

Captains Flat to Bungendore – Rail Corridor XRF Survey

Bungendore, NSW

5 February 2024

Project No.: 0608750

Document details	
Document title	Captains Flat to Bungendore – Rail Corridor XRF Survey
Document subtitle	Bungendore, NSW
Project No.	0608750
Date	5 February 2024
Version	FINAL
Author	Max Galbraith / Amy Dorrington
Client Name	John Holland Rail (JHR)

D	
Document	nistory

				ERM approv	/al to issue	
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft v1	00	Max Galbraith	Matthew Crow	Rob MacIntosh	06.04.2022	
Draft v2	01	Max Galbraith	Matthew Crow	Rob MacIntosh	24.05.2022	
FINAL	02	Max Galbraith	Matthew Crow	Rob MacIntosh	02.06.2022	
FINAL v2	03	Amy Dorrington	Matthew Crow	Rob Macintosh	05.02.2024	

www.erm.com Version: FINAL Project No.: 0608750 Client: John Holland Rail (JHR) 5 February 2024

Signature Page

5 February 2024

Captains Flat to Bungendore – Rail Corridor XRF Survey

Bungendore, NSW

Matthew Crow

Principal Environmental Consultant

famel

Rob MacIntosh

Partner

Peter Lavelle

Partner

CEnvP SC EIANZ

Environmental Resources Management Australia Pty Ltd Level 14 207 Kent Street Sydney NSW 2000

© Copyright 2024 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

www.erm.com Version: FINAL Project No.: 0608750 Client: John Holland Rail (JHR) 5 February 2024

CONTENTS

EXE	CUTIV	E SUMMARY	I				
1.	INTR	INTRODUCTION1					
	1.1	Background	1				
	1.2	Objectives					
	1.3	Scope of Works	2				
2.	SITE	SITE SETTING					
	2.1	Site Identification	3				
	2.2	Site Description and Use	3				
		2.2.1 Active Corridor	3				
		2.2.2 Non-Operational Corridor	3				
	2.3	Description of Offsite Areas	4				
	2.4	Environmental Setting					
		2.4.1 Local Topography and Hydrology					
		2.4.2 Geology and Soils					
		2.4.3 Hydrogeology	5				
3.	FIEL	FIELD WORKS					
	3.1						
	3.2	Data Quality Objectives					
	3.3 3.4	Contaminants of Concern					
	3. 4 3.5						
	3.6	Field Observations					
	3.7	Laboratory Analysis					
	3.8 Waste						
4.	RESI	RESULTS					
	4.1	Soil Screening Criteria					
	4.2	XRF Analysis Results					
	4.3	Quality Assurance / Quality Control Evaluation	11				
5 .	PRELIMINARY CONCEPTUAL SITE MODEL						
	5.1	Potential Sources of Contamination					
	5.2	Nature and Extent of Contamination					
	5.3 5.4	Potential Receptors					
	5. 4 5.5						
	0.0	5.5.1 Human Health					
		5.5.2 Onsite Ecological					
		5.5.3 Offsite Surface water					
		5.5.4 Livestock	14				
	5.6	Potentially Complete Exposure Pathways	15				
6.	CON	CLUSIONS	16				
7.	STAT	TEMENT OF LIMITATIONS	18				
8.	REFE	ERENCES	19				

APPENDIX A FIGURES

APPENDIX B DATA TABLES

APPENDIX C DATA QUALITY OBJECTIVES

APPENDIX D CALIBRATION CERTIFICATES AND FIELD DOCUMENTATION

APPENDIX E PHOTOGRAPHIC LOG

APPENDIX F LABORATORY DOCUMENTATION

APPENDIX G QAQC REPORT

APPENDIX H 95% UCL CALCULATIONS

Acronyms and Abbreviations

Name Description

AHD Australian Height Datum AMG Australian Map Grid

ASC NEPM Assessment of Site Contamination National Environment Protection Measure

bgl Below ground level

CoPC Contaminant of Potential Concern **CRN** Country Regional Rail Network

CSM Conceptual Site Model

DP Deposited Plan

DQO Data Quality Objective

EPA **Environment Protection Authority**

ERM Environmental Resources Management Australia Pty Ltd

ha Hectare

JHR John Holland Rail Pty Ltd

kg kilogram Metre m mg Milligram

NEPC National Environment Protection Council **NEPM** National Environment Protection Measure

NSW New South Wales

QA/QC Quality Assurance and Quality Control

TfNSW Transport for NSW **UGL** United Group Limited XRF X-ray fluorescence

EXECUTIVE SUMMARY

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by John Holland Rail Pty Ltd (JHR) to undertake an X-Ray Fluorescence (XRF) soil assessment with supplementary shallow soil assessment for the rail line between the township of Bungendore and Captains Flat, New South Wales (the Site). The Site extended from the intersection of Hoskinstown Road and the active rail line in Bungendore in the north to a point in the former rail corridor approximately 2 km north of Captains Flat. The Site included approximately 3 km of active rail corridor (Bombala Line) and 32 km of the disused Captains Flat Line.

The primary objective of the Shallow Soil Assessment was to assess the nature and extent of lead concentrations in the surface soils of the Investigation Area and to use this information to develop a preliminary Conceptual Site Model (CSM). The Preliminary CSM aims to provide a representation of site-related contamination sources, receptors within 100 m of the Site and exposure pathways between these sources and receptors. Additionally, as required, the preliminary conceptual site model can be used to assess potential implications for notification to the New South Wales Environment Protection Authority (NSW EPA) under Section 60 of the Contaminated Land Management Act 1997 (CLM Act).

The Site is zoned as Infrastructure (SP2) and has historically been utilised for rail activities, including the transport of lead ore concentrate from the Lake George Mine which historically operated in Captains Flat. The primary potentially contaminating activity identified was the historical use of the Site as a rail corridor transporting lead, copper and zinc ore concentrates via uncovered timber wagons from the Captains Flat Mine.

During this investigation it was identified that contaminated materials were likely to have been used in the construction of the rail line. These materials may have included slag, mine tailings, ore concentrates and/or overburden which also represent a potentially significant contamination source. No previous formal investigations have been completed at the Site, however a 2 km portion of the Non-Operational Corridor approaching Captains Flat was previously investigated by Ramboll Australia Pty Ltd (2021), which concluded that the corridor was impacted by lead. The Site passes through a number of rural agricultural properties, which include grazing livestock and residences. The Site also intersects a number of surface water features, including the Molonglo River and passes through forested areas.

The in-situ XRF analysis completed as part of this investigation focused on lead in surface soils to provide a general understanding of the extent and distribution of lead in soils throughout the site, and its potential to impact upon local receptors. A total of 305 XRF measurements were taken at 66 transects along the length of the Site with 22 confirmatory laboratory samples for comparative purposes. The sampling was completed on transects spaced at approximately 500 m intervals and each transect generally included measurements at track, mid corridor and the corridor boundary on both sides for spatial coverage.

The concentrations of lead within the ballast materials generally exceeded the adopted commercial/industrial screening criteria, and were recorded up to at a maximum value of 38,399 parts per million (ppm). Concentrations were observed to decrease with distance from the rail line, however remained elevated in areas where degradation of the rail line had resulted in ballast material being "washed out".

Although one exceedance of commercial industrial criteria was noted within the active rail corridor, section, lead impact did not appear to be widespread through the Active portion of the Site and the ballast material which was noted in the Non-Operational Corridor did not appear to be present. Lead concentrations are broadly present along the Non-Operational Corridor and may primarily be associated with the ballast material used in the construction of the former rail line.

Offsite areas, including surface water features were not assessed as this was outside of the scope of this assessment, however it is noted that surface water bodies near Captains Flat, including the Molonglo River are known to be impacted by historical mine activities. Based on exceedances of criteria at the boundary of the corridor, it is possible that lead impact is present offsite. Due to the link between lead concentrations and the presence of visible ballast materials it is considered likely that offsite impacts would be localised and primarily associated with areas where the rail embankment has eroded, allowing ballast material to mobilise.

Through the development of a preliminary Conceptual Site Model ERM considers that there are a number of potentially complete SPR linkages at the Site relating specifically to lead. These are considered potential as further assessment is required in order to confirm whether or not a risk exists. The receptors listed have been generalised due to the extensive length of the corridor. Note that the SPR linkages have been conservatively identified and have largely been included based on the lack of access controls for the Site and the delineated or unassessed areas of impact.

The identified potential SPR linkages include:

- Intrusive maintenance workers through direct contact or dust inhalation.
- On and offsite agricultural workers, recreational receptors and rural residents through direct contact, dust inhalation or incidental ingestion.
- Potential Recreational users of the Site (with unfenced portions of the corridor passing through townships) through direct contact and/or dust inhalation.
- On and offsite ecological receptors (both terrestrial and freshwater aquatic) in areas of elevated heavy metals, noting surface water has not been assessed.
- Livestock watering at potentially impacted surface water features and (to a lesser extent) feeding on vegetation in impacted areas.
- Offsite abstraction bore users if lead is present in groundwater and extends to offsite domestic bores, noting ground water has not been assessed.

Based on the data collected during this investigation lead impact is present in surface soils at the Site. The potential exists for impacts to extend offsite and potentially complete SPR Linkages are present for on and offsite receptors. Based on these considerations a duty to notify the NSW EPA under S.60 of the CLM Act (1997) is considered to have been triggered.

In order to manage this issue, it is recommended that the following initial actions be taken:

- Notify the Site to the NSW EPA under S.60 of the CLM Act (1997);
- Advise land owners and occupants of properties adjacent to the Non-Operational Corridor of the presence of lead within the footprint of the former tracks and immediate vicinity and that access to the corridor should be avoided.
- The following actions should be taken with regards to further develop the CSM:
 - A Detailed Site Investigation should be undertaken to vertically and laterally delineate concentrations in soil and groundwater;
 - The SPR linkage to livestock and ecological receptors should be further assessed through surface water and sediment sampling at offsite surface water features within 50m of the rail line initially.
- Based on the results an outcomes of the DSI works a formal Human Health and Ecological Risk Assessment (HHERA) may be required to further assess risks to receptors and remediation may be required to effectively manage unacceptable risks.

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by John Holland Rail Pty Ltd (JHR) to undertake a Shallow Soil Survey along a 35 km portion of rail corridor land which runs from the former Lake George Mine at Captains Flat to Bungendore, New South Wales (NSW).

The 'Site' extended from the intersection of Hoskinstown Road and the active rail line in Bungendore in the north to a point in the former rail corridor approximately 2 km north of Captains Flat. The Site comprised of 3 km of active rail corridor (Bombala Line) and 32 km of the disused Captains Flat Line.

A Site location plan is provided as Figure 1 of Appendix A.

1.1 Background

The rail line from Captains Flat to Bungendore and beyond was historically used to transport lead, copper and zinc ore concentrates from the Lake George Mine at Captains Flat, located approximately 37 km to the south of Bungendore. The Lake George Mine was closed in 1962 and the rail corridor was decommissioned. The former Lake George Mine historically produced lead, copper, zinc, silver and gold during two periods from 1882-1889 and 1937-1962. The former mine is known to have caused heavy metals contamination to the surrounding environment, primarily though significant tailing dam collapses in 1939 and 1942 which impacted the Molonglo River, and ongoing leaching from tailings dumps. The mine site has been undergoing various stages rehabilitation since closure, which are ongoing (Mainwaring, R. 2011, Department of Regional NSW, 2022).

In 2021 a Detailed Site Assessment (DSI) was undertaken by Ramboll Australia Pty Ltd (Ramboll) of the former load-out area and adjacent rail corridor at Captains Flat (Ramboll 2021). The DSI identified lead contamination in soils and reported that the activities of the former Lake George Mine was the source of contamination. The contamination was considered to be significant enough to warrant regulation by the New South Wales Environmental Protection Authority (NSW EPA) under the Contaminated Land Management Act (1997) (CLM Act). The Ramboll DSI also included a portion of the former Captains Flat Rail Line extending approximately 1.7 km north of Captains Flat. The DSI identified significant lead concentrations in soils in proximity to the former rail line. Ramboll also noted that portions of the rail line appeared to be constructed from slag ballast, likely sourced from historic smelting activities at the Lake George Mine.

ERM completed a Preliminary Site Investigation (PSI) (ERM 2022a) for the Bungendore Rail Precinct, which is part of the Country Regional Network (CRN), including the rail corridor and all sidings within the township of Bungendore. The PSI aimed to assess whether historical activities (including transport of ore concentrates by rail) had potentially resulted in contamination of surface soils.

Given that lead has been identified in [matrices] at concentrations exceeding the adopted screening values along the rail corridor at both Captains Flat and Bungendore, investigation of the former rail corridor between the impacted areas was considered to be warranted to assess the potential for elevated lead concentrations to be present in soils along the length of the corridor.

1.2 Objectives

The primary objective of the Shallow Soil Assessment was to provide preliminary assessment of the nature and extent of lead concentrations in the surface soils of the Investigation Area and to use this information to develop a preliminary Conceptual Site Model (CSM).

The Preliminary CSM aims to provide a representation of site-related contamination sources, receptors within immediate vicinity of the Site and exposure pathways between these sources and receptors.

Additionally, as required, the preliminary CSM can be used to assess potential implications for notification to the NSW Environment Protection Authority (EPA) under Section 60 of the *Contaminated Land Management Act* (1997) (CLM Act) and to assess and manage potential liabilities in relation to ongoing human health and/or environmental risks.

1.3 Scope of Works

The Corridor Shallow Soil assessment included a shallow soil survey using a handheld XRF analyser supplemented with laboratory analysis. The scope of works included the following tasks:

- Health and safety preparation including:
 - development of an overarching Health, Safety and Environment Plan; and
 - arrangement of rail protection officers (PO).
- Mobilisation to Site with all equipment and materials required to complete the planned scope;
- Navigate the active and inactive portions of the Investigation Area for the purposes of Site inspection and soil assessment;
- Completion of an XRF survey of surface soils at 66 transects along the length to of the corridor;
- Logging of soils at each location by an appropriately experienced ERM field scientist in general accordance with the requirements of AS1726; and
- Twenty soil samples were collected for submission to a NATA accredited laboratory for lead analysis in order to validate XRF field readings.

2. SITE SETTING

2.1 Site Identification

The Site identification information is presented within Table 2.1 below:

Table 2-1: Site Identification

Item	Description			
Site Owner	Transport for New South Wales			
Site Occupier / Usage	CRN Manager (formerly JHR, currently United Group Limited [UGL])			
Site Address	Not Applicable – Non-operational rail corridor from Captains Flat to Bombala Line (~3 km south of Bungendore), and the 3 km operational corridor immediately south of Bungendore (Bombala Line)			
Current Zoning	Infrastructure (SP2)			
Site Perimeter	Approximately 68 km			
Site Area ¹	Approximately 95 Hectares (Ha) comprising: - Active corridor (approx. 3km x 50m wide corridor) - Non-operational corridor (approx. 32km x 25m wide rail corridor)			
Elevation	870-707 m Australian Height Datum (AHD) ¹			
Site Location and Site Layout	Figures 1 - 2 Appendix B			

¹ Data sourced from https://maps.six.nsw.gov.au/

2.2 Site Description and Use

The Site is owned by the New South Wales Government (TfNSW) and at the time of the assessment was managed by JHR, however is currently managed by UGL as part of the CRN. The Site can be divided into two key portions for the purposes of description; Active Corridor and Non-Operational Corridor. These are further described below. The Site layout is illustrated in *Figure 1, Appendix A*. Further details regarding observations made during the site inspection are presented in *Section 3.6*.

2.2.1 Active Corridor

The active corridor is the 3 km portion of the Bombala line from the junction of the former Captains Flat Line to intersection of Hoskinstown Road level crossing, Bungendore at (Chainage 295.677 km). The active corridor is approximately 50 m wide and is generally flat, with limited vegetation other than grass cover. The active rail corridor portion of the Site is fenced with chainlink wire mesh to maintain separation between adjoining public lands and private properties from the active Rail Corridor. The fencing was noted to be in generally good condition.

2.2.2 Non-Operational Corridor

The non-operational corridor is the 32km of inactive railway corridor known as the Captains Flat Line. The corridor intersects with the Bombala Line 3 km south of Bungendore and runs through Hoskinstown and onto Bungendore. The setting is primarily within agricultural lands, however enters forested areas of the Yanununbeyan National Park towards Captains Flat. A number of water ways and drainage channels, including the Molonglo River, intersect the corridor at various points. The corridor is generally unfenced and appears to have been reclaimed as part of the agricultural uses through which the corridor passes.

The rail infrastructure within the corridor is derelict and highly degraded. With the exception of some former railway infrastructure, the bulk of the Site is vacant, vegetated with small trees, grasses, and invasive weeds. The width of the corridor appears to vary from 20-30m, although the lack of corridor demarcation in some areas makes the determination of the precise Site boundary difficult in the field. The rail corridor cuts through slight rises and is artificially built up with ballast above the lower natural landforms to reduce variations in gradient along the rail corridor.

2.3 Description of Offsite Areas

Given the length of the Site, the adjacent land uses vary along the corridor. The non-operational rail corridor portion of the Site traverses through private agricultural properties, residential areas, level crossings and public lands (open space). The majority of the inactive corridor has been opened to the adjoining properties either through the removal or damage of the Sites' fences and the addition of private fences and gates.

The Site passes through landscapes ranging from flat fields to hills, slopes and gorges and the southern portion of the Site enters forested areas which are in proximity to the Yanununbeyan National Park.

The key land uses surrounding the Site along the length of the corridor are illustrated on *Figure 2*, *Appendix A* and a description is given in *Table 2.2* below:

Direction Land use Directly north of the site is the township of Bungendore. Bungendore has a range of land North uses including residential properties, a primary school and preschools, and recreational public spaces. East East of the rail corridor is comprised of mostly private residential and agricultural land. The corridor runs through the small township of Hoskinstown, whilst also intersecting the Molonglo River. South South of the Site is the township of Captains Flat. Captains Flat consists of the Lake George (legacy) Mine, a public school, preschool, recreational public spaces, and residential properties. West To the west of Site, the majority of land consists of private residential and agricultural properties. Yanununbeyan National Park lay west of the southern portion of the Site, whilst the Yandyguinula Creek and the Molonglo river intersect the Site and flow westward.

Table 2-2: Key Offsite Land Features

Source: NSW DPIE (2021)

2.4 Environmental Setting

The following description of the Site's environmental setting is based on sampling investigation undertaken on 22 to 24 November and 15 to 17 December, 2021 and information obtained from publicly available databases and reference sources.

2.4.1 Local Topography and Hydrology

Based on topographical information obtained from topographic mapping, the elevation of the Site ranges from 707 m AHD in the north to 870 m AHD in the south. The local topography onsite is highly variable, ranging from generally flat in the north to undulating in the south towards Captains Flat.

Regionally, the Site is sloping gently from the south-east towards the north-west, with run off generally draining though a series of drainage channels, creeks and rivers towards either Lake Burley Griffin (southern portions of the Site) or Lake George (northern portions of the Site). Major water ways intersecting the Site are shown on *Figure 2, Appendix A*.

2.4.2 Geology and Soils

According to the mapping units provided by the NSW Department of Industry, Resources and Energy the Site is underlain by five primary geological units. These include;

- Colluvium and/or residual deposits, sheetwash, talus, scree; boulder, gravel, sand; possibly
 including minor alluvial or sand plain deposits, local calcrete and reworked laterite.
- Rhyodacitic ignimbrite, agglomerate; dark grey shale, siltstone, limestone, quartzite with conglomerate.
- Shale, siltstone, acid and basic volcanic flows and tuff; minor basalt and basaltic breccia, dacite
 and rhyodacite, lithic tuff and minor shale and conglomerate, volcanic chert.
- Turbiditic sequences of sandstone, mudstone, shale, carbonaceous shale, greywacke; chert, quartzite, phyllite, slate; and
- Channel and flood plain alluvium; gravel, sand, silt, clay; possibly locally calcreted.

The soils observed during the sampling event generally consisted of sandy, gravelly, and occasionally clayey brown silts, with occasional yellow to red components. Under and immediately adjacent to the rail line, a layer of loose dark grey gravelly fill was present underlain by other soils gathered from the surrounds.

The Atlas of Australian Acid Sulfate Soils maps indicates the site contains of sodosol soils, with a 'Low' to 'Extremely Low' Probability of occurrence of acid sulfate soils.

2.4.3 Hydrogeology

A review of groundwater bore information on *WaterNSW Water Information Hub: Groundwater Bores* (2022) identified 52 registered groundwater bores within 500 m of the Site. The bores located are presented on *Figure 4*, *Appendix A*. The bores are registered for a variety of purposes, including irrigation, stock and domestic and water supply. The quality in the bores is not known, however it is possible that groundwater may be used for drinking and domestic purposes in agricultural settings.

Water level information was not available for the identified bores. The shallowest of the bores were installed to depths of 25-30 m below ground surface (bgs). Groundwater flow direction is expected to be locally variable along the length of the Site, however the regional flow is expected to flow the general flow direct of the creeks and rivers towards the north.

3. FIELD WORKS

3.1 General

Fieldworks associated with this investigation were undertaken over two mobilisations on 22 - 24 November and 15 - 17 December 2021. The works had been scheduled to be undertaken in a single mobilisation, however inclement weather led to a postponement of the works until the soils had dried to improve accuracy of the XRF. The works included the collection of 305 XRF readings & 20 soil samples throughout the study area. Sample locations are presented on *Figure 3a-3g, Appendix A*. Field notes pertinent to the works are contained in *Appendix D* and a photographic log is presented in *Appendix E*.

All works were conducted in general accordance with relevant industry guidelines and ERM Standard Operating Procedures (SOPs) and with *USEPA* (2007) Method 6200 – Field Portable X-Ray Florescence Spectrometry for the Determination of Element Concentrations in Soil and Sediment.

3.2 Data Quality Objectives

Data quality objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in *Section 1.2*. The DQOs have been prepared in line with the seven-step approach outlined in *National Environment Protection (Assessment of Site Contamination) Measure (the ASC NEPM)* (NEPC, 1999) (as amended 2013). The seven steps of the DQO process, and how they were applied to the preliminary shallow soil sampling, are presented in *Appendix C*. The DQO process is validated, in part, by the quality assurance and quality control (QA/QC) procedures and assessment presented in *Appendix G* of this report.

3.3 Contaminants of Concern

Based on the initial desktop review and observations made during the Site Inspection the key contaminants of concern for the Site are heavy metals (in particular lead), due to the historical transport of lead ore concentrates along the Rail Line by uncovered wagons of unknown integrity and the identification of lead in the southern portion of the corridor by Ramboll (2021).

3.4 Rationale for Sampling Design

The primary potentially contaminating activity historically undertaken within the investigation area was the transport of lead ore by rail. It is possible that dust from wagons, as well as potential spills along the rail line and sidings have resulted in the presence of heavy metals such as lead, as well as hydrocarbons and other contaminants associated with rail machinery and equipment in shallow soils onsite.

Given the preliminary nature of the investigation and the large investigation area, soil sampling design and spread were focussed upon gaining a representative understanding of the condition of surface soils (upper 0.1 m) within the rail corridor along the entire Site investigation area. By focusing on the surface soils only, an assessment of the potential exposure to lead for identified receptors can be made under a preliminary CSM (refer to Section 6). Sampling locations are illustrated in Figure 3a - 3f and also presented in Tables 3 - 4.

The strategy for soil sampling within the rail corridor was as follows:

- As the length of the corridor is approximately 35 km, measurements were undertaken in a number of transects perpendicular to the former rail line.
- Transects were spaced at approximately 500 m intervals along the corridor.
- Where sufficient space allowed, five measurements were taken at each transect. Measurements were conducted between the track rails, adjacent to the track, and between the track and on both corridor boundaries in safely accessible locations.

- Areas of interest such as areas of washed out rail ballasts and/or drainage channels were also targeted.
- The analysis was designed to provide an initial assessment of potential soil contamination issues to the extent practicable and is considered appropriate for the purposes of this report. Assessment of soils below 0.1 m below ground level (bgl) and groundwater was not included within the design.

3.5 XRF Analysis Method

In-situ XRF measurements were undertaken at 305 individual locations along the Active and Non-Operational Corridors. XRF readings were taken in general accordance with USEPA (2007) Method using the following methodology:

- Analysis locations were sampled in-situ using a Delta Handheld XRF Analyser and was undertaken by an appropriately licensed operator;
- The Delta Handheld XRF Analyser was calibrated daily prior to starting the analysis sampling (annual calibration certificate is provided in *Appendix C*);
- Each XRF location was prepared by clearing vegetation and loose gravels. Locations where soils were observed to be overly damp were avoided;
- Soil at each location was logged by an appropriately experienced ERM field scientist. Soil descriptions for each sample location are summarized in *Table 3*, *Appendix B*;
- XRF analysis was undertaken for 120 seconds per location with results logged instantly (sample logs are provided in *Appendix D*); and
- A total of 22 soil samples were collected for inter and intra laboratory analysis for comparability purposes by collecting the surface soils from which the XRF measurement was taken; and
- Soil samples were submitted to ALS, a NATA accredited laboratory for analysis of lead and moisture content under chain of custody (COC). Laboratory documentation is included in Appendix F.

3.6 Field Observations

Observations made during the Site inspection regarding the Site are outlined below. Results of XRF measurements presented in Section 4.2 are not referenced in this section.

The key feature within the rail corridor was the former rail lines, which had generally been constructed on a raised embankment. The construction of the rail lines differed between the active corridor of the Bombala line (section of Site 3 km to the south of Bungendore) and the non-operational Captains Flat line. The active rail corridor is approximately 50 m wide, with a single track constructed on basalt ballast in the centre of the corridor. The corridor was appropriately fenced, and sparsely vegetated as would be considered appropriate for an active rail infrastructure Site.

The rail infrastructure within the Non-Operational Corridor was derelict and unmaintained, with the majority of the corridor having little to no formal demarcation. The rail lines were constructed on a raised embankment along the majority of the corridor and it appeared include slag and/or ore concentrates within ballast material in the embankment. The ballast was generally present to a depth of approximately 0.1 - 0.3m along the line and appeared limited to the immediate rail footprint. This material ranged from light brown to dark grey with slag like qualities. Larger fragments (50-100mm) were dark grey to black when fractured and the finer gravels were also dark grey to black and of a noticeably lower density than the larger fragments.

Photographs taken of the ballast material are included in *Appendix E*. However, the occasional washed out area was observed where the ballast gravels had migrated towards drainage channels which passed through the corridor. The ballast was underlain by road base like fill material, which formed the bulk of the embankment.

The rail corridor profile was observed to be relatively consistent along the length of the nonoperational corridor. The general profile of the embankment is illustrated in *Figure 5, Appendix A*.

In the area of the corridor outside of the footprint of the rail line, the soils were generally variable, consisting of light to dark brown silts with varying components of sand and clay, occasionally with minor gravel inclusions.

Whilst some locations, particularly those closer to the rail line or areas of ballast were bare of vegetation, most of the non-operational corridor had some degree of grass cover, and subsequently also had a degree of organic content. The moisture content of the soils surveyed ranged from slightly damp to moist, with moisture increasing in vegetated and low lying areas.

In sections, the rail corridor was open to or ran adjacent to private agriculture, with livestock frequently observed to have access to the Site. Other sections of the rail corridor traversed bushland and were largely inaccessible open areas. A number of water ways and drainage channels intersected the rail line. Where these passed under the rail line, timber bridges or culverts had been constructed. These were generally in poor conditions and appeared unstable or were collapsed.

Field descriptions of each sample collected are provided in *Table 3, Appendix B,* and a photo-log is presented in *Appendix E.*

3.7 Laboratory Analysis

The laboratories used for the analysis of confirmatory soil samples was accredited by the National Association of Testing Authorities (NATA), Australia. The primary laboratory used for soil analysis, including intra-laboratory duplicate samples, was Australian Laboratory Services (ALS). Interlaboratory duplicate samples were sent to Eurofins. The analytical methods used by each laboratory is provided in the laboratory certificates provided as *Appendix F*.

Laboratory duplicate samples were analysed for lead and moisture.

3.8 Waste

No soil waste was generated as a result of soil sampling activities, and each investigation location was backfilled using the soil cuttings removed and surrounding surface materials. General waste associated with disposable sampling equipment (e.g. gloves and zip lock bags) was removed from the Site and disposed off-site appropriately as general waste.

4. RESULTS

4.1 Soil Screening Criteria

The Tier 1 screening criteria for soil data was selected based on a review of the National Environment Protection Measure (Assessment of Site Contamination) (ASC NEPM) (Revised 2013): Schedule B1: Guideline on the Investigation Levels for Soil and Groundwater.

Health Investigation Levels (HILs) for human health – direct contact and Ecological Investigation Levels (EIL's) were applied. Given the broad area of investigation, criteria for various land uses were applied based on the identified Site receptors as described in *Section 6.3*.

The Screening Criteria were applied as follows:

- Commercial/Industrial (HIL D and EIL)
 - all samples were screened against commercial/industrial criteria, due to the Sites' primary intended use as a rail corridor;
- Open Space/ Recreation (HIL-C)
 - all samples were additionally screened against HIL C criteria due to the evidence of recreational and/ or communal walking tracks through the multiple area and evidence of illegal access to the Rail Corridor;
- Residential (HIL A) and EIL (Urban Residential & Open Space)
 - samples in transect locations T7-T41 as well as the boundary locations in transects T1-T6 were additionally screened against the relevant low density residential criteria (HIL A). This was used as an indication of whether any offsite risks may be plausible. HIL A and EIL have been applied to areas where agriculture interacts either adjacent or openly with the rail corridor in lieu of the availability of published livestock grazing screening values for lead in soils; and
- Areas of Ecological Significance EIL
 - locations within the forested areas near the Yanununbeyan National Park and where the
 corridor is in proximity to the Molonglo River have been screened against EILs which
 account for the presence of more sensitive specifies (protection of 99% of specifies). This
 area includes transect locations T51-T66.

The ASC NEPM (2013) provides the following guidance on the application of the screening criteria and interpretation of any exceedances of the criteria: "Investigation and screening levels are not clean-up or response levels nor are they desirable soil quality criteria. Investigation and screening levels are intended for assessing existing contamination and to trigger consideration of an appropriate site-specific risk-based approach or appropriate risk management options when they are exceeded."

4.2 XRF Analysis Results

Prior to screening of data against the criteria listed in Section 4.1, the XRF data was subject to thorough review, namely comparison to the confirmatory laboratory samples. Following the data review, it was deemed appropriate to adjust the data according to the average moisture content in laboratory samples (18% w/w). Where both XRF data and laboratory data were available, the higher of the two values was included in the corrected data set. XRF results were "moisture corrected" using the formula:

Corrected XRF Lead Concentration = XRF Lead Concentration / (100 – Average moisture content%)*100)

Further details of the data review and correction are provided in *Appendix G*. Both the raw data of the XRF analysis undertaken on the Site and the corrected data set used in the final data screening exercise are tabulated in *Tables 4a and 4b*, *Appendix B* and summarised below in *Tables 4-1* and *4-2* below. Sample locations and exceedances of relevant criteria are illustrated on *Figures 3.1 - 3.31*, *Appendix A*.

The data for the Active Corridor and the Non-Operational Corridor has been summarised separately due to the different exposure settings and the clear differences in the magnitude of concentrations between the two areas.

Table 4-1 - Corrected Data Results Summary - Active Corridor

Location		Adjacent to Tracks	Mid Corridor	Corridor Boundary	Total
Total Results		12	1	10	23
Average (mg/kg)		290.0	51.1	67.0	182.7
Highest Result (mg/kg)		1,992.0	51.1	280.4	1,992.0
Exceedances (NEPM, 2013)	HIL A	NA	NA	0	0
	HIL C	NA	NA	0	0
	HIL D	1	0	0	1
Exceedance Rate (%)		8%	0%	0%	4%

^{*}Where laboratory soil data was reported higher than corrected XRF, laboratory analysed data is reported.

Table 4-2 - Corrected Data Results Summary - Non-Operational Corridor

Location		At Tracks	Mid Corridor	Corridor Boundary	Total
Total Results		59	125	98	282
Average (mg/kg)		5,719.9	1,954.3	411.7	2,395.4
Highest Result (mg/kg)		25,235.7	33,769.5	6,981.9	33,769.5
Exceedances (NEPM, 2013)	HIL A	52	81	23	156
	HIL C	51	60	15	126
	HIL D	46	41	6	93
Exceedance Rate (HIL-A) (%)		88.1%	64.8%	23.5%	55%

^{*}Where laboratory soil data was reported higher than corrected XRF, laboratory analysed data is reported.

The comparison of the data collected at the Active Corridor to the Non-Operational Corridor demonstrates a significant difference in overall lead impact. There appears to be consistent lead impact along the length of the Non-Operational Corridor which does not appear to be present in the Active Corridor to the same extent.

Active Corridor

One sample exceeded HIL-D criteria within the Active corridor results. The result was <250% of the screening level and did not appear to represent wide spread or systematic impact. Furthermore the calculated UCL for the Active Corridor data was below the HIL-D criteria and the standard deviation was <50% of the criteria. UCL calculations are included in Appendix H and are summarised in Table 4, Appendix B.

The lead concentrations in this area of the Site were more likely a result of the historical transport of lead ore concentrates by rail through the corridor. The distribution was generally consistent with the lead concentrations identified in the portions of the Bombala Line which passes through the Bungendore Rail Precinct where braking and shunting or loading of material were limited (ERM 2022a). Sample locations and exceedances of relevant criteria for the Active Corridor are illustrated on *Figures 3.1 - 3.3, Appendix A*.

Non-Operational Corridor

Data collected from the Non-Operational Corridor indicates that significant lead impact exists within the corridor. The impact is concentrated both within the footprint of the former tracks and the area immediately adjacent. The lead appeared to be closely linked to the presence of the material used as ballast in the construction of the tracks. The results indicate lead concentrations generally decreased with increasing distance away from the rail line on occasion reaching assumed background levels (~20 mg/kg) by the edge of the corridor. However, in areas where ballast had been visibly washed out from the footprint of the tracks, lead concentrations were elevated at the boundary. The ballast material was readily identifiable and distinguishable from the underlying embankment gravels and surrounding natural soils due to its dark grey colouration and slag like form.

Although locations termed 'corridor boundary' generally exhibited significantly lower lead concentrations that those observed at the tracks, a number of measurements remained in excess of screening criteria at the corridor boundary. The areas of lead on the corridor boundary were generally associated with areas of wash out, where the ballast material had been eroded from the footprint of the tracks. Note that at a number of locations true boundary measurements could not be taken due to accessibility issues (vegetation, fencing, potentially unstable cutting ridges etc.). In these cases the location nearest to the boundary was used to assess potential offsite migration of lead. Overall, 25 of the 60 transect locations within the Non-Operational Corridor returned lead measurements at the corridor boundary (or location nearest to the boundary) in excess of relevant screening criteria. The exceedances were distributed relatively evenly along the entire corridor. Sample locations and exceedances of relevant criteria for the Non-Operational Corridor are illustrated on *Figures 3.3 - 3.31*, *Appendix A*

4.3 Quality Assurance / Quality Control Evaluation

A detailed QA/QC report including field procedures, laboratory methods and an analysis of QA/QC results from the investigation is provided in *Appendix G*.

In summary, the XRF data has been compared to the laboratory data and it was considered appropriate to adjust the XRF dataset to account for moisture content within soils, which overall increased the individual values. Where the laboratory concentration exceeded the adjusted data point, the laboratory concentration was used in the adjusted data set. The adjusted data is considered to be of sufficient accuracy to base conclusions on.

In summary, field and laboratory QA/QC data were adjusted to account for any systematic and method biases and the final adjusted data set was assessed to be of sufficient quality for the purposes of this investigation.

5. PRELIMINARY CONCEPTUAL SITE MODEL

An understanding of potential exposure scenarios is necessary to evaluate the suitability of a site for a particular land use, being the current approved or potential future land use. Potential exposure pathways are evaluated for completeness based on the existence of:

- a source of contamination/impact;
- a mechanism for release of contaminants from identified sources;
- a contaminant retention or transport medium (e.g. soil, air, groundwater, etc.);
- potential receptors of contamination; and
- a mechanism for chemical intake by the receptors at the point of exposure.

Whenever one or more of the above elements is missing, the source/pathway/receptor linkage is incomplete and there can be no risk to the identified receptor.

This Preliminary CSM is based on the observations made during the Site walk over and the preliminary data obtained during this investigation. Given the focus of this investigation was on lead on surface soils, this Preliminary CSM has assessed only SPR linages related the presence of lead at the Site. Due to the length of the corridor and the various properties and land uses which the corridor passes through, assumptions and generalisations around land-use have been made to allow broad assessment of potentially complete SPR linkages. Where a potential risk is flagged in this Preliminary CSM, further assessment of risk to specific receptors will be required.

5.1 Potential Sources of Contamination

The primary contaminating activities which are known to have occurred at the Site are related to the historical operations at the former Lake George Mine at Captains Flat. Specific Mine activities which are likely to have contributed to lead contamination are:

- Transport of lead ore concentrate by rail along the length of both the Non-Operational and Active Corridors.
- Use of contaminated materials in the construction of the rail line, namely slag from the historical smelter at the Captains Flat Mine, mine overburden and/or unprocessed ore.

As noted earlier, this Preliminary CSM has been focused on lead contamination only, however it is possible that the long term use of the Site as a rail corridor and subsequent agricultural usage for portions of the corridor may have resulted other contaminant sources. If additional information indicates that other sources are likely, then the CSM for the Site may need to be updated and refined in the future.

5.2 Nature and Extent of Contamination

Although one exceedance of commercial industrial criteria was noted in the active corridor lead impact did not appear to be widespread through the Active portion of the Site.

Lead concentrations are broadly present along the Non-Operational Corridor and which are primarily associated the ballast material used in the construction of the former rail line. The concentrations within the ballast generally exceed commercial/industrial screening criteria, and were observed at a maximum of 38,399 mg/kg. Concentrations decreased significantly with distance from the rail line, however remained significantly elevated in areas were degradation of the rail line had resulted in ballast material being washed out.

Offsite areas, including surface water features have not been assessed. Based on exceedances of criteria at the boundary of the corridor, it is possible that lead impact is present offsite. Due to the observed link between lead concentrations and the presence of visible ballast gravels it is also likely that offsite impacts would primarily be localised to areas where the rail embankment has eroded, allowing ballast material to mobilise. It should also be noted that the surface water immediately downstream of the former Lake George Mine, namely the Molonglo River, is known to have been impacted by leachate from tailings dams and also historical dam collapses (Ramboll 2021, Mainwaring, R. 2011). No information is available for surface water in the vicinity of the northern portion of the Site.

5.3 Potential Receptors

The following potential receptors have been identified relevant to the Site:

Human Receptors:

- Onsite Intrusive Maintenance Workers;
- On and offsite agricultural workers;
- Onsite recreational users;
- Offsite residents:
- Offsite recreational users and recreational users of the downstream waterways; and
- Potential users of groundwater.

Ecological Receptors:

- Offsite freshwater receptors; and
- On and offsite terrestrial receptors.

Other Receptors

On and offsite livestock.

5.4 Potential Pathways

The primary potential exposure pathways of concern at the Site are:

- Dermal contact and / or incidental ingestion with impacted soils / sediments, surface water);
- Private and agricultural produce consumption;
- Inhalation of dust (from impacted soils);
- Livestock ingesting surface water from dams; and
- Contact with groundwater via potential abstraction bores.

5.5 Qualitative Evaluation of Environmental Risk

5.5.1 Human Health

The primary land use is of the Site is intended to be as a rail corridor. Due to its primary purpose onsite commercial/industrial receptors (rail workers) have been assessed as being present onsite, however during field works the Non-Operational Corridor appeared to be unmaintained and therefore rail workers may not actually be accessing impacted areas.

The Non-Operational Corridor is largely unfenced and has been incorporated into surrounding landuse along the majority of the corridor. This includes agricultural and rural residential properties. The properties are generally large and the requirement for frequent access to the former rail line appears to be low, however for the purposes of this assessment it is assumed that given the impacted

areas are accessible, the Non-Operational Corridor is being accessed by occupants of rural properties and agricultural workers.

The Non-Operational Corridor passes through the Hoskinstown municipality and is located adjacent to residential properties. The corridor is unfenced and freely accessible and therefore it is possible that residents of Hoskinstown access the Site for recreational purposes.

The primary pathway for all human receptors is likely to be direct contact. Dust inhalation is also possible where soil disturbance occurs. It is unlikely that significant dust would be regularly generated from the soils within the track ballast, where the majority of lead is present and pose a risk to offsite receptors. These SPR linkages are considered to be potentially complete for all receptors in the absence of any access controls.

Dust inhalation is considered to be a potential SPR linkage for both commercial / industrial users, particularly given that the lead impacted area was sparsely vegetated which may promote dust generation. It is noted that the exposure under this scenario would be highly incidental based on the infrequent nature of weather events which may generate significant dust.

The potential for contamination to have migrated to groundwater has not been assessed, it is considered unlikely that the identified lead impacts would have migrated to groundwater given the likely low vertical mobility of the identified lead contamination and reported depth to groundwater in the area, however this cannot be ruled out.

5.5.2 Onsite Ecological

The Site is accessible to various fauna and no deterrent is in place for any ecological receptors. Exceedances of ecologically based lead criteria were noted across the Site, including in the portion of the Site towards Captains Flat which passes though forested areas in proximity to the Yanununbeyan National Park. Based on this, it is possible that areas of the Site where concentrations of heavy metals are elevated are supportive of ecological receptors.

5.5.3 Offsite Surface water

It is considered possible that lead in shallow soil may mobilise in surface water runoff during rainfall and could migrate offsite into drainage channels which are connected to offsite surface water receptors such as the Molonglo River. Although significant mobilisation of contaminated ballast was not generally observed to be widespread along the corridor, limited areas of wash out in surface water bodies were evident. Offsite surface water has not been assessed as part of this investigation, and as such a potential SPR linkage cannot be excluded from further consideration. The potential for impact to surface water bodies presents a risk to both offsite freshwater ecological receptors and recreational users of offsite surface water bodies. However, as discussed previously it is important to note that impacts to the Molonglo River associated with other mine activities and uncontrolled releases are well documented and thus may confound attempts to identify impacts associated solely with rail corridor materials

5.5.4 Livestock

An appropriate screening criteria for protection of grazing livestock was not identified for use in assessing the data set. The agricultural lands which the Site passes through are primarily used for grazing livestock. Although the livestock can access the impacted areas, the Site would be unlikely to represent a significant proportion of the livestock diet in the context of the large areas of grazing land available to the livestock. Furthermore, vegetation growth in the areas of highest lead concentration was limited or absent, limiting opportunity for grazing on impacted vegetation. Despite this, the impacted areas are open to grazing livestock, and impacts may extend beyond the Site boundary on agricultural properties. Therefore, until further assessment is completed a potential SPR linkage is present for livestock grazing in impacted areas.

A number of dams are located in proximity close to the corridor which may be used for the purpose of livestock watering. If runoff from the impacted areas enters the dams, lead concentrations may be present in the dams, creating a further potential SPR linkage for livestock.

5.6 Potentially Complete Exposure Pathways

A Source-Pathway-Receptor (SPR) linkage is considered to be present when a pathway links a source with a receptor. These linkages explain when there may be risks to the receptor, either now or in future. Based on available information, the following potentially complete SPR linkages currently exist:

Onsite:

- Intrusive maintenance workers through direct contact or dust inhalation.
- Agricultural workers and rural resident through direct contact or dust inhalation.
- Recreational users through direct contact and/or dust inhalation (with unfenced portions of the corridor passing through townships and being accessible for any use).
- Onsite ecological receptors in areas of elevated heavy metals, noting that the Site is not intended to be supportive of ecological communities given its commercial / industrial use as a Rail Corridor and sidings.

Offsite:

- Livestock watering at potentially impacted surface water features and (to a lesser extent) feeding on vegetation in impacted areas.
- Offsite agricultural receptors adjacent to areas in which contaminated material has migrated offsite (agricultural workers).
- Offsite recreational receptors through direct contact or dust inhalation.
- Offsite rural residents through direct contact, dust inhalation or incidental ingestion (through consuming home grown produce).
- Offsite ecological receptors in surface water, noting the surface water has not been assessed.
- Offsite ecological receptors (terrestrial), noting that contamination on Site has not been delineated in all areas.
- Offsite abstraction bore users if lead is present in groundwater and extends to offsite domestic bores, noting ground water has not been assessed.

6. CONCLUSIONS

Based on the results of the investigation works completed for the Site and reported upon within this XRF Survey Report, the overall objectives are considered to have been met. A preliminary understanding of the nature of extent of lead in surface soils has been established. Potential SPR linkages have been assessed through the development of a Preliminary CSM for the Site.

The Site includes two distinct areas, an Active Corridor which includes 3 km of the Bombala Line immediately south of Bungendore and a Non-Operational Corridor which includes approximately 34 km of the former Captains Flat line. The Non-Operational Corridor is largely unfenced and passes through a number of rural agricultural properties, which include grazing livestock and residents. The Site also intersects a number of surface water features, including the Molonglo River and also passes through forested areas.

The primary potentially contaminating activity identified was the historical use of the Site as a rail corridor transporting lead ore concentrate via uncovered timber wagons from the former Lake George Mine. During this investigation it was considered that use of contaminated materials in the construction of the rail line, including slag, mine tailings and/or overburden also represents a potentially significant contamination source. No previous formal investigations have been completed at the Site, however a 2 km portion of the Non-Operational Corridor approaching Captains Flat was previously investigated by Ramboll (2021), which concluded that the corridor was impacted by lead.

Based on the data collected, concentrations of lead were present above applicable screening criteria at a significant proportion of the locations assessed. The distribution of lead in shallow soils at the Site can be summarised as follows:

- Although one exceedance of commercial industrial criteria was noted in the active corridor lead impact did not appear to be widespread through the Active portion of the Site.
- Lead concentrations up to 38,399 mg/kg are broadly present along the Non-Operational Corridor which are primarily associated the ballast material used in the construction of the former rail line.
- Concentrations within the ballast generally exceeded the adopted commercial/industrial screening criteria. Concentrations decreased significantly with distance from the rail line, however remained significantly elevated in areas where degradation of the rail line had resulted in ballast material being washed out.
- Offsite areas, including surface water features have not been assessed. Based on exceedances of criteria at the boundary of the corridor, it is possible that lead impact is present offsite. Due to the link between lead concentrations and the presence of visible ballast gravels it is likely that offsite impacts would be localised to areas where the rail embankment has eroded, allowing ballast material to mobilise. It is noted that surface water bodies near to Captains Flat, including the Molonglo River are known to be impacted by historical mine activities.

