GBH02_0.4-0.6	0.4-0.6	02-12-20	Fill (roadbase fines)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH03_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	45	190	210	445	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH03_0.5-0.6	0.5-0.6	23-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	.Т
BH04_0.0-0.1	0-0.1	23-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	. \top
BH04_0.5-0.6	0.5-0.6	23-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH05_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH06_0.0-0.1	0-0.1	23-11-20	Fill	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
GBH06_0.0-0.1	0-0.1	02-12-20	Fill	-	-	-	-	-	-	68	280	360	708	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH07_0.0-0.1	0-0.1	24-11-20	Fill	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH07_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH08_0.0-0.1	0-0.1	23-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
GBH08_0.0-0.1	0-0.1	02-12-20	Fill	<1	<1	<1	<1	<1	<1	700	4800	_	9900	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
GBH08_0.8-1.0	0.8-1	02-12-20	Fill							<20	52	<50	52	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH12_0.0-0.1	0-0.1	24-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH12_0.5-0.6	0.5-0.6	24-11-20 24-11-20	Natural (residual clay)	-	-	-	-	-	-	<20 <200	<50 <500	<50 <500	<50	-				-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH13_0.0-0.1 BH13_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	<1000	3700	<2500	<500 <50	88*	2100*	200*	2350*		1500*	850*	<1	<1	<0.1	<0.2	<1	\rightarrow
BH14_0.0-0.1	0-0.1	24-11-20	Fill	 -	-	-	-	-	-	<20	86	95	181	- 00	2100	200	2330	\J0	1300	- 630	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH14_0.5-0.6	0.5-0.6	24-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-		_			_	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH15_0.0-0.1	0-0.1	24-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	54	69	123	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH16_0.0-0.1	0-0.1	25-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	61	83	144	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH16_0.5-0.6	0.5-0.6	25-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH17_0.0-0.1	0-0.1	25-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	25	140	110	275	-	-	-	-	=	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH18_0.0-0.1	0-0.1	25-11-20	Fill	-	-					25	99	110	234							-	<0.1	<0.1	<0.1	<0.2	<0.1	
BH18_0.5-0.6	0.5-0.6	25-11-20	Natural (residual clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	<0.1	\rightarrow
BH19_0.0-0.1	0-0.1	25-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	57	250	330	637	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
BH20_0.0-0.1	0-0.1	25-11-20	Fill	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
BH21_0.0-0.1	0-0.1	25-11-20	Fill	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
BH21_0.5-0.6	0.5-0.6	25-11-20	Natural (silty clay)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
BH22_0.0-0.1	0-0.1	25-11-20	Fill	-	-	-	-	-	-	57	270	_	627	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
BH23_0.0-0.1	0-0.1	25-11-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<20	81	_	165	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
GBH03_0.3-0.4	0.3-0.4	09-12-20	Natural (sandstone fines)	-	-	-	-	-	-	<20	<50	<50	<50	<u> </u>	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
GBH04_0.6-0.7	0.6-0.7	09-12-20	Natural (sandstone fines)	-	-	-	-	-	-	<20	<50	<50	<50	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
GBH05_0.2-0.3	0.2-0.3	09-12-20	Natural (sandstone fines)	-	-	-	-	-	-	<20	<50	<50	<50	<u> </u>	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
QC1	BH11A	02-12-20	Fill Fill	-	-	-	-	-	-	<100	<250	_	_	<u> </u>	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
QC2	BH11A 0.1	02-12-20	Fill	<0.5	<0.5	<0.5	<0.5	<0.5	- 0.5	<50 <20	<100 73	_	<50 168	<u> </u>	-	-	-	-	-	-	<0.2	<0.5 <0.1	<0.5	<0.5	<0.5 <0.1	\rightarrow
BH09_0.0_0.1 BH09_0.5_0.6	0.6	01-12-20 01-12-20	Fill	<0.5	\U.5	\U.5	-0.5	\U.5	<0.5	<20	<50	<50	<50	-		-				-	<0.1	<0.1	<0.1	<0.2	_	\rightarrow
ס.ט_כטווט	_			_	+	-	+-	-	_	<20	<50	<50	<50	<u> </u>					-	-		<0.1	<0.1	<0.2	<0.1	\rightarrow
BH10_0.0_0.1	0.1	01-12-20	Fill	-	-		-		-												< 0.1					

Table T1: Pennant Hills Road Waste Classification

SDG	04-Dec-20	04-Dec-20		04-Dec-20	Interlab_D	
Field ID	TP11A	QC1	RPD	TP11A	QC2	RPD
Sampled Date/Time	02-12-20	02-12-20		02-12-20	02-12-20	

Method_T	ChemNam	Units	EQL						
Inorganic	Moisture C	%	1	21.0	27.0	25	21.0		
J					-		_		
Heavy Met	Arsenic	ma/ka	2 (Primary): 5 (Interlab)	11.0	12.0	9	11.0	7.0	44
,			0.4 (Primary): 1 (Interlat	<0.4	<0.4	0	<0.4	<1.0	0
			5 (Primary): 2 (Interlab)	18.0	18.0	0	18.0	10.0	57
	Copper	mg/kg		17.0	20.0	16	17.0	14.0	19
	Lead	mg/kg		260.0	340.0	27	260.0	198.0	27
	Mercury	mg/kg		<0.1	<0.1	0	<0.1	<0.1	0
	Nickel		5 (Primary): 2 (Interlab)	5.0	6.2	21	5.0	3.0	50
	Zinc	mg/kg		140.0	180.0	25	140.0	83.0	51
al									
PAH	Acenaphth	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphth			<0.5	<0.5	0	<0.5	<0.5	0
	Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a)aı	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a)p	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a)p	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a)p	mg/kg	0.5	0.6	0.6	0	0.6	0.6	0
	Benzo(a)p	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0
	Benzo(g,h,	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(k)flu	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Chrysene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo[b+j]	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Dibenz(a,h	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Fluoranthe	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
	Fluorene	mg/kg	0.5	<0.5	< 0.5	0	<0.5	<0.5	0
	Indeno(1,2	mg/kg	0.5	<0.5	< 0.5	0	<0.5	<0.5	0
	Naphthaler	mg/kg	0.5 (Primary): 1 (Interlat	<0.5	< 0.5	0	<0.5	<0.5	0
	Phenanthre	mg/kg	0.5	<0.5	< 0.5	0	<0.5	< 0.5	0
	Pyrene	mg/kg		<0.5	< 0.5	0	<0.5	< 0.5	0
	Total PAH	mg/kg	0.5	< 0.5	< 0.5	0	<0.5	< 0.5	0
Organic			100 (Primary): 50 (Interla	<500.0	<500.0	0	<500.0	<50.0	0
		mg/kg		<250.0	<250.0	0	<250.0	<50.0	0
	C16-C34	mg/kg	100	<500.0	<500.0	0	<500.0	<100.0	0
	C34-C40	mg/kg	100	<500.0	<500.0	0	<500.0	<100.0	0
TDU	040 044		20 (Drimen a.), 50 (1-1-1-	.400.C	400.0	0	400.0	.50.0	L_
TPH			20 (Primary): 50 (Interla	<100.0	<100.0	0	<100.0	<50.0	0
			50 (Primary): 100 (Interl	<250.0	<250.0	0	<250.0	<100.0	0
			50 (Primary): 100 (Interla	<250.0	<250.0	0	<250.0	<100.0	0
	C10 - C36		50 ered where a concentration	<250.0	<250.0	0	<250.0	<50.0	0

^{*}RPDs have only been considered where a concentration is greater than 0 times the EQL.
**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 2000 (0-10 x EQL); 50 (10-20 x EQL); 30
***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the

Lab Report Number	762036	763264	762036	762036
Field ID	R1	R2	TRIP BLANK	Trip_SPIKE
Sampled_Date/Time	01-12-20	09-12-20	01-12-20	01-12-20
Sample Type	Rinsate	Rinsate	Trin B	Trip

Method_Type	ChemName	Units	EQL				
Heavy Metal	Arsenic	mg/l	0.001	< 0.001	< 0.001		
	Cadmium	mg/l	0.0002	< 0.0002	< 0.0002		
	Chromium	ma/l	0.001	< 0.001	< 0.001		
	Copper	mg/l	0.001	< 0.001	< 0.001		
	Lead	mg/l	0.001	< 0.001	< 0.001		
	Mercury	mg/l	0.0001	< 0.0001	<0.0001		
	Nickel	mg/l	0.001	<0.001	< 0.001		
	Zinc	mg/l	0.005	< 0.005	< 0.005		
Organic	Naphthalene	µq/l	10	<10	<10	<10	97%
g	F2-NAPHTHALENE	mg/l	0.05	<0.1	< 0.05		01.70
	C6 - C9	μq/l	20	<20	<20	<20	
	C10 - C40 (Sum of total)	µg/l	100	<100	<100		
	C6-C10 less BTEX (F1)	mg/l	0.02	<0.02	<0.02	<0.02	
	C10-C16	mg/l	0.05	<0.1	<0.05	10.02	
	C16-C34	mg/l	0.00	<0.1	<0.03		
	C34-C40	mg/l	0.1	<0.1	<0.1		
	C6 - C10	mg/l	0.02	<0.02	<0.02	<0.02	
	00-010	IIIg/I	0.02	<0.02	<0.02	Q0.02	
PAH	Acenaphthene	µq/l	1	<1	<1		
741	Acenaphthylene	μg/l	1	<1	<1		
	Anthracene	µg/l	1	<1	<1		
	Benzo(a)anthracene	μg/l	1	<1	<1		
	Benzo(a)pyrene	µg/l	1	<1	<1		
	Benzo(g,h,i)perylene	μg/l	1	<1	<1		
	Benzo(k)fluoranthene	μg/l	1	<1	<1		
	Chrysene	μg/l	1	<1	<1		
	Benzo[b+j]fluoranthene	mg/l	0.001	<0.001	<0.001		
	Dibenz(a,h)anthracene	µq/l	1	<1	<1		
	Fluoranthene	μg/I	1	<1	<1		
	Fluorene	μg/l	1	<1	<1		
	Indeno(1,2,3-c,d)pyrene	μg/l	1	<1	<1		
	Naphthalene	μg/I	1	<1	<1		
	Phenanthrene	μg/l	1	<1	<1		
	Pyrene	μg/l	1	<1	<1		
	Total PAHs	μg/l	1	<1	<1		
	TOTAL PARS	μg/i	1	<1	<1		
PH	C10 - C14	µq/l	50	<50	<50		
PH	C10 - C14 C15 - C28	μg/I μg/I	100	<100	<100		
			100		<100		
	C29 - C36 C10 - C36 (Sum of total)	μg/l		<100			
		μg/l	100	<100	<100		750/
/-1-4:1-	TRH - C6 - C9	//			4	4	75%
/olatile	Benzene	μg/l	1	<1	<1	<1	110%
	Ethylbenzene	μg/l	1	<1	<1	<1	93%
	Toluene	μg/l	1	<1	<1	<1	97%
	Xylene (m & p)	μg/l	2	<2	<2	<2	-
	Xylene (o)	μg/l	1	<1	<1	<1	-
	Xylene Total	μg/l	3	<3	<3	<3	92%

Waste Classification Assessment of the Intersection of Pennant Hills Road and North Rocks Road, Carlingford, NSW $\,$

Attachment F: Laboratory Reports

Bulk Identification Report

754-SYDEN279944 Pennant Hills Road 26112020 Job No:

Client: Transport for New South Wales Level 9, 10-14 Smith Street, Client Address:

Parramatta NSW 2000

Contact: Maria Doumit

E-mail: maria.doumit@transport.nsw.gov.au

Date Sampled: 20/11/2020 Date Printed: 26/11/2020 Sampled By: Simon Hav

Pennant Hills Road, Carlingford Site:

Accredited for compliance with ISO/IEC 17025 - Testing Accreditation No:2220 Corporate Site No:16909

Please note: Where you have provided the samples for analysis, Coffey Services Australia Pty Ltd (Coffey) does not take any responsibility for the quality of the such samples. This report relates exclusively to the samples analysed by Coffey and as such only the samples submitted or collected for analysis have been considered in presenting these results. The data and results contained in this report are not representative of the site, product or source material as a whole. Coffey does not make any warranty or representation in relation to the site, product or source material as a whole. If you suspect any material to contain asbestos, then you must immediately stop the works and activities at the site or in respect of the materials and engage Coffey or another suitably trained asbestos hygienist to sample, assess or re-assess (as the case may be) the material suspected to contain asbestos.

Asbestos in Bulk Samples and Non-homogenous Material

Test Method: Coffey analyses bulk samples for asbestos using polarising light microscopy and dispersion staining techniques in accordance with Coffey SOP

WILAB1, and Australian Standard (AS) 4964 - 2004, Method for the qualitative identification of asbestos in bulk samples (AS 4964). The detection limit for the test method as per AS 4964 is 0.1 g/kg. For non-homogenous samples a semi quantitative aspect is adopted for the test method and is taken into account when reporting the results. As per Coffey's NATA approved SOP WILAB1 sample retention periods are set at

1 month (no asbestos detected) and 3 months (asbestos detected).

Total Samples: 1

Matthew Tang Matthew Tang Approved Identifier Approved Signatory

Sample No.	Location & Description	Sample Size	Results
ACM1	Vacant lot, north-east corner of intersection of Pennant Hills Road and North Rocks Road. Fibre Cement Fragment identified on surface at base of large southern/central tree - Grey compressed fibre cement sheet material	~ 34 x 31 x 5 mm	Chrysotile (white asbestos) detected

This Document may not be reproduced except in full.

26/11/2020 Page 1 of 1

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

	S. Comments		Consigning Off	fice:	Coffey Services	Australia I	Pty Lt	d - (Chatsv	wood						
coffey	A CONTRACTOR OF THE PARTY OF TH	10 mil 10	Report Results	to:	Simon H	lay	Mob	ile:		0424 703 009	Ema	il:	Sim	non.Hay@coffey.com		
TETRA TECH COMPANY			Invoices to:		Simon Hay		Phon	e:		0424 703 009	Ema	il:		0424 703 009		
Project No:	754-SYDEN279944		Task No	:	Fieldwork						Analys	is Request	Section			
Project Name:	Pennant Hills Road		Laboratory	:	Eurofins											
Sampler's Name:	Timothy Masudi	Pro	oject Manager	:	Simon Hay											
Special Instructions	•								50 g							
							_	15	SO							
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	Suite B7	Suite B15	Asbestos	PIOH				NOTES		
	BH01_0.0-0.1	23.11.20	9:00 PM	Soil	zip bag and Jar	5 day	х	х	х							
	BH01_0.5-0.6	23.11.20	9:25 PM	Soil	zip bag and Jar	5 day	х									
	BH01_0.9-1.0	23.11.20	9:55 PM	Soil	zip bag and Jar	5 day				x		Control Security				
	BH02_0.0-0.1	23.11.20	10:25 PM	Soil	zip bag and Jar	5 day	х									
	BH03_0.0-0.1	23.11.20	10:45 AM	Soil	zip bag and Jar	5 day	х		X		274					
	BH03_0.5-0.6	23.11.20	11:15 PM	Soil	zip bag and Jar	5 day	х									
	BH03_0.9-1.0	23.11.20	11:40 PM	Soil	zip bag and Jar	5 day				x						
	BH04_0.0-0.1	23.11.20	12:00 AM	Soil	zip bag and Jar	5 day	х	x	х							
	BH04_0.5-0.6	23.11.20	12:35 AM	Soil	zip bag and Jar	5 day	х									
	BH04_0.9-1.0	23.11.20	1:10 AM	Soil	zip bag and Jar	5 day										
	BH05_0.0-0.1	23.11.20	1:25 AM	Soil	zip bag and Jar	5 day	х		х							
	BH05_0.5-0.6	23.11.20	1:50 AM	Soil	zip bag and Jar	5 day				x	100					
	BH05_0.9-1.0	23.11.20	2:10 AM	Soil	zip bag and Jar	5 day				x	40					
	BH06_0.0-0.1	23.11.20	2:30 AM	Soil	zip bag and Jar	5 day	х									
	BH08_0.0-0.1	23.11.20	3:15 AM	Soil	zip bag and Jar	5 day	х	х	х							
					10-20 Page 1											
					The second secon	Section 1						197 A				
	RELINQUISHED BY				The state of the s	RECEIVED BY	,				Sample R	eceipt Advi	ce: (Lab Us	HE 1200 HE TO BE THE TO BE SHOWN THE THE TO SHOW THE TO SHOW THE THE THE TO SHOW THE THE THE THE THE THE THE T		
Name:	Date:			Name: 60	one Timber	1	Date	: 2	7/11		All Sampl	es Recieved	in Good Co			
Coffey	Time:	78			Enfin	(48)	Time	: {	8:3	8	All Docun	nentation is	in Proper O			
Name:	Date:		→	Name:			Date				Samples I	Received Pro	perly Chille	ed 🔲		
Company:	Time:			Company:			Time	:			Lab. Ref/I	Batch No.	7	<9677		
				Company:	- Nitric Acid Preserved	l, C - Hydrochlo	Time		served, \$	5 - Sulphuric Aci	Lab. Ref/I	Lab. Ref/Batch No. 7-59675				

			Consigning Of	signing Office: Coffey Services Australia P						Pty Ltd - Chatswood							
coffey			Report Results	s to:	Simon I	Нау	Mobi	ile:		0424 703	009	Er	mail:			Simon.H	ay@coffey.com
TETRA TECH COMPANY	Marie and the same of the same of		Invoices to:		Simon Hay		Phon	e:		0424 703	009	Er	mail:			042	24 703 009
Project No:	754-SYDEN279944		Task No	:	Fieldwork						4.10	Anal	lysis F	eque	st Secti	on	
roject Name:	Pennant Hills Road		Laboratory		Eurofins												
Sampler's Name:	Timothy Masudi	Pr	oject Manager	:	Simon Hay												
Special Instruction	ns:			7.00		Part of			509								
							1	115	SO								
Lab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	Suite B7	Suite B15	Asbestos	용모							NOTES
	BH07_0.0-0.1	24.11.20	8:40 PM	Soil	J&Z	5 day	х		х								
	BH07_0.5-0.6	24.11.20	8:55 PM	Soil	J&Z	5 day	х			100							
	BH07_0.8-0.9	24.11.20	9:15 PM	Soil	J&Z	5 day				x							
阿里里 克里克	BH12_0.0-0.1	24.11.20	9:30 PM	Soil	J&Z	5 day	x	х	x								
	BH12_0.5-0.6	24.11.20	9:50 PM	Soil	J&Z	5 day	х										
	BH12_0.9-1.0	24.11.20	10:00 PM	Soil	J&Z	5 day				x							
	BH13_0.0-0.1	24.11.20	10:20 PM	Soil	J&Z	5 day	х										
	BH13_0.5-0.6	24.11.20	10:45 PM	Soil	J&Z	5 day	х										
	BH14_0.0-0.1	24.11.20	10:55 PM	Soil	J&Z	5 day	х		x								
	BH14_0.5-0.6	24.11.20	11:15 PM	Soil	J&Z	5 day	х					ener 1 he					
	BH14_0.9-1.0	24.11.20	11:25 PM	Soil	J&Z	5 day				х							
	BH15_0.0-0.1	24.11.20	11:45 PM	Soil	J&Z	5 day	х	х	x	A CONTRACTOR							
	BH16_0.0-0.1	25.11.20	12:10 AM	Soil	J&Z	5 day	х	х	x								
	BH16_0.5-0.6	25.11.20	12:25 AM	Soil	J&Z	5 day	x										
	BH16_0.9-1.0	25.11.20	12:45 AM	Soil	J&Z	5 day				x							
	BH17_0.0-0.1	25.11.20	1:05 AM	Soil	J&Z	5 day	х	х	x								
	BH17_0.3-0.4	25.11.20	1:25 AM	Soil	J&Z	5 day				x							
	BH18_0.0-0.1	25.11.20	1:40 AM	Soil	J&Z	5 day	х										
	BH18_0.5-0.6	25.11.20	1:50 AM	Soil	J&Z	5 day	х						15				
	BH18_0.8-0.9	25.11.20	2:00 AM	Soil	J&Z	5 day				x							
	BH19_0.0-0.1	25.11.20	2:15 AM	Soil	J&Z	5 day	х	х									
	BH19_0.25-0.35	25.11.20	2:25 AM	Soil	J&Z	5 day				x							
	BH20_0.0-0.1	25.11.20	2:35 AM	Soil	J&Z	5 day	х										
	BH21_0.0-0.1	25.11.20	2:45 AM	Soil	J&Z	5 day	х										
	BH21_0.5-0.6	25.11.20	2:50 AM	Soil	J&Z	5 day	х										
	BH21_1.0-1.1	25.11.20	3:05 AM	Soil	J & Z	5 day				x							
	BH22_0.0-0.1	25.11.20	3:20 AM	Soil	J&Z	5 day	х		x								
	BH23_0.0-0.1	25.11.20	3:50 AM	Soil	J&Z	5 day	x	x	x								
	RELINQUISHED BY					RECEIVED BY	ACCOUNT OF THE		7-1	-114	4.5					ab Use On	v)
Name: Coffey	Timothy Masudi Date: Time:	25/1	11/2020	Name: Go	of the	, eu	Date: Time		8:	192						od Condition per Order	
Name:	Date:	4-1	→	Name:			Date					Sample	es Rec	eived P	roperly	Chilled	
Company:	Time:			Company:			Time	:				Lab. Re	ef/Bato	h No.		200	77

Environment Testing

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name: Project ID:

PENNANT HILLS ROAD 754-SYDEN279944

Turnaround time:

5 Day

Date/Time received

Nov 26, 2020 8:38 AM

Eurofins reference

759675

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt:

17.4 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Received: Nov 26, 2020 8:38 AM Due: Dec 3, 2020

Priority: 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

Malk	oourne Laborato		mple Detail	.		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
	ney Laboratory	Х	Х	X	Х	X				
	bane Laborator									
	h Laboratory - N	-								
	field Laboratory									
	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH01_0.0-0.1	Nov 23, 2020		Soil	S20-No47967	Х		Х	Х	Х
2	BH01_0.5-0.6	Nov 23, 2020		Soil	S20-No47968				Х	Х
3	BH01_0.9-1.0	Nov 23, 2020		Soil	S20-No47969		Х			
4	BH02_0.0-0.1	Nov 23, 2020		Soil	S20-No47970				Х	Х
5	BH03_0.0-0.1	Nov 23, 2020		Soil	S20-No47971	Х			Х	Х
6	BH03_0.5-0.6	Nov 23, 2020		Soil S20-No47972					Х	Х
7	BH03_0.9-1.0	Nov 23, 2020		Soil	S20-No47973		Х			
8	BH04_0.0-0.1	Nov 23, 2020		Soil Soil	S20-No47974	Х		Х	Х	Х
9	BH04_0.5-0.6				Х	Χ				

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 3, 2020

Simon Hay

Nov 26, 2020 8:38 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Eurofins Analytical Services Manager: Ursula Long

5 Day

		Sa	mple Detail				Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271							
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х
	bane Laborator										
Pert	h Laboratory - N	NATA Site # 237	736								
May	field Laboratory	1									
Exte	rnal Laboratory										
10	BH04_0.9-1.0	Nov 23, 2020		Soil		S20-No47976		Х			
11	BH05_0.0-0.1	Nov 23, 2020		Soil		S20-No47977	Х			Х	Х
12	BH05_0.5-0.6	Nov 23, 2020		Soil		S20-No47978		Х			
13	BH05_0.9-1.0	Nov 23, 2020		Soil		S20-No47979		Х			
14	BH06_0.0-0.1	Nov 23, 2020		Soil		S20-No47980				Х	Х
15	BH08_0.0-0.1	Nov 23, 2020		Soil		S20-No47981	Х		Х	Х	Х
16	R1	Nov 23, 2020		Water		S20-No47982		Х			
17	BH07_0.0-0.1	Nov 24, 2020		Soil		S20-No47983	Х			Х	Х
18	BH07_0.5-0.6	Nov 24, 2020		Soil		S20-No47984				Х	Х
19	BH07_0.8-0.9	Nov 24, 2020		Soil		S20-No47985		Х			
20	BH12_0.0-0.1	Nov 24, 2020		Soil	5	S20-No47986	Χ		Х	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 3, 2020

Nov 26, 2020 8:38 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.:

Report #: 759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Priority: 5 Day **Contact Name:** Simon Hay

			mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
	oourne Laborato			271						
	ney Laboratory					X	X	Х	X	X
	bane Laborator									
	h Laboratory - N		36							
	field Laboratory									
	rnal Laboratory BH12_0.5-0.6			Soil	S20-No47987				Х	X
21		Nov 24, 2020		Soil	S20-N047988		Х		^	
22 23	BH12_0.9-1.0 BH13_0.0-0.1	Nov 24, 2020 Nov 24, 2020		Soil	S20-N047988		^		Х	X
<u>23</u> 24	BH13_0.5-0.6	Nov 24, 2020		Soil	S20-N047989				_ ^ _ X	$\frac{1}{x}$
24 25	BH14_0.0-0.1	Nov 24, 2020		Soil	S20-N047990	X			X	$\frac{1}{x}$
	BH14_0.5-0.6	Nov 24, 2020		Soil	S20-N047991	+^			X	X
26 27	BH14_0.9-1.0	Nov 24, 2020		Soil	S20-N047992 S20-N047993		Х			
	BH15_0.0-0.1	Nov 24, 2020		Soil	S20-N047993	X	^	Х	Х	X
28 29	BH16_0.0-0.1	Nov 25, 2020		Soil	S20-N047994 S20-N047995	X		X	X	$\frac{1}{x}$
30	BH16_0.5-0.6			Soil	S20-N047996	+^			X	X
31	BH16 0.9-1.0	Nov 25, 2020 Nov 25, 2020		Soil	S20-N047996 S20-N047997		Х		<u> </u>	\vdash
ગા	DH 10_0.9-1.0	INUV 25, 2020		3011	S20-N04/99/		_ ^			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 3, 2020

Simon Hay

Nov 26, 2020 8:38 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

Company Name:

PENNANT HILLS ROAD 754-SYDEN279944 Order No.: Report #:

759675

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

5 Day

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71						
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
May	field Laboratory	1								
Exte	rnal Laboratory	1								
32	BH17_0.0-0.1	Nov 25, 2020		Soil	S20-No47998	Х		Х	Х	Х
33	BH17_0.3-0.4	Nov 25, 2020		Soil	S20-No47999		Х			
34	BH18_0.0-0.1	Nov 25, 2020		Soil	S20-No48000				Х	Х
35	BH18_0.5-0.6	Nov 25, 2020		Soil	S20-No48001				Х	Х
36	BH18_0.8-0.9	Nov 25, 2020		Soil	S20-No48002		Х			
37	BH19_0.0-0.1	Nov 25, 2020		Soil	S20-No48003			Х	Х	Х
38	BH19_0.25- 0.35	Nov 25, 2020		Soil	S20-No48004		Х			
39	BH20_0.0-0.1	Nov 25, 2020		Soil	S20-No48005				Х	Х
40	BH21_0.0-0.1	Nov 25, 2020		Soil	S20-No48006				Х	Х
41	BH21_0.5-0.6	Nov 25, 2020		Soil	S20-No48007				Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 3, 2020

Simon Hay

Nov 26, 2020 8:38 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Eurofins Analytical Services Manager: Ursula Long

5 Day

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71						
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Χ	Х
Bris	bane Laboratory	y - NATA Site #	20794							
Perti	h Laboratory - N	IATA Site # 237	36							
May	ield Laboratory	•								
Exte	rnal Laboratory									
42	BH21_1.0-1.1	Nov 25, 2020		Soil	S20-No48008		Х			
43	BH22_0.0-0.1	Nov 25, 2020		Soil	S20-No48009	Х			Х	Х
44	BH23_0.0-0.1	Nov 25, 2020		Soil	S20-No48010	Х		Х	Х	Х
Test	Counts					13	14	9	30	30

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 759675-S

Project name PENNANT HILLS ROAD
Project ID 754-SYDEN279944
Received Date Nov 26, 2020

[1
Client Sample ID			BH01_0.0-0.1	BH01_0.5-0.6	BH02_0.0-0.1	BH03_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47967	S20-No47968	S20-No47970	S20-No47971
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	46	< 20	120	45
TRH C15-C28	50	mg/kg	210	54	550	190
TRH C29-C36	50	mg/kg	220	< 50	680	210
TRH C10-C36 (Total)	50	mg/kg	610	62	1800	520
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	96	104	106	91
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	62	< 50	130	54
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	62	< 50	130	54
TRH >C16-C34	100	mg/kg	330	< 100	1000	310
TRH >C34-C40	100	mg/kg	150	< 100	410	170
TRH >C10-C40 (total)*	100	mg/kg	542	< 100	1540	534
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	1.0	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.3	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH01_0.0-0.1	BH01_0.5-0.6	BH02_0.0-0.1	BH03_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
·						
Eurofins Sample No.			S20-No47967	S20-No47968	S20-No47970	S20-No47971
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	T					
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	0.6	0.6	0.8	0.6
2-Fluorobiphenyl (surr.)	1	%	103	96	89	100
p-Terphenyl-d14 (surr.)	1	%	101	105	96	105
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	=	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05 < 0.05	-	-	-
Hexachlorobenzene Methoxychlor	0.05	mg/kg		-	-	-
·	0.2	mg/kg	< 0.2 < 0.1	-	-	-
Toxaphene Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.1	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	111g/kg %	123	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	-	-	-
Organophosphorus Pesticides	ļ !	/0	122	_	_	_
	0.2	ma/ka	102			
Azinphos-methyl Bolstar	0.2	mg/kg	< 0.2 < 0.2	-	-	-
		mg/kg	< 0.2	-	-	-
Chlorfenvinphos Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos-methyl	0.2	mg/kg mg/kg	< 0.2	-	-	-
Coumaphos	2	mg/kg	< 0.2	-	-	-
Demeton-S	0.2	mg/kg	< 0.2	-	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-	-

Client Sample ID			BH01_0.0-0.1	BH01_0.5-0.6	BH02_0.0-0.1	BH03_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47967	S20-No47968	S20-No47970	S20-No47971
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		•				
Dimethoate	0.2	mg/kg	< 0.2	-	-	_
Disulfoton	0.2	mg/kg	< 0.2	_	_	_
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	_	_
Fensulfothion	0.2	mg/kg	< 0.2	-	_	_
Fenthion	0.2	mg/kg	< 0.2	_	_	_
Malathion	0.2	mg/kg	< 0.2	_	_	_
Merphos	0.2	mg/kg	< 0.2	_	_	_
Methyl parathion	0.2	mg/kg	< 0.2	_	_	_
Mevinphos	0.2	mg/kg	< 0.2	_	_	_
Monocrotophos	2	mg/kg	< 2	_	_	_
Naled	0.2	mg/kg	< 0.2	_	_	_
Omethoate	2	mg/kg	< 2	_	_	_
Phorate	0.2	mg/kg	< 0.2	_	_	_
Pirimiphos-methyl	0.2	mg/kg	< 0.2	_	_	_
Pyrazophos	0.2	mg/kg	< 0.2	_	_	_
Ronnel	0.2	mg/kg	< 0.2	_	_	_
Terbufos	0.2	mg/kg	< 0.2	_	_	_
Tetrachlorvinphos	0.2	mg/kg	< 0.2	_	_	_
Tokuthion	0.2	mg/kg	< 0.2	-	_	
Trichloronate	0.2	mg/kg	< 0.2	-	_	_
Triphenylphosphate (surr.)	1	// // // // // // // // // // // // //	95	-	_	_
Polychlorinated Biphenyls	I	/0	93	_	_	_
<u> </u>	0.5		0.5			
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	123	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	-	-	-
Heavy Metals	<u> </u>	1				
Arsenic	2	mg/kg	8.2	6.8	7.8	4.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	15	14	27
Copper	5	mg/kg	39	14	19	38
Lead	5	mg/kg	30	29	130	110
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	12	< 5	6.9	32
Zinc	5	mg/kg	240	52	100	250
	1					
% Moisture	1	%	22	13	25	14

Client Sample ID			BH03_0.5-0.6	BH04_0.0-0.1	BH04_0.5-0.6	G01BH05_0.0-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47972	S20-No47974	S20-No47975	S20-No47977
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit		,		
Total Recoverable Hydrocarbons - 1999 NEPM F		- Onne				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	59	64	63	57
BTEX	00	mg/ng	- 00	0-1		07
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1		< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
o-Xylene	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Xylenes - Total*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)	1	%	90	94	107	97
Total Recoverable Hydrocarbons - 2013 NEPM F		/0	90	34	107	31
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
•		mg/kg	< 20	< 20	< 20	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	50	mg/kg			< 50	< 20
TRH > C10-C16	50	mg/kg	< 50	< 50	< 50	< 50 < 50
TRH > C10-C16 less Naphthalene (F2) ^{N01}	100	mg/kg	< 50	< 50		
TRH >C16-C34 TRH >C34-C40	100	mg/kg	< 100 < 100	< 100 < 100	< 100 < 100	< 100 < 100
TRH >C10-C40 (total)*	100	mg/kg mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	100	IIIg/kg	< 100	< 100	< 100	× 100
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	
, ,,,,		mg/kg	0.6	0.6	0.6	< 2
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.2	1.2	1.2	< 2
Benzo(a)pyrene TEQ (upper bound) * Acenaphthene	0.5	mg/kg			< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 2
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.7
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.0
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5		< 0.5		< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5		1.1
Total PAH*	0.5	mg/kg	0.6	< 0.5	< 0.5	6.1
		mg/kg				
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	67 95	97 94	92	92

Client Sample ID			BH03_0.5-0.6	BH04_0.0-0.1	BH04_0.5-0.6	G01BH05_0.0-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47972	S20-No47974	S20-No47975	S20-No47977
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit	1101 20, 2020	1107 20, 2020	1107 20, 2020	1107 20, 2020
Organochlorine Pesticides	LOR	Unit				
	0.4			.0.4		
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	=	=
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Toxaphene	0.1	mg/kg	-	< 0.1	=	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	107	-	_
Tetrachloro-m-xylene (surr.)	1	%	-	120	_	_
Organophosphorus Pesticides	· ·	,,,		1.20		
Azinphos-methyl	0.2	mg/kg	_	< 0.2	_	_
Bolstar	0.2	mg/kg	-	< 0.2	-	-
	0.2		-	< 0.2		-
Chlorrenviife		mg/kg	-		-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	-
Diazinon	0.2	mg/kg	-	< 0.2	=	-
Dichlorvos	0.2	mg/kg	-	< 0.2	-	-
Dimethoate	0.2	mg/kg	-	< 0.2	-	-
Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg	-	1.5	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos	0.2	mg/kg	-	< 0.2	=	-

Client Sample ID			BH03_0.5-0.6	BH04_0.0-0.1	BH04_0.5-0.6	G01BH05_0.0-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47972	S20-No47974	S20-No47975	S20-No47977
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•					
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Naled	0.2	mg/kg	-	< 0.2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	81	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	107	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	120	-	-
Heavy Metals						
Arsenic	2	mg/kg	11	8.3	11	5.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.4
Chromium	5	mg/kg	19	21	27	31
Copper	5	mg/kg	26	50	14	77
Lead	5	mg/kg	41	180	23	510
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	10	8.7	5.3	25
Zinc	5	mg/kg	69	94	23	320
	<u>'</u>					
% Moisture	1	%	15	22	20	13

Client Sample ID			G01BH06_0.0-	BH08 0.0-0.1	BH07_0.0-0.1	BH07 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47980	S20-No47981	S20-No47983	S20-No47984
•						
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	59	63	62	63
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	103	93	94	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	1 .00	19,9	1.00	1.00	1.00	1.00
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	< 1	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.3	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 1	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	1.3	0.6	0.6	0.6
2-Fluorobiphenyl (surr.)	1	%	89	102	91	94
p-Terphenyl-d14 (surr.)	1	%	93	95	96	109

Client Sample ID			G01BH06_0.0-			
Client Sample ID			0.1 Soil	BH08_0.0-0.1	BH07_0.0-0.1	BH07_0.5-0.6
Sample Matrix				Soil	Soil	Soil
Eurofins Sample No.			S20-No47980	S20-No47981	S20-No47983	S20-No47984
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	=	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin .	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	=	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	_
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	_	_
Methoxychlor	0.2	mg/kg	_	< 0.2	_	_
Toxaphene	0.1	mg/kg	_	< 0.1	_	_
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	< 0.05	-	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	< 0.05	_	_
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	_	< 0.2	_	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	_	< 0.2	_	_
Dibutylchlorendate (surr.)	1	%	_	96	-	_
Tetrachloro-m-xylene (surr.)	1	%	_	126	_	_
Organophosphorus Pesticides	1	/0		120	-	-
	0.2			.0.2		
Azinphos-methyl		mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	=	-
Demeton-O	0.2	mg/kg	-	< 0.2	=	-
Diazinon	0.2	mg/kg	-	< 0.2	=	-
Dichlorvos	0.2	mg/kg	-	< 0.2	=	-
Dimethoate	0.2	mg/kg	-	< 0.2	-	-
Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg	-	< 0.2	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos	0.2	mg/kg	-	< 0.2	-	-

Client Sample ID			G01BH06_0.0- 0.1	BH08_0.0-0.1	BH07_0.0-0.1	BH07_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47980	S20-No47981	S20-No47983	S20-No47984
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	=	-
Monocrotophos	2	mg/kg	-	< 2	=	-
Naled	0.2	mg/kg	-	< 0.2	=	-
Omethoate	2	mg/kg	-	< 2	=	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	78	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	96	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	126	-	-
Heavy Metals						
Arsenic	2	mg/kg	7.3	8.1	9.5	12
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	22	20	22
Copper	5	mg/kg	91	18	23	5.1
Lead	5	mg/kg	620	150	190	17
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	13	10	7.0	< 5
Zinc	5	mg/kg	210	66	100	< 5
% Moisture	1	%	15	20	19	21

Client Sample ID			BH12_0.0-0.1	BH12_0.5-0.6	^{G01} BH13_0.0- 0.1	^{G01} BH13_0.5- 0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47986	S20-No47987	S20-No47989	S20-No47990
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOD	Linit	1407 24, 2020	1107 24, 2020	1407 24, 2020	1407 24, 2020
Total Recoverable Hydrocarbons - 1999 NEPM	LOR	Unit				
•				20	20	000
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 200
TRH C10-C14	20	mg/kg	< 20	< 20	< 200	< 1000
TRH C15-C28	50	mg/kg	< 50	< 50	< 500	3700
TRH C29-C36	50	mg/kg	< 50	< 50	< 500	< 2500
TRH C10-C36 (Total)	50	mg/kg	53	65	550	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 3
4-Bromofluorobenzene (surr.)	1	%	92	89	99	97
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 200
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 200
TRH >C10-C16	50	mg/kg	< 50	< 50	< 500	< 2500
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 500	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 1000	5800
TRH >C34-C40	100	mg/kg	< 100	< 100	< 1000	< 5000
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 1000	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	6.0	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	6.2	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	6.5	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	5.5	28
Anthracene	0.5	mg/kg	< 0.5	< 0.5	1.3	5.1
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	1.9	51
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	4.6	90
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 5	63
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	2.8	61
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	2.3	78
Chrysene	0.5	mg/kg	< 0.5	< 0.5	2.4	38
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.7	18
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	1.7	46
Fluorene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	2.1	55
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.2
Pyrene	0.5	mg/kg	< 0.5	< 0.5	2.5	67
Total PAH*	0.5	mg/kg	0.5	0.7	31	< 0.5
2-Fluorobiphenyl (surr.)	1	%	97	89	95	104
p-Terphenyl-d14 (surr.)	1	%	86	101	94	108

Client Sample ID			BH12_0.0-0.1	BH12_0.5-0.6	G01BH13_0.0- 0.1	G01BH13_0.5- 0.6
Sample Matrix		1	Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47986	S20-No47987	S20-No47989	S20-No47990
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOR	Unit	1407 24, 2020	1407 24, 2020	1407 24, 2020	1407 24, 2020
Organochlorine Pesticides	LOR	Unit				
	0.4		0.4			+
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	=	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	=	=	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	0.1	mg/kg	< 0.1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	=	=	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	86	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	116	-	-	_
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	_	_	_
Bolstar	0.2	mg/kg	< 0.2	_	_	_
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	-
Coumaphos	2	mg/kg	< 0.2		-	
Demeton-S	0.2		< 0.2	-		-
	0.2	mg/kg	< 0.2	-	-	-
Demeton-O		mg/kg		-	-	-
Diazinon Diable ruce	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos Dimethodo	0.2	mg/kg	< 0.2	-	-	-
Dimethoate	0.2	mg/kg	< 0.2	-	-	-
Disulfoton	0.2	mg/kg	< 0.2	-	-	-
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-		-

Client Sample ID			BH12_0.0-0.1	BH12_0.5-0.6	G01BH13_0.0- 0.1	^{G01} BH13_0.5-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47986	S20-No47987	S20-No47989	S20-No47990
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 24, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	-	-	_
Mevinphos	0.2	mg/kg	< 0.2	-	-	_
Monocrotophos	2	mg/kg	< 2	-	-	_
Naled	0.2	mg/kg	< 0.2	-	-	_
Omethoate	2	mg/kg	< 2	-	-	-
Phorate	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-	-
Terbufos	0.2	mg/kg	< 0.2	-	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Tokuthion	0.2	mg/kg	< 0.2	-	-	-
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	76	-	=	-
Polychlorinated Biphenyls		•				
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	=	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	=	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	=	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	=	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	=	-
Total PCB*	0.5	mg/kg	< 0.5	-	=	-
Dibutylchlorendate (surr.)	1	%	86	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	116	-	-	-
Heavy Metals	·					
Arsenic	2	mg/kg	3.9	21	7.3	5.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	51	28	16	9.2
Copper	5	mg/kg	63	17	47	15
Lead	5	mg/kg	630	33	470	100
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	96	< 5	7.0	7.5
Zinc	5	mg/kg	450	23	200	96
	•					
% Moisture	1	%	5.7	23	9.2	8.1

Olivert Overvolle ID					T	T
Client Sample ID			BH14_0.0-0.1	BH14_0.5-0.6	BH15_0.0-0.1	BH16_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47991	S20-No47992	S20-No47994	S20-No47995
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	86	< 50	54	61
TRH C29-C36	50	mg/kg	95	< 50	69	83
TRH C10-C36 (Total)	50	mg/kg	210	58	140	180
BTEX		199				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.1	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.1	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105	100	101	89
Total Recoverable Hydrocarbons - 2013 NEPM		/0	103	100	101	09
-			.0.5	.0.5	.0.5	.0.5
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH > C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	140	< 100	< 100	120
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	140	< 100	< 100	120
Polycyclic Aromatic Hydrocarbons	1					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	0.6	0.6	0.6	0.6
2-Fluorobiphenyl (surr.)	1	%	85	85	92	98
p-Terphenyl-d14 (surr.)	1	%	90	91	88	86

Client Sample ID			BH14_0.0-0.1	BH14_0.5-0.6	BH15_0.0-0.1	BH16_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47991	S20-No47992	S20-No47994	S20-No47995
•						
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
b-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
d-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	-	-	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	-	-	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	65	84
Tetrachloro-m-xylene (surr.)	1	%	-	-	106	112
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	-	< 0.2	< 0.2
Bolstar	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	< 0.2
Coumaphos	2	mg/kg	-	-	< 2	< 2
Demeton-S	0.2	mg/kg	-	-	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	-	-	< 0.2	< 0.2
Diazinon	0.2	mg/kg	-	-	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	-	-	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	-	-	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	-	-	< 0.2	< 0.2
EPN	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethion	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fenthion	0.2	mg/kg	-	-	< 0.2	< 0.2
Malathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Merphos	0.2	mg/kg	-	-	< 0.2	< 0.2

Client Sample ID			BH14_0.0-0.1	BH14_0.5-0.6	BH15_0.0-0.1	BH16_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47991	S20-No47992	S20-No47994	S20-No47995
Date Sampled			Nov 24, 2020	Nov 24, 2020	Nov 24, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		<u>'</u>				
Methyl parathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Monocrotophos	2	mg/kg	-	-	< 2	< 2
Naled	0.2	mg/kg	-	-	< 0.2	< 0.2
Omethoate	2	mg/kg	-	-	< 2	< 2
Phorate	0.2	mg/kg	-	-	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	-	-	< 0.2	< 0.2
Ronnel	0.2	mg/kg	-	-	< 0.2	< 0.2
Terbufos	0.2	mg/kg	-	-	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	-	-	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	-	-	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	-	-	72	74
Polychlorinated Biphenyls						
Aroclor-1016	0.5	mg/kg	-	-	< 0.5	< 0.5
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1232	0.5	mg/kg	-	-	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	65	84
Tetrachloro-m-xylene (surr.)	1	%	-	-	106	112
Heavy Metals						
Arsenic	2	mg/kg	11	6.7	3.6	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.6
Chromium	5	mg/kg	17	12	35	17
Copper	5	mg/kg	31	16	38	63
Lead	5	mg/kg	73	17	180	120
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	6.5	< 5	33	12
Zinc	5	mg/kg	78	21	130	210
% Moisture	1	%	12	14	9.5	19

Client Sample ID Sample Matrix			BH16_0.5-0.6 Soil	BH17_0.0-0.1 Soil	BH18_0.0-0.1 Soil	BH18_0.5-0.6 Soil
Eurofins Sample No.			S20-No47996	S20-No47998	S20-No48000	S20-No48001
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	25	25	< 20
TRH C15-C28	50	mg/kg	< 50	140	99	< 50
TRH C29-C36	50	mg/kg	< 50	110	110	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	275	234	< 50

Client Sample ID			BH16_0.5-0.6	BH17_0.0-0.1	BH18_0.0-0.1	BH18_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S20-No47996	S20-No47998	S20-No48000	S20-No48001
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
BTEX		_				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	91	75	97
Total Recoverable Hydrocarbons - 2013 NEPM		1				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	190	170	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	190	170	< 100
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene Dibography anthropone	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene Fluorene	0.5 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	101	93	84
p-Terphenyl-d14 (surr.)	1	%	92	88	86	96
Organochlorine Pesticides	1 1		52			
Chlordanes - Total	0.1	mg/kg	_	< 0.1	_	-
4.4'-DDD	0.05	mg/kg	-	< 0.1	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	<u> </u>
a-BHC	0.05	mg/kg	-	< 0.05	-	<u> </u>
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-

Client Sample ID			BH16_0.5-0.6	BH17_0.0-0.1	BH18_0.0-0.1	BH18_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47996	S20-No47998	S20-No48000	S20-No48001
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit	1101 20, 2020	1107 20, 2020	1107 20, 2020	1101 20, 2020
Organochlorine Pesticides	LOIX	Offic				
Endosulfan I	0.05	m a/l.a		. 0.05		
Endosulfan II	0.05 0.05	mg/kg	-	< 0.05 < 0.05	-	-
		mg/kg	-		-	-
Endosulfan sulphate Endrin	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
Endrin aldehyde Endrin ketone	0.05 0.05	mg/kg	-	< 0.05 < 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg		< 0.05		
	0.03	mg/kg	-	< 0.05	-	-
Methoxychlor Toxaphene	0.2	mg/kg	-	< 0.2	-	-
Toxapnene Aldrin and Dieldrin (Total)*	0.1	mg/kg	-	< 0.1	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.05			< 0.05		
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	mg/kg %		105	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	96	-	
Organophosphorus Pesticides		/0	-	90	-	=
				0.0		
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorenviita	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos Demeton-S	0.2	mg/kg	-	< 2	-	-
		mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	
Diazinon Dichlorvos	0.2	mg/kg	-	< 0.2 < 0.2	-	
	0.2	mg/kg	-	< 0.2	-	-
Dimethoate Disulfoton	0.2	mg/kg		< 0.2	-	
EPN	0.2	mg/kg mg/kg	-	< 0.2	-	-
Ethion	0.2	mg/kg		< 0.2	-	
Ethoprop	0.2	mg/kg		< 0.2	-	
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	_	< 0.2	-	
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg		< 0.2	-	
Malathion	0.2	mg/kg		< 0.2	-	
Merphos	0.2	mg/kg	_	< 0.2	-	
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg		< 0.2	-	
Monocrotophos	2	mg/kg	-	< 0.2	-	
Naled	0.2	mg/kg		< 0.2	-	-
Naieu Omethoate	2		-	< 0.2	-	<u>-</u>
Omethoate Phorate	0.2	mg/kg	-	< 0.2	-	-
	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl		mg/kg				
Pyrazophos Ronnel	0.2	mg/kg mg/kg	-	< 0.2 < 0.2	-	-

