Intended for **UGL Regional Linx** 

Document type **Detailed Site Investigation Report** 

Date September 2023

# **TARAGO FORMER STATION MASTERS** COTTAGE **DETAILED SITE INVESTIGATION**



# TARAGO FORMER STATION MASTERS COTTAGE DETAILED SITE INVESTIGATION

| Project name  | Tarago Former Station Masters Cottage DSI                               | Rar |
|---------------|-------------------------------------------------------------------------|-----|
| Project no.   | 318001679                                                               | Lev |
| Recipient     | UGL Regional Linx                                                       | 50  |
| Document type | Detailed Site Investigation Report                                      | PO  |
| Description   | This document presents the results of a Detailed Site Investigation of  | The |
|               | Tarago Former Station Masters Cottage (SMC) located at 106 Goulburn St, | NS  |
|               | Tarago, 2580, NSW.                                                      | Aus |

Ramboll Level 2, Suite 18 Eastpoint 50 Glebe Road PO Box 435 The Junction NSW 2291 Australia

T +61 2 4962 5444 https://ramboll.com

| Revision | Date                 | Prepared by                 | Checked by                        | Approved by | Description                                                       |
|----------|----------------------|-----------------------------|-----------------------------------|-------------|-------------------------------------------------------------------|
| 0        | 3 August 2023        | Katy Davies /<br>Jenny Auld | S. Maxwell                        | F. Robinson | Draft report<br>for review by<br>UGL                              |
| 1        | 13 September<br>2023 | Katy Davies                 | S. Maxwell<br>(CEnvP SC<br>41184) |             | Final<br>following<br>auditor<br>comments.<br>Minor<br>amendments |



Ramboll Australia Pty Ltd. ACN 095 437 442 ABN 49 095 437 442

### **CONTENTS**

| Executive | e Summary                          | 3  |
|-----------|------------------------------------|----|
| Abbrevia  | tions                              | 5  |
| 1.        | INTRODUCTION                       | 7  |
| 1.1       | Background                         | 7  |
| 1.2       | Objectives                         | 8  |
| 1.3       | Scope of Work                      | 8  |
| 1.4       | Regulatory Requirements            | 8  |
| 2.        | SITE DESCRIPTION                   | 9  |
| 2.1       | Site Identification                | 9  |
| 2.2       | Site Condition                     | 9  |
| 2.3       | Surrounding Environment            | 10 |
| 2.4       | Site History                       | 10 |
| 2.5       | Topography and Hydrology           | 10 |
| 2.6       | Geology                            | 11 |
| 2.7       | Hydrogeology                       | 11 |
| 3.        | PREVIOUS INVESTIGATIONS            | 12 |
| 3.1       | Integrity Assessment               | 12 |
| 4.        | PRELIMINARY CONCEPTUAL SITE MODEL  | 13 |
| 4.1       | Data Gaps                          | 14 |
| 5.        | ASSESSMENT CRITERIA                | 15 |
| 5.1       | Soil                               | 15 |
| 5.2       | Asbestos                           | 18 |
| 6.        | DATA QUALITY OBJECTIVES            | 19 |
| 6.1       | Sampling Rationale                 | 20 |
| 7.        | QUALITY                            | 22 |
| 7.1       | Data Quality Indicators Assessment | 25 |
| 8.        | RESULTS                            | 27 |
| 8.1       | Field Observations                 | 27 |
| 8.2       | Soil and Bedrock Profile           | 28 |
| 8.3       | Soil Analytical Results            | 28 |
| 9.        | SITE CHARACTERISATION              | 31 |
| 10.       | REVISED CONCEPTUAL SITE MODEL      | 33 |
| 10.1      | Data Gaps                          | 33 |
| 11.       | CONCLUSIONS AND RECOMMENDATIONS    | 36 |
| 12.       | LIMITATIONS                        | 37 |
| 12.1      | User Reliance                      | 37 |
| 13.       | References                         | 38 |

### **TABLE OF TABLES**

| Table 2-1: Site Identification                                            | 9  |
|---------------------------------------------------------------------------|----|
| Table 4-1: Potential Areas and Contaminants of Concern                    | 13 |
| Table 4-2 Conceptual Site Model Summary                                   | 14 |
| Table 5-1: Soil Assessment Criteria – Health and Ecological Investigation |    |
| Levels                                                                    | 16 |

| Table 5-2: Soil Health Screening Levels for Vapour Intrusion HSL D and |    |
|------------------------------------------------------------------------|----|
| Intrusive Maintenance Worker - Sand <sup>1</sup>                       | 17 |
| Table 5-3: Ecological Screening Levels, Management Limits and Direct   |    |
| Contact for Petroleum Hydrocarbons and speciated PAHs in Soil          | 17 |
| Table 5-4: Health Screening Levels for Asbestos Contamination in Soil  |    |
| (w/w)                                                                  | 18 |
| Table 6-1: Data Quality Objectives                                     | 19 |
| Table 6-2: Summary of Sampling Rationale                               | 21 |
| Table 7-1: Sampling and Analysis Methodology Assessment                | 22 |
| Table 7-2: Field and Laboratory QA/QC                                  | 23 |
| Table 7-3: DQI Assessment                                              | 25 |
| Table 8-1: General Site Observations                                   | 27 |
| Table 8-2: Generalised Site Lithology                                  | 28 |
| Table 8-3: Soil Exceedances (mg/kg)                                    | 29 |
| Table 8-4: Ecological Exceedances Compared Against SS-EIL (mg/kg)      | 30 |
| Table 9-1: Whole SMC Lead Characterisation (mg/kg)                     | 31 |
| Table 10-1: Conceptual Site Model Summary                              | 34 |

### **APPENDICES**

Appendix 1

Figures

### Appendix 2

Calibration Certificates

#### Appendix 3

Laboratory Reports

### Appendix 4

Hand auger Logs

Appendix 5 Result Summary Tables

### Appendix 6 95%UCL<sub>average</sub> Calculations

**Appendix 7** Site-Specific EIL Data Inputs

### **EXECUTIVE SUMMARY**

Ramboll Australia Pty Ltd (Ramboll) was engaged by UGL Regional Linx Pty Limited (UGL) to conduct a Detailed Site Investigation (DSI) at the residential property known as the 'former Station Master's Cottage (SMC)', located at 106 Goulburn Street, Tarago, NSW (here in referred to as the site). The site is currently unoccupied and comprises a single brick dwelling, adjacent sheds and partially fenced garden. The site is located adjacent to the Goulburn – Bombala rail corridor and Tarago railway station.

Previous investigation has been limited to lead as the primary contaminant of concern related to historic rail operations and in particular load out of ore concentrates through the adjacent rail corridor. The investigation identified an exceedance of commercial and industrial use in excess of 250% of the guideline, i.e. hotspot concentration, and a number of occurrences of concentrations above unrestricted residential use, to which the site is currently zoned. Thus, the site is under care and maintenance with an Interim Environmental Management Plan (IEMP) until remediation of the site is complete. Concentrations of lead were generally reduced outside of the fenced portion of site adjacent to the Goulburn Street/ Boyd Street road reserve and was not considered to be pose an exposure risk.

It is understood however that Transport for New South Wales (TfNSW) on behalf of the property owner (the Transport Asset Holding Entity) requested a DSI be completed to assess the suitability of the site for future use in accordance with current residential zoning. A broader range of contaminants of potential concern (COPC) were identified relating to the historic residential use of the site including other metals, hydrocarbons, asbestos, pesticides and herbicides. Assessment of lead was included to assist in further delineation of impact across the site. A preliminary conceptual site model (CSM) was developed as part of the sampling and analysis quality plan (SAQP) which took into consideration the previous sampling and detailed the potential contaminant sources, pathways and sensitive receptors.

The objectives of this DSI was to assess the suitability of the site for both commercial/industrial and residential with accessible soils land uses.

The scope of works completed comprised review of historic contaminated land assessments relevant to the site, supplementary intrusive assessment of soil and refinement of the site's CSM.

Intrusive assessment was conducted across both the fenced portion and open area alongside the roadside through the advancement of hand augers to a depth of 0.5 metres below ground level (mbgl). The vertical extent was identified based on the shallow impact observed during previous investigations of the site and broader local area, and depth of fill. Assessment of asbestos was limited to surface soils in the absence of anthropogenic material within the fill profile.

Results of the investigation found concentrations of lead in excess of unrestricted residential use were widespread across the fenced portion of the site except for the south western area. The depth of impact was generally superficial; however some isolated areas extended to 0.25 mbgl. Exceedances of the commercial and industrial lead criterion were also observed within the fenced portion of the site in two locations.

Proximity to either the dwelling or rail corridor were not necessarily attributable to higher lead concentrations. Concentrations of lead were generally reduced outside of the fenced portion of site adjacent to the Goulburn Street/ Boyd Street road reserve and suitability was not considered to have changed from previous assessment.

Ecological exceedances were reported of both copper and zinc, of which the latter was observed in both fill and natural material. The exceedance of the zinc EIL within the natural profile may be associated with zinc's increased mobility extending through the profile and could be related to ore dust from activities within the adjacent rail corridor or imported fill.

Following the investigation, the refined CSM source-pathway-receptor linkages identified:

- Complete exposure pathways were identified to human receptors under both unrestricted residential and commercial/ industrial land use scenarios through inhalation, incidental ingestion, absorption and dermal contact
- There was negligible potential for migration/transport of lead contamination to offsite receptors given that impact was confined to the fenced portion of the site and as such, imposes a physical barrier in its current state
- There is potential for plant root uptake and contact exposure to ecological communities from copper and zinc concentrations. However, the vegetation and transient wildlife present are considered to be of low ecological value and the copper and zinc levels may be representative of natural background ranges.

Based on the exposure pathways, the fenced portion of the site, in its current state, is not considered suitable for residential use, as permissible under current zoning, without mitigation or management if used. Concentrations of lead also indicate that the fenced area of the site is also not suitable for commercial or industrial land use due to the presence of a hotspot in the southern garden. It is noted that the site is currently vacant, with the impacted portion of the site fenced off and therefore there is not a complete contaminant exposure pathway at present.

It is considered that the site should continue to be managed under the IEMP until a remedial strategy has been chosen and implemented. The interim management measures will also assist in the management of potential ecological exposure risks identified from zinc and copper. The non-fenced portion of the site alongside Goulburn and Boyd Street is considered suitable for current use without restriction.

### **ABBREVIATIONS**

| Measures | Description                                                                                     |
|----------|-------------------------------------------------------------------------------------------------|
| %        | per cent                                                                                        |
| ha       | Hectare                                                                                         |
| km       | Kilometres                                                                                      |
| m        | Metre                                                                                           |
| mAHD     | Metres Australian Height Datum                                                                  |
| mbgl     | Metres below ground level                                                                       |
| mg/kg    | Milligrams per Kilogram                                                                         |
| mm       | Millimetre                                                                                      |
| ACM      | Asbestos Containing Material                                                                    |
| AF       | Asbestos Fines                                                                                  |
| AHD      | Australian Height Datum                                                                         |
| ALS      | Australian Laboratory Services                                                                  |
| BaP      | Benzo(a)pyrene                                                                                  |
| BTEX     | Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic Aromatic Hydrocarbons)                     |
| CLM Act  | NSW Contaminated Land Management Act 1997                                                       |
| COC      | Chain of Custody                                                                                |
| COPC     | Contaminants of Potential Concern                                                               |
| Council  | Goulburn Mulwaree Shire                                                                         |
| DP       | Deposited Plan                                                                                  |
| DQI      | Data Quality Indicator                                                                          |
| DQO      | Data Quality Objective                                                                          |
| EIL      | Ecological Investigation Level                                                                  |
| EMP      | Environmental Management Plan                                                                   |
| EPA      | Environment Protection Authority (NSW)                                                          |
| ESL      | Ecological Screening Level                                                                      |
| FA       | Fibrous Asbestos                                                                                |
| HIL      | Health Investigation Level                                                                      |
| HSL      | Health Screening Level                                                                          |
| LCS      | Laboratory Control Sample                                                                       |
| LEP      | Local Environment Plan                                                                          |
| LOR      | Limit of Reporting                                                                              |
| MAH      | Monocyclic Aromatic Hydrocarbons                                                                |
| Mercury  | Inorganic mercury unless noted otherwise                                                        |
| Metals   | As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Ni: Nickel, Pb: Lead, Zn: Zinc, Hg: Mercury |
| ML       | Management Limits                                                                               |
| MS       | Matrix Spike                                                                                    |
| NATA     | National Association of Testing Authorities                                                     |
| NC       | Not Calculated                                                                                  |
| ND       | Not Detected                                                                                    |
| NEPM     | National Environment Protection Measure                                                         |
| NHMRC    | National Health and Medical Research Council                                                    |
| NL       | Non-Limiting                                                                                    |
| n        | Number of Samples                                                                               |
| OCPs     | Organochlorine Pesticides                                                                       |

| OPPs  | Organophosphorus Pesticides                                      |
|-------|------------------------------------------------------------------|
| PAHs  | Polycyclic Aromatic Hydrocarbons                                 |
| PID   | Photoionisation Detector                                         |
| PQL   | Practical Quantitation Limit                                     |
| QA/QC | Quality Assurance/Quality Control                                |
| RPD   | Relative Percent Difference                                      |
| SAQP  | Sampling Analysis and Quality Plan                               |
| TPHs  | Total Petroleum Hydrocarbons                                     |
| TRHs  | Total Recoverable Hydrocarbons                                   |
| UCL   | Upper Confidence Limit                                           |
| VMP   | Voluntary Management Proposal                                    |
| -     | On tables is "not calculated", "no criteria" or "not applicable" |

### **1. INTRODUCTION**

Ramboll Australia Pty Ltd (Ramboll) was engaged by UGL Regional Linx Pty Limited (UGL) to conduct a Detailed Site Investigation (DSI) at the residential property known as the 'former Station Master's Cottage, located at 106 Goulburn Street, Tarago, NSW (herein referred to as the site or SMC).

The site is located adjacent to the former Woodlawn Mines Ore Concentrate Load-Out Complex (the loadout complex) which operated between the 1970s and 1990s and rail corridor on the Country Regional Network (CRN) in Tarago, NSW. Concentrates of lead, zinc, and copper were produced and freighted through the loadout complex and rail network.

Previous investigation has been limited to lead as the primary contaminant of concern related to historic rail operations and in particular load out of ore concentrates through the adjacent rail corridor ( (Ramboll, 2020a) (Ramboll, 2020b)). Widespread occurrences of lead concentrations in excess of unrestricted residential use were reported as was a hotspot level under commercial and industrial use. Thus, the site is under care and maintenance with an Interim Environmental Management Plan (IEMP,) until remediation of the site is complete. Concentrations of lead were generally reduced outside of the fenced portion of site adjacent to the Goulburn Street/ Boyd Street road reserve and was not considered to be pose an exposure risk.

It is understood that Transport for New South Wales (TfNSW) on behalf of the property owner (the Transport Asset Holding Entity) requested a DSI be completed to assess the suitability of the site for future use in accordance with current residential zoning and has included a broader range of contaminants of potential concern (COPC) relating to the historic residential use of the site.

This report has been prepared in accordance with Table 2.3 of the NSW Environmental Protection Authority (NSW EPA, 2020) Consultants reporting on contaminated land: Contaminated Land Guidelines.

#### 1.1 Background

On 25 March 2020, the NSW Environment Protection Authority (NSW EPA) declared the adjacent rail corridor as significantly contaminated under Section 11 of the CLM Act 1997 (Declaration Number 20201103). The declaration defines the substance of concern in soil ("the Contaminant") to be lead and that contamination had migrated from the adjacent rail corridor to the site. Further detail of contamination at or originating from the adjacent rail corridor was described as follows:

- 1. lead concentrations in soil within the rail corridor (Lot 22 DP1202608) exceed national guideline values for the protection of human health and the environment
- lead contamination has impacted adjacent land at 106 Goulburn Street, Tarago (Lot 1 DP816626), with soil found to contain lead at concentrations exceeding national guideline values for the protection of human health and the environment
- 3. there are complete exposure pathways to lead for occupants of 106 Goulburn Street, as well as potentially complete exposure pathways for persons working within the rail corridor and
- 4. there are potentially complete exposure pathways for onsite and offsite ecological receptors.

On 3 August 2022 the NSW EPA declared the site to be significantly contaminated under Section 11 of the CLM Act (Declaration Number: 20221105; Area Number 3455). The site was published on the EPA's list of notified sites as "contamination is regulated by the EPA under the CLM Act".

The EPA describes that remediation will be required to facilitate residential land-use in accordance with current zoning under the Goulburn-Mulwaree Council LEP (2009).

A voluntary management proposal (VMP) was prepared to define how the Contaminant and associated risks would be managed and this was approved by the NSW EPA on 28 May 2020. The site was acquired by the Transport Asset Holding Entity (TAHE) in 2022 from private owners. Risks associated with exposure to site contamination are currently managed under an interim Environmental Management Plan (Ramboll, 2023a). As required under the IEMP, the site is currently not occupied.

#### 1.2 Objectives

The objectives of the DSI were to assess the suitability of the site for both commercial/industrial and residential with accessible soils land uses.

#### 1.3 Scope of Work

The DSI was carried out in accordance with the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM) (NEPC, 2013).

The scope of work performed to meet the objectives comprised:

- 1. Review of historical and public information and identification of remaining data gaps
- 2. Development of a Sampling and Analysis Quality plan (SAQP)
- 3. Hand augering of eight soil boreholes to an indicative extent of 0.5 mbgs
- 4. Collection of bulk and discrete soil samples
- 5. Laboratory analysis for assessment of metals and hydrocarbons, with surficial soils also assessed for asbestos, pesticides and herbicides
- 6. Assessment of laboratory results against the assessment criteria comprising of residential and commercial/ industrial land use.
- 7. Assessment of data quality and reliability.
- 8. Refinement of the conceptual site model.
- 9. Assessment of areas requiring remediation, if required.
- 10. Preparation this report.

#### **1.4 Regulatory Requirements**

This DSI has been prepared in general accordance with the following guidance documents:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013 (NEPC, 2013)
- NSW EPA, Contaminated Sites: *Guidelines for Consultants Reporting on Contaminated Lands* (NSW EPA, 2020)
- NSW EPA, Guidelines for the Site Auditor Scheme (3<sup>rd</sup> Edition) (NSW EPA, 2017)
- NSW EPA, Sampling Design Guidelines Part 1 application (NSW EPA, 2022)

## 2. SITE DESCRIPTION

#### 2.1 Site Identification

The site is shown in Figure 1, Appendix 1 whilst details are presented in Table 2-1.

| Information           | Description                                                                                                                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Street Address:       | 106 Goulburn Street, Tarago                                                                                                          |
| Property Details      | Tarago Former Station Master's Cottage                                                                                               |
| Identifier:           | Lot 1 DP816626                                                                                                                       |
| Site Area:            | Approximately 1,550 m <sup>2</sup>                                                                                                   |
| Local Government:     | Goulburn Mulwaree Shire                                                                                                              |
| Property Owner:       | ТАНЕ                                                                                                                                 |
| Zoning                | RU6 Transition                                                                                                                       |
| EPA Management Status | Declared significantly contaminated on 04 August 2022                                                                                |
| Site Use:             | Partially fenced, of which the fenced portion was a private residence (currently vacant).<br>Future Land Use Commercial / Industrial |

#### Table 2-1: Site Identification

#### 2.2 Site Condition

Until recently the site was generally used as a private residence except for the area outside the eastern fence. The area outside the fence was generally accessible by the public as an extension of grassed area adjacent to the intersection of Goulburn Street and Boyd Street. On 25<sup>th</sup> March 2020, the adjacent rail corridor was deemed significantly contaminated by the NSW EPA (Declaration Number: 20211103), following which TfNSW relocated the residents, leaving the site vacant. In 2022 TAHE purchased the property and the site remains unoccupied and under care and maintenance until remediation of the site is complete.

Ramboll inspection of the site found that the main residence comprised a brick building with metal roof with a metal carport annexed to the northern end and a small timber and metal shed annexed to the western side. Concrete slabs were observed on ground as flooring in the rear sunroom, laundry, front verandah and carport. These areas step up to flooring in the kitchen, bathroom, loungeroom and bedrooms (the main part of the house). Evidence of sub-floor ventilation was observed in the outer walls of the main part of the house and indicate this area is suspended on short piers. No access points were observed and the floor was not much higher than the ground level indicating minimal clearance. On this basis sub-floor access is considered more likely to be present through the floor inside the house and uncontrolled access is considered unlikely.

#### 2.3 Surrounding Environment

Nearby surrounding land use includes:

- North: Rail corridor
- East: Goulburn Street then residential and commercial land parcels
- South: Rail corridor (Tarago Train Station)
- West: Rail corridor

#### 2.4 Site History

Tarago station opened on 3 January 1884 when the Bombala line was opened as a single line from Joppa Junction. It served as the terminus until the line was extended to Bungendore on 4 March 1885. The construction contract for the Joppa Junction to Bungendore section was awarded to W S Topham & J Angus (tramway contractors) on 3 October 1882 (Heritage NSW, 2023).

The contract for construction of a station building, Station Master's residence, and goods shed is recorded as being let to G. & C. Horn on 17 December 1883 and Tarago as being officially opened on 3 January 1884. The exact date that the station building and other original buildings were completed is unclear, but it is likely that it was much later than the official opening of January 1884 - either that or the construction of the station buildings began earlier than December 1883 (Heritage NSW, 2023).

The station building is a five-room example of a standard roadside station. The station buildings are constructed of brick with a painted finish and feature gabled roofs clad in corrugated iron with corbelled brick chimneys. The platform verandah has a decorative timber valance and is supported on timber posts with curved iron brackets. Timber sash windows have moulded surrounds and sills. The station buildings have since undergone some minor repair and conservation works circa. 1994 (Heritage NSW, 2023). It is noted that the carport appears to have been a later addition, although the date is unknown). As the cottage generally predates the operation of the Loadout Complex the potential for contamination beneath the cottage is low (with potential exception of the carport).

Historic use of the adjacent Goulburn – Bombala rail corridor included operation of the Loadout Complex from the 1970s – 1990s. Concentrates were produced at the Woodlawn Mine approximately 8 km west of site and included a zinc concentrate consisting mainly of sphalerite (zinc sulfide), a lead concentrate of galena (lead sulfide) and copper concentrates of chalcopyrite (copper iron sulfide).

#### 2.5 Topography and Hydrology

The site slopes gently east toward the Mulwaree River consistent with surrounding topography which is characterised by roadside table drains and swales in parkland directing surface water north-east from the site.

It is considered likely that surface water will infiltrate site soils during low – moderate rainfall events and flow east to Goulburn Street drains (similar to the surrounding rail corridor) during high rainfall events.

#### 2.6 Geology

Review of the Australian Geoscience Information Network portal (AUSGIN, 2020) identified regional geology including channel and flood plain alluvium (gravel, sand and clay) locally formed as calcrete overlying quaternary sedimentary rock.

Previous investigations have observed shallow topsoil overlying clayey sands and silts, with varying gravel content, overlying sandy clays (Ramboll, 2020b).

#### 2.7 Hydrogeology

Review of the NSW Department of Planning Industry Environment MinView portal (NSW DPIE, 2020) identified 12 wells within a 500 m radius from the site. Review of drilling and construction details for registered wells indicates the shallowest regional aquifer is present in gravel layers from 5.5 – 18.6 mbgl with deeper aquifers present in fractures of underlying shale, siltstone and limestone from 50 – 74 mbgl.

During recent site assessment (Ramboll, 2020a) a groundwater well was observed in the southeast area of the fenced yard with depth to groundwater encountered at approximately 5 mbgl. The well was sampled and analysed for lead, and based on subsequent analyses groundwater was considered suitable for use in irrigation, livestock watering and once settled of suspended sediment, for domestic potable use.

### 3. PREVIOUS INVESTIGATIONS

Previous investigation of the site was limited to lead as the primary COPC ( (Ramboll, 2020a), (Ramboll, 2020b)). The investigation identified lead at levels exceeding the assessment criteria protective of human health under an unrestricted residential land use (Health Investigation Level (HIL) A, (NEPC, 2013)) scenario. Specifically:

- Concentrations of lead (mg/kg) exceeding human health criteria were found in soils less than 0.4 metres below ground level (mbgl)
- Loadings of lead ( $\mu g/m^2$ ) exceeding human health criteria were found in dust on interior and exterior surfaces of the house

Concentrations of lead indicative of lead-based paints were found in flaking paint on the front verandah of the house. The distribution of lead concentrations exceeding adopted human health are shown in **Figure 2**, **Appendix 1**.

The investigation also found that:

- Concentration of lead in groundwater was suitable for livestock, irrigation or potable drinking water once suspended sediments have settled with a maximum concentration of 0.002 mg/L reported
- Concentration of lead in the rainwater tank was less than the drinking water guidelines (NHMRC, 2011) with a concentration of 0.004mg/L noting that periodic removal of sediment is recommended by the NSW Department of Health (NSW DoH, 2022).

Soil sampling on the property but located outside of the eastern fence line (SS116) reported a lead concentration of 250 mg/kg which is below HIL for both low density residential land use (300 mg/kg) and public open space land use (600 mg/kg). This is consistent with results of other sampling along Goulburn and Boyd Streets reported in the Detailed Site Investigation of the broader community ( (Ramboll, 2020b) (Ramboll, 2021)). As such the contaminant exposure risk of lead onsite outside the eastern fence is considered low and not requiring management.

#### 3.1 Integrity Assessment

The information which has been reviewed is limited to publicly available information and previous assessment of the site. It is considered that the history of the site and the nearby land uses are well known and documented, especially given the contaminant status of the site and NSW EPA involvement.

The information is considered adequate with respect to understanding the site's history and COPC to allow for assessment and conclusions regarding site suitability to be drawn.

### 4. PRELIMINARY CONCEPTUAL SITE MODEL

A conceptual site model (CSM is) a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human or ecological) that may potentially be exposed and is commonly known as a SPR linkage. In order for a receptor to be exposed to a chemical contaminant derived from a Site, there should be an exposure pathway linking the source of contamination and the exposed population. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements:

- a source and mechanism of chemical release
- a retention or transport medium (or media where chemicals are transferred between media)
- a point of potential human contact with the contaminated media
- an exposure route (e.g., ingestion, inhalation) at the point of exposure.

Lead contamination in soil was found at concentrations exceeding national guideline values for the protection of human health and the environment. There are complete exposure pathways to human health and the environment from lead at the site. Groundwater and rainwater tanks were not found to have been impacted during the prior assessment (Ramboll, 2020a) and therefore are not considered to be an area of concern within the preliminary CSM. The other COPC have not been previously assessed and therefore the exposure risk is unknown.

Based on the previous site investigation and historic use of the site for residential purposes contaminants of potential concern are outlined in **Table 4-1**.

| Area of<br>Concern        | Potential Activities of Environmental Concern                                                                                                                                                                                                       | Contaminants of<br>Potential Concern<br>(COPC)                       |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Surface Soils             | Migration of lead from the rail corridor and former Loadout Complex                                                                                                                                                                                 | Lead                                                                 |
| Surface Soils<br>and Fill | Importation of fill material and historic use of the site may have resulted in soil contamination. Shallow fill was observed particularly along the western site boundary                                                                           | TRH, BTEXN, PAH,<br>OCPs/OPPs,<br>herbicides, metals<br>and asbestos |
| Buildings                 | Lead paint is present onsite buildings                                                                                                                                                                                                              | Lead                                                                 |
| Asbestos                  | Asbestos in fill, from the potential demolition of historical buildings and/or poor maintenance, and from proximity to the rail corridor                                                                                                            | Bonded and friable<br>ACM                                            |
| Surface Water             | No surface water bodies or channels are present onsite and the site is<br>predominantly grassed: as such it is considered that surface water<br>runoff would be negligible as it would infiltrate into soil.                                        |                                                                      |
|                           | Depositional dust generated from the rail corridor and former Loadout<br>Complex may have accumulated within the rainwater tank and impacted<br>water and sediment.                                                                                 | Metals - if observed                                                 |
| Rainwater tanks           | Lead in rainwater tank water and sediment has been previously<br>assessed and was found to be suitable for potable use (Ramboll, 2020a)<br>and therefore is not considered to be a potential area of concern unless<br>other metals are identified. | in soil                                                              |

#### Table 4-1: Potential Areas and Contaminants of Concern

| Area of<br>Concern | Potential Activities of Environmental Concern                                                                                                               | Contaminants of<br>Potential Concern<br>(COPC)                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Groundwater        | Leaching/ migration of contaminants through soil could occur.<br>Lead has been previously assessed (Ramboll, 2020a) and was not<br>considered to be a risk. | TRH, BTEXN, PAH,<br>and metals<br>(excluding lead) – if<br>observed at depth in<br>the soil profile. |

The exposure pathways and potential risk to receptors from the potential areas of concern and COPCs are summarised in **Table 4-2**.

|                                             | Potential Unacceptable Risk |                      |                        |
|---------------------------------------------|-----------------------------|----------------------|------------------------|
| Exposure Pathway                            | Site<br>Workers             | Residential<br>Owner | Terrestrial<br>Ecology |
| Dermal contact with contaminated soil       | Possible                    | Possible             | NA                     |
| Ingestion / inhalation of contaminated soil | Possible                    | Possible             | NA                     |
| Biological uptake of contaminants from soil | NA                          | Possible             | Possible               |

#### Table 4-2 Conceptual Site Model Summary

NA – not applicable

#### 4.1 Data Gaps

The primary data gap identified in the preliminary conceptual site model are COPCs other than lead that may be present in shallow soils, fill or in relation to historic residential land use. Further delineation of lead is also required to inform remediation planning.

## 5. ASSESSMENT CRITERIA

#### 5.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013
- Friebel, E & Nadebaum, (2011), Health screening levels for petroleum hydrocarbons in soil and groundwater. CRC CARE Technical Report no.10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia

The NEPM (2013) provides health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM (2013) also introduced health-based and ecological screening levels (HSLs and ESLs), management limits and direct contact HSLs for petroleum hydrocarbons.

Based on potential for commercial / industrial or residential land use in the future, the assessment criteria adopted for the site are as follows:

- HIL A Health investigation level for residential use including residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools.
- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
- HSL A/B Health screening levels for low-high density residential. The HSLs can be modified based on the general soil type (sand, silt or clay). In instances where this is unknown the most conservative value is adopted.
- HSL D Health screening levels for commercial/industrial use apply to assess vapour intrusion. The HSLs can be modified based on the general soil type (sand, silt or clay). In instances where this is unknown the most conservative value is adopted.
- EIL for urban recreational and public open space and EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESL for urban recreational /public open space and ESL commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.
- HSLs for Direct Contact have been adopted for the direct contact of contaminated soil for residential and commercial/industrial.
- HSLs for Intrusive Maintenance Workers have been adopted for workers who carry out work in shallow trenches (maximum depth of 1m). Exposure may occur through inhalation of volatiles or through direct contact from contaminated soils from surface to 2m below ground level (Friebel and Nadebaum, 2011).

| Contaminant<br>(mg/kg)                 | HIL A – Low<br>density<br>residential | HIL D –<br>Commercial/<br>Industrial | EIL – Urban<br>Residential and<br>Public Open Space <sup>1</sup> | EIL -<br>Commercial/<br>Industrial <sup>1</sup> |
|----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| Metals                                 |                                       |                                      |                                                                  |                                                 |
| Arsenic                                | 100                                   | 3,000                                | 100                                                              | 160                                             |
| Cadmium                                | 20                                    | 900                                  |                                                                  |                                                 |
| Chromium                               | 100                                   | 3,600                                | 190                                                              | 310                                             |
| Copper                                 | 6,000                                 | 240,000                              | 95                                                               | 140                                             |
| Mercury                                | 40                                    | 730                                  |                                                                  |                                                 |
| Lead                                   | 300                                   | 1,500                                | 1,100                                                            | 1,800                                           |
| Nickel                                 | 400                                   | 6,000                                | 30                                                               | 55                                              |
| Zinc                                   | 7,400                                 | 400,000                              | 70                                                               | 110                                             |
| PAHs                                   |                                       |                                      |                                                                  |                                                 |
| Naphthalene                            |                                       |                                      | 170                                                              | 370                                             |
| Carcinogenic PAH<br>(B(a)P equivalent) | 3                                     | 40                                   |                                                                  |                                                 |
| Sum of reported PAH                    | 300                                   | 4,000                                |                                                                  |                                                 |
| OCP/OPP                                |                                       |                                      |                                                                  |                                                 |
| Chlordane                              | 50                                    | 530                                  |                                                                  |                                                 |
| DDT                                    |                                       |                                      | 180                                                              | 640                                             |
| Heptachlor                             | 6                                     | 50                                   |                                                                  |                                                 |
| НСВ                                    | 10                                    | 80                                   |                                                                  |                                                 |
| Methoxychlor                           | 300                                   | 2,500                                |                                                                  |                                                 |
| Mirex                                  | 10                                    | 100                                  |                                                                  |                                                 |
| Toxaphene                              | 20                                    | 160                                  |                                                                  |                                                 |
| DDT+DDD+DDE                            | 240                                   | 3,600                                |                                                                  |                                                 |
| Aldrin + Dieldrin                      | 6                                     | 45                                   |                                                                  |                                                 |
| Endrin                                 | 10                                    | 100                                  |                                                                  |                                                 |
| Endosulfan                             | 270                                   | 2,000                                |                                                                  |                                                 |
| Chlorpyrifos                           | 160                                   | 2,000                                |                                                                  |                                                 |
| Atrazine                               | 320                                   | 2,500                                |                                                                  |                                                 |
| Bifenthrin                             | 600                                   | 4,500                                |                                                                  |                                                 |

#### Table 5-1: Soil Assessment Criteria – Health and Ecological Investigation Levels

<sup>1</sup> Ecological criteria are based on standard values, likely to be conservative, with the following assumptions: Chromium (III) EIL, based on a low clay content (% clay) of 1% Nickel EIL, based on CEC of 5cmol/kg Copper EIL, based on CEC of 5cmol/kg Zinc EIL, based on slightly acidic soil pH of 4.0 and CEC of 5cmol/kg Site specific EILs may be derived as and if required.

The applicable HSL assessment criteria for petroleum hydrocarbons in soil are presented in Table 5-2.

The most conservative guideline value has been adopted for each analyte. This is generally values in sand/coarse soil, however site-specific guideline values could be adopted based on the soil type encountered during the investigation works.

| Contaminant<br>(mg/kg) | HSL /     | A/B (Low<br>Reside | -High De<br>ential) | ensity | (co        | HS<br>mmercia | L-D<br>I/industr | ial) | Mainto<br>(Sha | Intrusive<br>enance W<br>Illow Trei | /orker<br>nch) |
|------------------------|-----------|--------------------|---------------------|--------|------------|---------------|------------------|------|----------------|-------------------------------------|----------------|
|                        | 0-<br><1m | 1m -<br><2m        | 2m -<br><4m         | 4m+    | 0m-<br><1m | 1m -<br><2m   | 2m -<br><4m      | 4m+  | 0m -<br><2m    | 2m -<br><4m                         | 4m+            |
| Toluene                | 160       | 220                | 310                 | 540    | NL         | NL            | NL               | NL   | NL             | NL                                  | NL             |
| Ethylbenzene           | 55        | NL                 | NL                  | NL     | NL         | NL            | NL               | NL   | NL             | NL                                  | NL             |
| Xylenes                | 40        | 60                 | 95                  | 170    | 230        | NL            | NL               | NL   | NL             | NL                                  | NL             |
| Naphthalene            | 3         | NL                 | NL                  | NL     | NL         | NL            | NL               | NL   | NL             | NL                                  | NL             |
| Benzene                | 0.5       | 0.5                | 0.5                 | 0.5    | 3          | 3             | 3                | 3    | 77             | 160                                 | NL             |
| F1 <sup>2</sup>        | 45        | 70                 | 110                 | 200    | 260        | 370           | 630              | NL   | NL             | NL                                  | NL             |
| F2 <sup>3</sup>        | 110       | 240                | 440                 | NL     | NL         |               | NL               | NL   | NL             | NL                                  | NL             |

Table 5-2: Soil Health Screening Levels for Vapour Intrusion HSL D and Intrusive Maintenance Worker - Sand<sup>1</sup>

NL The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

<sup>1</sup> (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit >50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

<sup>2</sup> To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

 $^{3}$  To obtain F2 subtract naphthalene from the >C10-C16 fraction.

**Table 5-3** identifies the Ecological Screening Levels, Management Limits and Direct Contact for Petroleum hydrocarbons and speciated PAHs in soil.

| Contaminant<br>(mg/kg) | inant ESLs (coarse soil) Management Limits <sup>1</sup><br>kg) (coarse soil) |                            | Direct Contact <sup>4</sup>                    |                           |        |        |                                    |
|------------------------|------------------------------------------------------------------------------|----------------------------|------------------------------------------------|---------------------------|--------|--------|------------------------------------|
|                        | Urban<br>Residential<br>/ Public<br>Open<br>Space                            | Commercial<br>/ Industrial | Urban<br>Residential<br>/ Public<br>Open Space | Commercial<br>/Industrial | HSL A  | HSL D  | Intrusive<br>Maintenance<br>Worker |
| F1 C6- C10             | 180 <sup>2,3</sup>                                                           | 215 <sup>2,3</sup>         | 700                                            | 700                       | 4,400  | 26,000 | 82,000                             |
| F2 >C10-C16            | 120 <sup>2,3</sup>                                                           | 170 <sup>2,3</sup>         | 1,000                                          | 1,000                     | 3,300  | 20,000 | 62,000                             |
| F3 >C16-C34            | 300                                                                          | 1,700                      | 2,500                                          | 3,500                     | 4,500  | 27,000 | 85,000                             |
| F4 >C34-C40            | 2,800                                                                        | 3,300                      | 10,000                                         | 10,000                    | 6,300  | 38,000 | 120,000                            |
| Benzene                | 50                                                                           | 75                         | -                                              | -                         | 100    | 430    | 1100                               |
| Toluene                | 85                                                                           | 135                        | -                                              | -                         | 14,000 | 99,000 | 120,000                            |

Table 5-3: Ecological Screening Levels, Management Limits and Direct Contact for Petroleum Hydrocarbons and speciated PAHs in Soil

| Ethylbenzene | 70              | 165             | - | - | 4,500  | 27,000 | 85,000  |
|--------------|-----------------|-----------------|---|---|--------|--------|---------|
| Xylenes      | 45 <sup>5</sup> | 95⁵             | - | - | 12,000 | 81,000 | 130,000 |
| Naphthalene  | 170             | 370             | - | - | 1,400  | 11,000 | 29,000  |
| B(a)P        | 20 <sup>6</sup> | 72 <sup>6</sup> | - | - | -      | -      | -       |

<sup>1</sup> Management limits are applied after consideration of relevant ESLs and HSLs. Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2. <sup>2</sup> To obtain F1 subtract the sum of BTEX concentrations from C6-C10 fraction.

<sup>3</sup>The ESL is of moderate reliability and all remaining ESLs are of low reliability.

<sup>4</sup> Direct Contact are applied to surface soils or soils that could result in immediate contact.

<sup>5</sup> Fine grained value adopted as it is the most conservative value

<sup>6</sup> Benzo(a)Pyrene ESL derived from Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health, Canadian Council of Ministers of the Environment (CCME), 2010 (Residential/Parkland Land Use).

#### 5.2 Asbestos

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in Table 5-4. The HSLs are generic to all soil types.

| Table 5-4: Health | Screening | <b>Levels for</b> | Asbestos | Contamination | in Soil | (w/w | ) |
|-------------------|-----------|-------------------|----------|---------------|---------|------|---|
|-------------------|-----------|-------------------|----------|---------------|---------|------|---|

| Form of asbestos                          | Residential A <sup>1</sup> | Commercial/Industrial D <sup>2</sup> |
|-------------------------------------------|----------------------------|--------------------------------------|
| Bonded ACM                                | 0.01                       | 0.05%                                |
| FA and AF <sup>3</sup> (friable asbestos) |                            | 0.001%                               |
| All forms of asbestos                     | No visible                 | asbestos for surface soil            |

Fibrous Asbestos (FA) is asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure.

Asbestos Fines (AF) includes free fibres, small fibre bundles and small fragments of bonded ACM that pass through a 7mm x 7mm sieve. <sup>1</sup> Residential A with garden/accessible soil also includes children's day care centres, preschools, and primary schools.

 <sup>2</sup> Commercial/industrial D includes premises such as shops, offices, factories, and industrial sites.
 <sup>3</sup> The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e., non-bonded/ friable asbestos) only applies where the FA and FA can be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

### 6. DATA QUALITY OBJECTIVES

Prior to the investigation, Ramboll prepared the '*Sampling Analysis and Quality Plan (SAQP) Tarago Former Station Master Cottage'*, June 2023 (Ramboll, 2023b).

The SAQP was developed to scope and plan the execution of soil investigation in order to define the site's source-pathway-receptor model in relation to the COPC which include metals, asbestos, hydrocarbons, pesticides and herbicides. The investigation has been limited to soil only given the inferred shallow nature of impact identified during previous investigations on and surrounding the site. The following sections provide a summary of the SAQP (Ramboll, 2023b).

The SAQP included Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) for the investigation in accordance with the seven-step DQO process, endorsed in Schedule B2 of the NEPM (2013). The DQOs set quality assurance and quality control parameters for the field and laboratory program to ensure data of appropriate reliability will be used to assess site contamination. The DQOs are outlined in **Table 6-1**.

| DQO                                     | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1: State the<br>Problem            | The site has been declared significantly contaminated by the NSW EPA. Ramboll (2020b) identified lead contamination in soil at the site however the extent of impact is not fully delineated. Additionally, historical activities on or adjacent to the site may have resulted in contamination from other COPCs which have not been assessed to date.                                                                                                                                           |
| Step 2: Identify the<br>Decision        | <ol> <li>Are the data collected of sufficient quality to meet the project objectives?</li> <li>Are the data reliable?</li> <li>What is the lateral and vertical extent of soil contamination from COPCs at the site?</li> <li>What is the site suitability for future use by assessing against residential and commercial/industrial land use scenarios?</li> <li>What are the potential risks to human health and the environment and is further assessment of those risks required?</li> </ol> |
| Step 3: Identify Inputs to the Decision | <ol> <li>Historical soil data from previous investigations completed by Ramboll at the site.</li> <li>Complete analysis of collected soil samples for COPCs at the site. (Figure 1,<br/>Appendix 1</li> <li>Analyse the data and compare to the assessment criteria outlined in Section 5.</li> <li>Refine the CSM and identify risks to receptors.</li> </ol>                                                                                                                                   |
| Step 4: Define the Study Boundaries     | Spatial boundaries are the cadastral boundaries of the site, comprising Lot 1 DP816626, refer to <b>Figure 1, Appendix1.</b><br>Vertical boundaries: The assessment will be limited vertically to an indicative depth of 0.5 mbgl based on previous investigations indicating limited vertical migration of COPCs.<br>Temporal boundaries: The temporal boundary is limited to the data collected during the investigation.                                                                      |
| Step 5: Develop a<br>Decision Rule      | The statistical parameters of interest are the concentrations of COPCs. The action levels are the assessment criteria outlined in <b>Section 5.</b><br>The decision rules for this investigation are as follows:                                                                                                                                                                                                                                                                                 |

#### **Table 6-1: Data Quality Objectives**

| DQO                                                  | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | <ol> <li>If it is determined that the data generated through this investigation is reliable,<br/>complete, comparable, accurate and representative then this information will be<br/>used to address the assessment objectives.</li> <li>If it is determined that the data generated through this investigation is not suitable,<br/>comprehensive or reliable for use in achieving the goals of the study, then further<br/>investigations may be recommended to reduce uncertainties.</li> <li>If it is determined that insufficient information is available to make conclusions on<br/>the risk to human health or ecological receptors, then further investigation or<br/>remediation may be required.</li> </ol>                                                                                                                                                                                                                                                                                                                         |
| Step 6: Specify the acceptance criteria              | <ol> <li>The acceptance criteria are as follows:</li> <li>Probability that 95% of data will satisfy the DQIs, therefore a limit on decision error will be 5% that a conclusive statement may be incorrect.</li> <li>Comparing individual concentrations against the relevant assessment criteria and if discrete samples are more than the assessment criteria, then:         <ul> <li>a) Comparing the 95% upper confidence limit of mean against the assessment criteria also ensuring that:</li> <li>b) The standard deviation of the results is less than 50% of the relevant assessment criteria, and</li> <li>c) No single value exceeds 250% of the relevant assessment criteria.</li> <li>d) Specific contaminant of concern (e.g., response to carcinogens may be more conservative).</li> <li>e) The area of site in question and the potential lateral and vertical extent of questionable information.</li> <li>f) Whether the uncertainty can be effectively managed by site management controls or plans.</li> </ul> </li> </ol> |
| Step 7: Optimise the<br>Design for Obtaining<br>Data | Previous investigations at the site and on the adjacent land infer lead contamination to be present in soil to a depth of 0.4 mbgl. Data gaps include the unknown lateral extent of lead contamination and the potential for other COPCs to be present based on historical site and adjacent activities. The overall design of the investigation on the site considered these factors, this is outlined in <b>Section 6.1</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### 6.1 Sampling Rationale

A summary of the sampling rationale is outlined in **Table 6-2** with sampling locations provided in **Figure 3, Appendix 1**.

#### Table 6-2: Summary of Sampling Rationale

| Sampling<br>Location                      | Rationale                                                                                                                                                                                                                                                                                                                                                             | Proposed<br>Sample<br>Locations                                                                                                                             | Proposed Sample<br>Collection                                                                                                                                                                                                                                                                                                                                                        | Proposed Laboratory<br>Analysis                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface<br>soils<br>Shallow<br>fill/ soil | Number of locations is<br>the minimum<br>recommended for<br>systematic sampling<br>pattern for a site less<br>than 0.2 ha.<br>Asbestos impact is<br>considered to be<br>limited to the surface is<br>related to demolition,<br>poor maintenance or<br>adjacent site activities.<br>Asbestos may be<br>present in fill if<br>anthropogenic material<br>is encountered. | Advancing<br>eight soil<br>auger bores<br>across the<br>site to<br>0.5 mbgl.<br>Gravimetric<br>assessment<br>of soils in<br>surficial soils<br>(0-0.1 mbgl) | Gravimetric assessment of<br>asbestos in surficial soils<br>(0 - 0.1 mbgl) will be<br>completed in the field and<br>will be accompanied by<br>collection of samples from<br>sieved fines for asbestos<br>% w/w analyses.<br>Collection of samples from<br>0-0.1 mbgl at each auger<br>location<br>Collection of samples from<br>at least 0.2 and 0.5 mbgl<br>at each auger location. | <ul> <li>All surface soils will be<br/>analysed for asbestos<br/>AF+FA (500 mL fines<br/>samples).</li> <li>All surface soil samples<br/>will be analysed for<br/>metals, PAH, TRH, BTEX.</li> <li>Four samples will<br/>additionally be analysed<br/>for pesticides and<br/>herbicides (likely to be<br/>from surficial samples).</li> <li>Eight samples (excluding<br/>QA) will be analysed for<br/>metals, BTEXN, PAH,<br/>TRH.</li> </ul> |

### 7. QUALITY

The 2023 soil investigation works were completed on 15 June 2022. A Dial Before You Dig (DBYD) for underground services check was completed prior to fieldwork. Sample locations were marked out and cleared by a suitably qualified and experienced locator prior to the commencement of subsurface works. Sampling locations were moved as required due to underground or overhead services at the time of the subsurface clearance.

Sampling was completed in accordance with the SAQP, which comprised the collection of discrete and bulk (10L minimum) samples are the surface and additional discrete soil samples at depth. Exceptions were two gravimetric samples, HA05 and HA06, which comprised of a smaller sample volume due to difficulties during sample collection.

A quality assurance assessment of the 2023 DQIs, as defined within the SAQP (Ramboll, 2023b) is presented in **Table 7-1** and **Table 7-2**.