Through the development of a preliminary Conceptual Site Model ERM consider that a number of potentially complete SPR linkages may exist at the Site relating specifically to lead. These are considered potential as further assessment is required in order to confirm if a risk exists. The receptors listed have been generalised due to the extensive length of the corridor. Note that the SPR linkages have been conservatively identified and have largely been included based on the lack of access controls for the Site and the delineated or unassessed areas of impact. The identified potential SPR linkages include:

- Intrusive maintenance workers through direct contact or dust inhalation.
- On and offsite agricultural workers, recreational receptors and rural residents through direct contact, dust inhalation or incidental ingestion.
- Recreational users of the Site (with unfenced portions of the corridor passing through townships)
 through direct contact and/or dust inhalation.

Bungendore, NSW

- On and offsite ecological receptors (both terrestrial and freshwater aquatic in areas of elevated heavy metals, noting surface water has not been assessed.
- Livestock watering at potentially impacted surface water features and (to a lesser extent) feeding on vegetation in impacted areas.
- Offsite abstraction bore users if lead is present in groundwater and extends to offsite domestic bores, noting ground water has not been assessed.

Based on the data collected during this investigation lead impact is present in surface soils at the Site. The potential exists for impacts to extend offsite and potentially complete SPR Linkages are present for on and offsite receptors. Based on these considerations a duty to notify the NSW EPA under S.60 of the CLM Act (1997) is considered to have been triggered.

In order to manage this issue, it is recommended that the following initial actions be taken:

- Notify the Site to the NSW EPA under S.60 of the CLM Act (1997);
- Advise land owners and occupants of properties adjacent to the Non-Operational Corridor of the presence of lead within the footprint of the former tracks and immediate vicinity and that access to the corridor should be avoided;
- Additional interim management measures may be undertaken including installation of signage along the non-operational corridor to advise appropriate hygiene measures for human health protection;
- The following actions should be taken with regards to further develop the CSM:
 - A Detailed Site Investigation should be undertaken to vertically and laterally delineate concentrations in soil and groundwater;
 - The SPR linkage to livestock and ecological receptors should be further assessed through surface water and sediment sampling at offsite surface water features within 50m of the rail line initially.
- Further characterisation of the impacts identified are likely required through a DSI. Based on the results and outcomes of the DSI works a formal Human Health and Ecological Risk Assessment (HHERA) to further assess risks to receptors and requirement for remediation and/or ongoing management may be required to effectively manage unacceptable risks.

7. STATEMENT OF LIMITATIONS

This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. ERM performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. ERM makes no warranty concerning the suitability of the Site for any purpose or the permissibility of any use, development or re-development of the Site. Except as otherwise stated, ERM's assessment is limited strictly to identifying specified environmental conditions associated with the subject site and does not evaluate structural conditions of any buildings on the subject site. Lack of identification in the report of any hazardous or toxic materials on the subject site should not be interpreted as a guarantee that such materials do not exist on the Site.

This assessment is based on site inspection conducted by ERM personnel, sampling and analyses described in the report, and information provided by John Holland Rail Pty Ltd ('JHR' or 'the client') or other people with knowledge of the site conditions. All conclusions and recommendations made in the report are the professional opinions of the ERM personnel involved with the project and, while normal checking of the accuracy of data has been conducted, ERM assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.

ERM is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.

ERM PREPARED THIS REPORT FOR THE SOLE AND EXCLUSIVE BENEFIT AND USE OF JHR. NOTWITHSTANDING DELIVERY OF THIS REPORT BY ERM OR JHR TO ANY THIRD PARTY, UNLESS OTHERWISE EXPRESSLY AGREED, ANY COPY OF THIS REPORT PROVIDED TO A THIRD PARTY IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, WITHOUT THE RIGHT TO RELY AND ERM DISCLAIMS ALL LIABILITY TO SUCH THIRD PARTY TO THE EXTENT PERMITTED BY LAW. ANY USE OF THIS REPORT BY A THIRD PARTY IS DEEMED TO CONSTITUTE ACCEPTANCE OF THIS LIMITATION.

8. REFERENCES

Australian Standards (2017), AS 1726:2017 - Geotechnical Site Investigations

ERM (2022a) Preliminary Site Investigation, Bungendore Rail Corridor. Ref: 0608750

ERM (2022b) Preliminary Site Investigation, Bungendore Station. Ref: 0608750

Department of Regional NSW. Exploring and Mining Case Studies: Captains Flat (Lake George) Mine. Accessed on 30 March 2022. https://www.regional.nsw.gov.au/meg/exploring-and-mining/legacy-mines-program/case-studies/captains-flat-lake-george-mine

Heritage NSW (2021), State Heritage Register Heritage Item: Bungendore Railway Station and yard group

National Environment Protection Council (1999), National Environment Protection (Assessment of Site Contamination) Measure (the ASC NEPM) (as amended 2013)

NSW EPA (1997), NSW Protection of the Environment Operations (POEO) Act, 1997

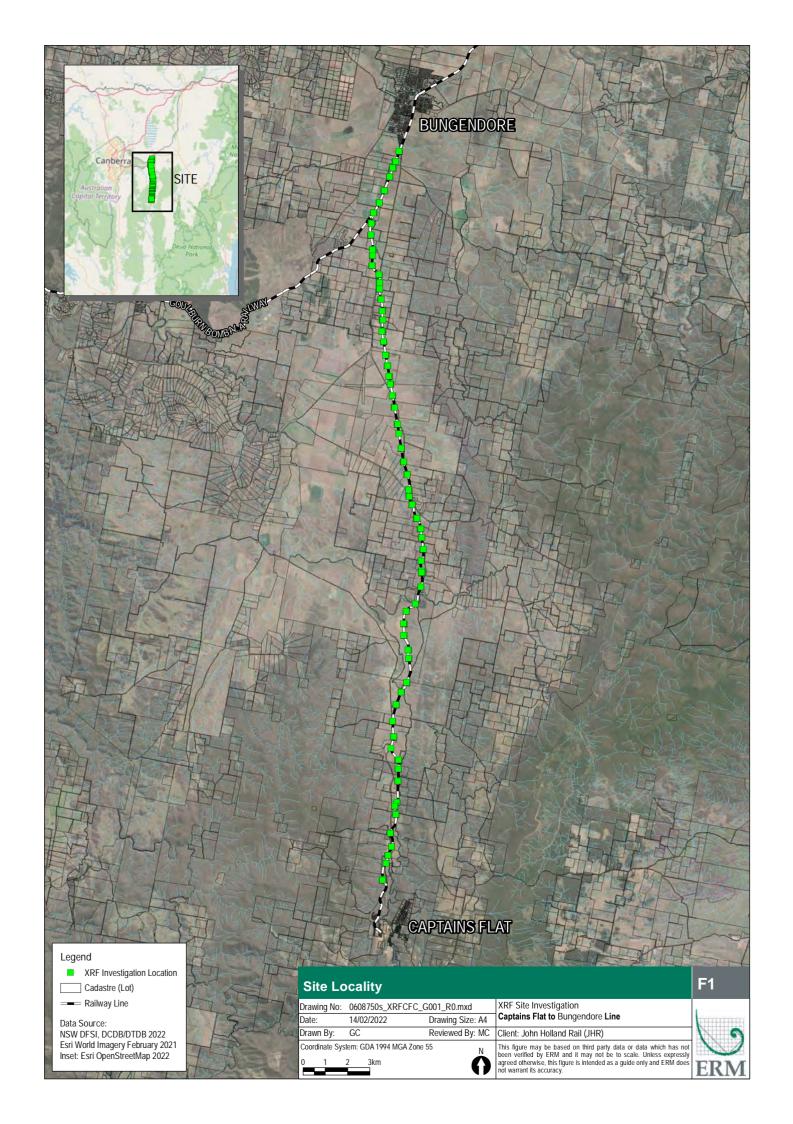
NSW EPA (2017), Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd edition)

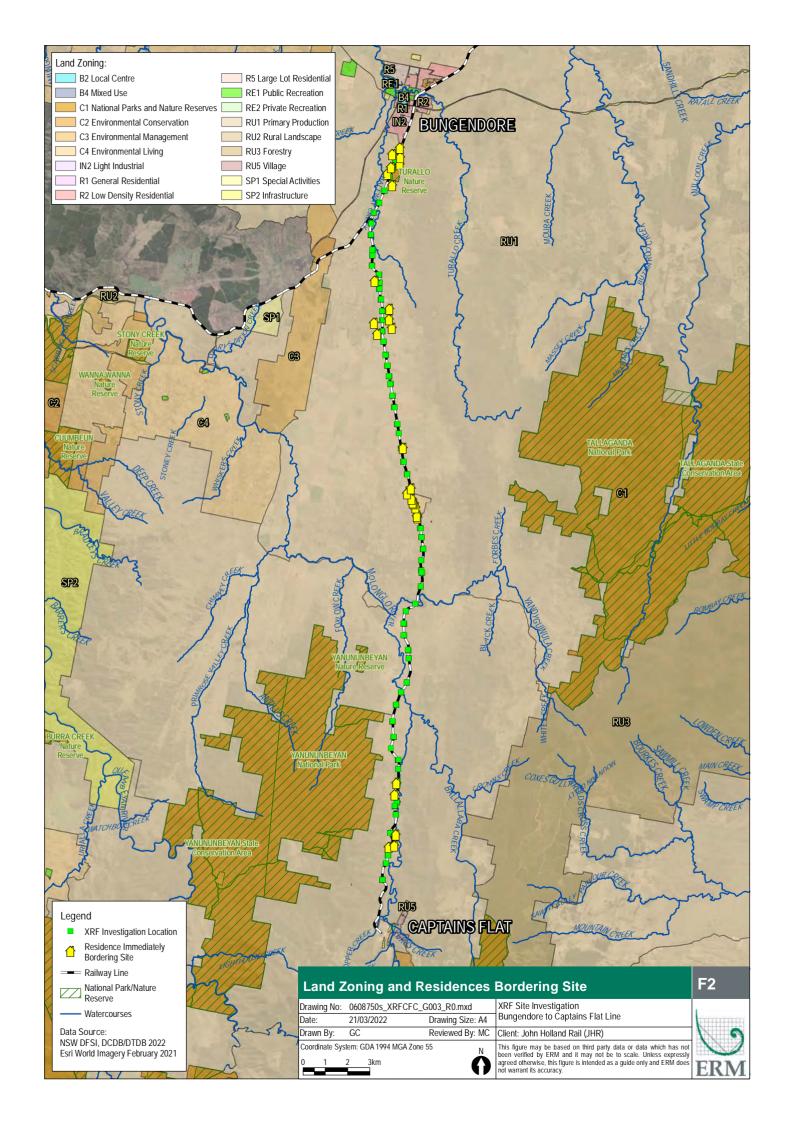
NSW Department of Industry Planning & Environment (DPIE) (2021), Environmental Planning Instrument Land Zoning

NSW DPIE (2014), Geological Units 1:250,000

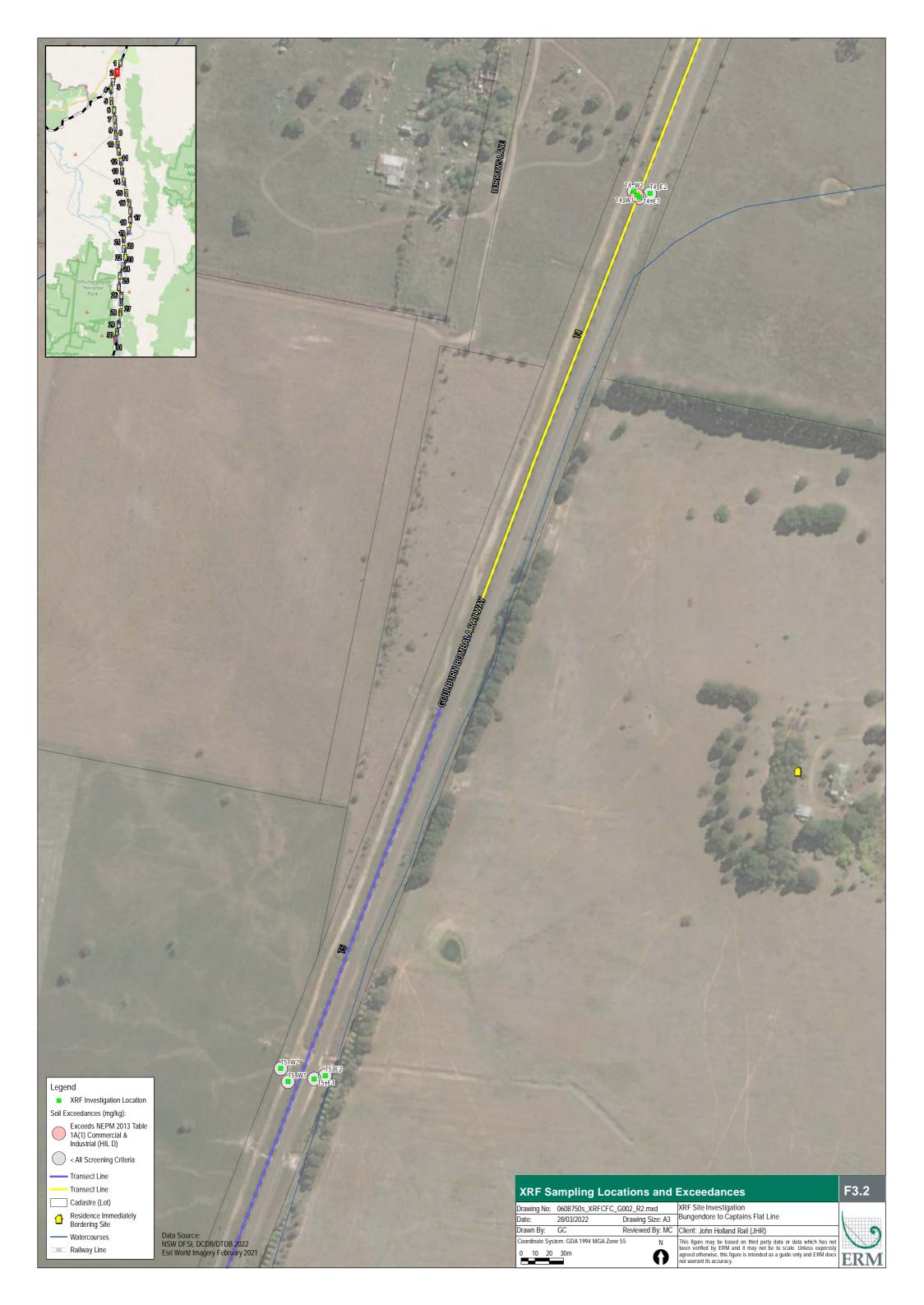
NSW DPIE (2014), Geological Structures 1:250,000

NSW Government Spatial Services (2021), Tanks (Areas)

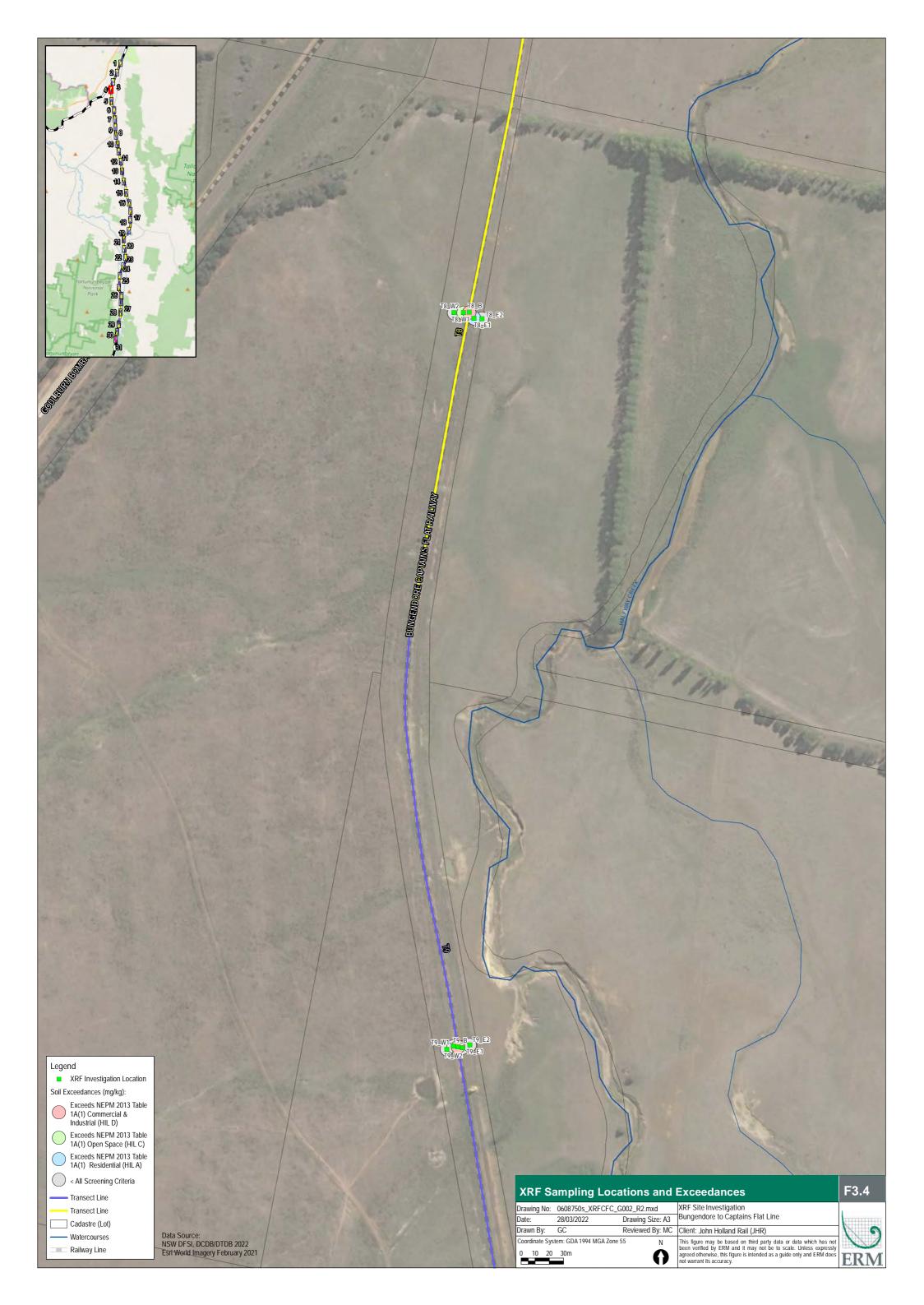

NSW DPIE (2021), Environmental Planning Instrument Local

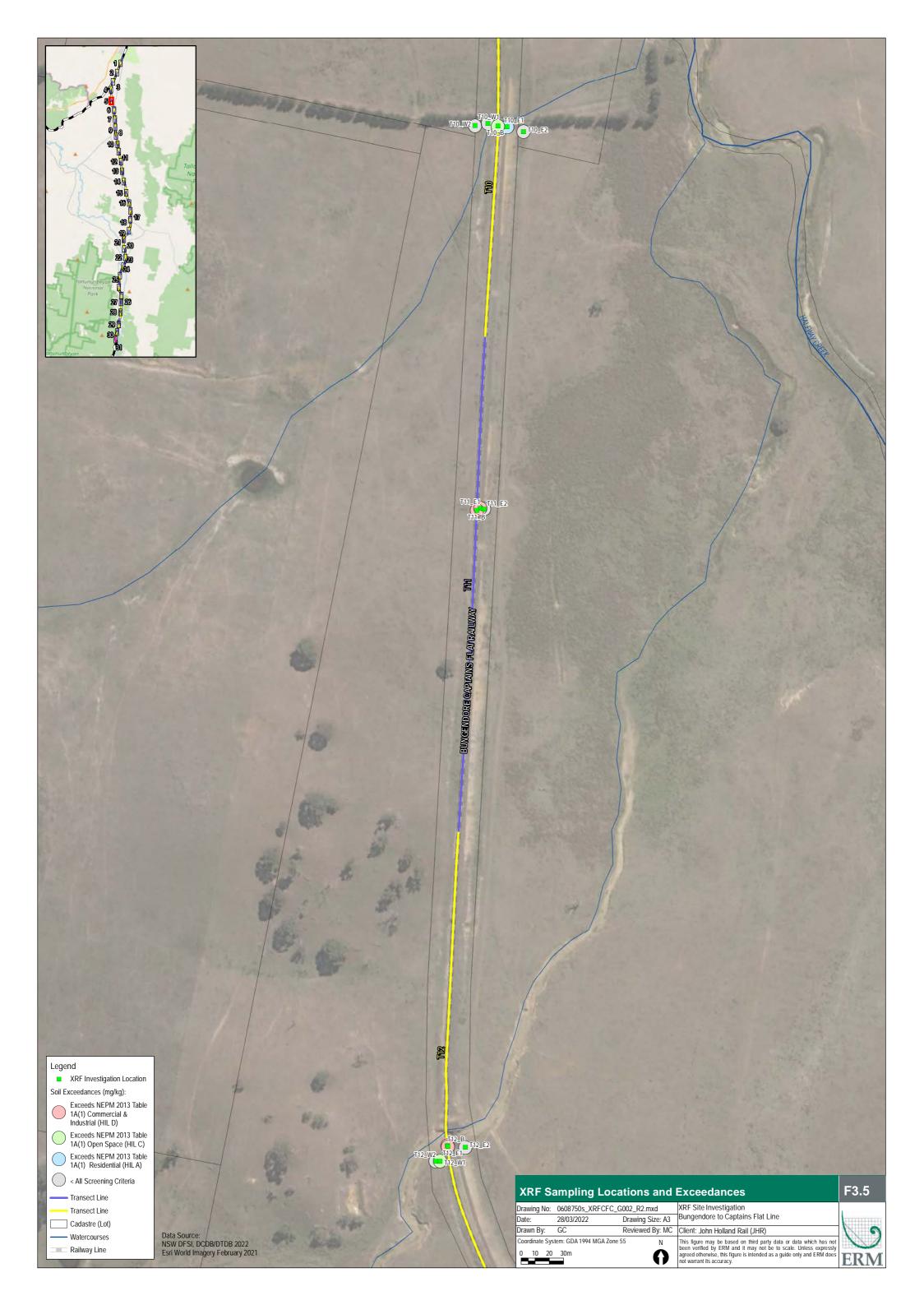

Mainwaring, R. (2011) Riches beneath the Flat: A history of the Lake George Mine at Captains Flat. Light Railway Research Society of Australia.

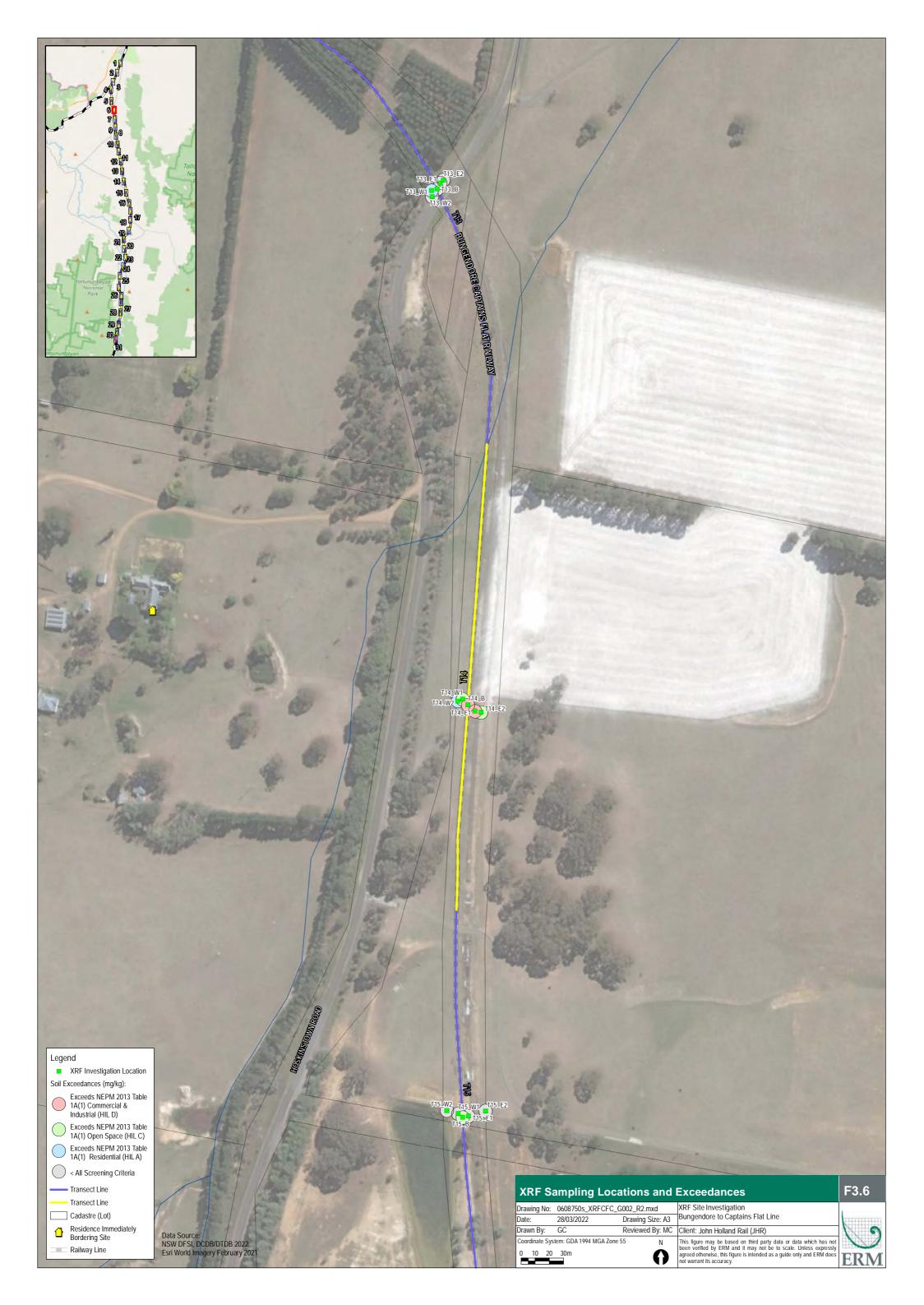
Ramboll Australia Pty Ltd (2021) Environmental Site Assessment, Captains Flat Rail Corridor. 318001025-T05

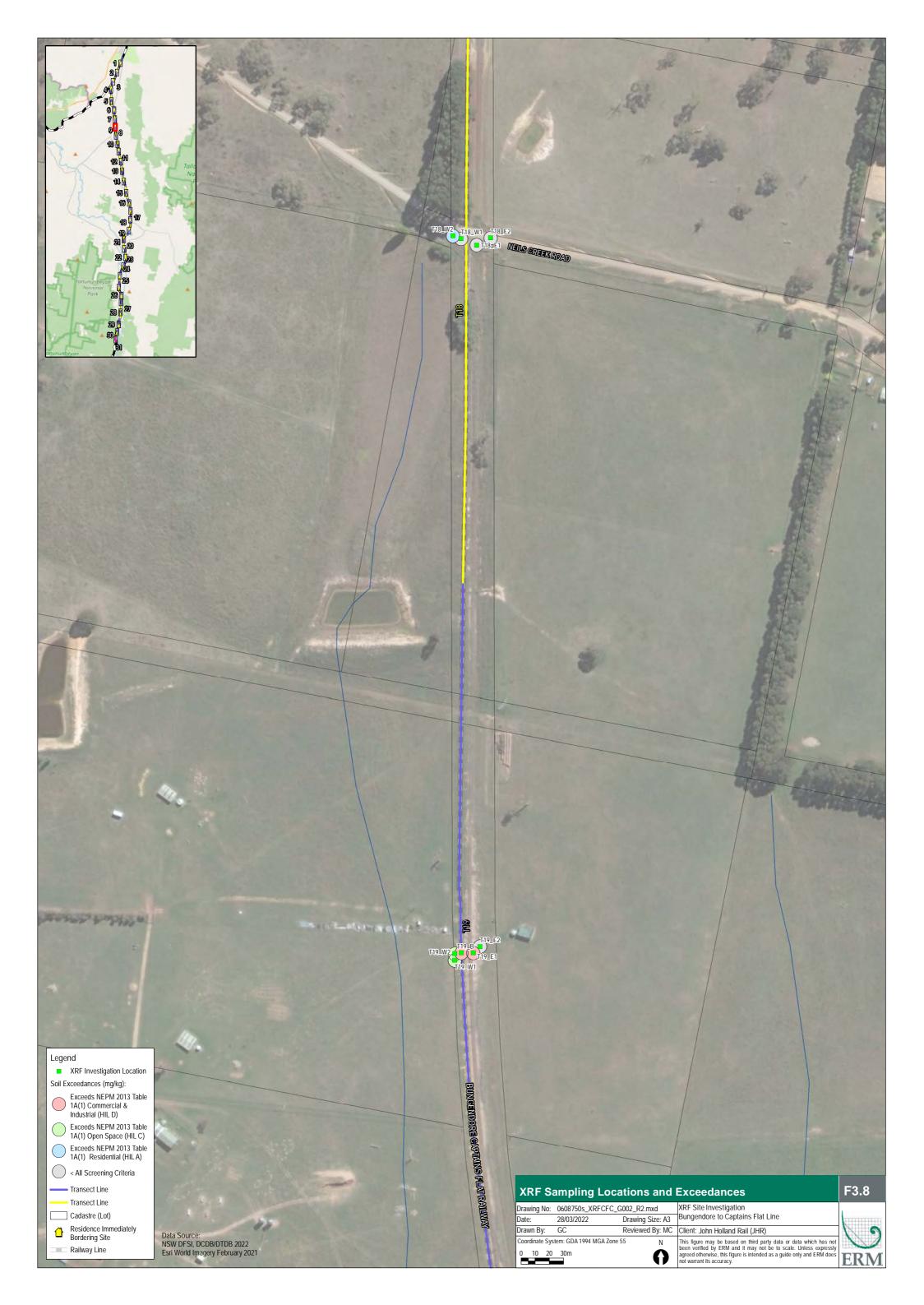

USEPA (2007) Method 6200 – Field Portable X-Ray Florescence Spectrometry for the Determination of Element Concentrations in Soil and Sediment,