Client Sample ID			BH16_0.5-0.6	BH17_0.0-0.1	BH18_0.0-0.1	BH18_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No47996	S20-No47998	S20-No48000	S20-No48001
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	<u>'</u>	1				
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	91	-	-
Polychlorinated Biphenyls	·	•				
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB*	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	105	=	=
Tetrachloro-m-xylene (surr.)	1	%	-	96	=	=
Heavy Metals						
Arsenic	2	mg/kg	14	3.0	6.6	8.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	18	12	31	15
Copper	5	mg/kg	36	24	84	10
Lead	5	mg/kg	43	26	180	11
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	8.0	17	< 5
Zinc	5	mg/kg	35	110	430	60
% Moisture	1	%	21	20	22	18

Client Sample ID			BH19_0.0-0.1	BH20_0.0-0.1	BH21_0.0-0.1	BH21_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No48003	S20-No48005	S20-No48006	S20-No48007
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	57	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	250	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	330	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	637	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	90	81	103

[
Client Sample ID			BH19_0.0-0.1	BH20_0.0-0.1	BH21_0.0-0.1	BH21_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No48003	S20-No48005	S20-No48006	S20-No48007
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	82	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	82	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	470	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	652	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	1.2	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	101	88	85	73
p-Terphenyl-d14 (surr.)	11	%	101	92	88	81
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID			BH19_0.0-0.1	BH20_0.0-0.1	BH21_0.0-0.1	BH21_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No48003	S20-No48005	S20-No48006	S20-No48007
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit	1101 20, 2020	1107 20, 2020	1107 20, 2020	1107 20, 2020
	LOR	Unit				
Organochlorine Pesticides	0.05		2.05			
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	0.1	mg/kg	< 0.1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	=	=
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	129	-	=	=
Tetrachloro-m-xylene (surr.)	1	%	90	-	-	-
Organophosphorus Pesticides		T				
Azinphos-methyl	0.2	mg/kg	< 0.2	-	=	=
Bolstar	0.2	mg/kg	< 0.2	-	=	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	=	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	-
Coumaphos	2	mg/kg	< 2	-	-	-
Demeton-S	0.2	mg/kg	< 0.2	=	=	-
Demeton-O	0.2	mg/kg	< 0.2	-	=	-
Diazinon	0.2	mg/kg	< 0.2	-	=	-
Dichlorvos	0.2	mg/kg	< 0.2	-	=	-
Dimethoate	0.2	mg/kg	< 0.2	-	=	-
Disulfoton	0.2	mg/kg	< 0.2	-	-	-
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	=	=	=
Ethyl parathion	0.2	mg/kg	< 0.2	-	=	-
Fenitrothion	0.2	mg/kg	< 0.2	-	=	-
Fensulfothion	0.2	mg/kg	< 0.2	=	=	=
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	=	-
Monocrotophos	2	mg/kg	< 2	-	-	-
Naled	0.2	mg/kg	< 0.2	-	-	-
Omethoate	2	mg/kg	< 2	-	-	-
Phorate	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	=	=
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	=	=
Terbufos	0.2	mg/kg	< 0.2	-	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Tokuthion	0.2	mg/kg	< 0.2	-	-	-
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	119	-	-	-

Client Sample ID			BH19_0.0-0.1	BH20_0.0-0.1	BH21_0.0-0.1	BH21_0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-No48003	S20-No48005	S20-No48006	S20-No48007
Date Sampled			Nov 25, 2020	Nov 25, 2020	Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-	-
Dibutylchlorendate (surr.)	1	%	129	=	=	=
Tetrachloro-m-xylene (surr.)	1	%	90	=	=	=
Heavy Metals						
Arsenic	2	mg/kg	4.6	4.9	9.7	11
Cadmium	0.4	mg/kg	0.5	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	36	21	39	21
Copper	5	mg/kg	79	25	25	12
Lead	5	mg/kg	150	84	36	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	27	23	7.4	< 5
Zinc	5	mg/kg	420	94	110	130
% Moisture	1	%	11	26	27	21

Client Sample ID Sample Matrix			BH22_0.0-0.1 Soil	BH23_0.0-0.1 Soil
Eurofins Sample No.			S20-No48009	S20-No48010
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	57	< 20
TRH C15-C28	50	mg/kg	270	81
TRH C29-C36	50	mg/kg	300	84
TRH C10-C36 (Total)	50	mg/kg	627	165
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	88	108
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	75	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	75	< 50
TRH >C16-C34	100	mg/kg	460	130

Client Sample ID			BH22_0.0-0.1	BH23_0.0-0.1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S20-No48009	S20-No48010
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	535	130
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	106	110
p-Terphenyl-d14 (surr.)	1	%	93	108
Organochlorine Pesticides		T		
Chlordanes - Total	0.1	mg/kg	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05
Endosulfan I Endosulfan II	0.05	mg/kg	-	< 0.05
Endosulfan II Endosulfan sulphate	0.05	mg/kg	-	< 0.05 < 0.05
Endosuiran suipnate Endrin	0.05	mg/kg	-	< 0.05
Endrin Endrin aldehyde	0.05	mg/kg	-	< 0.05
Endrin aldenyde Endrin ketone	0.05	mg/kg mg/kg	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05
g-bnc (Lindane) Heptachlor	0.05	mg/kg	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05
Methoxychlor	0.03	mg/kg	-	< 0.03
Toxaphene	0.2	mg/kg	-	< 0.2
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	< 0.05

Client Sample ID			BH22_0.0-0.1	BH23_0.0-0.1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S20-No48009	S20-No48010
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	147
Tetrachloro-m-xylene (surr.)	1	%	-	93
Organophosphorus Pesticides				
Azinphos-methyl	0.2	mg/kg	-	< 0.2
Bolstar	0.2	mg/kg	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	-	< 0.2
Chlorpyrifos	0.2	mg/kg	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2
Coumaphos	2	mg/kg	-	< 2
Demeton-S	0.2	mg/kg	-	< 0.2
Demeton-O	0.2	mg/kg	-	< 0.2
Diazinon	0.2	mg/kg	-	< 0.2
Dichlorvos	0.2	mg/kg	-	< 0.2
Dimethoate	0.2	mg/kg	-	< 0.2
Disulfoton	0.2	mg/kg	-	< 0.2
EPN	0.2	mg/kg	-	< 0.2
Ethion	0.2	mg/kg	-	< 0.2
Ethoprop	0.2	mg/kg	-	< 0.2
Ethyl parathion	0.2	mg/kg	-	< 0.2
Fenitrothion	0.2	mg/kg	-	< 0.2
Fensulfothion	0.2	mg/kg	-	< 0.2
Fenthion	0.2	mg/kg	-	< 0.2
Malathion	0.2	mg/kg	-	< 0.2
Merphos	0.2	mg/kg	-	< 0.2
Methyl parathion	0.2	mg/kg	-	< 0.2
Mevinphos	0.2	mg/kg	-	< 0.2
Monocrotophos	2	mg/kg	-	< 2
Naled	0.2	mg/kg	-	< 0.2
Omethoate	2	mg/kg	-	< 2
Phorate District to a mother of the control of the	0.2	mg/kg	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2
Pyrazophos Ronnel	0.2	mg/kg	-	< 0.2 < 0.2
Terbufos	0.2	mg/kg	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg mg/kg	_	< 0.2
Tokuthion	0.2	mg/kg		< 0.2
Trichloronate	0.2	mg/kg		< 0.2
Triphenylphosphate (surr.)	1	%	_	INT
Polychlorinated Biphenyls	'	/0	1	IINI
Aroclor-1016	0.5	ma/ka		< 0.5
Aroclor-1016 Aroclor-1221	0.5	mg/kg	_	< 0.5
Aroclor-1232	0.1	mg/kg		< 0.1
Aroclor-1232 Aroclor-1242	0.5	mg/kg	_	< 0.5
Aroclor-1248	0.5	mg/kg	_	< 0.5
Aroclor-1254	0.5	mg/kg	_	< 0.5
Aroclor-1260	0.5	mg/kg	_	< 0.5
Total PCB*	0.5	mg/kg mg/kg	-	< 0.5

Client Sample ID Sample Matrix			BH22_0.0-0.1 Soil	BH23_0.0-0.1 Soil
Eurofins Sample No.			S20-No48009	S20-No48010
Date Sampled			Nov 25, 2020	Nov 25, 2020
Test/Reference	LOR	Unit		
Polychlorinated Biphenyls	·	•		
Dibutylchlorendate (surr.)	1	%	-	147
Tetrachloro-m-xylene (surr.)	1	%	-	93
Heavy Metals		_		
Arsenic	2	mg/kg	7.7	4.1
Cadmium	0.4	mg/kg	0.4	< 0.4
Chromium	5	mg/kg	43	7.2
Copper	5	mg/kg	85	29
Lead	5	mg/kg	57	24
Mercury	0.1	mg/kg	0.2	< 0.1
Nickel	5	mg/kg	25	< 5
Zinc	5	mg/kg	480	62
% Moisture	1	%	18	7.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 30, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 30, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 03, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Nov 30, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Nov 30, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Nov 30, 2020	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Nov 30, 2020	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Nov 27, 2020	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Eur HOI Asb

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

759675

Phone: +61 2 9406 1000 Fax: +61 2 9406 1004 Received: Nov 26, 2020 8:38 AM

Due: Dec 3, 2020 **Priority:** 5 Day **Contact Name:** Simon Hay

			bestos - AS4964	ארם	rofins Suite B15	isture Set	rofins Suite B7			
Melb	ourne Laborate									
Sydı	Sydney Laboratory - NATA Site # 18217							Х	Х	Х
Brisbane Laboratory - NATA Site # 20794										
		NATA Site # 237	36							
	field Laboratory									
	rnal Laboratory			1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH01_0.0-0.1	Nov 23, 2020		Soil	S20-No47967	Х		Х	Х	Х
2	BH01_0.5-0.6	Nov 23, 2020		Soil	S20-No47968				Х	Х
3	BH01_0.9-1.0	Nov 23, 2020		Soil	S20-No47969		Х			
4	BH02_0.0-0.1	Nov 23, 2020		Soil	S20-No47970				Х	Х
5	BH03_0.0-0.1	Nov 23, 2020		Soil	S20-No47971	Х			Х	Х
6	BH03_0.5-0.6	Nov 23, 2020		Soil	S20-No47972				Х	Х
7	BH03_0.9-1.0	Nov 23, 2020		Soil	S20-No47973		Х			
8	BH04_0.0-0.1	.1 Nov 23, 2020 Soil S20-No47974						Х	Х	Х
9	BH04_0.5-0.6	Nov 23, 2020		Soil	S20-No47975				Х	Х

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name:

Address:

Project ID:

PENNANT HILLS ROAD 754-SYDEN279944 Order No.: Report #:

759675

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

Received: Nov 26, 2020 8:38 AM **Due:** Dec 3, 2020

Priority: 5 Day
Contact Name: Simon Hay

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Sydney Laboratory - NATA Site # 1234 & 14271						X	X	Х	Х	X
	bane Laborator					\ \ \	_ ^			
	h Laboratory - N	•								
	field Laboratory									
Exte	ernal Laboratory	1								
10	BH04_0.9-1.0	Nov 23, 2020		Soil	S20-No47976		Х			
11	BH05_0.0-0.1	Nov 23, 2020		Soil	S20-No47977	Х			Х	Х
12	BH05_0.5-0.6	Nov 23, 2020		Soil	S20-No47978		Х			
13	BH05_0.9-1.0	Nov 23, 2020		Soil	S20-No47979		Х			
14	BH06_0.0-0.1	Nov 23, 2020		Soil	S20-No47980				Х	Х
15	BH08_0.0-0.1	Nov 23, 2020		Soil	S20-No47981	Х		Х	Х	Х
16	R1	Nov 23, 2020		Water	S20-No47982		Х			
17	BH07_0.0-0.1	Nov 24, 2020		Soil	S20-No47983	Х			Х	Х
18	BH07_0.5-0.6	Nov 24, 2020		Soil	S20-No47984				Х	Х
19 BH07_0.8-0.9 Nov 24, 2020 Soil S20-No47985							Х			
20	BH12_0.0-0.1	Nov 24, 2020		Soil	S20-No47986	Х		Х	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Received: Nov 26, 2020 8:38 AM Due: Dec 3, 2020 **Priority:** 5 Day **Contact Name:** Simon Hay

		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7				
	Melbourne Laboratory - NATA Site # 1254 & 14271									.,
	ney Laboratory					X	X	Х	X	X
	bane Laborator						-			
	h Laboratory - N		36							
	field Laboratory ernal Laboratory						+			
21	BH12_0.5-0.6	Nov 24, 2020		Soil	S20-No4798	7			Х	Х
22	BH12 0.9-1.0	Nov 24, 2020		Soil	S20-No4798		X			
23	BH13 0.0-0.1	Nov 24, 2020		Soil	S20-No4798		^		X	Х
24	BH13_0.5-0.6	Nov 24, 2020		Soil	S20-No4799				X	X
25	BH14_0.0-0.1	Nov 24, 2020		Soil	S20-No4799				Х	Х
26	BH14_0.5-0.6	Nov 24, 2020		Soil	S20-No4799	2			Х	Х
27	BH14_0.9-1.0	Nov 24, 2020		Soil	S20-No4799	3	Х			
28	BH15_0.0-0.1	Nov 24, 2020		Soil	S20-No4799	4 X		Х	Х	Х
29	BH16_0.0-0.1	Nov 25, 2020		Soil	S20-No4799	5 X		Х	Х	Х
30	BH16_0.5-0.6	Nov 25, 2020		Soil	S20-No4799	6			Х	Х
31	BH16_0.9-1.0	Nov 25, 2020		Soil	S20-No4799	7	Х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261 Phone : +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944 Order No.: Report #:

759675

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

 Received:
 Nov 26, 2020 8:38 AM

 Due:
 Dec 3, 2020

 Priority:
 5 Day

 Contact Name:
 Simon Hay

		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7				
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271									
	ney Laboratory					Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
May	field Laboratory	<u> </u>								
Exte	rnal Laboratory									
32	BH17_0.0-0.1	Nov 25, 2020		Soil	S20-No47998	Х		Х	Х	Х
33	BH17_0.3-0.4	Nov 25, 2020		Soil	S20-No47999		Х			
34	BH18_0.0-0.1	Nov 25, 2020		Soil	S20-No48000				Х	Х
35	BH18_0.5-0.6	Nov 25, 2020		Soil	S20-No48001				Х	Х
36	BH18_0.8-0.9	Nov 25, 2020		Soil	S20-No48002		Х			
37	BH19_0.0-0.1	Nov 25, 2020		Soil	S20-No48003			Х	Х	Х
38	BH19_0.25- 0.35	Nov 25, 2020		Soil	S20-No48004		Х			
39	BH20_0.0-0.1	Nov 25, 2020		Soil	S20-No48005				Х	Х
40	BH21_0.0-0.1	Nov 25, 2020		Soil	S20-No48006				Х	Х
41	BH21_0.5-0.6	Nov 25, 2020		Soil	S20-No48007				Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.:

Report #: 759675

Phone: +61 2 9406 1000 +61 2 9406 1004 Fax:

Received: Nov 26, 2020 8:38 AM Due: Dec 3, 2020

Priority: 5 Day **Contact Name:** Simon Hay

	Sample Detail Moisture Set Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271										
	ney Laboratory	Х	Х	Х	Х	Х					
Bris	bane Laborator										
Pert	h Laboratory - N										
May	field Laboratory	1									
Exte	External Laboratory										
42	BH21_1.0-1.1	Nov 25, 2020		Soil	S20-No48008		Х				
43	BH22_0.0-0.1	Nov 25, 2020		Soil	S20-No48009	Х			Х	Х	
44	BH23_0.0-0.1	Nov 25, 2020		Soil	S20-No48010	Х		Х	Х	Х	
Test	Test Counts								30	30	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association Toxicity Characteristic Leaching Procedure TCLP

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Page 31 of 43

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	<u> </u>				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	i iiig/kg	100	100	1 433	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	+
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene		< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5			
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	-
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		1		1	
Organochlorine Pesticides					-
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank	g/g	10			
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Collapsinos-mentyl	mg/kg	< 2	2	Pass	<u> </u>
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon					
	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	IIIg/kg		3	1 433	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
		03	70 130	Page	
TRH C40 C44	%	93	70-130	Pass	
TRH C10-C14	%	104	70-130	Pass	
LCS - % Recovery					
BTEX	0/	404	70.400	Dari	
Benzene	%	101	70-130	Pass	
Toluene	%	102	70-130	Pass	
Ethylbenzene	%	98	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	95	70-130	Pass	
Xylenes - Total*	%	96	70-130	Pass	
LCS - % Recovery		T T			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	93	70-130	Pass	
TRH C6-C10	%	93	70-130	Pass	
TRH >C10-C16	%	94	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	93	70-130	Pass	
Acenaphthylene	%	92	70-130	Pass	
Anthracene	%	115	70-130	Pass	
Benz(a)anthracene	%	96	70-130	Pass	
Benzo(a)pyrene	%	91	70-130	Pass	
Benzo(b&j)fluoranthene	%	98	70-130	Pass	
Benzo(g.h.i)perylene	%	97	70-130	Pass	
Benzo(k)fluoranthene	%	82	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	87	70-130	Pass	
Fluoranthene	%	92	70-130	Pass	
Fluorene	%	98	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	88	70-130	Pass	
Naphthalene	%	100	70-130	Pass	
Phenanthrene	%	96	70-130	Pass	
Pyrene	%	76	70-130	Pass	
LCS - % Recovery			70-130	. 433	
Organochlorine Pesticides					
Chlordanes - Total	%	80	70-130	Pass	
4.4'-DDD	%		70-130	Pass	
4.4'-DDE	%	83			
	1 %	77	70-130	Pass	
4.4'-DDT	%	79	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Aldrin			%	82		70-130	Pass	
b-BHC			%	83		70-130	Pass	
d-BHC			%	91		70-130	Pass	
Dieldrin			%	78		70-130	Pass	
Endosulfan I			%	88		70-130	Pass	
Endosulfan II			%	78		70-130	Pass	
Endosulfan sulphate			%	82		70-130	Pass	
Endrin			%	105		70-130	Pass	
Endrin aldehyde			%	92		70-130	Pass	
Endrin ketone			%	102		70-130	Pass	
g-BHC (Lindane)			%	91		70-130	Pass	
Heptachlor			%	77		70-130	Pass	
Heptachlor epoxide			%	83		70-130	Pass	
Hexachlorobenzene			%	80		70-130	Pass	
Methoxychlor			%	118		70-130	Pass	
LCS - % Recovery			,,,	110		10 100	1 400	
Organophosphorus Pesticides								
Diazinon			%	78		70-130	Pass	
			%	129		70-130		
Dimethoate Ethion			%	84		70-130	Pass Pass	
						1		
Fenitrothion			%	85		70-130	Pass	
Methyl parathion			%	81		70-130	Pass	
LCS - % Recovery				T	T T	I		
Polychlorinated Biphenyls			1				_	
Aroclor-1016			%	100		70-130	Pass	
Aroclor-1260			%	114		70-130	Pass	
LCS - % Recovery				T	T T	1		
Heavy Metals			ı					
Arsenic			%	92		80-120	Pass	
Cadmium			%	102		80-120	Pass	
Chromium			%	99		80-120	Pass	
Copper			%	98		80-120	Pass	
Lead			%	108		80-120	Pass	
Mercury			%	111		80-120	Pass	
Nickel			%	100		80-120	Pass	
Zinc			%	96		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	\$			Result 1				
Acenaphthene	S20-No47318	NCP	%	89		70-130	Pass	
Acenaphthylene	S20-No47318	NCP	%	87		70-130	Pass	
Anthracene	S20-No47318	NCP	%	92		70-130	Pass	
Benz(a)anthracene	S20-No47318	NCP	%	84		70-130	Pass	
Benzo(a)pyrene	S20-No47318	NCP	%	82		70-130	Pass	
Benzo(b&j)fluoranthene	S20-No47318	NCP	%	86		70-130	Pass	
Benzo(g.h.i)perylene	S20-No47318	NCP	%	77		70-130	Pass	
Benzo(k)fluoranthene	S20-No47318	NCP	%	109		70-130	Pass	
Chrysene	S20-No47318	NCP	%	89		70-130	Pass	
Dibenz(a.h)anthracene	S20-No47318	NCP	%	80		70-130	Pass	
Fluoranthene	S20-No47318	NCP	%	95		70-130	Pass	
Fluoranthene	S20-No47318	NCP	%	96		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-No47318	NCP	%	82		70-130	Pass	
Naphthalene	S20-No47318	NCP	%	87		70-130	Pass	
Phenanthrene	S20-No47318	NCP	%	98	1	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Pyrene	S20-No47318	NCP	%	95	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S20-No47318	NCP	%	106	70-130	Pass	
4.4'-DDD	S20-No47318	NCP	%	97	70-130	Pass	
4.4'-DDE	S20-No47318	NCP	%	99	70-130	Pass	
4.4'-DDT	S20-No47318	NCP	%	82	70-130	Pass	
a-BHC	S20-No47318	NCP	%	103	70-130	Pass	
Aldrin	S20-No47318	NCP	%	96	70-130	Pass	
b-BHC	S20-No47318	NCP	%	106	70-130	Pass	
d-BHC	S20-No47318	NCP	%	99	70-130	Pass	
Dieldrin	S20-No47318	NCP	%	72	70-130	Pass	
Endosulfan I	S20-No47318	NCP	%	99	70-130	Pass	
Endosulfan II	S20-No47318	NCP	%	100	70-130	Pass	
Endosulfan sulphate	S20-No47318	NCP	%	86	70-130	Pass	
Endrin	S20-No47318	NCP	%	115	70-130	Pass	
Endrin ketone	S20-No47318	NCP	%	100	70-130	Pass	
g-BHC (Lindane)	S20-No47318	NCP	%	102	70-130	Pass	
Heptachlor	S20-No47318	NCP	%	105	70-130	Pass	
Heptachlor epoxide	S20-No47318	NCP	%	84	70-130	Pass	
Hexachlorobenzene	S20-No47318	NCP	%	99	70-130	Pass	
Methoxychlor	S20-No47318	NCP	%	101	70-130	Pass	
Spike - % Recovery	02011011010		,,,			. 455	
Organophosphorus Pesticides				Result 1			
Diazinon	S20-No47318	NCP	%	107	70-130	Pass	
Dimethoate	B20-No45800	NCP	%	75	70-130	Pass	
Ethion	B20-No45800	NCP	%	105	70-130	Pass	
Fenitrothion	B20-No45800	NCP	%	75	70-130	Pass	
Methyl parathion	B20-No45800	NCP	%	106	70-130	Pass	
Spike - % Recovery	B2011040000	1101	70	100	70 100	1 455	
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	B20-No45800	NCP	%	94	70-130	Pass	
Spike - % Recovery	B2011043000	1101	70	J-7	70 130	1 433	
Total Recoverable Hydrocarbon	ne - 1000 NEDM Fract	ione		Result 1			
TRH C6-C9	S20-No47968	CP	%	74	70-130	Pass	
TRH C10-C14	S20-No47968	CP	%	87	70-130	Pass	
Spike - % Recovery	320-11047 900		/0	01	70-130	1 033	
BTEX				Result 1			
Benzene	S20-No47968	СР	%	80	70-130	Pass	
Toluene	S20-No47968	CP	%	79	70-130	Pass	
Ethylbenzene	S20-No47968	CP	%	79	70-130	Pass	
m&p-Xylenes	S20-No47968	CP	<u> </u>	79	70-130	Pass	
o-Xylene	S20-No47968	CP	% %	77	70-130	Pass	
Xylenes - Total*	S20-No47968	CP	<u> </u>	78	70-130	Pass	
Spike - % Recovery	320-11047 900	L CF	/0	70	70-130	rass	
Total Recoverable Hydrocarbon	ne - 2012 NEDM Eroca	ione		Result 1			
Naphthalene	S20-No47968	CP	%	76	70-130	Pass	
<u>'</u>				1			
TRH C6-C10	\$20-No47968	CP CP	%	76	70-130	Pass	
TRH >C10-C16	S20-No47968	L CP	%	84	70-130	Pass	
Spike - % Recovery				Popult 4			
Heavy Metals	200 No 47075	CD	0/	Result 1	75 405	Doc-	
Arsenic	S20-No47975	CP	%	102	75-125	Pass	
Characian	S20-No47975	CP	%	110	75-125	Pass	
Chromium	S20-No47975	CP	%	106	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Copper	S20-No47975	СР	%	105			75-125	Pass	
Lead	S20-No47975	СР	%	116			75-125	Pass	
Mercury	S20-No47975	СР	%	119			75-125	Pass	
Nickel	S20-No47975	СР	%	106			75-125	Pass	
Zinc	S20-No47975	СР	%	106			75-125	Pass	
Spike - % Recovery							•		
Heavy Metals				Result 1					
Arsenic	S20-No48006	СР	%	79			75-125	Pass	
Cadmium	S20-No48006	CP	%	100			75-125	Pass	
Copper	S20-No48006	CP	%	90			75-125	Pass	
Lead	S20-No48006	CP	%	94			75-125	Pass	
Mercury	S20-No48006	CP	%	108			75-125	Pass	
Nickel	S20-No48006	CP	%	94			75-125	Pass	
		CP							
Zinc	S20-No48006		%	91			75-125	Pass	Ouglifuin a
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-No47967	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-No47967	CP	mg/kg	46	43	8.0	30%	Pass	
TRH C15-C28	S20-No47967	CP	mg/kg	210	180	14	30%	Pass	
TRH C29-C36	S20-No47967	CP		220	180	18	30%	Pass	
	320-1104/96/	CF	mg/kg	220	100	10	30%	rass	
Duplicate				Danult 4	Danuko	DDD			
BTEX	000 N 47007	0.0	"	Result 1	Result 2	RPD	2001		
Benzene	S20-No47967	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-No47967	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-No47967	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-No47967	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-No47967	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				ı					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-No47967	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-No47967	CP	mg/kg	62	57	10	30%	Pass	
TRH >C16-C34	S20-No47967	CP	mg/kg	330	280	16	30%	Pass	
TRH >C34-C40	S20-No47967	CP	mg/kg	150	140	12	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S20-No47967	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-No47967	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-No47967	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-No47967	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-No47967	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-No47967	CP		< 0.5	< 0.5	<1 <1	30%	Pass	
, ,			mg/kg	1					
Fluoranthene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-No47967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S20-No47967	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-No47967	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
4.4'-DDT	S20-No47967	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
a-BHC	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S20-No47967	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S20-No47967	CP		< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-N047967 S20-No47967	CP	mg/kg mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Heptachlor	S20-N047967	CP		< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Heptachlor epoxide	S20-N047967	CP	mg/kg mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Hexachlorobenzene	S20-No47967	CP		< 0.05	< 0.05	<u><1</u>	30%	Pass	
Methoxychlor	S20-No47967	CP	mg/kg	< 0.03	< 0.05	<u><1</u>	30%	Pass	
Duplicate	320-11047967	L CF	mg/kg	< 0.2	< 0.2	<1	30%	Fass	
Organophosphorus Pesticides				Result 1	Result 2	RPD	I	T	
<u> </u>	S20-No47967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Azinphos-methyl Bolstar	S20-No47967	CP		< 0.2	< 0.2	<u><1</u>	30%	Pass	
			mg/kg						
Chlorevrifos	S20-No47967 S20-No47967	CP CP	mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30%	Pass Pass	
Chlorpyrifos Chlorpyrifos-methyl	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
,			mg/kg						
Coumaphos Dometon S	S20-No47967	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S Demeton-O	S20-No47967 S20-No47967	CP CP	mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30%	Pass Pass	
Diazinon	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Dichlorvos	S20-No47967	CP	mg/kg mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Dimethoate	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Disulfoton	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
EPN Ethion	\$20-No47967	CP CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S20-No47967 S20-No47967	CP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2	<1 <1	30%	Pass Pass	
Ethyl parathion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Merphos	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
'	S20-N047967	CP		< 0.2			30%		
Methyl parathion Meyinphos	S20-N047967	CP	mg/kg		< 0.2	<u><1</u>	30%	Pass	
Mevinphos Monocrotophos	S20-N047967	CP	mg/kg	< 0.2	< 0.2	<u><1</u> _1	30%	Pass	
Monocrotophos	S20-N047967 S20-N047967	CP	mg/kg	< 2	< 2	<u><1</u> _1	30%	Pass	
Naled			mg/kg	i	< 0.2	<1		Pass	
Omethoate	\$20-No47967	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate Piriminhos methyl	\$20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl Pivrozophos	\$20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides		•		Result 1	Result 2	RPD			
Tokuthion	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S20-No47967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-No47968	CP	%	13	12	2.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-No47974	CP	mg/kg	8.3	8.0	4.0	30%	Pass	
Cadmium	S20-No47974	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-No47974	CP	mg/kg	21	24	17	30%	Pass	
Copper	S20-No47974	CP	mg/kg	50	62	23	30%	Pass	
Lead	S20-No47974	CP	mg/kg	180	260	38	30%	Fail	Q02
Mercury	S20-No47974	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	QUZ
Nickel	S20-No47974	CP		8.7	11	23	30%	Pass	
			mg/kg					1	002
Zinc	S20-No47974	CP	mg/kg	94	140	40	30%	Fail	Q02
Duplicate Tatal Bassiers In Justines and August 1997	4000 NEDM 5			Desilia	Dec. 4.0	DDD			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		+	
TRH C6-C9	S20-No47983	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-No47983	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-No47983	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-No47983	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1			ı		
BTEX		ı		Result 1	Result 2	RPD			
Benzene	S20-No47983	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-No47983	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-No47983	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-No47983	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-No47983	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-No47983	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-No47983	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-No47983	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-No47983	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-No47983	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate Duplicate	02011047303	01	i ilig/kg	100	V 100		3070	1 433	
Polycyclic Aromatic Hydrocarboi	ne			Result 1	Result 2	RPD	I		
Acenaphthene	S20-No47983	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-No47983	CP		< 0.5	< 0.5		30%	Pass	
, ,			mg/kg			<1		+ +	
Anthracene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-No47983	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1 Honarianono	020 110 11 000		ing/kg	0.0	1 0.0		0070	<u> </u>	