Historical results, collected from the site during wider investigation of the Tarago area (Ramboll, 2020b) assessing for lead impact only, have been used as part of site characterisation due to the nature of lead which is unlikely to have significantly changed or degraded . Quality assurance and quality control assessment was undertaken at the time of sampling as part of the broader site area and was considered to be appropriate for the requirements of the NEPM (NEPC, 2013) to meet the project objectives (Ramboll, 2020b).

| Sampling Methodology                       | Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Pattern, Density<br>and Locations | Soil samples were collected from eight boreholes advanced across the site on a systematic pattern whilst also taking into account of previous locations. The sampling density aligns with the number of sampling locations required for characterisation of a site less than 0.2 hectare as described in Table 2 of the NSW EPA (2022) <i>Contaminated Sites Sampling Design Guidelines</i> . |
|                                            | locations (refer to <b>Appendix 1, Figure 2</b> ).                                                                                                                                                                                                                                                                                                                                            |
| Sample Depths                              | Soil samples were collected from eight boreholes at the following depths: $0.05$ , $0.25$ and $0.5$ m bgl.                                                                                                                                                                                                                                                                                    |
|                                            | Gravimetric assessment of soils for asbestos were conducted across an approximate 0.5 by 0.5 m area in the upper 0.2 m profile of the soil which was comprised of topsoil fill.                                                                                                                                                                                                               |
|                                            | Boreholes were advanced using non-destructive digging (i.e., hand auger) to 0.5 m. Samples were collected directly from the hand auger or from a sampling trowel.                                                                                                                                                                                                                             |
|                                            | The collection of bulk samples for gravimetric asbestos assessment comprised the collection of a 10 L bucket from upper soil horizon only (maximum of 0.2 m depth). Based on sample type, a soil density of 1.65 kg/L was applied to the sample weights to allow for sample volume calculation.                                                                                               |
| Sample Collection Method                   | Each 10L sample was then passed through a 7 mm sieve and > 7mm fraction was visually assessed for ACM. The <7mm (fine) material was spread across a cleared area of the site surface for inspection of fragments. An approximate 500 g sub-sample was collected from the fines and submitted to the laboratory for the presence of AF/FA.                                                     |
|                                            | Dedicated single use nitrile gloves were worn during sample collection. Gloves were changed between each sampling location.                                                                                                                                                                                                                                                                   |
|                                            | All samples collected for chemical characterisation were screened in the field with a photonionisation detector (PID) for the presence of volatiles. The maximum                                                                                                                                                                                                                              |

#### Table 7-1: Sampling and Analysis Methodology Assessment

|                                | concentration observed was 0.6 ppm and this is not considered indicative of volatile contaminants.                                                                                                                                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decontamination<br>Procedures  | The hand auger and hand trowel were decontaminated between each borehole location by rinsing with a surfactant free decontamination solution (i.e., Alquinox). Dedicated nitrile gloves were disposed of after use.                                             |
| Sample Storage and<br>Handling | Samples were stored in an insulated cooler filled with ice in the field and in transit to the laboratory.                                                                                                                                                       |
| Chain of Custody               | Samples were delivered to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples. Chain of custody forms are included with the laboratory reports provided in <b>Appendix 3</b> . |
| Sampling Logs                  | Sampling logs were completed by suitably qualified and experienced Ramboll personnel and are provided in <b>Appendix 4</b> . Recording of logs was conducted in general accordance with AS1726-2017 – Geotechnical Site Investigations.                         |

#### Table 7-2: Field and Laboratory QA/QC

| Sampling Methodology             | Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Schedule B3 of the NEPM (NEPC, 2013) recommends collecting a field duplicate for 1 in 20 primary samples, equalling an acceptable duplicate rate of 5% or higher. The intra-<br>laboratory sample collection frequency was slightly less than the SAQP with a collection rate of 4.5%. This is considered to be a minor non-conformance and does not significantly impact upon the dataset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Field Quality Control<br>Samples | In total intra- and inter-laboratory duplicate samples were collected for soil at a rate of 12.5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | One rinsate sample was collected from the hand trowel at the end of the day of fieldwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | One trip spike and trip blank pair was included within the QA testing regime due to the analytical suite including volatile compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Field Quality Control<br>Results | <ul> <li>Duplicate/triplicate soil results are included in the Results Tables in Appendix 5. Relative percentage differences (RPDs) were calculated for intra- and inter-laboratory duplicate pairs. Relative percent difference (RPD) results for soil samples were generally within the acceptance range of less than 30% with the following exceptions: <ul> <li>Endrin aldehyde reported an RPD of 33% due to a detectable concentration of 0.07 mg/kg in the primary sample whilst below in both the inter and intralaboratory duplicates. Whilst some uncertainty may be present, it is considered to be conservative.</li> <li>Arsenic (33%), chromium (36%) and copper (35%) reported elevated RPD between the primary and intralaboratory duplicate. These are considered to be due to the heterogeneity of the topsoil fill sampled. The primary sample reported the highest concentration in all cases and therefore any uncertainty is not considered to be significant.</li> </ul> </li> </ul> |
|                                  | Additional non-conformances were observed due to differing PQL between the primary<br>and secondary laboratories, however as both laboratories have PQL below site criteria,<br>this is not considered to be significant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | The rinsate sample reported concentrations below the laboratory PQL with the exception<br>of lead which was reported equal to the laboratory limit of 0.001 mg/L. Filtered metal<br>analysis was undertaken by the laboratory and therefore the rinsate metal results may<br>indicate a potential underestimation. Whilst the detection of lead and potential<br>underestimation is present, it is not considered to impact upon the characterisation of<br>the dataset, particularly given that none of the sample concentrations were close to the<br>lead site criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Sampling Methodology                                                                                        | Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                             | Concentrations of TRH and BTEXN in the trip blanks were less than the laboratory detection limits and the trip spikes were within the targeted recovery range of $70 - 130\%$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| National Association of<br>Testing Authorities (NATA)<br>Registered Laboratory and<br>NATA Endorsed Methods | Eurofins was used as the primary laboratory and ALS was used as the secondary laboratory to undertake the analysis. Eurofins and ALS are NATA accredited for the analyses conducted and are experienced in the analytical requirements for potentially contaminated soil and water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Analytical Methods                                                                                          | A summary of the analytical methods adopted by each of the laboratories is included in the respective laboratory certificates provided in <b>Appendix 3</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Holding Times                                                                                               | Samples were submitted within appropriate holding times for all analytes. Review of the chain of custody documentation and laboratory certificates indicate that laboratory holding times were met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Laboratory PQL                                                                                              | Laboratory PQLs were below the adopted criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laboratory Quality Control<br>Samples                                                                       | As part of the analytical procedures, Eurofins and ALS undertook internal quality assurance testing. Results are contained within the laboratory report included in <b>Appendix 3</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laboratory Quality Control<br>Results                                                                       | <ul> <li>All results for laboratory internal QAQC testing was generally acceptable with the following exceptions:</li> <li>Primary Laboratory, report 1001666: <ul> <li>Half of the samples reported BTEX surrogates with low recoveries between 56% and 69%. This indicated some uncertainty in regards to the samples and a potential for under estimation of the true concentration. However, none of the samples reported detectable concentrations of BTEX, which is well below the site criteria, and therefore the uncertainty is not considered to significantly impact on characterisation.</li> <li>One of the OCP surrogates on HA07-0.05 reported a recovery of 58%. This is indicated a potential under-estimation of the sample, however as all compounds were below detection and well below the site criteria any uncertainty is not considered to be significant.</li> <li>Acid herbicide surrogate, warfarin reported a recovery of 131% on HA01-0.05 which is considered to be a minor non-conformance which may indicate a potential over-estimation and therefore may be conservative.</li> <li>One of the PAH surrogates on HA07-0.05 reported a recovery of 135%. This is indicated a potential over-estimation and therefore any uncertainty is conservative.</li> </ul> </li> <li>Secondary laboratory, report ES2320976:</li> <li>OPP surrogate reported a recovery of 61% on the triplicate sample. This is indicated a potential under-estimation of the sample, however as all compounds were below detection and well below the site criteria any uncertainty is not considered to be significant.</li> <li>Herbicide surrogate reported a recovery of 64% on the triplicate sample. This is indicated a potential under-estimation of the sample, however as all compounds were below detection and well below the site criteria any uncertainty is not considered to be significant.</li> <li>Herbicide surrogate reported a recovery of 64% on the triplicate sample. This is indicated a potential under-estimation of the sample, however as all compounds were below detection and well be</li></ul> |

| Sampling Methodology | Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>Herbicide LCS's for MCPB, Picloram, and Clopyralid reported low recoveries of 60% and 61%. These were within the laboratory's acceptance range and as the sample reported concentrations below PQL, it is not considered to be significant.</li> <li>Herbicide matrix spike recoveries ranged between 61% and 65% for Mecoprop, Picloram and Clopyralid. These were within the laboratory's acceptance range and as the sample reported concentrations below PQL, it is not considered to be significant.</li> </ul> |

**7.1 Data Quality Indicators Assessment** DQIs have been established to set acceptance limits on field and laboratory data collected as part of the DSI. The DQIs were outlined in the SAQP (Ramboll, 2023b) and are reproduced in Table 7-3.

| Tal | ble | 7-3: | DQI | Assessment |
|-----|-----|------|-----|------------|
|     |     |      |     |            |

| Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| pleteness is a measure of whether all the data necessary to meet the objectives was cted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| bil samples were collected as per the SAQP (Ramboll, 2023b) with the exception of<br>gravimetric samples. The two bulk samples comprised of material which was less<br>the minimum 10 L specified within the NEPM (2013) with volumes of 7.6 and 7.6 L<br>ded. This shortfall was due to sample collection difficulties in the fill material. It does<br>ate some uncertainty, however in the absence of asbestos being encountered across<br>roader site investigation and the exterior of the dwelling comprising of brick, it is not<br>dered to significantly impact upon the characterisation of the site.                                                                                                                                                                                               |  |  |  |  |  |  |
| ratory analysis of the 500 ml asbestos samples were undertaken on the fines<br>rial following the material passing through the 7mm sieve in accordance with the<br>P (Ramboll, 2023b). It is noted that analysis of a sub-sample from the sieved fines is<br>ecommended particularly in the investigation of AF, however visible bonded ACM and<br>an be used as the primary measure of contamination (WA DOH, 2021). Given that in<br>ral friable asbestos from degradation of bonded ACM is generally minor (WA DOH,<br>) and the site's history does not indicate a high portion of potential asbestos impact<br>AF, it is unlikely that no analysis of an undisturbed sample indicates a significant<br>gap in characterising the site. It is noted that no asbestos in any form was observed<br>re site. |  |  |  |  |  |  |
| poll considers the investigation to be complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| parability is the confidence that data may be considered to be equivalent for each<br>pling and analytical event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| oling was completed by experienced Ramboll personnel using standard operating edures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| aboratory analysis was undertaken by NATA registered laboratories using accredited<br>rtical methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Representativeness is the confidence that data are representative of each medium present on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| e field, representativeness was achieved by collecting samples from an adequate<br>per of locations and depths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| sion is a measure of the reproducibility of the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| e field, Ramboll achieved precision by using standard operating procedures for the<br>tion of soil samples and by collecting intra-laboratory and inter-laboratory duplicate<br>oles for analysis. As outlined in <b>Table 7-2</b> no elevated variation between<br>entrations were reported to be significant between the primary and secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |

| Sampling Methodology | Ramboll's Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                      | laboratory and RPD results for intra-laboratory duplicate samples were within acceptable limits.                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                      | At the laboratory, precision is assessed using blind duplicate samples and split duplicates.<br>As outlined in <b>Table 7-2</b> , internal laboratory RPD were acceptable with the exception of<br>one duplicate outlier from secondary laboratory ALS, and no detections were made in<br>blank samples.                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                      | Accuracy is a measure of the closeness of a measurement to the true parameter value.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Accuracy             | In the field, Ramboll achieved accuracy by using standard operating procedures for the collection of soil samples and by collecting a rinsate sample and a trip spike/blank pair for analysis. As outlined in <b>Table 7-2</b> , the rinsate reported concentrations below detections with the exception of lead which reported a concentration equal to the PQL. Concentrations of TRH and BTEXN in the trip blanks were less than the laboratory detection limits and the trip spikes were within the targeted recovery percentage. |  |  |  |  |  |  |
|                      | At the laboratory, precision is assessed using blind replicate samples and split samples.<br>As outlined in <b>Table 7-2</b> , all results for laboratory control samples and surrogates were<br>generally acceptable and no detections were made in blank samples.                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                      | As results are deemed to be accurate, the highest concentrations, which were reported in the primary sample has been adopted for the purposes of characterisation.                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Sensitivity          | Sensitivity is a measure of the suitability of the laboratory results against the adopted assessment criteria.                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                      | Sensitivity is achieved through the laboratory PQL, which must fall below assessment criteria values to allow for appropriate comparison of data. As outlined in <b>Table 7-2</b> , PQLs for each analyte were below the respective assessment criteria.                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

Overall, it is considered that the data obtained during the DSI generally complied with the DQIs, noting that a degree of conservatism has been employed, and as such the data is of suitable quality to meet the project Data Quality Objectives (DQOs).

### 8. **RESULTS**

#### 8.1 Field Observations

#### Table 8-1: General Site Observations

| Condition                                      | Description                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Date of Activity                               | 15 June 2023                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Topography                                     | The site sits at the base of a hill located to the west. The site was<br>relatively flat at the time of the sampling event, although there is a<br>gentle gradient to the east towards the Mulwaree River which was<br>consistent with the surrounding topography.                                                  |  |  |  |  |  |
| Location and Extent of Fill                    | Fill material was observed at all sampling locations to at least 0.2 mbgl<br>but did extend to the full vertical extent of assessment in parts of the<br>site.<br>No significant volumes of anthropogenic material or other visual or<br>olfactory signs of impact within the fill was recorded.                    |  |  |  |  |  |
|                                                | Aside from the building footprint, the site is grassed and therefore it is expected that surface water will generally infiltrate into soils.                                                                                                                                                                        |  |  |  |  |  |
| Site Hydrology                                 | Based on the site topography, during high volume or sustained rainfall events surface water runoff is expected to generally run easterly towards Goulburn Street drains.                                                                                                                                            |  |  |  |  |  |
| Groundwater                                    | Groundwater has previously been assessed through sampling of a well<br>located in the south eastern area of the fenced garden. Groundwater<br>quality was found to be suitable for use in irrigation, livestock watering<br>and once suspended sediments had settled, for domestic potable use<br>(Ramboll, 2020a). |  |  |  |  |  |
|                                                | The shallowest groundwater is expected to be present in gravel layers between 5.5 and 18.6 mbgl based on surrounding registered bores (Ramboll, 2023a).                                                                                                                                                             |  |  |  |  |  |
|                                                | No water bodies are present on the site however a swale is located 40m north of the site. Mulwaree River is located 500 m to the east of the site.                                                                                                                                                                  |  |  |  |  |  |
| Preferential Water Courses                     | Surface water flow in the surrounding area is characterised by roadside table drains and swales in parkland which direct surface water north-ea from the site.                                                                                                                                                      |  |  |  |  |  |
| Conditions at Site Boundary                    | The site was bordered by a railway line to the west on a higher elevation<br>than the site. The eastern boundary of the site ran parallel to a Goulburn<br>Street/ Boyd Street on the same elevation as the property.                                                                                               |  |  |  |  |  |
|                                                | A deteriorating wooden fence surrounds the front of the property and a corrugated iron fence at the back of the property.                                                                                                                                                                                           |  |  |  |  |  |
| Visible Signs of Contamination                 | At the time of the sampling event there were no obvious visual or olfactory signs of contamination on the site.                                                                                                                                                                                                     |  |  |  |  |  |
| Visible Signs of Plant Stress                  | During the sampling event, vegetation at the site included a hedge<br>around the majority of the property border and two larger trees at the<br>northern and southern ends. Vegetation did not have any visible signs of<br>stress.                                                                                 |  |  |  |  |  |
| Presence of Drums, Wastes and Fill<br>Material | No drums or wastes were encountered during the site inspection. Fill material was observed at each sampling location however no                                                                                                                                                                                     |  |  |  |  |  |

|                                       | anthropogenic material was encountered within the fill with the exception of some glass at 0.1 mbgl in HA04.                                                                    |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Odours                                | At the time of the sampling event no odours were noted.                                                                                                                         |
| Condition of Buildings and Structures | The main structure on the site is a house. The house was deteriorating slightly with rotting wood and rusting fixtures observed. The interior of the building was not observed. |

#### 8.2 Soil and Bedrock Profile

A summary of the generalised lithology encountered during the investigation is summarised in **Table 8-2**. Soil logs are included in **Appendix 4**.

| Depth (mbgl) | Soil Description                                                                                                                                                                                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 - 0.2    | Fill: Gravelly SAND TOPSOIL; dark brown, dry, coarse to medium grained, rootletsgrass on surface, minor quartz gravels (1-2 mm). Minor amounts of anthropogenic material comprising of glass fragments were encountered at 0.1 mbgl at HA04 in the southern area of the site. |
| 0.3 - 0.5    | Fill: Clayey SAND/ SAND; brown, coarse to medium grained, loose, dry - slightly moist                                                                                                                                                                                         |
| 0.45 - >0.5  | Sandy CLAY; brown/grey with orange mottles, minor black gravels (1-2 mm), dry to slightly moist, low to moderate plasticity, soft to firm                                                                                                                                     |

#### Table 8-2: Generalised Site Lithology

#### 8.3 Soil Analytical Results

The results of the soil assessment are presented in **Appendix 5** and copies of the laboratory reports are presented in **Appendix 3**.

In-field gravimetric assessment was conducted on the surface soil across the eight locations did not encounter ACM fragments greater than 7 mm in size, nor were any suspect fragments encountered in the fines. Laboratory gravimetric assessment of 500 mL fines samples identified no trace amounts of fibrous asbestos or asbestos fines at any location. Therefore, the percentage weight for weight of asbestos fines/ friable asbestos (AF/FA) was less than the HIL Tier 1 criteria (NEPC, 2013).

A total of 16 primary soil samples were collected as part of the intrusive investigation and submitted for laboratory analysis of which all were submitted for metals and hydrocarbons, whilst 25% were additionally analysed for pesticide and herbicides. Results which reported concentrations greater than laboratory PQL are summarised in **Table 8-3** whilst the full results are tabulated in **Appendix 5**.

Concentrations of BTEXN, PAH, OCP and herbicides were below laboratory PQL in all samples. One surface sample, HA01 located outside of the fenced area in the south of the site, reported a low concentration of OPP compound Endrin aldehyde. The deeper sample from 0.4-0.5 mbgl at HA08 reported a low concentration of TRH C34-C40 well below ecological and direct contact criteria.

As summarised in **Table 8-3**, all concentrations were below the applied human health guidelines with the exception of Lead which reported seven exceedances of the unrestricted residential criterion and one in excess of the commercial and industrial criterion. Three of the concentrations are considered to be at hotspot (>250%) when compared to the residential criterion. Statistical analysis of the current 2023 lead dataset reported a 95%UCLaverage concentration of 611.3

mg/kg which is below the HIL D commercial/industrial guideline for lead of 1500 mg/kg. The UCL calculation is provided in **Appendix 6**.

Some ecological exceedances, as summarised in **Table 8-3**, were reported for lead, copper and zinc however it is noted that the values used are the most conservative and are intended for screening purposes. Previous investigation of the greater area included the collection of samples and analysing for parameters which allow for the derivation of site-specific EIL (SS-EIL, (Ramboll, 2020b)) in accordance with the NEPM toolbox calculator (2013). A comparison of the dataset against SS-EIL are presented in Table 8-4, whilst the information used to derive the values are provided in **Appendix 7**. The concentrations indicate that zinc and, to a lesser extent, copper are present in concentrations in excess of ecological criteria. Given the 95%UCL value of lead, this contaminant is not considered to present an exposure risk to ecological communities.

No exceedance of management limits, direct contact or intrusive worker criterion were reported for hydrocarbon compounds as presented in the results summary tables in **Appendix 5**. Soil exceedances are shown in **Figure 3**, **Appendix 1**.

| Analyte                                    | No. of  | Average | Max.        | No. of hum<br>exceed | an health<br>ances | No. of ecological<br>exceedances |       |
|--------------------------------------------|---------|---------|-------------|----------------------|--------------------|----------------------------------|-------|
| Analyte                                    | Detects | Average | Conc.       | HIL A                | HIL D              | EIL A                            | EIL D |
| Arsenic                                    | 16/16   | 16      | 66          | 0                    | 0                  | 0                                | 0     |
| Cadmium                                    | 11/16   | 5.2     | 13          | 0                    | 0                  | 0                                | 0     |
| Chromium (total)                           | 16/16   | 14      | 30          | 0                    | 0                  | 0                                | 0     |
| Copper                                     | 16/16   | 38      | 440         | 0                    | 0                  | 5                                | 5     |
| Lead                                       | 16/16   | 244     | <u>1600</u> | 7                    | 1                  | 2                                | 0     |
| Mercury                                    | 4/16    | 0.15    | 0.2         | 0                    | 0                  | 0                                | 0     |
| Nickel                                     | 6/16    | 8       | 12          | 0                    | 0                  | 0                                | 0     |
| Zinc                                       | 16/16   | 604     | 2000        | 0                    | 0                  | 14                               | 14    |
| TRH C6-C10 less<br>BTEX (F1)               | 0/16    | <20     |             | -                    | -                  | 0                                | 0     |
| >C10 - C16 Fraction<br>(minus Naphthalene) | 0/16    | <50     |             | -                    | -                  | 0                                | 0     |
| TRH >C16-C34                               | 0/16    | <1      | .00         | -                    | -                  | 0                                | 0     |
| TRH >C34-C40                               | 1/16    | -       | 180         | -                    | -                  | 0                                | 0     |

#### Table 8-3: Soil Exceedances (mg/kg)

| Analyte         | No. of  | Average | Max.<br>Conc. | No. of hum<br>exceed | an health<br>ances | No. of ecological<br>exceedances |       |
|-----------------|---------|---------|---------------|----------------------|--------------------|----------------------------------|-------|
| Analyte         | Detects |         |               | HIL A                | HIL D              | EIL A                            | EIL D |
| Endrin aldehyde | 1⁄4     | -       | 0.07          | -                    | -                  | -                                | -     |

All concentrations are in mg/kg

Bold are in excess of the HIL A criteria

<u>Underlined</u> concentrations are in excess of the HIL D criteria

#### Table 8-4: Ecological Exceedances Compared Against SS-EIL (mg/kg)

| Analyte | SS-EIL<br>A <sup>1</sup> | SS-EIL<br>D <sup>1</sup> | Average<br>Conc. | Max<br>Conc. | 95%UCL | No. ><br>SS-EIL<br>A | No. ><br>SS-EIL<br>D |
|---------|--------------------------|--------------------------|------------------|--------------|--------|----------------------|----------------------|
| Copper  | 110                      | 160                      | 38               | 440          | ND     | 5                    | 3                    |
| Lead    | 1100 <sup>2</sup>        | 1800 <sup>2</sup>        | 244              | 1600         | 611.3  | 2                    | 0                    |
| Zinc    | 250                      | 370                      | 604              | 2000         | ND     | 12                   | 10                   |

All concentrations are in mg/kg

<sup>1</sup> All contaminants are considered to be aged based on the CSM and potential contaminant sources

<sup>2</sup> SS-EIL calculator is not recommended and therefore standard values for aged contaminants have been adopted

*ND* – *Not determined due to elevated standard deviation (>50%) of the adopted criteria.* 

### 9. SITE CHARACTERISATION

Following the completion of the site investigation, lead is considered to be the primary contaminant of concern as it was the only contaminant which reported concentrations in excess of the human health criterion. Exceedances of ecological criteria were observed within the fill for zinc and copper.

Prior assessment of the site comprised analysis of lead to shallow depths up to 0.4 mbgl which was generally within the fill profile comprising of topsoil and sands with variable clay content. Due to the nature of metal impact, which will not degrade over time and no works being undertaken in the interim, all samples have been included in characterisation of the site. Elevated lead concentrations were generally restricted to the shallow (0.05-0.10 mbgl) sample however some isolated occurrences of impact extend to 0.2-0.25 mbgl. **Table 9-1** summarises the combined concentrations from both investigations within the surficial soil (0-0.05 mgbl) profile based on a conservative approach due to greatest potential soil accessibility and highest concentrations.

#### Table 9-1: Whole SMC Lead Characterisation (mg/kg)

| Analyte | No. of  | Average | Max.  | Max. |       | No. of<br>health ex | human<br>ceedances | No. of ec<br>exceed | ological<br>lances |
|---------|---------|---------|-------|------|-------|---------------------|--------------------|---------------------|--------------------|
| Anaryte | Detects | Average | Conc. | 30   | UCL   | HIL A               | HIL D              | EIL A               | EIL D              |
| Lead    | 22/22   | 854     | 3,800 | 775  | 1,185 | 22                  | 2                  | 5                   | 1                  |

ST- standard deviation

All concentrations are in mg/kg

Two exceedances of commercial and industrial use were reported with one concentration in excess of 250% of the guideline, i.e. hotspot, which was located in the central southern portion of the fenced garden area of the site. The extent of impact is considered to be limited vertically and laterally based on adjacent samples and the building footprint. The second exceedance of commercial and industrial use was slightly greater than the criterion by 1.07 times and was encountered along the western boundary between the rail corridor and dwelling and therefore could be attributable to either lead based paint from the dwelling or impact from the Loadout Complex activities.

Concentrations in excess of unrestricted residential use (HIL A) were observed across the majority of the fenced portion of the site, with the exception of the south western portion (HA08 and SS138). The vertical delineation of lead at HA07 in regards to an unrestricted residential exposure scenario was not confirmed during this assessment as the concentrations were not hotspots and were below the primary criteria (HIL D). Concentrations of lead were generally reduced outside of the fenced portion of site adjacent to the Goulburn Street/ Boyd Street road reserve.

Ecological exceedances were reported of both copper and zinc, of which the latter was observed in both fill and natural material. SS-EIL were derived for copper and lead based on local conditions assessed during the previous greater Tarago area and rail corridor DSI (Ramboll, 2020b). The maximum copper exceedance was four times the residential ecological exposure scenario. The maximum zinc concentration, 2000 mg/kg, was reported at the surface in the northern area of the site, within proximity to the corrugated iron boundary fence and rail corridor.

The natural clay profile was encountered in three locations, the north, north east and central southern portion of the site (HA02, HA04 and HA05) respectively. Samples analysed from the natural profile reported concentrations of zinc in excess of the ecological criterion which may be indicative of the metals increased mobility causing extended impact through the profile and associated with ore dust from activities within the adjacent rail corridor or imported fill.

The fenced portion of the site, in its current state, is not considered suitable for unrestricted residential use, as permissible under current zoning, without mitigation or management. Concentrations of lead also indicate that the fenced area of the site is also not suitable for commercial or industrial land use due to the presence of a hotspot in the southern garden. It is considered that that site should continue to be managed under the IEMP (Ramboll, 2023a) until a remedial strategy has been chosen and implemented. This should include the maintenance of ground cover, such as grass, to minimise the potential for surface water runoff and potential mobilisation of lead impacted sediments. It is considered that the interim management measures will also assist in the management of potential ecological exposure risks identified from zinc and copper.

### **10. REVISED CONCEPTUAL SITE MODEL**

The Preliminary CSM presented in **Section 4** has been updated following completion of the targeted DSI field investigations by Ramboll in June 2023, of which the following provides a summary with reference to both commercial/industrial and residential with accessible soils land use.

The contaminant source is generally consistent with what has been previously identified, with the inclusion of zinc and copper from the source, and is considered to comprise of:

- Migration of lead, zinc and copper impacted soil from the adjacent CRN and Loadout Complex
- Leaching of lead, zinc and copper from impacted material from the adjacent CRN and Loadout Complex
- Degradation of building/ structures which included lead-based paint finishes.

In addition, this investigation has identified that imported fill material or migration and leaching of ore dust have led to copper and zinc reporting in excess of ecological criteria.

Given that elevated concentrations of other contaminants were not identified during the investigation, the quality of the fill on the site is not considered to be a significant contaminant source.

**Table 10-1** summarises the potential exposure pathways and potential risk to receptors from the contaminants of concern.

#### 10.1 Data Gaps

There is not considered to be a risk to groundwater and/or the rainwater tank in the absence of contamination that may pose a risk to human health identified from COPC other than lead, which has been previously investigated (Ramboll, 2020a), and the lead hotspot has been delineated. As such no data gaps were identified.

#### Table 10-1: Conceptual Site Model Summary

|                                                                                                 | Source Pathway Receptor Linkages |                      |                      |                        |                                                                                                                                 |
|-------------------------------------------------------------------------------------------------|----------------------------------|----------------------|----------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Exposure Pathway                                                                                | Site<br>Workers                  | Residential<br>Owner | Intrusive<br>Workers | Terrestrial<br>Ecology | Details of Identified Risk                                                                                                      |
| Lead Concentrations in excess of HILs                                                           |                                  |                      |                      |                        |                                                                                                                                 |
| Ingestion of lead contaminated soil/ dust                                                       | Yes                              | Yes                  | Yes                  | -                      | Concentrations of lead were reported in excess of both HIL A and                                                                |
| Inhalation of lead contaminated soil/ dust                                                      | Yes                              | Yes                  | Yes                  | -                      | HIL D at levels which are considered to be unacceptable without mitigation and/or management.                                   |
| Absorption through skin                                                                         | Yes                              | Yes                  | Yes                  | -                      | If homegrown producing and consumption occurs in the future.                                                                    |
| Biological uptake of lead from soil                                                             | -                                | Possible             | -                    | Possible               | Not currently a risk based on current flora present within the garden.                                                          |
| Dermal contact with lead contaminated soil/ dust                                                | Yes                              | Yes                  | Yes                  | -                      | Dermal contact is included as there is a complete linkage,                                                                      |
| Migration/transport of soil/sediment/dust from the site via surface water runoff, relocation or |                                  |                      |                      |                        | however it is generally not considered to be a major exposure pathway (NSW EPA, 2016).                                          |
| dust migration                                                                                  | No                               | No                   | No                   | -                      | Whilst surrounding land use to the east of the site includes residential dwellings, lead impact is generally confined inside of |
|                                                                                                 |                                  |                      |                      |                        | the fenced portion of the site and this should provide a physical                                                               |
|                                                                                                 |                                  |                      |                      |                        | barrier from contaminant migration.                                                                                             |
| Copper and zinc concentrations in excess of EI                                                  | Ls                               |                      |                      |                        |                                                                                                                                 |
| Dermal contact, incidental ingestion and/or dust                                                | -                                | -                    | -                    | Possible               | Whilst the reported copper and zinc concentrations may present a                                                                |
| innalation                                                                                      |                                  |                      |                      |                        | risk to flora and fauna within the study area, the vegetation and                                                               |
| Plant root uptake                                                                               | -                                | -                    | -                    | Possible               | considered to be of low ecological value.                                                                                       |
| Migration/transport of soil/sediment from the                                                   |                                  |                      |                      |                        | Concentrations may be sourced from migration and leaching of                                                                    |
| site via surface water runoff, relocation or dust                                               | -                                | -                    | -                    | Possible               | ore dust from the adjacent rail corridor activities or importation of                                                           |
| migration                                                                                       |                                  |                      |                      |                        | fill.                                                                                                                           |
Concentrations of zinc were identified outside of the fenced portion of the site and therefore there may be some potential for

migration during inclement weather or disturbance.

### **11. CONCLUSIONS AND RECOMMENDATIONS**

Based on the exposure pathways, the fenced portion of the site, in its current state, is not considered suitable for residential use, as permissible under current zoning, without mitigation or management if it used. Concentrations of lead also indicate that the fenced area of the site is also not suitable for commercial or industrial land use due to the presence of a hotspot in the southern garden. It is noted that the site is currently vacant, with the impacted portion of the site fenced off and therefore there is not a complete contaminant exposure pathway at present.

It is considered that that site should continue to be managed under the IEMP (Ramboll, 2023a) until a remedial strategy has been chosen and implemented. The interim management measures are considered to also assist with potential ecological exposure risks identified from zinc and copper. The non-fenced portion of the site alongside Goulburn and Boyd Street is considered suitable for current use without restriction.

### **12. LIMITATIONS**

Ramboll Australia Pty Ltd (Ramboll) prepared this report in accordance with the scope of work as outlined in our proposal to UGL Regional Linx dated 5 December 2022 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous. Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Ramboll disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Ramboll's professional judgment based on information made available during the course of this assignment and are true and correct to the best of Ramboll's knowledge as at the date of the assessment.

Ramboll did not independently verify all of the written or oral information provided to Ramboll during the course of this investigation. While Ramboll has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Ramboll was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

#### 12.1 User Reliance

This report has been prepared exclusively for UGL Regional Linx, which includes extension of reliance to Transport for New South Wales and the Transport Asset Holding Entity. This report may not be upon by any other persons or entities without Ramboll's express written permission.

### **13. REFERENCES**

- AUSGIN. (2020). Retrieved from AUSGIN Geoscience Portal: https://portal.geoscience.gov.au/ accessed 8/1/2020
- Friebel, E. &. (2011). *Health Screening Levels for petroleum hydrocarbons in soil and groundwater. CRC Care Technical Report no.10.* Adelaide, Australia: CRC for Contamination Assessment and Remediation of the Environment.
- Heritage NSW. (2023). The State Heritage Inventory Tarago Railway Station Group.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1). NEPC.
- NEPC. (2013). National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013.
- NHMRC. (2011). National Health and Medical Research Council, National Water Quality Management Strategy, Australian Drinking Water Guidelines. Version 3.8, Updated September 2022.
- NSW DoH. (2022, September 30). *NSW Department of Health*. Retrieved from Rainwater tanks: https://www.health.nsw.gov.au/environment/water/Pages/rainwater.aspx
- NSW DPIE. (2020). Retrieved from Minview: https://minview.geoscience.nsw.gov.au/ , accessed 8/1/2020
- NSW EPA. (2016). *Leadsmart*. Retrieved from Leadsmart, General Awareness, Living with Lead in Broken Hill: https://leadsmart.nsw.gov.au/wp-content/uploads/2016/09/LeadSmart-Brochure-GeneralAwareness.pdf
- NSW EPA. (2017). Guidelines for the Site Auditor Scheme (3rd Edition).
- NSW EPA. (2020). Consultants reporting on contaminated lands. NSW EPA.
- NSW EPA. (2022). Contaminated Land Guidelines Sampling Design Part 1 application.
- NSW EPA. (2022). Sampling Design Guidelines.
- Ramboll. (2020a). 106 Goulburn Street, Tarago NSW Lead Investigation Report.
- Ramboll. (2020b). Tarago Rail Corridor and Tarago Area Detailed Site Investigation, Captains Flat Rail Corridor, Detailed Site Investigation.
- Ramboll. (2021). Tarago Rail Corridor and Tarago Area Detailed Site Investigation, Captains Flat Rail Corridor, Detailed Site Investigation Addendum.
- Ramboll. (2023a). 106 Goulburn Street Tarago Interim Environmental Management Plan, Revision 2.
- Ramboll. (2023b). Tarago Station Masters Cottage, Sampling and Analysis Quality Plan.
- WA DOH. (2021). Guidelines for the Assessment, Remediation, and Management of Asbestos Contaminated Soils in Western Australia.

#### APPENDIX 1 FIGURES



#### Legend



RAMBOLL Figure 1 : Site Layout





#### Legend



- Previous sample locations
  - € Groundwater sample
    - Hand auger sample  $\otimes$
    - $\otimes$ Shallow soil sample













 $\mathbf{\Phi}$ 

**A3** 1:300



#### Legend





- $oldsymbol{O}$ Hand auger sample location (June 2023) Sample name prefix "SMCDSI\_"
- Previous sample locations  $\otimes$ 
  - Hand auger sample  $\mathbf{X}$
  - Shallow soil sample

E

| L | criteria | are | based | on | aded | SS-EIL | values |  |
|---|----------|-----|-------|----|------|--------|--------|--|

cted during 2023 invest

| E | xceedan | ice criteria |                        |                          |                              |                        |                        |
|---|---------|--------------|------------------------|--------------------------|------------------------------|------------------------|------------------------|
|   | Date    | Depth (m)    | Analyte                | NEPM - HIL A RESIDENTIAL | NEPM - HIL D COMM/INDUSTRIAL | NEPM - EIL RESIDENTIAL | NEPM - EIL COMM/INDUST |
|   |         |              | Copper - filtered (Cu) | 6000 mg/kg               | 240000 mg/kg                 | 110 mg/kg              | 160 mg/kg              |
| Γ |         |              | Lead - filtered (Pb)   | 300 mg/kg                | 1500 mg/kg                   | 1100 mg/kg             | 1800 mg/kg             |
|   |         |              | Zinc - filtered (Zn)   | 7400 mg/kg               | 400000 mg/kg                 | 250 mg/kg              | 370 mg/kg              |

\*Following QA/QC assessment, the highest concentration (from the primary sample) has been adopted for the purposes of characterisation



| magery | C | ESRI | world | imag |
|--------|---|------|-------|------|

**A3** 1:300

#### APPENDIX 2 CALIBRATION CERTIFICATES

Instrument PhoCheck Tiger Serial No. T-111096



#### Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                    | Pass |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Comment  | C.      |
|---------------|-------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------|
| Battery       | Charge Condition        | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | oominent |         |
|               | Fuses                   | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Capacity                | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Recharge OK?            | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Switch/keypad | Operation               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Display       | Intensity               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Operation<br>(segments) | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Grill Filter  | Condition               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Seal                    | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Pump          | Operation               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Filter                  | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Flow                    | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
|               | Valves, Diaphragm       | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| PCB           | Condition               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Connectors    | Condition               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Sensor        | PID                     | 1    | 10.6 ev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |         |
| Alarms        | Beeper                  | 1    | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High         | TWA      | STEL    |
|               | Settings                | √    | 50ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100ppm       |          | V 1 M N |
| Software      | Version                 | 1    | , has platered as a second sec | 1.1.5.6.6.6. |          |         |
| Data logger   | Operation               | ✓    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Download      | Operation               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |
| Other tests:  |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         |

#### **Certificate of Calibration**

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor   | Serial no | Calibration gas and | Certified | Gas bottle | Instrument Reading |
|----------|-----------|---------------------|-----------|------------|--------------------|
| PID Lamp |           | 97ppm Isobutylene   | NATA      | SY532      | 97.5 ppm           |

Calibrated by: Jesse Stenroos

Calibration date: 13/06/2023

Next calibration due: 13/07/2023

APPENDIX 3 LABORATORY REPORTS



### Certificate of Analysis

### **Environment Testing**

Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

| Attention:                                       | Stephen Maxwell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report                                           | 1001666-AID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project Name                                     | TARAGO DETAILED SITE INVESTIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project ID                                       | 318001679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Received Date                                    | Jun 19, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Reported                                    | Jul 03, 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Methodology:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Asbestos Fibre<br>Identification                 | Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.<br>NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Unknown Mineral<br>Fibres                        | Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as<br>Electron Microscopy, to confirm unequivocal identity.<br>NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the<br>optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an<br>independent technique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subsampling Soil<br>Samples                      | The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed.<br>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bonded asbestos-<br>containing material<br>(ACM) | The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.<br>NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.                                                                                                                                                                                                                                                     |
| Limit of Reporting                               | The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH. |



# Project NameTARAGO DETAILED SITE INVESTIGATIONProject ID318001679Date SampledJun 15, 2023Report1001666-AID

| Client Sample ID | Eurofins Sample<br>No. | Date Sampled | Sample Description                                                                                                         | Result                                                                                                                |
|------------------|------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| SMC-HA01-0.05    | 23-Jn0053326           | Jun 15, 2023 | Approximate Sample 358g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA02-0.05    | 23-Jn0053328           | Jun 15, 2023 | Approximate Sample 171g / >400ml<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA03-0.05    | 23-Jn0053330           | Jun 15, 2023 | Approximate Sample 384g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA04-0.05    | 23-Jn0053332           | Jun 15, 2023 | Approximate Sample 493g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA05-0.05    | 23-Jn0053334           | Jun 15, 2023 | Approximate Sample 356g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA06-0.05    | 23-Jn0053336           | Jun 15, 2023 | Approximate Sample 325g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA07-0.05    | 23-Jn0053338           | Jun 15, 2023 | Approximate Sample 361g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |
| SMC-HA08-0.05    | 23-Jn0053340           | Jun 15, 2023 | Approximate Sample 478g<br>Sample consisted of: Brown fine-grained clayey sandy soil, organic<br>debris and rocks          | No asbestos detected at the reporting limit of 0.001% w/w.*<br>Organic fibre detected.<br>No trace asbestos detected. |



#### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

#### Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyJun 23, 2023

Holding Time 3 Indefinite

|                  | ABN: 50 005 085 521                                                                    |                                                       |                                                                                               |                                                                                                               | g Australia Pty Ltd                                                                           |                                                                                                                                              |                   |                                 |                                                              |                                |                                  | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                 | Eurofins Environm<br>NZBN: 9429046024954   | ent Testing NZ Ltd        |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |
|------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------------------------------------------|--------------------------------|----------------------------------|-------------------------------------------------------------|--------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: w<br>email: | veb: www.eurofins.com.au<br>amail: EnviroSales@eurofins.com<br>Company Name: Ramboll A |                                                       | Melbourne<br>6 Monterey Roa<br>Dandenong Sou<br>VIC 3175<br>Tel: +61 3 8564<br>NATA# 1261 Sit | Geelong     d   19/8 Lewa     th   Grovedala     VIC 3216   5000     5000   Tel: +61 3     e# 1254   NATA# 12 | Sydne     alan Street   179 M     e   Girraw     x80 2   S8564 5000     261 Site# 25403 NATA; | Canberra     igowar Road   Unit 1,2 Dac     pen   Mitchell     145   ACT 2911     12 9900 8400   Tel: +61 2 6     1261 Site# 18217 NATA# 126 |                   |                                 | <b>erra</b><br>1,2 Dac<br>ell<br>2911<br>-61 2 61<br>A# 1261 | re Stree<br>113 809<br>Site# 2 | t 1/<br>M<br>Q<br>1 Te<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | e<br>allwood<br>72<br>7 3902 4<br>261 Site | Place<br>4600<br>e# 20794 | Newcastle   Perth     1/2 Frost Drive   46-48     Mayfield West NSW 2304   Welsh     Tel: +61 2 4968 8448   WA 6'     NATA# 1261   Tel: +1     94 Site# 25079 & 25289   NATA | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| Co<br>Ad         | ompany Name:<br>Idress:                                                                | Ramboll Aus<br>Level 3/100<br>North Sydne<br>NSW 2060 | stralia Pty Lto<br>Pacific Highv<br>y                                                         | l<br>way                                                                                                      |                                                                                               |                                                                                                                                              | O<br>R<br>P<br>Fa | rder N<br>eport<br>hone:<br>ax: | No.:<br>#:                                                   | 1<br>()<br>()                  | 10016<br>)2 995<br>)2 995        | 66<br>54 81<br>54 81                                        | 18<br>50                                   |                           |                                                                                                                                                                              | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | PM                                                                                                       |
| Pro<br>Pro       | Project Name: TARAGO DETAILED SITE INVESTIGATION   Project ID: 318001679               |                                                       |                                                                                               |                                                                                                               |                                                                                               |                                                                                                                                              |                   |                                 |                                                              |                                |                                  |                                                             |                                            |                           | Eu                                                                                                                                                                           | rofins Analytical Serv                                                                               | vices Manager : Ar                                                                            | ndrew Black                                                                                              |
| Sample Detail    |                                                                                        |                                                       |                                                                                               |                                                                                                               |                                                                                               |                                                                                                                                              |                   | Acid Herbicides                 | Metals M8 filtered                                           | BTEX                           | Suite B14: OCP/OPP               | Moisture Set                                                | Eurofins Suite B7                          | BTEX                      |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |
| Mell             | oourne Laborato                                                                        | ory - NATA # 12                                       | 261 Site # 12                                                                                 | 54                                                                                                            |                                                                                               |                                                                                                                                              |                   | x                               | x                                                            |                                |                                  |                                                             |                                            |                           | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| Syd              | ney Laboratory                                                                         | - NATA # 1261                                         | Site # 18217                                                                                  | 1                                                                                                             |                                                                                               | X                                                                                                                                            | X                 |                                 | X                                                            | X                              | Х                                | X                                                           | X                                          | Х                         | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| No               | Sample ID                                                                              | Sample Date                                           | Sampling<br>Time                                                                              | Matrix                                                                                                        | LAB ID                                                                                        |                                                                                                                                              |                   |                                 |                                                              |                                |                                  |                                                             |                                            |                           |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |
| 1                | SMC-HA01-<br>0.05                                                                      | Jun 15, 2023                                          |                                                                                               | Soil                                                                                                          | S23-Jn0053326                                                                                 | з х                                                                                                                                          |                   | х                               |                                                              |                                | х                                | х                                                           | х                                          |                           |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |
| 2                | SMC-HA01-<br>0.25                                                                      | Jun 15, 2023                                          |                                                                                               | Soil                                                                                                          | S23-Jn0053327                                                                                 | ,                                                                                                                                            |                   |                                 |                                                              |                                |                                  | x                                                           | x                                          |                           | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| 3                | SMC-HA02-<br>0.05                                                                      | Jun 15, 2023                                          |                                                                                               | Soil                                                                                                          | S23-Jn0053328                                                                                 | <sup>3</sup> x                                                                                                                               |                   |                                 |                                                              |                                |                                  | х                                                           | x                                          |                           | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| 4                | SMC-HA02-<br>0.5                                                                       | Jun 15, 2023                                          |                                                                                               | Soil                                                                                                          | S23-Jn0053329                                                                                 | )                                                                                                                                            |                   |                                 |                                                              |                                |                                  | х                                                           | x                                          |                           |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |
| 5                | SMC-HA03-<br>0.05                                                                      | Jun 15, 2023                                          |                                                                                               | Soil                                                                                                          | S23-Jn0053330                                                                                 | ) x                                                                                                                                          |                   | х                               |                                                              |                                | х                                | x                                                           | x                                          |                           | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| 6                | SMC-HA03-<br>0.25                                                                      | Jun 15, 2023                                          |                                                                                               | Sol                                                                                                           | S23-Jn005333                                                                                  |                                                                                                                                              |                   |                                 |                                                              |                                |                                  | х                                                           | X                                          |                           | -                                                                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |
| 1                | SMC-HA04-<br>0.05                                                                      | Jun 15, 2023                                          |                                                                                               | 501                                                                                                           | S23-Jn0053332                                                                                 | X                                                                                                                                            |                   |                                 |                                                              |                                |                                  | Х                                                           | Х                                          |                           |                                                                                                                                                                              |                                                                                                      |                                                                                               |                                                                                                          |

| •                |                                                                                        | fine                                                | Eurofins Environ                                                                                           | nent Testing Austral                                                                                      | ia Pty Ltd                                                                                                                                    |   |                     |                                            |                                                      |                               |                                  |                                                             |                                       |                          |                                                                                                                       | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environn<br>NZBN: 942904602495                                                       | ent Testing NZ Ltd                                                                                       |
|------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------|--------------------------------------------|------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: v<br>email: | web: www.eurofins.com.au<br>amail: EnviroSales@eurofins.com<br>Company Name: Ramboll / | .com                                                | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 12 | Geelong<br>19/8 Lewalan Street<br>Grovedale<br>VIC 3216<br>Tel: +61 3 8564 5000<br>54 NATA# 1261 Site# 25 | ong   Sydney     Lewalan Street   179 Mag     sdale   Girrawee     216   NSW 21.     61 3 8564 5000   Tel: +61     # 1261 Site# 25403 NATA# 1 |   |                     | Canb<br>Unit 1<br>Mitch<br>ACT :<br>Tel: + | erra<br>,2 Daci<br>ell<br>2911<br>61 2 61<br>\# 1261 | re Stree<br>13 809<br>Site# 2 | B<br>t 1/<br>Q<br>1 Te<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | allwood<br>72<br>7 3902 -<br>261 Site | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>4 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| Cc<br>Ac         | ompany Name:<br>Idress:                                                                | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | ustralia Pty Ltd<br>D Pacific Highway<br>ney                                                               |                                                                                                           |                                                                                                                                               |   | O<br>Ri<br>Pi<br>Fa | rder N<br>eport<br>hone:<br>ax:            | lo.:<br>#:                                           | 1<br>()<br>()                 | 10016<br>)2 995<br>)2 995        | 66<br>54 81<br>54 81                                        | 18<br>50                              |                          |                                                                                                                       | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | PM                                                                                                       |
| Pr<br>Pr         | Project Name: TARAGO DETAILED SITE INVESTIGATION   Project ID: 318001679               |                                                     |                                                                                                            |                                                                                                           |                                                                                                                                               |   |                     |                                            |                                                      |                               |                                  |                                                             |                                       |                          | Eu                                                                                                                    | urofins Analytical Serv                                                                              | vices Manager : A                                                                             | ndrew Black                                                                                              |
| Sample Detail    |                                                                                        |                                                     |                                                                                                            |                                                                                                           |                                                                                                                                               |   | HOLD                | Acid Herbicides                            | Metals M8 filtered                                   | BTEX                          | Suite B14: OCP/OPP               | Moisture Set                                                | Eurofins Suite B7                     | BTEX                     |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Mel              | ourne Laborato                                                                         | ory - NATA # 1                                      | 261 Site # 1254                                                                                            |                                                                                                           |                                                                                                                                               |   |                     | Х                                          | Х                                                    |                               |                                  |                                                             |                                       |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Syd              | ney Laboratory                                                                         | - NATA # 1261                                       | 1 Site # 18217                                                                                             |                                                                                                           |                                                                                                                                               | Х | X                   |                                            | х                                                    | Х                             | Х                                | х                                                           | Х                                     | Х                        |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 8                | SMC-HA04-<br>0.5                                                                       | Jun 15, 2023                                        | Soi                                                                                                        | l S23-Jr                                                                                                  | 0053333                                                                                                                                       |   |                     |                                            |                                                      |                               |                                  | х                                                           | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 9                | SMC-HA05-<br>0.05                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | S23-Jr                                                                                                    | 0053334                                                                                                                                       | х |                     | х                                          |                                                      |                               | х                                | х                                                           | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 10               | SMC-HA05-<br>0.25                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | l S23-Jr                                                                                                  | 0053335                                                                                                                                       |   |                     |                                            |                                                      |                               |                                  | х                                                           | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 11               | SMC-HA06-<br>0.05                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | l S23-Jr                                                                                                  | 0053336                                                                                                                                       | x |                     |                                            |                                                      |                               |                                  | х                                                           | x                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 12               | SMC-HA06-<br>0.5                                                                       | Jun 15, 2023                                        | Soi                                                                                                        | S23-Jr                                                                                                    | 0053337                                                                                                                                       |   |                     |                                            |                                                      |                               |                                  | х                                                           | x                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 13               | SMC-HA07-<br>0.05                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | S23-Jr                                                                                                    | 0053338                                                                                                                                       | x |                     | x                                          |                                                      |                               | x                                | х                                                           | x                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 14               | SMC-HA07-<br>0.25                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | S23-Jr                                                                                                    | 0053339                                                                                                                                       |   |                     |                                            |                                                      |                               |                                  | х                                                           | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 15               | SMC-HA08-<br>0.05                                                                      | Jun 15, 2023                                        | Soi                                                                                                        | S23-Jr                                                                                                    | 0053340                                                                                                                                       | х |                     |                                            |                                                      |                               |                                  | х                                                           | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 16               | SMC-HA08-<br>0.5                                                                       | Jun 15, 2023                                        | Soi                                                                                                        | l S23-Jr                                                                                                  | 0053341                                                                                                                                       |   |                     |                                            |                                                      |                               |                                  | х                                                           | х                                     |                          | ]                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |

| •                |                                                                          | fine                                                | ABN: 50 005 085 521                                                                                        | nent Testing                                                                    | Australia Pty Ltd                                                                                          |                                            |                        |                                            |                                                      |                               |                               |                                                             |                                       |                          |                                                                                                                       | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environm<br>NZBN: 9429046024954                                                      | ent Testing NZ Ltd                                                                                       |
|------------------|--------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: w<br>email: | ww.eurofins.com.au                                                       | .com                                                | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 12 | Geelong<br>19/8 Lewala<br>Grovedale<br>VIC 3216<br>Tel: +61 3 8<br>54 NATA# 126 | Sydney     an Street   179 Mag     Girrawee   NSW 214     1564 5000   Tel: +61     1 Site# 25403   NATA# 1 | owar Ro<br>n<br>45<br>2 9900 8<br>261 Site | bad<br>8400<br>∌# 1821 | Canb<br>Unit 1<br>Mitch<br>ACT :<br>Tel: + | erra<br>,2 Dacı<br>ell<br>2911<br>61 2 61<br>\# 1261 | re Stree<br>13 809<br>Site# 2 | B<br>1/<br>Q<br>1 T<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | allwood<br>72<br>7 3902 4<br>261 Site | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>4 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| Co<br>Ad         | mpany Name:<br>dress:                                                    | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | istralia Pty Ltd<br>) Pacific Highway<br>ey                                                                |                                                                                 |                                                                                                            |                                            | O<br>Ri<br>Pi<br>Fa    | rder N<br>eport<br>hone:<br>ax:            | lo.:<br>#:                                           | 1<br>()<br>()                 | 10016<br>)2 995<br>)2 995     | 66<br>54 81<br>54 81                                        | 18<br>50                              |                          |                                                                                                                       | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | PM                                                                                                       |
| Pro<br>Pro       | Project Name: TARAGO DETAILED SITE INVESTIGATION   Project ID: 318001679 |                                                     |                                                                                                            |                                                                                 |                                                                                                            |                                            | _                      |                                            |                                                      |                               |                               |                                                             |                                       |                          | Ει                                                                                                                    | rofins Analytical Serv                                                                               | vices Manager : Ar                                                                            | ndrew Black                                                                                              |
|                  |                                                                          | s                                                   | ample Detail                                                                                               |                                                                                 |                                                                                                            | Asbestos - WA guidelines                   | HOLD                   | Acid Herbicides                            | Metals M8 filtered                                   | BTEX                          | Suite B14: OCP/OPP            | Moisture Set                                                | Eurofins Suite B7                     | BTEX                     |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Melt             | oourne Laborato                                                          | ory - NATA # 1                                      | 261 Site # 1254                                                                                            |                                                                                 |                                                                                                            |                                            |                        | Х                                          | х                                                    |                               |                               |                                                             |                                       |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Syd              | ney Laboratory                                                           | - NATA # 1261                                       | Site # 18217                                                                                               |                                                                                 |                                                                                                            | Х                                          | X                      |                                            | Х                                                    | Х                             | Х                             | X                                                           | Х                                     | Х                        | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 17               | QC100-15.623                                                             | Jun 15, 2023                                        | Soi                                                                                                        | l                                                                               | S23-Jn0053342                                                                                              |                                            |                        | X                                          |                                                      |                               | Х                             | X                                                           | X                                     |                          | 4                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 18               | QC300-15.623                                                             | Jun 15, 2023                                        | Wa                                                                                                         | ter                                                                             | S23-Jn0053343                                                                                              |                                            |                        |                                            | X                                                    |                               | <u> </u>                      |                                                             |                                       |                          | 4                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 19               | TRIP BLANK-<br>150623                                                    | Jun 15, 2023                                        | Soi                                                                                                        |                                                                                 | S23-Jn0053344                                                                                              |                                            |                        |                                            |                                                      | x                             |                               |                                                             |                                       |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 20               | TRIP SPIKE-<br>150625                                                    | Jun 15, 2023                                        | Soi                                                                                                        |                                                                                 | S23-Jn0053345                                                                                              |                                            |                        |                                            |                                                      |                               |                               |                                                             |                                       | х                        | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 21               | SMC-HA01-<br>0.5                                                         | Jun 15, 2023                                        | Soi                                                                                                        |                                                                                 | S23-Jn0053346                                                                                              |                                            | X                      |                                            |                                                      |                               |                               |                                                             |                                       |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 22               | SMC-HA02-<br>0.25                                                        | Jun 15, 2023                                        | Soi                                                                                                        |                                                                                 | S23-Jn0053347                                                                                              |                                            | x                      |                                            |                                                      |                               |                               |                                                             |                                       |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 23               | SMC-HA03-<br>0.5                                                         | Jun 15, 2023                                        | Soi                                                                                                        | l                                                                               | S23-Jn0053348                                                                                              |                                            | х                      |                                            |                                                      |                               |                               |                                                             |                                       |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 24               | SMC-HA04-<br>0.25                                                        | Jun 15, 2023                                        | Soi                                                                                                        |                                                                                 | S23-Jn0053349                                                                                              |                                            | x                      |                                            |                                                      |                               |                               |                                                             |                                       |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 25               | SMC-HA05-<br>0.5                                                         | Jun 15, 2023                                        | Soi                                                                                                        | l                                                                               | S23-Jn0053350                                                                                              |                                            | х                      |                                            |                                                      |                               |                               |                                                             |                                       |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 26               | SMC-HA06-                                                                | Jun 15, 2023                                        | Soi                                                                                                        | l                                                                               | S23-Jn0053351                                                                                              |                                            | Х                      |                                            |                                                      |                               |                               |                                                             |                                       |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |

|                  |                                                                          | fine                                                | Eurofins Enviror<br>ABN: 50 005 085 52                                                                   | iment Testing Au                                                                  | stralia Pty Ltd                                                                                 | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                                                                                                                                       | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954 |                                 |                                           |                                |                                                             |                                            |                          |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
|------------------|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|
| web: w<br>email: | company Name: Ramboli                                                    |                                                     | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 500<br>NATA# 1261 Site# 1 | Geelong     19/8 Lewalan S     Grovedale     VIC 3216     Tel: +61 3 8564     254 | Sydney     treet   179 Mag     Girrawee   NSW 214     5000   Tel: +61 :     te# 25403   NATA# 1 | Sydney   Canberra     179 Magowar Road   Unit 1,2 Dacre Streed     Girraween   Mitchell     NSW 2145   ACT 2911     Tel: +61 2 9900 8400   Tel: +61 2 6113 809     03 NATA# 1261 Site# 18217   NATA# 1261 Site# 2 |                                                            |                                 | e Stree<br>13 809 <sup>.</sup><br>Site# 2 | B<br>1/<br>Q<br>1 Te<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | e<br>allwood<br>72<br>7 3902 -<br>261 Site | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>44 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |             |
| Co<br>Ac         | ompany Name:<br>Idress:                                                  | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | ustralia Pty Ltd<br>) Pacific Highway<br>ey                                                              |                                                                                   |                                                                                                 |                                                                                                                                                                                                                   | O<br>R<br>Pl<br>Fa                                         | rder N<br>eport<br>hone:<br>ax: | No.:<br>#:                                | 1<br>()<br>()                  | 10016<br>)2 995<br>)2 995                                   | 66<br>54 811<br>54 815                     | 18<br>50                 |                                                                                                                        |                                                                                                      | Received:<br>Due:<br>Priority:<br>Contact Name:                                               | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                            | PM          |
| Pr<br>Pr         | Project Name: TARAGO DETAILED SITE INVESTIGATION   Project ID: 318001679 |                                                     |                                                                                                          |                                                                                   | N                                                                                               |                                                                                                                                                                                                                   |                                                            |                                 |                                           |                                |                                                             |                                            |                          |                                                                                                                        | E                                                                                                    | urofins Analytical Ser                                                                        | vices Manager : Ar                                                                                       | ndrew Black |
|                  | Sampl                                                                    |                                                     |                                                                                                          |                                                                                   |                                                                                                 | Asbestos - WA guidelines                                                                                                                                                                                          | HOLD                                                       | Acid Herbicides                 | Metals M8 filtered                        | BTEX                           | Suite B14: OCP/OPP                                          | Moisture Set                               | Eurofins Suite B7        | BTEX                                                                                                                   |                                                                                                      |                                                                                               |                                                                                                          |             |
| Mell             | bourne Laborate                                                          | ory - NATA # 1                                      | 261 Site # 1254                                                                                          |                                                                                   |                                                                                                 |                                                                                                                                                                                                                   |                                                            | X                               | X                                         |                                |                                                             |                                            |                          |                                                                                                                        | -                                                                                                    |                                                                                               |                                                                                                          |             |
| Syd              | ney Laboratory                                                           | - NATA # 1261                                       | Site # 18217                                                                                             |                                                                                   |                                                                                                 | X                                                                                                                                                                                                                 | X                                                          |                                 | X                                         | X                              | X                                                           | X                                          | X                        | X                                                                                                                      | 4                                                                                                    |                                                                                               |                                                                                                          |             |
| 27               | 0.25<br>SMC-HA07-<br>0.5                                                 | Jun 15, 2023                                        | Sc                                                                                                       | il S2                                                                             | 23-Jn0053352                                                                                    |                                                                                                                                                                                                                   | x                                                          |                                 |                                           |                                |                                                             |                                            |                          |                                                                                                                        | -                                                                                                    |                                                                                               |                                                                                                          |             |
| 28               | SMC-HA08-<br>0.25                                                        | Jun 15, 2023                                        | Sc                                                                                                       | il S2                                                                             | 23-Jn0053353                                                                                    |                                                                                                                                                                                                                   | x                                                          |                                 |                                           |                                |                                                             |                                            |                          |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| Test             | t Counts                                                                 |                                                     |                                                                                                          |                                                                                   |                                                                                                 | 8                                                                                                                                                                                                                 | 8                                                          | 5                               | 1                                         | 1                              | 5                                                           | 17                                         | 17                       | 1                                                                                                                      | 1                                                                                                    |                                                                                               |                                                                                                          |             |



#### Internal Quality Control Review and Glossary General

- 1. 2. 3.
- CC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 4. 5.