CAPTAINS FLAT TO BUNGENDORE – RAIL CORRIDOR XRF SURVEY Bungendore, NSW				
APPENDIX A	FIGURES			

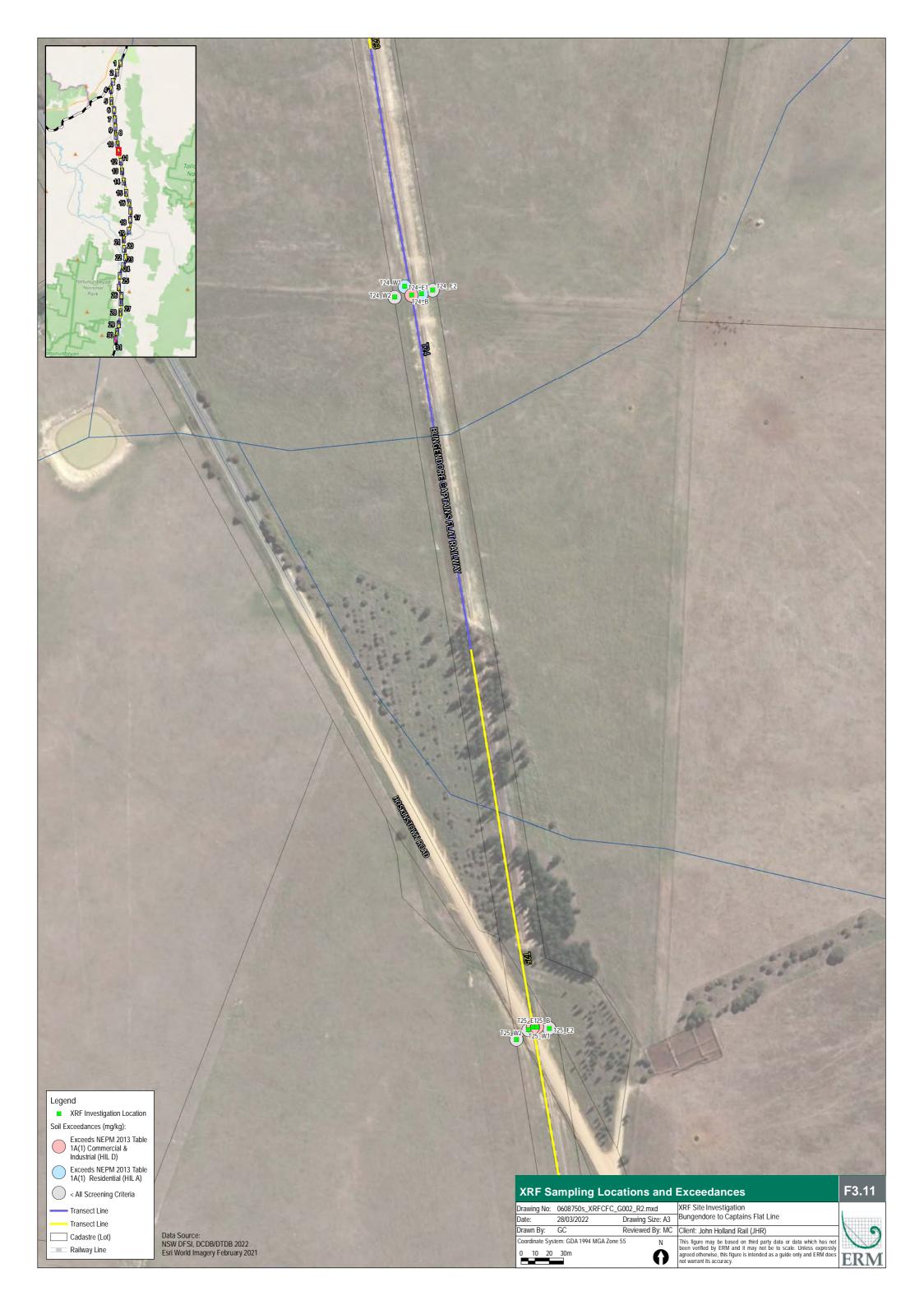




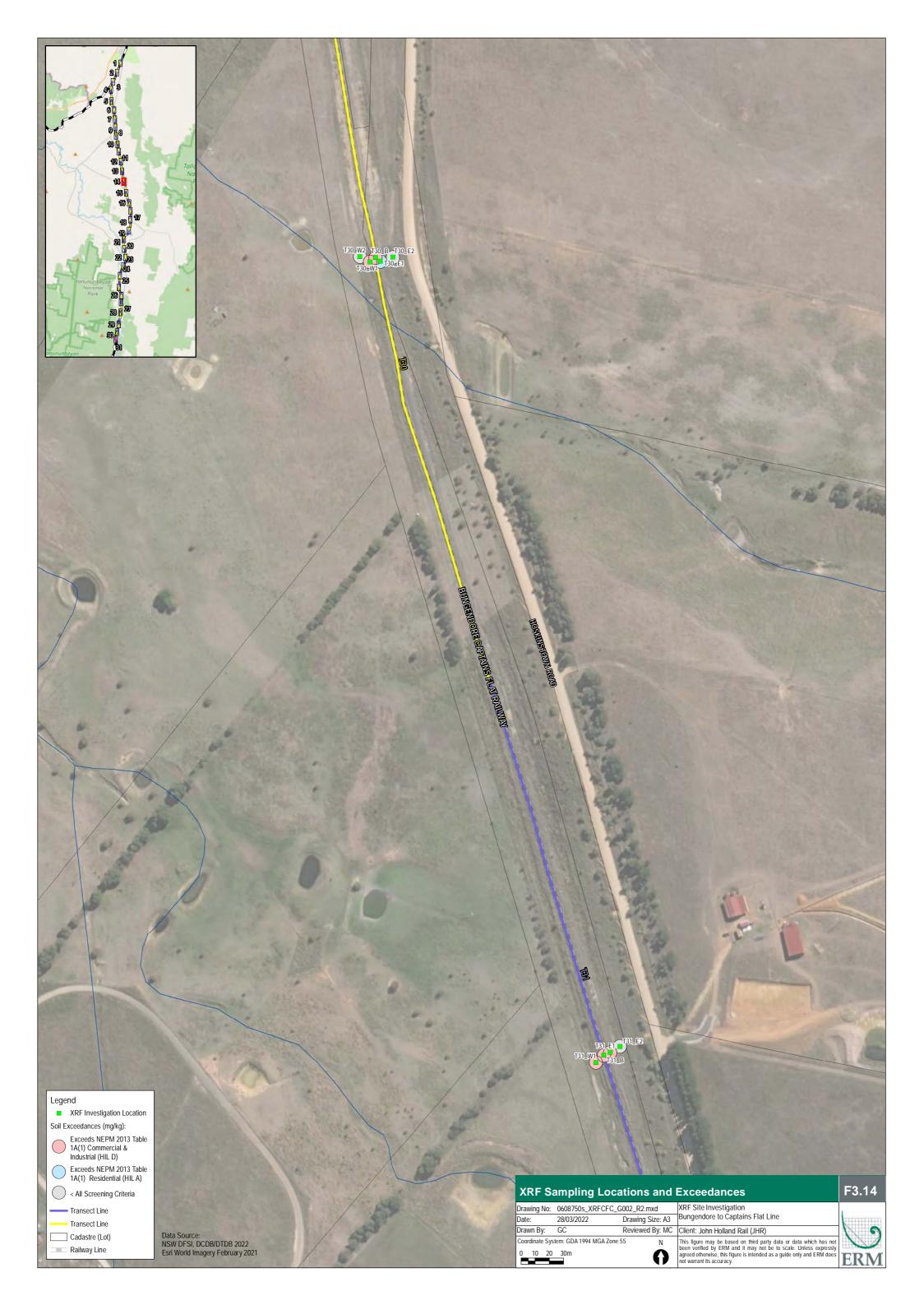


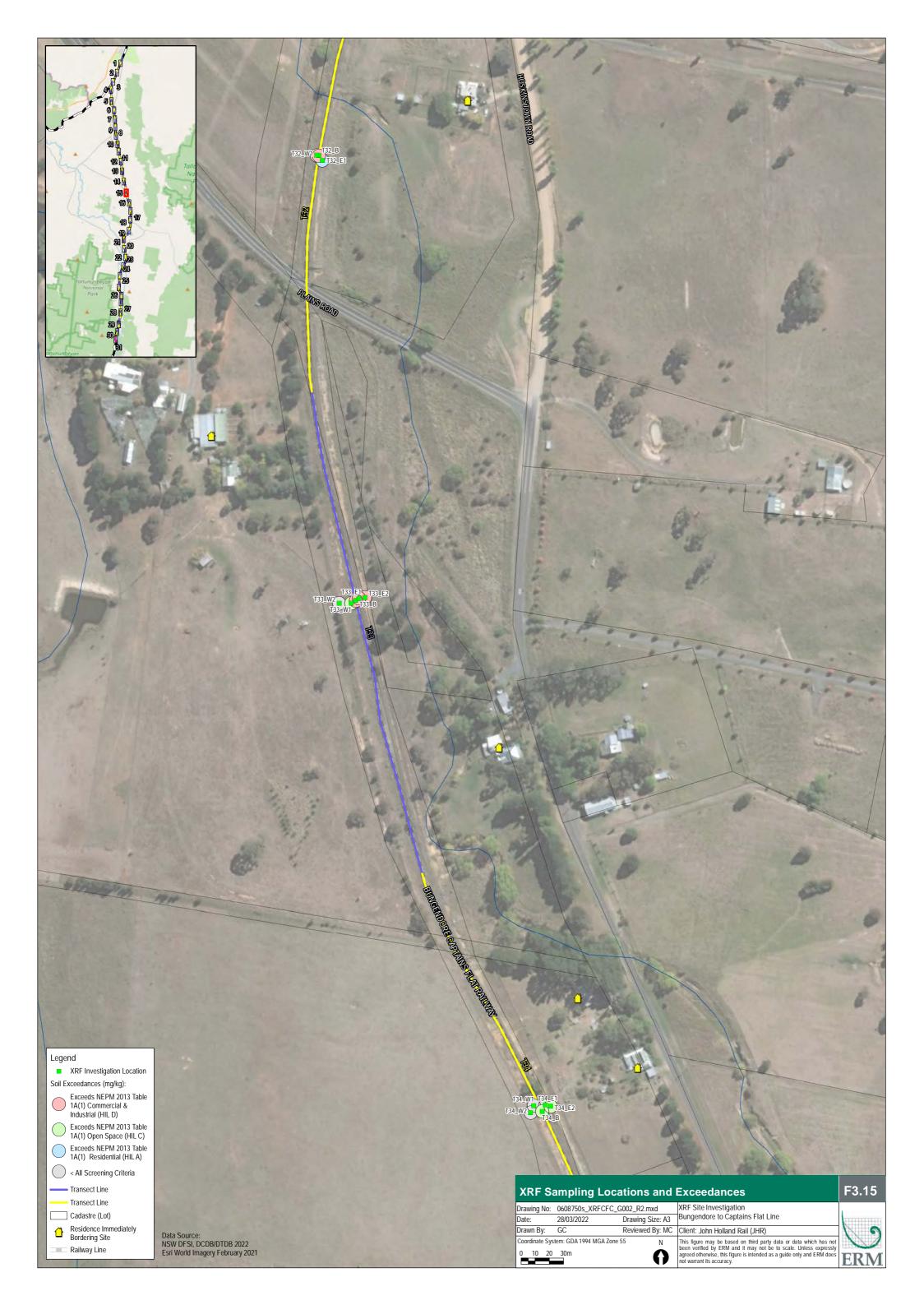


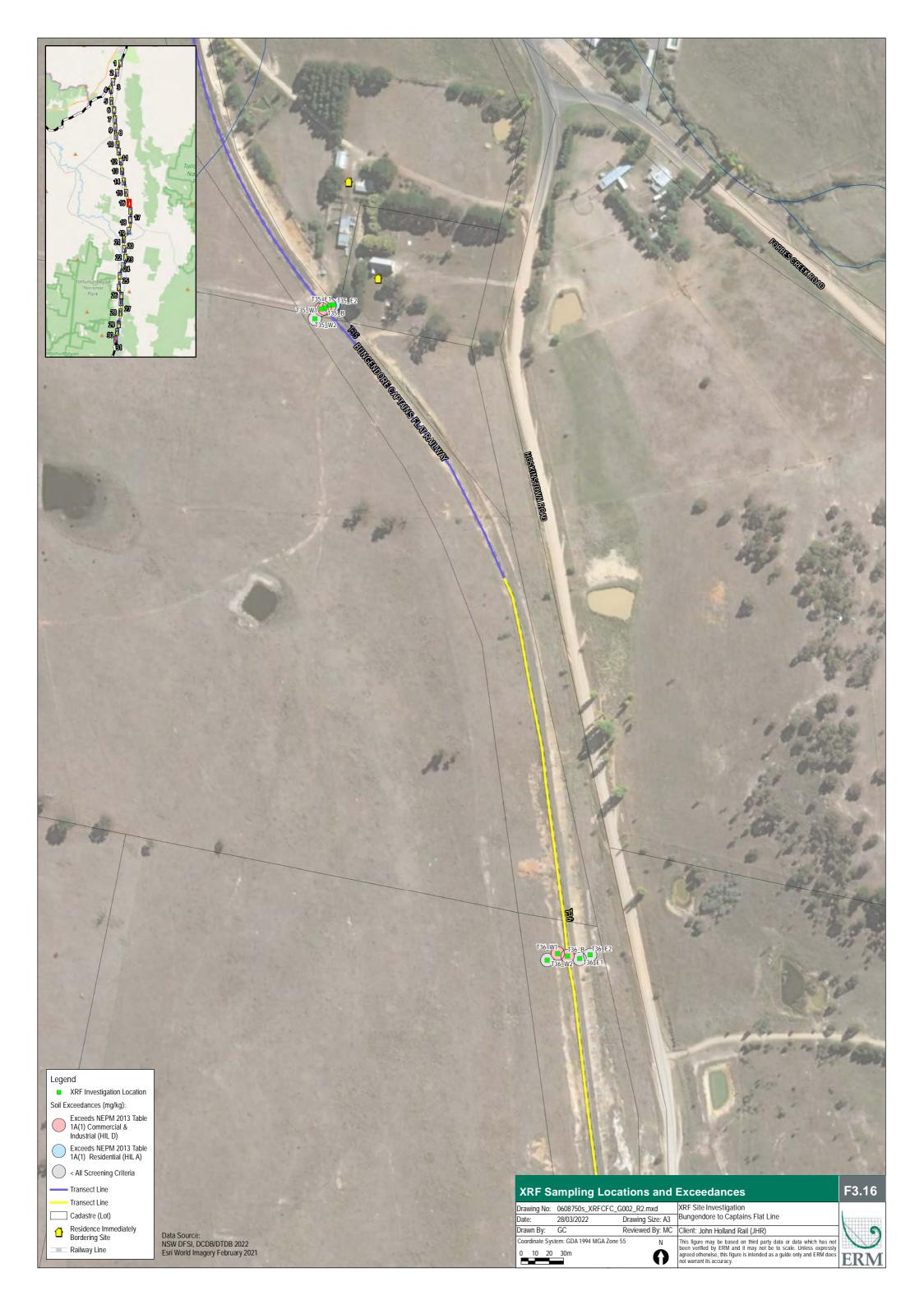


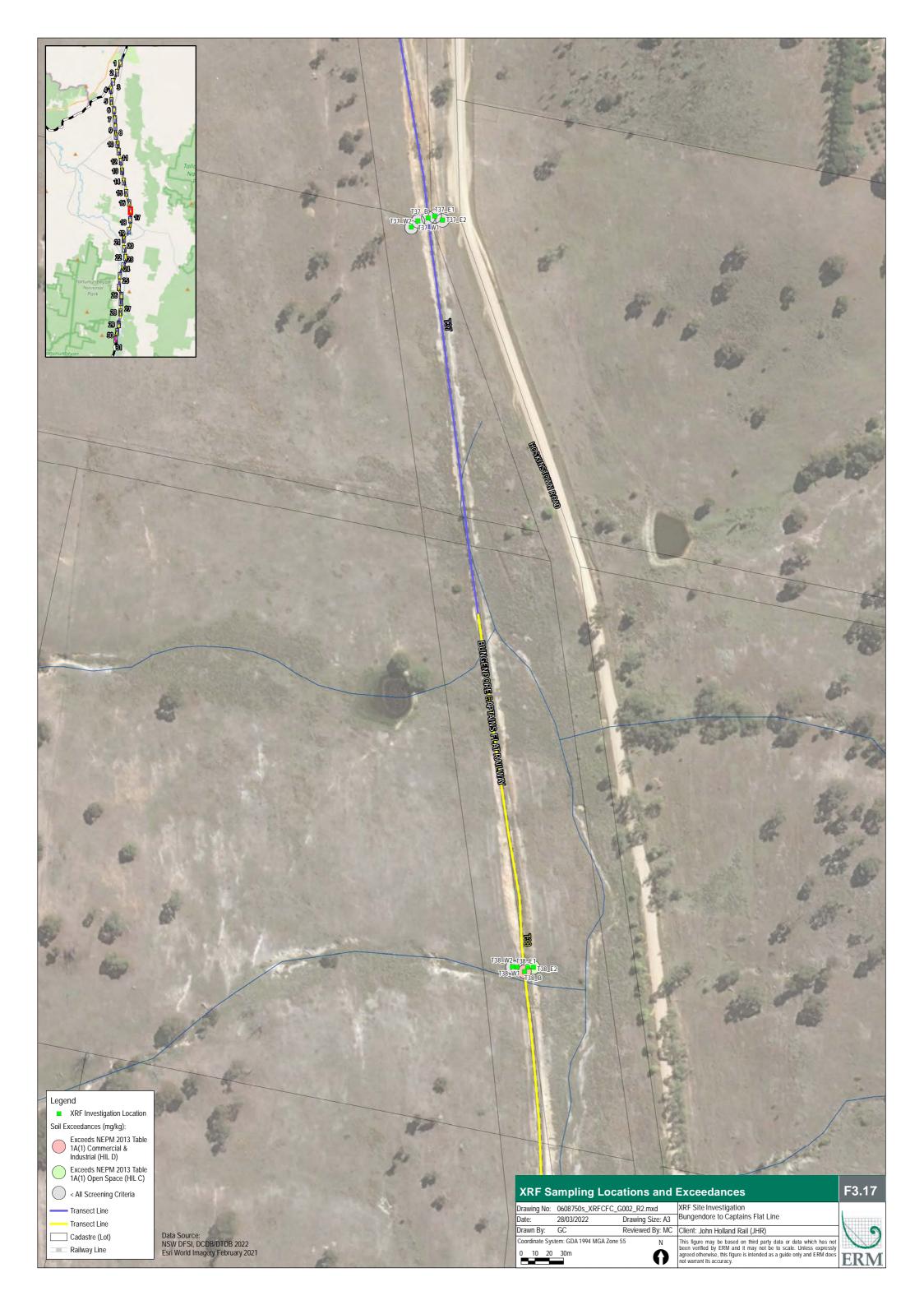


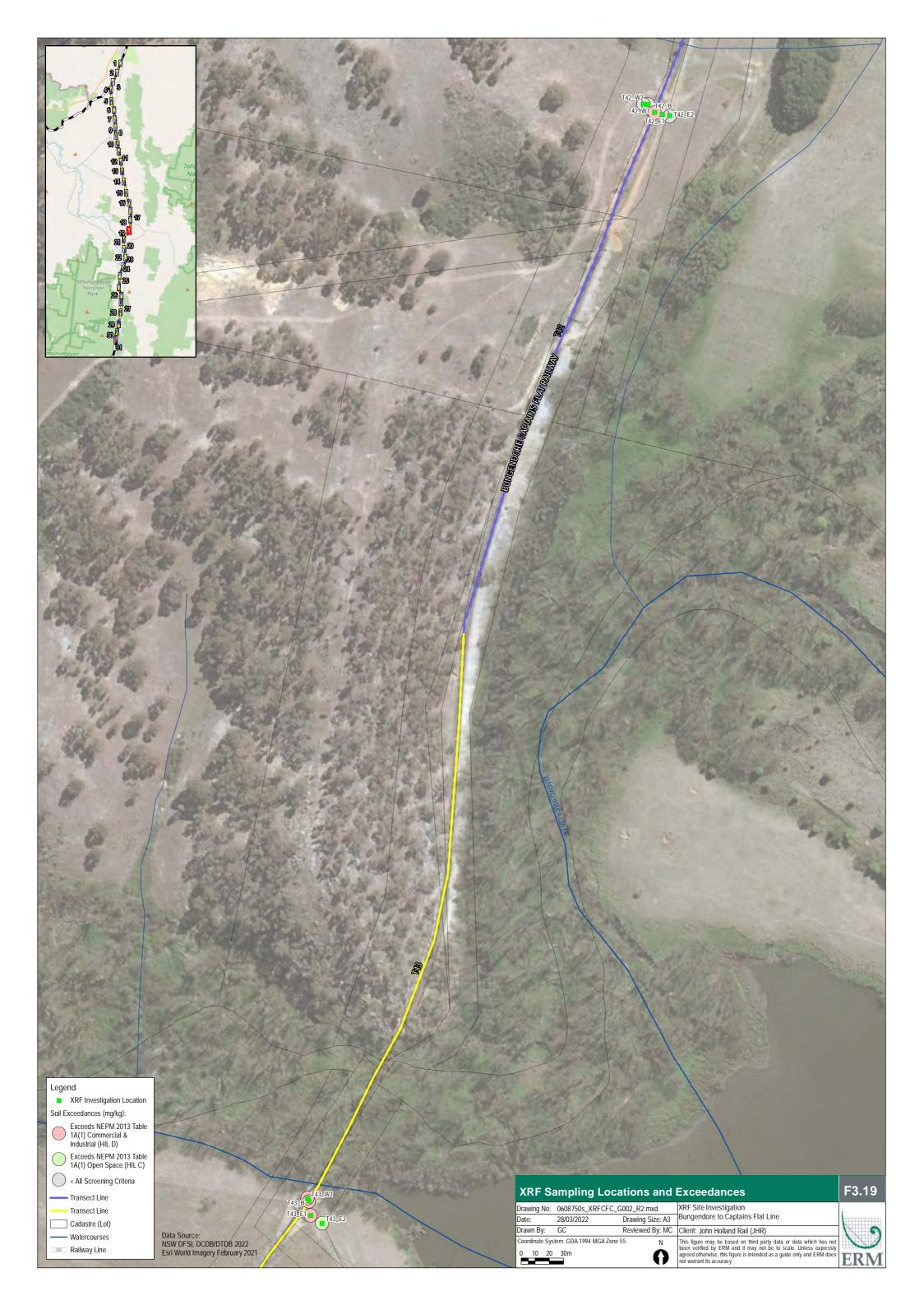


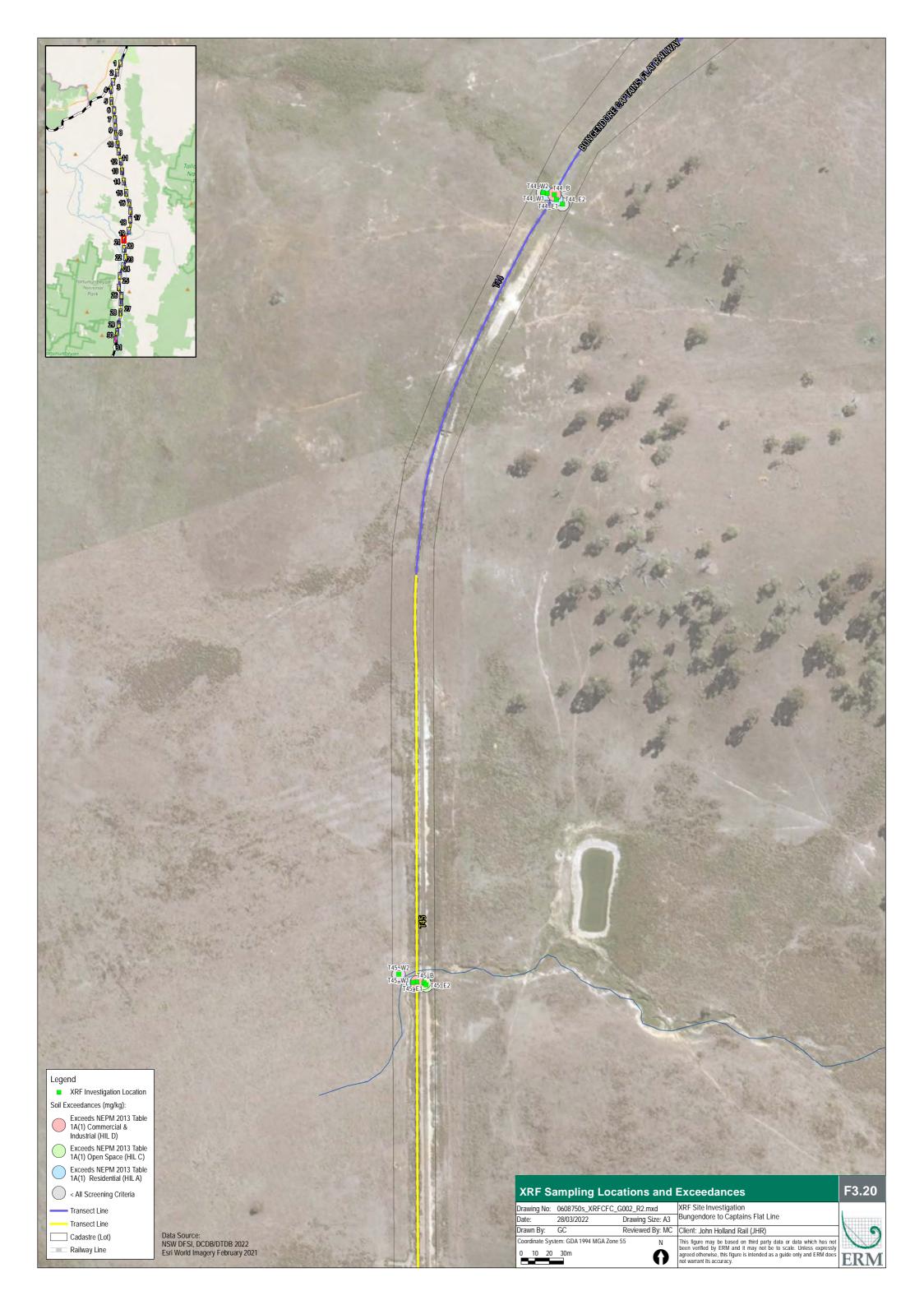


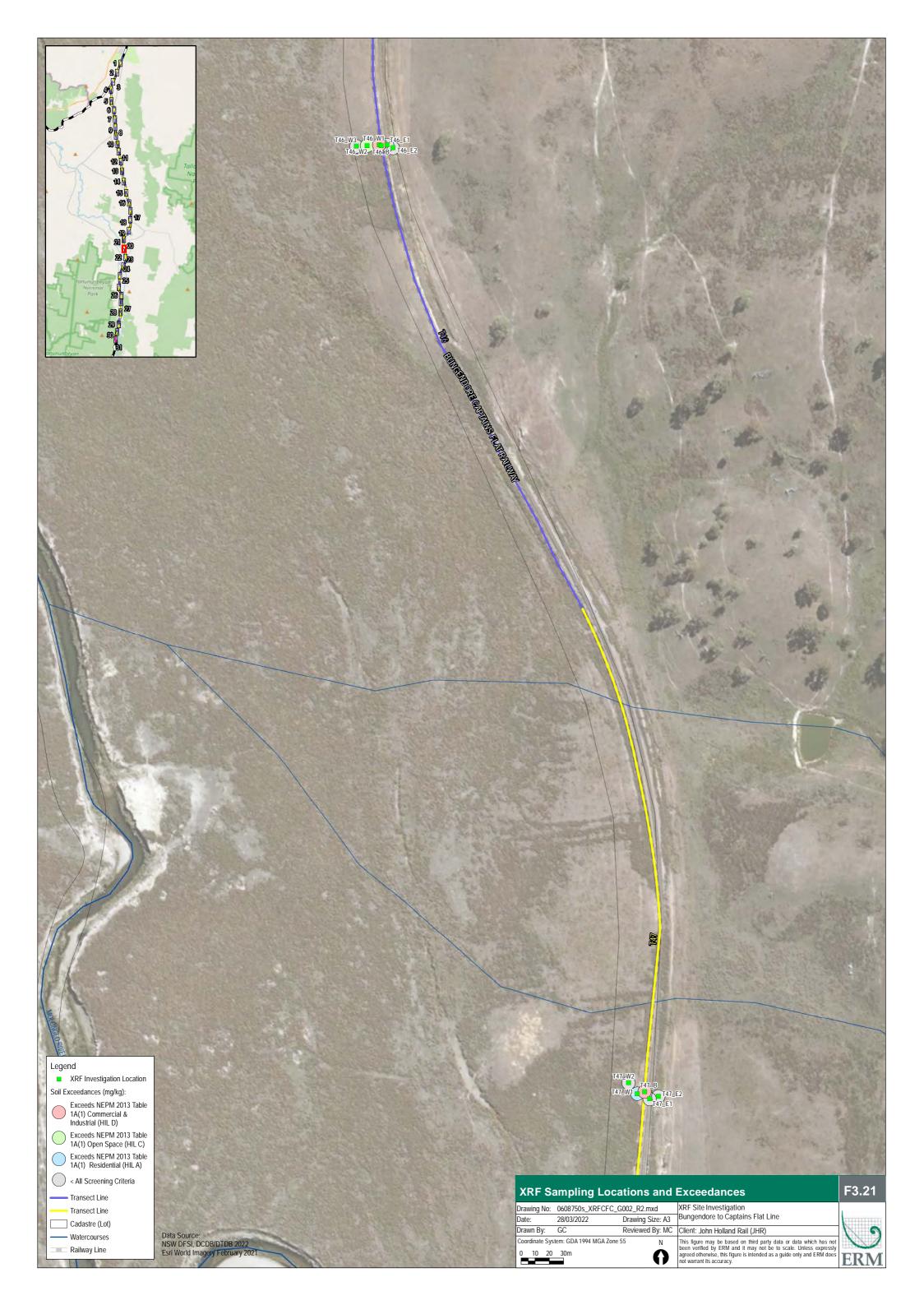


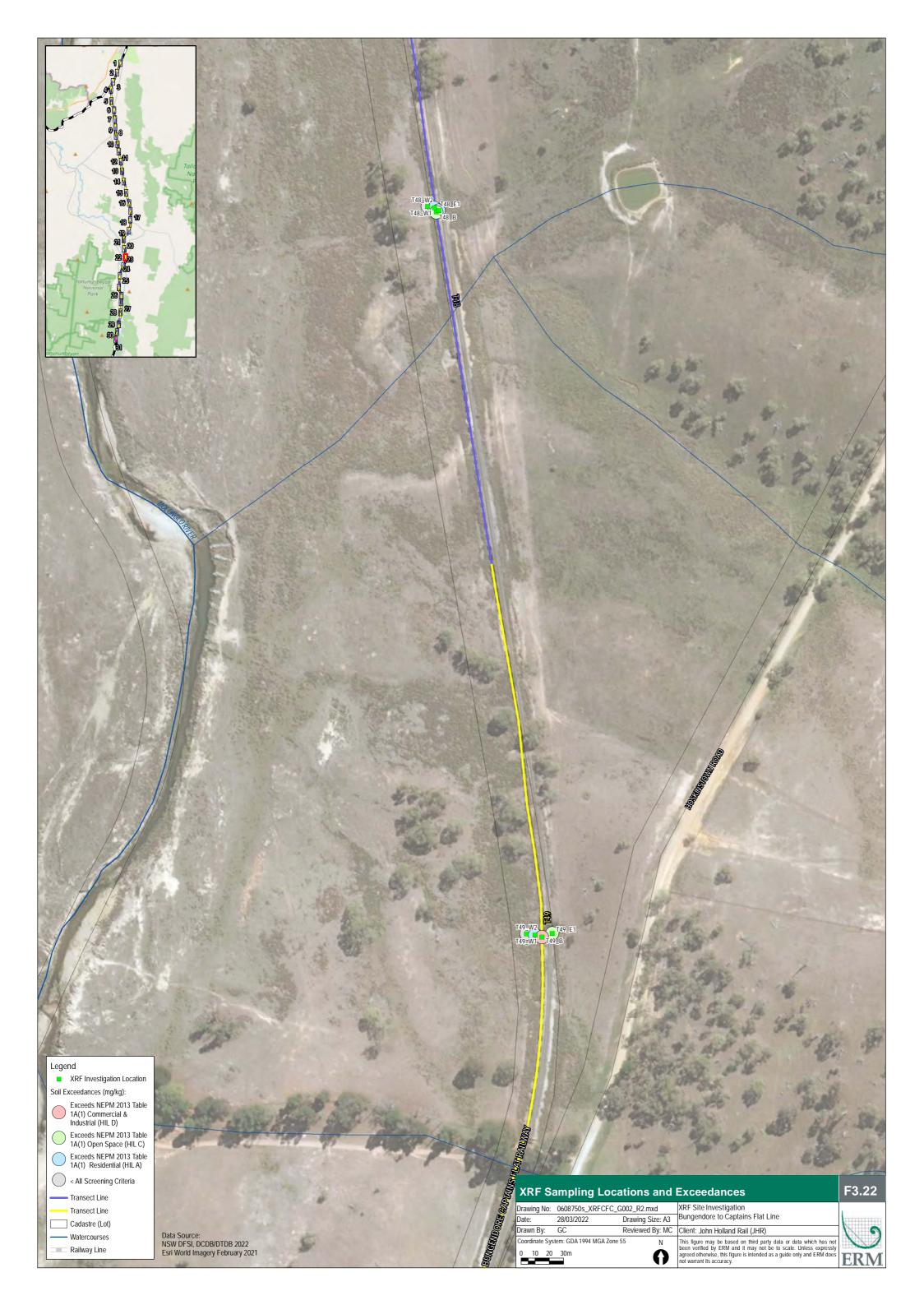


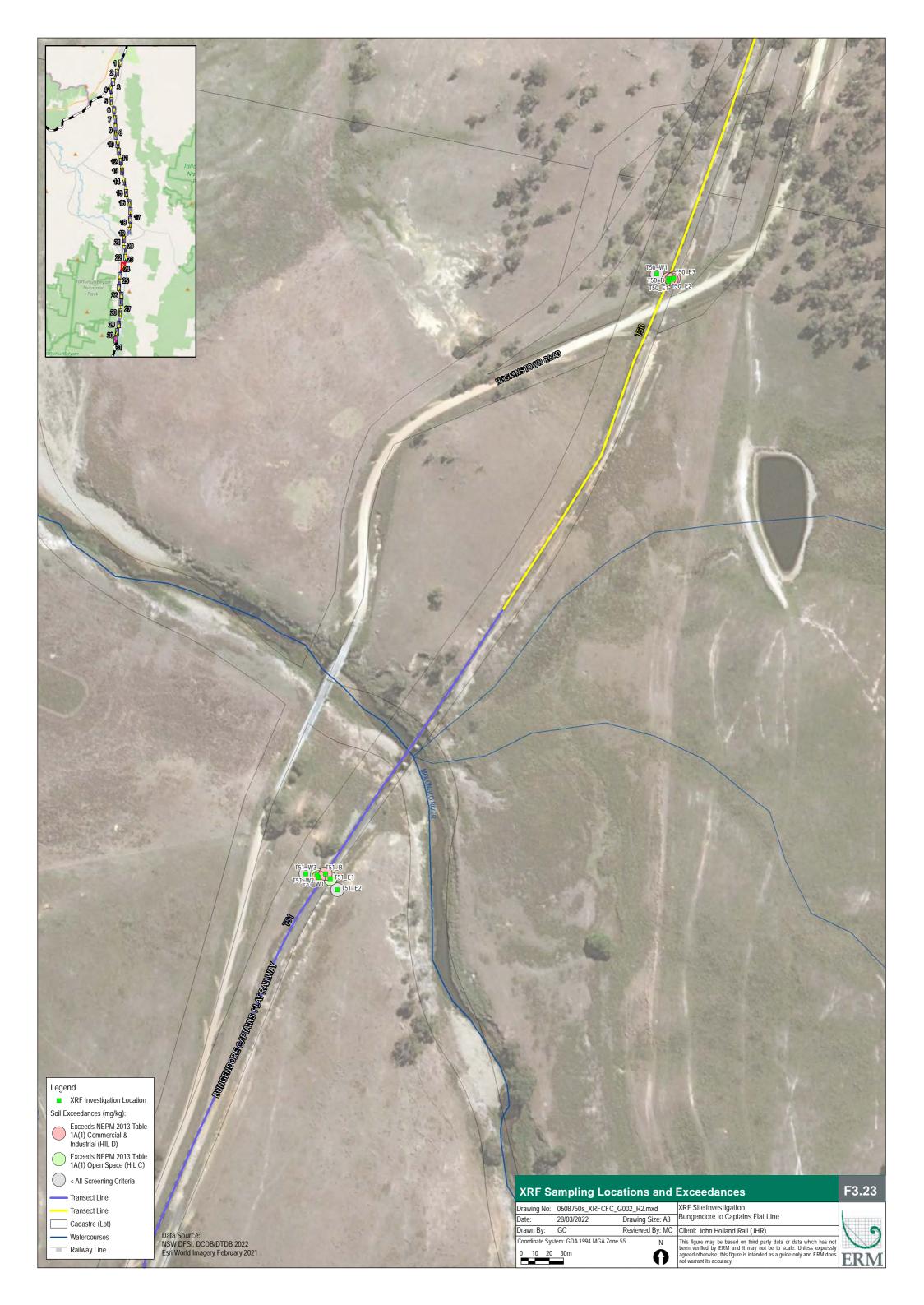


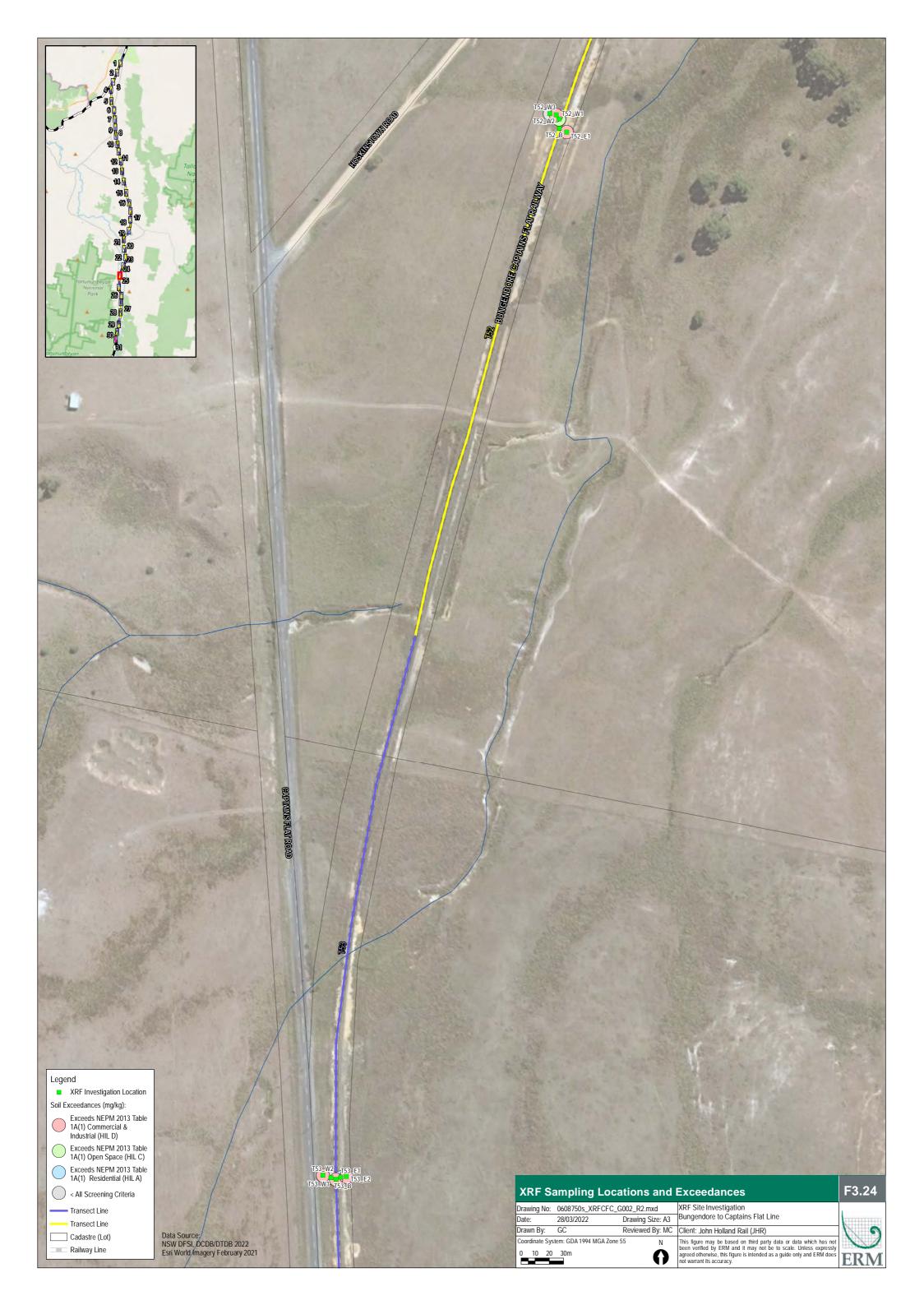


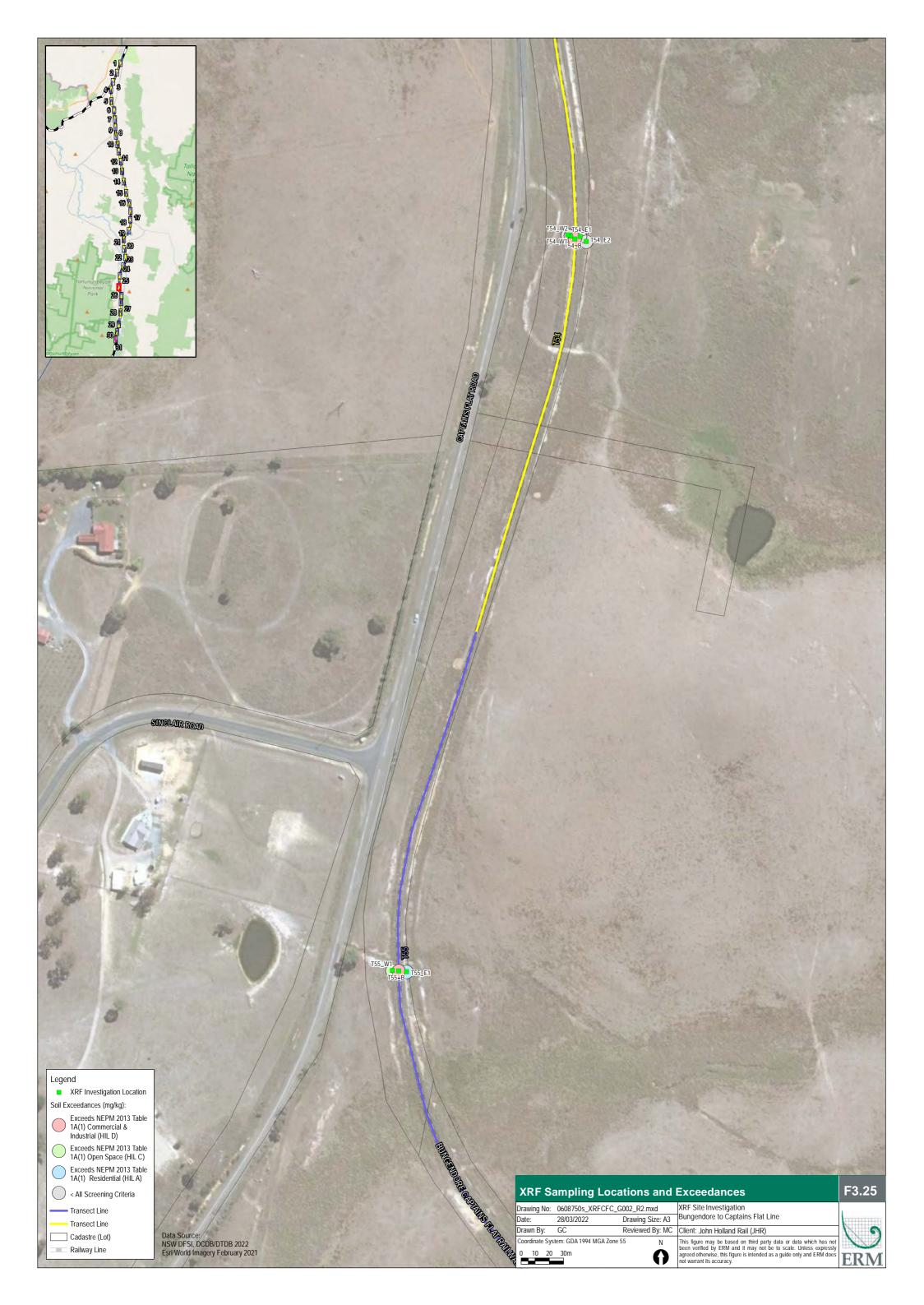


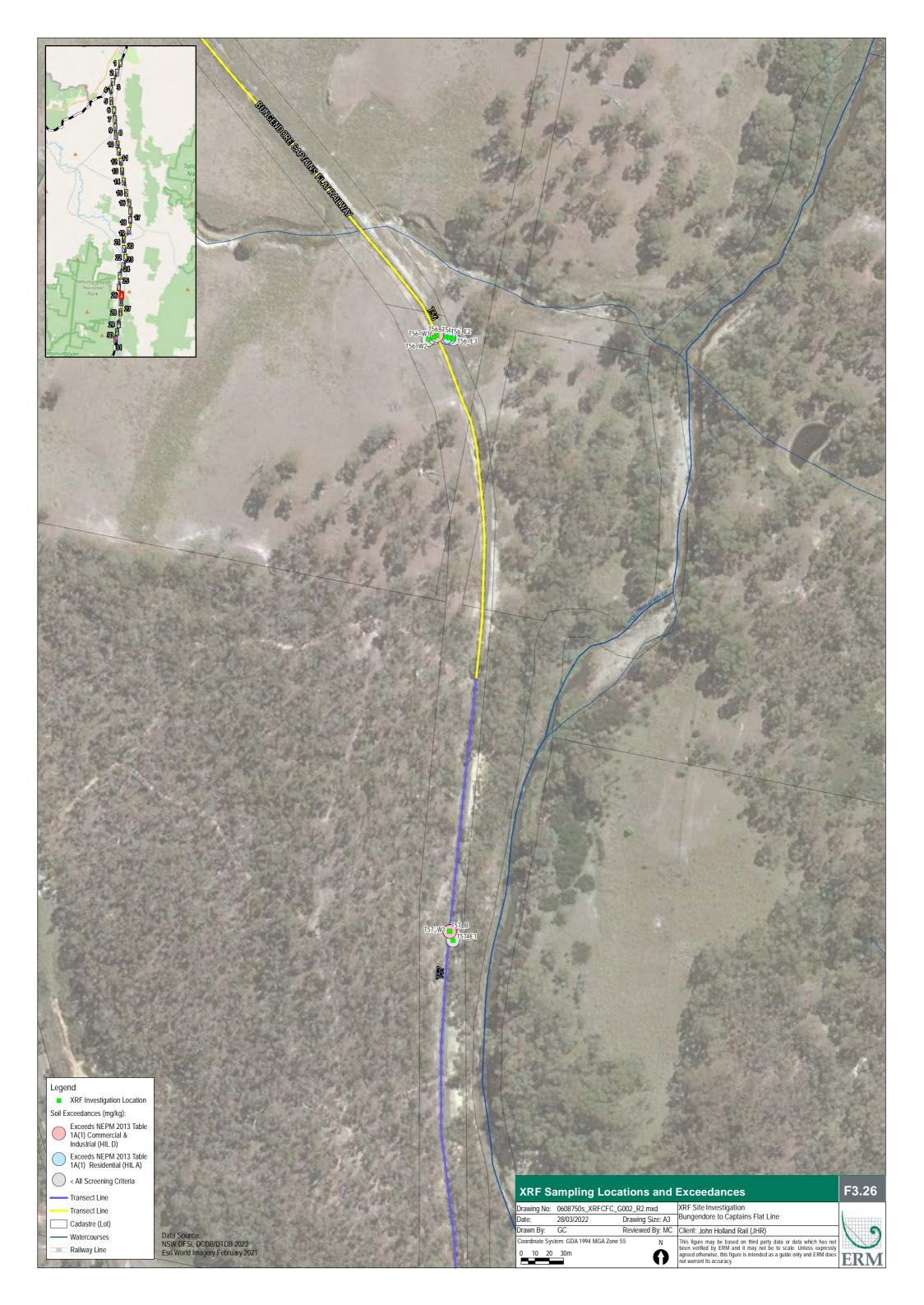


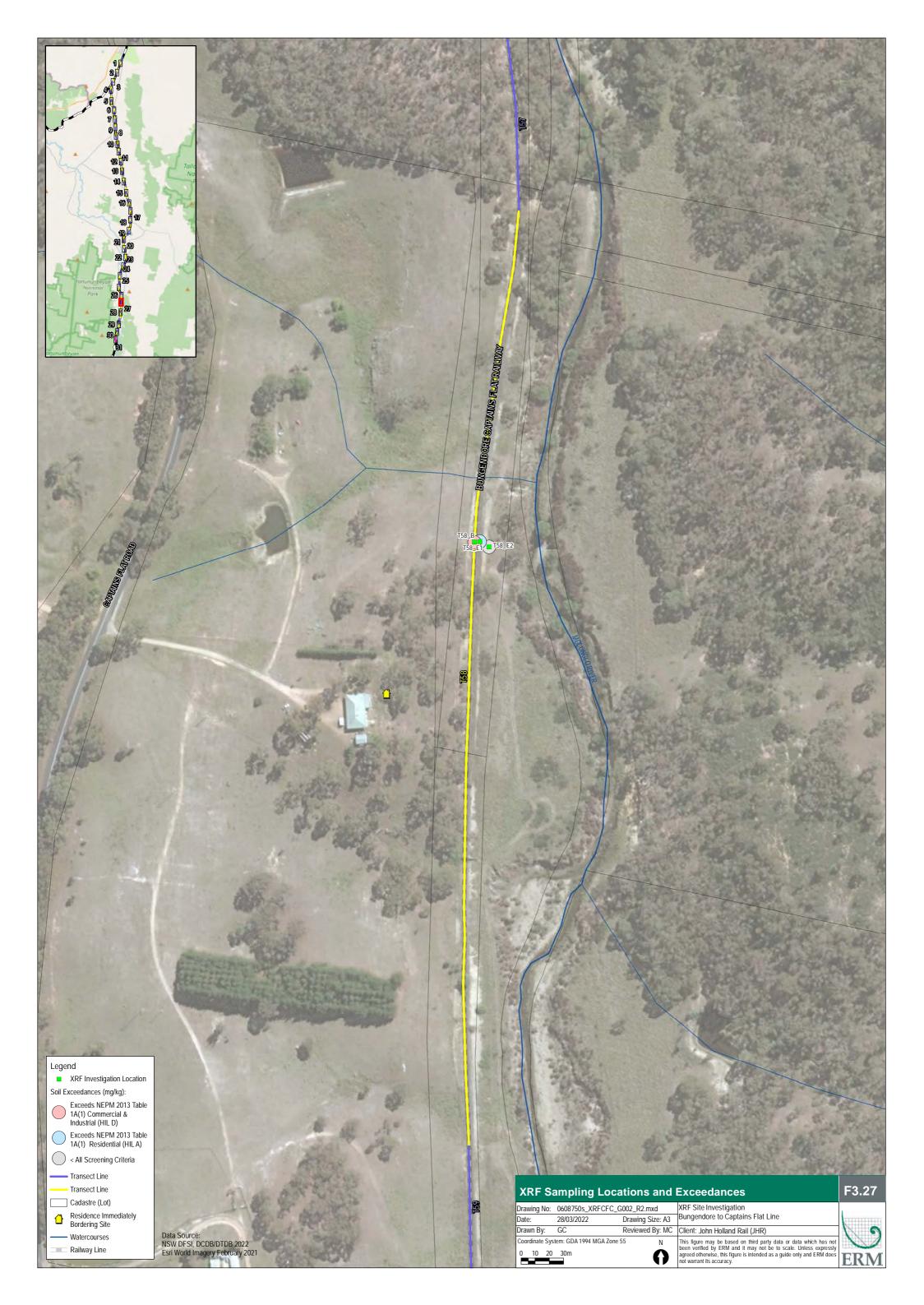


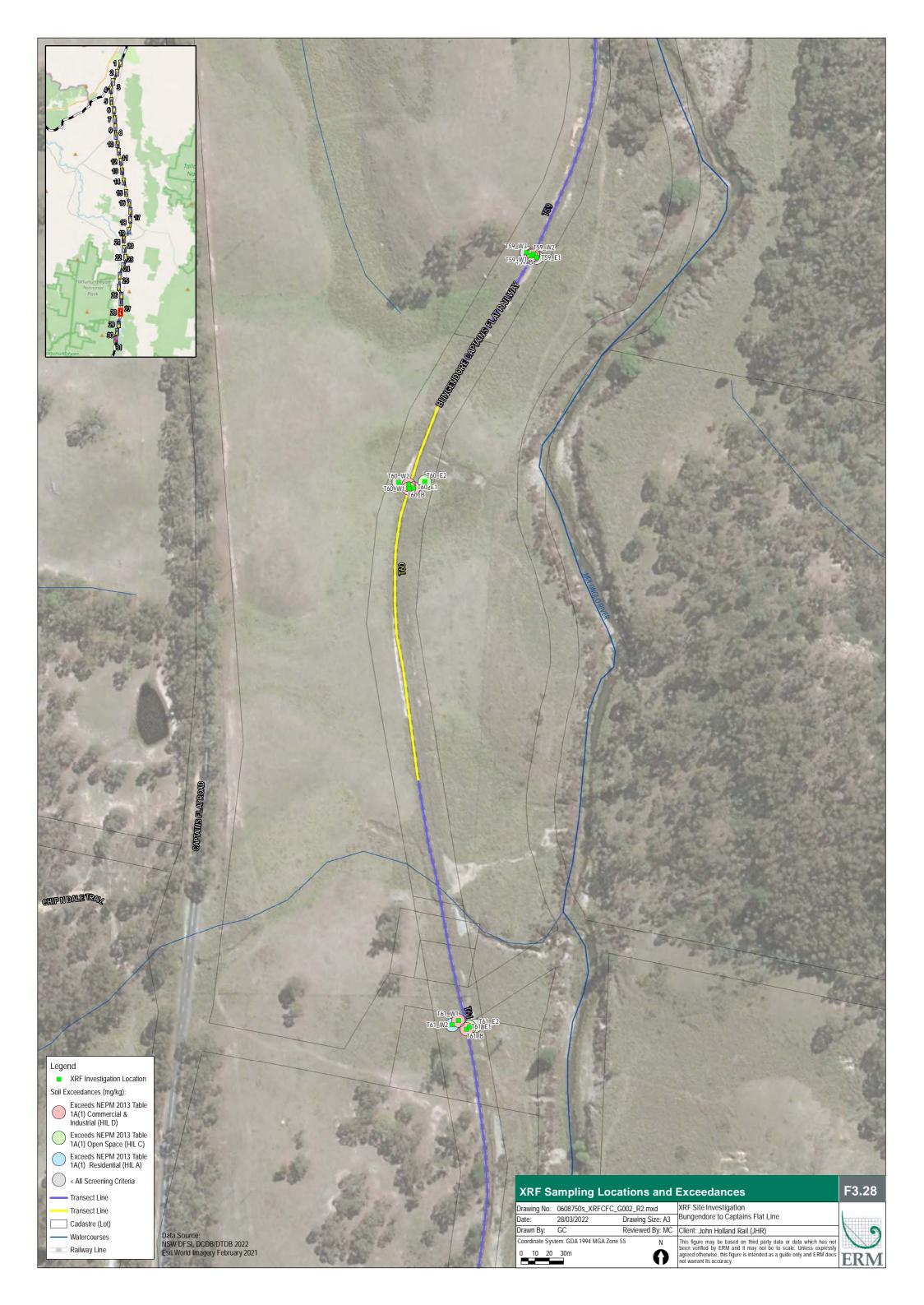


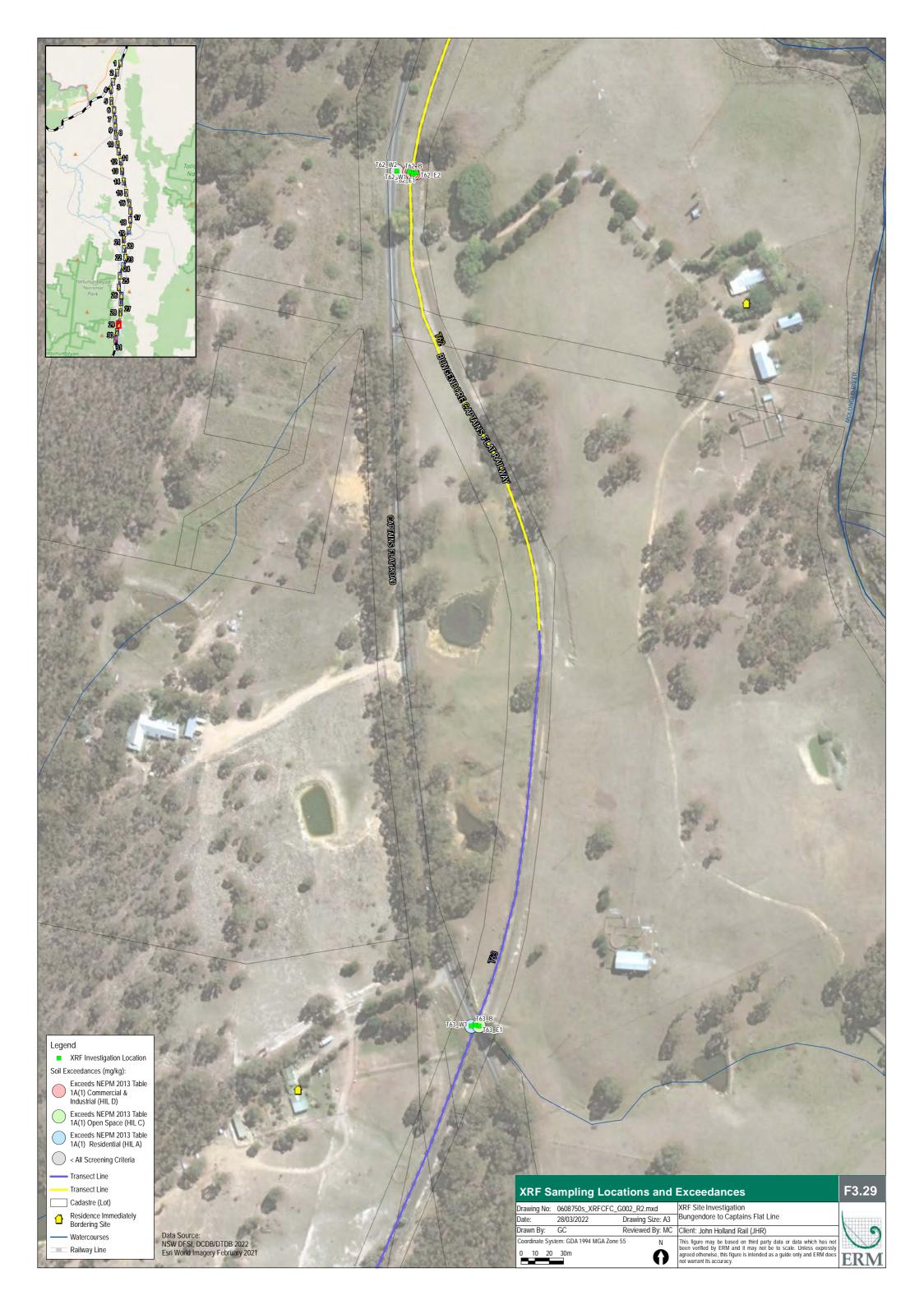


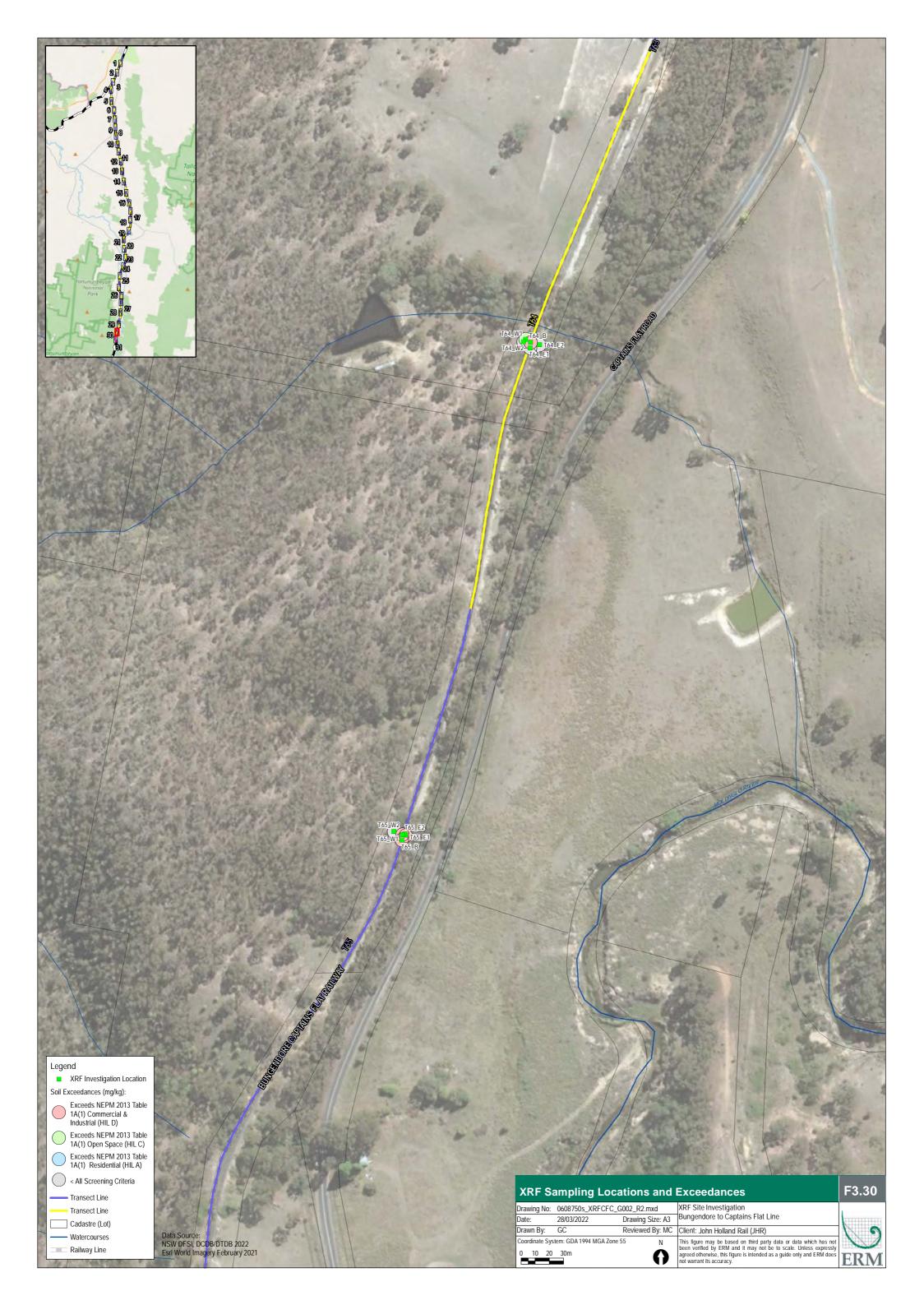


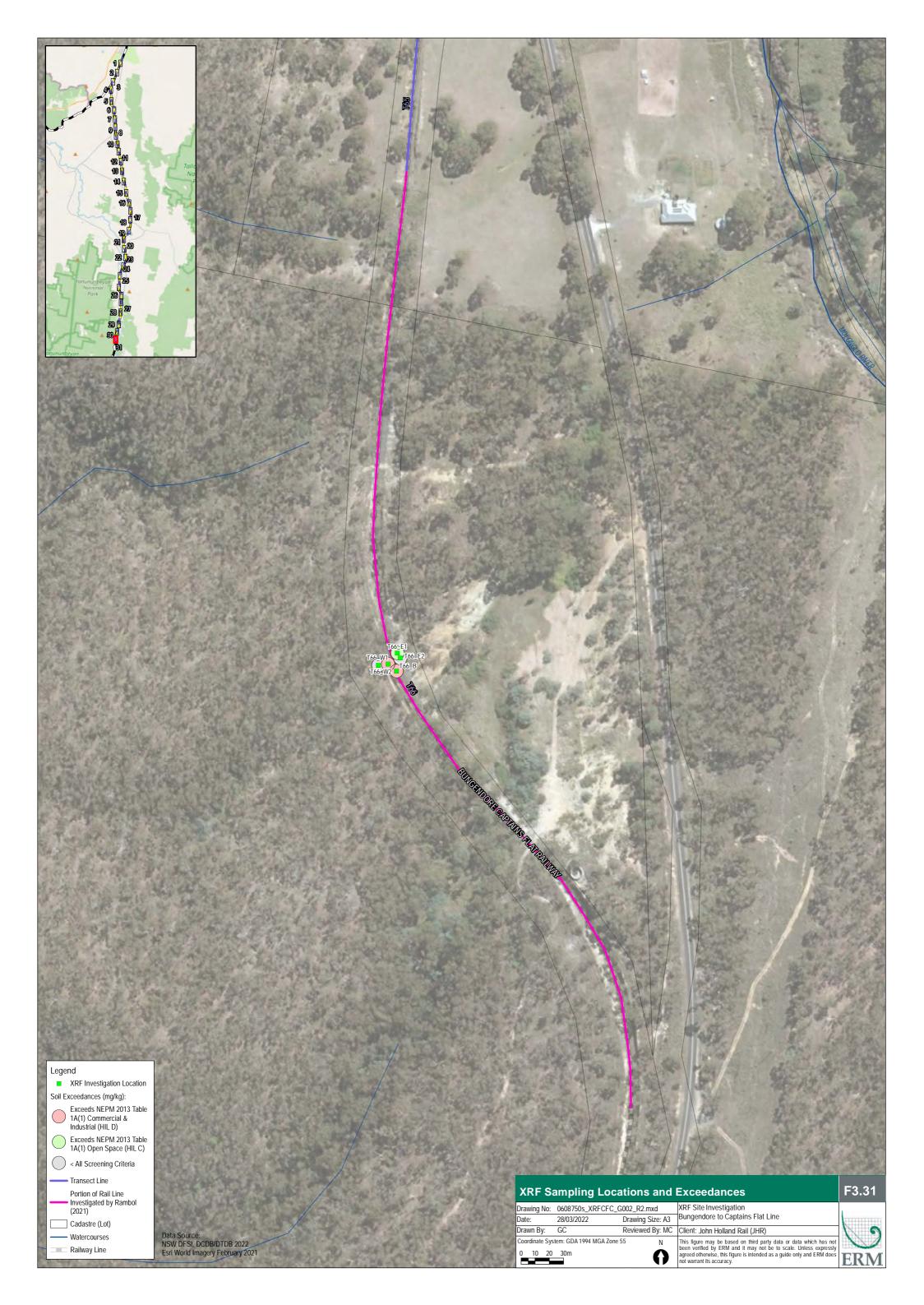


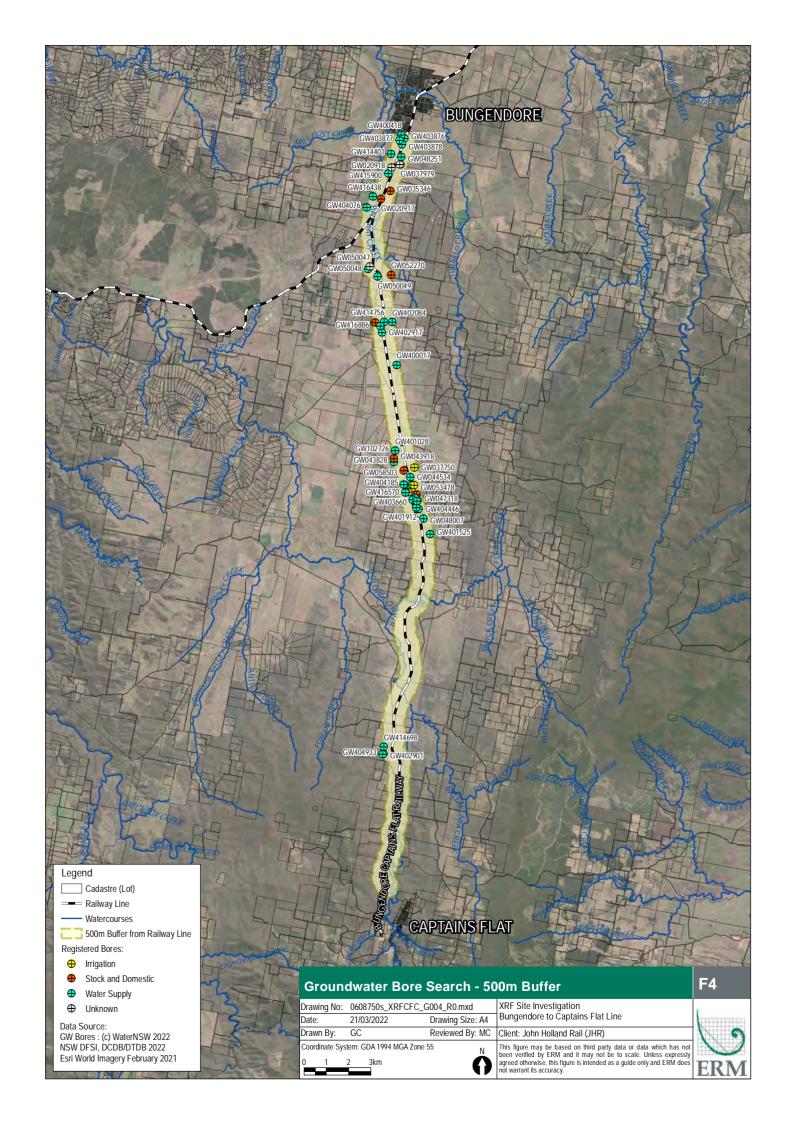


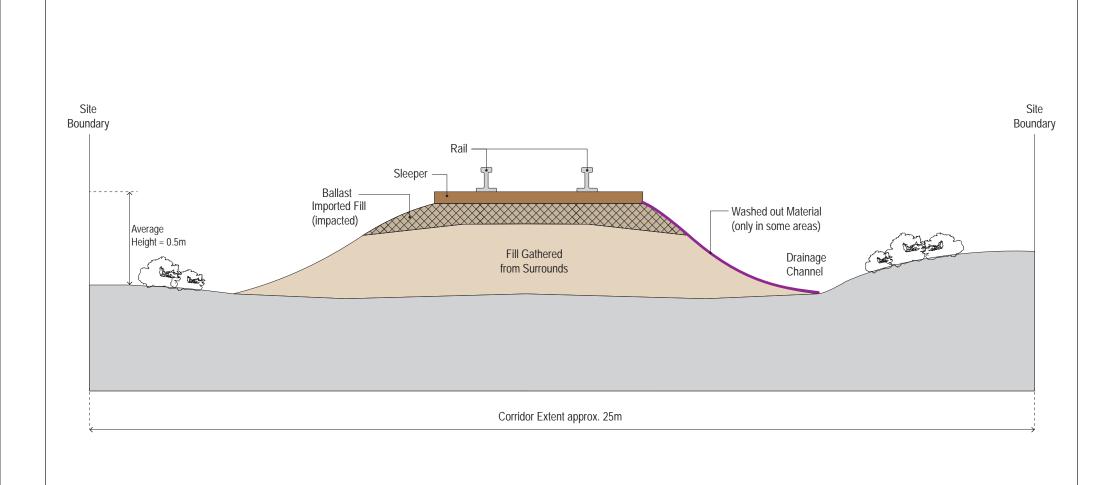












Schematic Cross-section (A-A')									
Drawing No.	: 0608750s_XRF0	CFC_I001_R0.ai	XRF Site Investigation	1					
Date:	28/03/2022	Drawing Size: A4	Bungendore to Captains Flat Line						
Drawn by:	GC	Reviewed by: MC	Client: John Holland Rail (JHR)						
			This figure may be based on third party data or data which has not been verified by ERM and it may not be to scale. Unless expressly agreed						
Drawing No	t to Scale		otherwise, this figure is intended as a guide only and ERM does not warrant its accuracy.	ERM					

CAPTAINS FLAT TO BUNGENDO Bungendore, NSW	RE – RAIL CORRIDOR XRF SURVEY
APPENDIX B	DATA TABLES
APPENDIA D	DATA TABLES

	Site Info	ormation				
Site Identification	Captains Flat to Bungendore N	on-Opperational Rail Corridor				
Site Location	Bungendore	e, NSW, 2621				
Latitude/Longitude ¹	35.414089°, 149.448244° (at T33 - Hoskinstown)					
Property Description	CRN - Acrtive Rail Corridor a	nd Non-Opperational Corridor				
Site Area (Ha)¹	~95	На				
Site Elevation (m AHD)	870-707	m AHD				
Ownership of Site		TfNSW				
		109735				
		109735 109735				
		109735				
		109735				
		109735				
		109735 109735				
		109735				
		109735				
		109735				
		109735 1218357				
		1218356				
		1218361				
		109735 1218359				
		1218355				
		1218360				
		1217099 189797				
		109735				
		109735				
		109735 188288				
		188288				
	17	109735				
		923679 188288				
		923679				
		1218352				
		1218347 1218353				
		1218349				
Legal Description (Lot/DP) ²	4414	1218351				
		1218348 188288				
		188288				
		188288				
		188288 1218344				
		110580				
	10	110580				
		110580 110580				
		1218345				
		1218342				
		110580 188288				
	1	1137414				
		110580				
		110580 110580				
		110580				
		1218343				
		1218334 1218337				
	4402	1218335				
		110580 1218341				
		1218338				
	3	110580				
		110580 110580				
	16	110580				
	6	110580				
		110580 110580				
		1218340				
Current Zoning ²	Infrastruc	ture (SP2)				

Date	Site Activities		
22 - 24 November 2021	XRF Survey at T1-T39		
15 - 17 December, 2021	XRF Survey at T40-T66		

1

Sampling Location	Transect	Sample Type	Sampling Date	Duplicate/ Triplicate	- '	Analysis	Comments
TT4 TT4	-		00 /NI /01		bgl)	T 1	
T1_E1	1	Soil	22/Nov/21		0.0-0.1	Lead	Red/brown silty sand with ballast, damp.
T1_W1	1	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with ballast underlain by light brown sand, damp, bare.
T1_W2	1	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with ballast underlain by light brown sand, damp, bare, next to ballast stockpil
T1_W3	1	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with ballast underlain by light brown sand, damp, bare, next to ballast stockpil
T2_E1	2	Soil	22/Nov/21		0.0-0.1	Lead	Brown sandy clayey silt amongst ballast, damp.
T2 E2	2	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with organics, damp, under grass.
T2_W1	2	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with sand and minor gravels, damp.
T2_W2	2	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with gravels and sand, damp, bare patch.
T3_E1	3	Soil	22/Nov/21		0.0-0.1	Lead	Orange/brown sandy silt with gravel and ballast under dead grass.
			22/Nov/21 22/Nov/21		0.0-0.1	Lead	
T3_W1	3	Soil		D01_011100	0.0-0.1		Brown gravelly sandy silt next to ballast, damp.
T3_W2	3	Soil	22/Nov/21	D01_211122		Lead	Orange/brown gravelly sandy silt, damp.
T4_E1	4	Soil	22/Nov/21		0.0-0.1	Lead	Orange/brown sandy silt under ballast.
T4_E2	4	Soil	22/Nov/21		0.0-0.1	Lead	Dark brown silt with gravel under gras, damp.
T4_W1	4	Soil	22/Nov/21		0.0-0.1	Lead	Dark brown sandy silt with gravels, bare, damp.
T4_W2	4	Soil	22/Nov/21		0.0-0.1	Lead	Brown/orange silt, gravels, grass, damp.
T5_E1	5	Soil	22/Nov/21		0.0-0.1	Lead	Brown sandy silt with gravels and ballast, damp, bare patch.
T5_E2	5	Soil	22/Nov/21		0.0-0.1	Lead	Light brown and orange clayey silt with minor gravels, bare. Sample taken from draina channel.
T5_W1	5	Soil	22/Nov/21		0.0-0.1	Lead	Light brown and orange clayey silt with minor gravels, bare. Sample taken from draina channel.
T5_W2	5	Soil	22/Nov/21		0.0-0.1	Lead	Light brown and orange clayey silt, with organics, under grass. Sample taken from drain
T/ F1	-	C '1			0.0-0.1		channel.
T6_E1	6	Soil	22/Nov/21			Lead	Light brown sandy silt with ballast, moist.
T6_E2	6	Soil	22/Nov/21		0.0-0.1	Lead	Light brown sandy silt with ballast, moist. Sample taken at top of cutting.
T6_W1	6	Soil	22/Nov/21		0.0-0.1	Lead	Light brown silt with large ballast gravels, damp.
T6_W2	6	Soil	22/Nov/21		0.0-0.1	Lead	Light brown silt under grass with organics, damp.
T7_B	7	Soil	22/Nov/21		0.0-0.1	Lead	Brown silty sand overlain by gravels and large ballast, damp.
T7_E1	7	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with sand and gravels, damp.
T7_E2	7	Soil	22/Nov/21		0.0-0.1	Lead	Yellow/brown clayey silt with gravels, damp, bare patch.
T7_W1	7	Soil	22/Nov/21		0.0-0.1	Lead	Brown/orange sandy silt with gravels, damp.
T7_W2	7	Soil	22/Nov/21		0.0-0.1	Lead	Light brown silt with gravels, damp.
T8_B	8	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with ballast gravels, damp, some grass
T8_E1	8	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under dead/live grass, damp, slightly bare
T8_E2	8	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under dead/live grass, damp, slightly bare
T8_W1	8	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with large grey gravels under grass
T8_W2	8	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under dead/live grass, damp
T9_B	9	Soil	23/Nov/21		0.0-0.1	Lead	Dark brown silt under grass with organics, damp
T9_E1	9	Soil	23/Nov/21		0.0-0.1	Lead	Dark brown silt under grass with organics, damp
T9_E2	9	Soil	23/Nov/21		0.0-0.1	Lead	Dark brown silt under grass with organics, damp, small bare patch in thick grass
T9_W1	9	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass with gravels, damp
T9_W1	9	Soil	23/Nov/21 23/Nov/21	 	0.0-0.1	Lead	Brown silt under grass, damp
T10_B	10		23/Nov/21 23/Nov/21	1	0.0-0.1	Lead	Dark grey/black sandy gravels, ballast, damp
		Soil		 			
T10_E1	10	Soil	23/Nov/21	 	0.0-0.1	Lead	Dark grey brown organic silt, under grass, damp
T10_E2	10	Soil	23/Nov/21	ļ	0.0-0.1	Lead	Brown silt near some large gravel, damp, near grass
T10_W1	10	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass, damp
T10_W2	10	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass, dry, no grass/bare patch
T11_B	11	Soil	23/Nov/21	D01_211123	0.0-0.1	Lead	Dark brown sandy silt with black gravels, damp, organics. Note, barbed wire fence downiddle of tracks, unable to access western side.

					Cample		
Sampling	TT	Sample	Sampling	D 1' (/T ' 1' (Sample		
Location	Transect	Type	Date	Duplicate/ Triplicate	- '	Analysis	Comments
200001011		-) P •			bgl)		
T11_E1	11	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with 'ballast' gravels spilled from between rails, bare, damp
T11_E2	11	Soil	23/Nov/21		0.0-0.1	Lead	Orange/red brown sandy silt with gravels
T12_B	12	Soil	23/Nov/21		0.0-0.1	Lead	Brown/light brown sandy silt, dry, hard, bare patch under bridge, flood drainage.
T12_E1	12	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with gravels on top, dry/damp, bare
T12_E2	12	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with sand and gravels, bare, ant mound next to grass
T12_W1	12	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with gravel amongst grass, damp
T12_W2	12	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with gravel amongst increased grass, damp, with clay and rocks
T13_B	13	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with organics under grass
T13_E1	13	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with organics under grass
T13_E2	13	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with organics under grass
T13_W1	13	Soil	23/Nov/21		0.0-0.1	Lead	Brown sandy silt with organics under grass, gravels
T13 W2	13	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass, damp
 T14_B	14	Soil	23/Nov/21	D02_211123	0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
 T14_E1	14	Soil	23/Nov/21	1 - 1	0.0-0.1	Lead	Brown sandy gravelly silt, bare, next to grass
T14_E2	14	Soil	23/Nov/21		0.0-0.1	Lead	Brown, silt with minor gravel under grass, damp
T14_W1	14	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt surrounded by grass, bare, damp
T14_W2	14	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with minor gravel under grass, damp
T15_B	15	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T15_E1	15	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels, damp, bare, some grass
T15_E1	15	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, under grass, damp
T15_W1	15	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with medium to large gravels, bare patch
T15_W1	15	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with medium to large gravels, bare patch with some grass
T16_B	16	Soil	22/Nov/21	1	0.0-0.1	Lead	Orange/brown clayey silt with gravels, damp.
T16_E1	16	Soil	22/Nov/21 22/Nov/21	1	0.0-0.1	Lead	Orange/brown silt underlain by dark grey/black gravels spilled from between rails.
T16_E1	16	Soil	22/Nov/21 22/Nov/21	1	0.0-0.1	Lead	Brown silt with gravels, under grass, damp.
T16_E2	16	Soil	22/Nov/21 22/Nov/21	+	0.0-0.1	Lead	ů t
	16		22/Nov/21 22/Nov/21	+	0.0-0.1	Lead	Orange/brown clayey silt with gravels, damp.
T16_W2	16	Soil		D02 211122	0.0-0.1	Lead	Orange/brown clayey silt with gravels, damp.
T17_B		Soil	22/Nov/21	D02_211122			Dark grey sandy gravel with large slag like rock inclusions.
T17_E1	17	Soil	22/Nov/21		0.0-0.1	Lead	Black and orange/brown sandy silt with gravels, bae.
T17_E2	17	Soil	22/Nov/21		0.0-0.1	Lead	Green/brown gravelly silt under grass.
T17_W1	17	Soil	22/Nov/21		0.0-0.1	Lead	Brown silty gravelly sand under grass, next to drainage.
T17_W2	17	Soil	22/Nov/21		0.0-0.1	Lead	Brown silty gravelly sand under grass, next to drainage.
T18_E1	18	Soil	00 /3 7 /04		0.0.04	Ŧ 1	Brown/orange crumbly silt, damp, under grass. Note - transect located at level crossing - no
			22/Nov/21		0.0-0.1	Lead	suitable "B" sample location
T18_E2	18	Soil	22/Nov/21		0.0-0.1	Lead	Brown sandy silt with minor gravels, damp, under grass.
T18_W1	18	Soil	22/Nov/21		0.0-0.1	Lead	Brown sandy gravelly silt, under grass, wet, next to drainage.
T18_W2	18	Soil	22/Nov/21		0.0-0.1	Lead	Brown silt with gravels, edge of dirt road.
T19_B	19	Soil	22/Nov/21		0.0-0.1	Lead	Black/grey gravelly sand with slag rocks.
T19_E1	19	Soil	22/Nov/21		0.0-0.1	Lead	Brown sandy silt with ballast like gravels, crumbly, bare patch, slag like rocks.
T19_E2	19	Soil	22/Nov/21		0.0-0.1	Lead	Grey brown silt with organics under grass, damp.
T19_W1	19	Soil	22/Nov/21		0.0-0.1	Lead	Brown gravelly sandy silt, bare patch.
T19_W2	19	Soil	22/Nov/21		0.0-0.1	Lead	Light brown silt with fine sand and gravels at surface, bare patch.
T20_B	20	Soil	22/Nov/21		0.0-0.1	Lead	Black gravelly sand with slag rocks.
T20_E1	20	Soil	22/Nov/21		0.0-0.1	Lead	Black gravelly 'ballast' sand with slag rocks spilled from between rails, underlain by brown silt, damp, bare patch.
T20_E2	20	Soil	22/Nov/21	+	0.0-0.1	Lead	Brown silt with organics, damp, under grass.
T20_E2	20	Soil	22/Nov/21 22/Nov/21		0.0-0.1	Lead	Black sandy gravel 'ballast' spilled from between rails, dry, bare patch near grass.
T20_W1	20	Soil	22/Nov/21 22/Nov/21	+	0.0-0.1	Lead	Brown silt with dark gravels, under grass, damp.
T21_B	21	Soil	23/Nov/21	1	0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
			23/Nov/21 23/Nov/21	+	0.0-0.1	Lead	
T21_E1	21	Soil	23/ INOV/ 21		0.0-0.1	Leau	Brown clayey silt and minor gravels in drainage next to grass, bare

Environmental Resources Management Australia Pty Ltd

					Sample		
Sampling	Transect	Sample	Sampling	Dunlicato/Triplicato	_	Analysis	Comments
Location	Transect	Type	Date	Duplicate/ Triplicate		Analysis	Comments
					bgl)		
T21_E2	21	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, bare damp
T21_W1	21	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, bare damp
T21_W2	21	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, bare damp, under grass
T22_B	22	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T22_E1	22	Soil	23/Nov/21	D03_211123	0.0-0.1	Lead	Brown silt and gravels, bare, moist
T22_E2	22	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, under grass, moist
T22_W1	22	Soil	23/Nov/21		0.0-0.1	Lead	Silt and gravels, brown, bare, damp
T22_W2	22	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass, moist
T23_B	23	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T23_E1	23	Soil	23/Nov/21		0.0-0.1	Lead	Brown, silt with minor gravels, bare, damp
T23_E2	23	Soil	23/Nov/21		0.0-0.1	Lead	Brown, silt with minor gravels, bare, damp
T23_W1	23	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, bare, minor gravels, damp
T23_W2	23	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass, damp
T24_B	24	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T24_E1	24	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with 'ballast' gravels, damp, bare
T24_E2	24	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with organics under grass, moist
T24_W1	24	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels, damp, bare
T24_W2	24	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravel and clay, bare, damp
T25_B	25	Soil	23/Nov/21		0.0-0.1	Lead	Orange brown silt underlain by grey/black 'ballast'
T25_E1	25	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt, bare patch, gravels, moist
T25_E2	25	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with organics under grass
T25_W1	25	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels, bare patch
T25_W2	25	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels, grass
T26_B	26	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T26_E1	26	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels, bare, near grass, damp
T26_E2	26	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with organics, under grass, damp
T26_W1	26	Soil	23/Nov/21		0.0-0.1	Lead	Brown gravelly silt with medium to large black gravels, bare, damp
T26_W2	26	Soil	23/Nov/21		0.0-0.1	Lead	Brown, clayey silt, dmall bare patch in grass, damp
T27_B	27	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels underlain by fine black gravels, some grass
T27_E1	27	Soil	23/Nov/21		0.0-0.1	Lead	Dark grey silty sand/gravels, damp, bare
T27_E2	27	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass, damp
T27_W1	27	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravels and sand, bare, damp
T27_W2	27	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt under grass, damp
T28_B	28	Soil					Dark brown silt, patchy grass, gravel. Note, high grass limited access within the corridor at
			23/Nov/21		0.0-0.1	Lead	this transect.
T28_E1	28	Soil	23/Nov/21		0.0-0.1	Lead	Brown silt with gravel next to grass
T29_B	29	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass with rocks, damp
T29_E1	29	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass with rocks, damp
T29_E2	29	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass with rocks, damp
T29_W1	29	Soil	23/Nov/21	D04_211123	0.0-0.1	Lead	Brown clayey silt under grass with rocks, damp
T29_W2	29	Soil	23/Nov/21		0.0-0.1	Lead	Brown clayey silt under grass, moist
T30_B	30	Soil	24/Nov/21		0.0-0.1	Lead	Black gravelly sand 'ballast', damp
T30_E1	30	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with organics, damp under grass
T30_E2	30	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with organics, damp under grass
T30_W1	30	Soil	24/Nov/21		0.0-0.1	Lead	Dark brown silt with black gravel, bare patch, damp
T30_W2	30	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with organics, damp under grass
T31_B	31	Soil	24/Nov/21		0.0-0.1	Lead	Black gravelly sand 'ballast', damp
T31_E1	31	Soil	24/Nov/21		0.0-0.1	Lead	Dark grey/brown sandy silt with organics under grass, damp
T31_E2	31	Soil	24/Nov/21		0.0-0.1	Lead	Dark grey/brown sandy silt with organics under grass, damp

Environmental Resources Management Australia Pty Ltd

					C 1 -		
Sampling	m .	Sample	Sampling	D 11 (/m 1 11 (Sample		
Location	Transect	Type	Date	Duplicate/ Triplicate	- '	Analysis	Comments
Locution		2770	Dute		bgl)		
T31_W1	31	Soil					Brown silt with organics and gravels, bare, damp. Measurement taken at corridor boundary
			24/Nov/21		0.0-0.1	Lead	
T32_B	32	Soil	24/Nov/21		0.0-0.1	Lead	Black grey sandy gravel, ballast, some grass, damp
T32_E1	32	Soil					Brown silt with gravels, bare, damp. Long grass resticted access to the boundary beyond this
			24/Nov/21		0.0-0.1	Lead	location
T32_W1	32	Soil	04/37 /04		0.0.01	T 1	Brown silt with gravels, bare, damp. Long grass resticted access to the boundary beyond this
			24/Nov/21	Dot 044404	0.0-0.1	Lead	location
T33_B	33	Soil	24/Nov/21	D01_211124	0.0-0.1	Lead	Black grey sandy gravel, ballast, some grass, damp
T33_E1	33	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with sand and gravels, bare, damp
T33_E2	33	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with sand and gravels, bare, damp
T33_W1	33	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with large gravels and sand, damp