Dunliante									
Duplicate				Result 1	Dogult 0	DDD			
O/ Maiatura	C00 N= 47004	CD	0/		Result 2	RPD	200/	Dana	
% Moisture	S20-No47984	CP	%	21	21	1.0	30%	Pass	
Duplicate				Daguit 4	Dec. 40	DDD			
Heavy Metals	000 N - 47000	OD		Result 1	Result 2	RPD	000/	F-11	045
Arsenic	S20-No47990	CP	mg/kg	5.4	7.3	31	30%	Fail	Q15
Cadmium	S20-No47990	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-No47990	CP	mg/kg	9.2	9.8	7.0	30%	Pass	
Copper	S20-No47990	CP	mg/kg	15	17	14	30%	Pass	
Lead	S20-No47990	CP	mg/kg	100	94	8.0	30%	Pass	
Mercury	S20-No47990	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-No47990	CP	mg/kg	7.5	10.0	29	30%	Pass	
Zinc	S20-No47990	CP	mg/kg	96	89	8.0	30%	Pass	
Duplicate				T					
Total Recoverable Hydrocarbons		ions		Result 1	Result 2	RPD			
TRH C10-C14	S20-No47995	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-No47995	CP	mg/kg	61	69	12	30%	Pass	
TRH C29-C36	S20-No47995	CP	mg/kg	83	90	8.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-No47995	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-No47995	CP	mg/kg	120	130	10	30%	Pass	
TRH >C34-C40	S20-No47995	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbor	ıs			Result 1	Result 2	RPD			
Acenaphthene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-No47995	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1 0.0	, 5.0			. 300	
Organochlorine Pesticides				Result 1	Result 2	RPD		T	
Chlordanes - Total	S20-No47995	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC		CP					30%	Pass	
	\$20-No47995	CP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%		
Aldrin	\$20-No47995		mg/kg	< 0.05	< 0.05	<1		Pass	
b-BHC	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin aldehyde	S20-No47995	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S20-No47995	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				,					
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S20-No47995	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S20-No47995	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S20-No47995	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S20-No47995	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S20-No47995	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S20-No47995	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S20-No47995	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

D !! (-									
Duplicate				Result 1	Result 2	RPD			
O/ Majatura	C00 No 47000	СР	0/				200/	Dana	
% Moisture	S20-No47998	L CP	%	20	20	2.0	30%	Pass	
Duplicate Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-No48005	СР	mg/kg	4.9	4.9	1.0	30%	Pass	
Cadmium	S20-No48005	CP		< 0.4	< 0.4	<1 <1	30%	Pass	
Chromium	S20-No48005	CP	mg/kg mg/kg	21	27	23	30%	Pass	
	S20-No48005	CP		25	32		30%	Pass	
Copper Lead	S20-No48005	CP	mg/kg	84	100	24 21	30%	Pass	
			mg/kg						
Mercury	S20-No48005	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-No48005	CP	mg/kg	23	25	10	30%	Pass	
Zinc	S20-No48005	CP	mg/kg	94	110	14	30%	Pass	
Duplicate							I		
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD			
TRH C6-C9	S20-No48010	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				ı	1				
ВТЕХ			1	Result 1	Result 2	RPD			
Benzene	S20-No48010	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-No48010	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-No48010	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-No48010	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-No48010	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-No48010	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-No48010	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-No48010	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to N07

the total of the two co-eluting PAHs

The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause Q02

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Asim Khan Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW) Senior Analyst-Asbestos (NSW) Nibha Vaidva

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Coffey Environments Pty Ltd NSW
Level 20, Tower B, Citadel Tower 799 Pacific Highway
Chatswood

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay Report 759675-AID

Project Name PENNANT HILLS ROAD Project ID 754-SYDEN279944

Received Date Nov 26, 2020 **Date Reported** Dec 04, 2020

Methodology:

Asbestos Fibre Identification

NSW 2067

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PENNANT HILLS ROAD Project ID 754-SYDEN279944

Date Sampled Nov 23, 2020 to Nov 25, 2020

Report 759675-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH01_0.0-0.1	20-No47967	Nov 23, 2020	Approximate Sample 250g Sample consisted of: Brown coarse-grained soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH03_0.0-0.1	20-No47971	Nov 23, 2020	Approximate Sample 433g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH04_0.0-0.1	20-No47974	Nov 23, 2020	Approximate Sample 438g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH05_0.0-0.1	20-No47977	Nov 23, 2020	Approximate Sample 368g Sample consisted of: Brown coarse-grained clayey soil, rocks and glass	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH08_0.0-0.1	20-No47981	Nov 23, 2020	Approximate Sample 345g Sample consisted of: Brown coarse-grained soil, rocks, glass and bituminous material	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH07_0.0-0.1	20-No47983	Nov 24, 2020	Approximate Sample 413g Sample consisted of: Brown coarse-grained clayey soil, rocks, brick and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH12_0.0-0.1	20-No47986	Nov 24, 2020	Approximate Sample 498g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH14_0.0-0.1	20-No47991	Nov 24, 2020	Approximate Sample 395g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH15_0.0-0.1	20-No47994	Nov 24, 2020	Approximate Sample 519g Sample consisted of: Browon coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH16_0.0-0.1	20-No47995	Nov 25, 2020	Approximate Sample 415g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH17_0.0-0.1	20-No47998	Nov 25, 2020	Approximate Sample 471g Sample consisted of: Brwon coarse-grained sandy soil, rocks and organic debris	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH22_0.0-0.1	20-No48009	Nov 25, 2020	Approximate Sample 423g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH23_0.0-0.1	20-No48010	Nov 25, 2020	Approximate Sample 555g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyNov 27, 2020Indefinite

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Asbesto HOLD

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Report #:

Moistu

759675

Phone: +61 2 9406 1000 Fax: +61 2 9406 1004

Eurofin

Received: Nov 26, 2020 8:38 AM

Due: Dec 3, 2020 **Priority:** 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			os - AS4964		s Suite B15	re Set	s Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271						
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
May	ield Laboratory	<i>1</i>								
Exte	rnal Laboratory	<u>'</u>								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH01_0.0-0.1	Nov 23, 2020		Soil	S20-No47967	Х		Х	Х	Х
2	BH01_0.5-0.6	Nov 23, 2020		Soil	S20-No47968				Х	Х
3	BH01_0.9-1.0	Nov 23, 2020		Soil	S20-No47969		Х			
4	BH02_0.0-0.1	Nov 23, 2020		Soil	S20-No47970				Х	Х
5	BH03_0.0-0.1	Nov 23, 2020		Soil	S20-No47971	Х			Х	Х
6	BH03_0.5-0.6	Nov 23, 2020		Soil	S20-No47972				Х	Х
7	BH03_0.9-1.0	Nov 23, 2020		Soil	S20-No47973		Х			
8	BH04_0.0-0.1	Nov 23, 2020		Soil	S20-No47974	Х		Х	Х	Х
9	BH04_0.5-0.6	Nov 23, 2020		Soil	S20-No47975				Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3. Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Fax:

Sydney

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 Phone: +61 8 9251 9600 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Received: Nov 26, 2020 8:38 AM Report #:

759675 Due: Dec 3, 2020 Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271						
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
May	field Laboratory	/								
Exte	rnal Laboratory	<u>'</u>								
10	BH04_0.9-1.0	Nov 23, 2020		Soil	S20-No47976		Х			
11	BH05_0.0-0.1	Nov 23, 2020		Soil	S20-No47977	Х			Х	Х
12	BH05_0.5-0.6	Nov 23, 2020		Soil	S20-No47978		Х			
13	BH05_0.9-1.0	Nov 23, 2020		Soil	S20-No47979		Х			
14	BH06_0.0-0.1	Nov 23, 2020		Soil	S20-No47980				Х	Х
15	BH08_0.0-0.1	Nov 23, 2020		Soil	S20-No47981	Х		Х	Х	Х
16	R1	Nov 23, 2020		Water	S20-No47982		Х			
17	BH07_0.0-0.1	Nov 24, 2020		Soil	S20-No47983	Х			Х	Х
18	BH07_0.5-0.6	Nov 24, 2020		Soil	S20-No47984				Х	Х
19	BH07_0.8-0.9	Nov 24, 2020		Soil	S20-No47985		Х			
20	BH12_0.0-0.1	Nov 24, 2020		Soil	S20-No47986	Х		Х	Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Received: Nov 26, 2020 8:38 AM Report #:

759675 Due: Dec 3, 2020 Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Mell	oourne Laborate	ory - NATA Site	# 1254 & 142	271						
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
	field Laboratory									
Exte	rnal Laboratory	<u>'</u>								\square
21	BH12_0.5-0.6	Nov 24, 2020		Soil	S20-No47987				Х	X
22	BH12_0.9-1.0	Nov 24, 2020		Soil	S20-No47988		Х			Ш
23	BH13_0.0-0.1	Nov 24, 2020		Soil	S20-No47989				Х	Х
24	BH13_0.5-0.6	Nov 24, 2020		Soil	S20-No47990				Х	Х
25	BH14_0.0-0.1	Nov 24, 2020		Soil	S20-No47991	Х			Х	Х
26	BH14_0.5-0.6	Nov 24, 2020		Soil	S20-No47992				Х	Х
27	BH14_0.9-1.0	Nov 24, 2020		Soil	S20-No47993		Х			
28	BH15_0.0-0.1	Nov 24, 2020		Soil	S20-No47994	Х		Х	Х	Х
29	BH16_0.0-0.1	Nov 25, 2020		Soil	S20-No47995	Х		Х	Х	Х
30	BH16_0.5-0.6	Nov 25, 2020		Soil	S20-No47996				Х	Х
31	BH16_0.9-1.0	Nov 25, 2020		Soil	S20-No47997		Х			

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Fax:

Sydney

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

Address:

PENNANT HILLS ROAD 754-SYDEN279944

Order No.: Received: Nov 26, 2020 8:38 AM Report #:

759675 Due: Dec 3, 2020 Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
	ourne Laborate			271						
_	ney Laboratory					Х	Х	Х	Х	X
	bane Laborator									
	h Laboratory - N		36							
	field Laboratory									
	rnal Laboratory			lo ::	000 N. 47000				.,	
32	BH17_0.0-0.1	Nov 25, 2020		Soil	S20-No47998	Х	.,	Х	Х	Х
33	BH17_0.3-0.4	Nov 25, 2020		Soil	S20-No47999		Х		.,	
34	BH18_0.0-0.1	Nov 25, 2020		Soil	S20-No48000				Х	Х
35	BH18_0.5-0.6	Nov 25, 2020		Soil	S20-No48001				Х	Х
36	BH18_0.8-0.9	Nov 25, 2020		Soil	S20-No48002		Х			
37	BH19_0.0-0.1	Nov 25, 2020		Soil	S20-No48003			Х	Х	Х
38	BH19_0.25- 0.35	Nov 25, 2020		Soil	S20-No48004		Х			
39	BH20_0.0-0.1	Nov 25, 2020		Soil	S20-No48005				Х	Х
40	BH21_0.0-0.1	Nov 25, 2020		Soil	S20-No48006				Х	Х
41	BH21_0.5-0.6	Nov 25, 2020		Soil	S20-No48007				Х	Х

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2:

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

Address:

PENNANT HILLS ROAD 754-SYDEN279944 Order No.: Report #:

759675

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1004

Received: Nov 26, 2020 8:38 AM

Due: Dec 3, 2020
Priority: 5 Day
Contact Name: Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71						
Sydr	ney Laboratory	- NATA Site # 1	8217			Χ	Х	Χ	Χ	Х
Bris	oane Laboratory	y - NATA Site #	20794							
Perti	n Laboratory - N	IATA Site # 237	36							
May	ield Laboratory	•								
Exte	rnal Laboratory	,								
42	BH21_1.0-1.1	Nov 25, 2020		Soil	S20-No48008		Х			
43	BH22_0.0-0.1	Nov 25, 2020		Soil	S20-No48009	Х			Х	Х
44	BH23_0.0-0.1	Nov 25, 2020		Soil	S20-No48010	Х		Х	Х	Х
Test	Counts					13	14	9	30	30

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Page 10 of 11

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes

Sample correctly preserved

Appropriate sample containers have been used

Yes

Sample containers for volatile analysis received with minimal headspace

Yes

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#AU04_Enviro_Sample_NSW

Subject: FW: 5 day TAT Additional analysis FW: Eurofins Draft Test Results - Report 759675 :

Site PENNANT HILLS ROAD (754-SYDEN279944)

Attachments: 759675-S_report.pdf

From: Hay, Simon < Simon.Hay@coffey.com > Sent: Friday, 4 December 2020 9:01 AM

To: Asim Khan < AsimKhan@eurofins.com >

Subject: RE: Eurofins Draft Test Results - Report 759675 : Site PENNANT HILLS ROAD (754-SYDEN279944)

EXTERNAL EMAIL*

Hi Asim,

Could I please request TCLP on a 5 day turn around on the following samples please:

BH13_0.0_0.1 – lead and BaP BH12_0.0_0.1 – Lead and Nickel BH06_0.0_0.1 – Lead

BH05_0.0_0.1 – Lead BH04_0.0_0.1 – Lead

BH18_0.0_0.1 – Lead

Thanks very much Simon

From: AsimKhan@eurofins.com <AsimKhan@eurofins.com>

Sent: Thursday, December 3, 2020 6:23 PM **To:** Hay, Simon < Simon. Hay@coffey.com >

Subject: Eurofins Draft Test Results - Report 759675 : Site PENNANT HILLS ROAD (754-SYDEN279944)

⚠ **CAUTION:** This email originated from an external sender. Verify the source before opening links or attachments.

Please find attached draft report for your project in the subject header.

Once the remaining results become available, the final report will be issued.

Please note: My office hours are 12 pm to 8 pm.

Kind regards,

Asim Khan

Analytical Services Manager

Eurofins | Environment Testing Unit F3, Parkview Building

16 Mars Road LANE COVE WEST NSW 2066

AUSTRALIA

Phone : +61 2 9900 8432 Phone : +61 429 051 456

Email : <u>AsimKhan@eurofins.com</u>

Website: www.eurofins.com.au/environmental-testing

<u>EnviroNote 1108 - Emissions from Stationary Sources</u> <u>EnviroNote 1103 - NATA Accreditation for Dioxins</u>

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name:

ADDITIONAL PENNANT HILLS ROAD

Project ID:

754-SYDEN279944

Turnaround time:

Date/Time received

Dec 4, 2020 9:01 AM

Eurofins reference

761623

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 17.4 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

Address:

ADDITIONAL PENNANT HILLS ROAD

Project ID: 754-SYDEN279944 Order No.: Received: Dec 4, 2020 9:01 AM Report #: 761623 Due: Dec 11, 2020

Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Benzo(a)pyrene	Lead	Nickel	USA Leaching Procedure
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х
Brisl	pane Laborator	y - NATA Site #	20794						
Perti	n Laboratory - N	NATA Site # 237	36						
May	ield Laboratory	1							
Exte	rnal Laboratory	1		1	_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH04_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11354		Х		Х
2	BH05_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11355		Х		Х
3	BH06_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11356		Х		Х
4	BH12_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11357		Х	Х	Х
5	BH13_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11358	Х	Х		Х
6	BH18_0.0_0.1	S20-De11359		Х		Х			
Test	Counts		1	6	1	6			

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 761623-L

Project name ADDITIONAL PENNANT HILLS ROAD

Project ID 754-SYDEN279944
Received Date Dec 04, 2020

Client Sample ID			BH04_0.0_0.1	BH05_0.0_0.1	BH06_0.0_0.1	BH12_0.0_0.1
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins Sample No.			S20-De11354	S20-De11355	S20-De11356	S20-De11357
Date Sampled			Nov 23, 2020	Nov 23, 2020	Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit				
Heavy Metals	·	•				
Lead	0.01	mg/L	0.04	0.19	0.45	0.63
Nickel	0.01	mg/L	-	-	-	0.05
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.0	6.3	6.2	6.6
pH (off)	0.1	pH Units	5.1	5.1	5.0	5.1
pH (USA HCI addition)	0.1	pH Units	1.7	1.7	1.7	1.7

Client Sample ID Sample Matrix			BH13_0.0_0.1 US Leachate	BH18_0.0_0.1 US Leachate
Eurofins Sample No.			S20-De11358	S20-De11359
Date Sampled			Nov 23, 2020	Nov 23, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Lead	0.01	mg/L	0.42	0.08
USA Leaching Procedure				
Leachate Fluid ^{C01}		comment	1.0	1.0
pH (initial)	0.1	pH Units	6.4	6.5
pH (off)	0.1	pH Units	5.0	5.1
pH (USA HCl addition)	0.1	pH Units	1.7	1.7
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene	0.001	mg/L	< 0.001	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Dec 09, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
USA Leaching Procedure	Sydney	Dec 07, 2020	14 Days
- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 07, 2020	7 Days

Report Number: 761623-L

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Unit F3, Building F

Sydney

Brisbane

1/21 Smallwood Place

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

Address:

ADDITIONAL PENNANT HILLS ROAD

Project ID: 754-SYDEN279944 Order No.: Received: Dec 4, 2020 9:01 AM Report #: 761623 Due: Dec 11, 2020

Phone: +61 2 9406 1000 **Priority:** 5 Day Fax: +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

			mple Detail			Benzo(a)pyrene	Lead	Nickel	USA Leaching Procedure
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271					
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Χ	Х
Brisl	bane Laborator	y - NATA Site #	20794						
Pertl	h Laboratory - N	IATA Site # 237	36						
Mayt	ield Laboratory	1							
Exte	rnal Laboratory	,							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH04_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11354		Х		Х
2	BH05_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11355		Х		Х
3	BH06_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11356		Х		Х
4	BH12_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11357		Х	Х	Х
5	BH13_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11358	Х	Х		Х
6	BH18_0.0_0.1	Nov 23, 2020		US Leachate	S20-De11359		Х		Х
Test	Counts					1	6	1	6

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association Toxicity Characteristic Leaching Procedure TCLP

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/L	< 0.01			0.01	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Method Blank									
Polycyclic Aromatic Hydrocarbon	S								
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	96			80-120	Pass	
Nickel			%	97			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S20-De03568	NCP	%	109			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Nickel	S20-De03568	NCP	%	103			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-De11358	CP	mg/L	0.42	0.43	1.0	30%	Pass	
Nickel	S20-De11358	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Ursula Long Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)
Gabriele Cordero Senior Analyst-Metal (NSW)