Holding Times Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

| Units<br>% w/w:<br>F/fld F/mL<br>g, kg<br>g/kg<br>L, mL<br>L/min<br>min | Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)<br>Airborne fibre filter loading as Fibres (N) per Fields counted (n)<br>Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)<br>Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)<br>Concentration in grams per kilogram<br>Volume, e.g. of air as measured in AFM (V = r x t)<br>Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)<br>Time (t), e.g. of air sample collection period |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculations<br>Airborne Fibre Concentration:                           | $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{v}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Asbestos Content (as asbestos):                                         | $\% w/w = \frac{(m \times P_A)}{M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weighted Average (of asbestos):                                         | $\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_x}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terms<br>%asbestos                                                      | Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P <sub>A</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACM                                                                     | Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.                                                                                                                                                                                                                                                                                                                                                                                                |
| AF                                                                      | Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".                                                                                                                                                                                                                                                                                                                                          |
| AFM                                                                     | Airborne Fibre Monitoring, e.g. by the MFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Amosite                                                                 | Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AS                                                                      | Australian Standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Asbestos Content (as asbestos)                                          | Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chrysotile                                                              | Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COC                                                                     | Chain of Custody.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Crocidolite                                                             | Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dry                                                                     | Sample is dried by heating prior to analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DS                                                                      | Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FA                                                                      | Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.                                                                                                                                                             |
| Fibre Count                                                             | Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fibre ID                                                                | Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Friable                                                                 | Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.                                                                                                                                                                                                                                                                                                                                                                                                      |
| HSG248                                                                  | UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HSG264                                                                  | UK HSE HSG264, Asbestos: The Survey Guide (2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ISO (also ISO/IEC)                                                      | International Organization for Standardization / International Electrotechnical Commission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| K Factor                                                                | Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOR                                                                     | Limit of Reporting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MFM (also NOHSC:3003)                                                   | Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].                                                                                                                                                                                                                                                                                                                                                                                          |
| NEPM (also ASC NEPM)                                                    | National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Organic                                                                 | Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PCM                                                                     | Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PLM                                                                     | Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sampling                                                                | Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMF                                                                     | Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SRA                                                                     | Sample Receipt Advice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Trace Analysis                                                          | Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UK HSE HSG                                                              | United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| UMF                                                                     | Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004 May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.                                                                                                                                                                                                                                                                                                                                                                                      |
| WA DOH                                                                  | Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-<br>Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis                                                                                                                                                                                                                                                                                                                                                                                    |
| Weighted Average                                                        | Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



#### Comments

Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### Asbestos Counter/Identifier:

Sayeed Abu

ed Abu Senior Analyst-Asbestos

#### Authorised by:

Laxman Dias

Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

#### Attention:

#### Stephen Maxwell

| Report        |
|---------------|
| Project name  |
| Project ID    |
| Received Date |

1001666-S TARAGO DETAILED SITE INVESTIGATION 318001679 Jun 19, 2023

|                                                   |      |       | 1                 | 1                 | 1                 | 1             |
|---------------------------------------------------|------|-------|-------------------|-------------------|-------------------|---------------|
| Client Sample ID                                  |      |       | SMC-HA01-<br>0.05 | SMC-HA01-<br>0.25 | SMC-HA02-<br>0.05 | SMC-HA02-0.5  |
| Sample Matrix                                     |      |       | Soil              | Soil              | Soil              | Soil          |
| Eurofins Sample No.                               |      |       | S23-Jn0053326     | S23-Jn0053327     | S23-Jn0053328     | S23-Jn0053329 |
| Date Sampled                                      |      |       | Jun 15, 2023      | Jun 15, 2023      | Jun 15, 2023      | Jun 15, 2023  |
| Test/Reference                                    | LOR  | Unit  |                   |                   |                   |               |
| Total Recoverable Hydrocarbons                    | -0.1 | Cint  |                   |                   |                   |               |
| TRH C6-C9                                         | 20   | ma/ka | < 20              | < 20              | < 20              | < 20          |
| TRH C10-C14                                       | 20   | mg/kg | < 20              | < 20              | < 20              | < 20          |
| TRH C15-C28                                       | 50   | mg/kg | < 50              | < 50              | < 50              | < 50          |
| TRH C29-C36                                       | 50   | mg/kg | < 50              | < 50              | < 50              | < 50          |
| TRH C10-C36 (Total)                               | 50   | mg/kg | < 50              | < 50              | < 50              | < 50          |
| TRH C6-C10                                        | 20   | mg/kg | < 20              | < 20              | < 20              | < 20          |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | mg/kg | < 20              | < 20              | < 20              | < 20          |
| TRH >C10-C16                                      | 50   | mg/kg | < 50              | < 50              | < 50              | < 50          |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | mg/kg | < 50              | < 50              | < 50              | < 50          |
| TRH >C16-C34                                      | 100  | mg/kg | < 100             | < 100             | < 100             | < 100         |
| TRH >C34-C40                                      | 100  | mg/kg | < 100             | < 100             | < 100             | < 100         |
| TRH >C10-C40 (total)*                             | 100  | mg/kg | < 100             | < 100             | < 100             | < 100         |
| BTEX                                              |      | 00    |                   |                   |                   |               |
| Benzene                                           | 0.1  | mg/kg | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| Toluene                                           | 0.1  | mg/kg | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| Ethylbenzene                                      | 0.1  | mg/kg | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| m&p-Xylenes                                       | 0.2  | mg/kg | < 0.2             | < 0.2             | < 0.2             | < 0.2         |
| o-Xylene                                          | 0.1  | mg/kg | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| Xylenes - Total*                                  | 0.3  | mg/kg | < 0.3             | < 0.3             | < 0.3             | < 0.3         |
| 4-Bromofluorobenzene (surr.)                      | 1    | %     | 76                | 69                | 74                | 60            |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | ions |       |                   |                   |                   |               |
| Naphthalene <sup>N02</sup>                        | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Polycyclic Aromatic Hydrocarbons                  |      |       |                   |                   |                   |               |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5  | mg/kg | 0.6               | 0.6               | 0.6               | 0.6           |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5  | mg/kg | 1.2               | 1.2               | 1.2               | 1.2           |
| Acenaphthene                                      | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Acenaphthylene                                    | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Anthracene                                        | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benz(a)anthracene                                 | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(a)pyrene                                    | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(g.h.i)perylene                              | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(k)fluoranthene                              | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Chrysene                                          | 0.5  | mg/kg | < 0.5             | < 0.5             | < 0.5             | < 0.5         |



| Client Sample ID                    |      |       | SMC-HA01-     | SMC-HA01-     | SMC-HA02-     |               |
|-------------------------------------|------|-------|---------------|---------------|---------------|---------------|
| Samula Matrix                       |      |       | 0.05          | 0.25          | 0.05          | SMC-HA02-0.5  |
|                                     |      |       | 5011          | 5011          | 5011          | 5011          |
| Eurofins Sample No.                 |      |       | S23-Jn0053326 | S23-Jn0053327 | S23-Jn0053328 | S23-Jn0053329 |
| Date Sampled                        |      |       | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  |
| Test/Reference                      | LOR  | Unit  |               |               |               |               |
| Polycyclic Aromatic Hydrocarbons    |      |       |               |               |               |               |
| Dibenz(a.h)anthracene               | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Fluoranthene                        | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Fluorene                            | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Indeno(1.2.3-cd)pyrene              | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Naphthalene                         | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Phenanthrene                        | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Pyrene                              | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| Total PAH*                          | 0.5  | mg/kg | < 0.5         | < 0.5         | < 0.5         | < 0.5         |
| 2-Fluorobiphenyl (surr.)            | 1    | %     | 102           | 106           | 101           | 100           |
| p-lerphenyl-d14 (surr.)             | 1    | %     | 95            | 101           | 94            | 98            |
| Organochlorine Pesticides           |      |       |               |               |               |               |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1         | -             | -             | -             |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| a-HCH                               | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
|                                     | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| b-HCH                               | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
|                                     | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| Dielarin                            | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
|                                     | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| Endosultan II                       | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
|                                     | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
|                                     | 0.05 | mg/kg | 0.07          |               |               |               |
| Endrin ketone                       | 0.05 | ma/ka | < 0.07        |               |               |               |
| a-HCH (Lindane)                     | 0.05 | ma/ka | < 0.05        | _             | _             | _             |
| Hentachlor                          | 0.05 | ma/ka | < 0.05        | _             | _             | _             |
| Heptachlor epoxide                  | 0.05 | ma/ka | < 0.05        | _             | _             | _             |
| Hexachlorobenzene                   | 0.05 | ma/ka | < 0.05        | -             | -             | -             |
| Methoxychlor                        | 0.05 | ma/ka | < 0.05        | -             | -             | -             |
| Toxaphene                           | 0.5  | ma/ka | < 0.5         | -             | -             | -             |
| Aldrin and Dieldrin (Total)*        | 0.05 | ma/ka | < 0.05        | -             | -             | -             |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05        | -             | -             | -             |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1         | -             | -             | -             |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1         | -             | -             | -             |
| Dibutylchlorendate (surr.)          | 1    | %     | 78            | -             | -             | -             |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 94            | -             | -             | -             |
| Organophosphorus Pesticides         |      |       |               |               |               |               |
| Azinphos-methyl                     | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Bolstar                             | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Chlorfenvinphos                     | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Chlorpyrifos                        | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Chlorpyrifos-methyl                 | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Coumaphos                           | 2    | mg/kg | < 2           | -             | -             | -             |
| Demeton-S                           | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Demeton-O                           | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Diazinon                            | 0.2  | mg/kg | < 0.2         | -             | -             | -             |
| Dichlorvos                          | 0.2  | mg/kg | < 0.2         | -             | -             | -             |



| Client Sample ID            |     |          | SMC-HA01-     | SMC-HA01-     | SMC-HA02-     | SMC-HA02-0 5  |
|-----------------------------|-----|----------|---------------|---------------|---------------|---------------|
| Sample Matrix               |     |          | Soil          | Soil          | Soil          | Soil          |
| Eurofins Sample No.         |     |          | S23-Jn0053326 | S23-Jn0053327 | S23-Jn0053328 | S23-Jn0053329 |
| Date Sampled                |     |          | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  |
|                             | LOP | Linit    | oun 10, 2020  | 0411 10, 2020 | 001110, 2020  | oun 10, 2020  |
| Organophosphorus Pesticides | LOR | Offic    |               |               |               |               |
| Dimethoate                  | 0.2 | ma/ka    | < 0.2         | _             | _             | _             |
| Disulfoton                  | 0.2 | ma/ka    | < 0.2         | _             | -             | _             |
| EPN                         | 0.2 | ma/ka    | < 0.2         | -             | -             | -             |
| Ethion                      | 0.2 | ma/ka    | < 0.2         | -             | -             | -             |
| Ethoprop                    | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Ethyl parathion             | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Fenitrothion                | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Fensulfothion               | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Fenthion                    | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Malathion                   | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Merphos                     | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Methyl parathion            | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Mevinphos                   | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Monocrotophos               | 2   | mg/kg    | < 2           | -             | -             | -             |
| Naled                       | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Omethoate                   | 2   | mg/kg    | < 2           | -             | -             | -             |
| Phorate                     | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Pirimiphos-methyl           | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Pyrazophos                  | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Ronnel                      | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
|                             | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
| Tetrachlorvinphos           | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
|                             | 0.2 | mg/kg    | < 0.2         | -             | -             | -             |
|                             | 0.2 | 0/ mg/kg | < 0.2         | -             | -             | -             |
| Acid Herbicides             | I   | /0       | 54            | -             | -             | -             |
|                             | 0.5 | ma/ka    | < 0.5         |               |               |               |
| 2.4-D                       | 0.5 | mg/kg    | < 0.5         |               |               |               |
| 2.45-T                      | 0.5 | mg/kg    | < 0.5         |               |               |               |
| 2.4.5 TP                    | 0.5 | ma/ka    | < 0.5         | _             | _             | _             |
| Actril (loxynil)            | 0.5 | ma/ka    | < 0.5         | -             | -             | -             |
| Dicamba                     | 0.5 | ma/ka    | < 0.5         | -             | -             | -             |
| Dichlorprop                 | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| Dinitro-o-cresol            | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| Dinoseb                     | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| МСРА                        | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| МСРВ                        | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| Месоргор                    | 0.5 | mg/kg    | < 0.5         | -             | -             | -             |
| Warfarin (surr.)            | 1   | %        | 131           | -             | -             | -             |
| Heavy Metals                |     |          |               |               |               |               |
| Arsenic                     | 2   | mg/kg    | 13            | 14            | 5.4           | 9.0           |
| Cadmium                     | 0.4 | mg/kg    | 3.3           | 2.1           | 3.4           | < 0.4         |
| Chromium                    | 5   | mg/kg    | 13            | 30            | 8.5           | 30            |
| Copper                      | 5   | mg/kg    | 95            | 50            | 78            | 20            |
| Lead                        | 5   | mg/kg    | 330           | 140           | 190           | 30            |
| Mercury                     | 0.1 | mg/kg    | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
|                             | 5   | mg/kg    | 5.6           | 9.1           | < 5           | 12            |
| Zinc<br>Semple Properties   | 5   | mg/kg    | 490           | 530           | 490           | 41            |
|                             |     |          |               |               |               |               |
| % IVIOISTURE                | 1   | %        | 12            | 19            | 20            | 16            |



| Client Sample ID                                         |      |        | SMC-HA03-<br>0.05 | SMC-HA03-<br>0.25 | SMC-HA04-<br>0.05 | SMC-HA04-0.5  |
|----------------------------------------------------------|------|--------|-------------------|-------------------|-------------------|---------------|
| Sample Matrix                                            |      |        | Soil              | Soil              | Soil              | Soil          |
| Eurofins Sample No.                                      |      |        | S23-Jn0053330     | S23-Jn0053331     | S23-Jn0053332     | S23-Jn0053333 |
| Date Sampled                                             |      |        | Jun 15, 2023      | Jun 15, 2023      | Jun 15, 2023      | Jun 15, 2023  |
|                                                          | LOP  | Linit  | oun 10, 2020      | 0000 10, 2020     | 0011 10, 2020     | 0000 10, 2020 |
| Total Recoverable Hydrocarbons                           | LOIN | Offic  |                   |                   |                   |               |
|                                                          | 20   | ma/ka  | < 20              | < 20              | < 20              | < 20          |
| TRH C10 C14                                              | 20   | mg/kg  | < 20              | < 20              | < 20              | < 20          |
| TPH C15 C28                                              | 50   | mg/kg  | < 50              | < 50              | < 50              | < 50          |
| TRH C20 C26                                              | 50   | mg/kg  | < 50              | < 50              | < 50              | < 50          |
| TRH C10-C36 (Total)                                      | 50   | ma/ka  | < 50              | < 50              | < 50              | < 50          |
| TRH C6-C10                                               | 20   | mg/kg  | < 20              | < 30              | < 30              | < 30          |
| TPH C6-C10 less BTEX (E1) <sup>N04</sup>                 | 20   | ma/ka  | < 20              | < 20              | < 20              | < 20          |
| TRH \C10-C16                                             | 50   | mg/kg  | < 50              | < 50              | < 50              | < 50          |
| TRH >C10-C16 less Nanhthalene (E2) <sup>N01</sup>        | 50   | ma/ka  | < 50              | < 50              | < 50              | < 50          |
| TRH $\sim$ C16-C34                                       | 100  | mg/kg  | < 100             | < 100             | < 100             | < 100         |
| TRH >C34-C40                                             | 100  | ma/ka  | < 100             | < 100             | < 100             | < 100         |
| TPH >C10-C40 (total)*                                    | 100  | ma/ka  | < 100             | < 100             | < 100             | < 100         |
| BTEX                                                     | 100  | шу/ку  | < 100             | < 100             |                   | < 100         |
| Banzana                                                  | 0.1  | malka  | - 0.1             | - 0.1             | - 0.1             | 101           |
| Teluene                                                  | 0.1  | mg/kg  | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| Ethylhonzono                                             | 0.1  | mg/kg  | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
|                                                          | 0.1  | mg/kg  | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
|                                                          | 0.2  | mg/kg  | < 0.2             | < 0.2             | < 0.2             | < 0.2         |
| Vulonos Total*                                           | 0.1  | mg/kg  | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| 4 Bromofluorobonzono (curr.)                             | 0.5  | 0/.    | < 0.5<br>56       | < 0.3<br>62       | 59                | < 0.3<br>59   |
| Total Recoverable Hydrocarbons - 2013 NEPM Eract         | ione | /0     | 50                | 02                | 50                | 50            |
| Naphtholone <sup>N02</sup>                               |      | malka  | - 0.5             | < 0.5             | - 0.5             | < 0.5         |
|                                                          | 0.5  | під/ку | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                          | 0.5  | mallea | .05               | .05               | .05               | .05           |
| Benzo(a)pyrene TEQ (lower bound)                         | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound)                        | 0.5  | mg/kg  | 0.6               | 0.6               | 0.6               | 0.6           |
|                                                          | 0.5  | mg/kg  | 1.2               | 1.2               | 1.2               | 1.2           |
|                                                          | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Acenaphinylene                                           | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Anthracene<br>Banz(a)anthracene                          | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                          | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(A)pyrene<br>Ronzo(A) i)fluoranthono <sup>N07</sup> | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                          | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Banzo(k)fluoranthana                                     | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Chrysono                                                 | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Dibenz(a h)anthracene                                    | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Eluoranthene                                             | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Elucropo                                                 | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                          | 0.5  | mg/kg  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Nanhthalene                                              | 0.5  | ma/ka  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Phenanthrene                                             | 0.5  | ma/ka  | ~0.5              | ~ 0.5             | ~0.5              | ~ 0.5         |
| Pyrene                                                   | 0.5  | ma/ka  | ~0.5              | ~ 0.5             | ~0.5              | ~ 0.5         |
| Total PAH*                                               | 0.5  | ma/ka  | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| 2-Fluorobiphenyl (surr.)                                 | 1    | %      | 102               | <u> </u>          | 102               | 97            |
| p-Terphenyl-d14 (surr.)                                  | 1    | %      | 98                | 92                | 93                | 92            |



| Client Sample ID                    |      |       | SMC-HA03-             | SMC-HA03-             | SMC-HA04-             | SMC HADA 0.5          |
|-------------------------------------|------|-------|-----------------------|-----------------------|-----------------------|-----------------------|
| Sample Matrix                       |      |       | Soil                  | 0.25<br>Soil          | Soil                  | Soil                  |
|                                     |      |       | 6001<br>602 In0052220 | 6011<br>622 Jp0052221 | 6001<br>602 In0052222 | 6001<br>602 Jp0052222 |
|                                     |      |       | 523-J10053330         | 523-J10053331         | 523-J10053332         | 523-J10053333         |
| Date Sampled                        |      |       | Jun 15, 2023          | Jun 15, 2023          | Jun 15, 2023          | Jun 15, 2023          |
| Test/Reference                      | LOR  | Unit  |                       |                       |                       |                       |
| Organochlorine Pesticides           |      |       |                       |                       |                       |                       |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1                 | -                     | -                     | -                     |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| a-HCH                               | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Aldrin                              | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| b-HCH                               | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| d-HCH                               | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Dieldrin                            | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endosulfan I                        | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endosulfan II                       | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endosulfan sulphate                 | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endrin                              | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endrin aldehyde                     | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Endrin ketone                       | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| g-HCH (Lindane)                     | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Heptachlor                          | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Heptachlor epoxide                  | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Hexachlorobenzene                   | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Methoxychlor                        | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Toxaphene                           | 0.5  | mg/kg | < 0.5                 | -                     | -                     | -                     |
| Aldrin and Dieldrin (Total)*        | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| DDT + DDE + DDD (Total)*            | 0.05 | mg/kg | < 0.05                | -                     | -                     | -                     |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | mg/kg | < 0.1                 | -                     | -                     | -                     |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | mg/kg | < 0.1                 | -                     | -                     | -                     |
| Dibutylchlorendate (surr.)          | 1    | %     | 104                   | -                     | -                     | -                     |
| Tetrachloro-m-xylene (surr.)        | 1    | %     | 93                    | -                     | -                     | -                     |
| Organophosphorus Pesticides         |      |       |                       |                       |                       |                       |
| Azinphos-methyl                     | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Bolstar                             | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Chlorfenvinphos                     | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Chlorpyrifos                        | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Chlorpyrifos-methyl                 | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Coumaphos                           | 2    | mg/kg | < 2                   | -                     | -                     | -                     |
| Demeton-S                           | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Demeton-O                           | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Diazinon                            | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Dichlorvos                          | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Dimethoate                          | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Disulfoton                          | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| EPN                                 | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Ethion                              | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Ethoprop                            | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Ethyl parathion                     | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Fenitrothion                        | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Fensulfothion                       | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Fenthion                            | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Malathion                           | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |
| Merphos                             | 0.2  | mg/kg | < 0.2                 | -                     | -                     | -                     |



| Client Sample ID            |      |        | SMC-HA03-     | SMC-HA03-     | SMC-HA04-     | SMC-HA04-0.5  |
|-----------------------------|------|--------|---------------|---------------|---------------|---------------|
| Sample Matrix               |      |        | Soil          | Soil          | Soil          | Soil          |
| Eurofins Sample No.         |      |        | S23-Jn0053330 | S23-Jn0053331 | S23-Jn0053332 | S23-Jn0053333 |
| Date Sampled                |      |        | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  |
| Test/Reference              | LOR  | l Init | oun 10, 2020  | 0011 10, 2020 | 001110,2020   | 0000 10, 2020 |
| Organophosphorus Pesticides | LOIX | Offic  |               |               |               |               |
| Methyl parathion            | 0.2  | ma/ka  | < 0.2         | _             | _             | _             |
| Mevinnhos                   | 0.2  | ma/ka  | < 0.2         |               |               |               |
| Monocratanhas               | 2    | ma/ka  | < 0:2         | _             | _             | _             |
| Naled                       | 0.2  | ma/ka  | < 0.2         | _             | _             | _             |
| Omethoate                   | 2    | ma/ka  | < 2           | _             | _             | _             |
| Phorate                     | 0.2  | ma/ka  | < 0.2         | _             | _             | _             |
| Pirimiphos-methyl           | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Pyrazophos                  | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Ronnel                      | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Terbufos                    | 0.2  | ma/ka  | < 0.2         | -             | -             | _             |
| Tetrachlorvinphos           | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Tokuthion                   | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Trichloronate               | 0.2  | ma/ka  | < 0.2         | -             | -             | -             |
| Triphenylphosphate (surr.)  | 1    | %      | 117           | -             | -             | -             |
| Acid Herbicides             |      | ,,,    |               |               |               |               |
| 2 4-D                       | 0.5  | ma/ka  | < 0.5         | -             | -             | -             |
| 2.4-DB                      | 0.5  | ma/ka  | < 0.5         | -             | -             | -             |
| 2.4.5-T                     | 0.5  | ma/ka  | < 0.5         | -             | -             | -             |
| 2.4.5-TP                    | 0.5  | ma/ka  | < 0.5         | -             | -             | -             |
| Actril (loxynil)            | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Dicamba                     | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Dichlorprop                 | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Dinitro-o-cresol            | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Dinoseb                     | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| МСРА                        | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| МСРВ                        | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Месоргор                    | 0.5  | mg/kg  | < 0.5         | -             | -             | -             |
| Warfarin (surr.)            | 1    | %      | 112           | -             | -             | -             |
| Heavy Metals                |      |        |               |               |               |               |
| Arsenic                     | 2    | mg/kg  | 6.8           | 3.0           | 17            | 6.3           |
| Cadmium                     | 0.4  | mg/kg  | 3.1           | < 0.4         | 4.7           | < 0.4         |
| Chromium                    | 5    | mg/kg  | 8.7           | 8.8           | 14            | 19            |
| Copper                      | 5    | mg/kg  | 65            | 7.7           | 160           | 8.6           |
| Lead                        | 5    | mg/kg  | 310           | 37            | 690           | 17            |
| Mercury                     | 0.1  | mg/kg  | < 0.1         | < 0.1         | 0.1           | < 0.1         |
| Nickel                      | 5    | mg/kg  | < 5           | < 5           | 6.2           | 7.9           |
| Zinc                        | 5    | mg/kg  | 640           | 150           | 730           | 400           |
| Sample Properties           |      |        |               |               |               |               |
| % Moisture                  | 1    | %      | 21            | 11            | 17            | 12            |



| Client Sample ID                                          |      |           | SMC-HA05-<br>0.05 | SMC-HA05-<br>0.25 | SMC-HA06-<br>0.05 | SMC-HA06-0.5  |
|-----------------------------------------------------------|------|-----------|-------------------|-------------------|-------------------|---------------|
| Sample Matrix                                             |      |           | Soil              | Soil              | Soil              | Soil          |
| Eurofins Sample No.                                       |      |           | S23-Jn0053334     | S23-Jn0053335     | S23-Jn0053336     | S23-Jn0053337 |
| Date Sampled                                              |      |           | Jun 15. 2023      | Jun 15. 2023      | Jun 15. 2023      | Jun 15. 2023  |
|                                                           | LOR  | Linit     |                   |                   |                   |               |
| Total Recoverable Hydrocarbons                            | LOIN | Offic     |                   |                   |                   |               |
|                                                           | 20   | ma/ka     | < 20              | ~ 20              | ~ 20              | < 20          |
| TRH C10-C14                                               | 20   | ma/ka     | < 20              | < 20              | < 20              | < 20          |
| TPH C15-C28                                               | 50   | ma/ka     | < 50              | < 50              | < 50              | < 50          |
| TPH C20-C36                                               | 50   | ma/ka     | < 50              | < 50              | < 50              | < 50          |
| TRH C10-C36 (Total)                                       | 50   | ma/ka     | < 50              | < 50              | < 50              | < 50          |
| TRH C6-C10                                                | 20   | ma/ka     | < 20              | < 20              | < 20              | < 20          |
| TRH C6-C10 Less BTEX (E1) <sup>N04</sup>                  | 20   | ma/ka     | < 20              | < 20              | < 20              | < 20          |
| TRH \C10-C16                                              | 50   | ma/ka     | < 50              | < 50              | < 50              | < 50          |
| TRH >C10-C16 less Nanhthalene (E2) <sup>N01</sup>         | 50   | ma/ka     | < 50              | < 50              | < 50              | < 50          |
| TRH >C16-C34                                              | 100  | ma/ka     | < 100             | < 100             | < 100             | < 100         |
| TRH >C34-C40                                              | 100  | ma/ka     | < 100             | < 100             | < 100             | < 100         |
| TPH >C10-C40 (total)*                                     | 100  | ma/ka     | < 100             | < 100             | < 100             | < 100         |
| BTEX                                                      | 100  | шу/ку     | < 100             | < 100             | < 100             | < 100         |
| Banzana                                                   | 0.1  | malka     | - 0.1             | - 0.1             | - 0.1             | - 0.1         |
|                                                           | 0.1  | mg/kg     | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
| Ethylhonzono                                              | 0.1  | mg/kg     | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
|                                                           | 0.1  | mg/kg     | < 0.1             | < 0.1             | < 0.1             | < 0.1         |
|                                                           | 0.2  | mg/kg     | < 0.2             | < 0.2             | < 0.2             | < 0.2         |
| Vulonos Total*                                            | 0.1  | mg/kg     | < 0.1             | < 0.1             | < 0.3             | < 0.3         |
| 4 Bromofluorobonzono (curr.)                              | 1    | 0/.       | 50                | < 0.5<br>64       | < 0.5<br>91       | < 0.3<br>62   |
| Total Recoverable Hydrogarbons - 2013 NEPM Fract          | ione | /0        | 59                | 04                | 01                | 02            |
| Naphtholone <sup>N02</sup>                                |      | malka     | - 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Relycyclic Arometic Hydrocerbone                          | 0.5  | тід/кд    | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  |           | .0.5              | .0.5              | .0.5              | .0.5          |
| Benzo(a)pyrene TEQ (lower bound)                          | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(a)pyrene TEQ (medium bound)                         | 0.5  | mg/kg     | 0.6               | 0.6               | 0.6               | 0.6           |
|                                                           | 0.5  | mg/kg     | 1.2               | 1.2               | 1.2               | 1.2           |
| Acenaphthulana                                            | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Acenaphinylene                                            | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Anunracene<br>Benzielenthroegene                          | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(a)pyrene<br>Benzo(b 8 i)fluorenthene <sup>N07</sup> | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Benzo(k)fluorenthene                                      | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Chrysono                                                  | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Dibonz(a b)anthracono                                     | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Elucranthono                                              | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| Naphtholone                                               | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
|                                                           | 0.5  | mg/kg     | < 0.5             | < 0.5             | < 0.5             | < 0.5         |
| 2-Eluorobinhenyl (surr.)                                  | 1    | 0/:       | 105               | < 0.5<br>04       | 105               | < 0.5<br>0º   |
| n-Ternhenyl-d14 (surr.)                                   | 1    | /u<br>0/2 | 0                 | <u> </u>          | 00                | <u> </u>      |
| ן ארא אווטוואי עד (Joull.)                                |      | /0        | - 33              | 30                | 30                | 33            |



| Client Sample ID                    |      |       | SMC-HA05-             | SMC-HA05-            | SMC-HA06-             |                       |
|-------------------------------------|------|-------|-----------------------|----------------------|-----------------------|-----------------------|
| Sample Matrix                       |      |       | Soil                  | 0.25<br>Soil         | Soil                  | Soil                  |
|                                     |      |       | 6001<br>602 In0052224 | 600<br>622 In0052225 | 6001<br>602 In0052226 | 6001<br>602 Jp0052227 |
|                                     |      |       | 523-J10053334         | 523-J10053335        | 523-J10053336         | 523-J110053337        |
| Date Sampled                        |      |       | Jun 15, 2023          | Jun 15, 2023         | Jun 15, 2023          | Jun 15, 2023          |
| Test/Reference                      | LOR  | Unit  |                       |                      |                       |                       |
| Organochlorine Pesticides           |      |       |                       |                      |                       |                       |
| Chlordanes - Total                  | 0.1  | mg/kg | < 0.1                 | -                    | -                     | -                     |
| 4.4'-DDD                            | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
| 4.4'-DDE                            | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
| 4.4'-DDT                            | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
| a-HCH                               | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | =                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | =                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
| Endrin kotono                       | 0.05 | mg/kg | < 0.05                | -                    | -                     | -                     |
|                                     | 0.05 | mg/kg | < 0.05                |                      |                       |                       |
| Hentachlor                          | 0.05 | mg/kg | < 0.05                |                      |                       |                       |
| Heptachlor enovide                  | 0.05 | ma/ka | < 0.05                |                      | _                     |                       |
| Heyachlorobenzene                   | 0.05 | mg/kg | < 0.05                |                      |                       |                       |
| Methoxychlor                        | 0.05 | ma/ka | < 0.05                | _                    | _                     | _                     |
| Toxanhene                           | 0.00 | ma/ka | < 0.5                 | _                    | _                     | _                     |
| Aldrin and Dieldrin (Total)*        | 0.05 | ma/ka | < 0.05                | _                    | _                     | _                     |
| DDT + DDE + DDD (Total)*            | 0.05 | ma/ka | < 0.05                | _                    | _                     | _                     |
| Vic EPA IWRG 621 OCP (Total)*       | 0.1  | ma/ka | < 0.1                 | -                    | _                     | -                     |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | ma/ka | < 0.1                 | -                    | -                     | -                     |
| Dibutylchlorendate (surr.)          | 1    | %     | 74                    | -                    | _                     | -                     |
| Tetrachloro-m-xvlene (surr.)        | 1    | %     | 97                    | -                    | -                     | -                     |
| Organophosphorus Pesticides         |      |       |                       |                      |                       |                       |
| Azinphos-methyl                     | 0.2  | ma/ka | < 0.2                 | -                    | -                     | -                     |
| Bolstar                             | 0.2  | ma/ka | < 0.2                 | -                    | -                     | -                     |
| Chlorfenvinphos                     | 0.2  | ma/ka | < 0.2                 | -                    | -                     | -                     |
| Chlorpyrifos                        | 0.2  | ma/ka | < 0.2                 | -                    | -                     | -                     |
| Chlorpyrifos-methyl                 | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Coumaphos                           | 2    | mg/kg | < 2                   | -                    | -                     | -                     |
| Demeton-S                           | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Demeton-O                           | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Diazinon                            | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Dichlorvos                          | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Dimethoate                          | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Disulfoton                          | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| EPN                                 | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Ethion                              | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Ethoprop                            | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Ethyl parathion                     | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Fenitrothion                        | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Fensulfothion                       | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Fenthion                            | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Malathion                           | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |
| Merphos                             | 0.2  | mg/kg | < 0.2                 | -                    | -                     | -                     |



| Client Sample ID            |     |       | SMC-HA05-     | SMC-HA05-     | SMC-HA06-     | SMC-HA06-0 5  |
|-----------------------------|-----|-------|---------------|---------------|---------------|---------------|
| Sample Matrix               |     |       | Soil          | Soil          | Soil          | Soil          |
| Eurofins Sample No.         |     |       | S23-Jn0053334 | S23-Jn0053335 | S23-Jn0053336 | S23-Jn0053337 |
| Date Sampled                |     |       | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  | Jun 15, 2023  |
| Test/Reference              | LOR | Unit  |               |               |               |               |
| Organophosphorus Pesticides |     |       |               |               |               |               |
| Methyl parathion            | 0.2 | ma/ka | < 0.2         | -             | -             | -             |
| Mevinphos                   | 0.2 | ma/ka | < 0.2         | -             | -             | -             |
| Monocrotophos               | 2   | mg/kg | < 2           | -             | -             | -             |
| Naled                       | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Omethoate                   | 2   | mg/kg | < 2           | -             | -             | -             |
| Phorate                     | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Pirimiphos-methyl           | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Pyrazophos                  | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Ronnel                      | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Terbufos                    | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Tetrachlorvinphos           | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Tokuthion                   | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Trichloronate               | 0.2 | mg/kg | < 0.2         | -             | -             | -             |
| Triphenylphosphate (surr.)  | 1   | %     | 89            | -             | -             | -             |
| Acid Herbicides             |     |       |               |               |               |               |
| 2.4-D                       | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| 2.4-DB                      | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| 2.4.5-T                     | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| 2.4.5-TP                    | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Actril (loxynil)            | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Dicamba                     | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Dichlorprop                 | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Dinitro-o-cresol            | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Dinoseb                     | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| МСРА                        | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| МСРВ                        | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Месоргор                    | 0.5 | mg/kg | < 0.5         | -             | -             | -             |
| Warfarin (surr.)            | 1   | %     | 130           | -             | -             | -             |
| Heavy Metals                |     |       |               |               |               |               |
| Arsenic                     | 2   | mg/kg | 36            | 66            | 33            | 2.8           |
| Cadmium                     | 0.4 | mg/kg | 7.8           | < 0.4         | 12            | < 0.4         |
| Chromium                    | 5   | mg/kg | 11            | 11            | 11            | 5.4           |
| Copper                      | 5   | mg/kg | 330           | 8.5           | 300           | 5.4           |
| Lead                        | 5   | mg/kg | 850           | 17            | 1300          | 22            |
| Mercury                     | 0.1 | mg/kg | < 0.1         | < 0.1         | 0.2           | < 0.1         |
| Nickel                      | 5   | mg/kg | < 5           | < 5           | < 5           | < 5           |
| Zinc                        | 5   | mg/kg | 960           | 200           | 2000          | 48            |
| Sample Properties           |     |       |               |               |               |               |
| % Moisture                  | 1   | %     | 22            | 9.9           | 17            | 7.0           |



| Client Sample ID                                  |      |       | SMC-HA07-      | SMC-HA07-               | SMC-HA08-              | SMC-HA08-0 5             |
|---------------------------------------------------|------|-------|----------------|-------------------------|------------------------|--------------------------|
| Sample Matrix                                     |      |       | Soil           | Soil                    | Soil                   | Soil                     |
|                                                   |      |       | 000 In 0050000 | 5011<br>602 In 00522220 | 5011<br>602 Jacob 2010 | 5011<br>602 Jacob 202.44 |
| Eurorins Sample No.                               |      |       | 523-JN0053338  | 523-JN0053339           | 523-JN0053340          | 523-JN0053341            |
| Date Sampled                                      |      |       | Jun 15, 2023   | Jun 15, 2023            | Jun 15, 2023           | Jun 15, 2023             |
| Test/Reference                                    | LOR  | Unit  |                |                         |                        |                          |
| Total Recoverable Hydrocarbons                    |      |       |                |                         |                        |                          |
| TRH C6-C9                                         | 20   | mg/kg | < 20           | < 20                    | < 20                   | < 20                     |
| TRH C10-C14                                       | 20   | mg/kg | < 20           | < 20                    | < 20                   | < 20                     |
| TRH C15-C28                                       | 50   | mg/kg | < 50           | < 50                    | < 50                   | < 50                     |
| TRH C29-C36                                       | 50   | mg/kg | < 50           | < 50                    | < 50                   | 100                      |
| TRH C10-C36 (Total)                               | 50   | mg/kg | < 50           | < 50                    | < 50                   | 100                      |
| TRH C6-C10                                        | 20   | mg/kg | < 20           | < 20                    | < 20                   | < 20                     |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | mg/kg | < 20           | < 20                    | < 20                   | < 20                     |
| TRH >C10-C16                                      | 50   | mg/kg | < 50           | < 50                    | < 50                   | < 50                     |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | mg/kg | < 50           | < 50                    | < 50                   | < 50                     |
| TRH >C16-C34                                      | 100  | mg/kg | < 100          | < 100                   | < 100                  | < 100                    |
| TRH >C34-C40                                      | 100  | mg/kg | < 100          | < 100                   | < 100                  | 180                      |
| TRH >C10-C40 (total)*                             | 100  | mg/kg | < 100          | < 100                   | < 100                  | 180                      |
| BTEX                                              |      |       |                |                         |                        |                          |
| Benzene                                           | 0.1  | mg/kg | < 0.1          | < 0.1                   | < 0.1                  | < 0.1                    |
| Toluene                                           | 0.1  | mg/kg | < 0.1          | < 0.1                   | < 0.1                  | < 0.1                    |
| Ethylbenzene                                      | 0.1  | mg/kg | < 0.1          | < 0.1                   | < 0.1                  | < 0.1                    |
| m&p-Xylenes                                       | 0.2  | mg/kg | < 0.2          | < 0.2                   | < 0.2                  | < 0.2                    |
| o-Xylene                                          | 0.1  | mg/kg | < 0.1          | < 0.1                   | < 0.1                  | < 0.1                    |
| Xylenes - Total*                                  | 0.3  | mg/kg | < 0.3          | < 0.3                   | < 0.3                  | < 0.3                    |
| 4-Bromofluorobenzene (surr.)                      | 1    | %     | 86             | 86                      | 72                     | 77                       |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | ions |       |                |                         |                        |                          |
| Naphthalene <sup>N02</sup>                        | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Polycyclic Aromatic Hydrocarbons                  |      |       |                |                         |                        |                          |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5  | mg/kg | 0.6            | 0.6                     | 0.6                    | 0.6                      |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5  | mg/kg | 1.2            | 1.2                     | 1.2                    | 1.2                      |
| Acenaphthene                                      | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Acenaphthylene                                    | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Anthracene                                        | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benz(a)anthracene                                 | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benzo(a)pyrene                                    | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benzo(g.h.i)perylene                              | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Benzo(k)fluoranthene                              | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Chrysene                                          | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Dibenz(a.h)anthracene                             | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Fluoranthene                                      | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Fluorene                                          | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Indeno(1.2.3-cd)pyrene                            | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Naphthalene                                       | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Phenanthrene                                      | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Pyrene                                            | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| Total PAH*                                        | 0.5  | mg/kg | < 0.5          | < 0.5                   | < 0.5                  | < 0.5                    |
| 2-Fluorobiphenyl (surr.)                          | 1    | %     | 106            | 100                     | 81                     | 83                       |
| p-Terphenyl-d14 (surr.)                           | 1    | %     | 135            | 106                     | 85                     | 86                       |



| Client Sample ID                    |      |         | SMC-HA07-             | SMC-HA07-             | SMC-HA08-             |                       |
|-------------------------------------|------|---------|-----------------------|-----------------------|-----------------------|-----------------------|
| Sample Matrix                       |      |         | Soil                  | Soil                  | Soil                  | Soil                  |
| Eurofine Semple No                  |      |         | 6001<br>602 In0052220 | 6001<br>622 Jp0052220 | 6001<br>622 Jp0052240 | 6011<br>622 Jp0052244 |
|                                     |      |         | 323-31100535350       | 323-31100555559       | 323-31100535340       | 323-51100555541       |
| Date Sampled                        |      |         | Jun 15, 2023          | Jun 15, 2023          | Jun 15, 2023          | Jun 15, 2023          |
| Test/Reference                      | LOR  | Unit    |                       |                       |                       |                       |
| Organochlorine Pesticides           |      |         |                       |                       |                       |                       |
| Chlordanes - Total                  | 0.1  | mg/kg   | < 1                   | -                     | -                     | -                     |
| 4.4'-DDD                            | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| 4.4'-DDE                            | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| 4.4'-DDT                            | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| a-HCH                               | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Aldrin                              | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| b-HCH                               | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Endosulfan II                       | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Endosulfan sulphate                 | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Endrin<br>Endrin stateburge         | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Endrin aldenyde                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| g-HCH (Lindane)                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Heptachior                          | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Methowychlor                        | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Texephone                           | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Aldrin and Dioldrin (Total)*        | 0.05 | mg/kg   | < 10                  | -                     | -                     | -                     |
|                                     | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| $V_{ic} EPA  WPC 621 OCP (Total)*$  | 0.05 | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Vic EPA IWPG 621 Other OCP (Total)* | 0.1  | mg/kg   | <1                    |                       | _                     |                       |
|                                     | 1    | 111g/kg | 58                    |                       |                       |                       |
| Tetrachloro-m-xylene (surr.)        | 1    | %       | 103                   | _                     | _                     | _                     |
| Organophosphorus Pesticides         | •    | 70      | 100                   |                       |                       |                       |
|                                     | 0.2  | ma/ka   | < 0.5                 |                       |                       | _                     |
| Bolstar                             | 0.2  | ma/ka   | < 0.5                 | _                     | _                     | _                     |
| Chlorfenvinnhos                     | 0.2  | ma/ka   | < 0.5                 | _                     | _                     |                       |
| Chlorovrifos                        | 0.2  | ma/ka   | < 0.5                 | _                     | _                     |                       |
| Chlorovrifos-methyl                 | 0.2  | ma/ka   | < 0.5                 | -                     | _                     |                       |
| Coumaphos                           | 2    | ma/ka   | < 5                   | -                     | _                     | -                     |
| Demeton-S                           | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| Demeton-O                           | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | _                     |
| Diazinon                            | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | _                     |
| Dichlorvos                          | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| Dimethoate                          | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| Disulfoton                          | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| EPN                                 | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| Ethion                              | 0.2  | ma/ka   | < 0.5                 | -                     | -                     | -                     |
| Ethoprop                            | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Ethyl parathion                     | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Fenitrothion                        | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Fensulfothion                       | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Fenthion                            | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Malathion                           | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |
| Merphos                             | 0.2  | mg/kg   | < 0.5                 | -                     | -                     | -                     |



| Client Sample ID            |      |       | SMC-HA07-     | SMC-HA07-     | SMC-HA08-     | SMC-HA08-0 5  |
|-----------------------------|------|-------|---------------|---------------|---------------|---------------|
| Sample Matrix               |      |       | Soil          | Soil          | Soil          | Soil          |
| Eurofins Sample No.         |      |       | S23-Jn0053338 | S23-Jn0053339 | S23-Jn0053340 | S23-Jn0053341 |
| Date Sampled                |      |       | Jun 15. 2023  | Jun 15. 2023  | Jun 15. 2023  | Jun 15. 2023  |
| Test/Reference              | LOR  | Unit  |               |               |               |               |
| Organophosphorus Pesticides | LOIN | Offic |               |               |               |               |
| Methyl parathion            | 0.2  | ma/ka | < 0.5         | _             |               | _             |
| Mevinnhos                   | 0.2  | ma/ka | < 0.5         | _             | _             | _             |
| Monocratophos               | 2    | ma/ka | < 5           |               |               | _             |
| Naled                       | 0.2  | ma/ka | < 0.5         | _             |               | _             |
| Omethoate                   | 2    | ma/ka | < 5           | -             | -             | -             |
| Phorate                     | 0.2  | ma/ka | < 0.5         | -             | -             | -             |
| Pirimiphos-methyl           | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Pyrazophos                  | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Ronnel                      | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Terbufos                    | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Tetrachlorvinphos           | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Tokuthion                   | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Trichloronate               | 0.2  | ma/ka | < 0.5         | -             | _             | -             |
| Triphenylphosphate (surr.)  | 1    | %     | 73            | -             | -             | -             |
| Acid Herbicides             |      |       |               |               |               |               |
| 2.4-D                       | 0.5  | ma/ka | < 0.5         | -             | -             | -             |
| 2.4-DB                      | 0.5  | ma/ka | < 0.5         | -             | -             | -             |
| 2.4.5-T                     | 0.5  | ma/ka | < 0.5         | -             | -             | -             |
| 2.4.5-TP                    | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Actril (loxynil)            | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Dicamba                     | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Dichlorprop                 | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Dinitro-o-cresol            | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Dinoseb                     | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| МСРА                        | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| МСРВ                        | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Месоргор                    | 0.5  | mg/kg | < 0.5         | -             | -             | -             |
| Warfarin (surr.)            | 1    | %     | 118           | -             | -             | -             |
| Heavy Metals                |      |       |               |               |               |               |
| Arsenic                     | 2    | mg/kg | 20            | 12            | 7.9           | 3.5           |
| Cadmium                     | 0.4  | mg/kg | 13            | 4.1           | 1.8           | 1.9           |
| Chromium                    | 5    | mg/kg | 11            | 8.7           | 16            | 12            |
| Copper                      | 5    | mg/kg | 440           | 160           | 40            | < 5           |
| Lead                        | 5    | mg/kg | 1600          | 650           | 120           | 17            |
| Mercury                     | 0.1  | mg/kg | 0.2           | 0.1           | < 0.1         | < 0.1         |
| Nickel                      | 5    | mg/kg | < 5           | < 5           | 6.8           | < 5           |
| Zinc                        | 5    | mg/kg | 1400          | 830           | 360           | 390           |
| Sample Properties           |      |       |               |               |               |               |
| % Moisture                  | 1    | %     | 32            | 17            | 16            | 12            |



| Client Sample ID                                  |       |       | QC100-15.623  | TRIP BLANK-<br>150623 | TRIP SPIKE-<br>150625 |
|---------------------------------------------------|-------|-------|---------------|-----------------------|-----------------------|
| Sample Matrix                                     |       |       | Soil          | Soil                  | Soil                  |
| Eurofins Sample No.                               |       |       | S23-Jn0053342 | S23-Jn0053344         | S23-Jn0053345         |
| Date Sampled                                      |       |       | Jun 15, 2023  | Jun 15, 2023          | Jun 15, 2023          |
| Test/Reference                                    | LOR   | Unit  |               |                       |                       |
| Total Recoverable Hydrocarbons                    | •     |       |               |                       |                       |
| TRH C6-C9                                         | 20    | ma/ka | < 20          | -                     | -                     |
| TRH C10-C14                                       | 20    | mg/kg | < 20          | -                     | -                     |
| TRH C15-C28                                       | 50    | mg/kg | < 50          | -                     | -                     |
| TRH C29-C36                                       | 50    | mg/kg | < 50          | -                     | -                     |
| TRH C10-C36 (Total)                               | 50    | mg/kg | < 50          | -                     | -                     |
| TRH C6-C10                                        | 20    | mg/kg | < 20          | -                     | -                     |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20    | mg/kg | < 20          | -                     | -                     |
| TRH >C10-C16                                      | 50    | mg/kg | < 50          | -                     | -                     |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50    | mg/kg | < 50          | -                     | -                     |
| TRH >C16-C34                                      | 100   | mg/kg | < 100         | -                     | -                     |
| TRH >C34-C40                                      | 100   | mg/kg | < 100         | -                     | -                     |
| TRH >C10-C40 (total)*                             | 100   | mg/kg | < 100         | -                     | -                     |
| BTEX                                              |       |       |               |                       |                       |
| Benzene                                           | 0.1   | mg/kg | < 0.1         | < 0.1                 | -                     |
| Toluene                                           | 0.1   | mg/kg | < 0.1         | < 0.1                 | -                     |
| Ethylbenzene                                      | 0.1   | mg/kg | < 0.1         | < 0.1                 | -                     |
| m&p-Xylenes                                       | 0.2   | mg/kg | < 0.2         | < 0.2                 | -                     |
| o-Xylene                                          | 0.1   | mg/kg | < 0.1         | < 0.1                 | -                     |
| Xylenes - Total*                                  | 0.3   | mg/kg | < 0.3         | < 0.3                 | -                     |
| 4-Bromofluorobenzene (surr.)                      | 1     | %     | 72            | 86                    | -                     |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | tions |       |               |                       |                       |
| Naphthalene <sup>N02</sup>                        | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Polycyclic Aromatic Hydrocarbons                  |       |       |               |                       |                       |
| Benzo(a)pyrene TEQ (lower bound) *                | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benzo(a)pyrene TEQ (medium bound) *               | 0.5   | mg/kg | 0.6           | -                     | -                     |
| Benzo(a)pyrene TEQ (upper bound) *                | 0.5   | mg/kg | 1.2           | -                     | -                     |
| Acenaphthene                                      | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Acenaphthylene                                    | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Anthracene                                        | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benz(a)anthracene                                 | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benzo(a)pyrene                                    | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benzo(g.h.i)perylene                              | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Benzo(k)fluoranthene                              | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Chrysene                                          | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Dibenz(a.h)anthracene                             | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Fluoranthene                                      | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Fluorene                                          | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Indeno(1.2.3-cd)pyrene                            | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Naphthalene                                       | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Phenanthrene                                      | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Pyrene                                            | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| Total PAH*                                        | 0.5   | mg/kg | < 0.5         | -                     | -                     |
| 2-Fluorobiphenyl (surr.)                          | 1     | %     | 84            | -                     | -                     |
| p-Terphenyl-d14 (surr.)                           | 1     | %     | 90            | -                     | -                     |