T33_W2	33	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with large gravels and sand, damp, grass
T34_B	34	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt, grass underlain by black grey ballast sand
T34_E1	34	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with gravels, bare, damp
T34_E2	34	Soil	24/Nov/21		0.0-0.1	Lead	Orangeish silt with gravels, bare, damp
T34_W1	34	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with gravels, scattered grass
T34_W2	34	Soil	24/Nov/21		0.0-0.1	Lead	Orange/brown clayey silt with gravels, bare
T35_B	35	Soil	24/Nov/21	D02_211124	0.0-0.1	Lead	Black grey sandy gravel, ballast, some grass, damp
T35_E1	35	Soil	24/Nov/21		0.0-0.1	Lead	Grey brown, sandy silty gravel, dry, bare
T35_E2	35	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with minor gravel, bare patch in grass, damp
T35_W1	35	Soil	24/Nov/21		0.0-0.1	Lead	Brown sandy gravelly silt underlain with black gravel, bare
T35_W2	35	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with sand under grass, damp
T36_B	36	Soil	24/Nov/21		0.0-0.1	Lead	Dark grey brown sandy silty gravel ballast, bare, damp
T36_E1	36	Soil	24/Nov/21		0.0-0.1	Lead	Light brown silt and gravel, bare dry
T36_E2	36	Soil	24/Nov/21		0.0-0.1	Lead	White/brown silt and gravel with clay, bare dry
T36_W1	36	Soil	24/Nov/21		0.0-0.1	Lead	Red brown gravelly sandy silt, bare, damp
T36_W2	36	Soil	24/Nov/21		0.0-0.1	Lead	Light brown silt and gravel, bare dry
T37_B	37	Soil	24/Nov/21		0.0-0.1	Lead	Light brown silt with clay, damp, soft, grass
T37_E1	37	Soil	24/Nov/21		0.0-0.1	Lead	Light brown silt with gravels, dry, bare
T37_E2	37	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt, under grass, damp
T37_W1	37	Soil	24/Nov/21		0.0-0.1	Lead	Brown/orange silt with white gravels, bare
T37_W2	37	Soil	24/Nov/21		0.0-0.1	Lead	Brown/orange (less orange) silt with white gravels, bare
 T38_B	38	Soil	24/Nov/21		0.0-0.1	Lead	Dark grey ballast sand with white gravels, dry
 T38_E1	38	Soil	24/Nov/21		0.0-0.1	Lead	Silty sand with gravels and rocks, bare damp
T38_E2	38	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with gravels and organics under grass, damp, drainage channel.
T38_W1	38	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt with gravel, bare, damp
T38_W2	38	Soil	24/Nov/21		0.0-0.1	Lead	Brown silt, dry, organics
			, ,				Typical 'ballast' fill. Note - rain affected conditionals after measurements were taken, T39
T39_B	39	Soil	24/Nov/21		0.0-0.1	Lead	sampling terminated.
T39_W1	39	Soil	24/Nov/21		0.0-0.1	Lead	Gravelly silt fill, light brown, hard, crumbly, taken from road/track.
T40_B	40	Soil	15/Dec/21	D01_211215	0.0-0.1	Lead	Brown silt underlain by 'ballast' fill, damp
T40_E1	40	Soil	15/Dec/21	201_211210	0.0-0.1	Lead	Bare, brown/orange silt with large rocks, damp
T40_E2	40	Soil	15/Dec/21	 	0.0-0.1	Lead	Brown silt under grass, damp
T40_W1	40	Soil	15/Dec/21	†	0.0-0.1	Lead	Brown silt with large quartz/marble rocks fill, damp
T40_W2	40	Soil	15/Dec/21	 	0.0-0.1	Lead	Brown silt under grass, damp
T41_B	41	Soil	15/Dec/21	 	0.0-0.1	Lead	Dark brown/grey silty gravel, underlain with ballast fill
T41_DAM	41	Soil	15/Dec/21	 	0.0-0.1	Lead	Light brown silt, heavily washed out, damp, crumbly, hard
T41_E1	41	Soil	15/Dec/21	 	0.0-0.1	Lead	Light brown silt, heavily washed out, damp, crumbly, hard Light brown silt, heavily washed out, damp, crumbly, hard
T41_E1	41	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt, heavily washed out, damp, crumbly, hard Light brown silt, heavily washed out, damp, crumbly, hard
T41_E2	41	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt in uphill drainage channel, damp
141 111	41	JUII	10/ Dec/ 21		0.0-0.1	Leau	brown siit in upriin dramage chainer, damp

Sampling Location	Transect	Sample Type	Sampling Date	Duplicate/ Triplicate	Sample Depth (m bgl)	Analysis	Comments
T41_W2	41	Soil	15/Dec/21		0.0-0.1	Lead	Damp brown silt with organics under grass
T42_B	42	Soil	15/Dec/21		0.0-0.1	Lead	Dark grey/brown silt underlain by 'ballast', some grass
T42_E1	42	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under gravels, bare, damp
T42_E2	42	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under gravels, with grass, moist
T42_W1	42	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt, small bare patch in grass, damp
T42_W2	42	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt, under grass, damp
T43_B	43	Soil	15/Dec/21		0.0-0.1	Lead	Gravel/sand, 'ballast' fill
T43_E1	43	Soil	15/Dec/21	D02_211215	0.0-0.1	Lead	Gravel/sand, 'ballast' fill, spilled out from between rails towards creek.
T43_E2	43	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels under grass, moist
T43_W1	43	Soil	15/Dec/21		0.0-0.1	Lead	Gravel/sand, 'ballast' fill, spilled out from between rails towards creek.
T44_B	44	Soil	15/Dec/21		0.0-0.1	Lead	Dry brown silt underlain by black gravel 'ballast'
T44_E1	44	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt, dry with small gravel
T44_E2	44	Soil	15/Dec/21		0.0-0.1	Lead	Brown clayey silt under grass, damp
							Dry brown silt with shaley gravels
T44_W1	44	Soil	15/Dec/21		0.0-0.1	Lead	
T44_W2	44	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt, under live and dead grass with organics, damp
T45_B	45	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt, dry, underlain by black 'ballast' fill
T45_E1	45	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt with minor gravels, bare, next to grass
T45_E2	45	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt with minor gravels, bare, under grass, damp
T45_W1	45	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt, dry, base, next to grass
T45_W2	45	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt, dry, base, next to grass
T46_B	46	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass underlain by black 'ballas't gravel at 0.15m bgl
T46_E1	46	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass, damp
T46_E2	46	Soil	15/Dec/21		0.0-0.1	Lead	Bare, brown silt, hard
T46_W1	46	Soil	15/Dec/21		0.0-0.1	Lead	Dark brown/grey gravelly sand, moist, bare, material spilled out from between rails.
T46_W2	46	Soil	15/Dec/21		0.0-0.1	Lead	Brown damp silt with gravels near grass
T46_W3	46	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with organics, damp
T47_B	47	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt underlain by black ballast
T47_E1	47	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass, damp
T47_E2	47	Soil	15/Dec/21		0.0-0.1	Lead	Orange/brown silt with large gravels and rocks, near grass
T47_W1	47	Soil	15/Dec/21		0.0-0.1	Lead	Clayey silt with gravels, bare, near grass
T47_W2	47	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt, damp, near grass
 T48_B	48	Soil	15/Dec/21		0.0-0.1	Lead	Brown gravelly silt, dry, underlain with ballast, some grass
T48_E1	48	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with organics near grass, damp
T48_W1	48	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels, bare patch
T48_W2	48	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels, under grass
T49_B	49	Soil	15/Dec/21		0.0-0.1	Lead	Gravelly silt, underlain with 'ballast'
					010 01-		Dry brown silt with shaley gravels, near to grass, dry. Fence resticting access to corridor
T49_E1	49	Soil	15/Dec/21		0.0-0.1	Lead	boundary beyond this location
T49_W1	49	Soil	15/Dec/21		0.0-0.1	Lead	Grey dry silt with shale, next to grass
T49_W2	49	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt, under grass, damp
T50_B	50	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt underlain by black 'ballast'
T50_E1	50	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels spilled out from between rails.
T50_E2	50	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels spilled out from between rails.
T50_E3	50	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravels, bare
T50_E3	50	Soil	15/Dec/21 15/Dec/21		0.0-0.1	Lead	Light brown silt with gravel, windrow/bare
			15/Dec/21 15/Dec/21		0.0-0.1	Lead	V
T51_B	51 51	Soil			0.0-0.1	Lead	Brown silt with gravel underlain with 'ballast'
T51_E1	51	Soil	15/Dec/21				Light brown silt with grey gravel, dry
T51_E2	51	Soil	15/Dec/21	D04 04461-	0.0-0.1	Lead	Light brown silt with grey gravel, dry
T51_W1	51	Soil	15/Dec/21	D04_211215	0.0-0.1	Lead	Black/grey sandy gravel ballast, dry, spilled out from between rails

Environmental Resources Management Australia Pty Ltd

					Sample		
Sampling	Transect	Sample	Sampling	Duplicate/ Triplicate	Sample Depth (m	Analysis	Comments
Location	Transect	Type	Date	Dupireute, Imprieute	bgl)	711141 y 515	Comments
T51_W2	51	Soil					Black/grey sandy gravelly 'ballast' spilled out from between rails, dry, with brown silt, next
			15/Dec/21		0.0-0.1	Lead	to grass
T51_W3	51	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass, damp
T52_B	52	Soil	15/Dec/21		0.0-0.1	Lead	Grey silt underlain by grey 'ballast'
T52_E1	52	Soil	15/Dec/21		0.0-0.1	Lead	Orange/brown dry silt with gravels
T52_E2	52	Soil	15/Dec/21		0.0-0.1	Lead	Light brown dry silt with gravels
T52_W1	52	Soil	15/Dec/21		0.0-0.1	Lead	Light brown dry silt with black gravels
T52_W2	52	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass, damp
T52_W3	52	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt under grass, damp
T53_B	53	Soil	15/Dec/21		0.0-0.1	Lead	Silt with large gravels underlain by black 'ballast'
T53_E1	53	Soil	15/Dec/21		0.0-0.1	Lead	Brown/grey silt overlain with black gravels
T53_E2	53	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with organics under grass, damp
T53_W1	53	Soil	15/Dec/21		0.0-0.1	Lead	Brown/grey silt underlain by gravels
T53_W2	53	Soil	15/Dec/21		0.0-0.1	Lead	Brown silt with gravel under grass, damp
T54_B	54	Soil	15/Dec/21		0.0-0.1	Lead	Typical 'ballast' fill
 T54_E1	54	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt with gravels, dry, bare
T54_E2	54	Soil	15/Dec/21		0.0-0.1	Lead	Light brown silt with gravels, dry, bare
T54_W1	54	Soil	15/Dec/21		0.0-0.1	Lead	Silt brown under grass with gravel, damp
T54_W2	54	Soil	15/Dec/21		0.0-0.1	Lead	Silt brown under grass with gravel, damp
T55_B	55	Soil	15/Dec/21		0.0-0.1	Lead	Typical 'ballast' fill
			10/ 2 00/ 21		0.0 0.1	Zeac	Silt under grass with organics. Steep slope resticting safe access to the corridor boundary
T55_E1	55	Soil	15/Dec/21		0.0-0.1	Lead	beyond this location
			10/ 150/ 21	D05_211215	0.0 0.1	Ecua	Light brown silt with gravels, bare, dry. Steep slope resticting safe access to the corridor
T55_W1	55	Soil	15/Dec/21	1505_211215	0.0-0.1	Lead	boundary beyond this location
T56_B	56	Soil	16/Dec/21		0.0-0.1	Lead	Typical 'ballast' fill
T56_E1	56	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt, moist, organics, grass
T56_E2	56	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt, moist, organics, grass, with larger gravels
T56_E3	56	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt, under gravel, damp, bare
T56_W1	56	Soil	16/Dec/21		0.0-0.1	Lead	Brown/red silt with gravels and sand, bare, damp
T56_W2	56	Soil	16/Dec/21		0.0-0.1	Lead	Brown/red silt, under grass with organics, moist
T57_B	57	Soil	16/Dec/21		0.0-0.1	Lead	Typical 'ballast' fill
T57_E1	57	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt, under shales
			16/Dec/21		0.0-0.1	Lead	,
T57_W1	57 58	Soil Soil	16/Dec/21		0.0-0.1	Lead	Brown silt, under shales Typical 'ballast' fill. Private fence immediately west of tracks resticing acess.
T58_B					0.0-0.1	Lead	j j
T58_E1	58	Soil	16/Dec/21 16/Dec/21		0.0-0.1	Lead	Brown silt with shale gravels, dry base
T58_E2	58	Soil			0.0-0.1		Brown silt, under grass, damp
T59_B	59	Soil	16/Dec/21			Lead	Typical 'ballast' fill
T59_E1	59	Soil	16/Dec/21		0.0-0.1	Lead	Orange/brown silt with gravels, dry
T59_W1	59	Soil	16/Dec/21		0.0-0.1	Lead	Dark grey dry silty ballast material, spilled out from between rails with minor organics
T59_W2	59 	Soil	16/Dec/21		0.0-0.1	Lead	Light brown silt with gravels spilled from between rails.
T59_W3	59	Soil	16/Dec/21		0.0-0.1	Lead	Silt, brown under grass with organics
T60_B	60	Soil	16/Dec/21		0.0-0.1	Lead	Typical 'ballast' fill
T60_E1	60	Soil	16/Dec/21		0.0-0.1	Lead	Standard Ballast, spilled out from between rails
T60_E2	60	Soil	16/Dec/21		0.0-0.1	Lead	Dark grey silt, gravels
T60_W1	60	Soil	16/Dec/21		0.0-0.1	Lead	Standard Ballast, spilled out from between rails
T60_W2	60	Soil	16/Dec/21		0.0-0.1	Lead	Silt under grass, damp
T61_B	61	Soil	16/Dec/21		0.0-0.1	Lead	Standard 'ballast' with silt, dry
T61_E1	61	Soil	16/Dec/21		0.0-0.1	Lead	Light brown silt under gravels
T61_E2	61	Soil	16/Dec/21		0.0-0.1	Lead	Silt with gravels
T61_W1	61	Soil	16/Dec/21		0.0-0.1	Lead	Orange/grey silt with minor gravels, dry

7

Sampling Location	Transect	Sample Type	Sampling Date	Duplicate/ Triplicate	Sample Depth (m bgl)	Analysis	Comments
T61_W2	61	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt with organics under grass
T62_B	62	Soil	16/Dec/21	D01_211216	0.0-0.1	Lead	Standard 'ballast' with grey brown silt, grass
T62_E1	62	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt with minor small gravels, dry
T62_E2	62	Soil	16/Dec/21		0.0-0.1	Lead	Brown, silt sand with organics under grass
T62_W1	62	Soil	16/Dec/21	D02_211216	0.0-0.1	Lead	Brown/grey silt with gravels
T62_W2	62	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt with minor small gravels, dry
T63_B	63	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt with gravels, dry
T63_E1	63	Soil	16/Dec/21		0.0-0.1	Lead	Dark grey/brown silt with organics, damp - level crossing road verge
T63_W1	63	Soil	16/Dec/21		0.0-0.1	Lead	Brown silt with organics and gravels, roadbase - level crossing road verge
T64_B	64	Soil	16/Dec/21	D03_211216	0.0-0.1	Lead	Dark brown silt underlain by 'ballast' fill, with organics, damp
T64_E1	64	Soil	16/Dec/21		0.0-0.1	Lead	Brown and light brown clayey silt, damp, shales, bare
T64_E2	64	Soil	16/Dec/21		0.0-0.1	Lead	Reddish clayey silt, damp, shales, bare
T64_W1	64	Soil	16/Dec/21	D04_211216	0.0-0.1	Lead	Brown silt with organics under leaf litter
T64_W2	64	Soil	16/Dec/21		0.0-0.1	Lead	Gravelly silt, grey, with shale inclusions, dry
T65_B	65	Soil	16/Dec/21	D05_211216	0.0-0.1	Lead	Typical 'ballast' fill
T65_E1	65	Soil	16/Dec/21		0.0-0.1	Lead	Dark grey gravelly silty sand, leaf litter organics
T65_E2	65	Soil	16/Dec/21		0.0-0.1	Lead	Brown sandy silt under gravels
T65_W1	65	Soil	16/Dec/21	D06_211216	0.0-0.1	Lead	Organic silt, dry, loose, bare, leaf litter
T65_W2	65	Soil	16/Dec/21		0.0-0.1	Lead	Organic silt, dry, loose, bare, leaf litter with shales
T66_B	66	Soil	16/Dec/21		0.0-0.1	Lead	Standard ballast
T66_E1	66	Soil	16/Dec/21		0.0-0.1	Lead	Light brown silt with gravels, next to ballast
T66_E2	66	Soil	16/Dec/21		0.0-0.1	Lead	Silt with organics and large gravels
T66_W1	66	Soil	16/Dec/21		0.0-0.1	Lead	Standard ballast
T66_W2	66	Soil	16/Dec/21		0.0-0.1	Lead	Dry brown silt with gravel

										Lead		Moisture
									XRF Reading	Laboratory Result	Corrected Data Set*	Moisture Content
									ppm	mg/kg	mg/kg	%
EQL									1-4	5	1-4	0.1
NEPM 2013 Table			HIL D)								1500	
NEPM 2013 Table :											600	
NEPM 2013 Table											300 1800	
NEPM 2013 Table Sample Point	Date	Transect	Site Area	Location inTransect	Easting	Northing	Laboratory Sample	Lab Report Number			1800	
T1_E1	22/11/2021		1 Active Corridor	Adjacent to Tracks	721887.4981	6093671.448			110.8	-	135.1	-
T1_W1	22/11/2021		1 Active Corridor	Adjacent to Tracks	721881.7432	6093678.027			8.8	-	10.7	-
T1_W2	22/11/2021		1 Active Corridor	Mid Corridor	721880.023	6093689.503			41.9	-	51.1	-
T1_W3	22/11/2021		1 Active Corridor	Corridor Boundary	721874.8949	6093691.96			29.7	-	36.2	-
T2_E1	22/11/2021		2 Active Corridor	Adjacent to Tracks	721712.1308	6093214.103			82.2	-	100.2	-
T2_E2	22/11/2021		2 Active Corridor	Corridor Boundary	721721.2321	6093217.765			45	-	54.9	-
T2_W1	22/11/2021		2 Active Corridor	Adjacent to Tracks	721704.2693	6093223.843			50.3	-	61.3	-
T2_W2	22/11/2021		2 Active Corridor	Corridor Boundary	721693.1229	6093229.556			19	-	23.2	-
T3_E1	22/11/2021		3 Active Corridor	Adjacent to Tracks	721604.2022	6092929.927			69.1	-	84.2	-
T3_W1	22/11/2021		3 Active Corridor	Adjacent to Tracks	721595.9098	6092933.239			24.9	-	30.4	-
T3_W2	22/11/2021		3 Active Corridor	Corridor Boundary	721586.8311		D01_211122	CA2107572-2	6.7	15.8	15.8	14.7
T4_E1	22/11/2021		4 Active Corridor	Adjacent to Tracks	721449.0949	6092540.458			74.2	-	90.5	-
T4_E2	22/11/2021		4 Active Corridor	Corridor Boundary	721456.6245	6092543.16			98.7	-	120.3	-
T4_W1	22/11/2021		4 Active Corridor	Adjacent to Tracks	721447.4947	6092542.024			1634	-	1992.0	-
T4_W2	22/11/2021		4 Active Corridor	Corridor Boundary	721445.1447	6092544.565			24.8	-	30.2	-
T5_E1	22/11/2021		5 Active Corridor 5 Active Corridor	Adjacent to Tracks	721217.3982	6091917.169			386	-	470.6	-
T5_E2 T5 W1	22/11/2021		5 Active Corridor 5 Active Corridor	Corridor Boundary	721225.3394 721213.4157	6091919.569 6091912.091			16.4 265	-	20.0 323.1	-
T5_W1 T5_W2	22/11/2021		5 Active Corridor	Adjacent to Tracks Corridor Boundary	721213.4137	6091912.091			33.5	-	40.8	-
T6 E1	22/11/2021		6 Active Corridor	Adjacent to Tracks	721193.0998	6091365.963			76.5	-	93.3	-
T6 E2	22/11/2021		6 Active Corridor	Corridor Boundary	720992.9591	6091361.492			230	-	280.4	-
T6_W1	22/11/2021		6 Active Corridor	Adjacent to Tracks	720989.1886	6091371.02			73.2	-	89.2	-
T6_W2	22/11/2021		6 Active Corridor	Corridor Boundary	720983.3842	6091371.828			39.2	-	47.8	-
		٠	*			i.						
Count									23	1	26	1
Exceedences									2	-	3	-
Average									-	-	182.7	-
95% UCL										-	555.0	-
Standard Deviatio	n									-	410.0	_

^{*} Moisture correction has been applied using exact moisture where lab data is available. Where lab data is not available, average lab moisture has been used to account for the variability in moisture content observed across the Site. Moisture Corrected XRF Lead = XRF Lead/(100 — moisture content (s)*100
***HIL Can HIL A applied only to 'Corridor Boundary locations

*** Where laboratory duplicate analysed by primary and secondary laboratories, the higher of the analytical results is shown.