Glonn Jackson

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 761623-L

300

•	Consigning Office: (http://www.	wood		
сопеу	Report Results to: S. H	Mobile	Mobile: 0424 767 089 Email: S	Scroon bay @coffey.com
A TETRA TECH COMPANY	Invoices to:	Phone:	Email:	@coffey.com
	Task No:		Analysis Request Section	
Project Name: Remnant Hills Cd	Laboratory: Eurolin		11111	///////
	Project Manager: S. Ho			
Special Instructions: 5 0 AY	TAL			
Lab No. Sample ID	Sample Ma	Matrix Container Type & T-A-T (Soiletc) Preservative* (specify)	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOTES
R1	1.12.20 1.14	or vicely clash, And 50-1		7
Try Blak		7	?	
Trop Sale	1.71 ap Water	3	<	
TP09 0.0 0.1	1.12.70	Je 2500	C CON	
1009_04 _0.5				
1102-05-0.6				
TF10 _0.0_0.1				
1791 -0.0 -0.1	4	- IMM	**************************************	
RELINOUISHED BY		RECEIVED BY		Comple Books Advisor (I.E. B. Donald)
Name: S. Hand Date: 2.17.10	▶ Name: P	8	8	All Samples Recieved in Good Condition
	→ Name:	Date:	# O000	Samples Received Properly Chilled
Company: Time:	Company:	Time:	Lab. Ref/Batch No.	がインプラー
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative	F- Glass Bottle, J - Glass Jar, V- Vial, Z - Zip iosulfate, NP - No Preservative, OP - Othe	lock Bag, N - Nitric Acid Preserved, C - Hydroch	nloric Acid Preserved,	050000

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Clinic 1 Spallell

America South VIC 3175

Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name:

PENNANT HILLLS RD SYDEN279944

Project ID:

5 Day

Turnaround time: Date/Time received

Dec 4, 2020 10:47 AM

Eurofins reference

762036

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 6.5 degrees Celsius.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Sample labels begin with BHxx instead of TPxx. Logged as per COC.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

Address:

PENNANT HILLLS RD

Project ID: SYDEN279944 Order No.: Received: Dec 4, 2020 10:47 AM Report #:

762036 Due: Dec 11, 2020 Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
•								X	Х	Х	X	X
Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794								_^_	^	_^	_^_	
	h Laboratory - N											
	field Laboratory		<u> </u>									
External Laboratory												
No Sample ID Sample Date Sampling Matrix LAB ID Time												
1	R1	Dec 01, 2020		Water	S20-De15672					Х		
2	TRIP BLANK	Dec 01, 2020		Water	S20-De15673						Х	
3	TRIP SPIKE	Dec 01, 2020		Water	S20-De15674							Х
4	BH09_0.0_0.1	Dec 01, 2020		Soil	S20-De15675			Х	Х	Х		
5	BH09_0.4_0.5	Dec 01, 2020		Soil	S20-De15676		Х					
6 BH09_0.5_0.6 Dec 01, 2020 Soil S20-De15677									Х	Х		
7 BH10_0.0_0.1 Dec 01, 2020 Soil S20-De15678									Х	Х		
8	TP11_0.0_0.1	Dec 01, 2020		Soil	S20-De15679		Х					
Test	Counts					1	2	1	3	4	1	1

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 15

Report Number: 762036-S-V2

Attention: Simon Hay

Report 762036-S-V2

Project name PENNANT HILLLS RD

Project ID SYDEN279944
Received Date Dec 04, 2020

Client Sample ID			BH09_0.0_0.1	BH09_0.5_0.6	BH10_0.0_0.1
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-De15675	S20-De15677	S20-De15678
Date Sampled			Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	73	< 50	< 50
TRH C29-C36	50	mg/kg	95	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	168	< 50	< 50
BTEX	1	1 0 0			
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	81	77	95
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	150	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	150	< 100	< 100
Polycyclic Aromatic Hydrocarbons	·				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			BH09_0.0_0.1	BH09_0.5_0.6	BH10_0.0_0.1
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-De15675	S20-De15677	S20-De15678
Date Sampled			Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
•	1.00		Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		T			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene Tatal PALIX	0.5	mg/kg	0.7	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	0.7	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	119 112	112	116
p-Terphenyl-d14 (surr.)	ı	70	112	101	107
Organochlorine Pesticides	0.4		0.4		
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-
4.4'-DDE 4.4'-DDT	0.05	mg/kg	< 0.05	-	-
	0.05	mg/kg	< 0.05	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-
b-BHC d-BHC	0.05	mg/kg	< 0.05	-	-
Dieldrin	0.05 0.05	mg/kg mg/kg	< 0.05 < 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	_	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	-
Endrin	0.05	mg/kg	< 0.05	_	_
Endrin aldehyde	0.05	mg/kg	< 0.05	-	_
Endrin ketone	0.05	mg/kg	< 0.05	_	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	_
Heptachlor	0.05	mg/kg	< 0.05	_	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	-
Methoxychlor	0.2	mg/kg	< 0.2	_	-
Toxaphene	0.1	mg/kg	< 0.1	_	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	122	-	-
Tetrachloro-m-xylene (surr.)	1	%	119	-	-
Organophosphorus Pesticides	<u> </u>	_			
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-
Bolstar	0.2	mg/kg	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-
Coumaphos	2	mg/kg	< 2	-	-
Demeton-S	0.2	mg/kg	< 0.2	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-

Client Sample ID Sample Matrix			BH09_0.0_0.1 Soil	BH09_0.5_0.6 Soil	BH10_0.0_0.1 Soil
•					
Eurofins Sample No.			S20-De15675	S20-De15677	S20-De15678
Date Sampled			Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
Test/Reference	LOR	Unit			
Organophosphorus Pesticides					
Dimethoate	0.2	mg/kg	< 0.2	-	-
Disulfoton	0.2	mg/kg	< 0.2	-	-
EPN	0.2	mg/kg	< 0.2	-	-
Ethion	0.2	mg/kg	< 0.2	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-
Malathion	0.2	mg/kg	< 0.2	-	-
Merphos	0.2	mg/kg	< 0.2	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	-
Monocrotophos	2	mg/kg	< 2	-	-
Naled	0.2	mg/kg	< 0.2	-	-
Omethoate	2	mg/kg	< 2	-	-
Phorate	0.2	mg/kg	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-
Terbufos	0.2	mg/kg	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-
Tokuthion	0.2	mg/kg	< 0.2	-	-
Trichloronate	0.2	mg/kg	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	INT	-	-
Polychlorinated Biphenyls					
Aroclor-1016	0.5	mg/kg	< 0.5	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-
Aroclor-1232	0.5	mg/kg	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	< 0.5	-	-
Total PCB*	0.5	mg/kg	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	122	-	-
Tetrachloro-m-xylene (surr.)	1	%	119	-	-
Heavy Metals	1				
Arsenic	2	mg/kg	8.7	18	2.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	31	24
Copper	5	mg/kg	47	10	16
Lead	5	mg/kg	410	16	32
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	11	< 5	18
Zinc	5	mg/kg	190	11	51
Line					

Page 3 of 15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Dec 08, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Dec 08, 2020	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Dec 08, 2020	14 Days

Page 4 of 15 Report Number: 762036-S-V2

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Contact Name:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

Address:

PENNANT HILLLS RD

Project ID: SYDEN279944

Order No.: Report #:

762036

Phone: +61 2 9406 1000 Fax: +61 2 9406 1004 Received: Dec 4, 2020 10:47 AM

Due: Dec 11, 2020 **Priority:** 5 Day

Eurofins Analytical Services Manager: Ursula Long

Simon Hay

			mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH
	ourne Laborato			271								
	ney Laboratory					Х	Х	Х	Х	Х	Х	X
	oane Laboratory											
	n Laboratory - N		36									
_	ield Laboratory											
	rnal Laboratory		Commilian	Matrix	LAB ID							
No	Sample ID	Sample Date	Sampling Time	Iwatrix	LABID							
1	R1	Dec 01, 2020		Water	S20-De15672					Х		
2	TRIP BLANK	Dec 01, 2020		Water	S20-De15673						Χ	
3	TRIP SPIKE	Dec 01, 2020		Water	S20-De15674							Χ
4	BH09_0.0_0.1	Dec 01, 2020		Soil	S20-De15675			Х	Х	Х		
5	BH09_0.4_0.5	Dec 01, 2020		Soil	S20-De15676		Х					
6	BH09_0.5_0.6	Dec 01, 2020		Soil	S20-De15677				Χ	Х		
7	BH10_0.0_0.1	Dec 01, 2020		Soil	S20-De15678	Х			Χ	Х		
8	TP11_0.0_0.1	Dec 01, 2020		Soil	S20-De15679		Х					
Test	Counts					1	2	1	3	4	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		1100	100	1 400	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	IIIg/kg	< 0.5	0.5	1 033	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC		< 0.05	0.05	Pass	
	mg/kg				
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin Endosulfan I	mg/kg mg/kg	< 0.05 < 0.05	0.05	Pass	
	i ma/ka	1 < U U5	0.05	Pass	I

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Method Blank	1 3 3				
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
• •	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl Coumaphos				Pass	
Demeton-S	mg/kg	< 2	0.2		
	mg/kg	< 0.2		Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
•					
Triphlerenete	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls	B	.0.5	0.5	Desir	
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	133			1 2 2 2	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C6-C9	%	81	70-130	Pass	
TRH C10-C14	%	83	70-130	Pass	
LCS - % Recovery	70		70 100		
BTEX					
Benzene	%	103	70-130	Pass	
Toluene	%	100	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	108	70-130	Pass	
o-Xylene	%	106	70-130	Pass	
Xylenes - Total*	%	107	70-130	Pass	
LCS - % Recovery	70	107	70-130	Fass	
				Π	
Total Recoverable Hydrocarbons - 2013 NEPM Fractic			70.400	D	
Naphthalene	%	96	70-130	Pass	
TRH C6-C10	%	82	70-130	Pass	
TRH >C10-C16	%	81	70-130	Pass	
LCS - % Recovery		<u> </u>			
Polycyclic Aromatic Hydrocarbons		-	70.400		
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	124	70-130	Pass	
Anthracene	%	96	70-130	Pass	
Benz(a)anthracene	%	94	70-130	Pass	
Benzo(a)pyrene	%	86	70-130	Pass	
Benzo(b&j)fluoranthene	%	83	70-130	Pass	
Benzo(g.h.i)perylene	%	88	70-130	Pass	
Benzo(k)fluoranthene	%	102	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	87	70-130	Pass	
Fluoranthene	%	106	70-130	Pass	
Fluorene	%	94	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	86	70-130	Pass	
Naphthalene	%	86	70-130	Pass	
Phenanthrene	%	91	70-130	Pass	
Pyrene	%	95	70-130	Pass	
LCS - % Recovery		,			
Organochlorine Pesticides					
Chlordanes - Total	%	101	70-130	Pass	
4.4'-DDD	%	107	70-130	Pass	
4.4'-DDE	%	89	70-130	Pass	
4.4'-DDT	%	117	70-130	Pass	
a-BHC	%	85	70-130	Pass	
Aldrin	%	90	70-130	Pass	

Test			Units	Result 1	Acceptar Limits	ce Pass Limits	Qualifying Code
b-BHC			%	96	70-130	Pass	
d-BHC			%	82	70-130	Pass	
Dieldrin			%	108	70-130	Pass	
Endosulfan I			%	105	70-130	Pass	
Endosulfan II			%	99	70-130	Pass	
Endosulfan sulphate			%	91	70-130	Pass	
Endrin			%	127	70-130	Pass	
Endrin aldehyde			%	120	70-130	Pass	
Endrin ketone			%	90	70-130	Pass	
g-BHC (Lindane)			%	90	70-130	Pass	
Heptachlor			%	106	70-130	Pass	
Heptachlor epoxide			%	111	70-130	Pass	
Hexachlorobenzene			%	87	70-130	Pass	
Methoxychlor			%	121	70-130		
LCS - % Recovery			70	121	70 100	1 400	
Organophosphorus Pesticides						Т	
Diazinon			%	107	70-130	Pass	
Diazinon			%	115	70-130	Pass	+
Ethion			%	111	70-130	Pass	+
Fenitrothion						Pass	+
			%	121	70-130		
Methyl parathion			%	127	70-130	Pass	+
Mevinphos			%	130	70-130	Pass	
LCS - % Recovery				T T		T	
Polychlorinated Biphenyls							
Aroclor-1016			%	91	70-130	Pass	
Aroclor-1260			%	99	70-130	Pass	
LCS - % Recovery				T		T	4
Heavy Metals							
Arsenic			%	105	80-120	Pass	<u> </u>
Cadmium			%	106	80-120	Pass	
Chromium			%	102	80-120	Pass	
Copper			%	104	80-120	Pass	
Lead			%	113	80-120	Pass	
Mercury			%	109	80-120	Pass	
Nickel			%	105	80-120	Pass	
Zinc			%	109	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptan Limits	ce Pass Limits	Qualifying Code
Spike - % Recovery							4
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S20-De20155	NCP	%	72	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S20-De22881	NCP	%	76	70-130	Pass	
Toluene	S20-De22881	NCP	%	78	70-130	Pass	
Ethylbenzene	S20-De22881	NCP	%	87	70-130	Pass	
m&p-Xylenes	S20-De22881	NCP	%	91	70-130	Pass	
o-Xylene	S20-De22881	NCP	%	94	70-130	Pass	
	S20-De22881	NCP	%	92	70-130	Pass	
Xvlenes - Total*	, 520 2022001		,,,		, , , , , , ,	. 400	
Xylenes - Total* Spike - % Recovery							+
Spike - % Recovery	2013 NFPM Fract	tions		Result 1			1
Spike - % Recovery Total Recoverable Hydrocarbons -			0/2	Result 1	70.120	Page	
Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene	S20-De22881	NCP	%	83	70-130	Pass	
Spike - % Recovery Total Recoverable Hydrocarbons -			% %	1	70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
Acenaphthene	S20-De18916	NCP	%	123	70-130	Pass	
Acenaphthylene	S20-De16161	NCP	%	118	70-130	Pass	
Anthracene	S20-De18916	NCP	%	128	70-130	Pass	
Benz(a)anthracene	S20-De18916	NCP	%	130	70-130	Pass	
Benzo(a)pyrene	S20-De18916	NCP	%	122	70-130	Pass	
Benzo(b&j)fluoranthene	S20-De18916	NCP	%	122	70-130	Pass	
Benzo(g.h.i)perylene	S20-De18916	NCP	%	121	70-130	Pass	
Benzo(k)fluoranthene	S20-De18916	NCP	%	140	70-130	Fail	Q08
Chrysene	S20-De18916	NCP	%	124	70-130	Pass	
Dibenz(a.h)anthracene	S20-De18916	NCP	%	115	70-130	Pass	
Fluoranthene	S20-De16161	NCP	%	115	70-130	Pass	
Fluorene	S20-De18916	NCP	%	126	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-De18916	NCP	%	118	70-130	Pass	
Naphthalene	S20-De18916	NCP	%	124	70-130	Pass	
Phenanthrene	S20-De18916	NCP	%	130	70-130	Pass	
Pyrene	S20-De16161	NCP	%	104	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S20-De18916	NCP	%	112	70-130	Pass	
4.4'-DDD	S20-De18916	NCP	%	119	70-130	Pass	
4.4'-DDE	S20-De18916	NCP	%	98	70-130	Pass	
4.4'-DDT	S20-De16161	NCP	%	103	70-130	Pass	
а-ВНС	S20-De18916	NCP	%	88	70-130	Pass	
Aldrin	S20-De18916	NCP	%	92	70-130	Pass	
b-BHC	S20-De18916	NCP	%	101	70-130	Pass	
d-BHC	S20-De18916	NCP	%	89	70-130	Pass	
Dieldrin	S20-De18916	NCP	%	122	70-130	Pass	
Endosulfan I	S20-De18916	NCP	%	117	70-130	Pass	
Endosulfan II	S20-De18916	NCP	%	117	70-130	Pass	
Endosulfan sulphate	S20-De18916	NCP	%	100	70-130	Pass	
Endrin	S20-De22168	NCP	%	130	70-130	Pass	
Endrin aldehyde	S20-De16161	NCP	%	100	70-130	Pass	
Endrin ketone	S20-De18916	NCP	%	106	70-130	Pass	
g-BHC (Lindane)	S20-De18916	NCP	%	97	70-130	Pass	
Heptachlor	S20-De18916	NCP	%	124	70-130	Pass	
Heptachlor epoxide	S20-De16161	NCP	%	105	70-130	Pass	
Hexachlorobenzene	S20-De18916	NCP	%	96	70-130	Pass	
Methoxychlor	S20-De22168	NCP	<u>%</u>	119	70-130	Pass	
Spike - % Recovery				1			
Organophosphorus Pesticide				Result 1			
Diazinon	S20-De17239	NCP	%	129	70-130	Pass	
Dimethoate	S20-De17239	NCP	%	128	70-130	Pass	
Spike - % Recovery				1			
Polychlorinated Biphenyls		, ,		Result 1			
Aroclor-1016	S20-De17239	NCP	%	92	70-130	Pass	
Aroclor-1260	S20-De17239	NCP	%	106	70-130	Pass	
Spike - % Recovery							
Heavy Metals		, ,		Result 1			
Arsenic	S20-De15289	NCP	%	113	75-125	Pass	
Cadmium	S20-De15289	NCP	%	108	75-125	Pass	
Chromium	S20-De15289	NCP	%	116	75-125	Pass	
Copper	S20-De15289	NCP	%	108	75-125	Pass	
Lead	S20-De15289	NCP	%	109	75-125	Pass	
Mercury	S20-De15289	NCP	%	112	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Nickel	S20-De15289	NCP	%	108			75-125	Pass	
Zinc	S20-De15289	NCP	%	119			75-125	Pass	
Spike - % Recovery	1 222 2 2 3 3 2 2 3		,,,					1 0.00	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1					
TRH C10-C14	S20-De15678	СР	%	106			70-130	Pass	
Spike - % Recovery	020 20.00.0	<u> </u>	70				70 .00		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S20-De15678	CP	%	103			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S20-De12512	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-De11067	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-De11067	NCP	mg/kg	260	190	31	30%	Fail	Q15
TRH C29-C36	S20-De11067	NCP	mg/kg	150	120	23	30%	Pass	
Duplicate	•								
втех				Result 1	Result 2	RPD			
Benzene	S20-De12512	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-De12512	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-De12512	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-De12512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-De12512	NCP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-De12512	NCP	mg/kg	< 0.1	< 0.3	<1	30%	Pass	
	320-De12312	INCF	ilig/kg		< 0.5		30 //	_ Fass	
Duplicate Total Receiverable Hydrogerhans	2042 NEDM Front	lana		Result 1	Result 2	RPD			
Total Recoverable Hydrocarbons	S20-De12512	NCP	m a/lea				200/	Doos	
Naphthalene TRU CC C40		NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-De12512		mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-De11067	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-De11067	NCP	mg/kg	370	280	28	30%	Pass	
TRH >C34-C40	S20-De11067	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate Control of the last				Doort 4	D 11 0	DDD			
Polycyclic Aromatic Hydrocarbor				Result 1	Result 2	RPD	2001	_	
Acenaphthene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N20-De10508	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	N20-De10508	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
a-BHC	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Methoxychlor	N20-De10508	NCP	mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Duplicate	NZU-DE 10006	INCF	i ilig/kg	<u> </u>	< ∪.∠	<u> </u>	JU%	Fd55	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Bolstar	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	N20-De10508	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	N20-De10508	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	N20-De10508	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	N20-De10508	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	N20-De10508	····	99	+	1				

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S20-De07272	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total PCB*	S20-De07272	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-De15290	NCP	mg/kg	17	18	8.0	30%	Pass	
Cadmium	S20-De15290	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-De15290	NCP	mg/kg	17	19	10	30%	Pass	
Copper	S20-De15290	NCP	mg/kg	29	31	8.0	30%	Pass	
Lead	S20-De15290	NCP	mg/kg	20	22	11	30%	Pass	
Mercury	S20-De15290	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-De15290	NCP	mg/kg	13	14	4.0	30%	Pass	
Zinc	S20-De15290	NCP	mg/kg	52	54	3.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-De15678	СР	%	2.4	4.0	50	30%	Fail	Q15

Comments

This report has been revised (V2) to amend sample names.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier (Qualifier Codes/Comments										
Code	Description										
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).										
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.										
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.										
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs										
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.										
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.										

Authorised By

Ursula Long Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)
John Nguyen Senior Analyst-Metal (NSW)
Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 9

Report Number: 762036-W-V2

Attention: Simon Hay

Report 762036-W-V2

Project name PENNANT HILLLS RD

Project ID SYDEN279944
Received Date Dec 04, 2020

Client Sample ID			R1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-De15672	S20-De15673	S20-De15674
Date Sampled			Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
Test/Reference	LOR	Unit		,	, , ,
Total Recoverable Hydrocarbons - 1999 NEPM		Orne			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	_
TRH C10-C14	0.05	mg/L	< 0.05	-	_
TRH C15-C28	0.1	mg/L	< 0.1	_	_
TRH C29-C36	0.1	mg/L	< 0.1	_	_
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	_	_
BTEX		g/ =	10		
Benzene	0.001	mg/L	< 0.001	< 0.001	_
Toluene	0.001	mg/L	< 0.001	< 0.001	_
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	_
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	_
o-Xylene	0.001	mg/L	< 0.001	< 0.001	_
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	_
4-Bromofluorobenzene (surr.)	1	%	104	108	_
Total Recoverable Hydrocarbons - 2013 NEPM		,,,		1.00	
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	_
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	_
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	_
TRH >C10-C16	0.05	mg/L	< 0.1		_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.1	_	_
TRH >C16-C34	0.1	mg/L	< 0.1	_	_
TRH >C34-C40	0.1	mg/L	< 0.1	_	_
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	_	_
Polycyclic Aromatic Hydrocarbons		,g/ =	10		
Acenaphthene	0.001	mg/L	< 0.001	_	_
Acenaphthylene	0.001	mg/L	< 0.001	_	_
Anthracene	0.001	mg/L	< 0.001	_	_
Benz(a)anthracene	0.001	mg/L	< 0.001	_	_
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	_
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	_	_
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	_	_
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	_	_
Chrysene	0.001	mg/L	< 0.001	_	_
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	_	_
Fluoranthene	0.001	mg/L	< 0.001	_	_
Fluorene	0.001	mg/L	< 0.001	_	_

Client Sample ID			R1	TRIP BLANK	TRIP SPIKE
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-De15672	S20-De15673	S20-De15674
Date Sampled			Dec 01, 2020	Dec 01, 2020	Dec 01, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	•	•			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	INT	-	-
p-Terphenyl-d14 (surr.)	1	%	135	-	-
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	-	-
Cadmium	0.0002	mg/L	< 0.0002	-	-
Chromium	0.001	mg/L	< 0.001	-	-
Copper	0.001	mg/L	< 0.001	-	-
Lead	0.001	mg/L	< 0.001	-	-
Mercury	0.0001	mg/L	< 0.0001	-	-
Nickel	0.001	mg/L	< 0.001	-	-
Zinc	0.005	mg/L	< 0.005	-	-
TRH C6-C10	1	%	_	_	77
Total Recoverable Hydrocarbons	l I	70	-	-	11
Naphthalene	1	%	_	_	97
TRH C6-C9	1	%	_	_	75
BTEX		7.5			
Benzene	1	%	-	_	110
Ethylbenzene	1	%	-	-	93
m&p-Xylenes	1	%	-	-	100
o-Xylene	1	%	-	-	88
Toluene	1	%	-	-	97
Xylenes - Total	1	%	-	-	92
4-Bromofluorobenzene (surr.)	1	%	-	-	103

Page 2 of 9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Dec 08, 2020	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Sydney	Dec 08, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 08, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons	Sydney	Dec 08, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 08, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Polycyclic Aromatic Hydrocarbons Method: LTM-ORG-2409 PALL and Phanals in Call and Water	Sydney	Dec 08, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Metals M8	Sydney	Dec 08, 2020	180 Days

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

1/21 Smallwood Place

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: PENNANT HILLLS RD

Project ID: SYDEN279944 Order No.: Received: Dec 4, 2020 10:47 AM Report #: 762036 Due: Dec 11, 2020

Phone: +61 2 9406 1000 **Priority:** 5 Day Fax: +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