| Client Sample ID                    |      |          | QC100-15.623  | TRIP BLANK-<br>150623 | TRIP SPIKE-<br>150625 |
|-------------------------------------|------|----------|---------------|-----------------------|-----------------------|
| Sample Matrix                       |      |          | Soil          | Soil                  | Soil                  |
| Eurofins Sample No.                 |      |          | S23-Jn0053342 | S23-Jn0053344         | S23-Jn0053345         |
| Date Sampled                        |      |          | Jun 15, 2023  | Jun 15, 2023          | Jun 15, 2023          |
| Test/Reference                      | LOR  | Unit     |               |                       |                       |
| Organochlorine Pesticides           | -    |          |               |                       |                       |
| Chlordanes - Total                  | 0.1  | ma/ka    | < 0.1         | -                     | -                     |
| 4.4'-DDD                            | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| 4.4'-DDE                            | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| 4.4'-DDT                            | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| a-HCH                               | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Aldrin                              | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| b-HCH                               | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| d-HCH                               | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Dieldrin                            | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endosulfan I                        | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endosulfan II                       | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endosulfan sulphate                 | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endrin                              | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endrin aldebyde                     | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| Endrin ketone                       | 0.05 | ma/ka    | < 0.05        | -                     | -                     |
| g-HCH (Lindane)                     | 0.05 | ma/ka    | < 0.05        | -                     | _                     |
| Heptachlor                          | 0.05 | ma/ka    | < 0.05        | -                     | _                     |
|                                     | 0.05 | ma/ka    | < 0.05        | _                     | _                     |
| Hexachlorobenzene                   | 0.05 | ma/ka    | < 0.05        | -                     | _                     |
| Methoxychlor                        | 0.00 | ma/ka    | < 0.05        | _                     | _                     |
| Toxaphene                           | 0.00 | ma/ka    | < 0.5         | _                     | _                     |
| Aldrin and Dieldrin (Total)*        | 0.05 | ma/ka    | < 0.05        | -                     | _                     |
| DDT + DDF + DDD (Total)*            | 0.05 | ma/ka    | < 0.05        | _                     | _                     |
| Vic EPA IWRG 621 OCP (Total)*       | 0.00 | ma/ka    | < 0.1         | -                     | _                     |
| Vic EPA IWRG 621 Other OCP (Total)* | 0.1  | ma/ka    | < 0.1         | -                     | _                     |
| Dibuty/chlorendate (surr.)          | 1    | <u>%</u> | 97            | -                     | _                     |
| Tetrachloro-m-xylene (surr.)        | 1    | %        | 81            | _                     | _                     |
| Organophosphorus Pesticides         | •    | 70       | 01            |                       |                       |
| Azinphos-methyl                     | 0.2  | ma/ka    | < 0.2         | _                     |                       |
| Bolstar                             | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Chlorfenvinnhos                     | 0.2  | mg/kg    | < 0.2         |                       |                       |
| Chlorowrifes                        | 0.2  | mg/kg    | < 0.2         |                       |                       |
| Chlorpyritos                        | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Coumanhos                           | 2    | mg/kg    | < 0:2         | _                     | _                     |
| Demeton-S                           | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Demeton-O                           | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Diazinon                            | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Dichloryos                          | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Dimethoate                          | 0.2  | mg/kg    | < 0.2         | _                     | _                     |
| Disulfoton                          | 0.2  | mg/kg    | < 0.2         |                       |                       |
| EDN                                 | 0.2  | mg/kg    | < 0.2         |                       |                       |
| Ethion                              | 0.2  | mg/kg    | < 0.2         |                       |                       |
| Ethorron                            | 0.2  | mg/kg    | < 0.2         |                       |                       |
| Ethyl parathion                     | 0.2  | ma/ka    | < 0.2         |                       | -                     |
| Fenitrothion                        | 0.2  | ma/ka    | ~ 0.2         |                       | -                     |
| Fensulfothion                       | 0.2  | mg/kg    | ~ 0.2         |                       | -                     |
| Fenthion                            | 0.2  | mg/kg    | < 0.2         | -                     | -                     |
| Malathion                           | 0.2  | mg/kg    | ~ 0.2         |                       | -                     |
| Mernhos                             | 0.2  | ma/ka    | < 0.2         |                       | -                     |
|                                     | 0.2  | L mg/kg  | <u> </u>      | _                     | _                     |



| Client Sample ID<br>Sample Matrix |     |       | QC100-15.623<br>Soil | TRIP BLANK-<br>150623<br>Soil | TRIP SPIKE-<br>150625<br>Soil |
|-----------------------------------|-----|-------|----------------------|-------------------------------|-------------------------------|
| Eurofins Sample No.               |     |       | S23-Jn0053342        | S23-Jn0053344                 | S23-Jn0053345                 |
| Date Sampled                      |     |       | lup 15, 2023         | lup 15, 2023                  | lup 15, 2023                  |
| Tast/Deference                    |     | 1.1   | 5011 15, 2025        | 5011 15, 2025                 | Juli 13, 2023                 |
| Organanhaanharua Bastiaidaa       | LUK | Unit  |                      |                               |                               |
| Mathed a sasthing                 | 0.0 |       |                      |                               |                               |
| Methyl paratnion                  | 0.2 | mg/kg | < 0.2                | -                             | -                             |
|                                   | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Monocrotopnos                     | 2   | mg/kg | <2                   | -                             | -                             |
|                                   | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Omethoate                         | 2   | mg/kg | <2                   | -                             | -                             |
|                                   | 0.2 | mg/кg | < 0.2                | -                             | -                             |
|                                   | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Pyrazophos                        | 0.2 | mg/kg | < 0.2                | -                             | -                             |
|                                   | 0.2 | mg/kg | < 0.2                | -                             | -                             |
|                                   | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Tetrachlorvinphos                 | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Tokuthion                         | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Trichloronate                     | 0.2 | mg/kg | < 0.2                | -                             | -                             |
| Triphenylphosphate (surr.)        | 1   | %     | 82                   | -                             | -                             |
| Acid Herbicides                   |     |       |                      |                               |                               |
| 2.4-D                             | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| 2.4-DB                            | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| 2.4.5-T                           | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| 2.4.5-TP                          | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Actril (loxynil)                  | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Dicamba                           | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Dichlorprop                       | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Dinitro-o-cresol                  | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Dinoseb                           | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| МСРА                              | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| МСРВ                              | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Месоргор                          | 0.5 | mg/kg | < 0.5                | -                             | -                             |
| Warfarin (surr.)                  | 1   | %     | 127                  | -                             | -                             |
| Heavy Metals                      |     |       |                      |                               |                               |
| Arsenic                           | 2   | mg/kg | 9.3                  | -                             | -                             |
| Cadmium                           | 0.4 | mg/kg | 2.5                  | -                             | -                             |
| Chromium                          | 5   | mg/kg | 9.0                  | -                             | -                             |
| Copper                            | 5   | mg/kg | 67                   | -                             | -                             |
| Lead                              | 5   | mg/kg | 250                  | -                             | -                             |
| Mercury                           | 0.1 | mg/kg | < 0.1                | -                             | -                             |
| Nickel                            | 5   | mg/kg | < 5                  | -                             | -                             |
| Zinc                              | 5   | mg/kg | 380                  | -                             | -                             |
| Sample Properties                 |     |       |                      |                               |                               |
| % Moisture                        | 1   | %     | 13                   | -                             | -                             |
| втех                              |     |       |                      |                               |                               |
| Benzene                           | 1   | %     | -                    | -                             | 110                           |
| Ethylbenzene                      | 1   | %     | -                    | -                             | 110                           |
| m&p-Xvlenes                       | 1   | %     | -                    | -                             | 100                           |
| o-Xvlene                          | 1   | %     | -                    | -                             | 100                           |
| Toluene                           | 1   | %     | -                    | -                             | 110                           |
| Xylenes - Total                   | 1   | %     | -                    | -                             | 100                           |
| 4-Bromofluorobenzene (surr.)      | 1   | %     | -                    | -                             | 94                            |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | Holding Time |
|----------------------------------------------------------------------|--------------|--------------|--------------|
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                 | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |              |
| BTEX                                                                 | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2010 BTEX and Volatile TRH                         |              |              |              |
| Polycyclic Aromatic Hydrocarbons                                     | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |              |
| Metals M8                                                            | Sydney       | Jun 24, 2023 | 28 Days      |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |              |
| Organochlorine Pesticides                                            | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2220 OCP & PCB in Soil and Water                   |              |              |              |
| Organophosphorus Pesticides                                          | Sydney       | Jun 24, 2023 | 14 Days      |
| - Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS          |              |              |              |
| Acid Herbicides                                                      | Melbourne    | Jun 27, 2023 | 14 Days      |
| - Method: LTM-ORG-2180 Phenoxy Acid Herbicides                       |              |              |              |
| % Moisture                                                           | Sydney       | Jun 23, 2023 | 14 Days      |
| - Method: LTM-GEN-7080 Moisture                                      |              |              |              |
| •           | 🔅 eurofins                                  | fine                                                  | Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521 Melhourne Contents Suday Contents Prickane Neuroscie |                                                                                                                                                                           |                                                                                                                                             |                                                               |                        |                                                     |                                                        |                              |                                  |                                                             |                                       | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898 | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954                                                            |                                                                                                      |                                                                                               |                                                                                                          |
|-------------|---------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|-----------------------------------------------------|--------------------------------------------------------|------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: veb: v | www.eurofins.com.au<br>EnviroSales@eurofins | .com                                                  | Melbourne<br>6 Monterey Roa<br>Dandenong Sou<br>VIC 3175<br>Tel: +61 3 8564<br>NATA# 1261 Sit                           | Geelong           d         19/8 Lewa           th         Grovedale           VIC 3216         5000           5000         Tel: +61 3           e# 1254         NATA# 12 | Sydne           lan Street         179 M           Girraw         Sirraw           S564 5000         Tel: +6           61 Site# 25403 NATA# | <b>y</b><br>agowar Re<br>een<br>145<br>1 2 9900<br># 1261 Sit | oad<br>8400<br>e# 1821 | Canb<br>Unit 1<br>Mitch<br>ACT<br>Tel: +<br>I7 NATA | erra<br>I,2 Dacr<br>ell<br>2911<br>-61 2 61<br>A# 1261 | e Stree<br>13 809<br>Site# 2 | t 1/<br>M<br>Q<br>1 Te<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | allwood<br>72<br>7 3902 4<br>261 Site | Place<br>4600<br>e# 2079                    | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>4 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| C (<br>A    | ompany Name:<br>ddress:                     | Ramboll Aus<br>Level 3/100<br>North Sydne<br>NSW 2060 | stralia Pty Lto<br>Pacific Highv<br>y                                                                                   | l<br>way                                                                                                                                                                  |                                                                                                                                             |                                                               | O<br>R<br>P<br>Fa      | rder N<br>eport<br>hone:<br>ax:                     | No.:<br>#:                                             | 1<br>(                       | 10016<br>)2 995<br>)2 995        | 66<br>54 811<br>54 815                                      | 18<br>50                              |                                             |                                                                                                                       | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | PM                                                                                                       |
| Pi<br>Pi    | oject Name:<br>oject ID:                    | TARAGO DI<br>318001679                                | ETAILED SIT                                                                                                             | E INVESTIGAT                                                                                                                                                              | TON                                                                                                                                         |                                                               |                        |                                                     |                                                        |                              |                                  |                                                             |                                       |                                             | Eu                                                                                                                    | rofins Analytical Serv                                                                               | vices Manager : A                                                                             | ndrew Black                                                                                              |
|             |                                             | Sa                                                    | mple Detail                                                                                                             |                                                                                                                                                                           |                                                                                                                                             | Asbestos - WA guidelines                                      | HOLD                   | Acid Herbicides                                     | Metals M8 filtered                                     | BTEX                         | Suite B14: OCP/OPP               | Moisture Set                                                | Eurofins Suite B7                     | BTEX                                        |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Mel         | bourne Laborato                             | ory - NATA # 12                                       | 61 Site # 12                                                                                                            | 54                                                                                                                                                                        |                                                                                                                                             |                                                               |                        | x                                                   | х                                                      |                              |                                  |                                                             |                                       |                                             | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| Syc         | Iney Laboratory                             | - NATA # 1261                                         | Site # 18217                                                                                                            | 1                                                                                                                                                                         |                                                                                                                                             | X                                                             | X                      |                                                     | X                                                      | Х                            | Х                                | X                                                           | X                                     | Х                                           | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| No          | Sample ID                                   | Sample Date                                           | Sampling<br>Time                                                                                                        | Matrix                                                                                                                                                                    | LAB ID                                                                                                                                      |                                                               |                        |                                                     |                                                        |                              |                                  |                                                             |                                       |                                             |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 1           | SMC-HA01-<br>0.05                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053326                                                                                                                               | ° x                                                           |                        | х                                                   |                                                        |                              | х                                | х                                                           | х                                     |                                             |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 2           | SMC-HA01-<br>0.25                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053327                                                                                                                               | ,                                                             |                        |                                                     |                                                        |                              |                                  | x                                                           | x                                     |                                             | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 3           | SMC-HA02-<br>0.05                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053328                                                                                                                               | <sup>3</sup> X                                                |                        |                                                     |                                                        |                              |                                  | х                                                           | х                                     |                                             |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 4           | SMC-HA02-<br>0.5                            | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053329                                                                                                                               | )                                                             |                        |                                                     |                                                        |                              |                                  | x                                                           | х                                     |                                             | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 5           | SMC-HA03-<br>0.05                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053330                                                                                                                               | ) x                                                           |                        | x                                                   |                                                        |                              | х                                | x                                                           | х                                     |                                             | 4                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 6           | SMC-HA03-<br>0.25                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053331                                                                                                                               |                                                               |                        |                                                     |                                                        |                              |                                  | х                                                           | х                                     |                                             | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 7           | SMC-HA04-<br>0.05                           | Jun 15, 2023                                          |                                                                                                                         | Soil                                                                                                                                                                      | S23-Jn0053332                                                                                                                               | 2 x                                                           |                        |                                                     |                                                        |                              |                                  | х                                                           | Х                                     |                                             |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |

| •                |                                             | fine                                                | Eurofins Environm                                                                                           | nent Testing Australia I                                                                                    | Pty Ltd                                                              |                                            |                        |                                            |                                                      |                                |                               |                                                               |                                       |                          |                                                                                                                       | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environr<br>NZBN: 942904602495                                                       | nent Testing NZ Ltd                                                                                      |
|------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------|-------------------------------|---------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: v<br>email: | www.eurofins.com.au<br>EnviroSales@eurofins | .com                                                | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 125 | Geelong<br>19/8 Lewalan Street<br>Grovedale<br>VIC 3216<br>Tel: +61 3 8564 5000<br>i4 NATA# 1261 Site# 2540 | Sydney<br>179 Mago<br>Girrawee<br>NSW 214<br>Tel: +61 2<br>3 NATA# 1 | owar Ro<br>n<br>15<br>2 9900 1<br>261 Site | oad<br>8400<br>e# 1821 | Canb<br>Unit 1<br>Mitch<br>ACT :<br>Tel: + | erra<br>,2 Dacı<br>ell<br>2911<br>61 2 61<br>\# 1261 | re Stree<br>113 809<br>Site# 2 | B<br>N<br>Q<br>1 T<br>25466 N | risbane<br>/21 Sma<br>lurarrie<br>LD 417<br>el: +61<br>ATA# 1 | allwood<br>72<br>7 3902 -<br>261 Site | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>4 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| Co<br>Ao         | ompany Name:<br>ddress:                     | Ramboll Au<br>Level 3/100<br>North Sydr<br>NSW 2060 | ustralia Pty Ltd<br>0 Pacific Highway<br>ney                                                                |                                                                                                             |                                                                      |                                            | O<br>Ri<br>Pl<br>Fa    | rder N<br>eport<br>hone:<br>ax:            | lo.:<br>#:                                           | (                              | 10016<br>)2 999<br>)2 999     | 66<br>54 81<br>54 81                                          | 18<br>50                              |                          |                                                                                                                       | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | РМ                                                                                                       |
| Pr<br>Pr         | oject Name:<br>oject ID:                    | TARAGO I<br>318001679                               | DETAILED SITE IN                                                                                            | VESTIGATION                                                                                                 |                                                                      |                                            |                        |                                            |                                                      |                                |                               |                                                               |                                       |                          | E                                                                                                                     | urofins Analytical Serv                                                                              | vices Manager : A                                                                             | ndrew Black                                                                                              |
|                  |                                             | 5                                                   | Sample Detail                                                                                               |                                                                                                             |                                                                      | Asbestos - WA guidelines                   | HOLD                   | Acid Herbicides                            | Metals M8 filtered                                   | BTEX                           | Suite B14: OCP/OPP            | Moisture Set                                                  | Eurofins Suite B7                     | BTEX                     |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Mel              | bourne Laborato                             | ory - NATA # 1                                      | 261 Site # 1254                                                                                             |                                                                                                             |                                                                      |                                            |                        | Х                                          | Х                                                    |                                |                               |                                                               |                                       |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| Syd              | ney Laboratory                              | - NATA # 126                                        | 1 Site # 18217                                                                                              |                                                                                                             |                                                                      | X                                          | X                      |                                            | X                                                    | X                              | Х                             | X                                                             | X                                     | Х                        | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 8                | SMC-HA04-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53333                                                               |                                            |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          | -                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |
| 9                | SMC-HA05-<br>0.05                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53334                                                               | х                                          |                        | х                                          |                                                      |                                | х                             | x                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 10               | SMC-HA05-<br>0.25                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53335                                                               |                                            |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 11               | SMC-HA06-<br>0.05                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | 53336                                                                | х                                          |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 12               | SMC-HA06-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53337                                                               |                                            |                        |                                            |                                                      |                                |                               | x                                                             | x                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 13               | SMC-HA07-<br>0.05                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53338                                                               | х                                          |                        | х                                          |                                                      |                                | х                             | х                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 14               | SMC-HA07-<br>0.25                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53339                                                               |                                            |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 15               | SMC-HA08-<br>0.05                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | 53340                                                                | х                                          |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          |                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |
| 16               | SMC-HA08-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn00                                                                                                    | )53341                                                               |                                            |                        |                                            |                                                      |                                |                               | x                                                             | х                                     |                          | ]                                                                                                                     |                                                                                                      |                                                                                               |                                                                                                          |

| •                | web: www.eurofins.com.au                    | fine                                                | Eurofins Environn<br>ABN: 50 005 085 521                                                                    | nent Testing Aust                                                                                  | ralia Pty Ltd                        |                          |                                                                                                               |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                   | Eurofins Environn<br>NZBN: 942904602495                                                                  | nent Testing NZ Ltd<br>4 |
|------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|----------------------------------|---------------------------------------------------------------------|---------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|
| web: v<br>email: | www.eurofins.com.au<br>EnviroSales@eurofins | .com                                                | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 125 | Geelong<br>19/8 Lewalan Stre<br>Grovedale<br>VIC 3216<br>Tel: +61 3 8564 50<br>54 NATA# 1261 Site# | owar Ro<br>5<br>2 9900 8<br>261 Site | ad<br>3400<br># 1821     | Canberra<br>d Unit 1,2 Dacre Stru<br>Mitchell<br>ACT 2911<br>100 Tel: +61 2 6113 80<br>18217 NATA# 1261 Site# |                                 | e Stree<br>13 809<br>Site# 2 | Bi<br>1/<br>Q<br>1 Te<br>5466 N/ | <b>isbane</b><br>21 Sma<br>urarrie<br>LD 417<br>el: +61 7<br>ATA# 1 | allwood<br>72<br>7 3902 4<br>261 Site | Place<br>4600<br>e# 20794 | Newcastle<br>e 1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>)794 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |                          |
| Co<br>Ao         | ompany Name:<br>Idress:                     | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | istralia Pty Ltd<br>) Pacific Highway<br>ey                                                                 |                                                                                                    |                                      |                          | Oi<br>Re<br>Pi<br>Fa                                                                                          | rder N<br>eport<br>none:<br>ax: | lo.:<br>#:                   | 1<br>()<br>()                    | 0016<br>02 995<br>02 995                                            | 66<br>4 811<br>4 815                  | 18<br>50                  |                                                                                                                            |                                                                                                      | Received:<br>Due:<br>Priority:<br>Contact Name:                                               | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                            | PM                       |
| Pr<br>Pr         | oject Name:<br>oject ID:                    | TARAGO E<br>318001679                               | DETAILED SITE IN                                                                                            | VESTIGATION                                                                                        |                                      |                          |                                                                                                               |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            | Ει                                                                                                   | rofins Analytical Serv                                                                        | vices Manager : A                                                                                        | ndrew Black              |
|                  |                                             | s                                                   | ample Detail                                                                                                |                                                                                                    |                                      | Asbestos - WA guidelines | HOLD                                                                                                          | Acid Herbicides                 | Metals M8 filtered           | BTEX                             | Suite B14: OCP/OPP                                                  | Moisture Set                          | Eurofins Suite B7         | BTEX                                                                                                                       |                                                                                                      |                                                                                               |                                                                                                          |                          |
| Mel              | bourne Laborato                             | ory - NATA # 1                                      | 261 Site # 1254                                                                                             |                                                                                                    |                                      |                          |                                                                                                               | х                               | х                            |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| Syd              | ney Laboratory                              | - NATA # 1261                                       | Site # 18217                                                                                                | i                                                                                                  |                                      | Х                        | X                                                                                                             |                                 | X                            | Х                                | Х                                                                   | Х                                     | X                         | Х                                                                                                                          | -                                                                                                    |                                                                                               |                                                                                                          |                          |
| 17               | QC100-15.623                                | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053342                           |                          |                                                                                                               | Х                               |                              |                                  | Х                                                                   | Х                                     | X                         |                                                                                                                            | -                                                                                                    |                                                                                               |                                                                                                          |                          |
| 18               | QC300-15.623                                | Jun 15, 2023                                        | Wat                                                                                                         | er S23                                                                                             | -Jn0053343                           |                          |                                                                                                               |                                 | X                            |                                  |                                                                     |                                       |                           |                                                                                                                            | 4                                                                                                    |                                                                                               |                                                                                                          |                          |
| 19               | 150623                                      | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053344                           |                          |                                                                                                               |                                 |                              | Х                                |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 20               | TRIP SPIKE-<br>150625                       | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053345                           |                          |                                                                                                               |                                 |                              |                                  |                                                                     |                                       |                           | х                                                                                                                          |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 21               | SMC-HA01-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053346                           |                          | x                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 22               | SMC-HA02-<br>0.25                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053347                           |                          | х                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 23               | SMC-HA03-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053348                           |                          | x                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            | -                                                                                                    |                                                                                               |                                                                                                          |                          |
| 24               | SMC-HA04-<br>0.25                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053349                           |                          | x                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 25               | SMC-HA05-<br>0.5                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053350                           |                          | x                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            |                                                                                                      |                                                                                               |                                                                                                          |                          |
| 26               | SMC-HA06-                                   | Jun 15, 2023                                        | Soil                                                                                                        | S23-                                                                                               | -Jn0053351                           |                          | Х                                                                                                             |                                 |                              |                                  |                                                                     |                                       |                           |                                                                                                                            | ]                                                                                                    |                                                                                               |                                                                                                          |                          |

| •                | 🛟 eurofins                             | <b>f</b> :                                          | Eurofins Enviro                                                                                        | nment Testing                                                                   | g Australia Pty Ltd                                                                                                                            |                                            |                        |                                        |                                                              |                                |                                       |                                                              |                                         |                          |                                                                                                                        | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environm                                                                             | ent Testing NZ Ltd                                                                                       |
|------------------|----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| web: v<br>email: | WW.eurofins.com.au                     | s.com                                               | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 500<br>NATA# 1261 Site# | Geelong<br>19/8 Lewa<br>Grovedale<br>VIC 3216<br>00 Tel: +61 3<br>1254 NATA# 12 | Sydney           lan Street         179 Mag<br>Girrawer           NSW 21           8564 5000         Tel: +61           61 Site# 25403 NATA# 1 | owar Ro<br>en<br>45<br>2 9900<br>1261 Site | oad<br>8400<br>e# 1821 | Cant<br>Unit<br>Mitch<br>ACT<br>Tel: 4 | <b>erra</b><br>1,2 Dac<br>ell<br>2911<br>-61 2 6'<br>\# 1261 | re Stree<br>113 809<br>Site# 2 | B<br>t 1,<br>N<br>Q<br>1 T<br>25466 N | risband<br>21 Sma<br>lurarrie<br>LD 417<br>el: +61<br>ATA# 1 | e<br>allwood<br>72<br>7 3902<br>261 Sit | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>94 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |
| Co<br>Ao<br>Pr   | ompany Name:<br>Idress:<br>oject Name: | Ramboll Au<br>Level 3/100<br>North Sydr<br>NSW 2060 | ustralia Pty Ltd<br>) Pacific Highway<br>ley<br>DETAILED SITE                                          |                                                                                 | TION                                                                                                                                           |                                            | O<br>R<br>Pi<br>Fi     | rder I<br>eport<br>hone:<br>ax:        | No.:<br>#:                                                   |                                | 10016<br>02 995<br>02 995             | 66<br>54 81<br>54 81                                         | 18<br>50                                |                          |                                                                                                                        | Received:<br>Due:<br>Priority:<br>Contact Name:                                                      | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                 | PM                                                                                                       |
| Pr               | oject ID:                              | 318001679                                           |                                                                                                        | INVEGHOAI                                                                       |                                                                                                                                                |                                            |                        |                                        |                                                              |                                |                                       |                                                              |                                         |                          | E                                                                                                                      | urofins Analytical Ser                                                                               | vices Manager : Aı                                                                            | ndrew Black                                                                                              |
|                  |                                        | S                                                   | ample Detail                                                                                           |                                                                                 |                                                                                                                                                | Asbestos - WA guidelines                   | HOLD                   | Acid Herbicides                        | Metals M8 filtered                                           | BTEX                           | Suite B14: OCP/OPP                    | Moisture Set                                                 | Eurofins Suite B7                       | BTEX                     |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |
| Mell             | bourne Laborate                        | ory - NATA # 1                                      | 261 Site # 1254                                                                                        |                                                                                 |                                                                                                                                                | X                                          |                        | X                                      | X                                                            |                                | X                                     | ×                                                            | X                                       |                          | -                                                                                                                      |                                                                                                      |                                                                                               |                                                                                                          |
| Syd              | ney Laboratory                         | - NATA # 126'                                       | Site # 18217                                                                                           |                                                                                 |                                                                                                                                                | X                                          |                        |                                        |                                                              |                                | X                                     | X                                                            |                                         | X                        | 4                                                                                                                      |                                                                                                      |                                                                                               |                                                                                                          |
| 27               | SMC-HA07-                              | Jun 15, 2023                                        | S                                                                                                      | oil                                                                             | S23-Jn0053352                                                                                                                                  |                                            | x                      |                                        |                                                              |                                |                                       |                                                              |                                         |                          | -                                                                                                                      |                                                                                                      |                                                                                               |                                                                                                          |
| 28               | SMC-HA08-<br>0.25                      | Jun 15, 2023                                        | S                                                                                                      | oil                                                                             | S23-Jn0053353                                                                                                                                  |                                            | x                      |                                        |                                                              |                                |                                       |                                                              |                                         |                          |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |
| Tes              | t Counts                               |                                                     |                                                                                                        |                                                                                 |                                                                                                                                                | 8                                          | 8                      | 5                                      | 1                                                            | 1                              | 5                                     | 17                                                           | 17                                      | 1                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| mg/kg: milligrams per kilogram            | mg/L: milligrams per litre         | μg/L: micrograms per litre                                        |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------|
| ppm: parts per million                    | ppb: parts per billion             | %: Percentage                                                     |
| org/100 mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100 mL: Most Probable Number of organisms per 100 millilitres |
| CFU: Colony forming unit                  |                                    |                                                                   |

#### Terms

| APHA             | American Public Health Association                                                                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| coc              | Chain of Custody                                                                                                                                                                                                                                                                              |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                                                                                                                                                         |
| CRM              | Certified Reference Material (ISO17034) - reported as percent recovery.                                                                                                                                                                                                                       |
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                                                                                                                                                |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                                                                                                                                              |
| LOR              | Limit of Reporting.                                                                                                                                                                                                                                                                           |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                                                                                                                                                     |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.                                                                                                                                |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.                                                                                                                            |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                                                                                                                                                         |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                                                                                                                                                    |
| SRA              | Sample Receipt Advice                                                                                                                                                                                                                                                                         |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                                                                                                                                                    |
| твто             | Tributyltin oxide ( <i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                                                                                                                                                    |
| TEQ              | Toxic Equivalency Quotient or Total Equivalence                                                                                                                                                                                                                                               |
| QSM              | US Department of Defense Quality Systems Manual Version 5.4                                                                                                                                                                                                                                   |
| US EPA           | United States Environmental Protection Agency                                                                                                                                                                                                                                                 |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                               |

#### **QC - Acceptance Criteria**

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                                                 | Units | Result 1 |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|-----|----------------------|----------------|--------------------|
| Method Blank                                         |       |          |     | -                    |                |                    |
| Total Recoverable Hydrocarbons                       |       |          |     |                      |                |                    |
| TRH C6-C9                                            | mg/kg | < 20     |     | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg | < 20     |     | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg | < 50     |     | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg | < 50     |     | 50                   | Pass           |                    |
| TRH C6-C10                                           | mg/kg | < 20     |     | 20                   | Pass           |                    |
| TRH >C10-C16                                         | mg/kg | < 50     |     | 50                   | Pass           |                    |
| TRH >C16-C34                                         | mg/kg | < 100    |     | 100                  | Pass           |                    |
| TRH >C34-C40                                         | mg/kg | < 100    |     | 100                  | Pass           |                    |
| Method Blank                                         |       |          | 1 1 | -                    | 1              |                    |
| BTEX                                                 |       |          |     |                      |                |                    |
| Benzene                                              | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg | < 0.2    |     | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| Xylenes - Total*                                     | mg/kg | < 0.3    |     | 0.3                  | Pass           |                    |
| Method Blank                                         |       |          | I   | -                    | 1              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions | 1     |          |     | _                    |                |                    |
| Naphthalene                                          | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Method Blank                                         |       |          | 1   | -                    | 1              |                    |
| Polycyclic Aromatic Hydrocarbons                     | 1     |          |     | _                    |                |                    |
| Acenaphthene                                         | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Acenaphthylene                                       | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Anthracene                                           | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Benz(a)anthracene                                    | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Benzo(a)pyrene                                       | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Benzo(b&j)fluoranthene                               | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Benzo(g.h.i)perylene                                 | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Benzo(k)fluoranthene                                 | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Chrysene                                             | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Dibenz(a.h)anthracene                                | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Fluoranthene                                         | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Fluorene                                             | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Naphthalene                                          | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Phenanthrene                                         | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Pyrene                                               | mg/kg | < 0.5    |     | 0.5                  | Pass           |                    |
| Method Blank                                         |       | í        | I I |                      | 1              |                    |
| Organochlorine Pesticides                            |       |          |     |                      |                |                    |
| Chlordanes - Total                                   | mg/kg | < 0.1    |     | 0.1                  | Pass           |                    |
| 4.4'-DDD                                             | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| 4.4'-DDE                                             | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| 4.4'-DDT                                             | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| a-HCH                                                | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| Aldrin                                               | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| Ь-НСН                                                | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| d-HCH                                                | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| Dieldrin                                             | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| Endosulfan I                                         | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |
| Endosulfan II                                        | mg/kg | < 0.05   |     | 0.05                 | Pass           |                    |



| Test                        | Units | Result 1 |  | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------|-------|----------|--|----------------------|----------------|--------------------|
| Endosulfan sulphate         | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Endrin                      | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Endrin aldehyde             | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Endrin ketone               | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| g-HCH (Lindane)             | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Heptachlor                  | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Heptachlor epoxide          | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Hexachlorobenzene           | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Methoxychlor                | mg/kg | < 0.05   |  | 0.05                 | Pass           |                    |
| Toxaphene                   | mg/kg | < 0.5    |  | 0.5                  | Pass           |                    |
| Method Blank                |       |          |  |                      |                |                    |
| Organophosphorus Pesticides |       |          |  |                      |                |                    |
| Azinphos-methyl             | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Bolstar                     | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Chlorfenvinphos             | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Chlorpyrifos                | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Chlorpyrifos-methyl         | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Coumaphos                   | mg/kg | < 2      |  | 2                    | Pass           |                    |
| Demeton-S                   | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Demeton-O                   | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Diazinon                    | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Dichlorvos                  | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Dimethoate                  | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Disulfoton                  | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| EPN                         | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Ethion                      | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Ethoprop                    | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Ethyl parathion             | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Fenitrothion                | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Fensulfothion               | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Fenthion                    | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Malathion                   | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Merphos                     | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Methyl parathion            | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Mevinphos                   | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Monocrotophos               | mg/kg | < 2      |  | 2                    | Pass           |                    |
| Naled                       | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Omethoate                   | mg/kg | < 2      |  | 2                    | Pass           |                    |
| Phorate                     | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Pirimiphos-methyl           | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Pyrazophos                  | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Ronnel                      | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Terbufos                    | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Tetrachlorvinphos           | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Tokuthion                   | mg/kg | < 0.2    |  | 0.2                  | Pass           |                    |
| Trichloronate               | mg/kg | < 0.2    |  | 0.2                  | Pass           | ļ                  |
| Method Blank                |       |          |  |                      |                |                    |
| Heavy Metals                |       |          |  |                      |                |                    |
| Arsenic                     | mg/kg | < 2      |  | 2                    | Pass           |                    |
| Cadmium                     | mg/kg | < 0.4    |  | 0.4                  | Pass           |                    |
| Chromium                    | mg/kg | < 5      |  | 5                    | Pass           |                    |
| Copper                      | mg/kg | < 5      |  | 5                    | Pass           |                    |
| Lead                        | mg/kg | < 5      |  | 5                    | Pass           |                    |
| Mercury                     | mg/kg | < 0.1    |  | 0.1                  | Pass           | 1                  |



| Test                                                 | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|-------|----------|----------------------|----------------|--------------------|
| Nickel                                               | mg/kg | < 5      | 5                    | Pass           |                    |
| Zinc                                                 | mg/kg | < 5      | 5                    | Pass           |                    |
| LCS - % Recovery                                     |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons                       |       |          |                      |                |                    |
| TRH C6-C9                                            | %     | 89       | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %     | 88       | 70-130               | Pass           |                    |
| TRH C6-C10                                           | %     | 86       | 70-130               | Pass           |                    |
| TRH >C10-C16                                         | %     | 85       | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       |          |                      |                |                    |
| втех                                                 |       |          |                      |                |                    |
| Benzene                                              | %     | 96       | 70-130               | Pass           |                    |
| Toluene                                              | %     | 82       | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %     | 100      | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %     | 103      | 70-130               | Pass           |                    |
| o-Xylene                                             | %     | 106      | 70-130               | Pass           |                    |
| Xylenes - Total*                                     | %     | 104      | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       | •        |                      |                |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |       |          |                      |                |                    |
| Naphthalene                                          | %     | 78       | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |       | •        |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons                     |       |          |                      |                |                    |
| Acenaphthene                                         | %     | 85       | 70-130               | Pass           |                    |
| Acenaphthylene                                       | %     | 88       | 70-130               | Pass           |                    |
| Anthracene                                           | %     | 73       | 70-130               | Pass           |                    |
| Benz(a)anthracene                                    | %     | 84       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                                       | %     | 85       | 70-130               | Pass           |                    |
| Benzo(b&i)fluoranthene                               | %     | 78       | 70-130               | Pass           |                    |
| Benzo(a,h,i)pervlene                                 | %     | 77       | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene                                 | %     | 99       | 70-130               | Pass           |                    |
| Chrysene                                             | %     | 82       | 70-130               | Pass           |                    |
| Dibenz(a,h)anthracene                                | %     | 80       | 70-130               | Pass           |                    |
| Eluoranthene                                         | %     | 75       | 70-130               | Pass           |                    |
| Fluorene                                             | %     | 88       | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                               | %     | 80       | 70-130               | Pass           |                    |
| Naphthalene                                          | %     | 88       | 70-130               | Pass           |                    |
| Phenanthrene                                         | %     | 75       | 70-130               | Pass           |                    |
| Pyrene                                               | %     | 76       | 70-130               | Pass           |                    |
| LCS - % Recovery                                     | ,,,   |          | 10100                | 1 400          |                    |
| Organochlorine Pesticides                            |       |          |                      |                |                    |
| Chlordanes - Total                                   | %     | 109      | 70-130               | Pass           |                    |
| 4.4'-DDD                                             | %     | 112      | 70-130               | Pass           |                    |
| 4.4'-DDF                                             | %     | 102      | 70-130               | Pass           |                    |
| 4.4'-DDT                                             | %     | 79       | 70-130               | Pass           |                    |
| а-НСН                                                | %     | 108      | 70-130               | Pass           |                    |
| Aldrin                                               | %     | 105      | 70-130               | Pass           |                    |
| h-HCH                                                | %     | 104      | 70-130               | Pass           |                    |
| d-HCH                                                | %     | 107      | 70-130               | Pass           |                    |
| Dieldrin                                             | %     | 102      | 70-130               | Pass           |                    |
| Endosulfan I                                         | %     | 108      | 70-130               | Pass           |                    |
| Endosulfan II                                        | %     | 112      | 70-130               | Pass           |                    |
| Endosulfan sulphate                                  | %     | 86       | 70-130               | Pass           |                    |
| Endrin                                               | %     | 97       | 70-130               | Pass           |                    |
| Endrin aldehyde                                      | %     | 77       | 70-130               | Pass           |                    |
| Endrin ketone                                        | %     | 109      | 70-130               | Pass           |                    |



| Test                           |               |        | Units | Result 1 |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|---------------|--------|-------|----------|-----|----------------------|----------------|--------------------|
| g-HCH (Lindane)                |               |        | %     | 116      |     | 70-130               | Pass           |                    |
| Heptachlor                     |               |        | %     | 113      |     | 70-130               | Pass           |                    |
| Heptachlor epoxide             |               |        | %     | 114      |     | 70-130               | Pass           |                    |
| Hexachlorobenzene              |               |        | %     | 106      |     | 70-130               | Pass           |                    |
| Methoxychlor                   |               |        | %     | 92       |     | 70-130               | Pass           |                    |
| LCS - % Recovery               |               |        |       |          |     |                      |                |                    |
| Organophosphorus Pesticides    |               |        |       |          |     |                      |                |                    |
| Diazinon                       |               |        | %     | 85       |     | 70-130               | Pass           |                    |
| Dimethoate                     |               |        | %     | 109      |     | 70-130               | Pass           |                    |
| Ethion                         |               |        | %     | 94       |     | 70-130               | Pass           |                    |
| Fenitrothion                   |               |        | %     | 123      |     | 70-130               | Pass           |                    |
| Methyl parathion               |               |        | %     | 104      |     | 70-130               | Pass           |                    |
| Mevinphos                      |               |        | %     | 80       |     | 70-130               | Pass           |                    |
| LCS - % Recovery               |               |        | ,.    | 1        |     |                      |                |                    |
| Heavy Metals                   |               |        |       |          |     |                      |                |                    |
| Arsenic                        |               |        | %     | 104      |     | 80-120               | Pass           |                    |
| Cadmium                        |               |        | %     | 101      |     | 80-120               | Pass           |                    |
| Chromium                       |               |        | %     | 108      |     | 80-120               | Pass           |                    |
| Copper                         |               |        | %     | 108      |     | 80-120               | Pass           |                    |
| Lead                           |               |        | %     | 99       |     | 80-120               | Pass           |                    |
| Mercury                        |               |        | %     | 108      |     | 80-120               | Pass           |                    |
| Nickel                         |               |        | %     | 106      |     | 80-120               | Pass           |                    |
| Zinc                           |               |        | %     | 104      |     | 80-120               | Pass           |                    |
|                                |               | QA     | 70    | -        |     | Acceptance           | Pass           | Qualifying         |
| Test                           | Lab Sample ID | Source | Units | Result 1 |     | Limits               | Limits         | Code               |
| Spike - % Recovery             |               |        |       | 1        |     | <br>                 |                |                    |
| Total Recoverable Hydrocarbons |               |        |       | Result 1 |     |                      |                |                    |
| TRH C6-C9                      | S23-Jn0049729 | NCP    | %     | 73       |     | 70-130               | Pass           |                    |
| TRH C10-C14                    | R23-Jn0019938 | NCP    | %     | 88       |     | 70-130               | Pass           |                    |
| TRH C6-C10                     | S23-Jn0049729 | NCP    | %     | 70       |     | 70-130               | Pass           |                    |
| TRH >C10-C16                   | R23-Jn0019938 | NCP    | %     | 77       |     | 70-130               | Pass           |                    |
| Spike - % Recovery             |               |        |       | i        | 1 1 | <br>                 |                |                    |
| Organochlorine Pesticides      |               |        |       | Result 1 |     |                      |                |                    |
| Chlordanes - Total             | S23-Jn0045372 | NCP    | %     | 101      |     | 70-130               | Pass           |                    |
| 4.4'-DDD                       | S23-Jn0045372 | NCP    | %     | 111      |     | 70-130               | Pass           |                    |
| 4.4'-DDE                       | S23-Jn0045372 | NCP    | %     | 104      |     | 70-130               | Pass           |                    |
| 4.4'-DDT                       | S23-Jn0045372 | NCP    | %     | 104      |     | 70-130               | Pass           |                    |
| а-НСН                          | S23-Jn0045372 | NCP    | %     | 103      |     | 70-130               | Pass           |                    |
| Aldrin                         | S23-Jn0045372 | NCP    | %     | 96       |     | 70-130               | Pass           |                    |
| b-HCH                          | S23-Jn0045372 | NCP    | %     | 96       |     | 70-130               | Pass           |                    |
| d-HCH                          | S23-Jn0045372 | NCP    | %     | 103      |     | 70-130               | Pass           |                    |
| Dieldrin                       | S23-Jn0045372 | NCP    | %     | 86       |     | 70-130               | Pass           |                    |
| Endosulfan I                   | S23-Jn0045372 | NCP    | %     | 119      |     | 70-130               | Pass           |                    |
| Endosulfan II                  | S23-Jn0045372 | NCP    | %     | 97       |     | 70-130               | Pass           |                    |
| Endosulfan sulphate            | S23-Jn0045372 | NCP    | %     | 95       |     | 70-130               | Pass           |                    |
| Endrin                         | S23-Jn0045372 | NCP    | %     | 114      |     | 70-130               | Pass           |                    |
| Endrin aldehyde                | S23-Jn0045372 | NCP    | %     | 88       |     | 70-130               | Pass           |                    |
| Endrin ketone                  | S23-Jn0045372 | NCP    | %     | 102      |     | 70-130               | Pass           |                    |
| g-HCH (Lindane)                | S23-Jn0045372 | NCP    | %     | 98       |     | 70-130               | Pass           |                    |
| Heptachlor                     | S23-Jn0045372 | NCP    | %     | 100      |     | 70-130               | Pass           |                    |
| Heptachlor epoxide             | S23-Jn0045372 | NCP    | %     | 105      |     | 70-130               | Pass           |                    |
| Hexachlorobenzene              | S23-Jn0045372 | NCP    | %     | 104      |     | 70-130               | Pass           |                    |
| Methoxychlor                   | S23-Jn0045372 | NCP    | %     | 104      |     | 70-130               | Pass           |                    |
| Spike - % Recovery             |               |        |       |          |     |                      |                |                    |
| Organophosphorus Pesticides    |               |        |       | Result 1 |     |                      |                |                    |



| Test                             | Lab Sample ID  | QA<br>Source | Units | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|----------------|--------------|-------|----------|---|----------------------|----------------|--------------------|
| Diazinon                         | S23-Jn0053326  | СР           | %     | 122      |   | 70-130               | Pass           |                    |
| Dimethoate                       | S23-Jn0053326  | СР           | %     | 102      |   | 70-130               | Pass           |                    |
| Ethion                           | S23-Jn0053326  | CP           | %     | 105      |   | 70-130               | Pass           |                    |
| Fenitrothion                     | S23-Jn0053326  | CP           | %     | 94       |   | 70-130               | Pass           |                    |
| Methyl parathion                 | S23-Jn0053326  | СР           | %     | 120      |   | 70-130               | Pass           |                    |
| Mevinphos                        | S23-Jn0053326  | CP           | %     | 116      |   | 70-130               | Pass           |                    |
| Spike - % Recovery               | '              |              |       |          |   |                      |                |                    |
| Heavy Metals                     |                |              |       | Result 1 |   |                      |                |                    |
| Arsenic                          | S23-Jn0053329  | CP           | %     | 106      |   | 75-125               | Pass           |                    |
| Cadmium                          | S23-Jn0053329  | CP           | %     | 114      |   | 75-125               | Pass           |                    |
| Chromium                         | S23-Jn0053329  | СР           | %     | 111      |   | 75-125               | Pass           |                    |
| Copper                           | S23-Jn0053329  | СР           | %     | 112      |   | 75-125               | Pass           |                    |
| Lead                             | S23-Jn0053329  | СР           | %     | 100      |   | 75-125               | Pass           |                    |
| Mercury                          | S23-Jn0053329  | СР           | %     | 113      |   | 75-125               | Pass           |                    |
| Nickel                           | S23-Jn0053329  | CP           | %     | 108      |   | 75-125               | Pass           |                    |
| Zinc                             | S23-Jn0053329  | СР           | %     | 108      |   | 75-125               | Pass           |                    |
| Spike - % Recovery               |                |              |       |          |   |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons | 6              |              |       | Result 1 |   |                      |                |                    |
| Acenaphthene                     | S23-Jn0053335  | CP           | %     | 90       |   | 70-130               | Pass           |                    |
| Acenaphthylene                   | S23-Jn0053335  | CP           | %     | 98       |   | 70-130               | Pass           |                    |
| Anthracene                       | S23-Jn0053335  | CP           | %     | 83       |   | 70-130               | Pass           |                    |
| Benz(a)anthracene                | S23-Jn0053335  | CP           | %     | 88       |   | 70-130               | Pass           |                    |
| Benzo(a)pyrene                   | S23-Jn0053335  | CP           | %     | 92       |   | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene           | S23-Jn0053335  | CP           | %     | 82       |   | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene             | S23-Jn0053335  | CP           | %     | 98       |   | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             | S23-Jn0053335  | CP           | %     | 105      |   | 70-130               | Pass           |                    |
| Chrysene                         | S23-Jn0053335  | CP           | %     | 94       |   | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            | S23-Jn0053335  | CP           | %     | 100      |   | 70-130               | Pass           |                    |
| Fluoranthene                     | S23-Jn0053335  | CP           | %     | 90       |   | 70-130               | Pass           |                    |
| Fluorene                         | S23-Jn0053335  | CP           | %     | 98       |   | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           | S23-Jn0053335  | CP           | %     | 99       |   | 70-130               | Pass           |                    |
| Naphthalene                      | S23-Jn0053335  | CP           | %     | 97       |   | 70-130               | Pass           |                    |
| Phenanthrene                     | S23-Jn0053335  | CP           | %     | 85       |   | 70-130               | Pass           |                    |
| Pyrene                           | S23-Jn0053335  | CP           | %     | 91       |   | 70-130               | Pass           |                    |
| Spike - % Recovery               |                |              |       | 1        | 1 | I                    |                |                    |
| Heavy Metals                     | 1              |              |       | Result 1 |   |                      |                |                    |
| Arsenic                          | S23-Jn0053339  | CP           | %     | 102      |   | 75-125               | Pass           |                    |
| Cadmium                          | S23-Jn0053339  | CP           | %     | 109      |   | 75-125               | Pass           |                    |
| Chromium                         | S23-Jn0053339  | CP           | %     | 107      |   | 75-125               | Pass           |                    |
| Copper                           | S23-Jn0053339  | CP           | %     | 94       |   | 75-125               | Pass           |                    |
| Mercury                          | S23-Jn0053339  | CP           | %     | 104      |   | 75-125               | Pass           |                    |
| Nickel                           | S23-Jn0053339  | CP           | %     | 100      |   | 75-125               | Pass           |                    |
| Spike - % Recovery               |                |              |       |          |   | 1                    |                |                    |
| BTEX                             |                |              |       | Result 1 |   |                      | _              |                    |
| Benzene                          | S23-Jn0053340  | CP           | %     | 78       |   | 70-130               | Pass           |                    |
|                                  | S23-Jn0053340  | CP           | %     | 74       |   | 70-130               | Pass           |                    |
| Ethylbenzene                     | S23-Jn0053340  | CP           | %     | 79       |   | 70-130               | Pass           |                    |
| m&p-Xylenes                      | S23-Jn0053340  | CP           | %     | 81       |   | 70-130               | Pass           |                    |
| 0-Xylene                         | S23-Jn0053340  | CP           | %     | 79       |   | 70-130               | Pass           |                    |
| Xylenes - I otal*                | S23-Jn0053340  | CP           | %     | 80       |   | 70-130               | Pass           |                    |
| Spike - % Recovery               |                | iene         |       | Deguit 1 |   |                      |                |                    |
| Nanhthalana                      | SOO INCOMPLET  |              | 0/    |          |   | 70.420               | Dean           |                    |
|                                  | 323-3110053340 |              | 70    |          |   | 10-130               | r dss          |                    |