									.			1
										Lead		Moisture
									XRF Reading	Laboratory Result	Corrected Data Set*	Moisture Content
EQL									ppm 1-4	mg/kg 5	mg/kg 1-4	% 0.1
NEPM 2013 Table 1			LD)								1500	
NEPM 2013 Table 1 NEPM 2013 Table 1											600 300	
NEPM 2013 Table : NEPM 2013 Table :											1800 1100	
			ficance (Applicable to T51-T66 O	nly)	1	T	T				470	
Sample Point	Date	Transect	Site Area	Location inTransect	Easting	Northing	Laboratory Sample	Lab Report Number				
T7_B T7_E1	22/11/2021 22/11/2021		7 Non-Operational Corridor 7 Non-Operational Corridor	Between Tracks Mid Corridor	720743.8614 720745.9707				20700 1380	-	25235.7 1682.4	
T7_E2	22/11/2021		7 Non-Operational Corridor	Corridor Boundary	720748.3131	6090933.172			21.9	-	26.7	
T7_W1 T7_W2	22/11/2021 22/11/2021		7 Non-Operational Corridor 7 Non-Operational Corridor	Mid Corridor Corridor Boundary	720742.0942 720737.2208	6090937.483 6090937.847			22.8 14.9	-	27.8 18.2	
T8_B T8_E1	23/11/2021 23/11/2021		8 Non-Operational Corridor	Between Tracks Mid Corridor	720621.5791 720625.0252				3555 312		4334.0 380.4	
T8_E2	23/11/2021		8 Non-Operational Corridor 8 Non-Operational Corridor	Corridor Boundary	720631.8456	6090446.808			72.6	-	88.5	
T8_W1 T8_W2	23/11/2021 23/11/2021		8 Non-Operational Corridor 8 Non-Operational Corridor	Mid Corridor Corridor Boundary	720617.5696 720610.8346	6090450.932 6090450.875			1061 24.5	-	<u>1293.5</u> 29.9	-
T9_B	23/11/2021		9 Non-Operational Corridor	Between Tracks	720612.0299	6089931.247			2336	-	<u>2847.9</u>	-
T9_E1 T9_E2	23/11/2021 23/11/2021		9 Non-Operational Corridor 9 Non-Operational Corridor	Mid Corridor Corridor Boundary	720615.2926 720620.4311	6089930.723 6089932.484			126.5 150.2	-	154.2 183.1	-
T9_W1 T9_W2	23/11/2021 23/11/2021		9 Non-Operational Corridor 9 Non-Operational Corridor	Mid Corridor Corridor Boundary	720608.9436 720604.2543	6089931.544 6089929.55			241.8 22.2		294.8 27.1	-
T10_B	23/11/2021	1	Non-Operational Corridor	Between Tracks	720693.5309	6089269.344			1205	-	1469.0	-
T10_E1 T10_E2	23/11/2021	1	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	720699.9786 720711.5439	6089268.853 6089265.572			422 199	-	514.5 242.6	
T10_W1 T10_W2	23/11/2021	1	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	720686.3912 720677.3486	6089271.295 6089269.852			57 35.7	-	69.5 43.5	-
T11_B	23/11/2021	1	Non-Operational Corridor	Between Tracks	720677.4935	6088997.338	D01_211123	CA2107572-2	3561	8020	8020	26
T11_E1 T11_E2	23/11/2021		1 Non-Operational Corridor 1 Non-Operational Corridor	Mid Corridor Corridor Boundary	720679.8984 720682.4807	6088998.944 6088998.394			10900 104	-	13288.4 126.8	-
T12_B	23/11/2021	1	2 Non-Operational Corridor 2 Non-Operational Corridor	Between Tracks - Drainage Mid Corridor	720662.5694 720662.914	6088548.035 6088547.25			75.9 2187	-	92.5	-
T12_E1 T12_E2	23/11/2021 23/11/2021	1	Non-Operational Corridor	Corridor Boundary	720675.271	6088546.614			74.8	-	91.2	-
T12_W1 T12_W2	23/11/2021 23/11/2021		2 Non-Operational Corridor 2 Non-Operational Corridor	Mid Corridor Corridor Boundary	720657.2941 720654.2029	6088536.953 6088537.029			1113 48.6	-	<u>1356.9</u> 59.2	
T13_B	23/11/2021	1	Non-Operational Corridor	Between Tracks	720974.4233	6088155.747			21	-	25.6	-
T13_E1 T13_E2	23/11/2021		3 Non-Operational Corridor 3 Non-Operational Corridor	Mid Corridor Corridor Boundary	720976.6062 720978.8299	6088159.914 6088161.944			27.7 14.7	-	33.8 17.9	-
T13_W1 T13_W2	23/11/2021 23/11/2021		3 Non-Operational Corridor 3 Non-Operational Corridor	Mid Corridor Corridor Boundary	720970.5429 720970.875	6088154.523 6088150.328			262 8.3	-	319.4 10.1	- 1
T14_B	23/11/2021	1	4 Non-Operational Corridor	Between Tracks	720997.211	6087789.895	D02_211123	CA2107572-2	4222	11000	11000.0	12.8
T14_E1 T14_E2	23/11/2021 23/11/2021		4 Non-Operational Corridor 4 Non-Operational Corridor	Mid Corridor Corridor Boundary	721002.2922 721006.4497	6087785.663 6087784.562			1855 846		2261.5 1031.4	- :
T14_W1 T14_W2	23/11/2021 23/11/2021		4 Non-Operational Corridor 4 Non-Operational Corridor	Mid Corridor Corridor Boundary	720993.3998 720990.1852	6087793.984 6087792.731			1118 407	-	<u>1363.0</u> 496.2	-
T15_B	23/11/2021	1	5 Non-Operational Corridor	Between Tracks	720992.9533	6087497.952			1047		1276.4	
T15_E1 T15_E2	23/11/2021 23/11/2021		5 Non-Operational Corridor 5 Non-Operational Corridor	Mid Corridor Corridor Boundary	720997.157 721009.1615	6087498.736 6087502.327			66.1 43.7	-	80.6 53.3	-
T15_W1 T15_W2	23/11/2021 23/11/2021	1	Non-Operational Corridor	Mid Corridor	720989.8341 720981.7895	6087500.581 6087502.666			23.2 24.4	-	28.3	-
T16_B	22/11/2021	1	5 Non-Operational Corridor 6 Non-Operational Corridor	Corridor Boundary Between Tracks	721064.8738	6087041.185			144.7	-	29.7 176.4	
T16_E1 T16_E2	22/11/2021 22/11/2021		6 Non-Operational Corridor 6 Non-Operational Corridor	Mid Corridor Corridor Boundary	721069.5573 721073.8653	6087039.294 6087040.632			5416 27.1	-	6602.7 33.0	-
T16_W1	22/11/2021	. 1	6 Non-Operational Corridor	Mid Corridor	721067.4365 721050.5091	6087038.125 6087037.764			25.9		31.6	
T16_W2	22/11/2021	1	6 Non-Operational Corridor	Corridor Boundary	721050.5091			CA2107572-	19.5	-	23.8	16.1
T17_B T17_E1	22/11/2021		7 Non-Operational Corridor 7 Non-Operational Corridor	Between Tracks Mid Corridor	721127.6096 721134.0307	6086518.264 6086516.774	D02_211122	2/ES2143866	11200 1665	10600	11200.0 2029.8	-
T17_E2	22/11/2021	. 1	7 Non-Operational Corridor	Corridor Boundary	721138.6775	6086517.104			161.8	-	197.3	-
T17_W1 T17_W2	22/11/2021 22/11/2021	1	7 Non-Operational Corridor 7 Non-Operational Corridor	Mid Corridor Corridor Boundary	721123.7991 721118.4169	6086511.253 6086510.609			1488 191	-	1814.0 232.9	
T18_E1 T18_E2	22/11/2021		8 Non-Operational Corridor 8 Non-Operational Corridor	Mid Corridor Corridor Boundary	721134.6597 721151.5845	6086102.052 6086106.076			40.1 17.8	-	48.9 21.7	-
T18_W1	22/11/2021	1	8 Non-Operational Corridor 8 Non-Operational Corridor	Mid Corridor	721123.7623	6086106.427			16.6	-	20.2	-
T18_W2 T19_B	22/11/2021 22/11/2021	1	9 Non-Operational Corridor	Corridor Boundary Between Tracks	721117.9031 721119.1922	6086108.569 6085602.364			288 2849		351.1 <u>3473.3</u>	
T19_E1 T19_E2	22/11/2021		9 Non-Operational Corridor 9 Non-Operational Corridor	Mid Corridor Corridor Boundary	721127.6505 721132.4886	6085602.378 6085606.81			1574 200	-	1918.9 243.8	-
T19_W1	22/11/2021	1	9 Non-Operational Corridor	Mid Corridor	721114.6077	6085597.149			636	-	775.4	
T19_W2 T20_B	22/11/2021 22/11/2021	2	9 Non-Operational Corridor 0 Non-Operational Corridor	Corridor Boundary Between Tracks	721111.2602 721178.0432				699 6606	-	852.2 8053.5	-
T20_E1 T20_E2	22/11/2021 22/11/2021	2	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721181.4005 721187.9961	6085136.509			3486 95.8	-	4249.8 116.8	-
T20_W1	22/11/2021	2	Non-Operational Corridor	Mid Corridor	721187.9961	6085132.169			10600		12922.6	
T20_W2 T21_B	22/11/2021 23/11/2021		Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721277.9839	6084538.045			1470 3186	-	1792.1 3884.1	
T21_E1	23/11/2021	2	1 Non-Operational Corridor 1 Non-Operational Corridor	Mid Corridor	721282.4343	6084537.824			101.7	-	124.0	-
T21_E2 T21_W2	23/11/2021 23/11/2021	2	1 Non-Operational Corridor	Corridor Boundary Mid Corridor	721291.7813 721274.6576	6084537.039 6084535.907			305 152.5		371.8 185.9	
T21_W2 T22_B	23/11/2021 23/11/2021		1 Non-Operational Corridor 2 Non-Operational Corridor	Corridor Boundary Between Tracks	721271.3314 721361.011	6084533.769 6084054.548			260 4018		317.0 4898.4	-
T22_E1	23/11/2021	2	Non-Operational Corridor	Mid Corridor	721363.9787	6084053.063	D03_211123	CA2107572-2	993	1580	<u>1580.0</u>	12.3
T22_E2 T22_W1	23/11/2021 23/11/2021	2	2 Non-Operational Corridor 2 Non-Operational Corridor	Corridor Boundary Mid Corridor	721371.8007 721354.7142				70 775	-	85.3 944.8	-
T22_W2 T23_B	23/11/2021 23/11/2021		Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721342.492 721436.4344				57.3 2400		69.9 2925.9	-
T23_E1	23/11/2021	2	Non-Operational Corridor	Mid Corridor	721442.8883	6083594.673			57.3	-	69.9	-
T23_E2	23/11/2021	2	Non-Operational Corridor	Corridor Boundary	721449.7336	6083595.725			23.2	-	28.3	-

								Lead		Moisture
							XRF Reading	Laboratory Result	Corrected Data Set*	Moisture Content
EQL							ppm 1-4	mg/kg 5	mg/kg 1-4	% 0.1
NEPM 2013 Table	1A(1) Commercial & Ir 1A(1) Open Space (HII 1A(1) Residential (HIL	LC)							1500 600 300	
NEPM 2013 Table NEPM 2013 Table	1B(4) EIL Commercial 1B(4) EIL Urban Reside	l and Industrial enitial and Public Open Space							1800 1100 470	
NEPM 2013 Table Sample Point		logical Significance (Applicable to T51-T66 Onlineset Site Area	Location inTransect	Easting	Northing Laboratory Sam	ple Lab Report Number			470	
T23_W1 T23_W2	23/11/2021 23/11/2021	23 Non-Operational Corridor 23 Non-Operational Corridor	Mid Corridor Corridor Boundary	721426.751 721415.453	6083600.288 6083599.345		172 32.5	-	209.7 39.6	-
T24_B T24_E1	23/11/2021 23/11/2021	24 Non-Operational Corridor 24 Non-Operational Corridor	Between Tracks Mid Corridor	721494.6282 721500.6446	6083240.628 6083241.257		4454 414		<u>5429.9</u> 504.7	-
T24_E2 T24_W1 T24_W2	23/11/2021 23/11/2021 23/11/2021	24 Non-Operational Corridor 24 Non-Operational Corridor 24 Non-Operational Corridor	Corridor Boundary Mid Corridor Corridor Boundary	721508.5302 721488.7732 721481.7668	6083243.949 6083246.545 6083238.947		57.1 416 59.5		69.6 507.2 72.5	-
T25_B T25_E1	23/11/2021 23/11/2021 23/11/2021	25 Non-Operational Corridor 25 Non-Operational Corridor	Between Tracks Mid Corridor	721580.8591 721582.3102			1747 1270		2129.8 1548.3	
T25_E2 T25_W1	23/11/2021 23/11/2021	25 Non-Operational Corridor 25 Non-Operational Corridor	Corridor Boundary Mid Corridor	721585.1296 721576.3577	6082722.118 6082720.336		193 11.3		235.3 13.8	
T25_W2 T26_B T26_E1	23/11/2021 23/11/2021 23/11/2021	25 Non-Operational Corridor 26 Non-Operational Corridor 26 Non-Operational Corridor	Corridor Boundary Between Tracks Mid Corridor	721567.091 721669.3458 721671.7272	6082713.238 6082185.223 6082185.941		14.6 5409 1236	-	17.8 6594.2 1506.8	-
T26_E2 T26_W1	23/11/2021 23/11/2021 23/11/2021	26 Non-Operational Corridor 26 Non-Operational Corridor 26 Non-Operational Corridor	Corridor Boundary Mid Corridor	721674.83 721665.26	6082185.42 6082185.435		558 1370		680.3 1670.2	
T26_W2 T27_B	23/11/2021 23/11/2021	26 Non-Operational Corridor 27 Non-Operational Corridor	Corridor Boundary Between Tracks	721659.8858 721794.8489	6082185.013 6081432.291		869 2524		1059.4 3077.0	-
T27_E1 T27_E2	23/11/2021	27 Non-Operational Corridor 27 Non-Operational Corridor	Mid Corridor Corridor Boundary	721798.4829 721810.4032 721789.8992	6081432.202 6081432.684		3892 69.1	-	84.2	
T27_W1 T27_W2 T28_B	23/11/2021 23/11/2021 23/11/2021	27 Non-Operational Corridor 27 Non-Operational Corridor 28 Non-Operational Corridor	Mid Corridor Corridor Boundary Between Tracks	721786.8766 721864.3386	6081430.638 6081429.713 6081021.746		2547 330 453	-	3105.1 402.3 552.3	-
T28_E1 T29_B	23/11/2021 23/11/2021	28 Non-Operational Corridor 29 Non-Operational Corridor	Mid Corridor Between Tracks	721866.2185 721972.7725	6081024.252 6080355.813		266 868	-	324.3 1058.2	
T29_E1 T29_E2	23/11/2021 23/11/2021	29 Non-Operational Corridor 29 Non-Operational Corridor	Mid Corridor Corridor Boundary	721975.9353 721983.2188	6080355.069 6080355.555		239 67.8		291.4 82.7	
T29_W1 T29_W2 T30_B	23/11/2021 23/11/2021 24/11/2021	29 Non-Operational Corridor 29 Non-Operational Corridor 30 Non-Operational Corridor	Mid Corridor Corridor Boundary Between Tracks	721970.5943 721967.1502 722075.883	6080353.435 D04_211123 6080352.89 6079747.399	CA2107572-2	347 235 3637	629	629.0 286.5 4433.9	15.4
T30_E1 T30_E2	24/11/2021 24/11/2021 24/11/2021	30 Non-Operational Corridor 30 Non-Operational Corridor 30 Non-Operational Corridor	Mid Corridor Corridor Boundary	722075.883 722079.1806 722088.1617	6079744.764 6079747.761		308 44.7	-	375.5 54.5	-
T30_W1 T30_W2	24/11/2021 24/11/2021	30 Non-Operational Corridor 30 Non-Operational Corridor	Mid Corridor Corridor Boundary	722071.9912 722064.8125	6079744.387 6079748.117		5772 35.8		7036.7 43.6	
T31_B T31_E1	24/11/2021 24/11/2021	31 Non-Operational Corridor 31 Non-Operational Corridor	Between Tracks Mid Corridor	722235.6486 722242.4394	6079181.537 6079184.648		2281 3529		2780.8 4302.3	
T31_E2 T31_W1 T32_B	24/11/2021 24/11/2021 24/11/2021	31 Non-Operational Corridor 31 Non-Operational Corridor 32 Non-Operational Corridor	Corridor Boundary Corridor Boundary Between Tracks	722249.2805 722232.28 722298.2832	6079188.858 6079177.624 6078496.193		131 4217 2746	-	159.7 5141.0 3347.7	-
T32_E1 T32_W1	24/11/2021 24/11/2021 24/11/2021	32 Non-Operational Corridor 32 Non-Operational Corridor 32 Non-Operational Corridor	Mid Corridor Mid Corridor	722300.7464 722331.1381	6078492.913 6078182.787		348 169	-	424.3 206.0	
T33_B T33_E1	24/11/2021 24/11/2021	33 Non-Operational Corridor 33 Non-Operational Corridor	Between Tracks Mid Corridor	722296.9236 722324.5388	6078496.337 D01_211124 6078180.509	CA2107572-2	6252 2894	8770	8770.0 3528.1	19.9
T33_E2 T33_W1	24/11/2021 24/11/2021	33 Non-Operational Corridor 33 Non-Operational Corridor	Corridor Boundary Mid Corridor	722326.8505 722321.4952	6078182.117 6078178.697		5727 1108		6981.9 1350.8	
T33_W2 T34_B T34_E1	24/11/2021 24/11/2021 24/11/2021	33 Non-Operational Corridor 34 Non-Operational Corridor 34 Non-Operational Corridor	Corridor Boundary Between Tracks Mid Corridor	722312.7713 722457.4254 722459.7177	6078178.691 6077819 6077823.494		33.2 686 22.6		40.5 836.3 27.6	-
T34_E2 T34_W1	24/11/2021 24/11/2021	34 Non-Operational Corridor 34 Non-Operational Corridor	Corridor Boundary Mid Corridor	722465.4361 722451.6189	6077823.241 6077823.029		727 89.5		886.3 109.1	
T34_W2 T35_B	24/11/2021 24/11/2021	34 Non-Operational Corridor 35 Non-Operational Corridor	Corridor Boundary Between Tracks	722449.4037 722658.2502	6077817.978 6077204.262 D02_211124	CA2107572-2	54.3 6950	9140	66.2 9140.0	16.6
T35_E1 T35_E2	24/11/2021 24/11/2021	35 Non-Operational Corridor 35 Non-Operational Corridor	Mid Corridor Corridor Boundary	722661.844 722668.5583	6077206.282 6077209.556		8324 477	-	10147.9 581.5	
T35_W1 T35_W2 T36_B	24/11/2021 24/11/2021 24/11/2021	35 Non-Operational Corridor 35 Non-Operational Corridor 36 Non-Operational Corridor	Mid Corridor Corridor Boundary Between Tracks	722656.0571 722651.4341 722831.9568			2691 38 6802		3280.6 46.3 8292.4	-
T36_E1 T36_E2	24/11/2021 24/11/2021	36 Non-Operational Corridor 36 Non-Operational Corridor	Mid Corridor Corridor Boundary	722840.3573 722847.7839	6076744.281 6076746.983		77.9 140		95.0 170.7	
T36_W1 T36_W2	24/11/2021 24/11/2021	36 Non-Operational Corridor 36 Non-Operational Corridor	Mid Corridor Corridor Boundary	722824.9156 722817.5302	6076743.405		3669 27.5		<u>4472.9</u> 33.5	-
T37_B T37_E1	24/11/2021 24/11/2021 24/11/2021	37 Non-Operational Corridor 37 Non-Operational Corridor 37 Non-Operational Corridor	Mid Corridor Corridor Roundary	722884.4189 722889.0855 722894.4616	6076349.336 6076350.663		58.7 44.7	-	71.6 54.5	-
T37_E2 T37_W1 T37_W2	24/11/2021 24/11/2021 24/11/2021	37 Non-Operational Corridor 37 Non-Operational Corridor 37 Non-Operational Corridor	Corridor Boundary Mid Corridor Corridor Boundary	722894.4616 722877.0944 722872.4443	6076347.643 6076347.076 6076342.751		16.1 100.2 29.1	-	19.6 122.2 35.5	-
T38_B T38_E1	24/11/2021 24/11/2021	38 Non-Operational Corridor 38 Non-Operational Corridor	Between Tracks Mid Corridor	722954.3747 722956.7454	6075815.876 6075818.868		1604 231		1955.5 281.6	
T38_E2 T38_W1	24/11/2021 24/11/2021	38 Non-Operational Corridor 38 Non-Operational Corridor	Corridor Boundary Mid Corridor	722960.5454 722949.2741	6075818.872 6075819		1098 29.6		36.1	-
T38_W2 T39_B T39_W1	24/11/2021 24/11/2021 24/11/2021	38 Non-Operational Corridor 39 Non-Operational Corridor 39 Non-Operational Corridor	Corridor Boundary Between Tracks Mid Corridor	722945.9203 722872.8162 722866.6208	6075819.305 6075305.276 6075308.205		101.4 9759 4620		123.6 11897.4 5632.3	-
T40_B T40_E1	15/12/2021 15/12/2021	40 Non-Operational Corridor 40 Non-Operational Corridor	Between Tracks Mid Corridor	722867.8067 722872.2303	6074866.369 D01_211215 6074865.26	ES2146882	49.7 67.6	246	246.0 82.4	15.3
T40_E2 T40_W1	15/12/2021 15/12/2021	40 Non-Operational Corridor 40 Non-Operational Corridor	Corridor Boundary Mid Corridor	722868.0625	6074865.697		50.6 22.4		61.7 27.3	-
T40_W2 T41_B	15/12/2021 15/12/2021	40 Non-Operational Corridor 41 Non-Operational Corridor	Corridor Boundary Between Tracks	722860.9591 722881.0814	6074861.322 6074768.242		15.2 8038		18.5 9799.3	
T41_DAM T41_E1 T41_E2	15/12/2021 15/12/2021 15/12/2021	41 Non-Operational Corridor 41 Non-Operational Corridor 41 Non-Operational Corridor	Boundary - Drainage Channel Mid Corridor Corridor Boundary	722913.0694 - 722898.9295	6074765.116 - 6074766.355		18.2 69.1 129		22.2 84.2 157.3	-
T41_W1 T41_W2	15/12/2021 15/12/2021	41 Non-Operational Corridor 41 Non-Operational Corridor	Mid Corridor Corridor Boundary	722876.5012	6074770.354		33.2 28.8		40.5 35.1	-
T42_B T42_E1	15/12/2021 15/12/2021	42 Non-Operational Corridor 42 Non-Operational Corridor	Between Tracks Mid Corridor	722853.0572	6074130.873		3803 191		4636.3 232.9	-
T42_E2 T42_W1	15/12/2021 15/12/2021	42 Non-Operational Corridor 42 Non-Operational Corridor	Corridor Boundary Mid Corridor Corridor Boundary	722848.3841	6074136.54		244 31.4		297.5 38.3	-
T42_W2 T43_B T43_E1	15/12/2021 15/12/2021 15/12/2021	42 Non-Operational Corridor 43 Non-Operational Corridor 43 Non-Operational Corridor	Corridor Boundary Between Tracks Mid Corridor - Drainage	722845.1189 722603.615	6074136.732 6073362.47 - D02_211215	ES2146882	45.2 12000 3469	4900	55.1 14629.4 4900.0	16.1
T43_E2 T43_W1	15/12/2021 15/12/2021 15/12/2021	43 Non-Operational Corridor 43 Non-Operational Corridor	Corridor Boundary Mid Corridor - Drainage	722604.5503	6073363.557		1105 2837	-	1347.1 3458.6	-
T44_B T44_E1	15/12/2021 15/12/2021	44 Non-Operational Corridor 44 Non-Operational Corridor	Between Tracks Mid Corridor	722185.2121 722186.667	6073037.397 6073033.809		4341 465		<u>5292.2</u> 566.9	-
T44_E2 T44_W1 T44_W2	15/12/2021 15/12/2021	44 Non-Operational Corridor 44 Non-Operational Corridor	Corridor Boundary Mid Corridor Corridor Boundary	722190.9439	6073030.484		142.1 411		173.2 501.1	-
T45_B	15/12/2021 15/12/2021	44 Non-Operational Corridor 45 Non-Operational Corridor	Corridor Boundary Between Tracks	722091.9027	6072479.241		103.2 1717		125.8 2093.2	-

												L 1
										Lead		Moisture
									ling	ry Result	rrected Data Set'	Content
									XRF Reading	Laboratory	Correcte	Moisture
EQL									ppm 1-4	mg/kg 5	mg/kg 1-4	% 0.1
NEPM 2013 Table 1	A(1) Commercial & Inc A(1) Open Space (HIL	C)	D)								1500 600	
NEPM 2013 Table 1	A(1) Residential (HIL A LB(4) EIL Commercial a	ınd Industri									300 1800	
	B(4) EIL Urban Resider B(4) EIL Areas of Ecolo		blic Open Space cance (Applicable to T51-T66 C	nly)							1100 470	
Sample Point	Date Trans		Site Area	Location inTransect	Easting	Northing	Laboratory Samp	le Lab Report Number				
T45_E1 T45_E2	15/12/2021 15/12/2021	45	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	722093.9847 722095.3955	6072477.267			806 725	-	982.6 883.9	-
T45_W1 T45_W2	15/12/2021 15/12/2021	45	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	722086.273 722076.1521	6072479.269 6072484.96			350 32.5	-	426.7 39.6	-
T46_B T46_E1	15/12/2021 15/12/2021	46	Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	722104.7138				86 33.5	-	104.8 40.8	-
T46_E2 T46_W1	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Mid Corridor	722108.7481 722099.0899		D03_211215	ES2146882	37.4 9061	11200	45.6 11200.0	14.8
T46_W2 T46_W3	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	722073.8963	6071950.964			959 43.8	-	1169.1 53.4	-
T47_B T47_E1	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	722285.6719 722290.4537	6071282.111 6071277.219			6108 216	-	7446.4 263.3	-
T47_E2 T47_W1	15/12/2021 15/12/2021	47	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Mid Corridor	722296.4871 722281.5525	6071278.845 6071280.77			40.5	-	49.4 325.5	-
T47_W2 T48_B	15/12/2021 15/12/2021	47	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	722275.5664 722307.8499	6071288.356 6070899.142			132.8	-	161.9 792.4	
T48_E1 T48_W1	15/12/2021 15/12/2021 15/12/2021	48	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	722308.3229 722305.3697	6070899.907 6070901.645			316 381	-	385.2 464.5	:
T48_W2 T49 B	15/12/2021 15/12/2021 15/12/2021	48	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	722300.4944	6070902.766			132.3	-	161.3 4269.3	
T49_E1	15/12/2021 15/12/2021 15/12/2021	49	Non-Operational Corridor	Mid Corridor	-	-			1221	-	1488.5	
T49_W1 T49_W2	15/12/2021	49	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	722226.1181	- 6069820.076			294 184.1	-	358.4 224.4	
T50_B T50_E1	15/12/2021 15/12/2021	50	Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	722225.4471	6069818.649			2511 1227	-	3061.2 1495.9	-
T50_E2 T50_E3	15/12/2021 15/12/2021	50	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	722228.1059 722229.6731				1952 2848	-	2379.7 3472.0	-
T50_W1 T51_B	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Mid Corridor Between Tracks	722217.672 721978.2966	6069823.616 6069400.406			42 12400	-	51.2 <u>15117.0</u>	-
T51_E1 T51_E2	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721981.5654 721986.7311	6069396.772 6069389.096			732 15.5	-	892.4 18.9	-
T51_W1 T51_W2	15/12/2021 15/12/2021	51	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721973.4221 721972.2812	6069397.863 6069399.445	D04_211215	ES2146882	4220 1184	3330	4220.0 1443.4	13.4
T51_W3 T52_B	15/12/2021 15/12/2021	51	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721964.3137 721741.0053	6069400.309 6068822.396			80.6 31500	-	98.3 <u>38398.5</u>	-
T52_E1 T52_E2	15/12/2021 15/12/2021	52	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721746.2066	6068819.825			1987 21.1	-	2422.4 25.7	-
T52_W1 T52_W2	15/12/2021 15/12/2021	52	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721740.8102	6068829.172			594 1742	-	724.2 2123.7	-
T52_W2 T52_W3 T53_B	15/12/2021 15/12/2021 15/12/2021	52	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721582.5889	6068078.248			41.2 4540	-	50.2	-
T53_E1	15/12/2021	53	Non-Operational Corridor	Mid Corridor	721585.8931	6068079.72			365	-	<u>5534.8</u> 445.0	
T53_E2 T53_W1	15/12/2021 15/12/2021	53	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Mid Corridor	721579.0813	6068079.556			5250 44.4	-	<u>6400.4</u> 54.1	-
T53_W2 T54_B	15/12/2021 15/12/2021	54	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721573.2207 721634.7739	6068081.145 6067393.264			3019 6787	-	3680.5 8274.1	-
T54_E1 T54_E2	15/12/2021 15/12/2021	54	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721638.3637 721642.7148	6067395.284 6067391.402			39.7 227	-	48.4 276.7	-
T54_W1 T54_W2	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721631.6487 721629.6724	6067395.34 6067396.166			70 42.4	-	85.3 51.7	-
T55_B T55_E1	15/12/2021 15/12/2021		Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	721509.1269	6066875.534			3525 298	-	<u>4297.4</u> 363.3	-
T55_W1 T56_B	15/12/2021 16/12/2021		Non-Operational Corridor Non-Operational Corridor	Mid Corridor Between Tracks	721827.8656	6066363.657	D05_211215	ES2146882	951 8201	278	951.0 <u>9998.0</u>	4
T56_E1 T56_E2	16/12/2021 16/12/2021	56	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721834.2885 721836.5421	6066362.831			378 423	-	460.8 515.7	-
T56_E3 T56_W1	16/12/2021 16/12/2021	56	Non-Operational Corridor Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721847.673 721825.8373	6066360.945 6066362.375			88.9 116.8	-	108.4	-
T56_W2 T57_B	16/12/2021 16/12/2021	56	Non-Operational Corridor Non-Operational Corridor Non-Operational Corridor	Mid Corridor Between Tracks	721821.9867 721841.132	6066360.806			148.8 6315	-	181.4 7698.7	
T57_E1 T57_W1	16/12/2021 16/12/2021 16/12/2021	57	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721843.7919 721841.3189	6065943.942 6065937.77 6065944.159			207	-	252.4	-
T58_B	16/12/2021 16/12/2021 16/12/2021	58	Non-Operational Corridor	Between Tracks Mid Corridor	721841.3189 721816.3525 721819.991	6065417.383			7164	-	75.8 <u>8733.7</u>	-
T58_E1 T58_E2	16/12/2021	58	Non-Operational Corridor Non-Operational Corridor	Mid Corridor	721826.5229	6065414.022			250 173	-	304.8 210.9	-
T59_B T59_E1	16/12/2021 16/12/2021	59	Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	721775.5828				5510 156	-	<u>6717.3</u> 190.2	-
T59_W1 T59_W2	16/12/2021 16/12/2021	59	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721774.1292 721775.7944	6064444.119 6064445.41			27700 3542	-	<u>33769.5</u> <u>4318.1</u>	-
T59_W3 T60_B	16/12/2021 16/12/2021	60	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721771.1892 721687.8373	6064446.301 6064279.417			210 6196	-	256.0 <u>7553.6</u>	-
T60_E1 T60_E2	16/12/2021 16/12/2021	60	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721690.9258 721699.0263	6064279.562 6064284.246			2190 496	-	<u>2669.9</u> 604.7	-
T60_W1 T60_W2	16/12/2021 16/12/2021	60	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721687.6314 721680.5945	6064282.086 6064283.704			3148 215	-	<u>3837.8</u> 262.1	-
T61_B T61_E1	16/12/2021 16/12/2021	61	Non-Operational Corridor Non-Operational Corridor	Between Tracks Mid Corridor	721729.1253	6063895.971			7201 556	-	<u>8778.9</u> 677.8	-
T61_E2 T61_W1	16/12/2021 16/12/2021	61	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Mid Corridor	721735.085 721723.2925				139.5 4642	-	170.1 <u>5659.1</u>	-
T61_W2 T62_B	16/12/2021 16/12/2021	61	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721496.6668	-	D01_211216	ES2146882	422 8585	12400	514.5 12400.0	- 19
T62_E1 T62_E2	16/12/2021 16/12/2021 16/12/2021	62	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Corridor Boundary	721496.6668 721497.3645 721499.8344		D02_211216	ES2146882	2875 1257	1090	2875.0 1532.4	12.5
T62_W1	16/12/2021	62	Non-Operational Corridor	Mid Corridor	721494.6832	6063065.681			5986	-	<u>7297.6</u>	
T62_W2 T63_B	16/12/2021 16/12/2021	63	Non-Operational Corridor Non-Operational Corridor	Corridor Boundary Between Tracks	721485.9851 721541.0958	6063066.119 6062461.203			83.5 196	-	101.8 238.9	
T63_E1 T63_W1	16/12/2021 16/12/2021	63	Non-Operational Corridor Non-Operational Corridor	Mid Corridor Mid Corridor	721543.2605 721537.9942	6062460.705 6062460.503			531 269	-	647.4 327.9	
T64_B T64_E1	16/12/2021 16/12/2021	64		Between Tracks Mid Corridor	721379.1582 721376.9879	6062062.206		ES2146882	6329 40.3	11000	<u>11000.0</u> 49.1	29.7
T64_E2	16/12/2021	64	Non-Operational Corridor	Corridor Boundary	721383.6633	6062064.372		_	75.7	-	92.3	-]

										Lead		Moisture
									XRF Reading	Laboratory Result	Corrected Data Set*	Moisture Content
									ppm	mg/kg	mg/kg	%
EQL									1-4	5	1-4	0.1
NEPM 2013 Table 1			.D)								1500	
NEPM 2013 Table 1											600	
NEPM 2013 Table 1											300	
NEPM 2013 Table 1											1800	
NEPM 2013 Table 1											1100	
NEPM 2013 Table 1	B(4) EIL Areas of	Ecological Signifi	cance (Applicable to T51-T66 Only	y)			1				470	
Sample Point	Date	Transect	Site Area	Location inTransect	Easting	Northing	Laboratory Sample	Lab Report Number				
T64_W1	16/12/2021		Non-Operational Corridor	Mid Corridor	721373.6945		D04_211216/ T01_211216	ES2146882 / 859898	654	1110	1110.0	48.3
T64_W2	16/12/2021	64	Non-Operational Corridor	Corridor Boundary	721372.2	6062066.654			88.8		108.3	-
T65_B	16/12/2021	65	Non-Operational Corridor	Between Tracks	721290.77	6061712.894	D05_211216	ES2146882	4661	6860	6860.0	26.9
T65_E1	16/12/2021	65	Non-Operational Corridor	Mid Corridor	721293.5748	6061716.266			3591	-	4377.8	-
T65_E2	16/12/2021	65	Non-Operational Corridor	Corridor Boundary	721292.7809	6061717.174			455		554.7	-
T65_W1	16/12/2021		Non-Operational Corridor	Mid Corridor	-	-	D06_211216 / /T01_211216	ES2146882 / 859898	3638	1190***	<u>3638.0</u>	5.4
T65_W2	16/12/2021		Non-Operational Corridor	Corridor Boundary	721285.2022				63.8		77.8	-
T66_B	16/12/2021		Non-Operational Corridor	Between Tracks	721137.9				5663	-	6903.9	-
T66_E1	16/12/2021		Non-Operational Corridor	Mid Corridor	721138.5816				1216		<u>1482.4</u>	-
T66_E2	16/12/2021		Non-Operational Corridor	Corridor Boundary	721140.5755				151.5	-	184.7	-
T66_W1	16/12/2021		Non-Operational Corridor	Mid Corridor	721131.9508				1668		<u>2033.5</u>	-
T66_W2	16/12/2021	66	Non-Operational Corridor	Corridor Boundary	721125.2131	6060965.478			31.9	-	38.9	-
Count						-			282	17	282	18
Exceedences									-	-	156	-
Average									-	-	2395.4	-
95% UCL									-	-	3211.0	-
Standard Deviation										-	3891.0	-

^{*} Moisture correction has been applied using exact moisture where lab data is available. Where lab data is not available, average lab moisture has been used to account for the variability in moisture content observed across the Site.
*Moisture Corrected XRF Lead * XRF Lead/100 - moisture content %)*100

*** Where laboratory duplicate analysed by primary and secondary laboratories, the higher of the analytical results is shown.

CAPTAINS FLAT TO BUNGEN Bungendore, NSW	DORE – RAIL CORRIDOR XRF SURVEY	
APPENDIX C	DATA QUALITY OBJECTIVES	

C1 DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs have been prepared in line with the seven-step approach outlined in National Environment Protection (Assessment of Site Contamination) Measure (the ASC NEPM) (NEPC, 1999) (as amended 2013), and with reference to relevant guidelines published by the ACT EPA, specifically the Contaminated Sites Environment Protection Policy (December 2017).

The DQO process is validated, in part, by the quality assurance and quality control (QA/QC) procedures and assessment presented in Appendix G of this report. The seven steps of the DQO process, and how they were applied to this assessment, are presented in the following subsections.

C1.1 STEP 1: STATE THE PROBLEM

The Site is currently owned by the Transport for NSW (TfNSW). Management of the Site falls under the rail operations and maintenance services of the Country Regional Rail Network (CRN), which was formerly managed by JHR and currently managed by UGL on behalf of TfNSW. ERM understands that TfNSW and JHR would like to understand the likelihood of the presence of contamination near the Site and whether any contamination exists at the Site and if so, does it present a risk to on or offsite receptors.

C1.2 STEP TWO: IDENTIFY THE DECISIONS

Overall the principal decision to be made is whether potential risk to human health or the environment exists as a result of historical site activities. In order to inform this decision, the following questions need to be considered:

- What potential sources of contamination are or were present at the site?
- Is the sampling pattern adequate to collect the required data to achieve the survey objectives?
- What is the nature and extent of the COPC in near surface soils at the site?
- Is contamination in excess of relevant guideline values present?
- What receptors are potentially at risk of exposure?
- What potential exposure scenarios should be considered?
- Does the contamination likely warrant notification under the Environment Protection Act 1997?

C1.3 STEP 3: IDENTIFY INPUTS TO DECISION

The primary inputs required to make the above decisions are as follows:

- general observations of the Site;
- review of historical information pertaining to the site;
- the type, number and location of sampling points;
- direct measurement and observation of environmental variables:

- XRF measurements for surface soils for lead
- laboratory measurement of soil samples for lead:
- field and laboratory quality assurance/quality control data;
- assessment of concentrations of the COPC against relevant published human health and ecological risk screening criteria; and
- Likelihood of identified receptors being exposed to concentrations of COPCs above the relevant adopted criteria.

C1.4 STEP 4: DEFINE THE STUDY BOUNDARIES

C1.1.1 Spatial Boundaries

The spatial boundary of the investigation is surrounding the site, specifically the soil investigation locations presented on Figures 3.1-3.31, Appendix A. The investigation included the surface soils (to ~0.05m) within the investigation area.

C1.1.2 Temporal Boundaries

Temporally, the investigation was intended to provide a preliminary assessment the nature and extent of potential soil lead contamination across the investigation area. The survey occurred on the 22-24th November, and 15-17 December 2021.

STEP FIVE: DEVELOP A DECISION RULE C1.5

The DQOs have been developed to facilitate the collection of adequate soil data to address the decisions outlined in Step 2 of the DQO process. The potential significance of field observations / measurement have been considered throughout this investigation, however the primary decision rule utilised for this assessment was comparison of analytical data with relevant published human health and ecological risk screening criteria, and consideration of background conditions.

Individual soil data were compared to the relevant screening criteria. Exceedance of the screening criteria does not necessarily indicate the requirement for remediation or a risk to human health and / or the environment through the qualitative assessment of the potential linkage between the source and the receptor via a pathway and described through the initial conceptual site model (CSM). If individual concentrations exceeded the screening criteria, consideration of the extent of the impact, the potential for receptors to be exposed and regulatory compliance was considered.

C1.5.1 Screening Criteria

The Tier 1 screening criteria for soil data has been selected based on a review of the following reference documents:

Relevant screening criteria selected for comparison against the soil results are discussed in Section 4.1 of this report.

C1.5.2 Appropriateness of Laboratory Limit of Reporting

XRF and laboratory analytical techniques have limits to their precision, and the Limit of Reporting (LOR) describes the lowest concentration that can be reported with confidence. Where a given assessment criteria is lower than the LOR concentration, a meaningful comparison generally cannot be made.

This investigation has employed standard LORs. Comparison of the LOR with the assessment criteria will be undertaken to confirm that the assessment criteria are less than the laboratory LOR and any exceptions to this shall be appropriately noted and justified.

C1.6 STEP 6: SPECIFY LIMITS ON DECISION ERRORS

The acceptable limits on decision errors applied during the review of the results will be based on the Data Quality Indicators (DQIs) of Precision, Accuracy, Representativeness, Comparability and Completeness (PARCC) in accordance with the ASC NEPM, Schedule B(3) - Guidelines on Laboratory Analysis.

The potential for significant decision errors will be reduced by:

- Ensuring the laboratory data is comparable to the XRF data, and if not determine if standard corrections to the XRF data set may be required;
- completing a robust QA/QC assessment of the data, requiring that 95% of data satisfy the DQIs and therefore placing a limit on the decision error of 5% (see Appendix G);
- assessing whether appropriate sampling and analytical density has been achieved for the purposes of meeting the project objectives; and
- ensuring that the assessment criteria selected are appropriate for the current and future commercial/industrial and open space land uses, as well as potential ecological and residential receptors.

C1.7 STEP 7: DEVELOP (OPTIMISE) THE PLAN FOR COMPLETING THE

The investigation scope was tailored to match DQOs with project objectives, to combine targeted investigation based on existing knowledge and discussions with JHR and TfNSW. During the site inspection and fieldworks the scope was continuously reviewed to accommodate new information such as potential sources of site contamination and the results obtained through the use of the XRF device.