Malle		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
_	ourne Laborato			271								
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х
	bane Laborator											
	h Laboratory - N		36									
_	field Laboratory											
No	rnal Laboratory		Camaniina	Matrix	LAB ID							
NO	Sample ID	Sample Date	Sampling Time	IVIATRIX	LABID							
1	R1	Dec 01, 2020		Water	S20-De15672					Х		
2	TRIP BLANK	Dec 01, 2020		Water	S20-De15673						Х	
3	TRIP SPIKE	Dec 01, 2020		Water	S20-De15674							Χ
4	BH09_0.0_0.1	Dec 01, 2020		Soil	S20-De15675			Χ	Χ	Х		
5	BH09_0.4_0.5	Dec 01, 2020		Soil	S20-De15676		Х					
6	BH09_0.5_0.6	Dec 01, 2020		Soil	S20-De15677				Χ	Х		
7					Х			Х	Х			
8 TP11_0.0_0.1 Dec 01, 2020 Soil S20-De15679							Х					
Test	Counts					1	2	1	3	4	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				•	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	1 3	,			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	1g.=			1 335	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	1 mg/ =	1 0.000	1 0.000	1 400	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				I	
TRH C6-C9	%	93	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14	%	125		70-130	Pass			
LCS - % Recovery								
BTEX								
Benzene	%	93		70-130	Pass			
Toluene			%	94		70-130	Pass	
Ethylbenzene			%	93		70-130	Pass	
m&p-Xylenes			%	96		70-130	Pass	
o-Xylene			%	96		70-130	Pass	
Xylenes - Total*			%	96		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions						
Naphthalene			%	84		70-130	Pass	
TRH C6-C10			%	92		70-130	Pass	
TRH >C10-C16			 %	114		70-130	Pass	
LCS - % Recovery			/0	114		70-130	1 033	
Polycyclic Aromatic Hydrocarbons								
)		0/	74		70.420	Desa	
Anthracene			%	71		70-130	Pass	
Chrysene			%	75		70-130	Pass	
Fluoranthene			%	75		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	71		70-130	Pass	
Phenanthrene			%	76		70-130	Pass	
Pyrene			%	75		70-130	Pass	
LCS - % Recovery				T	T T	T		
Heavy Metals								
Arsenic			%	98		80-120	Pass	
Cadmium			%	99		80-120	Pass	
Chromium			%	98		80-120	Pass	
Copper			%	98		80-120	Pass	
Lead			%	98		80-120	Pass	
Mercury			%	105		80-120	Pass	
Nickel			%	97		80-120	Pass	
Zinc			%	97		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C10-C14	S20-De12528	NCP	%	58		70-130	Fail	Q08
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1				
TRH >C10-C16	S20-De12528	NCP	%	51		70-130	Fail	Q08
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1				
Chrysene	S20-De16967	NCP	%	71		70-130	Pass	
Phenanthrene	S20-De16967	NCP	%	71		70-130	Pass	
Pyrene	S20-De16967	NCP	%	71		70-130	Pass	
Spike - % Recovery	220 2010001		,,,					
Heavy Metals				Result 1				
Arsenic	S20-De15125	NCP	%	99		75-125	Pass	
Cadmium	S20-De15125	NCP	<u> </u>	101		75-125 75-125	Pass	
Chromium	S20-De15125	NCP	%	99		75-125 75-125	Pass	
	S20-De15125	NCP	%	99		75-125 75-125		
Copper		1					Pass	
Lead	S20-De15125	NCP	%	100		75-125	Pass	
Mercury	S20-De15125	NCP	<u>%</u>	108		75-125	Pass	
Nickel	S20-De15125	NCP	%	98		75-125	Pass	
Zinc	S20-De15125	NCP	%	96		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-De25354	NCP	mg/L	0.05	0.05	4.0	30%	Pass	
TRH C10-C14	S20-De17320	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S20-De17320	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S20-De17320	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-De25354	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-De25354	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-De25354	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-De25354	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S20-De25354	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S20-De25354	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate		,	<u> </u>						
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-De25354	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S20-De25354	NCP	mg/L	0.05	0.05	4.0	30%	Pass	
TRH >C10-C16	S20-De17320	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S20-De17320	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S20-De17320	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	1 020 2011 020	110.	mg/ =	1 10.1	V 0.1	``	0070	1 400	
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S20-De17050	NCP		< 0.001	< 0.001		30%	Pass	
	S20-De17050	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene Duplicate	320-De17030	INCP	mg/L	< 0.001	< 0.001	<1	30%	rass	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-De10043	NCP	mg/L	0.001	0.001	1.0	30%	Pass	
Cadmium	S20-De10043	NCP		< 0.001	< 0.0002	<1	30%	Pass	
		NCP	mg/L	1					
Conner	S20-De10043		mg/L	0.012	0.013	6.0	30%	Pass	
Copper	S20-De10043	NCP	mg/L	0.090	0.097	8.0	30%	Pass	
Lead	S20-De10043	NCP	mg/L	0.006	0.007	11	30%	Pass	
Mercury	S20-De10043	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-De10043	NCP	mg/L	0.006	0.007	8.0	30%	Pass	
Zinc	S20-De10043	NCP	mg/L	0.24	0.25	6.0	30%	Pass	

Page 8 of 9

Comments

This report has been revised (V2) to amend sample names.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay 762036-AID-V2 Report

PENNANT HILLLS RD **Project Name**

SYDEN279944 Project ID **Received Date** Dec 04, 2020 **Date Reported** Dec 15, 2020

Methodology:

Asbestos Fibre Identification

NSW 2067

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres**

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PENNANT HILLLS RD

 Project ID
 SYDEN279944

 Date Sampled
 Dec 01, 2020

 Report
 762036-AID-V2

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH10_0.0_0.1	20-De15678			No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyDec 08, 2020Indefinite

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Order No.:

Report #:

Phone:

Fax:

Sydney

Brisbane

762036

1/21 Smallwood Place

+61 2 9406 1000

+61 2 9406 1004

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: PENNANT HILLLS RD

Project ID: SYDEN279944 Received: Dec 4, 2020 10:47 AM

Due: Dec 11, 2020

Priority: 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
	ourne Laborato			271								
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х
	bane Laborator											
	h Laboratory - N		<u> </u>									
	field Laboratory											
	rnal Laboratory			1	_							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	R1	Dec 01, 2020		Water	S20-De15672					Х		
2	TRIP BLANK	Dec 01, 2020		Water	S20-De15673						Х	
3	TRIP SPIKE	Dec 01, 2020		Water	S20-De15674							Х
4	BH09_0.0_0.1	Dec 01, 2020		Soil	S20-De15675			Х	Χ	Х		
5	BH09_0.4_0.5	Dec 01, 2020		Soil	S20-De15676		Х					
6	BH09_0.5_0.6 Dec 01, 2020 Soil S20-De15677							Χ	Х			
7 BH10_0.0_0.1 Dec 01, 2020 Soil S20-De15678				Х			Х	Х				
8	TP11_0.0_0.1	Dec 01, 2020		Soil	S20-De15679		Х					
Test	Counts	1	2	1	3	4	1	1				

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

This report has been revised (V2) to amend sample names.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
	Custody Seals Intact (if used) Attempt to Chill was evident Sample correctly preserved Appropriate sample containers have been used Sample containers for volatile analysis received with minimal headspace Samples received within HoldingTime

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Container Type &

Preservative*

dar 3 bay

Mobile: 0424 703 009

Phone:

T-A-T

(specify)

50

5 DAY

Day

Consigning Office:

Report Results to:

Invoices to:

Task No:

Laboratory: Exofun

Project Manager: 5. How

Sample

Date

2.17.20

2.12.70

212.20

Time

S. Itm

Matrix

(Soil...etc)

801

101

age	of	
-0		

FWO

Simon. Hay

Email:

Email:

Analysis Request Section

_ 6064	
@coffey.com @coffey.com	
	Silver
NOTES	
to ALS	
Ø	The same of the
<u> </u>	STATE OF THE STATE

GBHO6-0.0-0.1 2.12.20 BOHO 6 - 0.3 - 0.4 **RELINQUISHED BY** RECEIVED BY Sample Receipt Advice: (Lab Use Only Name: Selly W Company: My office Name: Simon Iba-Date: 10:45 Mm Date: All Samples Recieved in Good Condition 4/12/2020 Coffey Environments Time: Time: All Documentation is in Proper Order Name: Date: Date: Samples Received Properly Chilled Company: Time: Lab. Ref/Batch No. Company: Time: *Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, 5 - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative

coffey

Lab No.

QC1

Project No: SYDEN 279944

Project Name: Lament Hills Rd Sampler's Name: Simon Hay

Place FWO OCZ to AU

1.0-0.0-AINT

6 BHD2 _ OH _ O. G

90H08_0.0_0.1

GBH08_0.8_1.0 BBH08_1.4_1.5

Sample ID

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name:

PENNANT HILLS ROAD

Project ID:

SYDEN279944

Turnaround time:

5 Day

Date/Time received

Dec 4, 2020 10:45 AM

Eurofins reference

761999

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 6.5 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

QC2 Forwarded to ALS for analysis.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

761999

+61 2 9406 1000

+61 2 9406 1004

Order No.:

Report #:

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 11, 2020

Simon Hay

5 Day

Dec 4, 2020 10:45 AM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

> Chatswood NSW 2067

Project Name:

PENNANT HILLS ROAD

Project ID: SYDEN279944

Eurofins Analytical Services Manager: Ursula Long

			mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
		ory - NATA Site		271		.,				
		- NATA Site # 1				Х	Х	Х	Х	Х
		y - NATA Site #								\vdash
		NATA Site # 237	36							\vdash
Mayfield Laboratory External Laboratory										\vdash
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH11A	Dec 02, 2020		Soil	S20-De15072				Х	Х
2	QC1	Dec 02, 2020		Soil	S20-De15073				Χ	Х
3	GBH02_0.4- 0.6	Dec 02, 2020		Soil	S20-De15074				Х	Х
4	GBH08_0.0- 0.1	Dec 02, 2020		Soil	S20-De15075	Х		Х	Х	Х
5	GBH08_0.8- 1.0	Dec 02, 2020		Soil	S20-De15076				Χ	Х
6	GBH06_0.0- 0.1	Dec 02, 2020		Soil	S20-De15077	х			Х	Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

+61 2 9406 1000

+61 2 9406 1004

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Address: Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

PENNANT HILLS ROAD

SYDEN279944 Project ID:

Order No.: Received: Dec 4, 2020 10:45 AM Report #: 761999

Due: Dec 11, 2020

Priority: 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sar	nple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271						
Sydı	ney Laboratory	- NATA Site # 18	3217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site # :	20794							
		NATA Site # 237	36							
	field Laboratory									
Exte	rnal Laboratory	<u>'</u>								
7	GBH08_0.3- 0.4	Dec 02, 2020		Soil	S20-De15078		Х			
8	8 GBH08_1.4- Dec 02, 2020 Soil S20-De15079						х			
9	GBH08_1.9- 2.0	Dec 02, 2020		Soil	S20-De15080		х			
10	GBH06_0.3- 0.4	Dec 02, 2020		Soil	S20-De15081		х			
Test	Counts					2	4	1	6	6

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 18

Report Number: 761999-S-V2

Attention: Simon Hay

Report 761999-S-V2

Project name PENNANT HILLS ROAD

Project ID SYDEN279944
Received Date Dec 04, 2020

Client Sample ID			^{G01} BH11A	^{G01} QC1	GBH02_0.4-0.6	G01GBH08_0.0- 0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-De15072	S20-De15073	S20-De15074	S20-De15075
Date Sampled			Dec 02, 2020	Dec 02, 2020	Dec 02, 2020	Dec 02, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 100	< 100	< 20	700
TRH C15-C28	50	mg/kg	< 250	< 250	< 50	4800
TRH C29-C36	50	mg/kg	< 250	< 250	< 50	4400
TRH C10-C36 (Total)	50	mg/kg	< 250	< 250	< 50	9900
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	70	57	70	56
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 250	< 250	< 50	2000
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 250	< 250	< 50	2000
TRH >C16-C34	100	mg/kg	< 500	< 500	< 100	7800
TRH >C34-C40	100	mg/kg	< 500	< 500	< 100	1400
TRH >C10-C40 (total)*	100	mg/kg	< 500	< 500	< 100	11200
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			G01 BH11A	G01QC1	GBH02_0.4-0.6	G01GBH08_0.0-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-De15072	S20-De15073	S20-De15074	S20-De15075
Date Sampled			Dec 02, 2020	Dec 02, 2020	Dec 02, 2020	Dec 02, 2020
Test/Reference	LOR	Unit			Í	Í
Polycyclic Aromatic Hydrocarbons	1 20.1	- Onne				
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94	113	95	84
p-Terphenyl-d14 (surr.)	1	%	109	144	132	113
Heavy Metals		70	100	1-1-1	102	110
Arsenic	2	mg/kg	11	12	< 2	5.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	18	18	20	16
Copper	5	mg/kg	17	20	82	45
Lead	5	mg/kg	260	340	< 5	55
Mercury	0.1		< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	5.0	6.2	76	9.0
Zinc	5	mg/kg	140	180	74	250
ZITIC	5	mg/kg	140	160	74	250
% Moisture	1	0/	21	27	10	4.4
	1	%	21	27	10	44
Organochlorine Pesticides	0.4					. 4
Chlordanes - Total 4.4'-DDD	0.1	mg/kg	-	-	-	< 1
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.5
4.4'-DDT	0.05	mg/kg			+	< 0.5
		mg/kg	-	-	-	< 0.5
a-BHC	0.05	mg/kg	-	-	-	< 0.5
Aldrin	0.05	mg/kg	-	-	-	< 0.5
b-BHC	0.05	mg/kg	-	-	-	< 0.5
d-BHC	0.05	mg/kg	-	-	-	< 0.5
Dieldrin Fadesulfes I	0.05	mg/kg	-	-	-	< 0.5
Endosulfan I	0.05	mg/kg	-	-	-	< 0.5
Endosulfan II	0.05	mg/kg	-	-	-	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.5
Endrin	0.05	mg/kg	-	-	-	< 0.5
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.5
Endrin ketone	0.05	mg/kg	-	-	-	< 0.5
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.5
Heptachlor	0.05	mg/kg	-	-	-	< 0.5
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.5
Hexachlorobenzene Methowychlor	0.05	mg/kg	-	-	-	< 0.5
Methoxychlor Tayanhana	0.2	mg/kg	-	-	-	< 0.5
Toxaphene	0.1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 1
Vic EPA IWRG 621 Other OCP (Total)* Dibutylchlorendate (surr.)	0.1	mg/kg %	-	-	-	< 1 121

Client Sample ID			G01BH11A	G01QC1	GBH02_0.4-0.6	G01GBH08_0.0-
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-De15072	S20-De15073	S20-De15074	S20-De15075
Date Sampled			Dec 02, 2020	Dec 02, 2020	Dec 02, 2020	Dec 02, 2020
Test/Reference	LOR	Unit	Dec 02, 2020	Dec 02, 2020	Dec 02, 2020	Dec 02, 2020
Organophosphorus Pesticides	LOR	Unit				
	0.2					< 0.5
Azinphos-methyl Bolstar	0.2	mg/kg mg/kg	-	-	-	< 0.5
Chlorfenvinphos	0.2	mg/kg	-	-	-	< 0.5
Chlorpyrifos	0.2	mg/kg	-	-	-	< 0.5
Chlorpyrifos-methyl	0.2	mg/kg	-	-	-	< 0.5
Coumaphos	2	mg/kg	-	-	-	< 2
Demeton-S	0.2	mg/kg				< 0.5
Demeton-O	0.2	mg/kg	-	-	-	< 0.5
Diazinon	0.2		-	-	-	< 0.5
Dichlorvos	0.2	mg/kg	-	-	-	< 0.5
Dimethoate	0.2	mg/kg mg/kg	-	-	-	< 0.5 < 0.5
Disulfoton	0.2		-		-	
EPN	0.2	mg/kg	-	-	-	< 0.5
Ethion	0.2	mg/kg	-	-	-	< 0.5
	0.2	mg/kg	-	-	-	< 0.5 < 0.5
Ethoprop		mg/kg	-	-	-	
Ethyl parathion	0.2	mg/kg	-	-	-	< 0.5
Fenitrothion	0.2	mg/kg	-	-	-	< 0.5
Fensulfothion	0.2	mg/kg	-	-	-	< 0.5
Fenthion	0.2	mg/kg	-	-	-	< 0.5
Malathion	0.2	mg/kg	-	-	-	< 0.5
Merphos Methyl parathion	0.2	mg/kg	-	-	-	< 0.5 < 0.5
* *	0.2	mg/kg	-	-	-	
Mevinphos Monocrotophos	2	mg/kg	-	-	-	< 0.5 < 2
Naled	0.2	mg/kg	-	-	-	
Omethoate	2	mg/kg	-	-	-	< 0.5 < 2
Phorate	0.2	mg/kg mg/kg	-	-	-	< 0.5
Pirimiphos-methyl	0.2	mg/kg	-	-	-	< 0.5
Pyrazophos	0.2	mg/kg	-	-	-	< 0.5
Ronnel	0.2	mg/kg	-	-	-	< 0.5
Terbufos	0.2	mg/kg	-	-	-	< 0.5
Tetrachlorvinphos	0.2	mg/kg	-	-	-	< 0.5
Tokuthion	0.2	mg/kg	-	-	-	< 0.5
Trichloronate	0.2			-		< 0.5
Triphenylphosphate (surr.)	1	mg/kg %	-	-	-	INT
Polychlorinated Biphenyls	1	/0	_	-	_	IINI
-	0.5	ma/lia				- 1
Aroclor-1016 Aroclor-1221	0.5	mg/kg	-	-	-	<1
	0.1 0.5	mg/kg	-	-	-	<1
Aroclor-1232	0.5	mg/kg mg/kg	-	-	-	<1
Aroclor-1242	0.5		-	-	-	<1
Aroclor-1254	0.5	mg/kg	-	-	-	<1
Aroclor-1254	0.5	mg/kg	-	-	-	
Aroclor-1260 Total PCB*		mg/kg	-	-	-	<1
	0.5	mg/kg %				< 1 121
Dibutylchlorendate (surr.)	1		-	-	-	
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	106

Client Sample ID			GBH08_0.8-1.0	GBH06_0.0-0.1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S20-De15076	S20-De15077
Date Sampled			Dec 02, 2020	Dec 02, 2020
Test/Reference	LOR	Unit	DCG 02, 2020	DCG 02, 2020
Total Recoverable Hydrocarbons - 1999 NEPM	_	Offic		
•			. 20	. 20
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	68
TRH C15-C28	50	mg/kg	52	280
TRH C29-C36	50	mg/kg	< 50	360
TRH C10-C36 (Total) BTEX	50	mg/kg	52	708
	0.4		.04	.0.4
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	63	59
Total Recoverable Hydrocarbons - 2013 NEPM		1		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	75
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	75
TRH >C16-C34	100	mg/kg	< 100	540
TRH >C34-C40	100	mg/kg	< 100	290
TRH >C10-C40 (total)*	100	mg/kg	< 100	905
Polycyclic Aromatic Hydrocarbons	1	T		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	96	117
p-Terphenyl-d14 (surr.)	1	%	110	138

Client Sample ID Sample Matrix			GBH08_0.8-1.0 Soil	GBH06_0.0-0.1 Soil
Eurofins Sample No.			S20-De15076	S20-De15077
Date Sampled			Dec 02, 2020	Dec 02, 2020
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	11	81
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	24	86
Copper	5	mg/kg	18	76
Lead	5	mg/kg	51	470
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	6.3	11
Zinc	5	mg/kg	45	180
% Moisture	1	%	31	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Dec 09, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Dec 08, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Dec 09, 2020	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Dec 09, 2020	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane Sydney Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: PENNANT HILLS ROAD

Project ID: SYDEN279944 Order No.: Received: Dec 4, 2020 10:45 AM Report #: 761999 Due: Dec 11, 2020

Phone: +61 2 9406 1000 Priority: 5 Day Fax: +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

			mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
		ory - NATA Site		271						
		- NATA Site # 1 y - NATA Site #				Х	Х	Х	Х	X
		y - NATA Site # NATA Site # 237								\vdash
	field Laboratory									
	rnal Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH11A	Dec 02, 2020		Soil	S20-De15072				Х	Х
2	QC1	Dec 02, 2020		Soil	S20-De15073				Х	Х
3	GBH02_0.4- 0.6	Dec 02, 2020		Soil	S20-De15074				Х	х
4	GBH08_0.0- 0.1	Dec 02, 2020		Soil	S20-De15075	Х		Х	Х	х
5	GBH08_0.8- 1.0	Dec 02, 2020		Soil	S20-De15076				Х	х
6	GBH06_0.0- 0.1	Dec 02, 2020		Soil	S20-De15077	Х			Х	х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Address:

PENNANT HILLS ROAD

Project ID:

SYDEN279944

Order No.: Received: Dec 4, 2020 10:45 AM Report #: 761999 Due: Dec 11, 2020

Phone: +61 2 9406 1000 **Priority:** 5 Day Fax: +61 2 9406 1004 **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sai	mple Detail			Asbestos - AS4964	HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271						
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - I	NATA Site # 237	36							
	field Laboratory									
	rnal Laboratory	<u>'</u>								
7	GBH08_0.3- 0.4	Dec 02, 2020		Soil	S20-De15078		Х			
8	GBH08_1.4- 1.5	Dec 02, 2020		Soil	S20-De15079		х			
9	GBH08_1.9- 2.0	Dec 02, 2020		Soil	S20-De15080		х			
10	GBH06_0.3- 0.4	Dec 02, 2020		Soil	S20-De15081		х			
Test	Counts					2	4	1	6	6

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ons				
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ons				
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene		< 0.5	0.5	Pass	
	mg/kg mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene		< 0.5	0.5	Pass	
Naphthalene	mg/kg				
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Matha d Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals		0		D	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank				ı	
Organochlorine Pesticides	1				
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton		< 0.2	0.2	Pass	
EPN	mg/kg		0.2		
	mg/kg	< 0.2		Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	-
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractio	ns				
TRH C10-C14	%	88	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractio	ns				
TRH >C10-C16	%	85	70-130	Pass	
LCS - % Recovery				T	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	93	70-130	Pass	
Acenaphthylene	%	110	70-130	Pass	
Anthracene	%	104	70-130	Pass	
Benz(a)anthracene	%	98	70-130	Pass	
Benzo(a)pyrene	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	%	86	70-130	Pass	
Benzo(g.h.i)perylene	%	88	70-130	Pass	
Benzo(k)fluoranthene	%	110	70-130	Pass	
Chrysene	%	91	70-130	Pass	
Dibenz(a.h)anthracene	%	84	70-130	Pass	
Fluoranthene	%	114	70-130	Pass	
Fluorene	%	98	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	
Naphthalene	%	93	70-130	Pass	
Phenanthrene	%	96	70-130	Pass	
Pyrene	%	102	70-130	Pass	
LCS - % Recovery		I			
Heavy Metals				_	
Arsenic	%	100	80-120	Pass	
Cadmium	%	100	80-120	Pass	
Chromium	%	99	80-120	Pass	
Copper	%	98	80-120	Pass	
Lead	%	100	80-120	Pass	
Mercury	%	106	80-120	Pass	
Nickel	%	99	80-120	Pass	
Zinc	%	95	80-120	Pass	
LCS - % Recovery					
Organochlorine Pesticides	0/	111	70.420	Doos	
Chlordanes - Total 4.4'-DDD	%	111	70-130	Pass	
	%	116	70-130	Pass	
4.4'-DDE 4.4'-DDT	% %	99	70-130 70-130	Pass Pass	
		1			
a-BHC Aldrin	% %	91 93	70-130 70-130	Pass Pass	
b-BHC	%	107	70-130	Pass	
d-BHC	%	89	70-130	Pass	
Dieldrin	%	115	70-130	Pass	
Endosulfan I	%	105	70-130	Pass	
Endosulfan II	%	108	70-130	Pass	
Endosulfan sulphate	%	101	70-130	Pass	
Endrin Supriate	%	121	70-130	Pass	
Endrin aldehyde	%	110	70-130	Pass	
Endrin aldenyde Endrin ketone	%	104	70-130	Pass	
g-BHC (Lindane)	%	98	70-130	Pass	
Heptachlor	%	118	70-130	Pass	