| Duplicite         Result 1         Result 2         RPD         Pass           TRH C10-C14         R23-In001999         NCP         mgkq         <20         <20         <1         30%         Pass           TRH C16-C28         R23-In0019999         NCP         mgkq         <50         <50         <1         30%         Pass           TRH C29-C36         R23-In0019999         NCP         mgkq         <50         <50         <1         30%         Pass           TRH >C16-C34         R23-In0019999         NCP         mgkq         <100         <10         30%         Pass           Duplicate         Polycyclit Aromatic Hydrocarbons         Result 1         Result 2         RPD            Aceragnthydren         S23-In0035800         NCP         mgkq         <0.5         <0.5         <1         30%         Pass           Benzola[b]thoranthracene         S23-In0035800         NCP         mgkq         <0.5         <0.5         <1         30%         Pass           Benzola[b]thoranthracene         S23-In0035800         NCP         mgkq         <0.5         <0.5         <1         30%         Pass           Benzola[b]thoranthracene         S23-In0035800         NCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test                             | Lab Sample ID  | QA<br>Source | Units    | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------|----------|----------|----------|-----|----------------------|----------------|--------------------|
| Total Recoverable Hydrocarbons         Result 1         Result 1         Result 2         RPD         Image           TRH C16-C14         R23n0019999         NCP         mg/kg         < 20         < 41         30%         Pass           TRH C15-C28         R23n0019999         NCP         mg/kg         < 50         < 50         < 1         30%         Pass           TRH SC10-C16         R23n0019999         NCP         mg/kg         < 100         < 100         < 1         30%         Pass           TRH SC34-C40         R23n0019999         NCP         mg/kg         < 100         < 1         30%         Pass           Daplicate          Cacanghthmen         S23n0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Acanghthmen         S23n0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Barcologipytene         S23n0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Barcologipytene         S23n0035800         NCP         mg/kg         < 0.5         < 1         30%         Pass <t< th=""><th>Duplicate</th><th></th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duplicate                        |                |              |          | ,        |          |     |                      |                |                    |
| TRH C10-C14         R23-In0019999         NCP         mg/kg         < 20         < 20         < 1         30%         Pass           TRH C15-C28         R23-In0019999         NCP         mg/kg         < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Recoverable Hydrocarbons   |                |              |          | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C15-C28         R23-Jn0019999         NCP         mg/kg         < 50         < 10         30%         Pass           TRH C29-C36         R23-Jn0019999         NCP         mg/kg         < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRH C10-C14                      | R23-Jn0019999  | NCP          | mg/kg    | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C2P-C36         R23-JN0019999         NCP         mgkg         < 50         < 1         30%         Pass           TRH >C16-C34         R23-JN0019999         NCP         mgkg         < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRH C15-C28                      | R23-Jn0019999  | NCP          | mg/kg    | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16         R23-Jn0019999         NCP         mgkg         < 100         < 11         30%         Pass           TRH >C16-C34         R23-Jn0019999         NCP         mgkg         < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRH C29-C36                      | R23-Jn0019999  | NCP          | mg/kg    | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH > C16-C24         R23-Jn0019999         NCP         mg/kg         < 100         < 11         30%         Pass           Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRH >C10-C16                     | R23-Jn0019999  | NCP          | mg/kg    | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH xC34-C40         R23-Jn0019999         NCP         mg/kg         < 100         <1         30%         Pass           Dupicate          Result 1         Result 2         RPD             Acenaphthene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRH >C16-C34                     | R23-Jn0019999  | NCP          | mg/kg    | < 100    | < 100    | <1  | 30%                  | Pass           |                    |
| Duplicate         Result 1         Result 2         RPD         Result 2           Polycyclic Aromatic Hydrocarbons         Result 2         RPD         Result 2         RPD         Result 2           Acenaphthylene         \$23_h0035800         NCP         mg/kg         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRH >C34-C40                     | R23-Jn0019999  | NCP          | mg/kg    | < 100    | < 100    | <1  | 30%                  | Pass           |                    |
| Polycyclic Aromatic Hydrocarbons         Result 1         Result 2         RPD         Result 2           Acenaphthene         \$23_Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate                        |                |              | 00       |          |          |     |                      |                |                    |
| Acenaphthene         \$23_Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Acenaphthylene         \$23_Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Polycyclic Aromatic Hydrocarbons | 5              |              |          | Result 1 | Result 2 | RPD |                      |                |                    |
| Acenaphthylene         \$23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Anthracene         \$23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acenaphthene                     | S23-Jn0035800  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Anthracene         \$23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Benza(a)prifracene         \$23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acenaphthylene                   | S23-Jn0035800  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benz(a)anthracene         \$23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Benzo(a)pyrene         \$23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anthracene                       | S23-Jn0035800  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(a)pyrene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Benzo(b3)filuoranthene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benz(a)anthracene                | S23-Jn0035800  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(bå)/fluoranthene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 1         30%         Pass           Benzo(flythoranthene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a)pyrene                   | S23-Jn0035800  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Benzo(1, h)perylene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 1         30%         Pass           Benzo(1, h)perylene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(b&i)fluoranthene           | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Berzol(k)/Iuuranthene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 1         30%         Pass           Dibenz(a,h)anthracene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo(a.h.i)pervlene             | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Draw         Display         Display <thdisplay< th=""> <thdisplay< th=""> <thdisp< td=""><td>Benzo(k)fluoranthene</td><td>S23-Jn0035800</td><td>NCP</td><td>ma/ka</td><td>&lt; 0.5</td><td>&lt; 0.5</td><td>&lt;1</td><td>30%</td><td>Pass</td><td></td></thdisp<></thdisplay<></thdisplay<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo(k)fluoranthene             | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Diplenz(a,h)anthracene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 1         30%         Pass           Fluoranthene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chrysene                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate         Display         Cols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibenz(a,h)anthracene            | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Fluorene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Indeno(1.2.3-cd)pyrene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluoranthene                     | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Indeno(1.2.3-cd)pyrene         S23-Jn0035800         NCP         mg/kg         < 0.5         < 1.5         < 1.30%         Pass           Naphthalene         S23-Jn0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fluorene                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| International function         Display         Construction         Construc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Indeno(1.2.3-cd)pyrepe           | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Internation         S23-In0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Pyrene         S23-In0035800         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Naphthalene                      | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Instruction         S23-Jn0035800         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass           Duplicate         Result 1         Result 1         Result 2         RPD         Image: Chordanes - Total         S23-Jn0035800         NCP         mg/kg         < 0.1         < 0.1         < 1         30%         Pass           4.4'-DD         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenanthrene                     | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Diplicate         Result 1         Result 2         RPD           Criganochlorine Pesticides         S23-Jn0035800         NCP         mg/kg         < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrene                           | S23-Jn0035800  | NCP          | ma/ka    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Image: Construction of the second s | Duplicate                        | 020 0110000000 | 1101         | iiig/itg | 4 0.0    | ¥ 0.0    | 1   | 0070                 | 1 400          |                    |
| Distribution         S23-Jn0035800         NCP         mg/kg         < 0.1         < 1         30%         Pass           4.4'-DDD         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organochlorine Pesticides        |                |              |          | Result 1 | Result 2 | RPD |                      |                |                    |
| A.4-DDD         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           4.4'-DDE         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chlordanes - Total               | S23-Jn0035800  | NCP          | ma/ka    | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Hard         Disc         High         High <th< td=""><td>4.4'-DDD</td><td>S23-Jn0035800</td><td>NCP</td><td>ma/ka</td><td>&lt; 0.05</td><td>&lt; 0.05</td><td>&lt;1</td><td>30%</td><td>Pass</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4'-DDD                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| A.4'-DDT         S23-Jn0035800         NCP         mg/kg         <0.05         <1         30%         Pass           a-HCH         S23-Jn0035800         NCP         mg/kg         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4'-DDE                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| A-HCH         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           Aldrin         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4'-DDT                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Aldrin         D23-Jn0035800         NCP         mg/kg         <0.05         <1.000         1.000         Pass           b-HCH         S23-Jn0035800         NCP         mg/kg         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | а-НСН                            | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Definition         Definition         Definition         NCP         mg/kg         Code         Code         Code         Pass           b-HCH         S23-Jn0035800         NCP         mg/kg         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aldrin                           | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| d-HCH         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           Dieldrin         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b-HCH                            | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Diedrin         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           Endosulfan I         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d-HCH                            | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endoxulfan I         S23-Jn0035800         NCP         mg/kg         < 0.05         < 0.05         < 1         30%         Pass           Endosulfan I         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dieldrin                         | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endodulari         S25 01/0000000         NCP         mg/kg         < 0.00         < 1         00/0         Fdds           Endosulfan II         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Endosulfan I                     | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endodulari in         S25 01/0000000         NCP         mg/kg         < 0.00         < 0.00         < 1         0.00         1 das           Endosulfan sulphate         \$23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Endosulfan II                    | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endodular odphate         S25 01/0000000         NCP         mg/kg         < 0.00         < 1         00%         Face           Endrin         \$23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Endosulfan sulphate              | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endmin       D25 01/0000000       NCP       mg/kg       < 0.00       < 0.00       < 1       0.00       Pass         Endrin aldehyde       \$23-Jn0035800       NCP       mg/kg       < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Endrin                           | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Endmin addrived       S25 choosece       Her       Imging       Kono       Kono       Hade         Endrin ketone       S23-Jn0035800       NCP       mg/kg       < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Endrin aldehvde                  | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| g-HCH (Lindane)         S23-Jn0035800         NCP         mg/kg         < 0.05         < 0.05         < 1         30%         Pass           Heptachlor         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endrin ketone                    | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| g Horr (Lindaric)       S23 chooses       Nor       mg/kg       < 0.05       < 0.05       < 1       30%       Pass         Heptachlor       S23-Jn0035800       NCP       mg/kg       < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g-HCH (Lindane)                  | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.00   | <1  | 30%                  | Pass           |                    |
| Heptachlor         S23 choocococi         Nor         mg/kg         < 0.05         < 1         S0%         Pass           Heptachlor epoxide         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hentachlor                       | S23-Jn0035800  | NCP          | ma/ka    | < 0.05   | < 0.00   | <1  | 30%                  | Pass           |                    |
| Hexachlorobenzene         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           Methoxychlor         S23-Jn0035800         NCP         mg/kg         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heptachlor epoxide               | \$23-Jn0035800 | NCP          | ma/ka    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Methoxychlor         S23-Jn0035800         NCP         mg/kg         < 0.05         < 1         30%         Pass           Toxaphene         N23-Jn0031836         NCP         mg/kg         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachlorobenzene                | S23-Jn0035800  | NCP          | mg/kg    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Toxaphene         N23-In0031836         NCP         mg/kg         < 0.5         < 0.5         < 1         30%         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methoxychlor                     | S23-Jn0035800  | NCP          | mg/kg    | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toxaphene                        | N23-Jn0031836  | NCP          | mg/kg    | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |



| Duplicate                        |                 |      |       |          |          |     |     |      |  |
|----------------------------------|-----------------|------|-------|----------|----------|-----|-----|------|--|
| Organophosphorus Pesticides      |                 |      |       | Result 1 | Result 2 | RPD |     |      |  |
| Azinphos-methyl                  | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Bolstar                          | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Chlorfenvinphos                  | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Chlorpyrifos                     | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Chlorpyrifos-methyl              | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Coumaphos                        | S23-Jn0035800   | NCP  | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Demeton-S                        | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Demeton-O                        | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Diazinon                         | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Dichlorvos                       | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Dimethoate                       | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Disulfoton                       | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| EPN                              | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Ethion                           | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Ethoprop                         | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Ethyl parathion                  | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Fenitrothion                     | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Fensulfothion                    | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Fenthion                         | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Malathion                        | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Merphos                          | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Methyl parathion                 | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Mevinphos                        | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Monocrotophos                    | S23-Jn0035800   | NCP  | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Naled                            | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Omethoate                        | S23-Jn0035800   | NCP  | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Phorate                          | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Pirimiphos-methyl                | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Pyrazophos                       | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Ronnel                           | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Terbufos                         | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Tetrachlorvinphos                | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Tokuthion                        | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Trichloronate                    | S23-Jn0035800   | NCP  | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| Duplicate                        |                 |      |       |          |          |     | -   |      |  |
| Total Recoverable Hydrocarbons   |                 |      |       | Result 1 | Result 2 | RPD |     |      |  |
| TRH C6-C9                        | S23-Jn0053327   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |  |
| TRH C6-C10                       | S23-Jn0053327   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |  |
| Duplicate                        |                 |      |       |          |          |     |     |      |  |
| BTEX                             |                 |      |       | Result 1 | Result 2 | RPD |     |      |  |
| Benzene                          | S23-Jn0053327   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Toluene                          | S23-Jn0053327   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Ethylbenzene                     | S23-Jn0053327   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| m&p-Xylenes                      | S23-Jn0053327   | CP   | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |  |
| o-Xylene                         | S23-Jn0053327   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |  |
| Xylenes - Total*                 | S23-Jn0053327   | CP   | mg/kg | < 0.3    | < 0.3    | <1  | 30% | Pass |  |
| Duplicate                        |                 |      |       |          |          |     |     |      |  |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions |       | Result 1 | Result 2 | RPD |     |      |  |
| Naphthalene                      | S23-Jn0053327   | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |  |
| Duplicate                        |                 |      |       |          |          |     |     |      |  |
| Sample Properties                | 1               |      |       | Result 1 | Result 2 | RPD |     |      |  |
| % Moisture                       | S23-Jn0053327   | CP   | %     | 19       | 17       | 9.6 | 30% | Pass |  |



| Duplicate                        |                 |      |       |          |          |     |     |      |   |
|----------------------------------|-----------------|------|-------|----------|----------|-----|-----|------|---|
| Heavy Metals                     |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| Arsenic                          | S23-Jn0053328   | СР   | mg/kg | 5.4      | 5.5      | 1.2 | 30% | Pass |   |
| Cadmium                          | S23-Jn0053328   | CP   | mg/kg | 3.4      | 3.1      | 11  | 30% | Pass |   |
| Chromium                         | S23-Jn0053328   | CP   | mg/kg | 8.5      | 7.5      | 13  | 30% | Pass |   |
| Copper                           | S23-Jn0053328   | CP   | mg/kg | 78       | 74       | 5.9 | 30% | Pass |   |
| Lead                             | S23-Jn0053328   | CP   | mg/kg | 190      | 190      | 4.6 | 30% | Pass |   |
| Mercury                          | S23-Jn0053328   | СР   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Nickel                           | S23-Jn0053328   | CP   | mg/kg | < 5      | < 5      | <1  | 30% | Pass |   |
| Zinc                             | S23-Jn0053328   | CP   | mg/kg | 490      | 450      | 9.4 | 30% | Pass |   |
| Duplicate                        |                 |      |       |          |          |     |     |      |   |
| Total Recoverable Hydrocarbons   |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| TRH C6-C9                        | S23-Jn0053329   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |   |
| TRH C6-C10                       | S23-Jn0053329   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |   |
| Duplicate                        |                 |      |       |          |          |     |     |      |   |
| BTEX                             |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| Benzene                          | S23-Jn0053329   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Toluene                          | S23-Jn0053329   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Ethylbenzene                     | S23-Jn0053329   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| m&p-Xylenes                      | S23-Jn0053329   | CP   | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |   |
| o-Xylene                         | S23-Jn0053329   | СР   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Xylenes - Total*                 | S23-Jn0053329   | СР   | mg/kg | < 0.3    | < 0.3    | <1  | 30% | Pass |   |
| Duplicate                        |                 |      |       |          |          |     |     |      |   |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions |       | Result 1 | Result 2 | RPD |     |      |   |
| Naphthalene                      | S23-Jn0053329   | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass |   |
| Duplicate                        |                 |      |       |          |          |     |     |      |   |
| Heavy Metals                     |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| Arsenic                          | S23-Jn0053333   | CP   | mg/kg | 6.3      | 5.5      | 14  | 30% | Pass |   |
| Cadmium                          | S23-Jn0053333   | CP   | mg/kg | < 0.4    | < 0.4    | <1  | 30% | Pass |   |
| Chromium                         | S23-Jn0053333   | CP   | mg/kg | 19       | 16       | 16  | 30% | Pass |   |
| Copper                           | S23-Jn0053333   | CP   | mg/kg | 8.6      | 6.9      | 22  | 30% | Pass |   |
| Lead                             | S23-Jn0053333   | CP   | mg/kg | 17       | 17       | 4.1 | 30% | Pass |   |
| Mercury                          | S23-Jn0053333   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Nickel                           | S23-Jn0053333   | CP   | mg/kg | 7.9      | 5.9      | 29  | 30% | Pass |   |
| Zinc                             | S23-Jn0053333   | CP   | mg/kg | 400      | 320      | 21  | 30% | Pass |   |
| Duplicate                        |                 |      |       | 1        |          |     |     |      |   |
| Total Recoverable Hydrocarbons   |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| TRH C6-C9                        | S23-Jn0053339   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |   |
| TRH C6-C10                       | S23-Jn0053339   | CP   | mg/kg | < 20     | < 20     | <1  | 30% | Pass |   |
| Duplicate                        |                 |      |       | 1        |          |     | 1   | -    |   |
| BTEX                             |                 |      |       | Result 1 | Result 2 | RPD |     |      |   |
| Benzene                          | S23-Jn0053339   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Toluene                          | S23-Jn0053339   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Ethylbenzene                     | S23-Jn0053339   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| m&p-Xylenes                      | S23-Jn0053339   | CP   | mg/kg | < 0.2    | < 0.2    | <1  | 30% | Pass |   |
| o-Xylene                         | S23-Jn0053339   | CP   | mg/kg | < 0.1    | < 0.1    | <1  | 30% | Pass |   |
| Xylenes - Total*                 | S23-Jn0053339   | CP   | mg/kg | < 0.3    | < 0.3    | <1  | 30% | Pass |   |
| Duplicate                        |                 |      |       | 1        |          |     |     |      |   |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions |       | Result 1 | Result 2 | RPD |     |      |   |
| Naphthalene                      | S23-Jn0053339   | CP   | mg/kg | < 0.5    | < 0.5    | <1  | 30% | Pass | 1 |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |
|                                                                         |     |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols ha                                |

N02 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX

 F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

 N04
 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

#### Authorised by:

| Andrew Black       | Analytical Services Manager |
|--------------------|-----------------------------|
| Fang Yee Tan       | Senior Analyst-Metal        |
| Joseph Edouard     | Senior Analyst-Organic      |
| Raymond Siu        | Senior Analyst-Volatile     |
| Roopesh Rangarajan | Senior Analyst-Organic      |
| Roopesh Rangarajan | Senior Analyst-Volatile     |
|                    |                             |

hi fil

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



Ramboll Australia Pty Ltd Level 3/100 Pacific Highway North Sydney NSW 2060





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

### Attention:

### Stephen Maxwell

Report Project name Project ID Received Date 1001666-W TARAGO DETAILED SITE INVESTIGATION 318001679 Jun 19, 2023

| Client Sample ID<br>Sample Matrix<br>Eurofins Sample No.<br>Date Sampled |        |      | QC300-15.623<br>Water<br>S23-Jn0053343<br>Jun 15, 2023 |
|--------------------------------------------------------------------------|--------|------|--------------------------------------------------------|
| Test/Reference                                                           | LOR    | Unit |                                                        |
| Heavy Metals                                                             |        |      |                                                        |
| Arsenic (filtered)                                                       | 0.001  | mg/L | < 0.001                                                |
| Cadmium (filtered)                                                       | 0.0002 | mg/L | < 0.0002                                               |
| Chromium (filtered)                                                      | 0.001  | mg/L | < 0.001                                                |
| Copper (filtered)                                                        | 0.001  | mg/L | < 0.001                                                |
| Lead (filtered)                                                          | 0.001  | mg/L | 0.001                                                  |
| Mercury (filtered)                                                       | 0.0001 | mg/L | < 0.0001                                               |
| Nickel (filtered)                                                        | 0.001  | mg/L | < 0.001                                                |
| Zinc (filtered)                                                          | 0.005  | mg/L | < 0.005                                                |



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description        | Testing Site | Extracted    | Holding Time |
|--------------------|--------------|--------------|--------------|
| Metals M8 filtered | Sydney       | Jun 23, 2023 | 28 Days      |
|                    |              |              |              |

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

| •                |                                                                                                                                                                                               | I                                                     |                                       |              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                    |                    | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898 | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954 |                      |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|--------------------|---------------------------------------------|------------------------------------------------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
| web: w<br>email: | Melbourne     Geelo       6 Monterey Road     19/8 L       Dandenong South     Grover       VIC 3175     VIC 32       Tel: +61 3 8564 5000     Tel: +61       NATA# 1261 Site# 1254     NATA# |                                                       |                                       |              | Sydn.           Ian Street         179 M           Girrav         Girrav           NSW         8564 5000           8564 5000         Tel: +           161 Site# 25403         NATA | Sydney         Canberra         Brisbane         Newcastle           at         179 Magowar Road         Unit 1,2 Dacre Street         1/21 Smallwood Place         1/2 Frost Drive           Girraween         Mitchell         Murarrie         Mayfield West NSW 2304           NSW 2145         ACT 2911         QLD 4172         Tel: +61 2 4968 8448           00         Tel: +61 2 9900 8400         Tel: +61 2 6113 8091         Tel: +61 7 3902 4600         NATA# 1261           25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466         NATA# 1261 Site# 20794         Site# 25079 & 25289 |                  |                                    |                    |                                             |                                                            |                      |                   | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |                                                               |             |
| Co<br>Ad         | mpany Name:<br>dress:                                                                                                                                                                         | Ramboll Aus<br>Level 3/100<br>North Sydne<br>NSW 2060 | stralia Pty Lto<br>Pacific Highv<br>y | l<br>way     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C<br>R<br>P<br>F | Order I<br>Report<br>Phone:<br>ax: | No.:<br>#:         | (                                           | 10016<br>)2 995<br>)2 995                                  | 66<br>54 81<br>54 81 | 18<br>50          |                                                                                                      |                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                          | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell | PM          |
| Pro<br>Pro       | oject Name:<br>oject ID:                                                                                                                                                                      | TARAGO DI<br>318001679                                | ETAILED SIT                           | E INVESTIGAT | ΓΙΟΝ                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                    |                    |                                             |                                                            |                      |                   |                                                                                                      | Ει                                                                                            | urofins Analytical Serv                                                                                  | vices Manager : Ar                                            | ndrew Black |
| Sample Detail    |                                                                                                                                                                                               |                                                       |                                       |              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Acid Herbicides                    | Metals M8 filtered | BTEX                                        | Suite B14: OCP/OPP                                         | Moisture Set         | Eurofins Suite B7 | BTEX                                                                                                 |                                                                                               |                                                                                                          |                                                               |             |
| Melk             | ourne Laborato                                                                                                                                                                                | ory - NATA # 12                                       | 261 Site # 12                         | 54           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                | x                                  | X                  |                                             |                                                            |                      |                   |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| Syd              | ney Laboratory                                                                                                                                                                                | - NATA # 1261                                         | Site # 18217                          | 1            |                                                                                                                                                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                |                                    | X                  | X                                           | Х                                                          | X                    | X                 | Х                                                                                                    | -                                                                                             |                                                                                                          |                                                               |             |
| Exte<br>No       | rnal Laboratory Sample ID                                                                                                                                                                     | Sample Date                                           | Sampling                              | Matrix       | LAB ID                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                    |                    |                                             |                                                            |                      |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 1                | SMC-HA01-<br>0.05                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005332                                                                                                                                                                       | 6 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | x                                  |                    |                                             | х                                                          | x                    | x                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 2                | SMC-HA01-<br>0.25                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005332                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                    |                    |                                             |                                                            | х                    | х                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 3                | SMC-HA02-<br>0.05                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005332                                                                                                                                                                       | <sup>8</sup> x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                    |                    |                                             |                                                            | х                    | x                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 4                | SMC-HA02-<br>0.5                                                                                                                                                                              | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005332                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                    |                    |                                             |                                                            | x                    | x                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 5                | SMC-HA03-<br>0.05                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005333                                                                                                                                                                       | 0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | x                                  |                    |                                             | x                                                          | x                    | x                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 6                | SMC-HA03-<br>0.25                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005333                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                    |                    |                                             |                                                            | х                    | x                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 7                | SMC-HA04-<br>0.05                                                                                                                                                                             | Jun 15, 2023                                          |                                       | Soil         | S23-Jn005333                                                                                                                                                                       | 2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                    |                    |                                             |                                                            | х                    | Х                 |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |

| •                                                                                                          | Eurofins Environment Testing Australia Pty Lt<br>ABN: 50 005 085 521 |                                                     |                                                                                                           |                                                                     | a Pty Ltd                                  |                          |                                            |                                                        |                               |                                  |                                                             |                                       |                          |                                                                                                                        | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954                                    |                                                                                                          |             |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|
| Welbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 12 |                                                                      |                                                     | Geelong<br>19/8 Lewalan Street<br>Grovedale<br>VIC 3216<br>Tel: +61 3 8564 5000<br>i4 NATA# 1261 Site# 25 | Sydney<br>179 Mag<br>Girrawee<br>NSW 214<br>Tel: +61<br>403 NATA# 1 | owar Ro<br>n<br>15<br>2 9900 1<br>261 Site | bad<br>8400<br>∌# 1821   | Canb<br>Unit 1<br>Mitch<br>ACT 1<br>Tel: + | erra<br>I,2 Daci<br>ell<br>2911<br>-61 2 61<br>A# 1261 | re Stree<br>13 809<br>Site# 2 | B<br>t 1/<br>Q<br>1 Te<br>5466 N | risbane<br>21 Sma<br>urarrie<br>LD 417<br>el: +61<br>ATA# 1 | allwood<br>72<br>7 3902 -<br>261 Site | Place<br>4600<br>e# 2079 | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>V4 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |             |
| Co<br>Ad                                                                                                   | mpany Name:<br>dress:                                                | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | ustralia Pty Ltd<br>) Pacific Highway<br>ey                                                               |                                                                     |                                            |                          | O<br>Ri<br>Pi<br>Fa                        | rder N<br>eport<br>hone:<br>ax:                        | No.:<br>#:                    | 1<br>()<br>()                    | 10016<br>)2 995<br>)2 995                                   | 66<br>54 81 <sup>-</sup><br>54 81 5   | 18<br>50                 |                                                                                                                        |                                                                                                      | Received:<br>Due:<br>Priority:<br>Contact Name:                                               | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell                                            | PM          |
| Pro<br>Pro                                                                                                 | oject Name:<br>oject ID:                                             | TARAGO E<br>318001679                               | DETAILED SITE IN                                                                                          | VESTIGATION                                                         |                                            |                          | _                                          |                                                        |                               |                                  |                                                             | -                                     |                          |                                                                                                                        | E                                                                                                    | urofins Analytical Serv                                                                       | vices Manager : A                                                                                        | ndrew Black |
|                                                                                                            |                                                                      | s                                                   | ample Detail                                                                                              |                                                                     |                                            | Asbestos - WA guidelines | HOLD                                       | Acid Herbicides                                        | Metals M8 filtered            | BTEX                             | Suite B14: OCP/OPP                                          | Moisture Set                          | Eurofins Suite B7        | BTEX                                                                                                                   |                                                                                                      |                                                                                               |                                                                                                          |             |
| Mell                                                                                                       | ourne Laborato                                                       | ory - NATA # 1                                      | 261 Site # 1254                                                                                           |                                                                     |                                            |                          |                                            | Х                                                      | Х                             |                                  |                                                             |                                       |                          |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| Syd                                                                                                        | ney Laboratory                                                       | - NATA # 1261                                       | I Site # 18217                                                                                            |                                                                     |                                            | х                        | X                                          |                                                        | х                             | Х                                | х                                                           | х                                     | х                        | х                                                                                                                      |                                                                                                      |                                                                                               |                                                                                                          |             |
| 8                                                                                                          | SMC-HA04-<br>0.5                                                     | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053333                                    |                          |                                            |                                                        |                               |                                  |                                                             | х                                     | x                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 9                                                                                                          | SMC-HA05-<br>0.05                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053334                                    | х                        |                                            | х                                                      |                               |                                  | х                                                           | х                                     | х                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 10                                                                                                         | SMC-HA05-<br>0.25                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053335                                    |                          |                                            |                                                        |                               |                                  |                                                             | х                                     | х                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 11                                                                                                         | SMC-HA06-<br>0.05                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053336                                    | x                        |                                            |                                                        |                               |                                  |                                                             | х                                     | x                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 12                                                                                                         | SMC-HA06-<br>0.5                                                     | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053337                                    |                          |                                            |                                                        |                               |                                  |                                                             | х                                     | х                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 13                                                                                                         | SMC-HA07-<br>0.05                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053338                                    | х                        |                                            | х                                                      |                               |                                  | х                                                           | х                                     | x                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 14                                                                                                         | SMC-HA07-<br>0.25                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053339                                    |                          |                                            |                                                        |                               |                                  |                                                             | х                                     | x                        |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |             |
| 15                                                                                                         | SMC-HA08-<br>0.05                                                    | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053340                                    | x                        |                                            |                                                        |                               |                                  |                                                             | х                                     | x                        |                                                                                                                        | 1                                                                                                    |                                                                                               |                                                                                                          |             |
| 16                                                                                                         | SMC-HA08-<br>0.5                                                     | Jun 15, 2023                                        | Soi                                                                                                       | S23-Jn                                                              | 0053341                                    |                          |                                            |                                                        |                               |                                  |                                                             | х                                     | x                        |                                                                                                                        | ]                                                                                                    |                                                                                               |                                                                                                          |             |

| Eurofins Environment Testing Australia Pty           ABN: 50 005 085 521 |                                                             |                                                     |                                                                                                             |                                                                     | a Pty Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                     |                                 |                    |               |                          |                        |                   | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898                                                          | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954                                    |                                                                                                          |                                                               |             |
|--------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|---------------------------------|--------------------|---------------|--------------------------|------------------------|-------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
| web: v<br>email:                                                         | web: www.eurofins.com.au<br>email: EnviroSales@eurofins.com |                                                     | Melbourne<br>6 Monterey Road<br>Dandenong South<br>VIC 3175<br>Tel: +61 3 8564 5000<br>NATA# 1261 Site# 125 | Sydney<br>179 Mag<br>Girrawee<br>NSW 214<br>Tel: +61<br>403 NATA# 1 | Canberra         Brisbane         Newcastle           jowar Road         Unit 1,2 Dacre Street         1/21 Smallwood Place         1/2 ForsDrive           en         Mitchell         Murarrie         Mayfield West NSW 2304           145         ACT 2911         QLD 4172         Tel: +61 2 4968 8448           12 9900 8400         Tel: +61 2 6113 8091         Tel: +61 7 3902 4600         NATA# 1261           1261 Site# 18217 NATA# 1261 Site# 25466         NATA# 1261 Site# 20794         Site# 25079 & 25289 |                          |                     |                                 |                    |               |                          |                        |                   | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |                                                               |             |
| Co<br>Ao                                                                 | ompany Name:<br>Idress:                                     | Ramboll Au<br>Level 3/100<br>North Sydn<br>NSW 2060 | stralia Pty Ltd<br>Pacific Highway<br>ey                                                                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | O<br>Ri<br>Pl<br>Fa | rder N<br>eport<br>hone:<br>ax: | lo.:<br>#:         | 1<br>()<br>() | 0016<br>02 995<br>02 995 | 66<br>54 811<br>54 815 | 18                |                                                                                                      |                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                          | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell | PM          |
| Pr<br>Pr                                                                 | oject Name:<br>oject ID:                                    | TARAGO D<br>318001679                               | ETAILED SITE IN                                                                                             | /ESTIGATION                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     |                                 |                    | _             |                          |                        |                   |                                                                                                      | E                                                                                             | rofins Analytical Serv                                                                                   | vices Manager : Ai                                            | ndrew Black |
|                                                                          |                                                             | S                                                   | ample Detail                                                                                                |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asbestos - WA guidelines | HOLD                | Acid Herbicides                 | Metals M8 filtered | BTEX          | Suite B14: OCP/OPP       | Moisture Set           | Eurofins Suite B7 | BTEX                                                                                                 |                                                                                               |                                                                                                          |                                                               |             |
| Mel                                                                      | oourne Laborato                                             | ory - NATA # 1                                      | 261 Site # 1254                                                                                             |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                     | х                               | х                  |               |                          |                        |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| Syd                                                                      | ney Laboratory                                              | - NATA # 1261                                       | Site # 18217                                                                                                | I                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X                        | X                   |                                 | X                  | Х             | Х                        | X                      | X                 | Х                                                                                                    | -                                                                                             |                                                                                                          |                                                               |             |
| 17                                                                       | QC100-15.623                                                | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                     | Х                               |                    |               | Х                        | X                      | X                 |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| 18                                                                       | QC300-15.623                                                | Jun 15, 2023                                        | Wate                                                                                                        | er S23-Jn                                                           | 0053343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                     |                                 | X                  |               |                          |                        |                   |                                                                                                      | 4                                                                                             |                                                                                                          |                                                               |             |
| 19                                                                       | 150623                                                      | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                     |                                 |                    | х             |                          |                        |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 20                                                                       | TRIP SPIKE-<br>150625                                       | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                     |                                 |                    |               |                          |                        |                   | х                                                                                                    |                                                                                               |                                                                                                          |                                                               |             |
| 21                                                                       | SMC-HA01-<br>0.5                                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | x                   |                                 |                    |               |                          |                        |                   |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| 22                                                                       | SMC-HA02-<br>0.25                                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | x                   |                                 |                    |               |                          |                        |                   |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| 23                                                                       | SMC-HA03-<br>0.5                                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | x                   |                                 |                    |               |                          |                        |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 24                                                                       | SMC-HA04-<br>0.25                                           | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | x                   |                                 |                    |               |                          |                        |                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| 25                                                                       | SMC-HA05-<br>0.5                                            | Jun 15, 2023                                        | Soil                                                                                                        | S23-Jn                                                              | 0053350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | x                   |                                 |                    |               |                          |                        |                   |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| 20                                                                       | SIVIC-HAU6-                                                 | Jun 15, 2023                                        | 501                                                                                                         | 523-JN                                                              | 0053351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | Х                   |                                 |                    |               |                          |                        |                   |                                                                                                      | J                                                                                             |                                                                                                          |                                                               |             |

| •                                                                                                                                                                               |                                        | g Australia Pty Ltd                                 |                                                                                 |                                                                                                                                                |                                            |                        |                                                                                                               |                                 |                                                                                                                       |                    | Eurofins ARL Pty Ltd<br>ABN: 91 05 0159 898 | Eurofins Environment Testing NZ Ltd<br>NZBN: 9429046024954 |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
| Melbourne       G         6 Monterey Road       1         Dandenong South       G         VIC 3175       V         remail: EnviroSales@eurofins.com       NATA# 1261 Site# 1254 |                                        |                                                     | Geelong<br>19/8 Lewa<br>Grovedale<br>VIC 3216<br>00 Tel: +61 3<br>1254 NATA# 12 | Sydney           lan Street         179 Mag<br>Girrawer           NSW 21           8564 5000         Tel: +61           61 Site# 25403 NATA# 1 | owar Ro<br>en<br>45<br>2 9900<br>1261 Site | oad<br>8400<br>e# 1821 | Canberra<br>Unit 1,2 Dacre Street<br>Mitchell<br>ACT 2911<br>Tel: +61 2 6113 8091<br>3217 NATA# 1261 Site# 29 |                                 | Brisbane<br>t 1/21 Smallwood Place<br>Murarrie<br>QLD 4172<br>11 Tel: +61 7 3902 4600<br>25466 NATA# 1261 Site# 20794 |                    |                                             | Place<br>4600<br>e# 2079                                   | Newcastle<br>1/2 Frost Drive<br>Mayfield West NSW 2304<br>Tel: +61 2 4968 8448<br>NATA# 1261<br>14 Site# 25079 & 25289 | Perth<br>46-48 Banksia Road<br>Welshpool<br>WA 6106<br>Tel: +61 8 6253 4444<br>NATA# 2377 Site# 2370 | Auckland<br>35 O'Rorke Road<br>Penrose,<br>Auckland 1061<br>Tel: +64 9 526 4551<br>IANZ# 1327 | Christchurch<br>43 Detroit Drive<br>Rolleston,<br>Christchurch 7675<br>Tel: +64 3 343 5201<br>IANZ# 1290 |                                                               |             |
| Co<br>Ao<br>Pr                                                                                                                                                                  | ompany Name:<br>Idress:<br>oject Name: | Ramboll Au<br>Level 3/100<br>North Sydr<br>NSW 2060 | ustralia Pty Ltd<br>) Pacific Highway<br>ley<br>DETAILED SITE                   |                                                                                                                                                | TION                                       |                        | O<br>R<br>Pi<br>Fi                                                                                            | rder I<br>eport<br>hone:<br>ax: | No.:<br>#:                                                                                                            |                    | 10016<br>02 995<br>02 995                   | 66<br>54 81<br>54 81                                       | 18<br>50                                                                                                               |                                                                                                      |                                                                                               | Received:<br>Due:<br>Priority:<br>Contact Name:                                                          | Jun 19, 2023 4:40<br>Jun 26, 2023<br>5 Day<br>Stephen Maxwell | PM          |
| Pr                                                                                                                                                                              | oject ID:                              | 318001679                                           |                                                                                 | INVEGHOAI                                                                                                                                      |                                            |                        |                                                                                                               |                                 |                                                                                                                       |                    |                                             |                                                            |                                                                                                                        |                                                                                                      | E                                                                                             | urofins Analytical Ser                                                                                   | vices Manager : Aı                                            | ndrew Black |
| Sample Detail                                                                                                                                                                   |                                        |                                                     |                                                                                 |                                                                                                                                                | Asbestos - WA guidelines                   | HOLD                   | Acid Herbicides                                                                                               | Metals M8 filtered              | BTEX                                                                                                                  | Suite B14: OCP/OPP | Moisture Set                                | Eurofins Suite B7                                          | BTEX                                                                                                                   |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| Mell                                                                                                                                                                            | bourne Laborate                        | ory - NATA # 1                                      | 261 Site # 1254                                                                 |                                                                                                                                                |                                            | X                      |                                                                                                               | X                               | X                                                                                                                     |                    | X                                           | ×                                                          |                                                                                                                        |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| Syd                                                                                                                                                                             | ney Laboratory                         | - NATA # 126'                                       | Site # 18217                                                                    |                                                                                                                                                |                                            | X                      |                                                                                                               |                                 |                                                                                                                       |                    | X                                           | X                                                          | X                                                                                                                      | X                                                                                                    | 4                                                                                             |                                                                                                          |                                                               |             |
| 27                                                                                                                                                                              | SMC-HA07-                              | Jun 15, 2023                                        | S                                                                               | oil                                                                                                                                            | S23-Jn0053352                              |                        | x                                                                                                             |                                 |                                                                                                                       |                    |                                             |                                                            |                                                                                                                        |                                                                                                      | -                                                                                             |                                                                                                          |                                                               |             |
| 28                                                                                                                                                                              | SMC-HA08-<br>0.25                      | Jun 15, 2023                                        | S                                                                               | oil                                                                                                                                            | S23-Jn0053353                              |                        | x                                                                                                             |                                 |                                                                                                                       |                    |                                             |                                                            |                                                                                                                        |                                                                                                      |                                                                                               |                                                                                                          |                                                               |             |
| Tes                                                                                                                                                                             | t Counts                               |                                                     |                                                                                 |                                                                                                                                                |                                            | 8                      | 8                                                                                                             | 5                               | 1                                                                                                                     | 1                  | 5                                           | 17                                                         | 17                                                                                                                     | 1                                                                                                    |                                                                                               |                                                                                                          |                                                               |             |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

| mg/kg: milligrams per kilogram            | mg/L: milligrams per litre         | μg/L: micrograms per litre                                        |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------|
| ppm: parts per million                    | ppb: parts per billion             | %: Percentage                                                     |
| org/100 mL: Organisms per 100 millilitres | NTU: Nephelometric Turbidity Units | MPN/100 mL: Most Probable Number of organisms per 100 millilitres |
| CFU: Colony forming unit                  |                                    |                                                                   |

#### Terms

| APHA             | American Public Health Association                                                                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| coc              | Chain of Custody                                                                                                                                                                                                                                                                              |
| СР               | Client Parent - QC was performed on samples pertaining to this report                                                                                                                                                                                                                         |
| CRM              | Certified Reference Material (ISO17034) - reported as percent recovery.                                                                                                                                                                                                                       |
| Dry              | Where a moisture has been determined on a solid sample the result is expressed on a dry basis.                                                                                                                                                                                                |
| Duplicate        | A second piece of analysis from the same sample and reported in the same units as the result to show comparison.                                                                                                                                                                              |
| LOR              | Limit of Reporting.                                                                                                                                                                                                                                                                           |
| LCS              | Laboratory Control Sample - reported as percent recovery.                                                                                                                                                                                                                                     |
| Method Blank     | In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.                                                                                                                                |
| NCP              | Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.                                                                                                                            |
| RPD              | Relative Percent Difference between two Duplicate pieces of analysis.                                                                                                                                                                                                                         |
| SPIKE            | Addition of the analyte to the sample and reported as percentage recovery.                                                                                                                                                                                                                    |
| SRA              | Sample Receipt Advice                                                                                                                                                                                                                                                                         |
| Surr - Surrogate | The addition of a like compound to the analyte target and reported as percentage recovery.                                                                                                                                                                                                    |
| твто             | Tributyltin oxide ( <i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. |
| TCLP             | Toxicity Characteristic Leaching Procedure                                                                                                                                                                                                                                                    |
| TEQ              | Toxic Equivalency Quotient or Total Equivalence                                                                                                                                                                                                                                               |
| QSM              | US Department of Defense Quality Systems Manual Version 5.4                                                                                                                                                                                                                                   |
| US EPA           | United States Environmental Protection Agency                                                                                                                                                                                                                                                 |
| WA DWER          | Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                                                                               |

#### **QC - Acceptance Criteria**

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                |               |              | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|---------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Method Blank        |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals        |               |              |       |          |          |     |                      |                |                    |
| Arsenic (filtered)  |               |              | mg/L  | < 0.001  |          |     | 0.001                | Pass           |                    |
| Cadmium (filtered)  |               |              | mg/L  | < 0.0002 |          |     | 0.0002               | Pass           |                    |
| Chromium (filtered) |               |              | mg/L  | < 0.001  |          |     | 0.001                | Pass           |                    |
| Copper (filtered)   |               |              | mg/L  | < 0.001  |          |     | 0.001                | Pass           |                    |
| Lead (filtered)     |               |              | mg/L  | < 0.001  |          |     | 0.001                | Pass           |                    |
| Mercury (filtered)  |               |              | mg/L  | < 0.0001 |          |     | 0.0001               | Pass           |                    |
| Nickel (filtered)   |               |              | mg/L  | < 0.001  |          |     | 0.001                | Pass           |                    |
| Zinc (filtered)     |               |              | mg/L  | < 0.005  |          |     | 0.005                | Pass           |                    |
| LCS - % Recovery    |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals        |               |              |       |          |          |     |                      |                |                    |
| Arsenic (filtered)  |               |              | %     | 98       |          |     | 80-120               | Pass           |                    |
| Cadmium (filtered)  |               |              | %     | 99       |          |     | 80-120               | Pass           |                    |
| Chromium (filtered) |               |              | %     | 99       |          |     | 80-120               | Pass           |                    |
| Copper (filtered)   |               |              | %     | 98       |          |     | 80-120               | Pass           |                    |
| Lead (filtered)     |               |              | %     | 102      |          |     | 80-120               | Pass           |                    |
| Mercury (filtered)  |               |              | %     | 96       |          |     | 80-120               | Pass           |                    |
| Nickel (filtered)   |               |              | %     | 94       |          |     | 80-120               | Pass           |                    |
| Zinc (filtered)     |               |              | %     | 93       |          |     | 80-120               | Pass           |                    |
| Test                | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery  | •             |              |       |          |          |     |                      |                |                    |
| Heavy Metals        |               |              |       | Result 1 |          |     |                      |                |                    |
| Arsenic (filtered)  | S23-Jn0054194 | NCP          | %     | 99       |          |     | 75-125               | Pass           |                    |
| Cadmium (filtered)  | S23-Jn0054194 | NCP          | %     | 101      |          |     | 75-125               | Pass           |                    |
| Chromium (filtered) | S23-Jn0054194 | NCP          | %     | 101      |          |     | 75-125               | Pass           |                    |
| Copper (filtered)   | S23-Jn0054194 | NCP          | %     | 96       |          |     | 75-125               | Pass           |                    |
| Lead (filtered)     | S23-Jn0054194 | NCP          | %     | 106      |          |     | 75-125               | Pass           |                    |
| Mercury (filtered)  | S23-Jn0054194 | NCP          | %     | 96       |          |     | 75-125               | Pass           |                    |
| Nickel (filtered)   | S23-Jn0054194 | NCP          | %     | 95       |          |     | 75-125               | Pass           |                    |
| Zinc (filtered)     | S23-Jn0054194 | NCP          | %     | 97       |          |     | 75-125               | Pass           |                    |
| Test                | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate           |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals        |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic (filtered)  | S23-Jn0055054 | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Cadmium (filtered)  | S23-Jn0055054 | NCP          | mg/L  | < 0.0002 | < 0.0002 | <1  | 30%                  | Pass           |                    |
| Chromium (filtered) | S23-Jn0055054 | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Copper (filtered)   | S23-Jn0055054 | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Lead (filtered)     | S23-Jn0055054 | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Mercury (filtered)  | R23-Jn0047192 | NCP          | mg/L  | < 0.0001 | < 0.0001 | <1  | 30%                  | Pass           |                    |
| Nickel (filtered)   | S23-Jn0055054 | NCP          | mg/L  | 0.002    | 0.002    | 5.6 | 30%                  | Pass           |                    |
| Zinc (filtered)     | S23-Jn0055054 | NCP          | mg/L  | 0.010    | 0.009    | 5.8 | 30%                  | Pass           |                    |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### Authorised by:

Andrew Black Mickael Ros Analytical Services Manager Senior Analyst-Metal

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



### Eurofins Environment Testing Australia Pty Ltd

| ABN: 50 005 085 521   |                        |                        |                        |                        |                      |  |  |  |  |  |  |  |  |
|-----------------------|------------------------|------------------------|------------------------|------------------------|----------------------|--|--|--|--|--|--|--|--|
| Melbourne             | Geelong                | Sydney                 | Canberra               | Brisbane               | Newcastle            |  |  |  |  |  |  |  |  |
| 6 Monterey Road       | 19/8 Lewalan Street    | 179 Magowar Road       | Unit 1,2 Dacre Street  | 1/21 Smallwood Place   | 1/2 Frost Drive      |  |  |  |  |  |  |  |  |
| Dandenong South       | Grovedale              | Girraween              | Mitchell               | Murarrie               | Mayfield West NSW    |  |  |  |  |  |  |  |  |
| VIC 3175              | VIC 3216               | NSW 2145               | ACT 2911               | QLD 4172               | Tel: +61 2 4968 8448 |  |  |  |  |  |  |  |  |
| Tel: +61 3 8564 5000  | Tel: +61 3 8564 5000   | Tel: +61 2 9900 8400   | Tel: +61 2 6113 8091   | Tel: +61 7 3902 4600   | NATA# 1261           |  |  |  |  |  |  |  |  |
| NATA# 1261 Site# 1254 | NATA# 1261 Site# 25403 | NATA# 1261 Site# 18217 | NATA# 1261 Site# 25466 | NATA# 1261 Site# 20794 | Site# 25079 & 25289  |  |  |  |  |  |  |  |  |

www.eurofins.com.au

EnviroSales@eurofins.com

# Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

|                        | ABN: 91 05 0159 898   | NZBN: 9429046024954 |                     |
|------------------------|-----------------------|---------------------|---------------------|
| Newcastle              | Perth                 | Auckland            | Christchurch        |
| 1/2 Frost Drive        | 46-48 Banksia Road    | 35 O'Rorke Road     | 43 Detroit Drive    |
| Mayfield West NSW 2304 | Welshpool             | Penrose,            | Rolleston,          |
| Tel: +61 2 4968 8448   | WA 6106               | Auckland 1061       | Christchurch 7675   |
| NATA# 1261             | Tel: +61 8 6253 4444  | Tel: +64 9 526 4551 | Tel: +64 3 343 5201 |
| Site# 25079 & 25289    | NATA# 2377 Site# 2370 | IANZ# 1327          | IANZ# 1290          |

## **Sample Receipt Advice**

| Company name:      | Ramboll Australia Pty Ltd          |
|--------------------|------------------------------------|
| Contact name:      | Stephen Maxwell                    |
| Project name:      | TARAGO DETAILED SITE INVESTIGATION |
| Project ID:        | 318001679                          |
| Turnaround time:   | 5 Day                              |
| Date/Time received | Jun 19, 2023 4:40 PM               |
| Eurofins reference | 1001666                            |

### **Sample Information**

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. ./
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

#### **Notes**

Sample QC200-150623 forwarded to ALS.

### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com Results will be delivered electronically via email to Stephen Maxwell - smaxwell@ramboll.com. Note: A copy of these results will also be delivered to the general Ramboll Australia Pty Ltd email address.