Project No.: 0608750

CAPTAINS FLAT TO BUNGENE Bungendore, NSW	OORE – RAIL CORRIDOR XRF SURVEY
APPENDIX D	CALIBRATION CERTIFICATES AND FIELD DOCUMENTATION

CERTIFICATE OF CALIBRATION

500 ip 128815 CC % April 2020 April 2021 C-610159 REV.C
128815 C % April 2020 April 2021 C-610159 REV.C
April 2020 April 2021 C-610159 REV.C
%April 2020 April 2021 K-610159 REV.C
April 2020 April 2021 K-610159 REV.C
April 2021 K-610159 REV.C
ζ-610159 REV.C
SS
National Institute of Standards and
Research PTY LTD
eed by Lead Paint Certified Reference hnology (NIST) SRM 2570-SRM 2575

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-017

Date: 22/11/21

Franzect

Location ID	#	Run-time	Reading	Dup	Description
T7.B	1037	7	2.071 ±0.1		Bran sity sand overland by gavers he barrand. Pamp.
TZE1	1038	7	1320 E7		Bram Jet u sord e a misi
T7_E2	102q	7	21.9±1.3		genal/brain clayer sitting gover. Bone. Domp.
T7_WI	1090	7	22.811.1		foram coronge soundy six w
T7_WZ	1091	7	[4,9±1.0		light brown sut, domp, growers.
T6_W1	1047	6	73,24.8		cight from sout with balkerst.
T-6_W2	1093	6	39.2±1.4	gamingajanguman,ungagan, , ggyagajapa	" no ballast, grass.
Le FI	1099	6	76.5±1,5		Cight brain sondy 24 w bayas!,
T6_EZ	1095	6	230±3		" top of ceething.
TS-翻EI	1096	45	386±3.		Bram sandy SM & grow u ballast, Rose, damp.
T5_E2	10977	5	16.4 t1.2		With bran a crange closely sit- W mina tracts. Bore. Brainege
TS_WI	rpol.	5	265±3·		<i>y</i>
T5-W2	1099	5	33,5 5,3		" no ballast, grass.
T4_W1	1100	4	1639±8		Dork brawn sardy 8UV us grave is. Bare damp.
T4-WZ	hoi	4	4 ^{24,821.4}		the Brain w Garge Sitt. Grants. Gass. Domp.
寸4_E1	1102	4	74.221.5		salest.
T4_EZ	(103	4	98.7 ±1.5.		Back brann silt w grant under grant, wet.
T3_EI	110 4	3	69.1 41.4		grow & bollast under dead gras.
T3_W1	ilos	3	24.9±1.2		Bran gravery sorty ser- next to ballast. bomp.
T3-W2	1106	3	6.7 = 1.2		Gravely gordy sur crange/tran.
001-211122				<i>O</i> .	T3_WZ.

Page____

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-08

Date: 22/11/21

Location ID	#	Run time	Reading	Dup	Description
T2-E1)(07-		32.2±1.5		Sordy (layer Sit, brain, smans) Lallast. Wood, domp.
T2_E2	(108	:	45±1.1		Bran Sut, dang, inder grass.
72-WI	1109.		50.3±1.4		Brown 814 with sand a mina- gravels. Damp
TZ-WZ	1110		19±1.0.		Brown silt in gravels in sand, damp. Bare.
TLE	nei		110.8±1.8		Redibrary they tend is bollow.
The	四		8,8,±0,9		Brown out underland by 18ht brown sand. Danp. Box on Lollast.
11_W	(112		V		\bigvee
T1-WZ	1113		41.921.2		" ", bore patch next to ballast Stockplk:
T1_W3	1114		29.74.2		Stockpk:
776-B	1116		144.7 4.9		orange brann clayers sut in grads. Omp.
TIEWI	1117		25.9±1.4.		ii 17
T16_W2	1118		19.51.2		3 11
T16_E1	1119		5416±18		donge brown sut indetain by done gray 161ach gravely
T16_E2	1120		27.1±1.72		Bran 84 & graveis, grass, day.
TM_B	1177		1.12% ±0,1		pork grey stag gravel soud mix
002-211122					T17_B.
T17_E(1172		1665 ±8		Black e garge/braw sandy 5#5 Bape, gravels.
717-62	1123		[61.1±1.9]		areen/bran gravely 8th anos
T(7_W)	1124		1488±6		brown 51/by gravelly Fond under Graces next to drawage.
T17-WZ	1125		1912		2
718-BW2	1126		286 ± 3.		Edge of road. Brown M- 4 grands.

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-05

Date: 77 / 11/71

EKIVI		frantle			23/11/M
Location ID	#	Run-time	Reading	Dup	Description Cod Drawcod
T18_W1	1127	18	16.6-1		Brain sandy gravery st. Prainage, grass, wet.
T18_E1	1128	18	40.121.2		Bran word overlay over, acomo; grand
+18_E2	1129	19	17.621		Brain Fondy sult urder grass, days, mucr grass.
T19_B.	N30	19.	289tal		B 80a Black/gray stag gravely sand.
T19_E1	3	19	157447		Bran Sandy JUL anniby, bare, graveis. Next to stay balloist.
T19'E2	1132	19	200±2		Crey bran Silt is agan is under
719_WI	1133	19	63.6 ±4		bram gravely sendy sed. Bore parter.
T19_WZ	1134	19	699±4		Eight brown sitt with fine sand. Graves on surface. Bore partch.
T20_B	1135	20	6606 tz		Black growel and slag earlost.
T20_E1	1126	70	3186± 14		sut, bar, days.
T20_E2	. (137	20	95.8±		Brown Sitt W afferier hade gross.
T20_WI	1138	20	1.06%		block gravely sand, dry. bene poten near grass, box
T20-W2	- 1139	20	147056		& Gran sitt under greist wodat brance, pamp.
120=				į	End of day.
T12-18	1140	12	75.9*17		Brown / light brown sordy set. Dry, hard, bore; under bridge.
T12-E1	1141	12	2187±10)	Bran sondy 84 & gravels on top. Dy/damp. Bone.
T/2_E2	1147	12	74.8±1.	6	Bram sit w sond e ground. Bore and mand next to grows
TIZ_WI	1143	, 17	111347.		Brown Sondy 84t & gravel oncrest
T12_W2	NAA	- 12	48.6±1.	4	" w day a rochs, more gram
THE_B	1145	12	3561213		growers. Domp. agonies.
001_21112	3				TREBTILB.

ERM / W was possible, serve in middles

Date: 73/11/21

Location ID	#	Run time	Reading	Dup	Description
TII_EI	(14-{	1)	1.09%± 0.1		Brain SILL W grovers. Bore, domp.
TILEZ	1147	1)	0.1		gravets, road.
T10_18	149	10	1205 t d		Dork gray Iblack of Sondy grower
T10_E)	1149	16	422±3		Oarh grey brain crossic sur. Under
TIO_EZ	1150	16	199±2		Bran Silt near some longe gravet. Damp, near grass.
T10_W	1121	10	574.H·		Bran Clayey off-ender grass. Domp.
T10_WZ	ไเรา	10	35,7±1,3	,	" " dry , no gross. I have patch.
T9_B	1153	ð	2338 ± 9		Dorh bran su unde grass is organius. Danp.
79-WI	1154	9	241.8±2		Bram all ander grass is graves.
T9_W2	1155	9	22.2±1		Bran All unde gran, days.
T9_E1	1156	9	126.5±1.4		obsice good.
T9_EZ	1157	9	150.2520		" De sman bore patch in thich grass.
T8_13	1158	8	3555±14.		Oorh born 844 w ballast' graves, bomp.
T8_W1	1189	8	1061±5		Fran sut is don't grey graver.
TB_W2	1160	8	24.5±1.0		Brown 84 inde dead / Live grave.
T8_10E1	1161	8	312±3		" Shohoty bare.
T8_EZ	1162	В	72.6-1.5		s ")
773_B.	(163	13	21 ± (.1		Brain sondy six-w organics. Under grass
TI3_EI	1184	13	27.7.51.1		J
T13_E2	ાાજ	13	14.741		/)
713_W1	1166	13	262±2		" gracis.

ERM Australia Pty Ltd anonymans

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-05

Date: $\frac{23/4/1}{}$

Location ID	#	Run time	Reading	Dup	Description Out (100day WGS) down
113_WZ	1167	13	8.3±1		ean sut inde grass, dang.
T14_B	1162	14	4222118	ρ.	Brown sut a grace undulan by The block growth. Some gross.
002-211123		14			T14_B.
T14_W1	(169	14	1118 5 7		Bram sut suranded by gross. Box. Dorp.
T14-W2	1170	14	407±3		Brown suy mon greers y argonis,
TA_EI	(171	14	1855±9		Bran sondy gravely sold, bore, next
T14_E2	IN	14	846±5		Brown 844 w more grown under grant, dang.
TI5_B	1173	15	1047±6		some as +14-18.
TIS_WI	1174	15	B.2±1.2		Bran July ned-low gave 15,
T15_W2	1175	15	24.4 1.4		" y som grass
TIS_EI	1176	15	65.121.6		Bran suf & gravels. Comp. Box. some grans
TIS_EZ	1177	15	13,7:4.7.	-	Bram sut, under grass, damp.
T21_18.	1178	21	3186±14		50me as 714_B.
T21_E1	117	121	1017±1.7		in draway next to grant: Bore
721-E2	į(&c	> 21	305±3		bram SU, bore, domp.
721-W1	1181	21	260±3		" "
T21_W2	1187	2 71	152.8±7	-	" " under grass
T22_B	118	3 22	4018 ± 18		as T14_B.
T22_E	118-	7 22	993±6		Bran 8M & growets Bore, maist.
003_21117	-3				T22_E1
T22-\$2	- (({	55 22	70=14		Bran sut, under grass. us moist

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-05

28/11/21

francit (gan)

All V alla de alla luquella		former	(Irm)		
Location ID	#	Run time	Reading	Dup	Description
T22_W1	1186	22	775:6		alt is gravets Brown, borre, damp'
T2Z-W2	(67-	22	57.351.2		Brann 86H inder gross, mort
T23_B	(188	23	2400±11		some as T14_B.
723_E1	[189	23	[13.1=1.9		Brun sitt is mina gravetr. Barr.
123_E2	1190	23	23.2±1.2		" , grass
T28_W1	1191	23	172±2		Setty Brown ENd, box, miner gravet.
T23_W2	(192	23	32.5±1.3.		Brain SUL Under grast, damp.
724-B	1193	24	4454-17		Some av T14_6
T24_E1	1194-	24	414=3.		Brawn Site with "gallast" gravel". Oarp. Bors.
T24-E2	1195	24	571411		Brann get in organics under graver. Moist.
724-W1	1196	24-	416±3		Brown SUL W Gravels. Domp. Box
T24_W2	1147	24	59.5 =1.4.		Firm brann sut w grove i clay bore, damp.
T25_B	ins	25.	1747±9	1000	Ion worge brown out induction by grey Mach Stay ballath
T25_EI	1149	25	1270±8		brown sut, bare patch, grad, moist
T2S_EZ	176° 1150	25	193±2		in the Brain out in organics.
T25_WI	#5j 1201	25	11.3±1.2		brown out is growers, bore power.
725_WZ	1200	28	14.641.2		" " Man GROWN. GLOIZE.
T26_B	据3	26.	809±21		as 714_8
726-WI	120A-	76	1370=8		Brain gravelly 5,14 w med by black gravels. Bore. Domp.
726_WZ	i205	26	969±5		Ban classy sit. Small box poter in goods
726-E1	1206	26	1236±8		Bran sut w grover. Box. Near gross.
T26 - E2 ERM Australia		_	1556:4		Bram soft is argorier under gran, dang. Page

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-05

ERM		Trust	(M)/2)		Date: 28/11/-
Location ID	#	Run time	Reading	Dup	Description
47 ⁷²⁷ _B	1208	27	2524±10		T14_B.
T27_WI	(269	27-	2547412		Braun 81H with grovels a sond. Bare, damp.
727WZ	1210	27-	320±3		bean out inde dear gab.
T27_E1	1211	27-	3892±14		box gray sity sand I gravel. 10 ans.
TZ7_E2	1212	27	69.144		Brain sit under grows, damp.
T28_B	1213	28	453±3		Doch bram 514, patchy gass, grave
728_E1	1714	28	266±3		Bran 814 u gravel next to grass.
729_B	[215	29	868±5		Bram clayes 844-under graves is codes: pemp.
T29_E1	1218	29	239±3		P 1
T29_E2	1217	29	67.84.3		"
T29_WI	1218	29	347±3	D.	ii /
T29_WZ	1219	29	288±2		" Mast, grass-
DO4_211123					729_WI
					End of day,
T30_B	1220	20	3637 =13		Block provely sand banast
T30_W1	1201	30	5772±24		bord benn sud i black govet. Bore patch. Dang.
130_WZ	1721	30	35.9 = 1.1		Brown 5H & organics bamp under
730_E1	1213	36	306±3		" And game care.
TSO_EZ	1224	30	47:11.2		// P
T31_B	1725	31	2231 ± 8		Some as T30.B.
T37_W	1725	31	4217-518		Brain RN w organics e graves Ecre, damp.

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-05' 7

Date: 24-/11/21

ERM)	(ppm)		Date: 27 / 11 / 11
Location ID	#	Run time	Reading	Dup	Description
T31_E1	1227		3529 ±14		out goes brain sondy sit is agones inde gast, day.
TBLEZ	172b		131 + 1,7		" "
T32_B	1229		2796±13		Back grey sondy good Lallast.
T32-W1	1250		169±2		Bran set a gaset sore, domp.
T32-E1	[23]		348±3		ę u
T33_B	1232		6752±75	Ю,	as 732-B.
DOI_211124					732_B 733_B
T33_ W\	1233		110826		Bran July large growers Is and
733_W2	1734		33.241.2		" gos
TSS_EI	1235		2894 ±14		Brown SILA W send & grovets Bore, damp.
T33_EZ	1236		5727 - 22		n 11
734_B	1737	-	646±4		Brown 844 grast indulain by black gray ballock sono
734_WI	1238		89.5=1.6		Cours 514 & grovers, scottered
734_W2	1239		54.3±1.5		gavet. Bone.
T34_E1	124	e	72.6±1.3		Brain SUM W gravels. Base,
T34_E2	_ 124	(777+5.		" rongeith.
735_B	124	2	6960+27	- D.	4 as 733_B.
1002-21112	4				T35_B
735_W	(24	3	2691 ±12	,	Brain sardy gravely suit unde lain w brock gover. Bore.
T35-W	2 124	4	38 ±1		Bran 57th is sond under gross.
135 E1	124	5	8324±3	3	Crey brain. Sordy suby gravel. M. Bora

	4	
Page.		

Date: 14/11/1

ERM

(transact) I April

ZW/INT		(fromers)	1 April	46	
Location ID	*#	Run time	Reading	Dup	Description
135E2	1227	35	477±3		Brain 84 W minor parcit. Bore portch in grass. Damp.
736_B	1747-	26	6807=11		para gray brown sondy stay.
T36_W1	1248	26	3669±16		Rad braun gravery sandy sixt. Rac Jamp
T36_W2	1249	36	27.5=1.4		Light brown sot or gove, fore,
T36_E1	1245	36	77-1±5		* "
736_EZ	1246 51	36	140 ± 2.		" white / loan brawn.
T37_18	1247	37	58.7:14		Light brown sut of day. Doup, soft,
T87_W1	1248	37	100.2±1.8		Bran Parange Sit y white graus. Box.
737_WZ	4.04.0	37	29.141.1		" brown, less orange.
137_EI	1750	37	44.7±1.4		aged brain sit a grave to. By. Bore.
T37_E2	1287 56		16.121.8		Bran sitt, under grass, dang.
738_B	1257-		1604±7		Dora grey bollas? Sord w white gracks Dry.
T38_W1	1259	38	29,8±1.2		Bran Sitt & gall. Bore. Born
138_WZ	เกริง	36	101.4 = (.9		Bran Sur, dy, osonies
738_国1	126	g 28	231 = 3		sily sond is gravely exclus. Born, domp.
T38_E2		38	109826		Brown DUA W graver & arganics. under grass. Domp. "Bollast" KILL
T39_B	(25)	× 139	9759 ± 37	۲	"BOUART" KILL
T39, WI	126	39	4670±19	Ď	

Page B 9

ERM

XRF Sampling

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

Date: 15/12/21

Location ID	#	Run time	Reading	Dup	Description
740_B	1264-	120-	49.7±1.3	Wy.	Brown self to oil for underlain by ballast 511. Damp.
740_WI	1262	120	22.4-21.1		Brown SIM w longe quari-/ marker rocks. Bore, dang.
740_WZ	126-6	170	15.2±1.1		Brown out inder grass. dang.
740-E1	1261-	170	67.641.6		Base brown / orange seek with large rocks, damp.
HOLE2	1288	120	80,6±1,2		Even & M well grass Domp.
DOI_211215					T40_B
T41_B	1269	120	9088+-32		Dark bram/grey sub grover.
T41_E1	70. 1268	120	69.1±4		damp / anusta, hearly hosted out.
T4LE2	1241	170	69164 129 ±2		" "
741-DAM	1272	170	18.2411		" " hard.
T41_W1	デリ 17・	1273	3.2411		Blam SM in uphill drainings
T41-WZ	1214	720	28.&±1		gras. Sur is again order
T42_B	275	120	3803±14		by ballace. Some grass.
T42-41	1276	120	31.4		Brown RU. man bore padd in gras,
T42_W2	12.77	120	43.2=1.2		" " under grows.
T42-E1	1278	120	1912		Brain 844 under grevets. Bore dap.
T42_E2	1279	170	249±3.		" " w Grasses, maist
T43_B	1280	120.	1.20%		Graven/sand 'ballast'
743_ WI	1281	120.	2937±12		// "
T43_E(1282	120	3469±12	0/多	0 0
002 - 2112 15					T43_E1

ERM Australia Pty Ltd

Page_____

Date: 15/12/21

Location ID	#	Run time	Reading	Dup	Description
701-241-5					40.5
T43_E2	1263	126	1285 1105±5		Brown SI4 & data groves inder grass. Moist.
744_B	1284	120	4341 117		on brown out orderbin by black- gaver bakest.
T44_E1	1285	Izo	965±4		ught brain six, dry, with small graves.
T44_E2	1286	120	142.12		Bram (agey The indo-Grast. bomp.
714_WI	1287	re	411年4		Oy bram 8M & Shorly grave K.
T44-W2	1286	No	103,2±1.4		Bran of the under we walled grows is organics, damp.
T45_B.	1239	120.	P17=8.		Light brown stut, dry, undercoun by black ballose Liv.
T45_E1	1290	12G	806±5		next to year.
745_EZ	1241	126	725±5		" " vde grass, dans.
745_WI	1292	120	350±3		high born sit, day, box, nort
745_WZ	129₹.	120	32.5 ± 1.3		" "
T46_8W1	1294	120	9061 ± 36	0.	box breen/grey gravery snd. Mast,
746_ E1	1295	12	33.5±1.Z		Brain sut under grass. Emp.
T46- E2	1546	170	37.A±1.3		fore brain vill, hard
T46_B	(297-	120	86.0±1.6		brain 8ut under grass india.o. by black gover @ 0.15m bgl
T46-W2	1298	120	959±5		Brown domp get of gravels near
T46_W3	1299	170	43.8±1.3		Brown SUF In argenies, demp.
7487_B.	1300	170	61 0 8 = 25		braw Det indertain by Hach's
747_E1	1301	120	216 = 2		Bram sut under grass, dang.
T47_E2	1302	120	40.5±1.2		crange / brawn 844 w large gravels e rochs, near grar

ERM Australia Pty Ltd

* Tailings dan broke in the Sos, flooded dan to movening (T40 KG).

Page Z

201215

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

Date: 15/12/21

Location ID	#	Run time	Reading	Dup	Description
747_WI	1303	120	267±3		ciazy 81 w gravels. Bore, nem
T47-WZ	1304	126	B2.8±1.9		Erain on, days, near gras
T48_B	1305	120	650±5.		Bran gravery out, dy, indilian y barratt. Some grav.
748_E)	1306	120	316±3		Brain SIA W organics near grav.
T48_WI	1307	120	381±3		boun ou a graver, kno path
T48_W2	1308	120	132.321.6		" " under grass.
79_B	130A	120	3502±13		Gravely 8th, interear in Exhaut.
T49_E1	1316	120	122157	-	On brain sub- or that grante New to grant. On. Crey dry Sub- or Stale. Next to gas.
T49-41	122+	120	294±3·		Cray dry Sul & stale. Next to gas.
749_WZ	1312	120	184.1±1.9		Brain I'm inder grass, damp.
TGO_B	1313	re	2511 £10		Bray 814 inderlais by black ballast
T80_E1	1314	120	1227±6		Bram 84 & gravels, bare,
750_EZ	1815	120	i952±9		"
T50_E3	1316	120	2848±13		" "
T50-W1	1317	128	犯±1·4		light brain Sit w gravel. Windraw/ bore.
TSO_WZ					
TSI_B	138	12e	1241		Bram 8Ut w grave indetain w
ちしも	1319	120	73215		light brain SUK w gray gract.
151-62	1320	120	727±5 115.5 ±1.1		l) D
T51_W1	1321	120	4220±19	D.	Black / grey grater graves Louist . Ong.
D04_Z11215					781-WI

ERM Australia Pty Ltd

FRM

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

Date: <u>15/12/21</u>

Location ID	#	Run time	Reading	Dup	Description
TS1-WZ	Bn	杏	118A±6		" & bran sut next te grass
TS1_W3	1323	120	20.6±1.5		Brain sut inder grass, darp-
T52-6	1324		3.(54 ±0.1		gray sold inderlain by goog ballast.
TS2-EI	1325		1987:11		crange Noran dry sut of grank
TS2_E2	1326		21.1 tl.2	-	Light brain " "
T52_WI	1327		594±4		" " black graver,
T52-W2	1328	Pris	19747 = 10		Bram 84 under grass. Darp.
T52_W3	1327		41.2±1.0		<i>'</i> 3 '1
T53_B	1330	** Propagation and the Assessment Section 1	/jS40±19		THE W large graves videlain by Llach
TS3_W(1331		3019±12		bram jarry sut aventian by gravet
TS8_WZ	1387		44.1±1.0		Bram 8M-4 gravel under grave way.
TS3_EI	1335	***************************************	5250±21		Bram/grey Sur arriam & black gavers.
T53_EZ	1334	\mathbb{V}	365±3·		bram out w organics endragnor.
754_B	1335		6787±		Stardad-
TS4_W1	1336		70±3·		stuf bram under grass is gravel
T54_WZ	1887		42.4±1		" "
T54_E1	1338		39.751.4		light brown site w graves, dy bor
T54_EZ	1381		227±3·		<i>'</i> ,
†55_B.	1340		3525±15		standard
TSS_W1	1391		951±5	Σ ·	light born of is graver. Box dy.
DO5_ 211215	(He				735_WI

ERM Australia Pty Ltd

 $_{\mathsf{Page}}$ \mathcal{A}_{---}

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

))			,	Offsite ART 0008/
ERM			/\	1	Date: 15/12
Location ID	#	Run time	Reading	Dup	Description
755_E1	1342.	124	2598±3		Six under grass W organiès
~				j	end of day
756_B	(343	170	8201 ± 35		Stordard Banact
T36_W1	15434	170	116.912		Braw / red 84 & grave /5 u sand. Boxo, dans.
T56-WZ	1395	170	148.821.4		Bran / red SW- man grat by agains.
756_E1	1346	120	378±3		Bram OUL, most, agenier grass.
T56_EZ	1347	170	428±3		" " with op larger growers.
T56_E3	1318	170	88.9±1.6		Kram sut inde gravelnate ontsinest. Damp. Har.
157_B	7349	150	6315±25		Standard Sawarl
T57_E1	1350	170	207±3		Bran our unce shows.
T57, WI	1351	120	62.211.6		1) 1)
758_B	1357	120	7164±26		ASMAGN BALLAST & NOMAN BALLAS SMOW.
T58_E1	1353	170	260±3		Bram Sut a state graver by bore.
758_E.2	1354-	170	178£7.		Bram sell volv grest. dans.
+58=47					
T59_B	1355	120	SS10 ±22		Std. Lallast.
TS9_W1	1356	170	2. 科》		Dark gray dry the mina agarist
759_WZ	1357-	170	3542±15		Light brain of w gravels
T59_W3	1359	120	210=3		514, brown under grows of organier
T59_E1	1359	120	158 t 2		crang/bam sur or graver. ing.
759 EZ	1360	_120			

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

Date: 16/12/21

Location ID	#	Run time	Reading	Dup	Description
T60-B	1360	120	6196 tzs		Sta. Ballast.
760_EI	1361	120	2190±9		Sta. Bangil (spalled and)
T60_E2	1382	120	496±3		bat my st, gravels.
760-W1	(363	120	3148 + 18		St A5 760_E1
760_WZ	1364	120	215±2		Sit more grow, along,
761_B	1365	120	7201±28		Ad ballast is dan gry sor. org.
T61_E1	1364	170	568=4		Light brown sit inder grovers
761_ EZ	1367	(70	139.5±1.4		Sit w. gravek.
T61_W	1368	126	4692221		Cross / grey 8th 1 Mno gravers.
T61_WZ	1369	120	422±3		Brown own & organis under grow.
T62_B	1376	120	B58S±32	0.	Stol barrad by gruy brann sut again
DO1_211216				~	762 - B
T62-61	1371	126	2875±13·	<i>O</i> .	Ban SV W mo swall gracel.
pol-211216					T62-W1
T62-E2	13孔	120	1257-±5		Bram Enty send of argenic unde gross
T62-WI	(373	120	5966±24		brain, ou w gravels
T62-W2	1374	120	83.5±1.4		
763_ B	1375	120	196±3.		Bran 504 - graver, dy.
T63_E1	1376	120	581±3		damp.
T63-星6/	1877-	120	269 ± 2		Brain 84 W agenics & gracery

Field Sampling Sheet Bungendore Lead Invesitgation Offsite XRF 0608750-07

T66_B \$60 120 1669±8 "" T66_W2 1380 120 11669±8 "" T66_W2 1380 120 31.9±1.3 Dry brown sur all groves. T66_E1 1381 120 1716±7. Inght brown sur all groves. T66_E2 1382 120 171.5±2. The way organic to a long grows, the follows! T64_B. 1383 120 157.5±2. The way office to a long grows doing. T64_B. 1384 120 135±3 D. Brain 244 12 aggrains index lead that and the long office of the long of the sure of the long of the long of the sure of the long of the long of the sure of the long of the sure of the long of	Location ID	#	Run time	Reading	Dup	Description
T66_W2 1380 120 31.9±1.3 Dry brain sut su agraver. T66_E1 1381 12e 1216±7. Inght brain 52t su graver. T66_E2 1382 120 157.5±2. The su agraver to be graver. T66_E2 1382 120 157.5±2. The su agrave to be graver. T64_B. 1383 126 6329±2 D. Dat brain 82t to agrave dang. T64_B	T66_B		120	5668±21		Sld ballast)
TEC_E1 1381 120 1716 t	T66_W1	1369	126	1668±8		7 1)
#66_EZ 1382 120 157.5±2. \$\text{Dis-w agains to be growth,}} #66_EZ 1382 120 157.5±2. \$\text{Dis-w agains to be growth,}} #66_EZ 1383 120 6329.120 0. \$\text{Dost brain 8th N argins dang.}} #66_WI 1384 120 65423 0. \$\text{Brain 8th N argins water Cook library 1004.21116} #764_WI 1385 1724 88.8±19 Crawy sith Gains algorithman actions on the cook 1585 1724 88.8±19 \text{Crawy sith Gains algorithman actions on the cook 1585 1724 88.8±19 \text{Crawy sith Gains algorithman actions on the cook 1585 1724 1586 170 40.3±1.3 \$\text{Clayer sith Gains algorithman actions on the cook 1585 1724 \$\text{Clayer sith Gains algorithman actions on the cook 1585 1724 \$\text{Clayer sith Gains algorithman actions on the cook 1585 1724 \$\text{Clayer sith Gains algorithman actions on the cook 1585 1724 \$\text{Clayer sith Gains of the cook 1585 1724 \$\text{Clayer sith Gains o	T66_W2	1380	120	31.9±1.3		, · · · · · · · · · · · · · · · · · · ·
#66_EZ 1382 120 157.5±2. \$\text{Dist_w against the log graults},} #64_B. \$\text{1563} 120 6329.122 \$\text{O}. \$\text{Dord brain Site is argues dange.} #64_B. \$\text{1563} 120 6329.122 \$\text{O}. \$\text{Dord brain Site is argues dange.} #64_B. \$\text{1584} 120 6343 \$\text{D}. \$Brain Site is argues who case seal site of the continuous of the c	T66_E1	1381	12e	1216 = 7.	***************************************	next to ballast
164_W1 1394 120 684±3 D. Brain & II agenis wher Ceat liter 164_W1 1394 120 684±3 D. Brain & II agenis wher Ceat liter 164_W2 1385 124 88.8±19 Crawy 524 Grey, w show melusia 164_E1 1386 120 40.3±1.3 Gray 524 Gray - Leght brain. 164_E2 1387 126 15.7±1.4 " redish 165_E1 1395 120 4661±17 D. raw 836 ballast" 165_W1 1590 120 3638±12 D. agenc 524, ag, loon, Gove, Coop liter 165_E1 1391 120 3591±14 Gray 100 200 300 300 300 300 300 300 300 300 3	786-EZ	1382	120	157.5±2.		The wagarior the is by grants,
T64_WI 1394 120 \$\$\frac{423}{59\frac{1}{2}}\$ D. Brain & & Organis under Cect liter 004=211116 T64_W2 1385 124 88.8±19 Crawy site Grey, w shaw inclusion on. T64_E1 1386 120 40.3±1.3 Shaw alwy, box. Light brain. T64_E2 1387 126 75.7±1.4 " reddish T6\$\frac{1}{2}\$ B 1386 120 466/117 D. rath \(^2\frac{1}{2}\) B to Addish T6\$\frac{1}{2}\$ B 1386 120 368\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1390 120 368\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 438\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 438\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 438\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 458\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 458\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 458\frac{1}{2}\$ D. Organic & & H, ay, look, box, look little T6\$\frac{1}{2}\$ B 1391 120 458\frac{1}{2}\$ D. Organic & & H. Organic & D.	-164_B.	1363	120	6329 ±22	Ο.	bot bran 8th W organs dang.
T64_W2 1385 124 88.8±19 Crawy 526- Crey, w shaw nows on the start of t	603.211216					T64_B
T64_W2 1385 124 88.8 ± 1.9 Crawy six Crey, w shall inclusion by. T64_E1 1386 120 40.3 ± 1.3 Clayer sixt barrie light brain. T64_E2 1387 120 75.7 ± 1.4 " reddish T65_B 1380 120 4661 ± 17 0. rate "8th ballast" T65_W1 1590 120 3688 ± 12 0. arganic 5ibl, ay, look, Sar, look 1.the T65_W2 1291 120 63.8 ± 2.0 " w shalls T65_E1 1392 120 3591 ± 14 arganic 5ibl, ay, gravely 5ibly T65_E1 1593 126 455 ± 4 Brain 50rdy 8ibl may gravely W.	T64_WI	1384	120	659±3	D·	Brain &y 12 agenis under leas liter
764_E1 1886 170 40.3±1.3 Claser sell bourne light brown. T64_EZ 1387 120 75.7±1.4. "" reddish T6\$EB 1388 170 4661217 0. roll "8th bollast" DOS_211215 1389 120 764_B T6\$_B. T6\$E_W1 1590 170 3688±12 0. arganic 5eld, arg, 1000, 500, 600, 600, 600, 600, 600, 600,	004-211116	./	$\bigg)$			T64_W
T64_EZ 1387 126 75.7±1.1. "" reddish T6\$_B 1386 126 4661117 0. rath 816 ballast" \$\text{D05_211215} 1389 126 \tag{764_B} \tag{765_B}. \\ \tag{765_W1 1590 170 3638±12 0. agaic 5eth, ag, 1605, 600, (each 1.40)} \\ \tag{765_W2 1391 120 63.8±2.0} 700 1000 3591±14 again 5000 again 3000 again	T64_W2	1385	124	88.8±1.9		Oracery Sit Coney, w shall inclusion.
76\$ 8 1386 176 4661217 0. rate 8th bollast" 505-211215 1389 126 764-B T65_B. 768_W1 1590 170 3638±12 0. argnic 5ill, arg, look, box, look, little 1565_W2 1391 120 63.8±2.0 "" " of shales 765-E1 1392 120 3591±14 portos one gry gravely 5169 grad. look 1. the cognics 765-E1 1393 126 455±4 Brain 5cray 5ill one grave.	764_E1	1386	170	40.3±1.3		
100-6 1500 10 100 100 100 100 100 100 100 100	764_EZ	1387	120	75.7±1.4.		" "reddish
T65_W1 1390 170 3638±12 0. Organic 514, dy, 1000, 500, 600, 600, 600, 600, 600, 600,	TO SE	13%	120	4661117	0.	port " fly ballast"
765-E1 1392 120 63.8±2.0 " " " " " Shales 765-E1 1392 120 3591±19 Corresponding surger gravery surger states 765-E1 1393 126 455±4 Brain stady sur once grave - W.	bos_211215	1389	120			764-B 765_B.
165-E1 1392 120 3591±19 Dorkbes book gay gravely 51159 T65-E1 1393 126 455±4 Brain sordy sell man grave W.	765_WI	1390	170	3638±12	0.	arganic Sill, ay, loose, box, least little
765.El 1393 126 45524 Braw 50rdy Sell once grave	765.WZ	1391	120	63.8±2.0		S / Isu -
765_EZ 1393 126 45524 Brew 50rdy Sell once grave - W.	765-61	1395	170	3591214		good. last lithe agains
	765.EL	1393	126	45524		
006-211215 T65-WI	·W				7	Mc.
	006-211215	\	<i></i>		,	T65_W1

CAPTAINS FLAT TO BUNGE Bungendore, NSW	NDORE – RAIL CORRIDOR XRF SURVEY	
APPENDIX E	PHOTOGRAPHIC LOG	

Client Name: JHR/TfNSW

Site Location:

Bungendore - Captains Flat

Project No.: 0608750

Photo No.

Date:

Direction Photo Taken:

NA

1

Description:

The typical larger grain ballast-like fill that was noted under the tracks along the length of the line.

Photo No.

Date:

Direction Photo Taken:

W

2

Description:

An eroded section of the line where ballast material has been washed into a drainage channel.

www.erm.com Page 1 of 7

Client Name: JHR/TfNSW

Site Location:

Bungendore - Captains Flat

Project No.: 0608750

Photo No.

Direction Photo Taken:

Date:

NA

Description:

Typical damp silty soil under grass in the rail corridor.

Photo No.

Date:

Direction Photo Taken:

NW

4

Description:

Ballast next to the rail line.

Page 2 of 7 www.erm.com

Client Name: JHR/TfNSW

Site Location:

Bungendore – Captains Flat

Project No.: 0608750

Photo No.

5

Direction Photo Taken:

Date:

SE

Description:

A section of the line where the rail has folded outwards and is holding in dark grey fill material. Spilled fill material is also noted at the foot of the slope in the bottom right corner of the image.

Photo No.

Date:

Direction Photo Taken:

W

6

Description:

The XRF device in operation sampling a bare patch east of the rail line.

www.erm.com Page 3 of 7

Client Name: JHR/TfNSW

Site Location:

Bungendore – Captains Flat

Project No.: 0608750

Photo No.

7

Direction Photo Taken:

Date:

NW

Description:

Private fencing placed through the rail line. Vegetation is also noted growing out of sediment between the tracks.

Photo No.

Date:

8

Direction Photo Taken:

NA

Description:

An indicator of the depth of fill material observed directly underneath the rail along the line.

www.erm.com Page 4 of 7

Client Name: JHR/TfNSW Site Location:

Bungendore – Captains Flat

Project No.: 0608750

Photo No.

a

Direction Photo Taken:

Date:

Ν

Description:

A section of the line where the rails have folded outwards and are containing dark fill material. An amount of the material has also spilled outwards. Vegetation is lacking through this section of corridor.

Photo No.

).

Direction Photo Taken:

Date:

NA

10

Description:

The soil profile beneath the rail line; natural clays gathered from beside the line and imported dark grey 'ballast' fill on top.

www.erm.com Page 5 of 7

Client Name: JHR/TfNSW

Site Location:

Bungendore – Captains Flat

Project No.: 0608750

Photo No.

11

Direction Photo Taken:

Date:

S

Description:

A section of the line where the rails have folded outwards and are containing dark fill material. Note the lack of vegetation through the corridor and on the left hand side of the image where an amount of the material has migrated down the slope.

Photo No.

·LO

Direction Photo Taken:

Date:

S

12

Description:

The soil profile beneath the rail line; natural clays gathered from beside the line and imported dark grey 'ballast' fill on top.

www.erm.com Page 6 of 7

Client Name: JHR/TfNSW

Site Location:

Bungendore – Captains Flat

Project No.: 0608750

Photo No.

Date:

Direction Photo Taken:

Ν

Description:

The XRF device in operation between sleepers of the rail line.

www.erm.com Page 7 of 7

Bungendore, NSW		
APPENDIX F	LABORATORY DOCUMENTATION	

Fadi Soro

From:

Olivia Barbato

Sent:

Friday, 28 January 2022 1:10 PM

To:

Fadi Soro

Cc:

Samples Sydney

Subject:

FW: [EXTERNAL] - ES2146882

Hi Fadi.

Can you please check whether we still have sample volume for Sample #013 of work order ES2146882?

If so the client would like to forward it on to Eurofins

Kind Regards.

Olivia Barbato

Client Services Officer, Environmental Sydney

D +61 2 8784 8511

F +61 2 8784 8500

olivia.barbato@alsglobal.com 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA

We are keen for your feedback! Please click here for your 3 minute survey

Subscribe in Franco

EnviroMail™ 00 - All EnviroMails™ in one convenient library.

EnviroMail™ 134 - ALS Australia Dioxin Capability

EnviroMail™ 133 - Sampling and Analysis of air and gas using canisters

EnviroMail™ 132 - BIOSOLIDS: PFAS, TOP Assay & TOF

EnviroMail™ 131 - Important Changes to the Australian Standard Leaching Procedures AS4439.2 & AS4439.3

L-m 31/1/22 5:49 pm 14.60

Right Solutions · Right Partner www.alsglobal.com

From: Max Galbraith < Max. Galbraith@erm.com>

Sent: Friday, 28 January 2022 11:41 AM

To: Olivia Barbato <olivia.barbato@ALSGlobal.com>

Subject: [EXTERNAL] - ES2146882

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Olivia,

I've noticed that I made a mistake filling out the COC for ES2146882 and forgot to indicate that T01_211216 needed to be passed on to eurofins for analysis.

Is there any chance you could check if that sample is still being held?

Cheers, Max Galbraith Environmental Analyst

Environmental Resources Management

Level 1, Watt Street Commercial Centre | 45 Watt Street, Newcastle NSW 2300 PO Box 803, Newcastle NSW 2300 T +61 2 4903 5500 E max.galbraith@erm.com | W www.erm.com

Read our 2021 Sustainability Report and ERM Foundation Review

This electronic mail message may contain information which is (a) LEGALLY PRIVILEGED PROPRIETARY IN NATURE OR OTHERWISE COVERED BY LAW FROM DISCLOSURE, and (b) intended only for the use of the Addressee (s) names herein. If you are not the Addressee (s), or the person responsible for delivering this to the Addressee (s), you are hereby notified that reading copying or distributing this message is prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system. Environmental Resources Management Australia Pty Ltd. (ERM) has systems in place to encourage a virus free software enuronment. Income to hable for any loss or damage, corruption or distortion of electrohically transmitted information, or for any changes made to this information during transferral or after receipt by the client

Please visit ERM's wed site http://www.erm.com. To find out now ERM manages personal data please review our Privacy Policy

L-M 31/1/22 5:49 pm 14.6°

CHAIN OF CUSTODY

ALS Laboratory: please tick -> DGLADSTONE 46 Callelmondah Drive Childon QEDM#BPGEE 27 Sydney Road Mudgee NSW 2850 Ph. 07 7471 5600 E: gladstone@a:sglobal.com Ph. 02 6372 6735 E: mudgee mail@alsglobal.com LIPERTH 10 Hod Way Malaga WA 6090

□SYDNEY 277-788 Weddpark Now! Smillblinkt NSW 2164 Ph. 02 6784 6555 E. samples sydney 資際の負担されてい □TOWNSWILLE 141:50 Eesma Court Bolik O LD 4818 Ph: 07 4786 6600 E. towney de physiomersia できる good com

CLIENT	: ERM		TURNAPOLI	ND REQUIREMENTS:	6735 Er mudges	mail@alsglobal.com	Ph: 08 9209	Hod Way Malaga WA 609 7655 E: samples,perth@ai	PO DWOLLONGONG 99 Sglobal.com Ph; 02 4225 3125 F; h	Kanny Street Wollang org NSW 2500 oftkembla@alsglobal.com			
OFFICE	: Newcastle	11	(Standard TAT)	may be longer for some tests e.g. Litte	a		Standard TA		FOR LABORATORY US	F ONLY (Clarks)			
PROJE	CT: 0608750 - 07 Captains flat line		ALS QUOTE	1			M. A		Custody Seal Intact?				
ORDER	NUMBER: 0608750-07		ALO GOOTE	NO.: National Price	Discount		cocs	EQUENCE NUMBER	(Gircle) (tealice / frozenice backs pro	eseni upon			
PROJEC	CT MANAGER: Matthew Crow	CONTACT	PH: 040265288	9			COC: 1	2 3 4 5	TO THE PARTY OF TH	NO.			
SAMPLE	R: Max Galbraith		MOBILE: 04683				OF: 1	2 3 4 5					
COC em	ailed to ALS?		MAT (or default):		-	ISHED BY:	RECEIVED	BY:	RELINQUISHED BY:	RECEIVED BY:			
Email R	eports to (will default to PM if no other add	fresses are listed): PM	- (Max Galb		JN	04	00 70B	Ranneed			
Email In	voice to (will default to PM if no other add	resses are listed); PM			DATE/TIM	Ε:	DATE/TIME:	1. 1.		DATE/TIME:			
	NTS/SPECIAL HANDLING/STORAGE OF						29	112/21	DATESTIME: 22/12/21 SPM	22/12/21 724			
SEAR THE					of the means of								
ALS USE	SAME MATRIX: SQ	EID (S) WATER (W)				ANALYSIS R	EQUIRED Includ	ling SUITES (NB. Suit	e Codes must be listed to attract suite price)				
		7995,一种不可以以为"是"	5 Mg (187) (188) (188)			····a·a merala s	i e i edniled Spe	city Total (unfiltered bo required),	The regalited of Disserved Itlaid filtered battle	Additional Information			
					ထ								
LABID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE	TOTAL								
			MA	(refer to codes below)	TOT					Comments on likely contaminant levels, dilutions, or samples requiring specific QC			
					8	HOLD	5			analysis etc.			
1	D01_211215	15/12/2021	soil					-					
2	D02_211215	15/12/2021				,							
3	D03_211215		soil			,							
		15/12/2021	soil			7			*				
4	D04_211215	15/12/2021	soil				-		Envisor	In W			
5	D05_211215	15/12/2021	soil			X			Environmental Sydney	Division			
,	R01_211215		3011			x			Sydney Work Order Re ES214	ference			
6		15/12/2021	soil			х			ES214	6882			
7	D01_211216	16/12/2021	soil				-	-					
8	D02_211216	16/12/2021	14/30A			×							
0	D03_211216		water			x							
-		16/12/2021	soil			x				· · · · · · · · · · · · · · · · · · ·			
10	D04_211216	16/12/2021	soil		gree erro and	EN HOTO		-	/ sienhan	1. 12 18 18 1 1 1 4			
	D05_211216	16/12/2021	ne!!	, s		WALITAGE)		releabage = 81-0-874c;	y *			
	D06_211216		şoil			к	1-001	CINI		-			
12		16/12/2021	soil			LAB	OF ORI	OIN.					
13	T01_211216	16/12/2021	soil			NE	WCAST	LE					
14 - F	R01_211216	16/12/2021				x							
		1011212023	water			x							

L-M

31/11/22 5:49Pm 22/12/31

#859898

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F

NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name: Contact name:

ERM Sydney Max Galbraith

Project name:

0608750 - 07 CAPTAINS FLAT LINE

Project ID:

Not provided

Turnaround time:

5 Day

Date/Time received

Jan 31, 2022 5:49 PM

Eurofins reference

859898

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

John Nguyen on phone: or by email: JohnNguyen@eurofins.com

Results will be delivered electronically via email to Max Galbraith - max.galbraith@erm.com.

Note: A copy of these results will also be delivered to the general ERM Sydney email address.