Te	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide			%	122	70-130	Pass	
Hexachlorobenzene			%	92	70-130	Pass	
Methoxychlor			%	121	70-130	Pass	
LCS - % Recovery				<u> </u>			
Organophosphorus Pesticides	3						
Diazinon			%	117	70-130	Pass	
Dimethoate			%	129	70-130	Pass	
Ethion			%	124	70-130	Pass	
Fenitrothion			%	129	70-130	Pass	
Methyl parathion			%	127	70-130	Pass	
Mevinphos				130	70-130	Pass	
LCS - % Recovery			/0	130	1 70-130	Fass	
				Т		T	
Polychlorinated Biphenyls Aroclor-1016			0/	00	70.400	Dana	
			%	98	70-130	Pass	-
Aroclor-1260			%	106	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	S20-De15216	NCP	%	85	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	S20-De15216	NCP	%	84	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocar	bons			Result 1			
Acenaphthene	S20-De13219	NCP	%	86	70-130	Pass	
Acenaphthylene	S20-De13219	NCP	%	89	70-130	Pass	
Anthracene	S20-De13219	NCP	 %	100	70-130	Pass	
Benz(a)anthracene	S20-De13219	NCP	 %	87	70-130	Pass	
Benzo(a)pyrene	S20-De13219	NCP	 %	84	70-130	Pass	
Benzo(b&j)fluoranthene	S20-De13219	NCP	// 0	96	70-130	Pass	
Benzo(g.h.i)perylene	S20-De13219	NCP	// 0	82	70-130	Pass	
Benzo(k)fluoranthene	S20-De13219	NCP	<u> </u>	100	70-130	Pass	
		1				1	
Chrysene	S20-De13219	NCP	%	100	70-130	Pass	
Dibenz(a.h)anthracene	S20-De13219	NCP	%	86	70-130	Pass	
Fluoranthene	S20-De13219	NCP	%	100	70-130	Pass	
Fluorene	S20-De13219	NCP	%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-De13219	NCP	%	75	70-130	Pass	
Naphthalene	S20-De13219	NCP	%	92	70-130	Pass	
Phenanthrene	S20-De13219	NCP	%	96	70-130	Pass	-
Pyrene	S20-De13219	NCP	%	99	70-130	Pass	
Spike - % Recovery							
Heavy Metals		, ,		Result 1			
Arsenic	W20-De13175	NCP	%	106	75-125	Pass	
Cadmium	W20-De13175	NCP	%	105	75-125	Pass	
Chromium	W20-De13175	NCP	%	93	75-125	Pass	
Copper	W20-De13175	NCP	%	90	75-125	Pass	
Lead	W20-De13175	NCP	%	94	75-125	Pass	
Mercury	W20-De13175	NCP	%	105	75-125	Pass	
Nickel	W20-De13175	NCP	%	93	75-125	Pass	
Zinc	W20-De13175	NCP	%	100	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S20-De15074	СР	%	71	70-130	Pass	
Spike - % Recovery							

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
ВТЕХ				Result 1					
Benzene	S20-De15074	CP	%	79			70-130	Pass	
Toluene	S20-De15074	CP	%	77			70-130	Pass	
Ethylbenzene	S20-De15074	CP	%	76			70-130	Pass	
m&p-Xylenes	S20-De15074	CP	%	76			70-130	Pass	
o-Xylene	S20-De15074	CP	%	78			70-130	Pass	
Xylenes - Total*	S20-De15074	СР	%	77			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-De15074	СР	%	79			70-130	Pass	
TRH C6-C10	S20-De15074	СР	%	72			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
Chlordanes - Total	S20-De17239	NCP	%	104			70-130	Pass	
4.4'-DDD	S20-De17239	NCP	%	115			70-130	Pass	
4.4'-DDE	S20-De17239	NCP	%	94			70-130	Pass	
4.4'-DDT	S20-De17239	NCP	%	116			70-130	Pass	
a-BHC	S20-De17239	NCP	%	85			70-130	Pass	
Aldrin	S20-De17239	NCP	%	90			70-130	Pass	
b-BHC	S20-De17239	NCP	%	101			70-130	Pass	
d-BHC	S20-De17239	NCP	%	85			70-130	Pass	
Dieldrin	S20-De17239	NCP	%	110			70-130	Pass	
Endosulfan I	S20-De17239	NCP	%	101			70-130	Pass	
Endosulfan II	S20-De17239	NCP	%	101			70-130	Pass	
Endosulfan sulphate	S20-De17239	NCP	%	92			70-130	Pass	
Endrin	S20-De22168	NCP	%	130			70-130	Pass	
Endrin aldehyde	S20-De16161	NCP	%	100			70-130	Pass	
Endrin ketone	S20-De17239	NCP	%	94			70-130	Pass	
g-BHC (Lindane)	S20-De17239	NCP	%	94			70-130	Pass	
Heptachlor	S20-De17239	NCP	%	114			70-130	Pass	
Heptachlor epoxide	S20-De17239	NCP	%	115			70-130	Pass	
Hexachlorobenzene	S20-De17239	NCP	%	88			70-130	Pass	
Methoxychlor	S20-De22168	NCP	%	119			70-130	Pass	
Spike - % Recovery	020 0022100	1101	,,,	110			10 100	1 400	
Organophosphorus Pesticides				Result 1					
Diazinon	S20-De17239	NCP	%	129			70-130	Pass	
Dimethoate	S20-De17239	NCP	%	128			70-130	Pass	
Spike - % Recovery	020 0011200	1101	,,,	120			10 100	1 400	
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S20-De17239	NCP	%	92			70-130	Pass	
Aroclor-1260	S20-De17239	NCP	%	106			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				<u> </u>					
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S20-De14952	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-De14952	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-De14952	NCP	mg/kg	< 50	< 50		30%	Pass	
Duplicate	, 525 25.1002								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-De14952	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-De14952	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-De14952	NCP	mg/kg	< 100	< 100	<1	30%	Pass	

Duplicate							ı		
Polycyclic Aromatic Hydrocarbor	ns	1		Result 1	Result 2	RPD			
Acenaphthene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-De21302	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-De11322	NCP	mg/kg	22	22	2.0	30%	Pass	
Cadmium	S20-De11322	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-De11322	NCP	mg/kg	34	30	10	30%	Pass	
Copper	S20-De11322	NCP	mg/kg	20	17	15	30%	Pass	
Lead	S20-De11322	NCP	mg/kg	24	24	3.0	30%	Pass	
Mercury	S20-De11322	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-De11322	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S20-De11322	NCP	mg/kg	13	14	7.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-De15073	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S20-De15073	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-De15073	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-De15073	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-De15073	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-De15073	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-De15073	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-De15073	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-De15073	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-De15074	СР	%	10	9.8	5.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S20-De19891	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	+ =========			< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S20-De19891	INCP	l maka	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
a-BHC Aldrin	S20-De19891 S20-De19891	NCP NCP	mg/kg mg/ka				1		
Aldrin	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
							1		

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Dieldrin	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehvde	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S20-De19891	NCP		< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S20-De19891	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
			mg/kg			<1			
Methoxychlor	S20-De19891	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate	•			Dogult 1	Dogult 0	BDD	l		
Organophosphorus Pesticides		NCD	m a //	Result 1	Result 2	RPD	200/	Desa	
Azinphos-methyl	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorenviites	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S20-De18915	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S20-De18915	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S20-De18915	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S20-De18915	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1221	S20-De22167	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate										
Polychlorinated Biphenyls				Result 1	Result 2	RPD				
Aroclor-1248	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1254	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Aroclor-1260	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Total PCB*	S20-De22167	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		

Comments

This report has been revised (V2) to amend sample names.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson **General Manager**

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highwa Chatswood

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay 761999-AID-V2 Report

PENNANT HILLS ROAD **Project Name**

SYDEN279944 Project ID **Received Date** Dec 04, 2020 **Date Reported** Dec 15, 2020

Methodology:

Asbestos Fibre Identification

NSW 2067

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres**

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PENNANT HILLS ROAD

 Project ID
 SYDEN279944

 Date Sampled
 Dec 02, 2020

 Report
 761999-AID-V2

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
GBH08_0.0-0.1	20-De15075		Sample consisted of: Brown coarse-grained sandy soil, rocks and	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
GBH06_0.0-0.1	20-De15077		Sample consisted of: Brwon coarse-grained sandy soil, rocks, organic	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyDec 08, 2020Indefinite

Company Name:

Address:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3, Building F
 1/21 Smallwood Place

 16 Mars Road
 Murarrie QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 NATA # 1261 Site # 18217

Phone:

Fax:

 Brisbane
 Perth

 1/21 Smallwood Place
 2/91 Leach Highway

 Murarrie QLD 4172
 Kewdale WA 6105

 Phone: +61 7 3902 4600
 Phone: +61 8 9251 9600

 NATA # 1261 Site # 20794
 NATA # 1261

 Site # 23736
 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: PENNANT HILLS ROAD

Project ID: SYDEN279944

 Order No.:
 Received:
 Dec 4, 2020 10:45 AM

 Report #:
 761999
 Due:
 Dec 11, 2020

Eurofins Analytical Services Manager: Ursula Long

		sbestos - AS4964	10LD	urofins Suite B15	Noisture Set	urofins Suite B7				
Melk	oourne Laborat									
	Sydney Laboratory - NATA Site # 18217							Х	Х	Х
		ry - NATA Site #								
		NATA Site # 237	'36							
_	field Laborator									
	ernal Laborator				1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH11A	Dec 02, 2020		Soil	S20-De15072				Х	Х
2	QC1	Dec 02, 2020		Soil	S20-De15073				Х	Х
3	GBH02_0.4- 0.6	Dec 02, 2020		Soil	S20-De15074				х	Х
4	GBH08_0.0- 0.1	Dec 02, 2020		Soil	S20-De15075	х		Х	Х	Х
5	GBH08_0.8- 1.0	Dec 02, 2020		Soil	S20-De15076				Х	х
6	GBH06_0.0- 0.1	Dec 02, 2020		Soil	S20-De15077	Х			Х	х

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Order No.:

761999

+61 2 9406 1000

+61 2 9406 1004

Report #:

Phone:

Fax:

Sydney

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: PENNANT HILLS ROAD

Project ID: SYDEN279944 Received: Dec 4, 2020 10:45 AM

Due: Dec 11, 2020

Priority: 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

	Sample Detail						HOLD	Eurofins Suite B15	Moisture Set	Eurofins Suite B7
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271									
		- NATA Site # 1				X	Х	Х	Х	Х
		y - NATA Site #								
		NATA Site # 237	'36							
	field Laboratory									
	rnal Laboratory		İ	_						
7	GBH08_0.3- 0.4	Dec 02, 2020		Soil	S20-De15078		Х			
8	GBH08_1.4- 1.5	Dec 02, 2020		Soil	S20-De15079		Х			
9	GBH08_1.9- 2.0	Dec 02, 2020		Soil	S20-De15080		Х			
10	10 GBH06_0.3- Dec 02, 2020 Soil S20-De15081						Х			
Test	Counts					2	4	1	6	6

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

equivalent to "non-bonded / friable".

FA

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those

materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

First Reported: Dec 14, 2020 Date Reported: Dec 15, 2020

Comments

This report has been revised (V2) to amend sample names.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
	Custody Seals Intact (if used) Attempt to Chill was evident Sample correctly preserved Appropriate sample containers have been used Sample containers for volatile analysis received with minimal headspace Samples received within HoldingTime

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#AU04_Enviro_Sample_NSW

Subject: FW: TCLP analysis

Attachments: 761999-S_report.pdf; 762036-S_report.pdf

From: Hay, Simon <<u>Simon.Hay@coffey.com</u>>
Sent: Monday, 14 December 2020 1:22 PM
To: Ursula Long <<u>UrsulaLong@eurofins.com</u>>

Subject: TCLP analysis

EXTERNAL EMAIL*

Hi Ursula,

Could I please request TCLP on the following on a 5 day TAT:

GBH02_0.4-0.6 – Nickel BGH06_0.0-0.1 – Lead TP09_0.0-0.1 – Lead TP11A – Lead

Kind Regards,

Simon Hay Senior Environmental Scientist

Level 20, Tower B - Citadel Tower 799 Pacific Highway Chatswood NSW 2067

t: +61 2 9406 1060 f: +61 2 9406 1002 m: 0424 703 009 w: coffey.com

>>> Ingenuity@coffey – it's the ideas that count

Please consider the environment before printing this email

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!	
	_

Ursula Long

From: #AU04_Enviro_Sample_NSW

Sent: Wednesday, 16 December 2020 8:35 AM

To: Ursula Long

Subject: FW: Eurofins Sample Receipt Advice - Report 763628 : Site ADDITIONAL PENNANT

HILLS ROAD (SYDEN279944)

Attachments: 763628_COC.pdf; 763628_sample_receipt_coc.pdf; 763628_summary.pdf

Kind regards, Grace Tuckwell

Enviro Sample NSW Sample Receipt NSW

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone : +61 2 9900 8421

Email: EnviroSampleNSW@Eurofins.com

Website: www.eurofins.com.au/environmental-testing

From: Hay, Simon <Simon.Hay@coffey.com>
Sent: Wednesday, 16 December 2020 7:44 AM

To: #AU04_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>

Subject: FW: Eurofins Sample Receipt Advice - Report 763628 : Site ADDITIONAL PENNANT HILLS ROAD (SYDEN279944)

Hi Grace,

Is it possible to change this to a 3 day turn around time?

Thanks Simon

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, December 15, 2020 1:27 AM **To:** Hay, Simon < Simon. Hay@coffey.com >

Subject: Eurofins Sample Receipt Advice - Report 763628: Site ADDITIONAL PENNANT HILLS ROAD (SYDEN279944)

⚠ **CAUTION:** This email originated from an external sender. Verify the source before opening links or attachments. ⚠

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name:

ADDITIONAL PENNANT HILLS ROAD

Project ID:

SYDEN279944

Turnaround time: Date/Time received 3 Day

Eurofins reference

Dec 14, 2020 1:22 PM 763628

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt:

6.5 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Address:

ADDITIONAL PENNANT HILLS ROAD

Project ID: SYDEN279944 Order No.: Received: Dec 14, 2020 1:22 PM Report #: 763628 Due: Dec 17, 2020

Phone: +61 2 9406 1000 **Priority:** 3 Day +61 2 9406 1004 Fax: **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

	Lead	Nickel	USA Leaching Procedure						
Melb									
Sydney Laboratory - NATA Site # 18217								Х	
Brist	bane Laborator	y - NATA Site #	20794						
Perti	h Laboratory - I	NATA Site # 237	36						
Mayf	field Laboratory	/							
Exte	rnal Laboratory	/		1	1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH11A	Dec 02, 2020		US Leachate	S20-De28752	Х		Х	
2	2 GBH02_0.4- Dec 02, 2020 US Leachate S20-De28753						Х	Х	
3 BGH06_0.0- Dec 02, 2020 US Leachate S20-De28754								Х	
4	4 BH09_0.0-0.1 Dec 01, 2020 US Leachate S20-De28755								
Test	3	1	4						

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 763628-L-V3

Project name ADDITIONAL PENNANT HILLS ROAD

Project ID SYDEN279944 Received Date Dec 14, 2020

Client Sample ID Sample Matrix			BH11A US Leachate	GBH02_0.4-0.6 US Leachate	BGH06_0.0-0.1 US Leachate	BH09_0.0-0.1 US Leachate
Eurofins Sample No.			S20-De28752	S20-De28753	S20-De28754	S20-De28755
Date Sampled			Dec 02, 2020	Dec 02, 2020	Dec 02, 2020	Dec 01, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	0.01	mg/L	0.07	-	0.22	0.03
Nickel	0.01	mg/L	-	0.17	-	-
USA Leaching Procedure						
Leachate Fluid ^{C01}		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	8.3	8.3	7.7	8.1
pH (off)	0.1	pH Units	5.3	5.2	5.1	5.1
pH (USA HCI addition)	0.1	pH Units	1.7	1.7	1.7	1.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Dec 17, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
USA Leaching Procedure	Sydney	Dec 16, 2020	14 Days

Page 2 of 6

Report Number: 763628-L-V3

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 Site # 1254 & 14271 NATA # 1261 Site # 18217

Order No.:

763628

+61 2 9406 1000

+61 2 9406 1004

Report #:

Phone:

Fax:

Unit F3, Building F

Sydney

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: ADDITIONAL PENNANT HILLS ROAD

Project ID: SYDEN279944 Received: Dec 14, 2020 1:22 PM

Due: Dec 17, 2020

Priority: 3 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

	Lead	Nickel	USA Leaching Procedure					
Melb								
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х
		y - NATA Site #						
Pertl	n Laboratory - N	IATA Site # 237	36					
Mayf	ield Laboratory	•						
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	BH11A	Dec 02, 2020		US Leachate	S20-De28752	Х		Х
2	GBH02_0.4- 0.6	Dec 02, 2020		US Leachate	S20-De28753		Х	х
3	Х		х					
4	Х		Х					
Test Counts								4

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test				Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead				< 0.01			0.01	Pass	
Nickel				< 0.01			0.01	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	95			80-120	Pass	
Nickel			%	98			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead S20-De26037 NCP			%	94			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Nickel	S20-De26037	NCP	%	96			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-De26032	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Nickel	S20-De26032	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	

Page 5 of 6

Report Number: 763628-L-V3

Comments

This report has been revised (V2) to amend sample name for S20-De28755. This report has been revised (V2) to amend sample name for S20-De28752.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised By

Ursula Long Analytical Services Manager
John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

REQUEST
ANALYSIS F
Y AND
IAIN-OF-CUSTOD
さ

Page 1 of 6065

Coffey 🍫	Consigning Office: Report Results to:	Its to:	Pos	Mobile:	Email:	@coffey.com
4 TEFRA TECH COMPANY (10EN -	Invoices to:			Phone:	Email:	@coffey.com
115 82	Task No: Laboratory: £U(ofm) Project Manager: S,) book		Ana	Analysis Request Section	
Special Instructions: Coff C	Sample	Matrix (Soiletc)	Container Type & T-A-T (specify)	84 8 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1		NOTES
K2	21-19	The state of the s	on Amsezoul 5 amy	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
GBH03.0.3.0.4 GBH03.0.5.4.0	4.12		Sar 3 Day 50 Ay	\$		
4.0-2.6-40HBS			الم الم	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
. Si.o.			3,000			
•	>	>		`		
RELINQUISHED BY	-	=	RECEIVED BY	*	Sample Receipt Advice: (Lab Use Only)	courier
Name: S. (Amage) Date: (Bo). Coffey Environments		Name: RR Company: EW	Eurelins	Date: 1(/12/12) Time: 2:45 pm	All Samples Recieved in Good Condition	
Name: Date: Company: Time:	↑	Name: Company:	o.	Date: Time:	Samples Received Properly Chilled Lab. Ref/Batch No.	14.9c0
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - N S - Sulphuric Acid Preserved 1 - Ire ST - Sodium Thiosulfate NP - No Preservative OP - Other Preservative	;, G - Glass Bottle, J - Glass Jar Thioculfate NP - No Preserv	, V- Vial, Z - Ziplos stive, OP - Other P	:k Bag, N - Nitric Acid Preserved,	N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved,	h97 89t	79
2 - Suprimire Acid Tresselves, 1 - Ice, 31 - Sociality	A Commerce of the Commerce of	reac, or center in				

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

New Zealand

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Geotechnics Pty Ltd Chatswood

Contact name:

Simon Hay

Project name: Project ID:

PENNANT HILLS RD SYDEN279944

Turnaround time:

5 Day

Date/Time received

Dec 11, 2020 2:45 PM

Eurofins reference 763264

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 14.9 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Geotechnics Pty Ltd Chatswood email address.

Company Name:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: PENNANT HILLS RD Project ID: SYDEN279944 Order No.: Report #:

763264

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1002

Received: Dec 11, 2020 2:45 PM

Due: Dec 18, 2020

Priority: 5 Day
Contact Name: Simon Hay

Eurofins Analytical Services Manager: Ursula Long

	HOLD	Moisture Set	Eurofins Suite B7						
Melbourne Laboratory - NATA Site # 1254 & 14271									
Sydney Laboratory - NATA Site # 18217								Х	
Brisbane Laboratory - NATA Site # 20794									
Perth Laboratory - NATA Site # 23736									-
Mayfield Laboratory									
External Laboratory									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	R2	Dec 09, 2020		Water	S20-De26196			Х	
2	GBH03_0.3- 0.4	Dec 09, 2020		Soil	S20-De26197		Х	х	
3	GBH04_0.6- 0.7	Dec 09, 2020		Soil	S20-De26198		х	х	
4	GBH05_0.2- 0.3	Dec 09, 2020		Soil	S20-De26199		Х	Х	
5	GBH03_0.9- 1.0	Dec 09, 2020		Soil	S20-De26200	Х			
6	GBH04_1.3- 1.4	Dec 09, 2020		Soil	S20-De26201	х			

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
4 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Dec 18, 2020

Simon Hay

Dec 11, 2020 2:45 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

PENNANT HILLS RD

SYDEN279944

Order No.:

Report #: 763264 Phone: +61 2 9406 1000 Fax: +61 2 9406 1002

Eurofins Analytical Services Manager: Ursula Long

5 Day

Sample Detail							Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71				
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х
Brisl	oane Laboratory	y - NATA Site #	20794					
Perti	n Laboratory - N	IATA Site # 237	36					
May	ield Laboratory							
External Laboratory								
7	GBH05_0.15- 0.2	Dec 09, 2020		Soil	S20-De26202	Х		
Test	Test Counts							

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 763264-S

Project ID Project ID SYDEN279944

Received Date Dec 11, 2020

Client Sample ID			GBH03_0.3-0.4	GBH04_0.6-0.7	GBH05_0.2-0.3
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-De26197	S20-De26198	S20-De26199
Date Sampled			Dec 09, 2020	Dec 09, 2020	Dec 09, 2020
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	-1			
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
ВТЕХ		, , ,			
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	58	60	79
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	·				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			GBH03_0.3-0.4	_	GBH05_0.2-0.3
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-De26197	S20-De26198	S20-De26199
Date Sampled			Dec 09, 2020	Dec 09, 2020	Dec 09, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	113	105	133
p-Terphenyl-d14 (surr.)	1	%	114	111	102
Heavy Metals					
Arsenic	2	mg/kg	< 2	2.0	3.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.4	8.8	9.8
Copper	5	mg/kg	11	< 5	< 5
Lead	5	mg/kg	9.1	11	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	13	22	24
% Moisture	1	%	24	24	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Dec 17, 2020	Holding Time 14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Cydnicy	DCC 17, 2020	14 Days
BTEX	Sydney	Dec 17, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 17, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 17, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 17, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Dec 17, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Dec 11, 2020	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Company Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: PENNANT HILLS RD Project ID: SYDEN279944

Order No.: Report #:

763264

Brisbane

Phone: +61 2 9406 1000 Fax: +61 2 9406 1002 Received: Dec 11, 2020 2:45 PM Due: Dec 18, 2020

Priority: 5 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

	HOLD	Moisture Set	Eurofins Suite B7					
Melb								
Sydney Laboratory - NATA Site # 18217								Х
Brisl								
Perti								
May	field Laboratory	/						
Exte	rnal Laboratory	<u>'</u>			_			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	R2	Dec 09, 2020		Water	S20-De26196			Х
2	GBH03_0.3- 0.4	Dec 09, 2020		Soil	S20-De26197		Х	Х
3	GBH04_0.6- 0.7	Dec 09, 2020		Soil	S20-De26198		Х	х
4	GBH05_0.2- 0.3	Dec 09, 2020		Soil	S20-De26199		Х	х
5	GBH03_0.9- 1.0	Dec 09, 2020		Soil	S20-De26200	х		
6	GBH04_1.3- 1.4	Dec 09, 2020		Soil	S20-De26201	Х		

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Kewdale WA 6105 Murarrie QLD 4172 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name: Project ID:

Company Name:

PENNANT HILLS RD

SYDEN279944

Order No.: Received: Dec 11, 2020 2:45 PM Report #: 763264 Due: Dec 18, 2020

Phone: +61 2 9406 1000 **Priority:** 5 Day +61 2 9406 1002 Fax: **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

Sample Detail	HOLD	Moisture Set	Eurofins Suite B7	
Melbourne Laboratory - NATA Site # 1254 & 14271				
Sydney Laboratory - NATA Site # 18217		Х	Х	Х
Brisbane Laboratory - NATA Site # 20794				
Perth Laboratory - NATA Site # 23736				
Mayfield Laboratory				
External Laboratory				
7 GBH05_0.15- Dec 09, 2020 Soil	S20-De26202	х		
Test Counts	3	3	4	