# Global Leader - Results you can trust

|                              | Eurofitis   Environment Teating ABN | Y RECORD                               |                                   | Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 20<br>02 9900 8400 EnviroSampleNSW@eurofins.com |           |               |                   |            |            | Brisban<br>Unit 1 21<br>07 3902 4 | e Laboratory<br>Smallwood Place Mura<br>1600 EnviroSampleQ | rie QLD 417<br>.D@eurofins | 2<br>S.com | Unit 2:<br>08 925 | Laboratory<br>91 Leach Higi<br>1 9600 Env | way Kewda<br>roSampleV | ale WA 61<br>/A@eurof | 05<br>ins.com   |                              |                    |                         | 3 Melb<br>6 Mor<br>03 85 | iourne Laborator<br>Interey Road Dander<br>664 5000 EnviroS | y<br>Nong South VIC 3175                                        |
|------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|-----------|---------------|-------------------|------------|------------|-----------------------------------|------------------------------------------------------------|----------------------------|------------|-------------------|-------------------------------------------|------------------------|-----------------------|-----------------|------------------------------|--------------------|-------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| Company                      | Ramboli                             |                                        | Pro                               | oject №                                                                                       | 31        | 8001679       |                   |            |            |                                   | Project Manage                                             | Stej                       | phen Ma    | xwell             |                                           |                        |                       | Samp            | er(s)                        |                    | Jenn                    | y Auto                   | I / Isobel Marsh                                            | all                                                             |
| Address                      | 3/100 Pacific Highway, North        | Sydney 2060, NSW                       | Proje                             | ect Name                                                                                      | Та        | rago Deta     | illed Site I      | nvestigat  | ion        |                                   | EDD Format<br>ESdat, EQuIS etc                             | EQL                        | IS         |                   |                                           |                        | На                    | nded            | over by                      |                    | lsob                    | ell M                    | arshall                                                     |                                                                 |
| 0                            |                                     |                                        | -Filtered".                       | i, Zn, Hg                                                                                     |           |               |                   |            |            |                                   |                                                            |                            |            |                   |                                           |                        | Em                    | a <b>il</b> for | Invoice                      | •                  | jauld                   | @ram                     | boll.com; aslap                                             | ac-accounts@ramboll.cor                                         |
|                              | Jenny Auld                          |                                        | r "Total" or                      | u, Pb, N                                                                                      |           |               | (B                | -          |            |                                   |                                                            |                            |            |                   |                                           |                        | Em                    | ail for         | Results                      |                    | jauld(<br>smax          | @ram!<br>well@           | otl.com; imars<br>ramboll.com                               | hall@ramboll.com;                                               |
| * Phone №                    | 0421 672 019                        |                                        | SeS<br>se specify<br>to attract o | Sd, Cr, O                                                                                     |           | c acid)       | vi, Zn, H         | EXN        | (%         |                                   |                                                            |                            |            |                   |                                           |                        | c                     | Change d        | Co.<br>ontainer              | ntaine<br>type & e | <b>rs</b><br>size if ne | ecessary                 | Requi<br>De                                                 | red Turnaround Time (TAT<br>fault will be 5 days if not ticked. |
| Special Directions           | Page 1 of 3                         |                                        | Analy<br>requested, plea          | Metals (As, C                                                                                 | OCP, OPP  | henoxy aceti  | Cr, Cu, Pb, h     | C10 and BT | %w/w 0.001 |                                   |                                                            |                            |            |                   | to ALS                                    | g                      |                       |                 |                              |                    |                         |                          | D Ove                                                       | ♦Surcharge will apply<br>might (reporting by 9am)♦              |
| Purchase Order<br>Quote ID № |                                     |                                        | Where metals are<br>Still TF code | BTEXN, PAH, 8                                                                                 | B14 :     | Herbicides (P | i Metals (As, Cd, | TRCH C6 -  | Asbestos ( |                                   |                                                            |                            |            |                   | Send                                      | Ť                      | 0mL Plastic           | OmL Plastic     | 5mL Plastic<br>L Amber Glass | nL VOA vial        | L PFAS Bottle           | lass or HDPE)            | Sam                                                         | a day♦ Li 1 day♦<br>ys♦ II 3 days♦<br>ys (Slandard)             |
| <u>le</u>                    |                                     | Sampled<br>Date/Time<br>ddimmiyy bhumm | Matrix<br>Solid (S)<br>Water (W)  | B7 Suite: TRH,                                                                                |           |               | 8                 |            |            |                                   |                                                            |                            |            |                   |                                           |                        | 20                    | 25              | 12<br>200m                   | 104                | 500m                    | Jar (G                   | / Dange                                                     | Sample Comments<br>rous Goods Hazard Warni                      |
| 1                            | SMC_HA01_0.05                       | 15/06/23                               | S                                 | ×                                                                                             | ×         | X             | 5-1               |            | X          |                                   |                                                            |                            |            |                   |                                           |                        |                       |                 |                              |                    |                         | 1                        | 1                                                           |                                                                 |
|                              | SMC_HA01_0.25                       | 15/06/23                               | S                                 | ×                                                                                             |           |               |                   |            |            |                                   |                                                            |                            |            |                   |                                           | T                      |                       |                 |                              |                    |                         | 1                        |                                                             |                                                                 |
| 12.6                         | SMC_HA01_0.5                        | 15/06/23                               | \$                                |                                                                                               |           |               |                   |            | - *        |                                   |                                                            |                            |            |                   |                                           | X                      |                       |                 | F                            |                    |                         | 1                        |                                                             |                                                                 |
|                              | SMC_HA02_0.05                       | 15/06/23                               | S                                 | ×                                                                                             |           |               |                   |            | X          |                                   |                                                            |                            |            |                   |                                           |                        |                       |                 |                              |                    |                         |                          |                                                             |                                                                 |
|                              | SMC_HA02_0.25                       | 15/06/23                               | s                                 |                                                                                               |           |               |                   |            |            |                                   |                                                            |                            |            |                   |                                           | ×                      |                       | -               | +-                           | -                  |                         |                          | -                                                           |                                                                 |
|                              | SMC_HA02_0.5                        | 15/06/23                               | s                                 | x                                                                                             |           |               |                   |            |            |                                   |                                                            |                            |            | -                 |                                           | ~                      |                       |                 | _                            | -                  |                         |                          |                                                             |                                                                 |
|                              | SMC_HA03_0.05                       | 15/06/23                               | s                                 | ×                                                                                             | ×         | ×             |                   | _          | ¥          | -                                 |                                                            |                            | _          |                   |                                           |                        |                       | _               | -                            | -                  |                         | 1                        |                                                             |                                                                 |
|                              | SMC_HA03_0,25                       | 15/06/23                               | S                                 | ×                                                                                             | ~~        | _             |                   |            | ~          |                                   |                                                            |                            | _          |                   |                                           | _                      |                       |                 | -                            |                    |                         | 1                        | 1                                                           |                                                                 |
|                              | SMC_HA03_0.5                        | 15/06/23                               | S                                 |                                                                                               |           |               |                   |            | -          |                                   | -                                                          |                            | _          | _                 |                                           |                        |                       | -               | -                            |                    |                         | 1                        | _                                                           |                                                                 |
|                              | SMC HA04 0.05                       | 15/06/22                               | e                                 | ~                                                                                             |           |               |                   |            |            | _                                 |                                                            |                            |            |                   |                                           | X                      |                       | _               |                              |                    |                         | 1                        |                                                             |                                                                 |
| a                            |                                     | Total                                  | Counte                            | ~                                                                                             |           |               |                   |            | ×          | -                                 | _                                                          |                            |            |                   |                                           | -                      |                       |                 |                              |                    |                         | 1                        | 1                                                           |                                                                 |
| thod of Shipment             | Courier (#                          | ) [7]                                  | Hand Delivered                    |                                                                                               |           | z             | Mon               | 10         | 4          | onhe II to                        | un ball                                                    |                            |            |                   |                                           | 3                      |                       |                 |                              |                    |                         | 10                       |                                                             |                                                                 |
| obounters lies th            | Received By                         | havet                                  |                                   | SYDIE                                                                                         | NE   MEL  | PER   A       | DL   NTL          | DRW        | Signat     | ure Ma                            | arsnall                                                    | Signate                    | ure        | Date              | TE                                        | 10                     |                       | Date            |                              | E                  | 6/16/20                 | <u>)23</u>               | Time                                                        |                                                                 |
| autoratory Use Of            | Received By                         | ma                                     |                                   | SYDIE                                                                                         | INE   MEL | PER   A       | DL   NTL          | DRW        | Signat     | une                               |                                                            |                            | _          | Date              | (.0/                                      | 1                      |                       | Time            | _                            | 7                  | 17                      | 0                        | Tempera                                                     | ture                                                            |

|                             | CHAIN OF CUSTOD                          | Y RECORD                               |                                                               | Sydney<br>Unit F3 Bi<br>02 9900 8 | Laborator<br>Id.F 16 Mars<br>3400 Envi | /<br>Road Lane<br>roSampteNS | Cove West         | NSW 2066<br>s. com |                | Brisban<br>Unit 1 21<br>07 3902 4 | e <b>Laborato</b><br>Smallwood I<br>4600 Envi | ny<br>Place Murarrie<br>roSampleQLD | QLD 4172<br>@eurofins.co | m         | Unit 2 9<br>08 9251 | <b>aboratory</b><br>1 Leach Higt<br>9600 Envi | way Kewda<br>roSampleW | le WA 61<br>A@eurof | 05<br>ns.com |                    |                    |                  | Aelbo<br>Monte<br>3 856 | ume Laborat<br>erey Road Danc<br>1 5000 Enviro               | איץ<br>ienong South VIC 3175<br>iSampleVic@eurofins.com  |                    |     |        |  |
|-----------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------|-----------------------------------|----------------------------------------|------------------------------|-------------------|--------------------|----------------|-----------------------------------|-----------------------------------------------|-------------------------------------|--------------------------|-----------|---------------------|-----------------------------------------------|------------------------|---------------------|--------------|--------------------|--------------------|------------------|-------------------------|--------------------------------------------------------------|----------------------------------------------------------|--------------------|-----|--------|--|
| Company                     | Ramboll                                  |                                        | Proj                                                          | ect Nº                            | 318                                    | 001679                       |                   |                    |                |                                   | Project                                       | Manager                             | Stephe                   | on Maxw   | ell                 |                                               |                        |                     | Sample       | r(s)               |                    | Jenny A          | \uld /                  | Isobel Mars                                                  | hali                                                     |                    |     |        |  |
| Address                     | 3/100 Pacific Highway, North             | Sydney 2060, NSW                       | Projec                                                        | t Name                            | Tar                                    | ago Detai                    | ied Site I        | nvestigat          | lon            |                                   | EDD<br>ESdat.                                 | Format<br>EQuIS etc                 | EQuis                    |           |                     |                                               |                        | Ha                  | nded o       | ver by             |                    | lsobel N         | larst                   | all                                                          |                                                          |                    |     |        |  |
|                             |                                          |                                        | iltered".                                                     | (6H 'UZ                           |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           |                     |                                               |                        | Em                  | ail for li   | nvoice             |                    | jauld@r          | amb                     | oli.com; asia                                                | pac-accounts@rambr                                       | oli.com            |     |        |  |
| Contact Name                | Jenny Auld                               |                                        | [otal" or "F                                                  | Pb, Ni,                           |                                        | -                            |                   |                    |                |                                   |                                               |                                     |                          | - 1       |                     |                                               |                        | Em                  | ail for R    | esults             | J                  | auld@r<br>smaxwe | amb<br>li@ra            | oll.com; ima<br>amboll.com                                   | shall@ramboll.com;                                       |                    |     |        |  |
| Phone №                     | 0421 672 019                             |                                        | es<br>specify "<br>attract SL                                 | l, Cr, Cu                         |                                        | acid)                        | , Zn, Hg          | NX                 |                | -                                 |                                               |                                     |                          |           |                     |                                               |                        | (                   | change co    | Con<br>Intainer ty | ainers<br>pe & siz | s<br>te if neces | isary.                  | Req                                                          | uired Turnaround Tim<br>Default will be 5 days if not ti | ne (TAT)<br>icked, |     |        |  |
| Special Direction           | ns Page 2 of 3                           |                                        | Analys<br>Analys<br>e requested, please<br>te must he used to | 8 Metals (As, Cd                  | : OCP, OPP                             | Phenoxy acetic               | l, Cr, Cu, Pb, Ni | - C10 and BTE      | ; (%w/w 0.001% |                                   |                                               |                                     |                          |           | nd to ALS           | ПОГР                                          |                        |                     |              |                    |                    |                  |                         | +Surcharge v<br>remight (reporting by 9a<br>ime day ♦ □ 1 da | will apply<br>am}♦                                       |                    |     |        |  |
| Purchase Orde<br>Quote ID № | r                                        |                                        | Where metals an<br>SUITE Lo                                   | BTEXN, PAH, 8                     | B14                                    | Herbicides (                 | 8 Metals (As, Co  | TRCH C6            | Asbestos       |                                   |                                               |                                     |                          |           |                     | ß                                             | -                      | 00mL Plastic        | SomL Plastic | nL Amber Glas      | 0mL VOA vial       | mL PFAS Bott     | Glass or HDPE           | Version Statements                                           | lays● □ 3 day<br>lays (Standard)<br>her(                 | )<br>Хаф           |     |        |  |
| Ne                          |                                          | Sampled<br>Date/Time<br>dd/mm/yy.hh-mm | Matrix<br>Solid (S)<br>Water (W)                              | B7 Suite: TRH,                    |                                        |                              |                   |                    |                | 4<br>4                            |                                               |                                     |                          |           |                     |                                               |                        | CT.                 |              | 200r               | 4                  | 200              | Jar                     | / Dang                                                       | Sample Comments<br>jerous Goods Hazard                   | Warning            |     |        |  |
|                             | SMC_HA04_0.25                            | 15/06/23                               | S                                                             |                                   |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           |                     |                                               | X                      |                     |              |                    |                    |                  | 1                       |                                                              |                                                          |                    |     |        |  |
| 2                           | SMC_HA04_0.5                             | 15/06/23                               | s                                                             | ×                                 |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           | -                   |                                               | 10.00                  |                     |              |                    |                    |                  | 1                       |                                                              |                                                          |                    |     |        |  |
| 3                           | SMC_HA05_0.05                            | 15/06/23                               | S                                                             | x                                 | X                                      | X                            |                   |                    | X              |                                   |                                               |                                     |                          |           |                     |                                               |                        |                     |              |                    |                    | 11               |                         | 1                                                            |                                                          |                    |     |        |  |
| 4                           | SMC_HA05_0.25                            | 15/06/23                               | S                                                             | X                                 |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           | _                   |                                               |                        |                     |              |                    |                    | -                |                         |                                                              |                                                          |                    |     |        |  |
| 5                           | SMC_HA05_0.5                             | 15/06/23                               | S                                                             |                                   |                                        | -                            |                   |                    |                |                                   |                                               |                                     |                          | -         |                     |                                               | ~                      |                     |              |                    |                    |                  |                         | _                                                            |                                                          |                    |     |        |  |
| 6                           | SMC HADE 0.05                            | 15/06/23                               | e                                                             | ~                                 |                                        |                              |                   |                    | ~              | _                                 |                                               |                                     | _                        | _         |                     |                                               | ~                      |                     |              |                    |                    | _                |                         | -                                                            |                                                          |                    |     |        |  |
|                             |                                          | 15/86/00                               |                                                               | ^                                 |                                        |                              |                   |                    | ~              |                                   |                                               |                                     | -                        | _         |                     |                                               |                        |                     |              |                    |                    | 1                | 1                       | 1                                                            |                                                          |                    |     |        |  |
| 1                           | Smc_1A00_0.25                            | 15/06/23                               | 5                                                             |                                   |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           |                     |                                               | ×                      |                     |              | _                  |                    | 4                |                         |                                                              |                                                          |                    |     |        |  |
| 8                           | SMC_HA06_0.5                             | 15/06/23                               | S                                                             | ×                                 |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           |                     |                                               |                        |                     |              |                    |                    | 1                |                         |                                                              |                                                          |                    |     |        |  |
| 9                           | SMC_HA07_0.05                            | 15/06/23                               | S                                                             | ×                                 | ×                                      | ×                            |                   |                    | ×              |                                   |                                               |                                     |                          |           |                     |                                               |                        |                     |              |                    |                    | 1                | 6                       | 1                                                            |                                                          |                    |     |        |  |
| 10                          | SMC_HA07_0.25                            | 15/06/23                               | S                                                             | ×                                 |                                        |                              |                   |                    |                |                                   |                                               |                                     |                          |           |                     |                                               |                        |                     |              |                    |                    | 1                | !                       |                                                              |                                                          |                    |     |        |  |
|                             |                                          | Total C                                | Counts                                                        | 14                                | 4                                      | 4                            |                   |                    | 7              |                                   |                                               |                                     |                          |           |                     |                                               | 6                      |                     |              |                    |                    | 2                | , ·                     | 7                                                            |                                                          |                    |     |        |  |
| Method of Shipme            | nt 🔲 Courier (#                          | ) 21                                   | Hand Delivered                                                |                                   | Por                                    | stal                         | Na                | me                 |                | Isobeli I                         | Warshall                                      |                                     | Signatur                 | 9         |                     |                                               |                        |                     | Date         | -                  |                    | 6/16/202         | 23                      | Т                                                            | ime                                                      |                    |     |        |  |
| Laboratory Use              | Only Received By                         |                                        |                                                               | SYD   8                           | BNE   MEL                              | PER   /                      | NDL   NTL         | DRW                | Signa          | ature                             |                                               |                                     |                          |           | Date                |                                               |                        |                     | Time         |                    |                    |                  |                         | Temp                                                         | erature                                                  |                    |     |        |  |
| Eurofins Environment        | Received By<br>Testing Australia Pty Ltd |                                        |                                                               | SYD I E                           | SNE   MEL                              | PER   /                      | DL   NTL          | DRW                | DRW Signature  |                                   |                                               | Signature                           |                          | deemad as | acceptance of       | Eurofins I Fo                                 | vironment              | Date                | erms and Ce  | ncilione uni       | 055 2020           | Time             | ea A or                 | v ie our                                                     | iable or -                                               | 0.01               | Rep | ort Ne |  |

| -            | С           | HAIN OF CUSTO<br>Eurofins   Environment Tessing | AIN OF CUSTODY RECORD<br>Eurofins   Environment Teesing ABN 50 005 085 521 |                                                   |                |           |               | Cove West      | NSW 2066<br>s.com |              | Brisbar<br>Unit 1 21<br>07 3902 | <b>te Laborat</b> o<br>Smalwood<br>4600 Envi | ory<br>Place Muraπ<br>iroSampleQL | ie QLD 417.<br>D@eurofins | 2<br>Lcom |      | Perth Labo<br>Unit 2 91 Les<br>08 9251 960 | r <b>atory</b><br>sch Highw<br>0 Enviro | ray Kewdal<br>SampleW/ | e WA 610<br>A@eurofir | 5<br>s.com |                    |                               | 6 M                                                 | elboue<br>Aontere<br>8564 ( | ne Laboratory<br>y Road Dandenong South<br>000 EnviroSamoleVic@ | VIC 3175                                  |      |
|--------------|-------------|-------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|----------------|-----------|---------------|----------------|-------------------|--------------|---------------------------------|----------------------------------------------|-----------------------------------|---------------------------|-----------|------|--------------------------------------------|-----------------------------------------|------------------------|-----------------------|------------|--------------------|-------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------------------|-------------------------------------------|------|
| Corr         | pany        | Ramboli                                         |                                                                            | Proje                                             | ect N≌         | 318       | 001679        |                |                   |              |                                 | Project                                      | Manager                           | Step                      | ohen Mao  | well |                                            |                                         |                        |                       | ample      | (s)                | Je                            | nny Au                                              | ild / I:                    | obel Marshall                                                   |                                           |      |
| Ade          | 1955        | 3/100 Pacific Highway, No                       | orth Sudney 2060 NSW                                                       | Projec                                            | t Name         | Tar       | ago Detai     | ied Site I     | nvestigati        | on           |                                 | EDD<br>ESdat.                                | Format<br>EQuIS etc               | EQu                       | IS        |      |                                            |                                         |                        | Har                   | ded ov     | er by              | iso                           | bel Ma                                              | ırsha                       | 1                                                               |                                           |      |
|              |             | o roo r zonie riiginiuy, ne                     | nur cyunsy 2000, Norr                                                      | ltered".                                          | (BH 'UZ        |           |               |                |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        | Ema                   | il for Ir  | voice              | jau                           | ıld@ra                                              | mbol                        | .com; aslapac-accol                                             | ints@ramboil.com                          | _    |
| Contac       | t Name      | Jenny Auto                                      |                                                                            | otal" or "F<br>TE pricing                         | Pb, Ni, 2      |           |               |                |                   |              | - 3                             |                                              |                                   |                           |           |      |                                            |                                         |                        | Ema                   | il for R   | esults             | jau<br>sm                     | ld@rai<br>axwell                                    | mbol<br>@rar                | .com; imarshall@rar<br>iboll.com                                | nboll.com;                                |      |
| Pho          | ne N≌       | 0421 672 019                                    |                                                                            | s<br>specify "T<br>attract SUI                    | , Cr, Cu,      |           | acid)         | , Zn, Hg)      | NX                |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        | с                     | iange co   | Cont<br>ntainer ty | a <b>iners</b><br>de & size i | if necessary. Default will be 5 days if not ticked. |                             |                                                                 |                                           |      |
| Special [    | Pirections  | Page 3 of 3                                     |                                                                            | Analyse<br>requested, please<br>a must he used to | Metals (As, Cd | OCP, OPP  | henoxy acetic | Cr. Cu, Pb, Ni | C10 and BTE)      | (%w/w 0.001% |                                 |                                              |                                   |                           |           |      |                                            | id to ALS                               | quot                   |                       |            | 10                 |                               |                                                     |                             | C Overnight (re                                                 | ◆Surcharge will apply<br>porting by 9am}◆ |      |
| Purchas      | e Order     |                                                 |                                                                            | netais are<br>UTEE code                           | PAH, 8         | 814 :     | icides (P     | (As, Cd,       | CH C6-            | sbestos      |                                 |                                              |                                   |                           |           |      |                                            | Ser                                     | -                      | lastic                | lastic     | ler Glas           | A vial                        | N BOTT                                              |                             | 2 days♦                                                         | ☐ 3 days♦                                 |      |
| Quote        | ID N≌       |                                                 |                                                                            | Where <i>n</i><br>S                               | BTEXN,         |           | Herb          | 8 Metals       | Ĕ                 | *            |                                 |                                              |                                   |                           |           |      |                                            |                                         | -                      | SOOML P               | 250mL P    | mL Amb             | OmL VO                        | IGLASS O                                            | Achaine                     | Other(                                                          | lard)                                     |      |
| NE           |             |                                                 | Sampled<br>Date/Time<br>dd/mm/yy thimm                                     | Matrix<br>Solid (S)<br>Water (W)                  | B7 Suite: TRH, |           |               |                |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        |                       |            | 200                | 4                             | oue<br>Jar                                          |                             | Sample<br>/ Dangerous Go                                        | Comments<br>ods Hazard Warning            | 1    |
| 1            |             | SMC_HA07_0.5                                    | 15/06/23                                                                   | s                                                 |                |           |               |                |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         | ×                      |                       |            |                    |                               | 1                                                   |                             |                                                                 |                                           |      |
| 2            |             | SMC_HA08_0.05                                   | 15/06/23                                                                   | s                                                 | X              |           |               |                |                   | X            |                                 | 1                                            |                                   |                           |           |      |                                            |                                         |                        |                       |            |                    |                               | 1                                                   | 1                           |                                                                 |                                           |      |
| 3            |             | SMC_HA08_0.25                                   | 15/06/23                                                                   | S                                                 |                |           |               |                |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         | ×                      |                       |            |                    |                               | 1                                                   |                             |                                                                 | THE STREET                                |      |
| 4            |             | SMC_HA08_0,5                                    | 15/06/23                                                                   | S                                                 | ×              |           |               |                |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        |                       |            |                    |                               | 1                                                   | -                           |                                                                 |                                           |      |
| 5            |             | QC100 150623                                    | 15/06/23                                                                   | s                                                 | v              | v         | v             |                |                   |              |                                 |                                              |                                   |                           | -         |      | _                                          |                                         |                        |                       |            | -                  |                               |                                                     | -                           |                                                                 |                                           |      |
|              |             | 00200 450622                                    | 45/02/22                                                                   |                                                   |                |           | ~             |                |                   |              |                                 | -                                            |                                   |                           |           |      |                                            |                                         |                        |                       | -          |                    | _                             |                                                     |                             | Please send tr                                                  | Al S for came                             | Sad  |
| •            |             | 00200_100023                                    | 15/06/23                                                                   | 8                                                 | ×              | ×         | ×             |                |                   |              |                                 |                                              |                                   |                           |           | _    |                                            | X                                       |                        |                       |            |                    |                               | 1                                                   |                             | analysis                                                        |                                           | Kura |
| 1            |             | QC300_150623                                    | 15/06/23                                                                   | W                                                 |                |           |               | X              |                   |              |                                 |                                              |                                   |                           |           |      |                                            |                                         | _                      |                       |            |                    |                               | 1                                                   |                             |                                                                 |                                           |      |
| 8            |             | TRIP SPIKE_150623                               | 15/06/23                                                                   | S                                                 |                |           |               |                | ×                 |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        |                       |            |                    |                               |                                                     |                             |                                                                 |                                           |      |
| 9            | 1           | RIP BLANK_150623                                | 15/06/23                                                                   | 5                                                 |                |           |               |                | X                 |              |                                 |                                              |                                   |                           |           |      |                                            |                                         |                        |                       |            |                    |                               |                                                     |                             |                                                                 |                                           |      |
| 10           |             |                                                 |                                                                            |                                                   |                |           |               |                |                   |              |                                 |                                              | _                                 |                           |           |      |                                            |                                         |                        |                       |            |                    |                               |                                                     |                             |                                                                 |                                           |      |
|              |             |                                                 | Total (                                                                    | Counts                                            | 18             | 6         | 6             | 4              | 2                 | 8            |                                 |                                              |                                   |                           |           |      |                                            | 1                                       | 8                      |                       |            |                    |                               | 27                                                  | 8                           |                                                                 |                                           |      |
| Method of    | Shipment    | Courier (#                                      | ) 🕑                                                                        | Hand Delivered                                    |                | D Po      | stal          | Na             | me                |              | isobeli                         | Marshall                                     |                                   | Signa                     | ature     |      |                                            |                                         | _                      |                       | Date       |                    | 6/                            | 6/202:                                              | 3                           | Time                                                            |                                           |      |
| Laborat      | xy Use On   | Received By                                     |                                                                            |                                                   | SYD [          | BNE   MEL | PER           | ADL   NTL      | DRW               | Sign         | ature                           |                                              |                                   |                           |           | Date | 0                                          |                                         |                        |                       | Time       |                    |                               |                                                     |                             | Temperature                                                     |                                           |      |
| Eurofins Env | ronment Tes | Received By                                     |                                                                            |                                                   | SYD            | BNE   MEL | PER           | ADL   NTL      | DRW               | Sign         | ature                           |                                              |                                   | 15.00                     | 15-1      | Date | e                                          |                                         | the state              |                       | Time       |                    |                               |                                                     |                             | Report Na                                                       |                                           |      |



Client

Contact

Address

Project

Sampler

Quote number

No. of samples received

No. of samples analysed

Site

#### **CERTIFICATE OF ANALYSIS** Page Work Order : ES2320976 : 1 of 8 Laboratory : RAMBOLL AUSTRALIA PTY LTD : Environmental Division Sydney : MR STEPHEN MAXWELL Contact : Customer Services ES Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : 100 PACIFIC HIGHWAY NORTH SYDNEY 2060 Telephone : -----Telephone : +61-2-8784 8555 : 318001679 Tarago Detailed Site Investigation **Date Samples Received** : 23-Jun-2023 13:50 Order number Date Analysis Commenced : -----: 26-Jun-2023 C-O-C number Issue Date : -----: 29-Jun-2023 14:03 : Isobel Marshall, JENNY AULD



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: -----

: 1

: 1

: EN/222

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                    | Accreditation Category             |
|----------------|-----------------------------|------------------------------------|
| Ankit Joshi    | Senior Chemist - Inorganics | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar | Organic Coordinator         | Sydney Organics, Smithfield, NSW   |
| Evie Sidarta   | Inorganic Chemist           | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator            | Sydney Organics, Smithfield, NSW   |



### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP202: Particular samples required dilution due to matrix interferences. LOR values have been adjusted accordingly.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005T: Poor precision was obtained for Zinc on sample ES2320977 # 001. Confirmed by re-digestion and reanalysis.



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |            |        | Sample ID      | QC200-150623      | <br> | <br> |
|--------------------------------------|------------|--------|----------------|-------------------|------|------|
|                                      |            | Sampli | ng date / time | 15-Jun-2023 00:00 | <br> | <br> |
| Compound                             | CAS Number | LOR    | Unit           | ES2320976-001     | <br> | <br> |
|                                      |            |        |                | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 105 | 5-110°C)   |        |                |                   |      |      |
| Moisture Content                     |            | 1.0    | %              | 13.3              | <br> | <br> |
| EG005(ED093)T: Total Metals by ICP-A | AES        |        |                |                   |      |      |
| Arsenic                              | 7440-38-2  | 5      | mg/kg          | 11                | <br> | <br> |
| Cadmium                              | 7440-43-9  | 1      | mg/kg          | 2                 | <br> | <br> |
| Chromium                             | 7440-47-3  | 2      | mg/kg          | 11                | <br> | <br> |
| Copper                               | 7440-50-8  | 5      | mg/kg          | 70                | <br> | <br> |
| Lead                                 | 7439-92-1  | 5      | mg/kg          | 274               | <br> | <br> |
| Nickel                               | 7440-02-0  | 2      | mg/kg          | 5                 | <br> | <br> |
| Zinc                                 | 7440-66-6  | 5      | mg/kg          | 390               | <br> | <br> |
| EG035T: Total Recoverable Mercury b  | by FIMS    |        |                |                   |      |      |
| Mercury                              | 7439-97-6  | 0.1    | mg/kg          | <0.1              | <br> | <br> |
| EP068A: Organochlorine Pesticides (0 | )<br>()    |        |                |                   |      |      |
| alpha-BHC                            | 319-84-6   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Hexachlorobenzene (HCB)              | 118-74-1   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| beta-BHC                             | 319-85-7   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| gamma-BHC                            | 58-89-9    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| delta-BHC                            | 319-86-8   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Heptachlor                           | 76-44-8    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Aldrin                               | 309-00-2   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Heptachlor epoxide                   | 1024-57-3  | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| ^ Total Chlordane (sum)              |            | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| trans-Chlordane                      | 5103-74-2  | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| alpha-Endosulfan                     | 959-98-8   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| cis-Chlordane                        | 5103-71-9  | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Dieldrin                             | 60-57-1    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDE                             | 72-55-9    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Endrin                               | 72-20-8    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| beta-Endosulfan                      | 33213-65-9 | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| ^ Endosulfan (sum)                   | 115-29-7   | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDD                             | 72-54-8    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Endrin aldehyde                      | 7421-93-4  | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Endosulfan sulfate                   | 1031-07-8  | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| 4.4`-DDT                             | 50-29-3    | 0.2    | mg/kg          | <0.2              | <br> | <br> |
| Endrin ketone                        | 53494-70-5 | 0.05   | mg/kg          | <0.05             | <br> | <br> |



| Sub-Matrix: SOIL                |                      |        | Sample ID      | QC200-150623      | <br> | <br> |
|---------------------------------|----------------------|--------|----------------|-------------------|------|------|
|                                 |                      | Sampli | ng date / time | 15-Jun-2023 00:00 | <br> | <br> |
| Compound                        | CAS Number           | LOR    | Unit           | ES2320976-001     | <br> | <br> |
|                                 |                      |        |                | Result            | <br> | <br> |
| EP068A: Organochlorine Pesticio | des (OC) - Continued |        |                |                   |      |      |
| Methoxychlor                    | 72-43-5              | 0.2    | mg/kg          | <0.2              | <br> | <br> |
| ^ Sum of Aldrin + Dieldrin      | 309-00-2/60-57-1     | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| ^ Sum of DDD + DDE + DDT        | 72-54-8/72-55-9/5    | 0.05   | mg/kg          | <0.05             | <br> | <br> |
|                                 | 0-2                  |        |                |                   |      |      |
| EP068B: Organophosphorus Pes    | sticides (OP)        |        |                |                   |      |      |
| Dichlorvos                      | 62-73-7              | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Demeton-S-methyl                | 919-86-8             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Monocrotophos                   | 6923-22-4            | 0.2    | mg/kg          | <0.2              | <br> | <br> |
| Dimethoate                      | 60-51-5              | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Diazinon                        | 333-41-5             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Chlorpyrifos-methyl             | 5598-13-0            | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Parathion-methyl                | 298-00-0             | 0.2    | mg/kg          | <0.2              | <br> | <br> |
| Malathion                       | 121-75-5             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Fenthion                        | 55-38-9              | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Chlorpyrifos                    | 2921-88-2            | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Parathion                       | 56-38-2              | 0.2    | mg/kg          | <0.2              | <br> | <br> |
| Pirimphos-ethyl                 | 23505-41-1           | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Chlorfenvinphos                 | 470-90-6             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Bromophos-ethyl                 | 4824-78-6            | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Fenamiphos                      | 22224-92-6           | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Prothiofos                      | 34643-46-4           | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Ethion                          | 563-12-2             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Carbophenothion                 | 786-19-6             | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| Azinphos Methyl                 | 86-50-0              | 0.05   | mg/kg          | <0.05             | <br> | <br> |
| EP075(SIM)B: Polynuclear Aroma  | atic Hydrocarbons    |        |                |                   |      |      |
| Naphthalene                     | 91-20-3              | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Acenaphthylene                  | 208-96-8             | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Acenaphthene                    | 83-32-9              | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Fluorene                        | 86-73-7              | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Phenanthrene                    | 85-01-8              | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Anthracene                      | 120-12-7             | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Fluoranthene                    | 206-44-0             | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Pyrene                          | 129-00-0             | 0.5    | mg/kg          | <0.5              | <br> | <br> |
| Benz(a)anthracene               | 56-55-3              | 0.5    | mg/kg          | <0.5              | <br> | <br> |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)       | Sample ID           |            |                   | QC200-150623  |  |      | <br> |
|------------------------------------------|---------------------|------------|-------------------|---------------|--|------|------|
| Sampling date / time                     |                     |            | 15-Jun-2023 00:00 |               |  | <br> |      |
| Compound                                 | CAS Number          | LOR        | Unit              | ES2320976-001 |  |      | <br> |
|                                          |                     |            |                   | Result        |  |      | <br> |
| EP075(SIM)B: Polynuclear Aromatic H      | lydrocarbons - Cont | inued      |                   |               |  |      |      |
| Chrysene                                 | 218-01-9            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Benzo(b+j)fluoranthene                   | 205-99-2 205-82-3   | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Benzo(k)fluoranthene                     | 207-08-9            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Benzo(a)pyrene                           | 50-32-8             | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Indeno(1.2.3.cd)pyrene                   | 193-39-5            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Dibenz(a.h)anthracene                    | 53-70-3             | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Benzo(g.h.i)perylene                     | 191-24-2            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| ^ Sum of polycyclic aromatic hydrocarbor | ıs                  | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| ^ Benzo(a)pyrene TEQ (zero)              |                     | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| ^ Benzo(a)pyrene TEQ (half LOR)          |                     | 0.5        | mg/kg             | 0.6           |  |      | <br> |
| ^ Benzo(a)pyrene TEQ (LOR)               |                     | 0.5        | mg/kg             | 1.2           |  |      | <br> |
| EP080/071: Total Petroleum Hydrocarbons  |                     |            |                   |               |  |      |      |
| C6 - C9 Fraction                         |                     | 10         | mg/kg             | <10           |  |      | <br> |
| C10 - C14 Fraction                       |                     | 50         | mg/kg             | <50           |  |      | <br> |
| C15 - C28 Fraction                       |                     | 100        | mg/kg             | <100          |  |      | <br> |
| C29 - C36 Fraction                       |                     | 100        | mg/kg             | <100          |  |      | <br> |
| ^ C10 - C36 Fraction (sum)               |                     | 50         | mg/kg             | <50           |  |      | <br> |
| EP080/071: Total Recoverable Hydroc      | arbons - NEPM 201   | 3 Fraction | าร                |               |  |      |      |
| C6 - C10 Fraction                        | C6_C10              | 10         | mg/kg             | <10           |  |      | <br> |
| ^ C6 - C10 Fraction minus BTEX           | C6_C10-BTEX         | 10         | mg/kg             | <10           |  |      | <br> |
|                                          |                     | 50         | ma/ka             | <50           |  |      |      |
| >C10 - C16 Fraction                      |                     | 50         | mg/kg             | <00           |  |      | <br> |
| >C16 - C34 Fraction                      |                     | 100        | mg/kg             | <100          |  |      | <br> |
|                                          |                     | 100        | mg/kg             | <100          |  |      | <br> |
|                                          |                     | 50         | mg/kg             | <50           |  |      | <br> |
| >C10 - C16 Fraction minus Naphthalene    |                     | 50         | Шулку             | <b>~</b> 50   |  |      | <br> |
|                                          |                     |            |                   |               |  |      |      |
| EP080: BTEXN                             | 74.40.0             | 0.2        | malka             | <0.2          |  |      |      |
|                                          | /1-43-2             | 0.2        | mg/kg             | <0.2          |  |      | <br> |
| rouene<br>Ethylkenzene                   | 108-88-3            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| Euryibenzene                             | 100-41-4            | 0.5        | mg/kg             | <0.5          |  |      | <br> |
| ortho Yylono                             | 108-38-3 106-42-3   | 0.5        | mg/kg             | <0.5          |  |      | <br> |
|                                          | 95-47-6             | 0.0        | mg/kg             | <0.2          |  |      | <br> |
| " Sum of BIEX                            |                     | 0.2        | тід/кд            | <0.2          |  |      | <br> |



| p-Matrix: SOIL Sample ID atrix: SOIL)          |            |      | QC200-150623      |               |  |  |  |  |
|------------------------------------------------|------------|------|-------------------|---------------|--|--|--|--|
| Sampling date / time                           |            |      | 15-Jun-2023 00:00 |               |  |  |  |  |
| Compound                                       | CAS Number | LOR  | Unit              | ES2320976-001 |  |  |  |  |
|                                                |            |      |                   | Result        |  |  |  |  |
| EP080: BTEXN - Continued                       |            |      |                   |               |  |  |  |  |
| ^ Total Xylenes                                |            | 0.5  | mg/kg             | <0.5          |  |  |  |  |
| Naphthalene                                    | 91-20-3    | 1    | mg/kg             | <1            |  |  |  |  |
| EP202A: Phenoxyacetic Acid Herbicides by LCMS  |            |      |                   |               |  |  |  |  |
| 4-Chlorophenoxy acetic acid                    | 122-88-3   | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| 2.4-DB                                         | 94-82-6    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Dicamba                                        | 1918-00-9  | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Месоргор                                       | 93-65-2    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| МСРА                                           | 94-74-6    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| 2.4-DP                                         | 120-36-5   | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| 2.4-D                                          | 94-75-7    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Triclopyr                                      | 55335-06-3 | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| 2.4.5-TP (Silvex)                              | 93-72-1    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| 2.4.5-T                                        | 93-76-5    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| МСРВ                                           | 94-81-5    | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Picloram                                       | 1918-02-1  | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Clopyralid                                     | 1702-17-6  | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| Fluroxypyr                                     | 69377-81-7 | 0.02 | mg/kg             | <0.04         |  |  |  |  |
| EP068S: Organochlorine Pesticide Su            | rrogate    |      |                   |               |  |  |  |  |
| Dibromo-DDE                                    | 21655-73-2 | 0.05 | %                 | 69.5          |  |  |  |  |
| EP068T: Organophosphorus Pesticide             | Surrogate  |      |                   |               |  |  |  |  |
| DEF                                            | 78-48-8    | 0.05 | %                 | 60.6          |  |  |  |  |
| EP075(SIM)S: Phenolic Compound Su              | rrogates   |      |                   |               |  |  |  |  |
| Phenol-d6                                      | 13127-88-3 | 0.5  | %                 | 80.6          |  |  |  |  |
| 2-Chlorophenol-D4                              | 93951-73-6 | 0.5  | %                 | 80.3          |  |  |  |  |
| 2.4.6-Tribromophenol                           | 118-79-6   | 0.5  | %                 | 72.6          |  |  |  |  |
| EP075(SIM)T: PAH Surrogates                    |            |      |                   |               |  |  |  |  |
| 2-Fluorobiphenyl                               | 321-60-8   | 0.5  | %                 | 81.5          |  |  |  |  |
| Anthracene-d10                                 | 1719-06-8  | 0.5  | %                 | 81.3          |  |  |  |  |
| 4-Terphenyl-d14                                | 1718-51-0  | 0.5  | %                 | 83.2          |  |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates                 |            |      |                   |               |  |  |  |  |
| 1.2-Dichloroethane-D4                          | 17060-07-0 | 0.2  | %                 | 104           |  |  |  |  |
| Toluene-D8                                     | 2037-26-5  | 0.2  | %                 | 98.7          |  |  |  |  |
| 4-Bromofluorobenzene                           | 460-00-4   | 0.2  | %                 | 83.3          |  |  |  |  |
| EP202S: Phenoxyacetic Acid Herbicide Surrogate |            |      |                   |               |  |  |  |  |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                         | Sample ID  |      |                   | QC200-150623  |  |  |  |  |
|------------------------------------------------------------|------------|------|-------------------|---------------|--|--|--|--|
| Sampling date / time                                       |            |      | 15-Jun-2023 00:00 |               |  |  |  |  |
| Compound                                                   | CAS Number | LOR  | Unit              | ES2320976-001 |  |  |  |  |
|                                                            |            |      |                   | Result        |  |  |  |  |
| EP202S: Phenoxyacetic Acid Herbicide Surrogate - Continued |            |      |                   |               |  |  |  |  |
| 2.4-Dichlorophenyl Acetic Acid                             | 19719-28-9 | 0.02 | %                 | 64.3          |  |  |  |  |



## Surrogate Control Limits

| Sub-Matrix: SOIL                               |            | Recovery | Limits (%) |  |  |  |
|------------------------------------------------|------------|----------|------------|--|--|--|
| Compound                                       | CAS Number | Low      | High       |  |  |  |
| EP068S: Organochlorine Pesticide Surrogat      | e          |          |            |  |  |  |
| Dibromo-DDE                                    | 21655-73-2 | 49       | 147        |  |  |  |
| EP068T: Organophosphorus Pesticide Surro       | ogate      |          |            |  |  |  |
| DEF                                            | 78-48-8    | 35       | 143        |  |  |  |
| EP075(SIM)S: Phenolic Compound Surrogat        | es         |          |            |  |  |  |
| Phenol-d6                                      | 13127-88-3 | 63       | 123        |  |  |  |
| 2-Chlorophenol-D4                              | 93951-73-6 | 66       | 122        |  |  |  |
| 2.4.6-Tribromophenol                           | 118-79-6   | 40       | 138        |  |  |  |
| EP075(SIM)T: PAH Surrogates                    |            |          |            |  |  |  |
| 2-Fluorobiphenyl                               | 321-60-8   | 70       | 122        |  |  |  |
| Anthracene-d10                                 | 1719-06-8  | 66       | 128        |  |  |  |
| 4-Terphenyl-d14                                | 1718-51-0  | 65       | 129        |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates                 |            |          |            |  |  |  |
| 1.2-Dichloroethane-D4                          | 17060-07-0 | 63       | 125        |  |  |  |
| Toluene-D8                                     | 2037-26-5  | 67       | 124        |  |  |  |
| 4-Bromofluorobenzene                           | 460-00-4   | 66       | 131        |  |  |  |
| EP202S: Phenoxyacetic Acid Herbicide Surrogate |            |          |            |  |  |  |
| 2.4-Dichlorophenyl Acetic Acid                 | 19719-28-9 | 45       | 139        |  |  |  |



# QUALITY CONTROL REPORT

| Work Order              | : ES2320976                                    | Page                    | : 1 of 10                                             |
|-------------------------|------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : RAMBOLL AUSTRALIA PTY LTD                    | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MR STEPHEN MAXWELL                           | Contact                 | : Customer Services ES                                |
| Address                 | : 100 PACIFIC HIGHWAY<br>NORTH SYDNEY 2060     | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                              | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : 318001679 Tarago Detailed Site Investigation | Date Samples Received   | : 23-Jun-2023                                         |
| Order number            | :                                              | Date Analysis Commenced | : 26-Jun-2023                                         |
| C-O-C number            | :                                              | Issue Date              | 29-Jun-2023                                           |
| Sampler                 | : Isobel Marshall, JENNY AULD                  |                         | Hac-MRA NATA                                          |
| Site                    | :                                              |                         |                                                       |
| Quote number            | : EN/222                                       |                         | Accreditation No. 825                                 |
| No. of samples received | : 1                                            |                         | Accredited for compliance with                        |
| No. of samples analysed | : 1                                            |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                    | Accreditation Category             |
|----------------|-----------------------------|------------------------------------|
| Ankit Joshi    | Senior Chemist - Inorganics | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar | Organic Coordinator         | Sydney Organics, Smithfield, NSW   |
| Evie Sidarta   | Inorganic Chemist           | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator            | Sydney Organics, Smithfield, NSW   |


### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                              |                                |            |      |       | Laboratory L    | Duplicate (DUP) Report |         |                    |  |  |
|----------------------|------------------------------|--------------------------------|------------|------|-------|-----------------|------------------------|---------|--------------------|--|--|
| Laboratory sample ID | Sample ID                    | Method: Compound               | CAS Number | LOR  | Unit  | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |  |  |
| EG005(ED093)T: Tot   | al Metals by ICP-AES (QC L   | ot: 5136895)                   |            |      |       |                 |                        |         |                    |  |  |
| ES2320865-011        | Anonymous                    | EG005T: Cadmium                | 7440-43-9  | 1    | mg/kg | <1              | <1                     | 0.0     | No Limit           |  |  |
|                      |                              | EG005T: Chromium               | 7440-47-3  | 2    | mg/kg | 20              | 9                      | 72.9    | No Limit           |  |  |
|                      |                              | EG005T: Nickel                 | 7440-02-0  | 2    | mg/kg | 6               | 7                      | 18.4    | No Limit           |  |  |
|                      |                              | EG005T: Arsenic                | 7440-38-2  | 5    | mg/kg | 8               | <5                     | 52.2    | No Limit           |  |  |
|                      |                              | EG005T: Copper                 | 7440-50-8  | 5    | mg/kg | 16              | 29                     | 57.5    | No Limit           |  |  |
|                      |                              | EG005T: Lead                   | 7439-92-1  | 5    | mg/kg | 26              | 27                     | 0.0     | No Limit           |  |  |
|                      |                              | EG005T: Zinc                   | 7440-66-6  | 5    | mg/kg | 59              | 67                     | 13.6    | 0% - 50%           |  |  |
| ES2320977-001        | Anonymous                    | EG005T: Cadmium                | 7440-43-9  | 1    | mg/kg | <1              | <1                     | 0.0     | No Limit           |  |  |
|                      |                              | EG005T: Chromium               | 7440-47-3  | 2    | mg/kg | 15              | 13                     | 13.6    | No Limit           |  |  |
|                      |                              | EG005T: Nickel                 | 7440-02-0  | 2    | mg/kg | 107             | 92                     | 14.1    | 0% - 20%           |  |  |
|                      |                              | EG005T: Arsenic                | 7440-38-2  | 5    | mg/kg | <5              | <5                     | 0.0     | No Limit           |  |  |
|                      |                              | EG005T: Copper                 | 7440-50-8  | 5    | mg/kg | 88              | 74                     | 17.4    | 0% - 50%           |  |  |
|                      |                              | EG005T: Lead                   | 7439-92-1  | 5    | mg/kg | 17              | 9                      | 62.1    | No Limit           |  |  |
|                      |                              | EG005T: Zinc                   | 7440-66-6  | 5    | mg/kg | 89              | # 122                  | 31.0    | 0% - 20%           |  |  |
| EA055: Moisture Cor  | ntent (Dried @ 105-110°C) (0 | QC Lot: 5136908)               |            |      |       |                 |                        |         |                    |  |  |
| ES2320865-014        | Anonymous                    | EA055: Moisture Content        |            | 0.1  | %     | 5.7             | 5.7                    | 0.0     | No Limit           |  |  |
| ES2321075-001        | Anonymous                    | EA055: Moisture Content        |            | 0.1  | %     | 20.4            | 19.7                   | 3.4     | 0% - 20%           |  |  |
| EG035T: Total Reco   | verable Mercury by FIMS (C   | QC Lot: 5136897)               |            |      |       |                 |                        |         |                    |  |  |
| ES2320865-011        | Anonymous                    | EG035T: Mercury                | 7439-97-6  | 0.1  | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit           |  |  |
| ES2320977-001        | Anonymous                    | EG035T: Mercury                | 7439-97-6  | 0.1  | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit           |  |  |
| EP068A: Organochic   | orine Pesticides (OC) (QC L  | ot: 5134879)                   |            |      |       |                 |                        |         |                    |  |  |
| ES2321132-001        | Anonymous                    | EP068: alpha-BHC               | 319-84-6   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0     | No Limit           |  |  |
|                      |                              | EP068: Hexachlorobenzene (HCB) | 118-74-1   | 0.05 | mg/kg | <0.05           | <0.05                  | 0.0     | No Limit           |  |  |



| Sub-Matrix: SOIL     |                        |                              |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                    |
|----------------------|------------------------|------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|--------------------|
| Laboratory sample ID | Sample ID              | Method: Compound             | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |
| EP068A: Organochlo   | rine Pesticides (OC)(  | QC Lot: 5134879) - continued |            |                                   |       |                 |                  |         |                    |
| ES2321132-001        | Anonymous              | EP068: beta-BHC              | 319-85-7   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: gamma-BHC             | 58-89-9    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: delta-BHC             | 319-86-8   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Heptachlor            | 76-44-8    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Aldrin                | 309-00-2   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Heptachlor epoxide    | 1024-57-3  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: trans-Chlordane       | 5103-74-2  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: alpha-Endosulfan      | 959-98-8   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: cis-Chlordane         | 5103-71-9  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Dieldrin              | 60-57-1    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: 4.4`-DDE              | 72-55-9    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Endrin                | 72-20-8    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: beta-Endosulfan       | 33213-65-9 | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: 4.4`-DDD              | 72-54-8    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Endrin aldehyde       | 7421-93-4  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Endosulfan sulfate    | 1031-07-8  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Endrin ketone         | 53494-70-5 | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: 4.4`-DDT              | 50-29-3    | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
|                      |                        | EP068: Methoxychlor          | 72-43-5    | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
| EP068B: Organopho    | sphorus Pesticides (OF | P) (QC Lot: 5134879)         |            |                                   |       |                 |                  |         |                    |
| ES2321132-001        | Anonymous              | EP068: Dichlorvos            | 62-73-7    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Demeton-S-methyl      | 919-86-8   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Dimethoate            | 60-51-5    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Diazinon              | 333-41-5   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Chlorpyrifos-methyl   | 5598-13-0  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Malathion             | 121-75-5   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Fenthion              | 55-38-9    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Chlorpyrifos          | 2921-88-2  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Pirimphos-ethyl       | 23505-41-1 | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Chlorfenvinphos       | 470-90-6   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Bromophos-ethyl       | 4824-78-6  | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Fenamiphos            | 22224-92-6 | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Prothiofos            | 34643-46-4 | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Ethion                | 563-12-2   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Carbophenothion       | 786-19-6   | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Azinphos Methyl       | 86-50-0    | 0.05                              | mg/kg | <0.05           | <0.05            | 0.0     | No Limit           |
|                      |                        | EP068: Monocrotophos         | 6923-22-4  | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
|                      |                        | EP068: Parathion-methyl      | 298-00-0   | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
|                      |                        | EP068: Parathion             | 56-38-2    | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
| EP075(SIM)B: Polynu  | Iclear Aromatic Hydrod | arbons (QC Lot: 5134877)     |            |                                   |       |                 |                  |         |                    |



| Sub-Matrix: SOIL     |                      |                                              |            |     |         | Laboratory L    | Duplicate (DUP) Report | te (DUP) Report |                    |  |  |
|----------------------|----------------------|----------------------------------------------|------------|-----|---------|-----------------|------------------------|-----------------|--------------------|--|--|
| Laboratory sample ID | Sample ID            | Method: Compound                             | CAS Number | LOR | Unit    | Original Result | Duplicate Result       | RPD (%)         | Acceptable RPD (%) |  |  |
| EP075(SIM)B: Poly    | nuclear Aromatic Hyd | Irocarbons (QC Lot: 5134877) - continued     |            |     |         |                 |                        |                 |                    |  |  |
| ES2321132-001        | Anonymous            | EP075(SIM): Naphthalene                      | 91-20-3    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Acenaphthylene                   | 208-96-8   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Acenaphthene                     | 83-32-9    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Fluorene                         | 86-73-7    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Phenanthrene                     | 85-01-8    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Anthracene                       | 120-12-7   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Fluoranthene                     | 206-44-0   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Pyrene                           | 129-00-0   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Benz(a)anthracene                | 56-55-3    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Chrysene                         | 218-01-9   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Benzo(b+j)fluoranthene           | 205-99-2   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      |                                              | 205-82-3   |     |         |                 |                        |                 |                    |  |  |
|                      |                      | EP075(SIM): Benzo(k)fluoranthene             | 207-08-9   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Benzo(a)pyrene                   | 50-32-8    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Indeno(1.2.3.cd)pyrene           | 193-39-5   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Dibenz(a.h)anthracene            | 53-70-3    | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Benzo(g.h.i)perylene             | 191-24-2   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP075(SIM): Sum of polycyclic aromatic       |            | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | hydrocarbons                                 |            |     |         |                 |                        |                 |                    |  |  |
|                      |                      | EP075(SIM): Benzo(a)pyrene TEQ (zero)        |            | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
| EP080/071: Total P   | etroleum Hydrocarbo  | ns (QC Lot: 5134878)                         |            |     |         |                 |                        |                 |                    |  |  |
| ES2321132-001        | Anonymous            | EP071: C15 - C28 Fraction                    |            | 100 | mg/kg   | <100            | <100                   | 0.0             | No Limit           |  |  |
|                      |                      | EP071: C29 - C36 Fraction                    |            | 100 | mg/kg   | <100            | <100                   | 0.0             | No Limit           |  |  |
|                      |                      | EP071: C10 - C14 Fraction                    |            | 50  | mg/kg   | <50             | <50                    | 0.0             | No Limit           |  |  |
| EP080/071: Total P   | etroleum Hydrocarbo  | ns (QC Lot: 5136331)                         |            |     |         |                 |                        |                 |                    |  |  |
| ES2320637-008        | Anonymous            | EP080: C6 - C9 Fraction                      |            | 10  | mg/kg   | <10             | <10                    | 0.0             | No Limit           |  |  |
| ES2321126-001        | Anonymous            | EP080: C6 - C9 Fraction                      |            | 10  | mg/kg   | <10             | <10                    | 0.0             | No Limit           |  |  |
| EP080/071: Total R   | ecoverable Hvdrocart | bons - NEPM 2013 Fractions (QC Lot: 5134878) |            |     |         |                 |                        |                 |                    |  |  |
| ES2321132-001        | Anonymous            | EP071: >C16 - C34 Eraction                   |            | 100 | ma/ka   | <100            | <100                   | 0.0             | No Limit           |  |  |
|                      |                      | EP071: >C34 - C40 Fraction                   |            | 100 | ma/ka   | <100            | <100                   | 0.0             | No Limit           |  |  |
|                      |                      | EP071: >C10 - C16 Fraction                   |            | 50  | ma/ka   | <50             | <50                    | 0.0             | No Limit           |  |  |
| ED080/071: Total P   | acovorable Hydrocark | hons - NERM 2013 Fractions (OC Lot: 5136331) |            |     |         |                 |                        |                 |                    |  |  |
| EP000/071. Total K   |                      |                                              | C6 C10     | 10  | ma/ka   | <10             | <10                    | 0.0             | No Limit           |  |  |
| ES2320037-008        | Anonymous            | EP080: C6 - C10 Fraction                     | C6_C10     | 10  | mg/kg   | <10             | <10                    | 0.0             | No Limit           |  |  |
|                      |                      |                                              | 00_010     | 10  | iiig/kg | ~10             | ~10                    | 0.0             |                    |  |  |
| EPU8U: BIEXN (QC     | G LOI: 5136331)      |                                              |            | 0.5 |         |                 |                        | 0.5             |                    |  |  |
| ES2320637-008        | Anonymous            | EP080: Benzene                               | 71-43-2    | 0.2 | mg/kg   | <0.2            | <0.2                   | 0.0             | No Limit           |  |  |
|                      |                      | EP080: Toluene                               | 108-88-3   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |
|                      |                      | EP080: Ethylbenzene                          | 100-41-4   | 0.5 | mg/kg   | <0.5            | <0.5                   | 0.0             | No Limit           |  |  |



| Sub-Matrix: SOIL     |                             |                                    |                      | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                    |
|----------------------|-----------------------------|------------------------------------|----------------------|-----------------------------------|-------|-----------------|------------------|---------|--------------------|
| Laboratory sample ID | Sample ID                   | Method: Compound                   | CAS Number           | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |
| EP080: BTEXN (QC L   | ot: 5136331) - continued    |                                    |                      |                                   |       |                 |                  |         |                    |
| ES2320637-008        | Anonymous                   | EP080: meta- & para-Xylene         | 108-38-3<br>106-42-3 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: ortho-Xvlene                | 95-47-6              | 0.5                               | mg/kg | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: Naphthalene                 | 91-20-3              | 1                                 | mg/kg | <1              | <1               | 0.0     | No Limit           |
| ES2321126-001        | Anonymous                   | EP080: Benzene                     | 71-43-2              | 0.2                               | mg/kg | <0.2            | <0.2             | 0.0     | No Limit           |
|                      |                             | EP080: Toluene                     | 108-88-3             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: Ethylbenzene                | 100-41-4             | 0.5                               | mg/kg | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: meta- & para-Xylene         | 108-38-3<br>106-42-3 | 0.5                               | mg/kg | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: ortho-Xylene                | 95-47-6              | 0.5                               | ma/ka | <0.5            | <0.5             | 0.0     | No Limit           |
|                      |                             | EP080: Naphthalene                 | 91-20-3              | 1                                 | mg/kg | <1              | <1               | 0.0     | No Limit           |
| FP202A: Phenoxyace   | tic Acid Herbicides by I CM | IS (OC Lot: 5136899)               |                      |                                   | 5 5   |                 |                  |         |                    |
| EB2317766-001        |                             |                                    | 122-88-3             | 0.02                              | ma/ka | <0.02           | <0.02            | 0.0     | No Limit           |
| LB2011100 001        | Anonymous                   |                                    | 94-82-6              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4-DB                      | 1918-00-9            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Macoprop                    | 93-65-2              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             |                                    | 94-74-6              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2 4-DP                      | 120-36-5             | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4-D                       | 94-75-7              | 0.02                              | mg/kg | < 0.02          | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Triclopyr                   | 55335-06-3           | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4.5-TP (Silvex)           | 93-72-1              | 0.02                              | ma/ka | < 0.02          | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4.5-T                     | 93-76-5              | 0.02                              | ma/ka | < 0.02          | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: MCPB                        | 94-81-5              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Picloram                    | 1918-02-1            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Clopyralid                  | 1702-17-6            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Fluroxypyr                  | 69377-81-7           | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
| ES2321119-007        | Anonymous                   | EP202: 4-Chlorophenoxy acetic acid | 122-88-3             | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4-DB                      | 94-82-6              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Dicamba                     | 1918-00-9            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Mecoprop                    | 93-65-2              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: MCPA                        | 94-74-6              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4-DP                      | 120-36-5             | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4-D                       | 94-75-7              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Triclopyr                   | 55335-06-3           | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4.5-TP (Silvex)           | 93-72-1              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: 2.4.5-T                     | 93-76-5              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: MCPB                        | 94-81-5              | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Picloram                    | 1918-02-1            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Clopyralid                  | 1702-17-6            | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |
|                      |                             | EP202: Fluroxypyr                  | 69377-81-7           | 0.02                              | mg/kg | <0.02           | <0.02            | 0.0     | No Limit           |



### Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                           |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |            |            |
|------------------------------------------------------------|------|-------------------|---------------------------------------|---------------|--------------------|------------|------------|
|                                                            |      |                   | Report                                | Spike         | Spike Recovery (%) | Acceptable | Limits (%) |
| Method: Compound CAS Number                                | LOR  | Unit              | Result                                | Concentration | LCS                | Low        | High       |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 5136895)    |      |                   |                                       |               |                    | 1          |            |
| EG005T: Arsenic 7440-38-2                                  | 5    | mg/kg             | <5                                    | 121.1 mg/kg   | 88.0               | 88.0       | 113        |
| EG005T: Cadmium 7440-43-9                                  | 1    | mg/kg             | <1                                    | 0.74 mg/kg    | 78.7               | 70.0       | 130        |
| EG005T: Chromium 7440-47-3                                 | 2    | mg/kg             | <2                                    | 19.6 mg/kg    | 102                | 68.0       | 132        |
| EG005T: Copper 7440-50-8                                   | 5    | mg/kg             | <5                                    | 52.9 mg/kg    | 91.0               | 89.0       | 111        |
| EG005T: Lead 7439-92-1                                     | 5    | mg/kg             | <5                                    | 60.8 mg/kg    | 87.0               | 82.0       | 119        |
| EG005T: Nickel 7440-02-0                                   | 2    | mg/kg             | <2                                    | 15.3 mg/kg    | 86.4               | 80.0       | 120        |
| EG005T: Zinc 7440-66-6                                     | 5    | mg/kg             | <5                                    | 139.3 mg/kg   | 82.4               | 66.0       | 133        |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 5136897) |      |                   |                                       |               |                    |            |            |
| EG035T: Mercury 7439-97-6                                  | 0.1  | mg/kg             | <0.1                                  | 0.087 mg/kg   | 77.0               | 70.0       | 125        |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 5134879)    |      |                   |                                       |               |                    |            |            |
| EP068: alpha-BHC 319-84-6                                  | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.0               | 69.0       | 113        |
| EP068: Hexachlorobenzene (HCB) 118-74-1                    | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.6               | 65.0       | 117        |
| EP068: beta-BHC 319-85-7                                   | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.3               | 67.0       | 119        |
| EP068: gamma-BHC 58-89-9                                   | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 87.8               | 68.0       | 116        |
| EP068: delta-BHC 319-86-8                                  | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 77.0               | 65.0       | 117        |
| EP068: Heptachlor 76-44-8                                  | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 80.9               | 67.0       | 115        |
| EP068: Aldrin 309-00-2                                     | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 84.8               | 69.0       | 115        |
| EP068: Heptachlor epoxide 1024-57-3                        | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 77.3               | 62.0       | 118        |
| EP068: trans-Chlordane 5103-74-2                           | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 84.0               | 63.0       | 117        |
| EP068: alpha-Endosulfan 959-98-8                           | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 88.3               | 66.0       | 116        |
| EP068: cis-Chlordane 5103-71-9                             | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.1               | 64.0       | 116        |
| EP068: Dieldrin 60-57-1                                    | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.2               | 66.0       | 116        |
| EP068: 4.4`-DDE 72-55-9                                    | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 85.6               | 67.0       | 115        |
| EP068: Endrin 72-20-8                                      | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 88.7               | 67.0       | 123        |
| EP068: beta-Endosulfan 33213-65-9                          | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 89.3               | 69.0       | 115        |
| EP068: 4.4`-DDD 72-54-8                                    | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 83.7               | 69.0       | 121        |
| EP068: Endrin aldehyde 7421-93-4                           | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 85.0               | 56.0       | 120        |
| EP068: Endosulfan sulfate 1031-07-8                        | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 78.1               | 62.0       | 124        |
| EP068: 4.4`-DDT 50-29-3                                    | 0.2  | mg/kg             | <0.2                                  | 0.5 mg/kg     | 80.4               | 66.0       | 120        |
| EP068: Endrin ketone 53494-70-5                            | 0.05 | mg/kg             | <0.05                                 | 0.5 mg/kg     | 78.5               | 64.0       | 122        |

| Page       | : 7 of 10                                      |
|------------|------------------------------------------------|
| Work Order | : ES2320976                                    |
| Client     | : RAMBOLL AUSTRALIA PTY LTD                    |
| Project    | : 318001679 Tarago Detailed Site Investigation |



| Sub-Matrix: SOIL                                  |                      |      |       |        | Laboratory Control Spike (LCS) Report |                    |            |            |  |
|---------------------------------------------------|----------------------|------|-------|--------|---------------------------------------|--------------------|------------|------------|--|
|                                                   |                      |      |       | Report | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |
| Method: Compound                                  | CAS Number           | LOR  | Unit  | Result | Concentration                         | LCS                | Low        | High       |  |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 51 | 34879) - continued   |      |       |        |                                       |                    |            |            |  |
| EP068: Methoxychlor                               | 72-43-5              | 0.2  | mg/kg | <0.2   | 0.5 mg/kg                             | 83.8               | 54.0       | 130        |  |
| EP068B: Organophosphorus Pesticides (OP) (QCLot:  | 5134879)             |      |       |        |                                       |                    |            |            |  |
| EP068: Dichlorvos                                 | 62-73-7              | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 76.2               | 59.0       | 119        |  |
| EP068: Demeton-S-methyl                           | 919-86-8             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 79.1               | 62.0       | 128        |  |
| EP068: Monocrotophos                              | 6923-22-4            | 0.2  | mg/kg | <0.2   | 0.5 mg/kg                             | 85.3               | 54.0       | 126        |  |
| EP068: Dimethoate                                 | 60-51-5              | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 86.6               | 67.0       | 119        |  |
| EP068: Diazinon                                   | 333-41-5             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 85.5               | 70.0       | 120        |  |
| EP068: Chlorpyrifos-methyl                        | 5598-13-0            | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 83.8               | 72.0       | 120        |  |
| EP068: Parathion-methyl                           | 298-00-0             | 0.2  | mg/kg | <0.2   | 0.5 mg/kg                             | 85.1               | 68.0       | 120        |  |
| EP068: Malathion                                  | 121-75-5             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 84.6               | 68.0       | 122        |  |
| EP068: Fenthion                                   | 55-38-9              | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 82.6               | 69.0       | 117        |  |
| EP068: Chlorpyrifos                               | 2921-88-2            | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 86.4               | 76.0       | 118        |  |
| EP068: Parathion                                  | 56-38-2              | 0.2  | mg/kg | <0.2   | 0.5 mg/kg                             | 78.8               | 64.0       | 122        |  |
| EP068: Pirimphos-ethyl                            | 23505-41-1           | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 85.5               | 70.0       | 116        |  |
| EP068: Chlorfenvinphos                            | 470-90-6             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 86.7               | 69.0       | 121        |  |
| EP068: Bromophos-ethyl                            | 4824-78-6            | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 84.9               | 66.0       | 118        |  |
| EP068: Fenamiphos                                 | 22224-92-6           | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 90.3               | 68.0       | 124        |  |
| EP068: Prothiofos                                 | 34643-46-4           | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 85.9               | 62.0       | 112        |  |
| EP068: Ethion                                     | 563-12-2             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 82.5               | 68.0       | 120        |  |
| EP068: Carbophenothion                            | 786-19-6             | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 78.7               | 65.0       | 127        |  |
| EP068: Azinphos Methyl                            | 86-50-0              | 0.05 | mg/kg | <0.05  | 0.5 mg/kg                             | 55.6               | 41.0       | 123        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(C  | QCLot: 5134877)      |      |       |        |                                       |                    |            |            |  |
| EP075(SIM): Naphthalene                           | 91-20-3              | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 103                | 77.0       | 125        |  |
| EP075(SIM): Acenaphthylene                        | 208-96-8             | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 99.3               | 72.0       | 124        |  |
| EP075(SIM): Acenaphthene                          | 83-32-9              | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 89.4               | 73.0       | 127        |  |
| EP075(SIM): Fluorene                              | 86-73-7              | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 97.6               | 72.0       | 126        |  |
| EP075(SIM): Phenanthrene                          | 85-01-8              | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 99.9               | 75.0       | 127        |  |
| EP075(SIM): Anthracene                            | 120-12-7             | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 95.7               | 77.0       | 127        |  |
| EP075(SIM): Fluoranthene                          | 206-44-0             | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 103                | 73.0       | 127        |  |
| EP075(SIM): Pyrene                                | 129-00-0             | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 101                | 74.0       | 128        |  |
| EP075(SIM): Benz(a)anthracene                     | 56-55-3              | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 92.6               | 69.0       | 123        |  |
| EP075(SIM): Chrysene                              | 218-01-9             | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 97.9               | 75.0       | 127        |  |
| EP075(SIM): Benzo(b+j)fluoranthene                | 205-99-2<br>205-82-3 | 0.5  | mg/kg | <0.5   | 6 mg/kg                               | 97.3               | 68.0       | 116        |  |

| Page       | : 8 of 10                                      |
|------------|------------------------------------------------|
| Work Order | : ES2320976                                    |
| Client     | : RAMBOLL AUSTRALIA PTY LTD                    |
| Project    | : 318001679 Tarago Detailed Site Investigation |



| Sub-Matrix: SOIL                              |                           |              |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report  |              |
|-----------------------------------------------|---------------------------|--------------|-------|-------------------|---------------|------------------------------|------------|--------------|
|                                               |                           |              |       | Report            | Spike         | Spike Recovery (%)           | Acceptable | e Limits (%) |
| Method: Compound                              | CAS Number                | LOR          | Unit  | Result            | Concentration | LCS                          | Low        | High         |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbo  | ons (QCLot: 5134877) - co | ntinued      |       |                   |               |                              |            |              |
| EP075(SIM): Benzo(k)fluoranthene              | 207-08-9                  | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 98.7                         | 74.0       | 126          |
| EP075(SIM): Benzo(a)pyrene                    | 50-32-8                   | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 88.0                         | 70.0       | 126          |
| EP075(SIM): Indeno(1.2.3.cd)pyrene            | 193-39-5                  | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 84.1                         | 61.0       | 121          |
| EP075(SIM): Dibenz(a.h)anthracene             | 53-70-3                   | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 82.4                         | 62.0       | 118          |
| EP075(SIM): Benzo(g.h.i)perylene              | 191-24-2                  | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 81.0                         | 63.0       | 121          |
| EP080/071: Total Petroleum Hydrocarbons (QCI  | Lot: 5134878)             |              |       |                   |               |                              | -          |              |
| EP071: C10 - C14 Fraction                     |                           | 50           | mg/kg | <50               | 300 mg/kg     | 95.8                         | 75.0       | 129          |
| EP071: C15 - C28 Fraction                     |                           | 100          | mg/kg | <100              | 450 mg/kg     | 95.5                         | 77.0       | 131          |
| EP071: C29 - C36 Fraction                     |                           | 100          | mg/kg | <100              | 300 mg/kg     | 95.5                         | 71.0       | 129          |
| EP080/071: Total Petroleum Hydrocarbons (QCI  | Lot: 5136331)             |              |       |                   |               |                              |            |              |
| EP080: C6 - C9 Fraction                       |                           | 10           | mg/kg | <10               | 26 mg/kg      | 117                          | 72.2       | 131          |
| EP080/071: Total Recoverable Hydrocarbons - N | EPM 2013 Fractions (QCL   | ot: 5134878) |       |                   |               |                              |            |              |
| EP071: >C10 - C16 Fraction                    |                           | 50           | mg/kg | <50               | 375 mg/kg     | 98.5                         | 77.0       | 125          |
| EP071: >C16 - C34 Fraction                    |                           | 100          | mg/kg | <100              | 525 mg/kg     | 93.8                         | 74.0       | 138          |
| EP071: >C34 - C40 Fraction                    |                           | 100          | mg/kg | <100              | 225 mg/kg     | 98.7                         | 63.0       | 131          |
| EP080/071: Total Recoverable Hydrocarbons - N | EPM 2013 Fractions (QCL   | ot: 5136331) |       |                   |               | - <b>-</b>                   | -          |              |
| EP080: C6 - C10 Fraction                      | C6_C10                    | 10           | mg/kg | <10               | 31 mg/kg      | 112                          | 72.4       | 133          |
| EP080: BTEXN (QCLot: 5136331)                 |                           |              |       |                   |               |                              |            |              |
| EP080: Benzene                                | 71-43-2                   | 0.2          | mg/kg | <0.2              | 1 mg/kg       | 121                          | 76.0       | 124          |
| EP080: Toluene                                | 108-88-3                  | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 114                          | 78.5       | 121          |
| EP080: Ethylbenzene                           | 100-41-4                  | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 111                          | 77.4       | 121          |
| EP080: meta- & para-Xylene                    | 108-38-3                  | 0.5          | mg/kg | <0.5              | 2 mg/kg       | 112                          | 78.2       | 121          |
|                                               | 106-42-3                  |              |       |                   |               |                              |            |              |
| EP080: ortho-Xylene                           | 95-47-6                   | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 112                          | 81.3       | 121          |
| EP080: Naphthalene                            | 91-20-3                   | 1            | mg/kg | <1                | 1 mg/kg       | 111                          | 78.8       | 122          |
| EP202A: Phenoxyacetic Acid Herbicides by LCM  | IS (QCLot: 5136899)       |              |       |                   |               |                              |            |              |
| EP202: 4-Chlorophenoxy acetic acid            | 122-88-3                  | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 77.3                         | 54.4       | 128          |
| EP202: 2.4-DB                                 | 94-82-6                   | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 78.6                         | 45.5       | 130          |
| EP202: Dicamba                                | 1918-00-9                 | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 84.8                         | 51.7       | 135          |
| EP202: Mecoprop                               | 93-65-2                   | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 74.6                         | 60.0       | 130          |
| EP202: MCPA                                   | 94-74-6                   | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 76.6                         | 56.8       | 131          |
| EP202: 2.4-DP                                 | 120-36-5                  | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 78.3                         | 50.0       | 141          |
| EP202: 2.4-D                                  | 94-75-7                   | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 80.3                         | 68.5       | 131          |
| EP202: Triclopyr                              | 55335-06-3                | 0.02         | mg/kg | <0.02             | 0.1 mg/kg     | 84.8                         | 50.8       | 141          |



| Sub-Matrix: SOIL                            | o-Matrix: SOIL          |          |       |        | Laboratory Control Spike (LCS) Report |                    |            |            |  |  |
|---------------------------------------------|-------------------------|----------|-------|--------|---------------------------------------|--------------------|------------|------------|--|--|
|                                             |                         |          |       | Report | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |  |
| Method: Compound                            | CAS Number              | LOR      | Unit  | Result | Concentration                         | LCS                | Low        | High       |  |  |
| EP202A: Phenoxyacetic Acid Herbicides by LC | MS (QCLot: 5136899) - c | ontinued |       |        |                                       |                    |            |            |  |  |
| EP202: 2.4.5-TP (Silvex)                    | 93-72-1                 | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 79.5               | 40.8       | 126        |  |  |
| EP202: 2.4.5-T                              | 93-76-5                 | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 76.4               | 57.4       | 139        |  |  |
| EP202: MCPB                                 | 94-81-5                 | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 60.5               | 38.9       | 137        |  |  |
| EP202: Picloram                             | 1918-02-1               | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 61.1               | 48.7       | 129        |  |  |
| EP202: Clopyralid                           | 1702-17-6               | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 60.2               | 49.4       | 106        |  |  |
| EP202: Fluroxypyr                           | 69377-81-7              | 0.02     | mg/kg | <0.02  | 0.1 mg/kg                             | 81.3               | 53.2       | 128        |  |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                            |                            |            | Ма            | trix Spike (MS) Report |              |           |
|----------------------|--------------------------------------------|----------------------------|------------|---------------|------------------------|--------------|-----------|
|                      |                                            |                            |            | Spike         | SpikeRecovery(%)       | Acceptable L | imits (%) |
| Laboratory sample ID | Sample ID                                  | Method: Compound           | CAS Number | Concentration | MS                     | Low          | High      |
| EG005(ED093)T: T     | otal Metals by ICP-AES (QCLot: 5136895)    |                            |            |               |                        |              |           |
| ES2320865-011        | Anonymous                                  | EG005T: Arsenic            | 7440-38-2  | 50 mg/kg      | 95.6                   | 70.0         | 130       |
|                      |                                            | EG005T: Cadmium            | 7440-43-9  | 50 mg/kg      | 103                    | 70.0         | 130       |
|                      |                                            | EG005T: Chromium           | 7440-47-3  | 50 mg/kg      | 75.8                   | 68.0         | 132       |
|                      |                                            | EG005T: Copper             | 7440-50-8  | 250 mg/kg     | 103                    | 70.0         | 130       |
|                      |                                            | EG005T: Lead               | 7439-92-1  | 250 mg/kg     | 99.0                   | 70.0         | 130       |
|                      |                                            | EG005T: Nickel             | 7440-02-0  | 50 mg/kg      | 96.9                   | 70.0         | 130       |
|                      |                                            | EG005T: Zinc               | 7440-66-6  | 250 mg/kg     | 94.7                   | 66.0         | 133       |
| EG035T: Total Rec    | coverable Mercury by FIMS (QCLot: 5136897) |                            |            |               |                        |              |           |
| ES2320865-011        | Anonymous                                  | EG035T: Mercury            | 7439-97-6  | 5 mg/kg       | 98.7                   | 70.0         | 130       |
| EP068A: Organoch     | lorine Pesticides (OC) (QCLot: 5134879)    |                            |            |               |                        |              |           |
| ES2321132-001        | Anonymous                                  | EP068: gamma-BHC           | 58-89-9    | 0.5 mg/kg     | 104                    | 70.0         | 130       |
|                      |                                            | EP068: Heptachlor          | 76-44-8    | 0.5 mg/kg     | 106                    | 70.0         | 130       |
|                      |                                            | EP068: Aldrin              | 309-00-2   | 0.5 mg/kg     | 96.0                   | 70.0         | 130       |
|                      |                                            | EP068: Dieldrin            | 60-57-1    | 0.5 mg/kg     | 98.4                   | 70.0         | 130       |
|                      |                                            | EP068: Endrin              | 72-20-8    | 2 mg/kg       | 103                    | 70.0         | 130       |
|                      |                                            | EP068: 4.4`-DDT            | 50-29-3    | 2 mg/kg       | 112                    | 70.0         | 130       |
| EP068B: Organoph     | osphorus Pesticides (OP) (QCLot: 5134879)  |                            |            |               |                        |              |           |
| ES2321132-001        | Anonymous                                  | EP068: Diazinon            | 333-41-5   | 0.5 mg/kg     | 79.4                   | 70.0         | 130       |
|                      |                                            | EP068: Chlorpyrifos-methyl | 5598-13-0  | 0.5 mg/kg     | 94.7                   | 70.0         | 130       |
|                      |                                            | EP068: Pirimphos-ethyl     | 23505-41-1 | 0.5 mg/kg     | 89.7                   | 70.0         | 130       |
|                      |                                            | EP068: Bromophos-ethyl     | 4824-78-6  | 0.5 mg/kg     | 94.7                   | 70.0         | 130       |
|                      |                                            | EP068: Prothiofos          | 34643-46-4 | 0.5 mg/kg     | 80.1                   | 70.0         | 130       |



| Sub-Matrix: SOIL     |                                                  |                            |            | Ма            | atrix Spike (MS) Repor | t            |            |
|----------------------|--------------------------------------------------|----------------------------|------------|---------------|------------------------|--------------|------------|
|                      |                                                  |                            |            | Spike         | SpikeRecovery(%)       | Acceptable L | .imits (%) |
| Laboratory sample ID | Sample ID                                        | Method: Compound           | CAS Number | Concentration | MS                     | Low          | High       |
| EP075(SIM)B: Po      | ynuclear Aromatic Hydrocarbons (QCLot: 5134877)  |                            |            |               |                        |              |            |
| ES2321132-001        | Anonymous                                        | EP075(SIM): Acenaphthene   | 83-32-9    | 10 mg/kg      | 97.4                   | 70.0         | 130        |
|                      |                                                  | EP075(SIM): Pyrene         | 129-00-0   | 10 mg/kg      | 112                    | 70.0         | 130        |
| EP080/071: Total     | Petroleum Hydrocarbons (QCLot: 5134878)          |                            |            |               |                        |              |            |
| ES2321132-001        | Anonymous                                        | EP071: C10 - C14 Fraction  |            | 480 mg/kg     | 100                    | 73.0         | 137        |
|                      |                                                  | EP071: C15 - C28 Fraction  |            | 3100 mg/kg    | 115                    | 53.0         | 131        |
|                      |                                                  | EP071: C29 - C36 Fraction  |            | 2060 mg/kg    | 124                    | 52.0         | 132        |
| EP080/071: Total     | Petroleum Hydrocarbons (QCLot: 5136331)          |                            |            |               |                        |              |            |
| ES2320637-008        | Anonymous                                        | EP080: C6 - C9 Fraction    |            | 32.5 mg/kg    | 105                    | 60.4         | 142        |
| EP080/071: Total     | Recoverable Hydrocarbons - NEPM 2013 Fractions ( | QCLot: 5134878)            |            |               |                        |              |            |
| ES2321132-001        | Anonymous                                        | EP071: >C10 - C16 Fraction |            | 860 mg/kg     | 106                    | 73.0         | 137        |
|                      |                                                  | EP071: >C16 - C34 Fraction |            | 4320 mg/kg    | 120                    | 53.0         | 131        |
|                      |                                                  | EP071: >C34 - C40 Fraction |            | 890 mg/kg     | 123                    | 52.0         | 132        |
| EP080/071: Total     | Recoverable Hydrocarbons - NEPM 2013 Fractions(  | QCLot: 5136331)            |            |               |                        |              |            |
| ES2320637-008        | Anonymous                                        | EP080: C6 - C10 Fraction   | C6_C10     | 37.5 mg/kg    | 109                    | 61.1         | 142        |
| EP080: BTEXN (       | QCLot: 5136331)                                  |                            |            |               |                        |              |            |
| ES2320637-008        | Anonymous                                        | EP080: Benzene             | 71-43-2    | 2.5 mg/kg     | 108                    | 62.1         | 122        |
|                      |                                                  | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 106                    | 66.6         | 119        |
|                      |                                                  | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 109                    | 67.4         | 123        |
|                      |                                                  | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 108                    | 66.4         | 121        |
|                      |                                                  |                            | 106-42-3   |               |                        |              |            |
|                      |                                                  | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 110                    | 70.7         | 121        |
|                      |                                                  | EP080: Naphthalene         | 91-20-3    | 2.5 mg/kg     | 99.4                   | 61.1         | 115        |
| EP202A: Phenoxy      | vacetic Acid Herbicides by LCMS (QCLot: 5136899) |                            |            |               |                        |              |            |
| EB2317766-001        | Anonymous                                        | EP202: Mecoprop            | 93-65-2    | 0.1 mg/kg     | 64.5                   | 60.0         | 140        |
|                      |                                                  | EP202: MCPA                | 94-74-6    | 0.1 mg/kg     | 72.2                   | 57.0         | 143        |
|                      |                                                  | EP202: 2.4-D               | 94-75-7    | 0.1 mg/kg     | 75.7                   | 68.0         | 139        |
|                      |                                                  | EP202: Triclopyr           | 55335-06-3 | 0.1 mg/kg     | 83.7                   | 51.0         | 145        |
|                      |                                                  | EP202: 2.4.5-T             | 93-76-5    | 0.1 mg/kg     | 70.4                   | 57.0         | 142        |
|                      |                                                  | EP202: Picloram            | 1918-02-1  | 0.1 mg/kg     | 61.9                   | 49.0         | 138        |
|                      |                                                  | EP202: Clopyralid          | 1702-17-6  | 0.1 mg/kg     | 60.6                   | 49.0         | 149        |



|              | QA/QC Compliance Assessment to assist with Quality Review |                         |                                 |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------|-------------------------|---------------------------------|--|--|--|--|--|--|--|--|
| Work Order   | : ES2320976                                               | Page                    | : 1 of 6                        |  |  |  |  |  |  |  |  |
| Client       | : RAMBOLL AUSTRALIA PTY LTD                               | Laboratory              | : Environmental Division Sydney |  |  |  |  |  |  |  |  |
| Contact      | : MR STEPHEN MAXWELL                                      | Telephone               | : +61-2-8784 8555               |  |  |  |  |  |  |  |  |
| Project      | : 318001679 Tarago Detailed Site Investigation            | Date Samples Received   | : 23-Jun-2023                   |  |  |  |  |  |  |  |  |
| Site         | :                                                         | Issue Date              | : 29-Jun-2023                   |  |  |  |  |  |  |  |  |
| Sampler      | : Isobel Marshall, JENNY AULD                             | No. of samples received | : 1                             |  |  |  |  |  |  |  |  |
| Order number | :                                                         | No. of samples analysed | : 1                             |  |  |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

| Compound Group Name                    | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data   | Limits   | Comment                      |
|----------------------------------------|----------------------|------------------|---------|------------|--------|----------|------------------------------|
| Duplicate (DUP) RPDs                   |                      |                  |         |            |        |          |                              |
| EG005(ED093)T: Total Metals by ICP-AES | ES2320977001         | Anonymous        | Zinc    | 7440-66-6  | 31.0 % | 0% - 20% | RPD exceeds LOR based limits |

### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                                              |             |                          |                    | Evaluation | : × = Holding time | breach ; 🗸 = Withi | in holding time. |
|-----------------------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|------------------|
| Method                                                    | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                  |
| Container / Client Sample ID(s)                           |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation       |
| EA055: Moisture Content (Dried @ 105-110°C)               |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EA055)<br>QC200-150623      | 15-Jun-2023 |                          |                    |            | 27-Jun-2023        | 29-Jun-2023        | 1                |
| EG005(ED093)T: Total Metals by ICP-AES                    |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EG005T)<br>QC200-150623     | 15-Jun-2023 | 27-Jun-2023              | 12-Dec-2023        | 1          | 28-Jun-2023        | 12-Dec-2023        | ~                |
| EG035T: Total Recoverable Mercury by FIMS                 |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EG035T)<br>QC200-150623     | 15-Jun-2023 | 27-Jun-2023              | 13-Jul-2023        | 1          | 29-Jun-2023        | 13-Jul-2023        | ✓                |
| EP068A: Organochlorine Pesticides (OC)                    |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP068)<br>QC200-150623      | 15-Jun-2023 | 26-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 05-Aug-2023        | ✓                |
| EP068B: Organophosphorus Pesticides (OP)                  |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP068)<br>QC200-150623      | 15-Jun-2023 | 26-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 05-Aug-2023        | ✓                |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons            |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>QC200-150623 | 15-Jun-2023 | 26-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 05-Aug-2023        | <b>√</b>         |
| EP080/071: Total Petroleum Hydrocarbons                   |             |                          |                    |            |                    |                    |                  |
| Soil Glass Jar - Unpreserved (EP071)<br>QC200-150623      | 15-Jun-2023 | 26-Jun-2023              | 29-Jun-2023        | 1          | 27-Jun-2023        | 05-Aug-2023        | ~                |
| Soil Glass Jar - Unpreserved (EP080)<br>QC200-150623      | 15-Jun-2023 | 27-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 29-Jun-2023        | ✓                |



| Matrix: SOIL                                                    |             |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|-----------------------------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|
| Method                                                          | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                                 |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP071)<br>QC200-150623            | 15-Jun-2023 | 26-Jun-2023              | 29-Jun-2023        | ~          | 27-Jun-2023        | 05-Aug-2023        | 1              |
| Soil Glass Jar - Unpreserved (EP080)<br>QC200-150623            | 15-Jun-2023 | 27-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 29-Jun-2023        | 1              |
| EP080: BTEXN                                                    |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP080)<br>QC200-150623            | 15-Jun-2023 | 27-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 29-Jun-2023        | ✓              |
| EP202A: Phenoxyacetic Acid Herbicides by LCMS                   |             |                          |                    |            |                    |                    |                |
| Soil Glass Jar - Unpreserved (EP202)<br>QC200-150623            | 15-Jun-2023 | 28-Jun-2023              | 29-Jun-2023        | 1          | 28-Jun-2023        | 07-Aug-2023        | ~              |



### **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                       |            |    | Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification . |        |          |            |                                |  |
|----------------------------------------------------|------------|----|---------------------------------------------------------------------------------------------------------------------------|--------|----------|------------|--------------------------------|--|
| Quality Control Sample Type                        |            | Co | ount                                                                                                                      |        | Rate (%) |            | Quality Control Specification  |  |
| Analytical Methods                                 | Method     | QC | Reaular                                                                                                                   | Actual | Expected | Evaluation |                                |  |
| Laboratory Duplicates (DUP)                        |            |    |                                                                                                                           |        |          |            |                                |  |
| Moisture Content                                   | EA055      | 2  | 18                                                                                                                        | 11.11  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| PAH/Phenols (SIM)                                  | EP075(SIM) | 1  | 8                                                                                                                         | 12.50  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Pesticides by GCMS                                 | EP068      | 1  | 5                                                                                                                         | 20.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Phenoxyacetic Acid Herbicides (LCMS - Standard DL) | EP202      | 2  | 11                                                                                                                        | 18.18  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Mercury by FIMS                              | EG035T     | 2  | 17                                                                                                                        | 11.76  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Metals by ICP-AES                            | EG005T     | 2  | 17                                                                                                                        | 11.76  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH - Semivolatile Fraction                        | EP071      | 1  | 6                                                                                                                         | 16.67  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH Volatiles/BTEX                                 | EP080      | 2  | 15                                                                                                                        | 13.33  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Laboratory Control Samples (LCS)                   |            |    |                                                                                                                           |        |          |            |                                |  |
| PAH/Phenols (SIM)                                  | EP075(SIM) | 1  | 8                                                                                                                         | 12.50  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Pesticides by GCMS                                 | EP068      | 1  | 5                                                                                                                         | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Phenoxyacetic Acid Herbicides (LCMS - Standard DL) | EP202      | 1  | 11                                                                                                                        | 9.09   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Mercury by FIMS                              | EG035T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Metals by ICP-AES                            | EG005T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH - Semivolatile Fraction                        | EP071      | 1  | 6                                                                                                                         | 16.67  | 5.00     | ~          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH Volatiles/BTEX                                 | EP080      | 1  | 15                                                                                                                        | 6.67   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Method Blanks (MB)                                 |            |    |                                                                                                                           |        |          |            |                                |  |
| PAH/Phenols (SIM)                                  | EP075(SIM) | 1  | 8                                                                                                                         | 12.50  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Pesticides by GCMS                                 | EP068      | 1  | 5                                                                                                                         | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Phenoxyacetic Acid Herbicides (LCMS - Standard DL) | EP202      | 1  | 11                                                                                                                        | 9.09   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Mercury by FIMS                              | EG035T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Metals by ICP-AES                            | EG005T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH - Semivolatile Fraction                        | EP071      | 1  | 6                                                                                                                         | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH Volatiles/BTEX                                 | EP080      | 1  | 15                                                                                                                        | 6.67   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Matrix Spikes (MS)                                 |            |    |                                                                                                                           |        |          |            |                                |  |
| PAH/Phenols (SIM)                                  | EP075(SIM) | 1  | 8                                                                                                                         | 12.50  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Pesticides by GCMS                                 | EP068      | 1  | 5                                                                                                                         | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Phenoxyacetic Acid Herbicides (LCMS - Standard DL) | EP202      | 1  | 11                                                                                                                        | 9.09   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Mercury by FIMS                              | EG035T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Total Metals by ICP-AES                            | EG005T     | 1  | 17                                                                                                                        | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH - Semivolatile Fraction                        | EP071      | 1  | 6                                                                                                                         | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| TRH Volatiles/BTEX                                 | EP080      | 1  | 15                                                                                                                        | 6.67   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                           | EA055      | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                                       |
| Total Metals by ICP-AES                                    | EG005T     | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)                                                                                     |
| Total Mercury by FIMS                                      | EG035T     | SOIL   | In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3) |
| Pesticides by GCMS                                         | EP068      | SOIL   | In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                   |
| TRH - Semivolatile Fraction                                | EP071      | SOIL   | In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                 |
| PAH/Phenols (SIM)                                          | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                          |
| TRH Volatiles/BTEX                                         | EP080      | SOIL   | In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.                                                                                                                                                                                                                                               |
| Phenoxyacetic Acid Herbicides (LCMS -<br>Standard DL)      | EP202      | SOIL   | In house: LCMS (Electrospray in negative mode). Residues of acid herbicides are extracted from soil samples under the alkaline condition. An aliquot of the alkaline aqueous phase is taken and acidified before a SPE cleanup. After eluting off from the SPE cartridge, residues of acid herbicides are dissolved in HPLC mobile phase prior to instrument analysis.                                                                                                            |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hot Block Digest for metals in soils sediments and sludges | EN69       | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).                                                                              |
| Extraction for Phenoxy Acid Herbicides in Soils.           | EP202-PR   | SOIL   | In-House: Alkaline extract followed by SPE clean up of acidified portion of the sample extract.                                                                                                                                                                                                                                                                                                                                                                                   |
| Methanolic Extraction of Soils for Purge and Trap          | ORG16      | SOIL   | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                                                                                 |

| Page       | : 6 of 6                                       |
|------------|------------------------------------------------|
| Work Order | : ES2320976                                    |
| Client     | : RAMBOLL AUSTRALIA PTY LTD                    |
| Project    | 2 318001679 Tarago Detailed Site Investigation |



| Preparation Methods          | Method | Matrix | Method Descriptions                                                                                                                                                                                                                            |
|------------------------------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tumbler Extraction of Solids | ORG17  | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis. |

APPENDIX 4 HAND AUGER LOGS

|                           | R     | A         | Μ            | B           | ช่า                      | L                                                                                                                                                                     |                                                | BOREHO                                                     | LE NUMBER HAU<br>PAGE 1 OF    |
|---------------------------|-------|-----------|--------------|-------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|-------------------------------|
| CLI                       | ENT   | - UG      | i Re         | aional      | l inx                    |                                                                                                                                                                       | PROJECT NAME Tar                               | ago Station Maste                                          | ers Cottage DSI               |
| PROJECT NUMBER _318001679 |       |           |              |             |                          |                                                                                                                                                                       | PROJECT LOCATION                               | Tarago, NSW                                                |                               |
| DAT                       | TE S  | TAR       | ΓED          | 15-6-       | 23                       | <b>COMPLETED</b> 15-6-23                                                                                                                                              | R.L. SURFACE                                   |                                                            | DATUM                         |
| DRI                       |       | NG CO     | ONTR         | ACTO        | R                        |                                                                                                                                                                       |                                                |                                                            | BEARING 90°                   |
| EQI                       | UIPI  | MENT      | На           | nd Au       | ger                      |                                                                                                                                                                       | HOLE LOCATION                                  |                                                            |                               |
| HOL                       | LES   | SIZE      | 150r         | nm          |                          |                                                                                                                                                                       | LOGGED BY JA/IM                                |                                                            | CHECKED BY KD                 |
|                           | TES   | So        | il weię      | ht pre      | asbes                    | stos sieving = 6.42 kg                                                                                                                                                |                                                |                                                            |                               |
| Method                    | Water | RL<br>(m) | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Desci                                                                                                                                                        | iption                                         | Samples<br>Tests<br>Remarks                                | Additional Observations       |
| HA                        |       |           | (m)          |             | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown,<br>grained, rootlets, grass on surface, minor qu<br>0.2 mbgl gravels (5-10 mm)<br>FILL: SAND, brown/light brown, dry, medium | dry, coarse to medium<br>artz gravels (1-2 mm) | SMC_HA01_0.0<br>Asbestos Bag,<br>QC100, QC200<br>PID = 0.6 | 5 No Observable Contamination |

REHOLE / TEST PIT TARAGO JA.GPJ GINT STD AUSTRALIA.GI

|          | R     | A           | Μ               | B             | ช่า                      | L                                                                                                                                                                                  |                                           | BOREHC                                                                              | PAGE 1 OF 1                 |  |  |
|----------|-------|-------------|-----------------|---------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|--|--|
| CL       | .IEN  | <b>Γ</b> υα | GL Re           | gional        | l Linx                   |                                                                                                                                                                                    | PROJECT NAME Tara                         | go Station Mast                                                                     | ers Cottage DSI             |  |  |
| PR       | ROJE  |             | JMBE            | <b>R</b> _3   | 180010                   | 679                                                                                                                                                                                | PROJECT LOCATION                          |                                                                                     |                             |  |  |
| DA       | TE :  | STAR        |                 | 15-6-         | 23                       | <b>COMPLETED</b> 15-6-23                                                                                                                                                           | R.L. SURFACE                              |                                                                                     | DATUM                       |  |  |
| DF       | RILLI | NG C        | ONTR            | АСТО          | R                        |                                                                                                                                                                                    | _ <b>SLOPE</b> _90°                       |                                                                                     | BEARING 90°                 |  |  |
| EC       | QUIP  | MENT        | Ha              | nd Au         | ger                      |                                                                                                                                                                                    |                                           |                                                                                     |                             |  |  |
|          |       | SIZE<br>So  | 150r<br>il weic | nm<br>aht pre | asbe                     | stos sievina = 6 66 ka                                                                                                                                                             | _ LOGGED BY _ JA/IM                       |                                                                                     |                             |  |  |
| <u> </u> |       |             |                 |               |                          |                                                                                                                                                                                    |                                           |                                                                                     |                             |  |  |
| Method   | Water | RL<br>(m)   | Depth<br>(m)    | Graphic Log   | Classificatior<br>Symbol | Material Descripti                                                                                                                                                                 | ion                                       | Samples<br>Tests<br>Remarks                                                         | Additional Observations     |  |  |
| HA       |       |             | -               |               | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown, dr<br>grained, rootlets, grass on surface, minor quart<br>FILL: CLAYEY SAND: brown/grey slightly mois<br>grained sands, consistent, loose | y, coarse to medium<br>z gravels (1-2 mm) | SMC_HA02_0.1<br>Asbestos Bac<br>PID = 0.6<br>SMC_HA02_0.1<br>PID = 0.0<br>PID = 0.0 | No Observable Contamination |  |  |
|          |       |             | 0.5             |               |                          |                                                                                                                                                                                    |                                           |                                                                                     |                             |  |  |
|          |       |             | -               |               |                          | borenoie FIAU2 terminated at U.5m as target de                                                                                                                                     | pur acmeved                               |                                                                                     |                             |  |  |

BOREHOLE / TEST PIT TARAGO JA.GPJ GINT STD AUSTRALIA.GDT 18-7-23

|              |                |            |            |                   |                          |                                                                                     |                                             |                                                                          | ana Chatlan Mar I                         | are Cetters DO                  |
|--------------|----------------|------------|------------|-------------------|--------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|---------------------------------|
| , LIE<br>νRΟ |                | JGL<br>NUM | Regi       | onal              | LINX<br>80016            | 579                                                                                 |                                             |                                                                          | ago Station Mast                          | ers Cottage DSI                 |
|              |                | DTE        |            | <u> </u>          | <u></u>                  |                                                                                     | 15.6.00                                     |                                                                          | Tulugo, Novi                              | DATUM                           |
|              | E 51A<br>1 ING |            |            | <u>-ю-</u><br>сто | 23<br>R                  |                                                                                     | 15-0-23                                     | _ R.L. SURFACE                                                           |                                           |                                 |
| EQU          |                | IT         | Hand       | d Auc             | ner                      |                                                                                     |                                             | HOLE LOCATION                                                            |                                           |                                 |
| HOL          | E SIZE         | 1          | 50mr       | n                 | ,                        |                                                                                     |                                             | LOGGED BY JA/IM                                                          |                                           | CHECKED BY KD                   |
| NOT          | ES _3          | soil w     | /eigh      | t pre             | asbes                    | stos sieving = 6.74 kg                                                              |                                             |                                                                          |                                           |                                 |
| Method       | Water<br>W)    | - De       | epth<br>m) | Graphic Log       | Classification<br>Symbol |                                                                                     | Material Descript                           | ion                                                                      | Samples<br>Tests<br>Remarks               | Additional Observations         |
| Ш            |                |            |            |                   | FILL                     | FILL: Gravelly SAND TOP<br>grained, rootlets, grass on<br>FILL: SAND, brown/light b | SOIL: dark brown, d<br>surface, minor quart | ry, coarse to medium<br>z gravels (1-2 mm)<br>rained, minor clay content | SMC_HA03_0.0<br>Asbestos Bag<br>PID = 0.6 | No Observable Contamination<br> |
|              |                |            |            |                   |                          |                                                                                     |                                             |                                                                          | SMC_HA03_0<br>PīD = 0.0                   | .5,                             |
|              |                |            | _          |                   |                          | Borehole HA03 terminated                                                            | d at 0.5m as target d                       | epth achieved                                                            |                                           |                                 |

| F               | RA           | Μ            | B           | ช่า                      | L                                                                                                                                                                                                 |                                                                 | BOREHO                                      | LE NUMBER HA04<br>PAGE 1 OF 1 |
|-----------------|--------------|--------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|-------------------------------|
| CLIEN           | ΙΤ υ         | GL Re        | giona       | l Linx                   |                                                                                                                                                                                                   | <b>PROJECT NAME</b> Tara                                        | igo Station Master                          | rs Cottage DSI                |
| PROJ            | ECT N        | UMBE         | <b>R</b> _3 | 180010                   | 679                                                                                                                                                                                               | PROJECT LOCATION                                                | -<br>Tarago, NSW                            |                               |
| DATE            | STAR         | TED          | 15-6-       | 23                       | <b>COMPLETED</b> 15-6-23                                                                                                                                                                          | R.L. SURFACE                                                    | D                                           |                               |
| DRILL           | ING C        | ONTR         | АСТО        | R                        |                                                                                                                                                                                                   | <b>SLOPE</b> 90°                                                | E                                           | BEARING 90°                   |
| EQUIF           | PMENT        | - <u>Ha</u>  | nd Au       | ger                      |                                                                                                                                                                                                   | HOLE LOCATION                                                   |                                             |                               |
| HOLE            | SIZE         | 150r         | nm          |                          |                                                                                                                                                                                                   | LOGGED BY JA/IM                                                 | C                                           | CHECKED BY KD                 |
| NOTE            | <b>S</b> _Sc | il weiq      | ght pre     | e asbe:                  | stos sieving = 11.61 kg                                                                                                                                                                           |                                                                 |                                             |                               |
| Method<br>Water | RL<br>(m)    | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Descriptio                                                                                                                                                                               | n                                                               | Samples<br>Tests<br>Remarks                 | Additional Observations       |
| НА              |              | _            |             | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown, dry<br>grained, rootlets, grass on surface, minor quartz<br>0.1 mbgl some glass fragments, orange clay cor                                               | /, coarse to medium<br>: gravels (1-2 mm)<br>ntent, moist       | SMC_HA04_0.05<br>Asbestos Bag,<br>PID = 0.1 | No Observable Contamination   |
|                 |              |              |             | FILL                     | FILL: CLAYEY SAND, dark brown, coarse grain<br>gravels (0.5-2 mm)                                                                                                                                 | ed sands, moist, minor                                          | SMC HA04 0.25                               | No Observable Contamination   |
|                 |              | 0.5          |             | NAT                      | FILL: SAND, pale brown, coarse-medium graine<br>SANDY CLAY: brown/grey with orange mottles,<br>mm), dry to slightly moist, low to moderate plast<br>Borehole HA04 terminated at 0.5m as target de | minor black gravels (1-2<br>icity, soft to firm<br>pth achieved | PID = 0.0                                   | No Observable Contamination   |

BOREHOLE / TEST PIT TARAGO JA.GPJ GINT STD AUSTRALIA.GDT 18-7-23

|   | F     | RA        | Μ            | B                 | ช่า                      | L                                                                                                 | I                                      | BOREHO                                                                                              | LE NUMBER HA05<br>PAGE 1 OF 1 |
|---|-------|-----------|--------------|-------------------|--------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|
|   | CLIEN | IT _UC    | GL Re        | gional            | Linx                     |                                                                                                   | PROJECT NAME                           | o Station Master                                                                                    | rs Cottage DSI                |
| l | PROJ  | ECT N     | UMBE         | <b>R</b> <u>3</u> | 180010                   | 679                                                                                               | PROJECT LOCATION _1                    | arago, NSW                                                                                          |                               |
| ľ | DATE  | STAR      | TED _        | 15-6-             | 23                       | <b>COMPLETED</b> <u>15-6-23</u>                                                                   | R.L. SURFACE                           | C                                                                                                   | DATUM                         |
| 1 | ORILL | ING C     | ONTR         | АСТО              | R                        |                                                                                                   | SLOPE 90°                              | E                                                                                                   | BEARING 90°                   |
| ľ |       | PMENT     | Hai          | nd Au             | ger                      |                                                                                                   |                                        |                                                                                                     |                               |
| ľ |       | SIZE      | 150r         | nm<br>Iht pre     | asha                     | stos sieving $-4.6$ kg                                                                            | LOGGED BY JA/IM                        | (                                                                                                   |                               |
| F |       | <u> </u>  |              | ni pre            | , aspe                   |                                                                                                   |                                        |                                                                                                     |                               |
|   | Water | RL<br>(m) | Depth<br>(m) | Graphic Log       | Classification<br>Symbol | Material Descriptic                                                                               | n                                      | Samples<br>Tests<br>Remarks                                                                         | Additional Observations       |
|   |       | (m)       | (ḿ)          |                   | FILL<br>NAT              | FILL: Gravelly SAND TOPSOIL, dark brown, dry<br>grained, rootlets, grass on surface, minor quartz | , coarse to medium<br>gravels (1-2 mm) | SMC_HA05_0.05   Asbestos Bag,   PID = 0.0   SMC_HA05_0.25,   PID = 0.0   SMC_HA05_0.25,   PID = 0.0 | No Observable Contamination   |
|   |       |           | _            |                   |                          |                                                                                                   |                                        |                                                                                                     |                               |

| CL<br>PR | IENT<br>OJE | т <u> </u> | GL Re        | gional<br><b>R</b> <u>3</u> | Linx<br>18001            | 679                                                                                        | PROJECT NAME _Ta                               | rago Station Mast<br>Tarago, NSW          | ers Cottage DSI                    |
|----------|-------------|------------|--------------|-----------------------------|--------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------|
| DA       | TE S        | STAR       | red _        | 15-6-                       | 23                       | <b>COMPLETED</b> 15-6-23                                                                   | R.L. SURFACE                                   |                                           | DATUM                              |
| DR       | ILLI        | NG CO      | ONTR         | АСТО                        | R                        |                                                                                            | SLOPE0°                                        |                                           | BEARING 90°                        |
| EQ       | UIP         |            | <u>Ha</u>    | nd Aug                      | ger                      |                                                                                            |                                                |                                           |                                    |
| но<br>NO | TES         | SIZE       | 150r         | nm<br>aht pre               | asbe                     | stos sievina = 4.67 ka                                                                     | LOGGED BYJA/IM                                 |                                           |                                    |
| Method   | Water       | RL<br>(m)  | Depth<br>(m) | Graphic Log                 | Classification<br>Symbol | Material Descri                                                                            | ption                                          | Samples<br>Tests<br>Remarks               | Additional Observations            |
| HA       |             |            | _            |                             | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown,<br>grained, rootlets, grass on surface, minor qua | dry, coarse to medium<br>rrtz gravels (1-2 mm) | SMC_HA06_0.0<br>Asbestos Bag<br>PID = 0.0 | No Observable Contamination<br>15, |
|          |             |            | _            |                             | FILL                     | FILL: SAND, dark grey, dry, coarse to mediu                                                | m grained, loose                               | SMC_HA06_0.2<br>PID = 0.0                 | No Observable Contamination        |
|          |             |            | _            |                             |                          | 0.3 mbgl becoming light grey                                                               | stracotta?)                                    | SMC_HA06_0.<br>PTD = 0.0                  | 5,                                 |
|          |             |            | 0.5          |                             |                          | 0.40 - 0.5 mbgi, naro rock gravels (possibly te                                            | erracolla?)                                    |                                           |                                    |
|          |             |            | -            |                             |                          |                                                                                            |                                                |                                           |                                    |

E 

|   | F     | RA        | Μ             | B           | ช่า                      | L                                                                                                                                                     |                                         | BOREHO                                                                 | LE NUMBER HA07<br>PAGE 1 OF 1 |
|---|-------|-----------|---------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------|
|   |       |           |               |             |                          |                                                                                                                                                       |                                         |                                                                        |                               |
|   | PROJ  | ECT N     | JL Re<br>UMBE | gional      | Linx<br>180016           | 679                                                                                                                                                   | PROJECT NAME <u>lara</u>                | go Station Master<br>Tarago NSW                                        | 's Cottage DSI                |
|   |       | STAR      |               | 15_6-       | 23                       | COMPLETED 15-6-23                                                                                                                                     |                                         |                                                                        |                               |
|   |       | LING C    |               |             | R                        |                                                                                                                                                       | SLOPE 90°                               | E                                                                      | BEARING 90°                   |
|   | EQUI  | PMENT     | Ha            | nd Au       | ger                      |                                                                                                                                                       |                                         |                                                                        |                               |
|   | HOLE  | SIZE      | 150r          | nm          |                          |                                                                                                                                                       | LOGGED BY JA/IM                         | c                                                                      | HECKED BY KD                  |
| 4 |       | S _So     | il weiq       | ght pre     | asbe:                    | stos sieving = 8.34 kg                                                                                                                                |                                         |                                                                        |                               |
|   | Water | RL<br>(m) | Depth<br>(m)  | Graphic Log | Classification<br>Symbol | Material Descriptio                                                                                                                                   | n                                       | Samples<br>Tests<br>Remarks                                            | Additional Observations       |
|   | HA    |           |               |             | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown, dry<br>grained, rootlets, grass on surface, minor quartz                                                     | /, coarse to medium<br>gravels (1-2 mm) | SMC_HA07_0.05,<br>Asbestos Bag,<br>PID = 0.0                           | No Observable Contamination   |
|   |       |           | 0.5           |             | FILL                     | FILL: Clayey SAND, dark brown, grey, slightly m<br>FILL: Sandy CLAY, light brown, moist, potentiall<br>Borehole HA07 terminated at 0.5m as target dep | noist, medium grained sands             | PID = 0.0<br>SMC_HA07_0.25,<br>PID = 0.0<br>SMC_HA07_0.5,<br>PID = 0.0 | No Observable Contamination   |
|   |       |           | -             |             |                          |                                                                                                                                                       |                                         |                                                                        |                               |