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Feb 8, 2022

Max Galbraith

Jan 31, 2022 5:49 PM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

ERM Sydney

Address: Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

Sample ID

T01_211216

No

Test Counts

0608750 - 07 CAPTAINS FLAT LINE

Order No.: 0608750-07

Report #: 859898 Phone:

02 8584 8888 02 8584 8800 Fax:

Eurofins Analytical Services Manager: John Nguyen

5 Day

Sample Detail	NEPM 1999 Metals : Metals M15	Moisture Set

Matrix

Soil

LAB ID

S22-Fe02559

Χ

Χ

Melbourne Laboratory - NATA # 1261 Site # 1254		
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794		
Mayfield Laboratory - NATA # 1261 Site # 25079		
Perth Laboratory - NATA # 2377 Site # 2370		
External Laboratory		

Sampling

Time

Sample Date

Dec 15, 2021

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Max Galbraith

Report 859898-S

Project name 0608750 - 07 CAPTAINS FLAT LINE

Received Date Jan 31, 2022

Client Sample ID Sample Matrix			T01_211216 Soil
Eurofins Sample No.			S22-Fe02559
Date Sampled			Dec 15, 2021
Test/Reference	LOR	Unit	
Chromium (hexavalent)	1	mg/kg	< 1
Chromium (trivalent)	5	mg/kg	19
% Moisture	1	%	4.5
Heavy Metals			
Arsenic	2	mg/kg	12
Barium	10	mg/kg	210
Beryllium	2	mg/kg	< 2
Boron	10	mg/kg	< 10
Cadmium	0.4	mg/kg	0.5
Chromium	5	mg/kg	19
Cobalt	5	mg/kg	8.0
Copper	5	mg/kg	110
Lead	5	mg/kg	540
Manganese	5	mg/kg	300
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	14
Vanadium	10	mg/kg	22
Zinc	5	mg/kg	2500

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (hexavalent)	Sydney	Feb 03, 2022	28 Days
- Method: In-house method E057.2			
Chromium (trivalent)	Sydney	Feb 03, 2022	28 Days
- Method: E043 /E057 Total Speciated Chromium			
Heavy Metals	Sydney	Feb 03, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Feb 03, 2022	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 859898-S

email: EnviroSales@eurofins.com

Environment Testing

Eurofins Environment Testing Australia Pty Ltd

NEPM Moistu

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

ERM Sydney

Address: Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

0608750 - 07 CAPTAINS FLAT LINE

Order No.: 0608750-07 Report #: 859898

Phone: 02 8584 8888

02 8584 8800 Fax:

Received: Jan 31, 2022 5:49 PM

Due: Feb 8, 2022 **Priority:** 5 Day

Contact Name: Max Galbraith

Eurofins Analytical Services Manager: John Nguyen

NZBN: 9429046024954

Auckland

35 O'Rorke Road

		Sa	mple Detail			1999 Metals : Metals M15	re Set
Melb	ourne Laborato	ry - NATA # 12	61 Site # 125	4			
Sydr	ey Laboratory -	NATA # 1261	Site # 18217			Х	Х
Brisk	oane Laboratory	/ - NATA # 1261	Site # 20794	ļ.			
Mayf	ield Laboratory	- NATA # 1261	Site # 25079				
Perth	n Laboratory - N	IATA # 2377 Sit	e # 2370				
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	T01_211216	Dec 15, 2021		Soil	S22-Fe02559	Х	Х
Test	Test Counts						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/k: milligrams per kilogram mg/L: milligrams per litre $\mu g/L$: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 859898-S

Quality Control Results

Te	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Chromium (hexavalent)			mg/kg	< 1	1	Pass	
Method Blank					1		
Heavy Metals							
Arsenic			mg/kg	< 2	2	Pass	
Barium			mg/kg	< 10	10	Pass	
Beryllium			mg/kg	< 2	2	Pass	
Boron			mg/kg	< 10	10	Pass	
Cadmium			mg/kg	< 0.4	0.4	Pass	
Chromium			mg/kg	< 5	5	Pass	
Cobalt			mg/kg	< 5	5	Pass	
Copper			mg/kg	< 5	5	Pass	
Lead			mg/kg	< 5	5	Pass	
Manganese			mg/kg	< 5	5	Pass	
Mercury			mg/kg	< 0.1	0.1	Pass	
Nickel			mg/kg	< 5	5	Pass	
Vanadium			mg/kg	< 10	10	Pass	
Zinc			mg/kg	< 5	5	Pass	
LCS - % Recovery				, , ,			
Chromium (hexavalent)			%	93	70-130	Pass	
LCS - % Recovery			70		70 100	1 455	
Heavy Metals							
Arsenic			%	102	80-120	Pass	
Barium			%	113	80-120	Pass	
Beryllium			%	93	80-120	Pass	
			%	86			
Boron					80-120	Pass	
Cadmium			%	95	80-120	Pass	
Chromium			%	97	80-120	Pass	
Cobalt			%	113	80-120	Pass	
Copper			%	93	80-120	Pass	
Lead			%	96	80-120	Pass	
Manganese			%	114	80-120	Pass	
Mercury			%	81	80-120	Pass	
Nickel			%	95	80-120	Pass	
Vanadium			%	114	80-120	Pass	
Zinc			%	92	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1		
Heavy Metals	1	1		Result 1		_	
Arsenic	N22-Fe02928	NCP	%	118	75-125	Pass	
Barium	N22-Ja38611	NCP	%	91	75-125	Pass	
Beryllium	N22-Ja38611	NCP	%	105	75-125	Pass	
Boron	N22-Fe02928	NCP	%	82	75-125	Pass	
Cadmium	N22-Fe02928	NCP	%	109	75-125	Pass	
Chromium	N22-Fe02928	NCP	%	108	75-125	Pass	
Cobalt	N22-Ja38611	NCP	%	91	75-125	Pass	
Copper	N22-Fe02928	NCP	%	102	75-125	Pass	
Lead	N22-Fe02928	NCP	%	106	75-125	Pass	
Manganese	N22-Ja38611	NCP	%	108	75-125	Pass	
Mercury	N22-Fe02928	NCP	%	107	75-125	Pass	
Nickel	N22-Fe02928	NCP	%	104	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Vanadium	N22-Ja38611	NCP	%	91			75-125	Pass	
Zinc	N22-Fe02928	NCP	%	96			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	S21-Jn06496	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
% Moisture	S22-Fe02559	CP	%	4.5	4.3	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N22-Fe02937	NCP	mg/kg	6.1	5.7	7.0	30%	Pass	
Barium	N22-Ja38617	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Beryllium	N22-Ja38617	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	N22-Fe02937	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	N22-Fe02937	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N22-Fe02937	NCP	mg/kg	54	49	9.0	30%	Pass	
Cobalt	N22-Ja38617	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	N22-Fe02937	NCP	mg/kg	26	27	2.0	30%	Pass	
Lead	N22-Fe02937	NCP	mg/kg	37	34	9.0	30%	Pass	
Manganese	N22-Ja38617	NCP	mg/kg	17	21	25	30%	Pass	
Mercury	N22-Fe02937	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N22-Fe02937	NCP	mg/kg	41	41	1.0	30%	Pass	
Vanadium	N22-Ja38617	NCP	mg/kg	28	18	42	30%	Fail	Q15
Zinc	N22-Fe02937	NCP	mg/kg	120	110	7.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 No

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

 John Nguyen
 Analytical Services Manager

 Charl Du Preez
 Senior Analyst-Inorganic (NSW)

 John Nguyen
 Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 859898-S

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : CA2107572

Client : Environmental Resources Laboratory : ALS Water Resources Group

Management Australia Pty Ltd

Contact : Matthew Crow Contact : Client Services

Address : Level 15, 309 Kent St. Address : 16B Lithgow Street Fyshwick ACT

Australia 2609

 Telephone
 : --- Telephone
 : +61 2 6202 5404

 Facsimile
 : --- Facsimile
 : +61 2 6202 5404

Project : 0608750-07 Bungendore to Captains Page : 1 of 3

Flat

Sydney 2000

Order number : ---- Quote number : ----

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : Max Galbraith

Dates

Date

Delivery Details

Mode of Delivery: Client Drop OffSecurity Seal: Not AvailableNo. of coolers/boxes: 1Temperature: 22.3°CReceipt Detail: No. of samples received / analysed: 11 / 11

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarise breaches of recommended holding times that
 have occurred. The laboratory will process these samples unless instructions are received from you indicating you do not wish
 to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding
 time for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Canberra.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Samples for Amoeba should be transported at ambient temperature. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 01-Dec-2021 Issue Date

Page

: 2 of 3 : CA2107572 Amendment 0 Work Order

Client : Environmental Resources Management Australia Pty Ltd

CA2107572-001 : [22-Nov-2021] CA2107572-002 : [22-Nov-2021] CA2107572-003 : [23-Nov-2021] CA2107572-004 : [23-Nov-2021] CA2107572-005 : [23-Nov-2021] CA2107572-006 : [23-Nov-2021] CA2107572-007 : [23-Nov-2021] CA2107572-008 : [24-Nov-2021] CA2107572-009 : [22-Nov-2021] CA2107572-010 : [23-Nov-2021] CA2107572-011 : [24-Nov-2021]

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOLID

Laboratory sample	Sampling date / time	Sample ID	SOLID - Total Re
CA2107572-001	22-Nov-2021 00:00		✓
CA2107572-002	22-Nov-2021 00:00		✓
CA2107572-003	23-Nov-2021 00:00		✓
CA2107572-004	23-Nov-2021 00:00		✓
CA2107572-005	23-Nov-2021 00:00		✓
CA2107572-006	23-Nov-2021 00:00		✓
CA2107572-007	23-Nov-2021 00:00		✓
CA2107572-008	24-Nov-2021 00:00		✓

Matrix: WATER <i>Laboratory sample ID</i>	Sampling date / time	Sample ID	WATER - EG020A-F ENV Dissolved Metals by ICPMS - Suite A	WATER - XTERNAL External report
CA2107572-009	22-Nov-2021 00:00		✓	✓
CA2107572-010	23-Nov-2021 00:00		✓	✓
CA2107572-011	24-Nov-2021 00:00		✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

: 01-Dec-2021 Issue Date

Page

: 3 of 3 : CA2107572 Amendment 0 Work Order

Client : Environmental Resources Management Australia Pty Ltd

Requested Deliverables

Matthew Crow

Email	matthew.crow@erm.com
Email	matthew.crow@erm.com
Email	matthew.crow@erm.com
Email	matthew.crow@erm.com
Email	matthew.crow@erm.com
Email	matthew.crow@erm.com
	Email Email Email Email

CERTIFICATE OF ANALYSIS

Work Order : CA2107572 Page : 1 of 5

Amendment : 2

Client : Environmental Resources Management Australia Pty Ltd Laboratory : ALS Water Resources Group

Contact : Matthew Crow Contact : Client Services

Address : Level 15, 309 Kent St. Address : 16B Lithgow Street Fyshwick ACT Australia 2609

Sydney 2000

 Telephone
 : --- Telephone
 : +61 2 6202 5404

 Project
 : 0608750-07 Bungendore to Captains Flat
 Date Samples Received
 : 26-Nov-2021 11:00

 Order number
 : --- Date Analysis Commenced
 : 02-Dec-2021

C-O-C number : ----

Sampler : Max Galbraith

Site : ---

Quote number : ERM National Quotation (EN/114/21)

No. of samples received : 11

No. of samples analysed : 11

26-Nov-2021 11:00 : 02-Dec-2021 : 09-Mar-2022 09:57

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Clare Kennedy Analyst Inorganics, Fyshwick, ACT

Joel Nicholson Laboratory Manager ALS Environmental, Fyshwick, ACT

Titus Vimalasiri Metals Teamleader Inorganics, Fyshwick, ACT

Page : 2 of 5

Work Order : CA2107572 Amendment 2

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

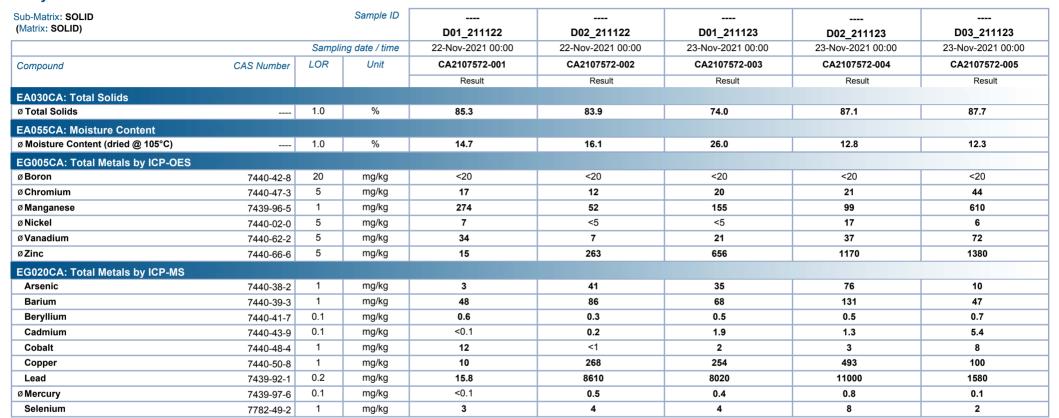
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- For samples collected by ALS WRG, sampling was carried out in accordance with Procedure EN67
- Client Error Amend: Moisture content not requested on original CoC for 001 0008. Client requested analysis to be conducted as at 11.01.21. Noting that the analysis will be conducted out of holding time and suitable storage, with results being indicative only TR 12.01.21
- EG020A-F Performed at ALS Sydney



Page : 3 of 5

Work Order : CA2107572 Amendment 2

Client : Environmental Resources Management Australia Pty Ltd

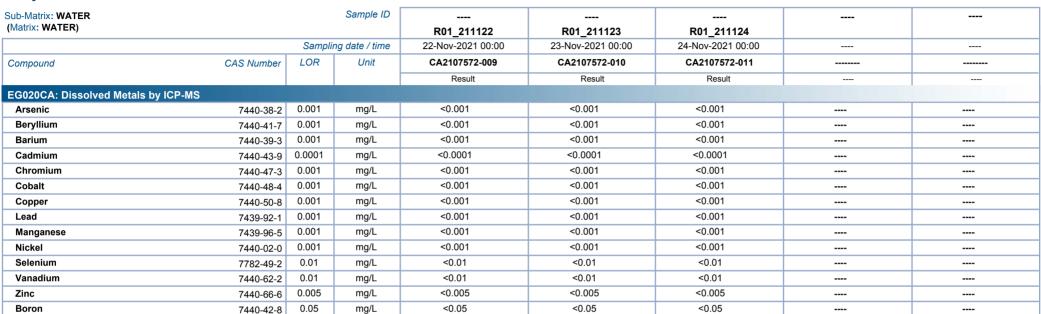
Project : 0608750-07 Bungendore to Captains Flat

Page : 4 of 5

Work Order : CA2107572 Amendment 2

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat


Page : 5 of 5

CA2107572 Amendment 2 Work Order

Client Environmental Resources Management Australia Pty Ltd

7440-42-8

Project 0608750-07 Bungendore to Captains Flat

CHAIN OF CUSTODY

ALS Laboratory: please tick → CIADELAIDE 21 Burma Road Politikki 122 Spignbour Road Mackay QLD 4740

CIBRA 1351 55: Score 3 Small Staff prints 200 Spignbour 125 Spignbour 1

DGLADSTONE 46 Callemondah Drive CEMMUDSD648805ydney Road Mudgee NSW 2850 Ph: 07.7471 5600 E: pladstone@atsofoto@bs/bs/02.6372 6735 E: mudgee mai@lahsofotost.com UNEWCASTLE 5 Rose Gum Road Warsbrook NSW 2304

DROWN-WEN \$4550, respersors results @alegisted.com

Ph. 02423 2003 E. nowna@alegistat.com

OPERTH 10 Hod Way Malaga. WA 8090

Ph. 08 2009 7655 E. samples perfolationalisat.com

DISYDNEY 277-289 Woodpark Road Smithfield NSW 2164
Pii 02 8784 8555 E. sampless sydney@alsglobat.com
DITOMNSVILEE 14-15 Desama Court Bohle QLD 4916
Pii 07 4799 0800 E. townesville environmental@alsglobat.com
DIVOLLONGONG SY Kenny Stevet Wildingsyng NSW 2500
Ph. 02 4225 3125 E. portisembla@alsglobat.com

CLIENT: ERM TURNAROUND REQUIREMENTS: FOR LABORATORY USE ONLY (Circle) Standard TAT (7 days) (Standard TAT may be longer for some tests e.g., Ultra OFFICE: Newcastle Custody Seal Intact? N/A Trace Organics) Free ice / frozen ice bricks present upon PROJECT: 0608750-07 Bungendore to Captains Flat ALS QUOTE NO COC SEQUENCE NUMBER (Circle) National Price Discount / ERM Quote ORDER NUMBER COC: 1 2 3 4 5 6 7 Random Sample Temperature on Receipt: 22 3 PROJECT MANAGER: Matthew Crow CONTACT PH: 0402652889 OF: 1 2 3 4 5 6 7 Other comment: SAMPLER: Max Galbraith SAMPLER MORILE: 0468384969 RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: RECEIVED BY: TR COC emailed to ALS? EDD FORMAT (or default): Doan Santi Email Reports to (will default to PM if no other addresses are listed): PM DATE/TIME: 26//11/2021 DATE/TIME: DATE/TIME DATE/TIME 26.11.21 11:00 Email Invoice to (will default to PM if no other addresses are listed): PM @ 12:30 COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: - COC received ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) SAMPLE DETAILS CONTAINER INFORMATION Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle Additional Information HSF MATRIX: SOLID (S) WATER (W) required). TOTAL N-3 (15 Metals) MATRIX TYPE & PRESERVATIVE Comments on likely contaminant levels LABID SAMPLE ID DATE / TIME dilutions, or samples requiring specific QC (refer to codes below) analysis etc. 12.11 D01 211122 Soil 22.11 D02 211122 Soil 23.11 D01_211123 Soil ALS Water Resources Group 23 111 D02_211123 Soil × Canberra Work Order Reference 23.11 D03_211123 Soil × CA2107572 23.11 D04 211123 Soil D01_211124 23-11 Soil D02_211124 24111 Soil R01 211122 22 111 WATER R01_211123 22. V WATER Telephone: +61 2 6202 5404 R01 211124 740 11 WATER

QUALITY CONTROL REPORT

Work Order : CA2107572

Client : Environmental Resources Management Australia Pty Ltd

Contact : Matthew Crow

Address : Level 15, 309 Kent St.

Sydney 2000

Telephone : ----

Project : 0608750-07 Bungendore to Captains Flat

Order number : ----

C-O-C number

Sampler : Max Galbraith

Site : ---Quote number : ---No. of samples received : 11
No. of samples analysed : 11

Page : 1 of 3

Laboratory : ALS Water Resources Group

Contact : Client Services

Address : 16B Lithgow Street Fyshwick ACT Australia 2609

Telephone : +61 2 6202 5404

Date Samples Received : 26-Nov-2021

Date Analysis Commenced : 02-Dec-2021

Issue Date : 10-Jan-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Joel NicholsonLaboratory ManagerALS Environmental, Fyshwick, ACTTitus VimalasiriMetals TeamleaderInorganics, Fyshwick, ACT

Page : 2 of 3 Work Order : CA2107572

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOLID						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005CA: Total Me	tals by ICP-OES (QC	Lot: 4050163)							
CA2107383-004	Anonymous	EG005T: Manganese	7439-96-5	1	mg/kg	2810	2800	0.3	0% - 20%
		EG005T: Boron	7440-42-8	20	mg/kg	<20	<20	0.0	No Limit
		EG005T: Chromium	7440-47-3	5	mg/kg	28	27	0.0	No Limit
		EG005T: Nickel	7440-02-0	5	mg/kg	11	10	0.0	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	45	46	2.4	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	51	50	0.0	0% - 50%
EG020CA: Total Me	tals by ICP-MS (QC L	ot: 3928240)							
CA2105932-001	Anonymous	EG020X-T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EG020CA: Total Me	tals by ICP-MS (QC L	ot: 4050164)							
CA2107547-004	Anonymous	EG020T: Beryllium	7440-41-7	0.1	mg/kg	0.2	0.2	0.0	No Limit
		EG020T: Cadmium	7440-43-9	0.1	mg/kg	0.3	0.3	0.0	No Limit
		EG020T: Lead	7439-92-1	0.2	mg/kg	93.7	96.5	3.0	0% - 20%
		EG020T: Arsenic	7440-38-2	1	mg/kg	7	7	0.0	No Limit
		EG020T: Barium	7440-39-3	1	mg/kg	264	263	0.5	0% - 20%
		EG020T: Cobalt	7440-48-4	1	mg/kg	3	3	0.0	No Limit
		EG020T: Copper	7440-50-8	1	mg/kg	119	120	0.0	0% - 20%
		EG020T: Selenium	7782-49-2	1	mg/kg	1	2	0.0	No Limit

Page : 3 of 3 Work Order : CA2107572

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOLID				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005CA: Total Metals by ICP-OES (QCLot: 4050163)										
EG005T: Boron	7440-42-8	20	mg/kg	<20	15.2 mg/kg	82.6	49.0	151		
EG005T: Chromium	7440-47-3	5	mg/kg	<5	82 mg/kg	100	60.0	140		
EG005T: Manganese	7439-96-5	1	mg/kg	<1	241 mg/kg	99.8	87.0	113		
EG005T: Nickel	7440-02-0	5	mg/kg	<5	17.8 mg/kg	99.9	54.0	146		
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	25.3 mg/kg	93.8	53.0	147		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	57 mg/kg	102	78.0	122		
EG020CA: Total Metals by ICP-MS (QCLot: 3928240)										
EG020X-T: Mercury	7439-97-6	0.1	mg/kg	<0.1	11.7 mg/kg	109	80.0	120		
EG020CA: Total Metals by ICP-MS (QCLot: 4050164)										
EG020T: Arsenic	7440-38-2	1	mg/kg	<1	17.2 mg/kg	102	48.0	152		
EG020T: Barium	7440-39-3	1	mg/kg	<1	28.4 mg/kg	86.3	41.0	159		
EG020T: Beryllium	7440-41-7	0.1	mg/kg	<0.1	0.59 mg/kg	104	49.0	151		
EG020T: Cadmium	7440-43-9	0.1	mg/kg	<0.1	9.33 mg/kg	96.5	79.0	121		
EG020T: Cobalt	7440-48-4	1	mg/kg	<1	9.16 mg/kg	99.1	64.0	136		
EG020T: Copper	7440-50-8	1	mg/kg	<1	23.2 mg/kg	100	75.0	125		
EG020T: Lead	7439-92-1	0.2	mg/kg	<0.2	40.4 mg/kg	94.2	80.0	120		
EG020T: Selenium	7782-49-2	1	mg/kg	<1	11 mg/kg	113	62.0	138		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : CA2107572 Page : 1 of 4

Client : Environmental Resources Management Australia Pty Ltd Laboratory : ALS Water Resources Group

Contact : Matthew Crow : +61 2 6202 5404
Project : 0608750-07 Bungendore to Captains Flat Date Samples Received : 26-Nov-2021

Site :--- Issue Date : 10-Jan-2022

Sampler : Max Galbraith No. of samples received : 11
Order number : ---- No. of samples analysed : 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 4
Work Order : CA2107572

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat

Outliers: Frequency of Quality Control Samples

Matrix: SOLID

Quality Control Sample Type	Count R		Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Total Recoverable Metals by ICP-MS - X	1	20	5.00	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOLID

Evaluation: **x** = Holding time breach : \checkmark = Within holding time.

Matrix: SOLID				Lvaiuation	. ~ = Holding time	breach; • = withi	ii noluliig tiin
Method	Sample Date	E)	ktraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005CA: Total Metals by ICP-OES							
Metals in Soils (EG005T)	22-Nov-2021	02-Dec-2021			06-Dec-2021		
Metals in Soils (EG005T)	23-Nov-2021	02-Dec-2021			06-Dec-2021		
Metals in Soils (EG005T)	24-Nov-2021	02-Dec-2021			06-Dec-2021		
EG020CA: Total Metals by ICP-MS							
Metals in Soils (EG020X-T)	22-Nov-2021	02-Dec-2021			07-Dec-2021		
Metals in Soils (EG020X-T)	23-Nov-2021	02-Dec-2021			07-Dec-2021		
Metals in Soils (EG020X-T)	24-Nov-2021	02-Dec-2021			07-Dec-2021		

Page : 3 of 4 Work Order CA2107572

Client Environmental Resources Management Australia Pty Ltd

0608750-07 Bungendore to Captains Flat Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOLID				Evaluatio	n: 🗴 = Quality Co	entrol frequency i	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Total Recoverable Metals by ICP-MS	EG020T	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-MS - X	EG020X-T	1	20	5.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-OES	EG005T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Recoverable Metals by ICP-MS	EG020T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-MS - X	EG020X-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-OES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Recoverable Metals by ICP-MS	EG020T	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-MS - X	EG020X-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Recoverable Metals by ICP-OES	EG005T	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : CA2107572

Client : Environmental Resources Management Australia Pty Ltd

Project : 0608750-07 Bungendore to Captains Flat

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Recoverable Metals by ICP-OES	* EG005T	SOLID	USEPA 3050 - 6020. Samples are digested by USEPA 3005 prior to analysis. The ICP-OES technique ionises the sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
Total Recoverable Metals by ICP-MS	EG020T	SOLID	(APHA 3125; USEPA SW846 - 6020) (ICPMS) Metals in solids are determined following an appropriate acid digestion. The ICPMS technique ionizes selected elements. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass / charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM Schedule B(3)
Total Recoverable Metals by ICP-MS - X	* EG020X-T	SOLID	(APHA 3125; USEPA SW846 - 6020) (ICPMS) Metals in solids are determined following an appropriate acid digestion. The ICPMS technique ionizes selected elements. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass / charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Performed at ALS Sydney	EG020A-F	WATER	(APHA, 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOLID	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3) (Method 202)

CERTIFICATE OF ANALYSIS

Work Order : ES2143866

: ALS WATER AND HYDROGRAPHICS PTY LTD

Contact : RESULTS ADDRESS FYSHWICK

Address : 16B LITHGOW STREET

FYSHWICK ACT. AUSTRALIA 2609

Telephone : +61 02 6202 5431

: CA2107572 **Project**

Order number C-O-C number Sampler

Client

Site

Quote number : EN/109/18 - ALS CANBERRA BQ FOR ES

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 4

> Laboratory : Environmental Division Sydney

Contact : Sepan Mahamad

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555 **Date Samples Received** : 02-Dec-2021 09:00 **Date Analysis Commenced** : 03-Dec-2021

Issue Date · 09-Dec-2021 13:44

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ivan Taylor Sydney Inorganics, Smithfield, NSW Analyst Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Page : 2 of 4 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

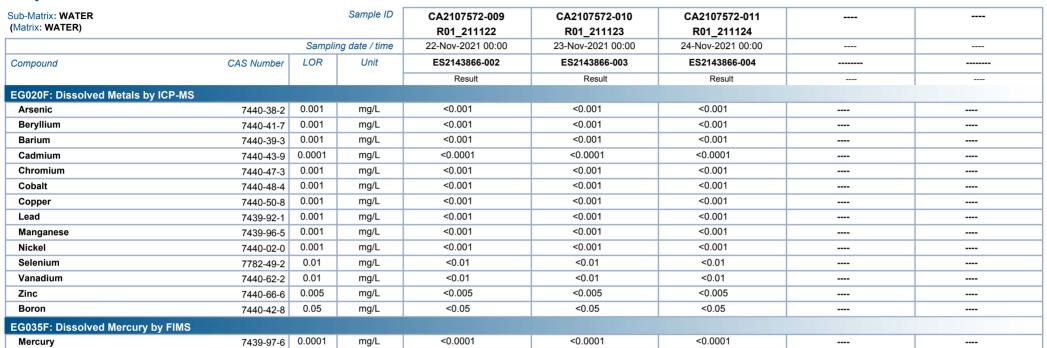
ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Page : 3 of 4 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572



Page : 4 of 4 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project · CA2107572

QUALITY CONTROL REPORT

· ES2143866 Work Order Page

Client : Environmental Division Sydney : ALS WATER AND HYDROGRAPHICS PTY LTD Laboratory

Contact : RESULTS ADDRESS FYSHWICK

Address Address : 16B LITHGOW STREET

FYSHWICK ACT. AUSTRALIA 2609

: +61 02 6202 5431 Telephone

Project : CA2107572

Order number C-O-C number

Sampler

Site

Quote number : EN/109/18 - ALS CANBERRA BQ FOR ES

No. of samples received : 4 No. of samples analysed : 4 : 1 of 5

Contact : Sepan Mahamad

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555 Date Samples Received : 02-Dec-2021 **Date Analysis Commenced** : 03-Dec-2021

· 10-Jan-2022 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW Wisam Marassa **Inorganics Coordinator** Sydney Inorganics, Smithfield, NSW Page : 2 of 5 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EG005(ED093)T: To	tal Metals by ICP-AES(QC Lot: 4054947)											
ES2144126-012	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	12	11	11.5	No Limit				
ES2144126-054	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	9	6	37.5	No Limit				
EA055: Moisture Co	ontent (Dried @ 105-110°	°C) (QC Lot: 4054951)											
ES2144126-031	Anonymous	EA055: Moisture Content		0.1	%	11.1	10.9	1.8	0% - 50%				
ES2144126-060	Anonymous	EA055: Moisture Content		0.1	%	18.4	18.7	1.8	0% - 50%				
Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report	:					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EG020F: Dissolved	Metals by ICP-MS (QC I	Lot: 4058667)											
ES2142314-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit				
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.093	0.093	0.0	0% - 20%				
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.058	0.060	0.0	0% - 20%				
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit				
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit				
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit				
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit				
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit				
ES2143866-002	CA2107572-009 R01_211122	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit				

Page : 3 of 5 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG020F: Dissolved	Metals by ICP-MS (QC Lot:	4058667) - continued									
ES2143866-002	CA2107572-009 R01_211122	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
	_	EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
EG035F: Dissolved	Mercury by FIMS (QC Lot:	4058668)									
ES2143627-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
ES2143866-002	CA2107572-009 R01_211122	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		

Page : 4 of 5 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 405494)	7)										
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	92.0	82.0	119			
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EG020F: Dissolved Metals by ICP-MS (QCLot: 4058667)											
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	96.1	85.0	114			
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	91.8	85.0	115			
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	95.1	82.0	110			
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	93.5	84.0	110			
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.3	85.0	111			
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	94.1	82.0	112			
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	94.2	81.0	111			
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.5	83.0	111			
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	92.5	82.0	110			
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.2	82.0	112			
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	88.8	85.0	115			
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	95.4	83.0	109			
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	95.0	81.0	117			
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	98.7	85.0	115			
EG035F: Dissolved Mercury by FIMS (QCLot: 4058668)											
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	100	83.0	105			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 405	4947)					
ES2144126-012	Anonymous	EG005T: Lead	7439-92-1	250 mg/kg	93.2	70.0	130
Sub-Matrix: WATER				M	atrix Spike (MS) Report		
			Spike	SpikeRecovery(%)	Acceptable	Limits (%)	

Page : 5 of 5 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	Metals by ICP-MS (QCLot: 4058667)						
ES2143627-001	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	99.1	70.0	130
		EG020A-F: Beryllium	7440-41-7	1 mg/L	90.2	70.0	130
		EG020A-F: Barium	7440-39-3	1 mg/L	97.7	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	93.8	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	94.1	70.0	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	96.2	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	95.5	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	92.9	70.0	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	92.5	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	93.2	70.0	130
		EG020A-F: Vanadium	7440-62-2	1 mg/L	94.5	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	95.1	70.0	130
G035F: Dissolved	Mercury by FIMS (QCLot: 4058668)						
ES2143627-001	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	92.2	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2143866** Page : 1 of 4

Client : ALS WATER AND HYDROGRAPHICS PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : RESULTS ADDRESS FYSHWICK
 Telephone
 : +61 2 8784 8555

 Project
 : CA2107572
 Date Samples Received
 : 02-Dec-2021

 Site
 : --- Issue Date
 : 10-Jan-2022

Sampler : ---- No. of samples received : 4
Order number : ---- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	e breach ; ✓ = Withi	n holding time
Method	Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) CA2107572-002 - D02_211122	22-Nov-2021				03-Dec-2021	06-Dec-2021	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) CA2107572-002 - D02_211122	22-Nov-2021	03-Dec-2021	21-May-2022	1	06-Dec-2021	21-May-2022	✓
Matrix: WATER				Evaluation	: × = Holding time	e breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) CA2107572-009 - R01_211122	22-Nov-2021				07-Dec-2021	21-May-2022	√
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) CA2107572-010 - R01 211123	23-Nov-2021				07-Dec-2021	22-May-2022	1
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) CA2107572-011 - R01_211124	24-Nov-2021				07-Dec-2021	23-May-2022	√
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) CA2107572-009 - R01 211122	22-Nov-2021				07-Dec-2021	20-Dec-2021	1
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) CA2107572-010 - R01 211123	23-Nov-2021				07-Dec-2021	21-Dec-2021	1
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) CA2107572-011 - R01_211124	24-Nov-2021				07-Dec-2021	22-Dec-2021	√

Page : 3 of 4
Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
_aboratory Control Samples (LCS)							
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
latrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specifica
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
	EG035F	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
	EGUSOF				F 00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG020A-F	1	13	7.69	5.00	✓	INLE IVI 2013 D3 & AL3 QC Standard
Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Method Blanks (MB)		1	13	7.69	5.00	<u> </u>	NEFW 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Method Blanks (MB)		1	13	7.69 5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Method Blanks (MB) Dissolved Mercury by FIMS	EG020A-F					•	
Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Method Blanks (MB) Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Method Blanks (MB) Dissolved Mercury by FIMS Dissolved Metals by ICP-MS - Suite A Matrix Spikes (MS) Dissolved Mercury by FIMS	EG020A-F	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES2143866

Client : ALS WATER AND HYDROGRAPHICS PTY LTD

Project : CA2107572

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).

CERTIFICATE OF ANALYSIS

Work Order Page : ES2146882 : 1 of 6

Client Laboratory ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) : Environmental Division Sydney

Contact : MR MATTHEW CROW Contact : Monica Wright

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 1 45 WATT STREET

NEWCASTLE NSW 2300

Telephone **Project** : 0608750 - 07 CAPTAINS FLAT LINE

Order number : 0608750-07 **Date Analysis Commenced** : 24-Dec-2021

C-O-C number

Sampler · MAX GALBRAITH

Site

Quote number : EN/114 No. of samples received : 14 No. of samples analysed : 14

Telephone : +61-2-8784 8555 **Date Samples Received** : 22-Dec-2021 09:01

: 06-Jan-2022 17:33 Issue Date

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW Page : 2 of 6 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

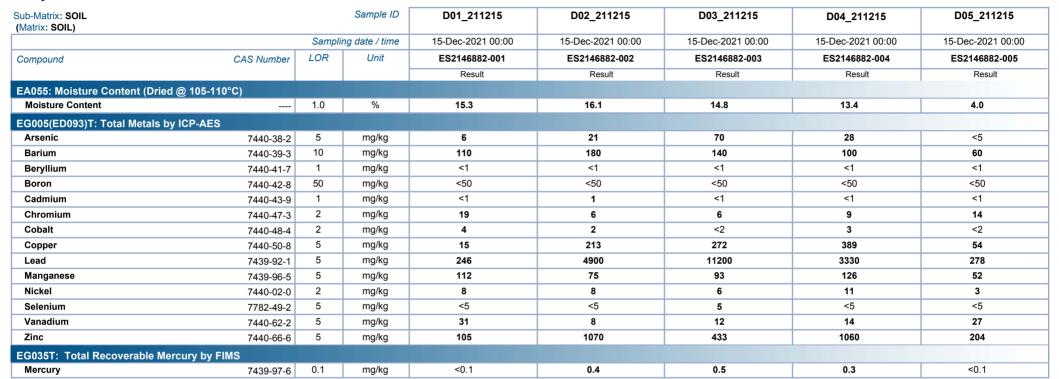
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

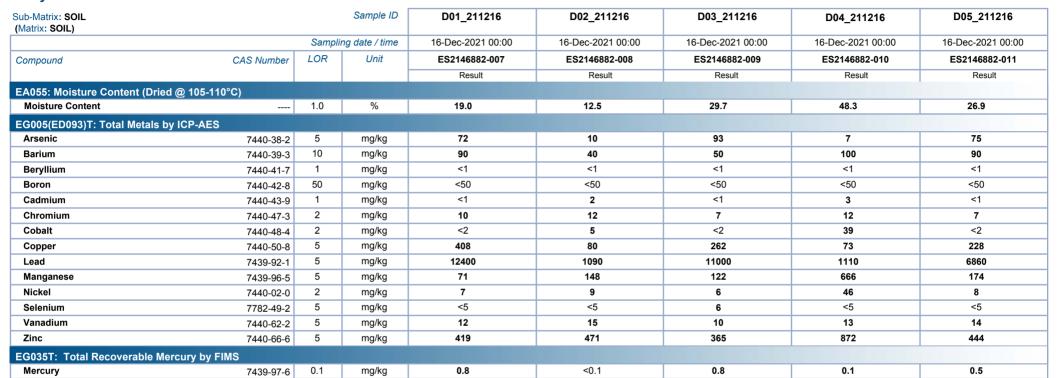

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 6 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE



Page : 4 of 6 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Page : 5 of 6
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	D06_211216	T01_211216	 	
		Sampli	ng date / time	16-Dec-2021 00:00	16-Dec-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2146882-012	ES2146882-013	 	
				Result	Result	 	
EA055: Moisture Content (Dried	d @ 105-110°C)						
Moisture Content		1.0	%	5.4	5.6	 	
EG005(ED093)T: Total Metals b	y ICP-AES						
Arsenic	7440-38-2	5	mg/kg	14	7	 	
Barium	7440-39-3	10	mg/kg	470	240	 	
Beryllium	7440-41-7	1	mg/kg	<1	<1	 	
Boron	7440-42-8	50	mg/kg	<50	<50	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	13	12	 	
Cobalt	7440-48-4	2	mg/kg	6	6	 	
Copper	7440-50-8	5	mg/kg	155	77	 	
Lead	7439-92-1	5	mg/kg	1190	378	 	
Manganese	7439-96-5	5	mg/kg	254	243	 	
Nickel	7440-02-0	2	mg/kg	10	9	 	
Selenium	7782-49-2	5	mg/kg	<5	<5	 	
Vanadium	7440-62-2	5	mg/kg	20	18	 	
Zinc	7440-66-6	5	mg/kg	4140	2220	 	
EG035T: Total Recoverable Me	ercury by FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	 	

Page : 6 of 6 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

QUALITY CONTROL REPORT

Work Order : **ES2146882** Page : 1 of 7

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Laboratory : Environmental Division Sydney

Contact : MR MATTHEW CROW Contact : Monica Wright

Address : LEVEL 1 45 WATT STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NEWCASTLE NSW 2300

Telephone : ---- : +61-2-8784 8555

Project : 0608750 - 07 CAPTAINS FLAT LINE Date Samples Received : 22-Dec-2021
Order number : 0608750-07 Date Analysis Commenced : 24-Dec-2021

C-O-C number : ----

Sampler : MAX GALBRAITH

Site : ---Quote number : EN/114

No. of samples received : 14

No. of samples analysed : 14

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

· 06-Jan-2022

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW	
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW	
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW	

Page : 2 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Laboratorii Dunlinata (DUD) Donort

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EG005(ED093)T: To	tal Metals by ICP-AES(QC Lot: 4102045)								
ES2146881-010	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Barium	7440-39-3	10	mg/kg	70	80	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	14	12	18.7	No Limit	
		EG005T: Cobalt	7440-48-4	2	mg/kg	3	3	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	4	3	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	80	70	12.7	0% - 50%	
		EG005T: Copper	7440-50-8	5	mg/kg	16	15	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	525	556	5.7	0% - 20%	
		EG005T: Manganese	7439-96-5	5	mg/kg	201	188	7.1	0% - 20%	
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Vanadium	7440-62-2	5	mg/kg	21	18	14.7	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	186	184	1.5	0% - 20%	
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.0	No Limit	
ES2146882-011	D05_211216	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Barium	7440-39-3	10	mg/kg	90	80	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	7	6	0.0	No Limit	
		EG005T: Cobalt	7440-48-4	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	8	6	16.5	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	75	65	14.4	0% - 50%	
		EG005T: Copper	7440-50-8	5	mg/kg	228	216	5.6	0% - 20%	
		EG005T: Lead	7439-92-1	5	mg/kg	6860	6190	10.3	0% - 20%	
		EG005T: Manganese	7439-96-5	5	mg/kg	174	180	3.0	0% - 20%	

Page : 3 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 4102045) - continued							
ES2146882-011	D05_211216	EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	14	14	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	444	381	15.3	0% - 20%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.0	No Limit
EA055: Moisture Co	ntent (Dried @ 105-1	10°C) (QC Lot: 4098495)							
ES2146169-004	Anonymous	EA055: Moisture Content		0.1	%	25.4	25.6	0.9	0% - 20%
ES2146882-001	D01_211215	EA055: Moisture Content		0.1	%	15.3	14.5	5.5	0% - 50%
EA055: Moisture Co	ntent (Dried @ 105-1	10°C) (QC Lot: 4102048)							
ES2146882-008	D02 211216	EA055: Moisture Content		0.1	%	12.5	11.6	7.4	0% - 50%
ES2146901-006	Anonymous	EA055: Moisture Content		0.1	%	18.7	18.4	1.7	0% - 50%
EG035T: Total Reco	•	FIMS (QC Lot: 4102044)							
ES2146881-010	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.0	No Limit
ES2146882-011	D05 211216	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.5	0.6	0.0	No Limit
	D00_211210	EG0331. Mercury	7403 37 0	0.1	mg/kg				NO LITTIC
Sub-Matrix: WATER							Duplicate (DUP) Report		T
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
	Is by ICP-MS (QC Lo								
ES2146944-086	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit
ES2146724-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Barium	7440-39-3	0.001	mg/L	0.010	0.010	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.027	0.027	0.0	0% - 20%

Page : 4 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EG020T: Total Metals	by ICP-MS (QC Lot: 410434	48) - continued									
ES2146724-001	Anonymous	EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.008	0.009	0.0	No Limit		
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 4104356)									
ES2146869-002	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
ES2146966-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		

Page : 5 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 410204	5)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	111	88.0	113
EG005T: Barium	7440-39-3	10	mg/kg	<10	90.5 mg/kg	135	65.0	136
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	0.5 mg/kg	126	70.0	130
EG005T: Boron	7440-42-8	50	mg/kg	<50				
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	129	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	126	68.0	132
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	10.4 mg/kg	116	83.0	117
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	107	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	119	82.0	119
EG005T: Manganese	7439-96-5	5	mg/kg	<5	534 mg/kg	116	83.0	117
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	118	80.0	120
EG005T: Selenium	7782-49-2	5	mg/kg	<5				
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	58.6 mg/kg	122	75.0	125
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	109	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QCLot: 410	2044)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	121	70.0	125
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
Out Wallis, WATER				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 4104348)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	91.4	82.0	114
EG020A-T: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	86.8	79.0	119
EG020A-T: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	87.8	84.0	116
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	90.1	84.0	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.5	86.0	116
EG020A-T: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	90.5	84.0	116
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	88.8	83.0	118
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	88.1	85.0	115
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	88.4	85.0	113
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	89.6	84.0	116
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	91.5	68.0	126
EG020A-T: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	88.1	85.0	113
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	89.1	79.0	117
EG020A-T: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	95.9	75.0	129

Page : 6 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Matrix Spike (MS) Report

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report						
	Report	Spike	Spike Recovery (%)	Acceptable Limits (%)							
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High			
EG035T: Total Recoverable Mercury by FIMS (QCLot: 4104356)											
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	96.0	77.0	111			

Matrix Spike (MS) Report

Sub-Matrix: SOIL

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				100	atrix opine (mo) report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
oratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G005(ED093)T: 1	Total Metals by ICP-AES (QCLot: 4102045)							
ES2146881-010	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	73.4	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	79.8	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	90.4	68.0	132	
		EG005T: Copper	7440-50-8	250 mg/kg	73.4	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	75.5	70.0	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	90.9	70.0	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	82.2	66.0	133	
G035T: Total Re	ecoverable Mercury by FIMS (QCLot: 4102044)							
ES2146881-010	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	86.7	70.0	130	
ub-Matrix: WATER				М	atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G020T: Total Me	tals by ICP-MS (QCLot: 4104348)							
ES2146724-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	90.2	70.0	130	
		EG020A-T: Beryllium	7440-41-7	1 mg/L	90.0	70.0	130	
		EG020A-T: Barium	7440-39-3	1 mg/L	88.6	70.0	130	
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	91.6	70.0	130	
		EG020A-T: Chromium	7440-47-3	1 mg/L	92.1	70.0	130	
		EG020A-T: Cobalt	7440-48-4	1 mg/L	89.6	70.0	130	
		EG020A-T: Copper	7440-50-8	1 mg/L	89.7	70.0	130	
		EG020A-T: Lead	7439-92-1	1 mg/L	88.1	70.0	130	
		EG020A-T: Manganese	7439-96-5	1 mg/L	91.1	70.0	130	
		EG020A-T: Nickel	7440-02-0	1 mg/L	90.1	70.0	130	
		EG020A-T: Vanadium	7440-62-2	1 mg/L	90.4	70.0	130	
		EG020A-T: Zinc	7440-66-6	1 mg/L	89.3	70.0	130	
G035T: Total Re	ecoverable Mercury by FIMS (QCLot: 4104356)							
ES2146870-001	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	97.0	70.0	130	

Page : 7 of 7
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

QA/QC Compliance Assessment to assist with Quality Review

: ES2146882 **Work Order** Page : 1 of 5

: Environmental Division Sydney Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Laboratory

: MR MATTHEW CROW Telephone : +61-2-8784 8555 Contact Project : 0608750 - 07 CAPTAINS FLAT LINE **Date Samples Received** : 22-Dec-2021 Issue Date : 06-Jan-2022

Site

Sampler : MAX GALBRAITH No. of samples received : 14 Order number : 0608750-07 No. of samples analysed : 14

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
D01_211215,	D02_211215,	15-Dec-2021				24-Dec-2021	29-Dec-2021	✓
D03_211215,	D04_211215,							
D05_211215								
Soil Glass Jar - Unpreserved (EA055)								
D01_211216,	D02_211216,	16-Dec-2021				29-Dec-2021	30-Dec-2021	✓
D03_211216,	D04_211216,							
D05_211216,	D06_211216,							
T01_211216								
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
D01_211215,	D02_211215,	15-Dec-2021	29-Dec-2021	13-Jun-2022	✓	31-Dec-2021	13-Jun-2022	✓
D03_211215,	D04_211215,							
D05_211215								
Soil Glass Jar - Unpreserved (EG005T)								
D01_211216,	D02_211216,	16-Dec-2021	29-Dec-2021	14-Jun-2022	✓	31-Dec-2021	14-Jun-2022	✓
D03_211216,	D04_211216,							
D05_211216,	D06_211216,							
T01_211216								
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
D01_211215,	D02_211215,	15-Dec-2021	29-Dec-2021	12-Jan-2022	✓	31-Dec-2021	12-Jan-2022	✓
D03_211215,	D04_211215,							
D05_211215								
Soil Glass Jar - Unpreserved (EG035T)								
D01_211216,	D02_211216,	16-Dec-2021	29-Dec-2021	13-Jan-2022	✓	31-Dec-2021	13-Jan-2022	✓
D03_211216,	D04_211216,							
D05_211216,	D06_211216,							
T01_211216								

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Page : 3 of 5
Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Matrix: WATER				Evaluation	ı: 🗴 = Holding time	breach ; ✓ = With	n holding tim	
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) R01_211215	15-Dec-2021	31-Dec-2021	13-Jun-2022	1	31-Dec-2021	13-Jun-2022	✓	
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) R01_211216	16-Dec-2021	31-Dec-2021	14-Jun-2022	1	31-Dec-2021	14-Jun-2022	✓	
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) R01_211215	15-Dec-2021				04-Jan-2022	12-Jan-2022	✓	
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) R01_211216	16-Dec-2021				04-Jan-2022	13-Jan-2022	√	