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acc	eptance imits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
ВТЕХ						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	<u> </u>					
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	199				7 0.00	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery	9/119				. 400	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	84	7/	0-130	Pass	

Т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	83		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	92		70-130	Pass	
Toluene			%	88		70-130	Pass	
Ethylbenzene			%	92		70-130	Pass	
m&p-Xylenes			%	91		70-130	Pass	
o-Xylene			%	90		70-130	Pass	
Xylenes - Total*			%	91		70-130	Pass	
LCS - % Recovery				T			I	
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions						
Naphthalene			%	115		70-130	Pass	
TRH C6-C10			%	81		70-130	Pass	
TRH >C10-C16			%	84		70-130	Pass	
LCS - % Recovery					T T	T		
Polycyclic Aromatic Hydrocar	bons							
Acenaphthene			%	70		70-130	Pass	
Acenaphthylene			%	95		70-130	Pass	
Anthracene			%	84		70-130	Pass	
Benz(a)anthracene			%	92		70-130	Pass	
Benzo(a)pyrene			%	90		70-130	Pass	
Benzo(b&j)fluoranthene			%	89		70-130	Pass	
Benzo(g.h.i)perylene			%	93		70-130	Pass	
Benzo(k)fluoranthene			%	86		70-130	Pass	
Chrysene			%	79		70-130	Pass	
Dibenz(a.h)anthracene			%	86		70-130	Pass	
Fluoranthene			%	74		70-130	Pass	
Fluorene			%	77		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	80		70-130	Pass	
Phenanthrene			%	72		70-130	Pass	
Pyrene			%	89		70-130	Pass	
LCS - % Recovery								
Heavy Metals			%	07		90.430	Doos	
Arsenic Cadmium			%	97 101		80-120 80-120	Pass Pass	
Chromium			%	100		80-120	Pass	
Copper			%	97		80-120	Pass	
Lead			%	102		80-120	Pass	
Mercury			%	102		80-120	Pass	
Nickel			%	100		80-120	Pass	
Zinc			%	101		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-De22703	NCP	%	103		70-130	Pass	
TRH C10-C14	S20-De33068	NCP	%	119		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S20-De22703	NCP	%	88		70-130	Pass	
Toluene	S20-De22703	NCP	%	82		70-130	Pass	
Ethylbenzene	S20-De22703	NCP	%	87		70-130	Pass	
m&p-Xylenes	S20-De22703	NCP	%	87		70-130	Pass	
o-Xylene	S20-De22703	NCP	%	86		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total*	S20-De22703	NCP	%	86			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-De22703	NCP	%	119			70-130	Pass	
TRH C6-C10	S20-De17875	NCP	%	70			70-130	Pass	
TRH >C10-C16	S20-De33068	NCP	%	130			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbon	S			Result 1					
Acenaphthene	S20-De36803	NCP	%	73			70-130	Pass	
Acenaphthylene	S20-De36803	NCP	%	97			70-130	Pass	
Anthracene	S20-De36803	NCP	%	121			70-130	Pass	
Benz(a)anthracene	S20-De36803	NCP	%	88			70-130	Pass	
Benzo(a)pyrene	S20-De36803	NCP	%	98			70-130	Pass	
Benzo(b&j)fluoranthene	S20-De36803	NCP	%	77			70-130	Pass	
Benzo(g.h.i)perylene	S20-De36803	NCP	%	71			70-130	Pass	
Benzo(k)fluoranthene	S20-De36803	NCP	%	89			70-130	Pass	
Chrysene	S20-De36803	NCP	%	79			70-130	Pass	
Dibenz(a.h)anthracene	S20-De36803	NCP	%	72			70-130	Pass	
Fluoranthene	S20-De36803	NCP	%	83			70-130	Pass	
Fluorene	S20-De36803	NCP	%	77			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-De36803	NCP	%	70			70-130	Pass	
Naphthalene	S20-De36803	NCP	%	90			70-130	Pass	
Phenanthrene	S20-De36803	NCP	%	80			70-130	Pass	
Pyrene	S20-De36803	NCP	%	75			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S20-De33856	NCP	%	124			75-125	Pass	
Cadmium	S20-De33856	NCP	%	115			75-125	Pass	
Chromium	S20-De36233	NCP	%	111			75-125	Pass	
Copper	S20-De33856	NCP	%	125			75-125	Pass	
Lead	S20-De33856	NCP	%	118			75-125	Pass	
Mercury	S20-De33856	NCP	%	118			75-125	Pass	
Nickel	S20-De33856	NCP	%	115			75-125	Pass	
Zinc	S20-De36233	NCP	%	118			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S20-De26197	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S20-De26197	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-De26197	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-De26197	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ	1	1 1		Result 1	Result 2	RPD			
Benzene	S20-De26197	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-De26197	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-De26197	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-De26197	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-De26197	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-De26197	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-De26197	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S20-De26197	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-De26197	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-De26197	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons			Result 1	Result 2	RPD				
Acenaphthene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-De26197	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-De26197	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-De33067	NCP	mg/kg	< 2	4.7	100	30%	Fail	Q15
Cadmium	S20-De33067	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-De33940	NCP	mg/kg	11	12	2.0	30%	Pass	
Copper	S20-De33067	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S20-De33067	NCP	mg/kg	9.6	14	39	30%	Fail	Q15
Mercury	S20-De33067	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-De33067	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S20-De33067	NCP	mg/kg	21	22	5.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-De26199	CP	%	13	12	7.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 763264-W

Project ID Project ID SYDEN279944

Received Date Dec 11, 2020

Client Sample ID			R2
Sample Matrix			Water
Eurofins Sample No.			S20-De26196
Date Sampled			Dec 09, 2020
Test/Reference	LOR	Unit	,
Total Recoverable Hydrocarbons - 1999 NEPM Fr		O i iii	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
ВТЕХ			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	103
Total Recoverable Hydrocarbons - 2013 NEPM Fr			
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No.			R2 Water S20-De26196
Date Sampled			Dec 09, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	INT
p-Terphenyl-d14 (surr.)	1	%	INT
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted Dec 11, 2020	Holding Time 7 Days
- Method: LTM-ORG-2010 TRH C6-C40		_	_
BTEX - Method: LTM-ORG-2010 TRH C6-C40	Sydney	Dec 11, 2020	14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40 Polycyclic Aromatic Hydrocarbons	Sydney	Dec 11, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water	C) ac)	200 : ., 2020	. Days
Metals M8	Sydney	Dec 11, 2020	180 Days

⁻ Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261
Phone: +61 2:

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
4 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

Project Name: Project ID:

Company Name:

PENNANT HILLS RD SYDEN279944 Order No.: Report #:

763264

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1002

Received: Dec 11, 2020 2:45 PM **Due:** Dec 18, 2020

Priority: 5 Day
Contact Name: Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			HOLD	Moisture Set	Eurofins Suite B7
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271				
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х
Brisl	bane Laborator	y - NATA Site #	20794					
		NATA Site # 237	36					
	field Laboratory							
	rnal Laboratory	1		1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	R2	Dec 09, 2020		Water	S20-De26196			Х
2	GBH03_0.3- 0.4	Dec 09, 2020		Soil	S20-De26197		Х	Х
3	GBH04_0.6- 0.7	Dec 09, 2020		Soil	S20-De26198		Х	х
4	GBH05_0.2- 0.3	Dec 09, 2020		Soil	S20-De26199		Х	х
5	GBH03_0.9- 1.0	Dec 09, 2020		Soil	S20-De26200	х		
6	GBH04_1.3- 1.4	Dec 09, 2020		Soil	S20-De26201	х		

Company Name:

Project Name:

Project ID:

Environment Testing

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175 16 Mars Road
Phone: +61 3 8564 5000
NATA # 1261 Phone: +61 2 1

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
4 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Geotechnics Pty Ltd Chatswood

Address: Level 18, Tower B, Citadel Tower 799 Pacific Highway

Chatswood NSW 2067

PENNANT HILLS RD SYDEN279944 Order No.: Report #:

763264

Phone: +61 2 9406 1000 **Fax:** +61 2 9406 1002

Received: Dec 11, 2020 2:45 PM **Due:** Dec 18, 2020

Priority: 5 Day
Contact Name: Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sai	nple Detail		HOLD	Moisture Set	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA Site	# 1254 & 14271				
Sydı	ney Laboratory	- NATA Site # 1	3217		Х	Х	Х
Bris	bane Laborator	y - NATA Site#	20794				
Pert	h Laboratory - N	NATA Site # 237	36				
May	field Laboratory						
Exte	rnal Laboratory						
7	GBH05_0.15- 0.2	Dec 09, 2020	Soil	S20-De26202	х		
Test	Counts				3	3	4

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	,	,		•	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank				1 335	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	,y/ <u>_</u>	1 0.000	1 0.000	1 400	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				I	
TRH C6-C9	%	81	70-130	Pass	

Т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	74		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	96		70-130	Pass	
Toluene			%	89		70-130	Pass	
Ethylbenzene			%	89		70-130	Pass	
m&p-Xylenes			%	92		70-130	Pass	
o-Xylene			%	81		70-130	Pass	
Xylenes - Total*			%	88		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions						
Naphthalene			%	89		70-130	Pass	
TRH C6-C10			%	78		70-130	Pass	
TRH >C10-C16			%	76		70-130	Pass	
LCS - % Recovery				T	,	1	T	
Polycyclic Aromatic Hydrocar	bons							
Acenaphthene			%	81		70-130	Pass	
Acenaphthylene			%	84		70-130	Pass	
Anthracene			%	79		70-130	Pass	
Benz(a)anthracene			%	75		70-130	Pass	
Benzo(a)pyrene			%	89		70-130	Pass	
Benzo(b&j)fluoranthene			%	85		70-130	Pass	
Benzo(g.h.i)perylene			%	85		70-130	Pass	
Benzo(k)fluoranthene			%	102		70-130	Pass	
Chrysene			%	82		70-130	Pass	
Dibenz(a.h)anthracene			%	85		70-130	Pass	
Fluoranthene			%	82		70-130	Pass	
Fluorene			%	82		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	85		70-130	Pass	
Phenanthrene			%	79		70-130	Pass	
Pyrene			%	83		70-130	Pass	
LCS - % Recovery								
Heavy Metals			%	101		90.430	Doos	
Arsenic Cadmium			%	101		80-120 80-120	Pass Pass	
Chromium			%	103		80-120	Pass	
Copper			%	107		80-120	Pass	
Lead			%	103		80-120	Pass	
Mercury			%	118		80-120	Pass	
Nickel			%	106		80-120	Pass	
Zinc			%	104		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S20-De25249	NCP	%	78		70-130	Pass	
TRH C10-C14	S20-De09331	NCP	%	79		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S20-De25249	NCP	%	104		70-130	Pass	
Toluene	S20-De25249	NCP	%	103		70-130	Pass	
Ethylbenzene	S20-De25249	NCP	%	102		70-130	Pass	
m&p-Xylenes	S20-De25249	NCP	%	102		70-130	Pass	
o-Xylene	S20-De25249	NCP	%	91		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total*	S20-De25249	NCP	%	98			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-De25249	NCP	%	92			70-130	Pass	
TRH C6-C10	S20-De25249	NCP	%	77			70-130	Pass	
TRH >C10-C16	S20-De09331	NCP	%	79			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S20-De33534	NCP	%	103			75-125	Pass	
Cadmium	S20-De33534	NCP	%	105			75-125	Pass	
Chromium	S20-De33534	NCP	%	109			75-125	Pass	
Copper	S20-De33534	NCP	%	103			75-125	Pass	
Lead	S20-De33534	NCP	%	107			75-125	Pass	
Mercury	S20-De33534	NCP	%	116			75-125	Pass	
Nickel	S20-De33534	NCP	%	108			75-125	Pass	
Zinc	S20-De33534	NCP	%	102			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		, 203,00							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-De25246	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S20-De25246	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S20-De25246	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S20-De25246	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	020 0020240	1401	IIIg/L	<u> </u>			3070	1 433	
BTEX				Result 1	Result 2	RPD			
Benzene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S20-De25246	NCP	mg/L	< 0.002	< 0.001	<1	30%	Pass	
o-Xylene	S20-De25246	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Xylenes - Total*	S20-De25246	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate	320-De23240	INCI	IIIg/L	<u> </u>	< 0.005		3078	1 033	
Total Recoverable Hydrocarbons	2012 NEDM Eroot	ione		Result 1	Result 2	RPD	T .		
•	S20-De25246	NCP	ma/l	< 0.01	< 0.01	<1	30%	Pass	
Naphthalene TRU C6 C40	S20-De25246		mg/L						
TRH C6-C10	1	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	S20-De25246	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S20-De25246	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40 Duplicate	S20-De25246	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Dublicate									
-	•			Post-lit 4	Booult 2	DDD			
Polycyclic Aromatic Hydrocarbon		NCD	ma/l	Result 1	Result 2	RPD	200/	Door	
Polycyclic Aromatic Hydrocarbon Acenaphthene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene	S20-De25246 S20-De25246	NCP	mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30%	Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene	S20-De25246 S20-De25246 S20-De25246	NCP NCP	mg/L mg/L	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<1 <1 <1	30% 30%	Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	S20-De25246 S20-De25246 S20-De25246 S20-De25246	NCP NCP NCP	mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	S20-De25246 S20-De25246 S20-De25246 S20-De25246 S20-De25246	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocarbon Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246 \$20-De25246	NCP NCP NCP NCP NCP NCP NCP NCP	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydro	ocarbons			Result 1	Result 2	RPD			
Phenanthrene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S20-De25246	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S20-De30812	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S20-De30812	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S20-De30812	NCP	mg/L	0.029	0.027	6.0	30%	Pass	
Copper	S20-De30812	NCP	mg/L	0.004	0.004	19	30%	Pass	
Lead	S20-De33530	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S20-De30812	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S20-De30812	NCP	mg/L	0.003	0.003	3.0	30%	Pass	
Zinc	S20-De30812	NCP	mg/L	0.020	0.024	15	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#AU04_Enviro_Sample_NSW

Subject: FW: Sample results BH13_0.5_0.6

Importance: High

From: Hay, Simon <<u>Simon.Hay@coffey.com</u>>
Sent: Tuesday, 22 December 2020 2:33 PM
To: Ursula Long <<u>UrsulaLong@eurofins.com</u>>
Subject: RE: Sample results BH13_0.5_0.6

EXTERNAL EMAIL*

Hi Ursula,

As discussed, could you please schedule TCLP analysis for PAHs and silica gel clean-up on sample BH13-0.5-0.6 on fastest turn around please?

Kind regards Simon

From: Hay, Simon

Sent: Tuesday, 22 December 2020 1:39 PM

To: <u>UrsulaLong@eurofins.com</u>

Subject: Sample results BH13_0.5_0.6

Hi Ursula,

How are you? I was wondering if you had a couple minutes to discuss some sample results for PAHs relating to sample BH13-0.5-0.6, I just had a couple questions. I see that there was matrix interference relating to the sample, but the concentrations of BaP were 90mg/kg but the total PAH's were reported as <0.5mg/kg.

The sample was collected on 24/11/2020 - would this be outside the holding time for TCLP analysis of PAHs?

Kind Regards,

Simon Hay

Senior Environmental Scientist

Level 20, Tower B - Citadel Tower 799 Pacific Highway Chatswood NSW 2067

t: +61 2 9406 1060 f: +61 2 9406 1002 m: 0424 703 009 w: coffey.com

Please consider the environment before printing this email

Click here to report this email as spam.

Scanned By Websense For Euro fins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Children, Building
16 Mars Road
Lane Cove We Site # 1254 & 14271

Sydney Unit F3. Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd NSW

Contact name:

Simon Hay

Project name:

ADDITIONAL PENNANT HILLS ROAD

Project ID:

754-SYDEN279944

Turnaround time:

765392

Date/Time received

Dec 22, 2020 2:33 PM

Eurofins reference

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt:

17.4 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Ursula Long on phone: or by email: UrsulaLong@eurofins.com

Results will be delivered electronically via email to Simon Hay - simon.hay@coffey.com.

Note: A copy of these results will also be delivered to the general Coffey Environments Pty Ltd NSW email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

765392

+61 2 9406 1000

+61 2 9406 1004

Order No.:

Report #:

Phone:

Fax:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Address:

ADDITIONAL PENNANT HILLS ROAD

Project ID: 754-SYDEN279944 Received: Dec 22, 2020 2:33 PM Due: Dec 23, 2020

Priority: 1 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	TRH (after Silica Gel cleanup)	Moisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х
Brisk	oane Laborator	y - NATA Site #	20794						
Perth	n Laboratory - N	NATA Site # 237	36						
Mayf	ield Laboratory	1							
Exte	rnal Laboratory	<u>'</u>							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH13-0.5-0.6	Nov 23, 2020		Soil	S20-De47536			Х	Х
2	BH13-0.5-0.6	Nov 23, 2020		US Leachate	S20-De47539	Х	Х		
Test	Counts					1	1	1	1

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 765392-S

Project name ADDITIONAL PENNANT HILLS ROAD

Project ID 754-SYDEN279944
Received Date Dec 22, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH13-0.5-0.6 Soil S20-De47536 Nov 23, 2020
Test/Reference	LOR	Unit	
TRH - 2013 NEPM Fractions (after silica gel clean-u	ıp)		
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	88
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	2100
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	200
TRH - 1999 NEPM Fractions (after silica gel clean-u	ıp)		
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	2350
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	1500
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	850
% Moisture	1	%	4.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Sydney	Dec 22, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Sydney	Dec 22, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Sydney	Dec 22, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Order No.:

Report #:

Phone:

Fax:

Unit F3, Building F

Sydney

Brisbane Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

765392

+61 2 9406 1000

+61 2 9406 1004

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

Project Name:

Company Name:

Address:

ADDITIONAL PENNANT HILLS ROAD

Project ID: 754-SYDEN279944 Received: Dec 22, 2020 2:33 PM

Due: Dec 23, 2020

Priority: 1 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

		Sa	mple Detail			olycyclic Aromatic Hydrocarbons	JSA Leaching Procedure	RH (after Silica Gel cleanup)	/loisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71					
_		- NATA Site # 1				Х	Х	Х	Х
		y - NATA Site #							
Perth	n Laboratory - N	NATA Site # 237	36						
Mayf	ield Laboratory	1							
Exte	rnal Laboratory	,							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH13-0.5-0.6	Nov 23, 2020	<u>'</u>	Soil	S20-De47536			Х	Х
2	BH13-0.5-0.6	Nov 23, 2020		US Leachate	S20-De47539	Х	Х		
Test	Counts					1	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
TRH - 2013 NEPM Fractions (after	silica gel clean-up)							
TRH >C10-C16 (after silica gel clear	n-up)		mg/kg	< 50			50	Pass	
TRH >C16-C34 (after silica gel clear	n-up)		mg/kg	< 100			100	Pass	
TRH >C34-C40 (after silica gel clear	n-up)		mg/kg	< 100			100	Pass	
Method Blank									
TRH - 1999 NEPM Fractions (after	silica gel clean-up)							
TRH C10-C14 (after silica gel clean-	·up)		mg/kg	< 50			50	Pass	
TRH C15-C28 (after silica gel clean-	·up)		mg/kg	< 100			100	Pass	
TRH C29-C36 (after silica gel clean-	·up)		mg/kg	< 100			100	Pass	
LCS - % Recovery									
TRH - 2013 NEPM Fractions (after	silica gel clean-up)							
TRH >C10-C16 (after silica gel clear	n-up)		%	102			70-130	Pass	
LCS - % Recovery									
TRH - 1999 NEPM Fractions (after	silica gel clean-up)							
TRH C10-C14 (after silica gel clean-	up)		%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-De47046	NCP	%	19	20	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Ursula Long Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd NSW Level 20, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Simon Hay

Report 765392-L

Project name ADDITIONAL PENNANT HILLS ROAD

Project ID 754-SYDEN279944
Received Date Dec 22, 2020

Client Sample ID			BH13-0.5-0.6
Sample Matrix			US Leachate
Eurofins Sample No.			S20-De47539
Date Sampled			Nov 23, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluorantheneN07	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001
Naphthalene	0.001	mg/L	0.002
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	0.002
2-Fluorobiphenyl (surr.)	1	%	95
p-Terphenyl-d14 (surr.)	1	%	INT
USA Leaching Procedure			
Leachate Fluid ^{C01}		comment	1.0
pH (initial)	0.1	pH Units	8.8
pH (off)	0.1	pH Units	5.5
pH (USA HCI addition)	0.1	pH Units	1.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 22, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
USA Leaching Procedure	Sydney	Dec 22, 2020	14 Days

Report Number: 765392-L

Company Name:

Project Name:

Address:

Environment Testing

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Phone:

Fax:

Sydney

Brisbane

+61 2 9406 1000

+61 2 9406 1004

Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Coffey Environments Pty Ltd NSW

Level 20, Tower B, Citadel Tower 799 Pacific Highway

Chatswood

NSW 2067

ADDITIONAL PENNANT HILLS ROAD

Project ID: 754-SYDEN279944 Order No.: Received: Dec 22, 2020 2:33 PM Report #: 765392

Due: Dec 23, 2020

Priority: 1 Day **Contact Name:** Simon Hay

Eurofins Analytical Services Manager: Ursula Long

Sample Detail							USA Leaching Procedure	TRH (after Silica Gel cleanup)	Moisture Set
Melbourne Laboratory - NATA Site # 1254 & 14271									
Sydney Laboratory - NATA Site # 18217						Х	Х	Х	Х
Brisbane Laboratory - NATA Site # 20794									
Perth	n Laboratory - N	IATA Site # 237	36						
Mayf	ield Laboratory								
Exte	External Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	BH13-0.5-0.6	Nov 23, 2020		Soil	S20-De47536			Х	Х
2	BH13-0.5-0.6	Nov 23, 2020	US Leachate S20-De47539				Х		
Test	Counts					1	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

mg/kg: milligrams per kilogram ma/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million ppb: Parts per billion %: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery. CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association Toxicity Characteristic Leaching Procedure TCLP

COC Chain of Custody SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3 CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Polycyclic Aromatic Hydrocarbon	S								
Acenaphthene			mg/L	< 0.001			0.001	Pass	
Acenaphthylene			mg/L	< 0.001			0.001	Pass	
Anthracene			mg/L	< 0.001			0.001	Pass	
Benz(a)anthracene			mg/L	< 0.001			0.001	Pass	
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
Benzo(b&j)fluoranthene			mg/L	< 0.001			0.001	Pass	
Benzo(g.h.i)perylene			mg/L	< 0.001			0.001	Pass	
Benzo(k)fluoranthene			mg/L	< 0.001			0.001	Pass	
Chrysene			mg/L	< 0.001			0.001	Pass	
Dibenz(a.h)anthracene			mg/L	< 0.001			0.001	Pass	
Fluoranthene			mg/L	< 0.001			0.001	Pass	
Fluorene			mg/L	< 0.001			0.001	Pass	
Indeno(1.2.3-cd)pyrene			mg/L	< 0.001			0.001	Pass	
Naphthalene			mg/L	< 0.001			0.001	Pass	
Phenanthrene			mg/L	< 0.001			0.001	Pass	
Pyrene			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbon	S								
Acenaphthene			%	91			70-130	Pass	
Acenaphthylene			%	93			70-130	Pass	
Anthracene			%	91			70-130	Pass	
Benz(a)anthracene			%	89			70-130	Pass	
Benzo(a)pyrene			%	81			70-130	Pass	
Benzo(b&j)fluoranthene			%	81			70-130	Pass	
Benzo(g.h.i)perylene			%	86			70-130	Pass	
Benzo(k)fluoranthene			%	95			70-130	Pass	
Chrysene			%	98			70-130	Pass	
Dibenz(a.h)anthracene			%	73			70-130	Pass	
Fluoranthene			%	100			70-130	Pass	
Fluorene			%	93			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	73			70-130	Pass	
Naphthalene			%	96			70-130	Pass	
Phenanthrene			%	97			70-130	Pass	
Pyrene			%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	s			Result 1	Result 2	RPD			
Acenaphthene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	J20-DC42000								
Dibenz(a.h)anthracene Fluoranthene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Report Number: 765392-L

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S20-De42868	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

Ursula Long Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 765392-L