Page : 4 of 5 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
aboratory Duplicates (DUP)									
Moisture Content	EA055	4	36	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
aboratory Control Samples (LCS)									
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
latrix: WATER				Evaluatio	n: × = Quality Co	entrol frequency	not within specification; ✓ = Quality Control frequency within specif		
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
aboratory Duplicates (DUP)									
otal Mercury by FIMS	EG035T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
otal Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
aboratory Control Samples (LCS)									
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
otal Metals by ICP-MS - Suite A	L0020/11								
,	20020/11								
Fotal Metals by ICP-MS - Suite A Matrix Spikes (MS) Fotal Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page : 5 of 5 Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 0608750 - 07 CAPTAINS FLAT LINE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2146882

Client : ENVIRONMENTAL RESOURCES Laboratory : Environmental Division Sydney

MANAGEMENT (ERM)

NEWCASTLE NSW 2300

Contact : MR MATTHEW CROW Contact : Monica Wright

Address : LEVEL 1 45 WATT STREET Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

 Telephone
 : -- Telephone
 : +61-2-8784 8555

 Facsimile
 : -- Facsimile
 : +61-2-8784 8500

Project : 0608750 - 07 CAPTAINS FLAT LINE Page : 1 of 3

 Order number
 : 0608750-07
 Quote number
 : EP2020ENVRES0018 (EN/114)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : MAX GALBRAITH

Dates

Date Samples Received : 22-Dec-2021 09:01 Issue Date : 23-Dec-2021 Client Requested Due : 06-Jan-2022 Scheduled Reporting Date : 06-Jan-2022

Date

Delivery Details

Mode of Delivery : Undefined Security Seal : Not Available

No. of coolers/boxes : 1 Temperature : ---Receipt Detail : No. of samples received / analysed : 14 / 14

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 23-Dec-2021 Issue Date

Page

2 of 3 ES2146882 Amendment 0 Work Order

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

as the determinatasks, that are included in the sampling default 00:00 on its provided, the	ation of moisture uded in the package. time is provided, the date of samplin		SOIL - EA055-103 Moisture Content	SOIL - S-03 15 Metals (NEPM 2013 Suite - ind. Digestion)
ES2146882-001	15-Dec-2021 00:00	D01_211215	✓	✓
ES2146882-002	15-Dec-2021 00:00	D02_211215	✓	✓
ES2146882-003	15-Dec-2021 00:00	D03_211215	✓	✓
ES2146882-004	15-Dec-2021 00:00	D04_211215	✓	✓
ES2146882-005	15-Dec-2021 00:00	D05_211215	✓	✓
ES2146882-007	16-Dec-2021 00:00	D01_211216	✓	✓
ES2146882-008	16-Dec-2021 00:00	D02_211216	✓	✓
ES2146882-009	16-Dec-2021 00:00	D03_211216	✓	✓
ES2146882-010	16-Dec-2021 00:00	D04_211216	✓	✓
ES2146882-011	16-Dec-2021 00:00	D05_211216	✓	✓
ES2146882-012	16-Dec-2021 00:00	D06_211216	✓	✓
ES2146882-013	16-Dec-2021 00:00	T01_211216	✓	✓

Matrix: WATER

Laboratory sample	Sampling date / time	Sample ID	WATER - 15 Metals
ES2146882-006	15-Dec-2021 00:00	R01_211215	✓
ES2146882-014	16-Dec-2021 00:00	R01_211216	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Total) (NEPM)

Issue Date : 23-Dec-2021

Page

3 of 3 ES2146882 Amendment 0 Work Order

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Requested Deliverables

ACCOUNTS PAYABLE	OUNTS PAYABLE
------------------	---------------

- A4 - AU Tax Invoice (INV)	Email	au.accounts@erm.com
MATTHEW CROW		
- *AU Certificate of Analysis - NATA (COA)	Email	matthew.crow@erm.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	matthew.crow@erm.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	matthew.crow@erm.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	matthew.crow@erm.com
- A4 - AU Tax Invoice (INV)	Email	matthew.crow@erm.com
- Chain of Custody (CoC) (COC)	Email	matthew.crow@erm.com
- EDI Format - ENMRG (ENMRG)	Email	matthew.crow@erm.com
- EDI Format - EQUIS V5 ERM (EQUIS_V5_ERM)	Email	matthew.crow@erm.com
- EDI Format - ESDAT (ESDAT)	Email	matthew.crow@erm.com

) 4 " R01_211216

CLIENT: ERM

CHAIN OF CUSTODY

ALS Laboratory: please tick →

QNEWCASTLE 5 Rose Gurn Road Warabrook NSW 2304

□GLADSTONE 46 Callemondah Drive Clinton QLINAMBGEE 27 Sydney Road Mudgee NSW 2850 Ph. 07 7471 5600 E. gladstone@alsolobal.com Ph. 02 6372 6735 E. mudgee mail@alsolobal.com

TURNAROUND REQUIREMENTS :

water

LIPERTH 10 Hod Way Malaga, WA 6090 Ph: 08 9209 7655 E: samples.perth@alsolobal.com □SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: D2 8784 8565 E. samples sydney@atsglobal com □TOWNSVILLE 14-15 Desma Court Boble QLD 4818 Ph: 07 4796 0600 E: townesv in environmental @ascrobal com

UWOLLONGONG 99 Kenny Street Wollangung NSW 2500 Ph: 02 4225 3125 E: portkembla@alsglobal.com

EOR LABORATORY USE ONLY (Circle)

CLIENT:	ERM		TURNAROUND	Standa	ard TAT (7	days)		FOR LABORATORY USE ONLY (Circle)								
OFFICE:	Newcastle		(Standard TAT may Trace Organics)					Custody Seal Intact? Yes No N/A								
PROJECT	T: 0608750 - 07 Captains flat line		ALS QUOTE N	O.: National Price I	Discount		_	COC SEQUE	NCE NUMBE	R (Circle)	Free ice / froze receipt?	eniice bricks pres	ent upon Yes (No.) N/A			
	IUMBER: 0608750-07						coc:	1 2	3 4	5 6 7	Random Sam	Random Sample Temperature on Receipt: "G"				
	T MANAGER: Matthew Crow		H: 0402652889		· · · · · · · · · · · · · · · · · · ·			1 2	3 4	5 6 7	The state of the s					
	R: Max Galbraith		OBILE: 0468384	969	RELINQUI		RECE	VED BY:	ſ'n	/ I 🗛 🛌		INQUISHED BY: RECEIVED BY:				
	illed to ALS?		T (or default):		-1	Max Galbraith		1//	U	100 1	OB		Rajheed			
	ports to (will default to PM if no other addresse				DATE/TIME	= :	DATE	20/1	1/21) DA	TEITIME: 2/12/2(TOM	DATE/TIME: 2012/21 7340			
	oice to (will default to PM if no other addresse							2/1	4 +1			3/1/.				
学 观》。						ANAI VEIS	DEVILIBER) including	CHITES (ND	Suito Codos mus	st be listed to attra	et suite erice)				
ALS USE	SAMPLE MATRIX: SOLID	DETAILS (S):WATER (W)		CONTAINER INFORMA	ATION					d bottle required)	or Dissolved (fie		Additional Information			
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	НОГБ	W-3 (15 Metals)						Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.			
1	D01_211215	15/12/2021	soil				x									
2	D02_211215	15/12/2021	soil				x									
3	D03_211215	15/12/2021	soil				x				İ	1				
4	D04_211215	15/12/2021	soil				х				Sydr	ronmenta nev				
ら	D05_211215	15/12/2021	soil				x				W	S214	eference 6882			
6	R01_211215	15/12/2021	soil				х				· L	.UL 14	0002			
7	D01_211216	16/12/2021	soil				x									
8	D02_211216	16/12/2021	water				х						***			
9	D03_211216	16/12/2021	soil				x									
0)	D04_211216	16/12/2021	soil	evive eq.			(B)				relenha -	ne : = 31-2-876a	gr 5			
11	D05_211216	16/12/2021	soil	in the second		THE RESERVE OF THE PARTY OF THE	×	ORI	3IN:							
12	D06_211216	16/12/2021	soil			LF	VIEVM	CAST	E							
13	T01_211216	16/12/2021	soil			!	X	J, (U .								
14.	R01 211216	16/12/2021	water				x									

CLIENT: ERM

CHAIN OF CUSTODY

ALS Laboratory: please tick -> TURNAROUND REQUIREMENTS:

(Standard TAT may be longer for some tests e.g., Ultra

CIGLADSTONE 46 Callemondah Drive Clinton QUIDAMBGEE 27 Sydney Road Mudgee NSW 2550 Ph: 97 7471 5600 E: gladstone@alsglobal.com Ph: 92 6372 6735 E: mudgoc mail@alsglobal.com

LIPERTH 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples perth@alsglobal.com

DNEWCASTLE 5 Rose Gum Road Warabrook NSW 2304

Standard TAT (7 days)

22/12/21

QSYDNEY 277-288 Woodpark Road Smithfield NSW 2164 Phr '02 8784 6555 £ : samples sydney@atsglobal com DTOWNSVILLE 14-15 Desma Court Bothe QLD 4818 Phr: 07 4796 0600 £ townswife, environmentar@asg obal com

EWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: portkembla@alsglobal.com

FOR LABORATORY USE ONLY (Circle)

OFFICE:	Newcastle		(Standard TAT may be longer for some tests e.g., Ultra Trace Organics)								Custody Seal Intact? Yes No.					
PROJECT	T: 0608750 - 07 Captains flat line		ALS QUOTE NO.: National Price Discount					COC SEQL	ENCE NUMBI	ER (Circle)		Custody Seal Intact? Yes No. (N/A Eree (ce / frozen ice bricks present upon Yes No.) N/A				
ORDER N	IUMBER: 0608750-07							1 2	3 4	5 6	7 Rando	m Sample i	emperature i	on Receipt C		
PROJECT	MANAGER: Matthew Crow	CONTACT F	H: 0402652889				OF:	1 2	3 4	5 6	7 Öther	omment:	Shring in the second			
SAMPLER	R: Max Galbraith	SAMPLER N	OBILE: 0468384	1969	RELINQUI	ISHED BY:	REC	EIVED BY:	ji	000	RELINQUIS	HED BY:		RECEIVED BY:		
COC ema	iled to ALS?	EDD FORM	AT (or default):		Max Galbraith			ノル	C	900	TOB			Raineed		
Email Res	ports to (will default to PM if no other address	ses are listed): PM			DATE/TIM!	E:	DAT	DATE/TIME:			22/12/21 Jpm			DATE/TIME:		
Email Inve	oice to (will default to PM if no other address	es are listed): PM	 .					20/	12/21		22/14	121	SPIVI	dd112/21 7740		
COMMEN	TS/SPECIAL HANDLING/STORAGE OR DE	SPOSAL:														
ALB.	SAMPLE MATRIX: SOEID	DETAILS (S) WATER (W)		CONTAINER INFORM	ATION -	ANALYS Where Me	SIS REQUIR tals are req	RED including uired, specify	SUITES (NB. Tota! (unfiltere requi	ed bottle requi	must be listed red) or Dissol	to attract so	uite price) tered bottle	Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL	ногр	W-3 (15 Metals)							Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.		
1	D01_211215	15/12/2021	soil				x									
2	D02_211215	15/12/2021	soil				x							i.		
3	D03_211215	15/12/2021	soil				x				- ""					
14	D04_211215	15/12/2021	soil				x					Enviro: Sydne:	nmentai /	Division		
5	D05_211215	15/12/2021	soil				x				<u></u>	Work	Order Re	ference 6882 ————		
6	R01_211215	15/12/2021	soil				x					<i>(</i>) <u>C</u> !+	0002		
7	D01_211216	16/12/2021	soil				x									
8	D02_211216	16/12/2021	water				x									
9	D03_211216	16/12/2021	soil				×									
0,	D04_211216	16/12/2021	soil				7 (6)					eluphone :	- 81-9-878a	#i F		
11	D05_211216	16/12/2021	soil	A. S. S.	and the same of th		×	E ORI	GIN:							
12	D06_211216	16/12/2021	soil		<u> </u>	1	AD O	F ORI	LE							
13	T01_211216	16/12/2021	soil				X X	ري ري-								
14-	R01 211216	16/12/2021	water				x									

CAPTAINS FLAT TO BUNGEN Bungendore, NSW	IDORE – RAIL CORRIDOR XRF SI	JRVEY	
_			
APPENDIX G	QAQC REPORT		

G - QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT

The objective of this data assessment is to evaluate the quality of data gathered during the investigation detailed in the main body of this report. This process has been undertaken to assess whether the sample data is of a suitable standard to be utilised in this report. The data assessment consists of comparing field and laboratory QA/QC results to documented guidelines. The data assessment has been prepared in accordance with the ASC NEPM – Schedule B2: Guideline on Site Characterisation. Particular reference is made to the PARCC parameters (precision, accuracy, representativeness, completeness and comparability) in evaluating the data quality.

Table G1 presents the degree of QA/QC pertinent to the field investigations.

Table G1 Field QA/QC Assessment

QA/QC Criterion	Comments
QA/QC program includes duplicate samples.	In order to demonstrate the suitability of the 305 primary XRF samples analysed, field quality control samples included the collection of 20 duplicate samples for comparison to the XRF data. The laboratory data was compared to the XRF result from the same location in order to assess the validity of the results. The target rate for laboratory duplicates to field measurements was 1:10, however a lower rate of 1:15 was achieved. The reduction in frequency was due to miscalculation within the field team. Although the ideal rate remains at 1:10, given the large number of measurements ultimately taken, the 20 laboratory duplicates are considered sufficient to make judgements on the potential for any systematic biases in the XRF dataset.
	Of the 20 Relative Percentage Difference (RPDs) of soil sample duplicate, 16 uncorrected XRF pairs were outside the acceptance limits (<i>Table G4</i>). The overall average RPD was -13%, indicating that on average the XRF data was 13% lower than the laboratory data. Although these differences may be explained by potential heterogeneities in the samples media, it is more likely that moisture content within the sampled media influenced the results. In order to further assess the potential for moisture to have influenced the XRF measurements, the data set was corrected by the average moisture content in samples (18% w/w). When the data set was moisture corrected, the average RPD was 4%, indicating that the corrected XRF results were on average 4% higher than the laboratory data. Correlation coefficients were then calculated for lead in both the uncorrected and corrected data sets and are presented in <i>Figure G1</i> . Therefore, the moisture corrected data was used to base conclusions of this report on as a conservative measure to ensure the XRF data has not been under reported.
	In order to confirm the suitability of the laboratory data, an additional interlaboratory duplicates were collected and sent to a secondary laboratory post analysis for comparison. On two occasions the inter-laboratory duplicate was analysed by both the primary and secondary laboratory and the results were compared. The calculated RPD for this sample is summarised in <i>Table G.6</i> . The lead, barium, and zinc RPD for this sample were outside the acceptable criteria, however, the difference may be explained by heterogeneities in the sampled media however are not expected to effect the data set.
Appropriate calibration	According to manufacturer recommendations, the Olympus Delta Handheld XRF Analyser was appropriately calibrated prior to delivery of the unit, and daily calibration was undertaken on the handheld XRF device and logged internally

www.erm.com Version: 1.0 Project No.: 0531782 Client: John Holland Rail August 2021 Page G1

QA/QC Criterion	Comments
procedures were undertaken.	with all calibrations adequate for device use. Daily calibration was performed using a known standard (alloy 416 stainless steel) where the analyser compares a variety of parameters with the factory pre-set values. These values were not recorded in the field and therefore cannot be confirmed.
	Calibration certificates are provided in <i>Appendix D</i>). It is noted that whilst the calibration certificate indicates a manufacturer calibration was due on 27 April 2021, such a calibration is deemed unnecessary by the manufacturer unless the daily calibrations are failing.
Appropriate decontamination procedures were adopted.	Decontamination procedures were implemented between collections of duplicates. Soil samples were collected for laboratory analysis in accordance with ERM SOPs. Samples were collected from a trowel, which was decontaminated between each sample location.
	All non-dedicated sampling equipment was decontaminated between sampling locations where designated disposable materials were not used. Decontamination procedures were as follows: all loose soil removed with a stiff brush;
	 washed in potable (tap) water and brush scrubbing using tap water and a non-phosphate detergent (Decon 90®); rinsed with potable water; and
	air dried. Field QAQC measures (including the use of new disposable nitrile gloves between samples, and decontamination of sampling tools) were considered appropriate to minimise cross-contamination between samples.
	The XRF analyser window was wiped with dedicated paper towel moistened with deionised water in between XRF readings.
	Five rinsate blank samples were collected during the sampling, and none provided readings above the EQL (<i>Table G5</i>) which indicates that decontamination measures appropriately mitigated cross contamination.
All relevant media assessed	XRF readings and soil samples were taken from ground surface. This was considered appropriate due to windblown dust being the most plausible offsite transport mechanism and was considered appropriate for the preliminary nature of the investigation.
Appropriateness of sampling strategy	The primary objective of the investigation was to establish a preliminary assessment of soil conditions at the Site in relation to lead and provide an initial assessment of whether any lead concentrations present exceed relevant tier one screening criteria. Sample locations were distributed across the area of investigation in 500m transects to achieve spacial coverage along the rail corridor.
	XRF was selected as the primary data collection tool due to its flexibility and ability to collect larger data sets in real time than traditional soil sampling alone. XRF allows Site characterisation for metals in a shorter timeframe and facilitates better hotspot identification and delineation.
Sample collection, handling and transportation procedures.	Samples were collected, handled and transported in line with ERM SOP's and XRF readings were taken in general accordance with USEPA (2007) Method 6200 – Field Portable X-Ray Florescence Spectrometry for the Determination of Element Concentrations in Soil and Sediment. XRF analysis was undertaken for 120 seconds per location and results were logged instantly. It is noted that samples were not homogenised, sieved or dried prior to XRF measurement in

QA/QC Criterion	Comments
	order to afford the timeframe to collect a larger data set. This was offset by the analysis of laboratory duplicates to confirm the accuracy of the measurements.
	Soil samples which were intended for laboratory analysis were placed in laboratory supplied sample bags, stored in a cool box, and forwarded to the NATA accredited laboratory under COC conditions. Note that the COC and SRN relating to ES2146881 references samples collected on separate residential sites. ES2146881 was issued as a split report such that only data pertinent to this Site were included on certificates of analysis. The methods used to collect the samples, the types of sample containers, preservation techniques and custody protocols were documented appropriately.
Field QA/QC plan	The sampling team was suitably qualified and experienced to conduct the required works. Field reports describing the media sampled, any indication of potential contamination, duplicate samples and sampling locations were completed. Note that original field notes included sampling information pertinent to sample collection on separate residential sites. The non-relevant information has been
	redacted from the field notes.

Table G2 presents the degree of QA/QC pertinent to the laboratory program.

Table G2 **Laboratory QA/QC Assessment**

QA/QC Criterion	Comments
Appropriate methodologies used for sample analyses	The laboratory used for the investigation works were NATA accredited All laboratory reports were NATA stamped and signed by a NATA signatory. All methodologies were considered appropriate for the identified contaminants of concern in the matrix.
	The analysis of primary lab samples was verified using three interlaboratory duplicates. The RPD values calculated from comparing lab results are presented in table G6. No values were outside the acceptability limits.
Appropriate Limit of Reporting (LOR)	The laboratory LOR for each analyte is presented in the laboratory reports and summary tables. Soil samples results were reported with LORs below the relevant Site assessment criteria.

QA/QC Criterion	Comments
Laboratory QA/QC plan	Copies of signed chain of custody forms were returned by the laboratory. The primary laboratory and secondary laboratory were both NATA accredited. All laboratory certificates are provided in <i>Appendix F</i> . It is noted that the analytical methods completed were NATA approved as documented on the laboratory reports.
	Samples were received and analysed within specified laboratory holding times. The types of QA/QC samples analysed by the laboratory for the documented samples were considered sufficient to assess the precision and accuracy of the laboratory methods used. The statistical data presented in the laboratory QA/QC report was considered adequate in demonstrating the precision and accuracy of the methods used to analyse field samples. Any QA/QC outliers are reported in laboratory documentation included in <i>Appendix F</i> and were considered appropriate by the laboratory.

Table G3 below summarises the QA/QC results in relation to the data quality indicators of precision, accuracy, representativeness, comparability and completeness for the investigation sampling program.

Table G3 Overall Sampling and Analysis Methodology Assessment

Field Considerations
Precision Re
The soil sampling was conducted following ERM SOPs and relevant industry standards. Any variations from these procedures were documented.

Precision Comments

Aside from sampling soils in-situ rather than sieving, drying, and homogenising, no significant variations from ERM SOPs or USEPA (2007) Method 6200 were noted. As reported in Table G4, discrepancies were noted between the XRF samples and laboratory duplicates and therefore the data set was adjusted to remove systematic data biases.

Accuracy Requirements

The soil sampling was conducted following ERM SOPs and XRF readings were taken in general accordance with USEPA (2007) Method 6200, with the exception of sampling soils in-situ rather than sieving, drying, and homogenising. These changes were documented.

Analysis of the following were reported where applicable:

- Laboratory duplicates;
- Intra-laboratory duplicates;
- method blanks;
- Laboratory control samples.

Accuracy Comments

No significant variations from ERM SOPs or USEPA (2007) Method 6200 with the exception of sampling soils in-situ rather than sieving, drying, and homogenising were undertaken. Changes that were undertaken were noted. Laboratory QA/QC samples were generally reported within the acceptance limits specified in the laboratory reports with the exception of those noted above.

Laboratory Considerations											
Representativeness Requirements											
All primary samples were analysed according to the proposed Sampling and Analysis Plan											

Representativeness Comments

The number and type of samples collected as part of investigation works was considered to be representative of the areas of concern. Given the investigation density achieved over the Site ERM considers that sufficient data is available to establish a suitable assessment of near surface soil conditions at the offsite areas under assessment.

Comparability Requirements

The same SOPs and XRF methodology were used during each sampling event.

All sampling was conducted by an appropriately qualified and experienced sampler.

The types of samples collected were consistent.

Analytical methods suitable for the target media were used.

The laboratory LORs used to report analyte concentrations were generally less than the adopted investigation criteria for significant contaminants of concern.

XRF reported concentrations in ppm whilst laboratory reported concentrations in mg/kg. This is considered suitably comparable for the purposes of this investigation.

XRF results were moisture corrected using following formula;

Corrected XRF Lead = XRF Lead/(100 – moisture content)*100)

Exact moisture was used where available, otherwise average moisture was applied. Correlation coefficients were then calculated for lead and are presented in *Figure G1*. Results of laboratory analysis were generally comparable with field screening results. 12 of 20 pairs were outside the acceptable criteria, however, this may be explained due to the heterogeneity of the media sampled.

Comparability Comments

No significant outliers from the requirements were noted. Any RPD outliers have been recognised and considered when interpreting the data set.

Completeness Requirements

All relevant locations were sampled. All sampling was conducted by an appropriately qualified and experienced sampler.

Documentation of field works was provided.

All critical samples were analysed according to the proposed Sampling and Analysis Plan, with the exception of the lower field duplicate rate of 1:16.

Appropriate analysis methods and laboratory LORs were used.

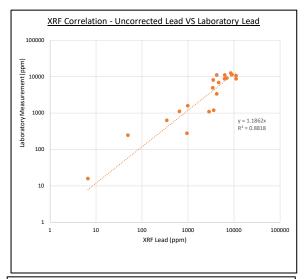
Sample documentation was provided.
Sample holding times were complied with.

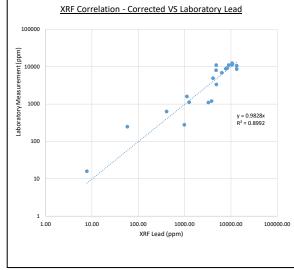
Completeness Comments

August 2021 Page E6

Bungendore Rail Corridor

Field Considerations	Laboratory Considerations


The specified requirements for completeness of the dataset were met. The quality of the dataset and overall outcomes of the investigation remain unaffected by the noted RPD and laboratory QA/QC outliers and is considered suitable for the purposes of this investigation.


www.erm.com Version: 1.0 Project No.: 0608750 Client: John Holland Rail – Country Regional Network

Lab Lead	XRF Lead	Corrected XRF
(ppm)	(ppm)	Lead (ppm)
15.8	6.7	7.85
8020	3561	4812.16
11000	4222	4841.74
8610	11200	13349.23
10600	11200	13349.23
1580	993	1132.27
629	347	410.17
8770	6252	7805.24
9140	6950	8333.33
246		58.68
4900		4134.68
11200		10634.98
3330	4220	4872.98
278	951	990.63
12400	8585	10598.77
1090	2875	3285.71
11000	6329	9002.84
1110	654	1264.99
6860	4661	6376.20
1190	3638	3845.67

Corrected XRF Lead = XRF Lead/(100 – moisture content %)*100

				Lab Report Number		CA2107572			CA2107572			CA2107572			CA2107572			ES2143866			CA2107572			CA2107572			CA2107572			CA2107572			ES2146882			ES2146882	
				Field ID	T3 W2	D01 211122	RPD	T11 B	D01 211123	RPD	T14 B	D02 211123	RPD	T17 B	D02 211122	RPD	T17 B	D02 211122	RPD	T22 E1	D03 211123	RPD	T29 W1	D04 211123	RPD	T33 B	D01 211124	RPD	T35 B	DO2 211124	RPD	T40 B	D01 211215	RPD	T43 E1	D02 211215	RPD
				Sampled Date/Time																																	
													•										•														
Che	n_Group C	hemName	Units	EQL																																	
		foisture Content	%	1		14.7			26			12.8			16.1						12.3			15.4			19.9			16.6			15.3			16.1	1
Met		ead	mg/kg	5	6.7	15.8	-80.89	3561	8020	-77.01	4222	11000	-89.06	11200	8610	26.15	11200	10600.00	5.50	993.00	1580	-45.63	347	629	-57.79	6252	8770	-33.52	6950	9140	-27.22	49.7	246	-132.77	3469	4900	-34.20
	L	ead - Corrected	mg/kg	5	7.85	15.8	-67	4812.16	8020	-50	4841.74	11000	-78	13349.23	8610	43	11200.00	10600.00	6	1132.27	1580	-33	410.17	629	-42	7805.24	8770	-12	8333.33	9140	-9	58.68	246	-123	4134.68	4900	-17
					•						•	•		•	•						•	•	•	· ·		•	•		•						•		
						1			1			1	1	1	1							1	1			1	1	1	1	1					7		
				Lab Report Number		ES2146882			ES2146882			ES2146882			ES2146882			ES2146882			ES2146882			ES2146882			ES2146882			ES2146882			859898				
				Field ID	T46 W1	D03 211215	RPD	T51 W1	D04 211215	RPD	TSS W1	DOS 211215	RPD	T62 B	D01 211216	RPD	T62 E1	D02 211216	RPD	T64 B	D03 211216	RPD	T64 W1	D04 211216	RPD	T65 B	D05 211216	RPD	T65 W1	DO6 211216	RPD	T65 W1	T01 211216	RPD			
				Sampled Date/Time																																	
											•	•			•												•		•								
Ch-	n_Group C	h	Units	FOI		1	_		1			1	_	1	1										_		1	1							1		
Cite				EUL			_																		_										4		
		foisture Content	%	1		14.8			13.4			4			19			12.5			29.7			48.3			26.9			5.4			4.5				
Met		ead	mg/kg	5	9061	11200	-21	4220	3330	24	951	278	110	8585	12400	-36	2875	1090	90	6329	11000	-54	654	1110	-52	4661	6860	-38	3638	1190	101	3638	540	148			
	L	ead - Corrected	mg/kg	5	10634.98	11200	-5	4872.98	3330	38	990.63	278	112	10598.77	12400	-16	3285.71	1090	100	9002.84	11000	-20	1264.99	1110	13	6376.20	6860	-7	3845.67	1190	105	3809.42	540	150			

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 30 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

			Lab Report Number	ES214688-AE	ES214688-AE	ES214688-AE	ES2146882	ES2146882
			Field ID	R01_211122	R01_211123	R01_211124	R01_211215	R01_211216
			Sampled_Date/Time	22/11/2021 0:00	23/11/2021 0:00	24/11/2021 0:00	15/12/2021 0:00	16/12/2021 0:00
			Sample Type	Rinsate	Rinsate	Rinsate	Rinsate	Rinsate
Chem_Group	ChemName	Units	EQL					
Metals	Arsenic	mg/l	0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
	Barium	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Beryllium	mg/l	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
	Boron	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Cadmium	mg/l	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	Chromium (III+VI)	mg/l	0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
	Cobalt	mg/l	0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
	Copper	mg/l	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
	Lead	mg/l	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
	Manganese	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Mercury	mg/l	0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001
	Nickel	mg/l	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
	Selenium	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Vanadium	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Zinc	mg/l	0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005

			Lab Report Number	CA2107572	ES2143866		ES21468882	859898 - S		ES21468882	ES21468882		ES21468882	859898 - S	ı l
			Field ID	D02_211122*	D02_211122*	RPD	D06_211216	T01_211216*	RPD	D06_211216	T01_211216*	RPD	T01_211216*	T01_211216*	RPD
			Sampled Date/Time	21/11/2021	21/11/2021		16/12/2021	16/12/2021		16/12/2021	16/12/2021		16/12/2021	16/12/2021	
Chem_Group	ChemName	Units	EQL	1		1		I	l					I	1
	Moisture Content	%	1	16.1	17.6	9	5.4	4.5	18	5.4	5.6	4	5.6	4.5	22
Metals	Arsenic	mg/kg	5 (Primary): 2 (Interlab)				14	12	15	14	7	67	7	12	53
Metals	Barium	mg/kg	10				470	210	76	470	470	0	470	210	76
Metals	Beryllium	mg/kg	1 (Primary): 2 (Interlab)				<1	<2		<1	<1		<1	<2	
Metals	Boron	mg/kg	50 (Primary): 10 (Interlab)				<50	<10		<50	<50		<50	<10	
Metals	Cadmium	mg/kg	1 (Primary): 0.4 (Interlab)				<1	0.5		<1	<1		<1	0.5	
Metals	Chromium (III+VI)	mg/kg	2 (Primary): 5 (Interlab)				13	19	38	13	13	0	13	19	38
Metals	Cobalt	mg/kg	2 (Primary): 5 (Interlab)				6	8	29	6	6	0	6	8	29
Metals	Copper	mg/kg	5				155	110	34	155	155	0	155	110	34
Metals	Lead	mg/kg	5	8610	10600	19	1190	540	75	1190	378	104	378	540	35
Metals	Manganese	mg/kg	5				254	300	17	254	254	0	254	300	17
Metals	Mercury	mg/kg	0.1				<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
Metals	Nickel	mg/kg	2 (Primary): 5 (Interlab)				10	14	33	10	10	0	10	14	33
Metals	Vanadium	mg/kg	5 (Primary): 10 (Interlab)				20	22	10	20	20	0	20	22	10
Metals	Zinc	mg/kg	5				4140	2500	49	4140	4140	0	4140	2500	49

^{*}Sample Y01_211216 was analysed by both laboratories due to an error on the COC whereby the sample was not forwarded to the secondary lab until after analysis at the primary lab

^{**}High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL)

CAPTAINS FLAT TO BUNGEND Bungendore, NSW	ORE – RAIL CORRIDOR XRF SURVEY	
Zungenaere, mem		
APPENDIX H	95% UCL CALCULATIONS	

	Α	В	С	D	E LICL Statio	F	G ensored Full D	H Data Sata	I	J	K		L
1					OCL Statis	ucs for Office	ensoreu Fun L	Jala Sels					
2		l Isar Salı	ected Options										
3	Da		Computation	25/03/2022	1·14·52 PM								
4	2.5		From File	WorkSheet.									
5		Fi	ull Precision	OFF									
6			e Coefficient	95%									
7	Number o	of Bootstrap											
9				2000									
10													
	Active Corr	idor											
11 12													
13						General	Statistics						
14	10											ons	23
15									Number	of Missing	Observation	ons	0
16					Minimum	10.7				<u> </u>		ean	182.7
17					Maximum	1992					Med	ian	61.3
18					SD	410				Std.	Error of Me		85.48
19				Coefficient	t of Variation	2.244					Skewne		4.268
19 20													
21	Name of OOF Task												
22			S	Shapiro Wilk T	Test Statistic	0.406			Shapiro Wi	k GOF Tes	t		
				hapiro Wilk C	0.914		Data No	ot Normal at					
23 24				Lilliefors 7	0.372		_ 2.2 110		GOF Test				
25			5	5% Lilliefors C		0.185		Data No	ot Normal at		ance Level		
26	Data Not Normal at 5% Significance Level												
27	Data Not Normal at 070 Oigninoance 2070												
28	Assuming Normal Distribution												
29			95% No	ormal UCL					UCLs (Adju	sted for Ske	ewness)		
30					dent's-t UCL	329.5			95% Adjuste			95)	404.6
31									95% Modifi		-	- 1	342.1
32										`			
33						Gamma	GOF Test						
34				A-D 7	Test Statistic	1.756		Ande	rson-Darling	Gamma GC	OF Test		
35				5% A-D C	Critical Value	0.79	.79 Data Not Gamma Distributed at 5% Significance Leve						
36				K-S 7	Test Statistic	0.252		Kolmo	grov-Smirnof	f Gamma G	OF Test		
37				5% K-S C	Critical Value	0.19	Da		nma Distribut			Leve	 el
38				Da	ita Not Gamn	na Distribute	d at 5% Sign	ificance Lev	/el				
39													
40						Gamma	Statistics						
41					k hat (MLE)	0.666		LE)	0.608				
42					ta hat (MLE)	274.4				star (bias co			300.5
43					nu hat (MLE)	30.62		nu star (bias correc					
44			М	LE Mean (bia		182.7				MLE Sd (b		1	27.96 234.3
45				•	,				Approximate	-			16.9
46			Adjus	sted Level of	Significance	0.0389				djusted Chi		-	16.27
47			•		-		I			-	-		
47					Ass	suming Gam	ma Distributi	on					
48	g	95% Approx	imate Gamma	a UCL (use w		302.3			djusted Gami	ma UCL (us	e when n<	50)	313.8
50		1-1		(//	-	<u> </u>	•		. (20			
51						Lognormal	GOF Test						
52			S	Shapiro Wilk 7	Test Statistic	0.948		Sha	piro Wilk Log	normal GO	F Test		
				hapiro Wilk C		0.914			ar Lognormal			evel	
53 E4				•	Test Statistic	0.135			lliefors Logno	_			
54			5	5% Lilliefors C		0.185			ar Lognormal			.vel	
55							at 5% Signific			3. 3 /0 Oly11			
56					Data appear	Logitorillal	a. o /o oigiiiile	~1105 LEVEI					
57						Lognorma	I Statietice						
58						Lognomia	i JiauauG						

Α	В	С	D	Е	F	G	Н		J	K	L		
										••	4.293		
		N	Maximum of I	₋ogged Data	7.597				SD of	logged Data	1.19		
				Assı	ıming Logno	rmal Distribu	tion						
					301.1			90% (Chebyshev (MVUE) UCL	264.4		
		95%	Chebyshev (MVUE) UCL	320.1			97.5% (Chebyshev (MVUE) UCL	397.3		
	99% Chebyshev (MVUE) UCL 549.1												
	Nonparametric Distribution Free UCL Statistics												
	Data appear to follow a Discernible Distribution at 5% Significance Level												
	Nonparametric Distribution Free UCLs												
	95% CLT UCL 323.3 95% Jackknife UCL									329.5			
		95%	Standard Bo	otstrap UCL	318.7		775						
		9	5% Hall's Bo	otstrap UCL	787.4		341.8						
		!	95% BCA Bo	otstrap UCL	431.4								
		90% Ch	ebyshev(Me	an, Sd) UCL	439.1			95% Ch	ebyshev(Me	an, Sd) UCL	555.3		
		97.5% Ch	ebyshev(Me	an, Sd) UCL	716.5			99% Ch	ebyshev(Me	an, Sd) UCL	1033		
					Suggested	UCL to Use							
		95% Ch	ebyshev (Me	an, Sd) UCL	555.3								
N	Note: Sugge	stions regard	ling the selec	ction of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropri	iate 95% UC	L.		
	These rec	ommendatio	ns are based	upon the res	sults of the si	imulation stud	dies summa	rized in Singl	n, Singh, and	d laci (2002)			
		and Singh	and Singh (2	2003). Howe	er, simulatio	ons results wi	Il not cover	all Real World	d data sets.				
			For ad	ditional insig	ht the user m	nay want to c	onsult a stat	istician.					
		Note: Sugge	95% 99% 99% 99% 99% 99% 99% 99% 99% 99%	Minimum of I Maximum of I 95% Chebyshev (99% Chebyshev (99% Chebyshev (95% Standard Bo 95% Hall's Bo 95% BCA Bo 95% BCA Bo 95% Chebyshev (Me 97.5% Chebyshev (Me 97.5% Chebyshev (Me Note: Suggestions regarding the select These recommendations are based and Singh and Singh (2)	Minimum of Logged Data Maximum of Logged Data Assu 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev (Mean, Sd) UCL 97.5% Chebyshev (Mean, Sd) UCL	Minimum of Logged Data 2.37 Maximum of Logged Data 7.597 Assuming Logno 95% H-UCL 301.1 95% Chebyshev (MVUE) UCL 320.1 99% Chebyshev (MVUE) UCL 549.1 Nonparametric Distribut Data appear to follow a Discernible Data appear to follow a Discernible Data appear UCL 323.3 95% CLT UCL 323.3 95% Standard Bootstrap UCL 318.7 95% Hall's Bootstrap UCL 787.4 95% BCA Bootstrap UCL 431.4 90% Chebyshev(Mean, Sd) UCL 439.1 97.5% Chebyshev(Mean, Sd) UCL 716.5 Suggested 95% Chebyshev (Mean, Sd) UCL 555.3 Note: Suggestions regarding the selection of a 95% UCL are properties of the sand Singh and Singh (2003). However, simulation are based upon the results of the sand Singh and Singh (2003). However, simulation	Minimum of Logged Data 2.37 Maximum of Logged Data 7.597 Assuming Lognormal Distribut 95% H-UCL 301.1 95% Chebyshev (MVUE) UCL 320.1 99% Chebyshev (MVUE) UCL 549.1 Nonparametric Distribution Free UCL Data appear to follow a Discernible Distribution at 95% CLT UCL 323.3 95% CLT UCL 323.3 95% Standard Bootstrap UCL 318.7 95% Hall's Bootstrap UCL 787.4 95% BCA Bootstrap UCL 431.4 90% Chebyshev(Mean, Sd) UCL 439.1 97.5% Chebyshev(Mean, Sd) UCL 439.1 97.5% Chebyshev(Mean, Sd) UCL 555.3 Note: Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL are provided to her These recommendations are based upon the results of the simulation sture and Singh and Singh (2003). However, simulations results with the simulation security with the simulation results with the simulation resu	Minimum of Logged Data 2.37 Maximum of Logged Data 7.597 Assuming Lognormal Distribution 95% H-UCL 301.1 95% Chebyshev (MVUE) UCL 320.1 99% Chebyshev (MVUE) UCL 549.1 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Signific Nonparametric Distribution Free UCLs 323.3 95% CLT UCL 323.3 95% Standard Bootstrap UCL 318.7 95% Hall's Bootstrap UCL 787.4 95% BCA Bootstrap UCL 431.4 90% Chebyshev(Mean, Sd) UCL 439.1 97.5% Chebyshev(Mean, Sd) UCL 716.5 Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 1555.3 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to These recommendations are based upon the results of the simulation studies summa and Singh and Singh (2003). However, simulations results will not cover	Minimum of Logged Data 7.597 Maximum of Logged Data 7.597	Minimum of Logged Data 2.37 Mean of Maximum of Logged Data 7.597 SD of Maximum of Logged Data 7.597 SD of SD of Maximum of Logged Data 7.597 SD of SD	Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 7.597 SD of logged Data Maximum of Logged Data 7.597 SD of logged Data Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 549.1 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev (Mean, Sd) UCL 97.5% Chebyshev (Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL 95% Chebyshev (Mean, Sd) UCL Suggested UCL to Use 95% Chebyshev (Mean, Sd) UCL 1555.3 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UC These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.		

	Α	В	С	D	E LICL Statio	F	G ensored Full D	H Doto Soto	I	J	K		L
1					UCL Statis	ucs for Office	ensoreu Fun L	Jala Sels					
2		User Sele	ected Options										
3	Da		Computation	25/03/2022	1:16:03 PM								
4 5			From File	WorkSheet									
6		Fu	ull Precision	OFF								—	
7		Confidence	Coefficient	95%									
8	Number of Destators Organities 2000												
9			<u> </u>										
10													
11	Non-Operat	tional Corrid	lor										
12													
13						General	Statistics						
14			Total	Number of C	Observations	281			Numbe	r of Distinct	Observation	ons	270
15									Number	of Missing	Observation	ons	0
16					Minimum	10.1					Me	ean	2199
17					Maximum	33770					Med		424.3
18					SD	3891				Std.	Error of Me		232.1
19				Coefficient	of Variation	1.769					Skewne	ess	3.603
20													
21	01 1 100 10 10 10 10 10 10 10 10 10 10 1												
22				Shapiro Wilk T		0.616			Shapiro Wi				
23				5% Shapiro \	0		Data No	ot Normal at	_	nce Level			
24					est Statistic	0.287		D . N		GOF Test			
25	5% Lilliefors Critical Value 0.0529 Data Not Normal at 5% Significance Level												
26	Data Not Normal at 5% Significance Level												
27	Assuming Normal Distribution												
28			05% Na	ormal UCL	V2:	Sulling Non			UCLs (Adju	eted for Ske	wneel		
29			95 /0 INC		dent's-t UCL	2582		95 /0	95% Adjuste			1951	2634
30				35 /0 Otto	deni s-i occ	2302			95% Modifie		-	- 1	2590
31									00 /0 IVIOUIII	00 1002 (0		, 0,	
33						Gamma (GOF Test					—	
34				A-D T	est Statistic	7.19		Ande	rson-Darling	Gamma GC	F Test		
35				5% A-D C	Critical Value	0.84	Data Not Gamma Distributed at 5% Significance Level						
36				K-S T	est Statistic	0.13		Kolmo	grov-Smirnof	f Gamma G	OF Test		
37				5% K-S C	Critical Value	0.058	Da	ata Not Gan	nma Distribut	ed at 5% Si	gnificance	Lev	el
38				Da	ta Not Gamn	na Distribute	ed at 5% Sign	ificance Lev	/el				
39													
40						Gamma	Statistics						
41					k hat (MLE)	0.426		star (bias co	tar (bias corrected MLE) 0				
42				The	ta hat (MLE)	5160		Theta star (bias correcte					
43					nu hat (MLE)	239.5				,	ias correct	- 1	238.3
44			М	LE Mean (bia	s corrected)	2199				MLE Sd (b		- 1	3377
45									Approximate			- 1	203.6
46			Adjus	sted Level of	Significance	0.0491			Ad	djusted Chi	Square Va	lue	203.4
47													
48							ma Distribution						
49	9	5% Approxi	imate Gamma	a UCL (use w	nen n>=50))	2574		95% Ad	djusted Gamı	na UCL (us	e when n<	50)	2576
50						1							
51				honing M/III 7	Foot Ct-+: ··		GOF Test	<u> </u>	nine \A/:II- '	maurici CC			
52				Shapiro Wilk T		0.939		-	oiro Wilk Log				
53				5% Shapiro \	Wilk P Value Test Statistic	0.0733			Lognormal a	•		el .	
54			-	Lilliefors I		0.0733							
55			5	176 LIIIIETORS C			5% Significa		Lognormal a	1 5% Signifi	Jance Lev	ei ——	
56					Data NOT L	ognomial at	J/o Signiffical	IICE LEVEI					
57						Lognorma	I Statistics						
58						Lognomia	i JialibiliG						

	Α	В	С	D	E	F	G	Н		J	K	L		
59				Minimum of I	ogged Data	2.313					logged Data	6.167		
60			N	Maximum of L	ogged Data	10.43				SD of	logged Data	1.961		
61														
62		Assuming Lognormal Distribution 95% H-UCL 4685 90% Chebyshev (MVUE) UCL 5												
63		95% H-UCL 4685 90% Chebyshev (MVUE) UCL												
64	95% Chebyshev (MVUE) UCL 5895 97.5% Chebysh										MVUE) UCL	7061		
65			99%	Chebyshev (MVUE) UCL	9351								
66		, ,												
67	Nonparametric Distribution Free UCL Statistics													
68	Data do not follow a Discernible Distribution (0.05)													
69														
70	Nonparametric Distribution Free UCLs													
71		95% CLT UCL 2581 95% Jackknife UCL									ckknife UCL	2582		
72			95%	Standard Bo	otstrap UCL	2591		2667						
73				5% Hall's Bo	•	2705		2582						
74				95% BCA Bo	•	2644								
75			90% Ch	ebyshev(Me	an, Sd) UCL	2895		3211						
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	3648			99% Ch	ebyshev(Me	an, Sd) UCL	4508		
77														
78						Suggested	UCL to Use							
79			95% Ch	ebyshev (Me	an, Sd) UCL	3211								
80														
81	N	lote: Sugge:	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to he	p the user to	select the n	nost appropri	iate 95% UC	L.		
82		These reco	ommendatio	ns are based	upon the res	sults of the si	mulation stud	dies summa	rized in Sing	h, Singh, and	d laci (2002)			
83			and Singh	and Singh (2	2003). Howe	ver, simulatio	ons results wi	II not cover a	all Real Worl	d data sets.				
84				For ad	ditional insig	ht the user m	nay want to c	onsult a stat	istician.					
85														

ERM has over 160 offices across the following countries and territories worldwide

Argentina The Netherlands Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore Hong Kong South Africa India South Korea Indonesia Spain Ireland Sweden Switzerland Italy Japan Taiwan Kazakhstan Tanzania Thailand Kenya Malaysia UAE UK Mexico Mozambique US Myanmar Vietnam

ERM's Newcastle Office

Level 1, Watt Street Commercial Centre 45 Watt Street Newcastle NSW 2300

T: +61 02 4903 5500 F: +61 02 4929 5363

www.erm.com www.erm.com