BOREHOLE / TEST PIT TARAGO JA.GPJ GINT STD AUSTRALIA.GDT 18-7-23

|        | R            | A                    | Μ                     | B                                 | ช่า                      | L                                                                                                                                                     |                                           | BOREHOI                                                                | E NUMBER HA08<br>PAGE 1 OF 1 |
|--------|--------------|----------------------|-----------------------|-----------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|------------------------------|
| C      | LIEN<br>ROJE | T <u>U(</u><br>ECT N | GL Re<br>U <b>MBE</b> | gional<br><b>R</b> 3 <sup>-</sup> | l <u>Linx</u><br>18001(  | 679                                                                                                                                                   | PROJECT NAME                              | go Station Master<br>Farago, NSW                                       | s Cottage DSI                |
|        |              | STAR                 | TED                   | 15-6-                             | 23                       | COMPLETED 15-6-23                                                                                                                                     |                                           |                                                                        | ΔΤΙΙΜ                        |
|        | RILLI        | ING C                |                       |                                   | R                        |                                                                                                                                                       | <b>SLOPE</b> 90°                          | B                                                                      | EARING 90°                   |
| E      | QUIP         | MENT                 | _ <u>Ha</u>           | nd Au                             | ger                      |                                                                                                                                                       |                                           |                                                                        |                              |
| н      | OLE          | SIZE                 | 150r                  | nm                                |                          |                                                                                                                                                       | LOGGED BY JA/IM                           | c                                                                      | HECKED BY KD                 |
| N      | OTES         | <u>S</u> So          | il weiq               | ght pre                           | e asbes                  | stos sieving = 9.07 kg                                                                                                                                |                                           |                                                                        |                              |
| Mathod | Water        | RL<br>(m)            | Depth<br>(m)          | Graphic Log                       | Classification<br>Symbol | Material Descriptio                                                                                                                                   | on                                        | Samples<br>Tests<br>Remarks                                            | Additional Observations      |
| Ч      |              |                      |                       |                                   | FILL                     | FILL: Gravelly SAND TOPSOIL, dark brown, dry<br>grained, rootlets, grass on surface, minor quartz                                                     | /, coarse to medium<br>: gravels (1-2 mm) | SMC_HA08_0.05,<br>Asbestos Bag,<br>PID = 0.0                           | No Observable Contamination  |
|        |              |                      |                       |                                   | FILL                     | FILL: Clayey SAND, dark brown, grey, slightly m<br>FILL: Sandy CLAY, light brown, moist, potentiall<br>Borehole HA08 terminated at 0.5m as target dep | pth achieved                              | PID = 0.0<br>SMC_HA08_0.25,<br>PID = 0.0<br>SMC_HA08_0.5,<br>PID = 0.0 | No Observable Contamination  |
|        |              |                      | _                     | -                                 |                          |                                                                                                                                                       |                                           |                                                                        |                              |

BOREHOLE / TEST PIT TARAGO JA.GPJ GINT STD AUSTRALIA.GDT 18-7-23

### APPENDIX 5 RESULT SUMMARY TABLES

**Client: UGL Regional Linx** 

|          |              |                |             |               |                |                         |         |         |              | BTEXN        |               |                                              |             |            |            |           | Ме                        | tals                       |                 |               |                            |                            |                |            | Poly              | /cyclic Ar            | omatic H                      | lydrocarl                                    | oons                      |                      |                      |          |
|----------|--------------|----------------|-------------|---------------|----------------|-------------------------|---------|---------|--------------|--------------|---------------|----------------------------------------------|-------------|------------|------------|-----------|---------------------------|----------------------------|-----------------|---------------|----------------------------|----------------------------|----------------|------------|-------------------|-----------------------|-------------------------------|----------------------------------------------|---------------------------|----------------------|----------------------|----------|
|          |              |                |             |               |                |                         | Benzene | Toluene | Ethylbenzene | ortho-Xylene | Total Xylenes | b<br>meta- & para-Xylene                     | Naphthalene | Arsenic    | Cadmium    | Chromium  | Copper                    | Lead                       | Mercury         | Nickel        | Zinc                       | Acenaphthene               | Acenaphthylene | Anthracene | Benz(a)anthracene | Benzo(a)pyrene        | Benzo(A)pyrene TEQ (half LOR) | Benzo(A)pyrene TEQ (LOR)                     | Benzo(a)pyrene TEQ (zero) | Benzo(g.h.i)perylene | Benzo(k)fluoranthene | Chrysene |
|          |              |                |             |               |                | LOR                     | 0.1     | 0.1     | 0.1          | 0.1          | 0.3           | 0.2                                          | 0.5         | 2          | 0.4        | 5         | 5                         | 5                          | 0.1             | 5             | 5                          | 0.5                        | 0.5            | 0.5        | 0.5               | 0.5                   | 0.5                           | 0.5                                          | 0.5                       | 0.5                  | 0.5                  | 0.5      |
|          |              |                |             |               | Act            | ion Levels              | піў/ку  | тіу/ку  | шу/ку        | тту/ку       | під/ку        | nig/kg                                       | піў/ку      | шу/ку      | піў/ку     | шу/ку     | шу/ку                     | шу/ку                      | шу/ку           | шу/ку         | шу/ку                      | тту/ку                     | тіу/ку         | тту/ку     | шу/ку             | пу/ку                 | піў/ку                        | шу/ку                                        | пу/ку                     | під/ку               | mg/kg                | піў/ку   |
|          |              |                |             | NEPM - H      |                | IAL (2013) <sup>1</sup> |         |         |              |              | ′             | <b>├</b> ───┦                                | ,I          | 100        | 20         | 100       | 6000                      | 300                        | 40              | 400           | 7400                       |                            |                |            |                   | <b>├</b> ─── <b>†</b> | Į                             | 3                                            | <b>┌───</b> ┥             | <sup> </sup>         | ·'                   |          |
|          |              |                | NEF         | PM - HIL D C  | OMM/INDUSTRI   | $(2013)^2$              |         |         |              |              |               | ++                                           | , <b></b>   | 3000       | 900        | 3600      | 240000                    | 1500                       | 730             | 6000          | 400000                     |                            |                |            |                   | <b>†</b>              | ,                             | 40                                           | <b>┌──</b> ┥              |                      |                      |          |
|          |              |                |             | NEPM - HS     | SL SOIL A/B SA | ND 0-<1M <sup>3</sup>   | 0.5     | 160     | 55           |              | []            |                                              | 3           |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       | ,                             |                                              |                           | []                   |                      | [        |
|          |              |                |             | NEPM -        | HSL SOIL D SA  | ND 0-<1M <sup>4</sup>   | 3       |         |              |              |               |                                              | ,i          |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       |                               |                                              |                           |                      |                      |          |
|          |              |                | NEPN        | 1 - EIL - RES | IDENTIAL V.CO  | NS (2013) <sup>5</sup>  |         |         |              |              | í'            |                                              | 170         | 100        |            | 190       | 95                        | 1100                       |                 | 30            | 70                         |                            |                |            |                   |                       | ·'                            | <u> </u>                                     |                           |                      |                      | Í        |
|          |              |                | NEPM        | - EIL - COM   | M/INDUST V.CO  | NS (2013) <sup>6</sup>  |         |         |              |              | <u> </u>      | <u> </u>                                     | 370         | 160        |            | 310       | 140                       | 1800                       |                 | 55            | 110                        |                            |                |            |                   |                       | ļļ                            | <u> </u>                                     |                           | ļ'                   | '                    | Ĺ        |
|          |              |                |             | NEPM ESL -    | - URB/RES/OS - | COARSE <sup>7</sup>     | 50      | 85      | 70           |              | 105           | <u> '</u>                                    | <u>ا</u>    |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   | 0.7                   | <u> </u>                      | <u>                                     </u> |                           | <b>└───</b> ′        | <u> </u>             | L        |
|          |              |                |             | NEPM ES       | L - COMM/IND - | COARSE                  | 75      | 135     | 165          |              | 180           | <u>                                     </u> | <u>ا</u>    |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   | 0.7                   | ا <u> </u>                    | <u>                                     </u> |                           | <b>└───</b> ′        | ļ'                   | L        |
|          |              |                |             | NEPM - H      | HSL A DIRECT C | CONTACT <sup>9</sup>    | 100     | 14000   | 4500         |              | 12000         | <u> </u>                                     | 1400        |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       | ا <b></b> ا                   | <u> </u>                                     |                           | <u> </u>             |                      | L        |
|          |              |                |             | NEPM - H      | SL D DIRECT C  | ONTACT <sup>10</sup>    | 430     | 99000   | 27000        |              | 81000         |                                              | 11000       |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       | <u>ا</u>                      | <u>                                     </u> |                           | 1'                   |                      | 1        |
| Sample   |              |                | Depth Range |               | Soil           | Sample                  |         |         |              |              | 1             |                                              | ,,          |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       | , ,                           |                                              |                           | 1                    |                      | 1        |
| Location | Date Sampled | Sample ID      | (m)         | Soil Type     | Consistency    | Туре                    |         |         |              |              | <b>└───</b> ′ | <u> </u> '                                   | <u>ا</u>    |            |            |           |                           |                            |                 |               |                            |                            |                |            |                   |                       | <u> </u>                      | <u>                                     </u> |                           | <b>↓</b> ′           | <u> </u>             | <b></b>  |
| SMC HA01 | 15/06/2023   | SMC-HA01-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 13         | 3.3        | 13        | 95                        | 330                        | < 0.1           | 5.6           | <b>490</b> <sup>5,6</sup>  | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2023   | SMC-HA01-0.25  | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 14         | 2.1        | 30        | 50                        | 140                        | < 0.1           | 9.1           | 530 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC_HA02 | 15/06/2023   |                | 0 - 0.05    | SAND          | COARSE         | N N                     | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 5.4        | <b>3.4</b> | 0.5<br>20 | /ð<br>20                  | 190                        | < 0.1           | < 5<br>12     | 490°,°                     | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2023   | SMC-HA03-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 68         | 31         | 87        | 65                        | 310                        | < 0.1           | < 5           | 41<br>640 <sup>5,6</sup>   | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.0                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC_HA03 | 15/06/2023   | SMC-HA03-0.25  | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 3          | < 0.4      | 8.8       | 7.7                       | 37                         | < 0.1           | < 5           | 040<br>150 <sup>5,6</sup>  | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2023   | SMC-HA04-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 17         | 4.7        | 14        | 160 <sup>5,6</sup>        | 690                        | 0.1             | 6.2           | 730 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC_HA04 | 15/06/2023   | SMC-HA04-0.5   | 0.4 - 0.5   | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 6.3        | < 0.4      | 19        | 8.6                       | 17                         | < 0.1           | 7.9           | 400 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC HADE | 15/06/2023   | SMC-HA05-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 36         | 7.8        | 11        | <b>330</b> <sup>5,6</sup> | 850                        | < 0.1           | < 5           | 960 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2023   | SMC-HA05-0.25  | 0.15 - 0.25 | SAND          | COARSE         | Ν                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 66         | < 0.4      | 11        | 8.5                       | 17                         | < 0.1           | < 5           | <b>200</b> <sup>5,6</sup>  | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC HA06 | 15/06/2023   | SMC-HA06-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 33         | 12         | 11        | <b>300</b> <sup>5,6</sup> | <b>1300</b> <sup>1,5</sup> | 0.2             | < 5           | <b>2000</b> <sup>5,6</sup> | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2023   | SMC-HA06-0.5   | 0.4 - 0.5   | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 2.8        | < 0.4      | 5.4       | 5.4                       | 22                         | < 0.1           | < 5           | 48                         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC HA07 | 15/06/2023   | SMC-HA07-0.05  | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 20         | 13         | 11        | <b>440</b> <sup>5,6</sup> | 1600 <sup>1,2,5</sup>      | 0.2             | < 5           | 1400 <sup>5,6</sup>        | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| _        | 15/06/2023   | SMC-HA07-0.25  | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 12         | 4.1        | 8.7       | 160°,°                    | 650                        | 0.1             | < 5           | 830 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
| SMC_HA08 | 15/06/2023   |                | 0 - 0.05    | SAND          | COARSE         | N N                     | < 0.1   | < 0.1   | < 0.1        | < 0.1        | < 0.3         | < 0.2                                        | < 0.5       | 7.9<br>2.5 | 1.8        | 16        | 40                        | 120                        | < 0.1           | 0.ð           | 360 <sup>5,6</sup>         | < 0.5                      | < 0.5          | < 0.5      | < 0.5             | < 0.5                 | 0.6                           | 1.2                                          | < 0.5                     | < 0.5                | < 0.5                | < 0.5    |
|          | 15/06/2025   | SIVIC-TAU0-0.3 | 0.4 - 0.5   | SAND          | COARSE         | IN                      | > 0.1   | < 0.1   | <u> </u>     | <u> </u>     | <u> </u>      | <u> </u>                                     | <u> </u>    | 3.5        | 1.9        | 12        | <b>~</b> 5                | 17                         | <u>&gt; 0.1</u> | <b>&gt;</b> 5 | 390-,-                     | <ul><li>&gt; 0.5</li></ul> | < 0.5          | < 0.5      | <b>~</b> 0.5      | <b>~</b> 0.5          | 0.0                           | 1.2                                          | <u> </u>                  | <u> </u>             | < 0.5                | <u> </u> |

Confidential

### Legend:

- Not analysed / not calculated

LOR – Limit of Recording

Sample Type: N - Primary, FD - Duplicate, FT - Triplicate mg/kg = milligrams per kilogram

EIL - V. Cons = very conservative as most sensitive conditions and NEPM criteria has been adopted for the purposes of characterisation

### Action Levels:

| <sup>1</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Natio |
|-------------------------------------------------------------------------------------------|
| <sup>2</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Natio |
| <sup>3</sup> National Environmental Protection Council (NEPC) 2013 Amen                   |
| <sup>4</sup> National Environmental Protection Council (NEPC) 2013 A                      |
| <sup>5</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Natio |
| <sup>6</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Natio |

<sup>7</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - Urban, Residential and Public Open Space tional Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - C/I ational Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact Exceeds two or more action levels - see superscripts for specific action levels

## RAMBOLL

nal Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'A' Residential

onal Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial

Iment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A/B for Soil Vapour Intrusion - Low-High Density Residential (Sand) nendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) D for Soil Vapour Intrusion - Commercial/Industrial (Sand) al Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential and public open space.

I Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Commercial/Industrial

Client: UGL Regional Linx

|          |              |               |             |               |                |                         |                       |              | Polycycl | lic Aroma              | tic Hydro    | carbons | <i>i</i>     |                        | T                  | otal Petro               | leum Hy            | drocarboi          | ns               | Tota                      | al Recov                                | erable F     | lydroca      | arbons N      | IEPM 2     | 013                       |          |               | Aci          | d Herbici         | des        |          |        |
|----------|--------------|---------------|-------------|---------------|----------------|-------------------------|-----------------------|--------------|----------|------------------------|--------------|---------|--------------|------------------------|--------------------|--------------------------|--------------------|--------------------|------------------|---------------------------|-----------------------------------------|--------------|--------------|---------------|------------|---------------------------|----------|---------------|--------------|-------------------|------------|----------|--------|
|          |              |               |             |               |                |                         | Dibenz(a.h)anthracene | Fluoranthene | Fluorene | Indeno(1.2.3.cd)pyrene | Phenanthrene | Pyrene  | Total PAH    | Benzo(b+j)fluoranthene | C10 - C14 Fraction | C10 - C36 Fraction (sum) | C15 - C28 Fraction | C29 - C36 Fraction | C6 - C9 Fraction | >C10 - C40 Fraction (sum) | >C10 - C16 Fraction (minus Naphthalene) | TRH >C10-C16 | TRH >C16-C34 | TRH >C34-C40  | TRH C6-C10 | TRH C6-C10 less BTEX (F1) | 2.4-D    | 2.4-DB        | 2.4.5-T      | 2.4.5-TP (Silvex) | loxynil    | Dicamba  | 2.4-DP |
|          |              |               |             |               |                | LOR                     | 0.5                   | 0.5          | 0.5      | 0.5                    | 0.5          | 0.5     | 0.5          | 0.5                    | 20                 | 50                       | 50                 | 50                 | 10               | 50                        | 50                                      | 50           | 100          | 100           | 10         | 10                        | 0.02     | 0.02          | 0.02         | 0.02              | 0.5        | 0.02     | 0.02   |
|          |              |               |             |               |                | Units                   | mg/kg                 | mg/kg        | mg/kg    | mg/kg                  | mg/kg        | mg/kg   | mg/kg        | mg/kg                  | mg/kg              | mg/kg                    | mg/kg              | mg/kg              | mg/kg            | mg/kg                     | mg/kg                                   | mg/kg        | mg/kg        | mg/kg         | mg/kg      | mg/kg                     | mg/kg    | mg/kg         | mg/kg        | mg/kg             | mg/kg      | mg/kg    | mg/kg  |
|          |              |               |             |               |                |                         |                       |              |          |                        |              | ]       | 200          |                        |                    |                          |                    |                    |                  |                           |                                         |              |              | ┝───┥         |            | <b> </b> '                | 000      | <b> '</b>     | 600          | ł                 | ]          | ──┤      | i      |
|          |              |               | NEE         |               |                | $(2013)^{2}$            |                       |              |          |                        |              |         | 4000         |                        |                    |                          |                    |                    |                  |                           |                                         |              |              | ┌───┤         |            | '                         | 900      | {'            | 5000         | ł                 | <b> </b>   | ┥───┥    | (      |
|          |              |               | NEF         | NEPM - H      | SI SOIL A/B SA | $ND 0.<1M^3$            |                       |              |          |                        |              |         | 4000         |                        |                    |                          |                    |                    |                  |                           | 110                                     |              |              | <b>┌───</b> ┤ | 45         | ·'                        | 3000     | '             | 3000         | ł                 | Į          | ┝───┦    | (      |
|          |              |               |             | NEPM -        | HSL SOIL D SA  | ND 0-<1M <sup>4</sup>   |                       |              |          |                        |              |         | <sup> </sup> |                        |                    |                          |                    |                    |                  |                           | 110                                     |              |              |               | 260        | 260                       | <u> </u> | <b>├</b> ───′ | <b>├</b> ──┤ | t                 |            | $\vdash$ | í ———  |
|          |              |               | NEPM        | I - EIL - RES | IDENTIAL V.CO  | ONS (2013) <sup>5</sup> |                       |              |          |                        |              |         |              |                        |                    |                          |                    |                    |                  |                           |                                         |              |              |               |            |                           |          |               |              | , <u> </u>        | ·          |          | í      |
|          |              |               | NEPM        | - EIL - COMI  | M/INDUST V.CO  | NS (2013) <sup>6</sup>  |                       |              |          |                        |              |         |              |                        |                    |                          |                    |                    |                  |                           |                                         |              |              |               |            |                           |          |               |              | , <u> </u>        | <b>†</b>   |          | í      |
|          |              |               | 1           | NEPM ESL      | - URB/RES/OS - | - COARSE <sup>7</sup>   |                       |              |          |                        |              |         |              |                        |                    |                          |                    |                    |                  |                           |                                         | 120          | 300          | 2800          | 180        | 1                         |          |               |              |                   | , <u> </u> |          | í      |
|          |              |               |             | NEPM ES       | L - COMM/IND - | - COARSE <sup>®</sup>   |                       |              |          |                        |              |         | [            |                        |                    |                          |                    |                    |                  |                           |                                         | 170          | 1700         | 3300          | 215        |                           |          |               |              |                   | , <u> </u> |          |        |
|          |              |               |             | NEPM - I      | HSL A DIRECT ( | CONTACT <sup>9</sup>    |                       |              |          |                        |              |         | [            |                        |                    |                          |                    |                    |                  |                           |                                         | 3300         | 4500         | 6300          | 4400       |                           |          |               |              |                   | , <u> </u> |          |        |
|          |              |               |             | NEPM - H      | SL D DIRECT C  | ONTACT <sup>10</sup>    |                       |              |          |                        |              | t       | [            |                        |                    |                          |                    |                    |                  |                           |                                         | 20000        | 27000        | 38000         | 26000      | 1                         |          |               |              | í T               | <b>†</b>   |          | í      |
| Sample   |              |               | Depth Range |               | Soil           | Sample                  |                       |              |          |                        |              |         |              |                        |                    |                          |                    |                    |                  |                           |                                         |              |              |               |            |                           |          |               |              | , <u> </u>        | ·          |          | í ———  |
| Location | Date Sampled | Sample ID     | (m)         | Soil Type     | Consistency    | Туре                    |                       |              |          |                        |              |         |              |                        |                    |                          |                    |                    |                  |                           |                                         |              |              |               |            | <u> </u>                  |          | '             |              |                   | ļ          |          | 1      |
| SMC HA01 | 15/06/2023   | SMC-HA01-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | < 0.5    | < 0.5         | < 0.5        | < 0.5             | < 0.5      | < 0.5    | < 0.5  |
|          | 15/06/2023   | SMC-HA01-0.25 | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | <u> </u>      | <u> </u>     |                   | !          | <u> </u> |        |
| SMC HA02 | 15/06/2023   | SMC-HA02-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | <u> </u>      | <u> </u>     |                   | ]          |          |        |
|          | 15/06/2023   | SMC-HA02-0.5  | 0.4 - 0.5   | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | -             | -            | -                 | -          | -        | -      |
| SMC_HA03 | 15/06/2023   | SMC-HA03-0.05 | 0 - 0.05    | SAND          | COARSE         | N N                     | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | < 0.5    | < 0.5         | < 0.5        | < 0.5             | < 0.5      | < 0.5    | < 0.5  |
|          | 15/06/2023   | SMC-HA04-0.05 | 0.13-0.23   | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | <u> </u> | <u> </u>      |              | ł                 |            |          |        |
| SMC_HA04 | 15/06/2023   | SMC-HA04-0.5  | 04-05       | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | '             | <u>├</u>     |                   |            |          |        |
|          | 15/06/2023   | SMC-HA05-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | < 0.5    | < 0.5         | < 0.5        | < 0.5             | < 0.5      | < 0.5    | < 0.5  |
| SMC_HA05 | 15/06/2023   | SMC-HA05-0.25 | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | -             |              | - 1               | -          | -        | -      |
|          | 15/06/2023   | SMC-HA06-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | -             | - 1          | - 1               | -          | - 1      | -      |
|          | 15/06/2023   | SMC-HA06-0.5  | 0.4 - 0.5   | SAND          | COARSE         | Ν                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | -             |              |                   |            |          |        |
| SMC HA07 | 15/06/2023   | SMC-HA07-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | < 0.5    | < 0.5         | < 0.5        | < 0.5             | < 0.5      | < 0.5    | < 0.5  |
|          | 15/06/2023   | SMC-HA07-0.25 | 0.15 - 0.25 | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      | -        | <u>  - '</u>  | <u> </u>     |                   | !          | <u> </u> |        |
| SMC HA08 | 15/06/2023   | SMC-HA08-0.05 | 0 - 0.05    | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | < 50                     | < 50               | < 50               | < 20             | < 100                     | < 50                                    | < 50         | < 100        | < 100         | < 20       | < 20                      |          | <u>↓ - '</u>  | <u>↓ - </u>  |                   |            | ↓        |        |
|          | 15/06/2023   | SMC-HA08-0.5  | 0.4 - 0.5   | SAND          | COARSE         | N                       | < 0.5                 | < 0.5        | < 0.5    | < 0.5                  | < 0.5        | < 0.5   | < 0.5        | < 0.5                  | < 20               | 100                      | < 50               | 100                | < 20             | 180                       | < 50                                    | < 50         | < 100        | 180           | < 20       | < 20                      | -        | <u> </u>      | <u> </u>     |                   |            | <u> </u> |        |

Confidential

Legend:

- Not analysed / not calculated

LOR – Limit of Recording

Sample Type: N - Primary, FD - Duplicate, FT - Triplicate mg/kg = milligrams per kilogram

mg/kg – miligrams per kilogra

EIL - V. Cons = very conservative as most sensitive conditions and NEPM criteria has been adopted for the purposes of characterisation

### Action Levels:

| <sup>1</sup> National Enviro  | nmental Protection (          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
|-------------------------------|-------------------------------|---------------|------------------|---------------|---------|
| <sup>2</sup> National Enviro  | nmental Protection (          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
|                               | <sup>3</sup> National Environ | mental Prote  | ction Council    | (NEPC) 2013   | Amen    |
|                               | <sup>4</sup> National Env     | /ironmental F | Protection Cou   | ncil (NEPC)   | 2013 A  |
| <sup>5</sup> National Enviro  | nmental Protection 0          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
| <sup>6</sup> National Enviro  | nmental Protection (          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
| <sup>7</sup> National Enviro  | nmental Protection (          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
| <sup>8</sup> National Enviro  | nmental Protection 0          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
| <sup>9</sup> National Enviro  | nmental Protection (          | Council (NEP  | C) 2013 Amen     | dment of the  | Natio   |
| <sup>10</sup> National Enviro | onmental Protection           | Council (NEF  | PC) 2013 Amer    | ndment of the | e Natio |
| Exceeds two or                | more action levels -          | see supersci  | ripts for specif | ic action lev | rels    |
|                               |                               |               |                  |               |         |



nal Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'A' Residential

nal Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial

dment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A/B for Soil Vapour Intrusion - Low-High Density Residential (Sand) Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) D for Soil Vapour Intrusion - Commercial/Industrial (Sand) nal Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential and public open space. nal Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential

onal Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - Urban, Residential and Public Open Space

hal Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - C/ I

nal Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

onal Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

Client: UGL Regional Linx

|          |              |               |             |               |                 | I                      |                            | Acı                                     | d Herbic | des        |          |                          |         |         |         |        |           |                  |          |                 | Organoc       | hlorine P | esticides | 6          |                    |        |                     |               |              |               |                    |                         |
|----------|--------------|---------------|-------------|---------------|-----------------|------------------------|----------------------------|-----------------------------------------|----------|------------|----------|--------------------------|---------|---------|---------|--------|-----------|------------------|----------|-----------------|---------------|-----------|-----------|------------|--------------------|--------|---------------------|---------------|--------------|---------------|--------------------|-------------------------|
|          |              |               |             |               |                 |                        | 4,6-DINITRO-2-METHYLPHENOL | Dinoseb (2,4-dinitro-6-sec-butylphenol) | MCPA     | MCPB       | Mecoprop | Chlordane (alpha +gamma) | 4.4-DDD | 4.4-DDE | 4.4-DDT | Aldrin | alpha-BHC | alpha-Endosulfan | beta-BHC | beta-Endosulfan | cis-Chlordane | delta-BHC | Dieldrin  | Endosulfan | Endosulfan sulfate | Endrin | Endrin aldehyde     | Endrin ketone | gamma-BHC    | Heptachlor    | Heptachlor epoxide | Hexachlorobenzene (HCB) |
|          |              |               |             |               |                 | LOR                    | 0.5                        | 0.5                                     | 0.02     | 0.02       | 0.02     | 0.05                     | 0.05    | 0.05    | 0.05    | 0.05   | 0.05      | 0.05             | 0.05     | 0.05            | 0.05          | 0.05      | 0.05      | 0.05       | 0.05               | 0.05   | 0.05                | 0.05          | 0.05         | 0.05          | 0.05               | 0.05                    |
|          |              |               |             |               |                 | Units                  | mg/kg                      | mg/kg                                   | mg/kg    | mg/kg      | mg/kg    | mg/kg                    | mg/kg   | mg/kg   | mg/kg   | mg/kg  | mg/kg     | mg/kg            | mg/kg    | mg/kg           | mg/kg         | mg/kg     | mg/kg     | mg/kg      | mg/kg              | mg/kg  | mg/kg               | mg/kg         | mg/kg        | mg/kg         | mg/kg              | mg/kg                   |
|          |              |               |             |               | Acti            | ion Levels             |                            |                                         |          |            |          |                          |         |         |         |        |           |                  |          |                 |               |           |           |            |                    |        |                     | <u> </u>      | <u> </u>     | <u> </u>      |                    |                         |
|          |              |               |             | NEPM - H      | IL A RESIDENTI/ | AL (2013) <sup>1</sup> |                            |                                         | 600      | 600        | 600      |                          |         |         |         |        |           |                  |          |                 |               |           |           | 270        |                    | 10     |                     | <b>└───</b> ′ | <u> </u>     | 6             | ļ'                 | 10                      |
|          |              |               | NE          | PM - HIL D C  | OMM/INDUSTRI/   | AL (2013) <sup>2</sup> |                            |                                         | 5000     | 5000       | 5000     |                          |         |         |         |        |           |                  |          |                 |               |           |           | 2000       |                    | 100    |                     | <b> '</b>     | <u> </u>     | 50            | <b> </b> '         | 80                      |
|          |              |               |             | NEPM - H      | SL SOIL A/B SAN | ND 0-<1M               |                            |                                         |          | <b></b> '  | <u> </u> | <u> </u>                 |         |         |         |        |           |                  |          |                 |               |           |           |            |                    |        | <b>ل</b> ـــــــــا | <b>↓</b> ′    | <b></b> '    | <b>↓</b> ′    | <b> </b> '         | 1                       |
|          |              |               |             | NEPM -        | HSL SOIL D SAN  | ND 0-<1M <sup>4</sup>  |                            |                                         |          | <b> </b> ' | <u> </u> |                          |         |         |         |        |           |                  |          |                 |               |           |           |            |                    |        |                     | <b>↓</b> ′    | <b></b> '    | <b>↓'</b>     | <b> </b> '         |                         |
|          |              |               | NEPI        | M - EIL - RES | IDENTIAL V.COM  | NS (2013)°             |                            |                                         |          | <b> </b> ' | <u> </u> |                          |         |         | 180     |        |           |                  |          |                 |               |           |           |            |                    |        | <b>└───</b> ┤       | <b> '</b>     | <b> '</b>    | <b>↓'</b>     | <b> </b> '         | <u> </u>                |
|          |              |               | NEPM        | - EIL - COM   | A/INDUST V.COM  | NS (2013)°             |                            |                                         |          | <b> </b> ' | <u> </u> | <u> </u>                 | '       |         | 640     |        |           |                  |          |                 |               |           |           |            |                    |        | <b>┌───</b> ┤       | <b>↓'</b>     | <b> </b> '   | └────′        | <b> </b> '         |                         |
|          |              |               |             | NEPM ESL -    | URB/RES/OS -    | COARSE'                |                            |                                         |          | <b> </b> ' |          | <u> </u>                 | '       |         |         |        |           |                  |          |                 |               |           |           |            |                    |        | <b>┌───</b> ┤       | <b>↓</b> ′    | <b> '</b>    | <b>↓</b> '    | <b> </b> '         | <b> </b>                |
|          |              |               |             | NEPMES        | L - COMM/IND -  | COARSE                 |                            |                                         |          | <b> </b> ' | <u> </u> | <u> </u>                 | '       |         |         |        |           |                  |          |                 |               |           |           |            |                    |        | <b>┌───</b> ┤       | <b>↓'</b>     | <b> </b> '   | └────′        | <b> </b> '         |                         |
|          |              |               |             | NEPM - F      | ISL A DIRECT C  | ONTACT                 |                            |                                         |          | <b></b> '  | <u> </u> | <u> </u>                 | '       |         |         |        |           |                  |          |                 |               |           |           |            |                    |        | µ]                  | <b>↓</b> ′    | <b></b> '    | <b>└───</b> ′ | <b> </b> '         |                         |
|          |              |               |             | NEPM - H      | SL D DIRECT C   | ONTACT <sup>10</sup>   |                            |                                         |          | <u> </u>   |          |                          |         |         |         |        |           |                  |          |                 |               |           |           |            |                    |        |                     | <u> </u>      | <u> </u>     | <u> </u>      | <u> </u>           |                         |
| Sample   |              |               | Depth Range |               | Soil            | Sample                 |                            |                                         |          | 1          |          |                          |         |         |         |        |           |                  |          |                 |               |           |           |            |                    |        | 1                   | 1             | 1            | 1             | 1                  |                         |
| Location | Date Sampled | Sample ID     | (m)         | Soil Type     | Consistency     | Туре                   |                            |                                         |          | Ĺ'         |          |                          | '       |         |         |        |           |                  |          |                 |               |           |           |            |                    |        |                     | <b>↓</b> ′    | Ĺ'           | <b>└───</b> ′ | <b></b> '          |                         |
| SMC HA01 | 15/06/2023   | SMC-HA01-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | < 0.5                      | < 0.5                                   | < 0.5    | < 0.5      | < 0.5    | < 0.1                    | < 0.05  | < 0.05  | < 0.05  | < 0.05 | < 0.05    | < 0.05           | < 0.05   | < 0.05          | -             | < 0.05    | < 0.05    | -          | < 0.05             | < 0.05 | 0.07                | < 0.05        | < 0.05       | < 0.05        | < 0.05             | < 0.05                  |
|          | 15/06/2023   | SMC-HA01-0.25 | 0.15 - 0.25 | SAND          | COARSE          | <u>N</u>               | -                          | -                                       | -        | <b>↓</b> ' |          |                          | - '     | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | -                   | <u>⊢−−</u> ′  | <u>↓ - '</u> | <u>⊢ - '</u>  | <b>└──</b> '       |                         |
| SMC_HA02 | 15/06/2023   | SMC-HA02-0.05 | 0 - 0.05    | SAND          | COARSE          |                        | -                          | -                                       | -        | <b>└──</b> |          |                          | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      |                     | <u>⊢ - '</u>  | <b>└──</b> ′ | <u>⊢ - '</u>  | - '                |                         |
|          | 15/06/2023   |               | 0.4-0.5     |               | COARSE          |                        | -                          | -                                       | -        | -          | -        |                          | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | -                   | -             | -            | -             | -                  | -                       |
| SMC_HA03 | 15/06/2023   | SMC-HA03-0.05 | 0.15 - 0.25 |               | COARSE          |                        | - 0.5                      | - 0.5                                   | - 0.5    | - 0.5      | - 0.5    |                          | - 0.05  | - 0.05  | - 0.05  | - 0.05 | - 0.05    | - 0.05           | - 0.05   | - 0.05          | -             | - 0.05    | - 0.05    | -          | < 0.05<br>-        | ~ 0.05 | ~ 0.05              |               | - 0.05       |               | - 0.05             | - 0.05                  |
|          | 15/06/2023   | SMC-HA04-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | -                          | -                                       | -        | <u> </u>   | -        |                          | -       | -       | _       | -      | -         | -                | -        | -               | -             | -         | _         |            | _                  |        | <del>_</del>        | - I           | <u> </u>     |               | -                  | <u> </u>                |
| SMC_HA04 | 15/06/2023   | SMC-HA04-0.5  | 0.4 - 0.5   | SAND          | COARSE          | N                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | <del> </del>        | -             | <u> </u>     |               | -                  | <u> </u>                |
|          | 15/06/2023   | SMC-HA05-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | < 0.5                      | < 0.5                                   | < 0.5    | < 0.5      | < 0.5    | < 0.1                    | < 0.05  | < 0.05  | < 0.05  | < 0.05 | < 0.05    | < 0.05           | < 0.05   | < 0.05          | -             | < 0.05    | < 0.05    | -          | < 0.05             | < 0.05 | < 0.05              | < 0.05        | < 0.05       | < 0.05        | < 0.05             | < 0.05                  |
| SMC_HA05 | 15/06/2023   | SMC-HA05-0.25 | 0.15 - 0.25 | SAND          | COARSE          | N                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | <u> </u>            | -             | -            | -             | -                  | -                       |
| SMC HAOG | 15/06/2023   | SMC-HA06-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | †                   | -             | -            | -             | -                  | -                       |
|          | 15/06/2023   | SMC-HA06-0.5  | 0.4 - 0.5   | SAND          | COARSE          | N                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  |        |                     | -             | <u> </u>     | -             | -                  | -                       |
| SMC HAOZ | 15/06/2023   | SMC-HA07-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | < 0.5                      | < 0.5                                   | < 0.5    | < 0.5      | < 0.5    | < 0.1                    | < 0.05  | < 0.05  | < 0.05  | < 0.05 | < 0.05    | < 0.05           | < 0.05   | < 0.05          | -             | < 0.05    | < 0.05    | -          | < 0.05             | < 0.05 | < 0.05              | < 0.05        | < 0.05       | < 0.05        | < 0.05             | < 0.05                  |
|          | 15/06/2023   | SMC-HA07-0.25 | 0.15 - 0.25 | SAND          | COARSE          | Ν                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | ]                   | -             | -            |               | -                  | -                       |
| SMC HAD8 | 15/06/2023   | SMC-HA08-0.05 | 0 - 0.05    | SAND          | COARSE          | N                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  |        |                     | <u> </u>      |              | <u> </u>      | <u> </u>           | -                       |
|          | 15/06/2023   | SMC-HA08-0.5  | 0.4 - 0.5   | SAND          | COARSE          | Ν                      | -                          | -                                       | -        | -          | -        | -                        | -       | -       | -       | -      | -         | -                | -        | -               | -             | -         | -         | -          | -                  | -      | <u> </u>            | <u> </u>      | <u> </u>     | <u> </u>      | <u> </u>           | -                       |

Confidential

Legend:

- Not analysed / not calculated

LOR – Limit of Recording

Sample Type: N - Primary, FD - Duplicate, FT - Triplicate

mg/kg = milligrams per kilogram

EIL - V. Cons = very conservative as most sensitive conditions and NEPM criteria has been adopted for the purposes of characterisation

### Action Levels:

| <sup>1</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendmental |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>2</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendmental |
| <sup>3</sup> National Environmental Protection Council (NEPC) 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>4</sup> National Environmental Protection Council (NEPC) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <sup>5</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>6</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendmental  |
| <sup>7</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendment P |
| <sup>8</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>9</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendmental Protecti Protection Council (NEPC) 2013 Amendmental Protection Co |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# RAMBOLL

tional Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'A' Residential

ational Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial

Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A/B for Soil Vapour Intrusion - Low-High Density Residential (Sand) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) D for Soil Vapour Intrusion - Commercial/Industrial (Sand) ational Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential and public open space.

onal Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Commercial/Industrial

ational Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - Urban, Residential and Public Open Space

tional Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - C/ I

tional Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

<sup>10</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

Client: UGL Regional Linx

|          |              |               |             |                                                                                                          |                                                                                                                           |                                                                                                                                                                                           |                                              |                                               | Organoc                         | hlorine P                              | esticide                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 0          | ganopho                        | osphorus     | Pesticid | es                  |            |                            |                                                                                                                                  |               |              |                                       |              |
|----------|--------------|---------------|-------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|---------------|---------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------------------------|--------------|----------|---------------------|------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------------------------------|--------------|
|          |              |               | NEP<br>NEPM | NEPM - H<br>PM - HIL D C<br>NEPM - H<br>NEPM - H<br>NEPM - H<br>S - EIL - RES<br>- EIL - COM<br>NEPM ESL | Ac<br>IIL A RESIDENT<br>COMM/INDUSTR<br>SL SOIL A/B SA<br>HSL SOIL D SA<br>IDENTIAL V.CO<br>M/INDUST V.CO<br>- URB/RES/OS | LOR<br>Units<br>tion Levels<br>IAL (2013) <sup>2</sup><br>AND 0-<1M <sup>3</sup><br>AND 0-<1M <sup>5</sup><br>ONS (2013) <sup>5</sup><br>ONS (2013) <sup>5</sup><br>- COARSE <sup>2</sup> | Line 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) ( | DDDE/DDE/DDD<br>0.05<br>mg/kg<br>240<br>36000 | Chlordane<br>Chlordane<br>mg/kg | eueueueueueueueueueueueueueueueueueueu | 0.05<br>mg/kg<br>6<br>45 | Bay/6m<br>bay/6m<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>bay/20<br>ba | by/bit cepa IWRG 621 Other OCP (Total)* | O.2<br>mg/kg | 0.05<br>mg/kg | 0.05<br>mg/kg | Carbophenothion | Chlorfenvinphos | Source Chloriby Constraints of the second se | Chlorpyrifos-methyl | 2<br>mg/kg | O-uo-Demetou-O<br>D.2<br>mg/kg | O.2<br>mg/kg | Diazinon | Dichlorvos<br>mg/kg | Dimethoate | Disulfoton<br>0.2<br>mg/kg | <b>N</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b> | D.05<br>mg/kg | 0.2<br>mg/kg | Eenamiphos                            | 0.2<br>mg/kg |
|          |              |               |             | NEPM ES                                                                                                  | L - COMM/IND                                                                                                              | - COARSE                                                                                                                                                                                  | 3                                            |                                               |                                 |                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | <b> </b>                                                                                                                         |               | <u> </u>     | '                                     | 1            |
|          |              |               |             | NEPM -                                                                                                   | HSL A DIRECT                                                                                                              | CONTACT <sup>®</sup>                                                                                                                                                                      | •                                            |                                               |                                 |                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | ļ                                                                                                                                |               |              |                                       |              |
|          |              |               |             | NEPM - H                                                                                                 | ISL D DIRECT C                                                                                                            |                                                                                                                                                                                           | 0                                            |                                               |                                 |                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | · · · · ·                                                                                                                        |               |              |                                       |              |
| Sample   |              |               | Depth Range |                                                                                                          | Soil                                                                                                                      | Sample                                                                                                                                                                                    |                                              |                                               |                                 |                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | · · · · ·                                                                                                                        |               |              |                                       |              |
| Location | Date Sampled | Sample ID     | (m)         | Soil Type                                                                                                | Consistency                                                                                                               | Туре                                                                                                                                                                                      |                                              |                                               |                                 |                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               |               |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | <b>↓'</b>                                                                                                                        | <b></b> '     | <b></b> '    | <b> </b> '                            | ļ            |
| SMC HA01 | 15/06/2023   | SMC-HA01-0.05 | 0 - 0.05    | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | < 0.05                                       | < 0.05                                        | -                               | < 0.5                                  | < 0.05                   | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.1                                   | < 0.2        | < 0.2         | -             | -               | < 0.2           | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.2               | < 2        | < 0.2                          | < 0.2        | < 0.2    | < 0.2               | < 0.2      | < 0.2                      | < 0.2                                                                                                                            | < 0.2         | < 0.2        | <u>  -</u> '                          | < 0.2        |
| _        | 15/06/2023   | SMC-HA01-0.25 | 0.15 - 0.25 | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | <u> </u>                                                                                                                         | <b>└──</b> ′  |              | - '                                   |              |
| SMC_HA02 | 15/06/2023   | SMC-HA02-0.05 | 0 4 - 0.5   | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          |                                                                                                                                  | <u> </u>      | -            | -                                     | -            |
|          | 15/06/2023   | SMC-HA03-0.05 | 0 - 0.05    | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | < 0.05                                       | < 0.05                                        | -                               | < 0.5                                  | < 0.05                   | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.1                                   | < 0.2        | < 0.2         | -             | -               | < 0.2           | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.2               | < 2        | < 0.2                          | < 0.2        | < 0.2    | < 0.2               | < 0.2      | < 0.2                      | < 0.2                                                                                                                            | < 0.2         | < 0.2        | -                                     | < 0.2        |
| SMC_HA03 | 15/06/2023   | SMC-HA03-0.25 | 0.15 - 0.25 | SAND                                                                                                     | COARSE                                                                                                                    | Ν                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | - '                                                                                                                              | -             | -            | -                                     | -            |
| SMC HA04 | 15/06/2023   | SMC-HA04-0.05 | 0 - 0.05    | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | !                                                                                                                                | - '           | -            | -                                     | -            |
|          | 15/06/2023   | SMC-HA04-0.5  | 0.4 - 0.5   | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | -                                                                                                                                | -             | -            |                                       | -            |
| SMC_HA05 | 15/06/2023   | SMC-HA05-0.25 | 0.15 - 0.25 | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | - 0.05                                       |                                               | -                               | - 0.5                                  | - 0.05                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | - 0.2        | - 0.2         | -             | -               | - 0.2           | - 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0.2               | -          | - 0.2                          | - 0.2        | - 0.2    | - 0.2               | - 0.2      | - 0.2                      | - 0.2                                                                                                                            | - 0.2         | - 0.2        | -                                     | - 0.2        |
| SMC HADE | 15/06/2023   | SMC-HA06-0.05 | 0 - 0.05    | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         |                                              | -                                             | -                               |                                        | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |              |               | -             | -               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | -          | -                              | -            | -        |                     |            | -                          |                                                                                                                                  | <u> </u>      | -            |                                       |              |
|          | 15/06/2023   | SMC-HA06-0.5  | 0.4 - 0.5   | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | <u> </u>                                                                                                                         | <u> </u>      | -            |                                       | -            |
| SMC HA07 | 15/06/2023   | SMC-HA07-0.05 | 0 - 0.05    | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | < 0.05                                       | < 0.05                                        | -                               | < 0.5                                  | < 0.05                   | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.1                                   | < 0.2        | < 0.2         | -             | -               | < 0.2           | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.2               | < 2        | < 0.2                          | < 0.2        | < 0.2    | < 0.2               | < 0.2      | < 0.2                      | < 0.2                                                                                                                            | < 0.2         | < 0.2        | <u> </u>                              | < 0.2        |
|          | 15/06/2023   | SMC-HA07-0.25 | 0.15 - 0.25 | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          | <u> </u>                                                                                                                         | <u> </u>      | <u>↓ -</u>   | - '                                   | <u>↓ -</u>   |
| SMC_HA08 | 15/06/2023   | SMC-HA08-0.05 | 04-05       | SAND                                                                                                     | COARSE                                                                                                                    | N                                                                                                                                                                                         | -                                            | -                                             | -                               | -                                      | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                       | -            | -             | -             | -               | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | -          | -                              | -            | -        | -                   | -          | -                          |                                                                                                                                  |               | <u> </u>     | -                                     | <u> </u>     |
| L        | 10,00/2020   |               | 0.1 0.0     | 0/110                                                                                                    |                                                                                                                           |                                                                                                                                                                                           |                                              | 1                                             | I                               | 1                                      | L                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                       | <u> </u>     | 1             | 1             |                 | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |            |                                |              |          |                     |            |                            | <u>'</u> '                                                                                                                       | <u>'</u> '    | · '          | 'ــــــــــــــــــــــــــــــــــــ | 1            |

Confidential

Legend:

- Not analysed / not calculated

LOR – Limit of Recording

Sample Type: N - Primary, FD - Duplicate, FT - Triplicate

mg/kg = milligrams per kilogram

EIL - V. Cons = very conservative as most sensitive conditions and NEPM criteria has been adopted for the purposes of characterisation

### Action Levels:

| <sup>1</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendmental |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>2</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendmental |
| <sup>3</sup> National Environmental Protection Council (NEPC) 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>4</sup> National Environmental Protection Council (NEPC) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <sup>5</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendmental |
| <sup>6</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Env |
| <sup>7</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protecti (NEPC) 2013 Amendment P |
| <sup>8</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>9</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Protection Council (NEPC) 2013 Amendment of the National Environmental Prot |

# RAMBOLL

tional Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'A' Residential

ational Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial

Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A/B for Soil Vapour Intrusion - Low-High Density Residential (Sand) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) D for Soil Vapour Intrusion - Commercial/Industrial (Sand) ational Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential and public open space.

onal Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Commercial/Industrial

ational Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - Urban, Residential and Public Open Space

tional Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a)pyrene in soil - C/ I

tional Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

<sup>10</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact

Client: UGL Regional Linx

|          |              |               |             |            |                |                        |               |          |           |                      |               |                         |                  |                         | Organ           | ophosph    | orus Pes | ticides       |           |                         |                         |          |                         |                         |                                               |                         |
|----------|--------------|---------------|-------------|------------|----------------|------------------------|---------------|----------|-----------|----------------------|---------------|-------------------------|------------------|-------------------------|-----------------|------------|----------|---------------|-----------|-------------------------|-------------------------|----------|-------------------------|-------------------------|-----------------------------------------------|-------------------------|
|          |              |               |             |            |                |                        | Fensulfothion | Fenthion | Malathion | Mevinphos (Phosdrin) | Monocrotophos | Parathion               | Parathion-methyl | Phorate                 | Pirimphos-ethyl | Prothiofos | Ronnel   | Trichloronate | Omethoate | Pirimiphos-methyl       | Pyrazophos              | Terbufos | Tetrachlorvinphos       | Prothiophos (Tokuthion) | Merphos                                       | Bolstar (Sulprofos)     |
|          |              |               |             |            |                | LOR                    | 0.2           | 0.05     | 0.05      | 0.2                  | 0.2           | 0.2                     | 0.2              | 0.2                     | 0.05            | 0.05       | 0.2      | 0.2           | 2         | 0.2                     | 0.2                     | 0.2      | 0.2                     | 0.2                     | 0.2                                           | 0.2                     |
|          |              |               |             |            | Act            | Units                  | mg/kg         | mg/kg    | mg/kg     | mg/kg                | mg/kg         | mg/kg                   | mg/kg            | mg/kg                   | mg/kg           | mg/kg      | mg/kg    | mg/kg         | mg/kg     | mg/kg                   | mg/kg                   | mg/kg    | mg/kg                   | mg/kg                   | mg/kg                                         | mg/kg                   |
|          |              |               |             |            |                |                        |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u> '              | └───┘                                         |                         |
|          |              |               | NET         |            |                | AL $(2013)^2$          |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <b> </b> '              | ───┦                                          |                         |
|          |              |               | NER         |            |                | AL $(2013)^{-1}$       |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u> '              | ────┦                                         |                         |
|          |              |               |             |            |                |                        |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | '                       | ───┦                                          |                         |
|          |              |               | NEDA        |            |                | NS (2013) <sup>5</sup> |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         |                         |                                               | l                       |
|          |              |               | NEPM        |            | MINDUST V CO   | $NS(2013)^6$           |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         |                         | <b>├</b> ───┦                                 | <b> </b>                |
|          |              |               |             | NEPM ESL - | URB/RES/OS -   | COARSE <sup>7</sup>    |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u>                |                                               |                         |
|          |              |               |             | NEPM ES    | L - COMM/IND - | COARSE <sup>8</sup>    |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u>                |                                               |                         |
|          |              |               |             |            |                | ONTACT <sup>9</sup>    |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u>                |                                               |                         |
|          |              |               |             |            |                |                        |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         |                         | ┝───┦                                         | <b> </b>                |
| Sample   |              |               | Depth Range |            |                |                        |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         | <u> </u> '              | ────┦                                         |                         |
| Location | Date Sampled | Sample ID     | (m)         | Soil Type  | Consistency    | Type                   |               |          |           |                      |               |                         |                  |                         |                 |            |          |               |           |                         |                         |          |                         |                         |                                               |                         |
| Location | 15/06/2023   | SMC-HA01-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | < 0.2         | < 0.2    | < 0.2     | < 0.2                | < 2           | < 0.2                   | < 0.2            | < 0.2                   | -               | -          | < 0.2    | < 0.2         | < 2       | < 0.2                   | < 0.2                   | < 0.2    | < 0.2                   | < 0.2                   | < 0.2                                         | < 0.2                   |
| SMC_HA01 | 15/06/2023   | SMC-HA01-0.25 | 0.15 - 0.25 | SAND       | COARSE         | N                      | -             |          | -         | -                    | -             |                         |                  | -                       | -               | -          |          | -             | -         | -                       | -                       | -        | -                       | -                       |                                               |                         |
|          | 15/06/2023   | SMC-HA02-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | -                       | -                                             | -                       |
| SMC_HA02 | 15/06/2023   | SMC-HA02-0.5  | 0.4 - 0.5   | SAND       | COARSE         | Ν                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | -                       | -                                             | -                       |
|          | 15/06/2023   | SMC-HA03-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | < 0.2         | < 0.2    | < 0.2     | < 0.2                | < 2           | < 0.2                   | < 0.2            | < 0.2                   | -               | -          | < 0.2    | < 0.2         | < 2       | < 0.2                   | < 0.2                   | < 0.2    | < 0.2                   | < 0.2                   | < 0.2                                         | < 0.2                   |
|          | 15/06/2023   | SMC-HA03-0.25 | 0.15 - 0.25 | SAND       | COARSE         | Ν                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | -                       | -                                             | -                       |
| SMC HA04 | 15/06/2023   | SMC-HA04-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | - '                     | <u> </u>                                      | -                       |
|          | 15/06/2023   | SMC-HA04-0.5  | 0.4 - 0.5   | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | -                       |                                               | -                       |
| SMC HA05 | 15/06/2023   | SMC-HA05-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | < 0.2         | < 0.2    | < 0.2     | < 0.2                | < 2           | < 0.2                   | < 0.2            | < 0.2                   | -               | -          | < 0.2    | < 0.2         | < 2       | < 0.2                   | < 0.2                   | < 0.2    | < 0.2                   | < 0.2                   | < 0.2                                         | < 0.2                   |
|          | 15/06/2023   | SMC-HA05-0.25 | 0.15 - 0.25 | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | <b>└──</b> ′            | <u>↓ - </u> /                                 | -                       |
| SMC_HA06 | 15/06/2023   | SMC-HA06-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | <b>└──</b>              | <b>└───</b> ┘                                 |                         |
|          | 15/06/2023   |               | 0.4 - 0.5   | SAND       | COARSE         | IN<br>NI               | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | -                       | -                       | -        | -                       | -                       | -                                             | -                       |
| SMC_HA07 | 15/06/2023   | SMC-HA07-0.05 | 0 - 0.05    | SAND       |                | IN<br>NI               | < 0.Z         | < 0.Z    | <u> </u>  | < 0.2                | ~ 2           | <ul><li>► 0.2</li></ul> | < 0.Z            | <ul><li>► 0.2</li></ul> | -               | -          | <u> </u> | <u> </u>      | ~ 2       | <ul><li>► 0.2</li></ul> | <ul><li>► 0.2</li></ul> | <u> </u> | <ul><li>▼ 0.2</li></ul> | <u> </u>                | <u> </u>                                      | <ul><li>► 0.2</li></ul> |
|          | 15/06/2023   | SMC-HA08-0.05 | 0 - 0.05    | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | -                       | -                | -                       | -               | -          | -        | -             | -         | _                       | -                       | -        | -                       | -                       | <u>⊢</u> /                                    |                         |
| SMC_HA08 | 15/06/2023   | SMC-HA08-0.5  | 0.4 - 0.5   | SAND       | COARSE         | N                      | -             | -        | -         | -                    | -             | _                       | -                | _                       |                 |            | _        |               | -         | _                       | _                       | _        |                         | <u> </u>                | <u>}</u>                                      | -                       |
|          |              | 3             | 0.0         |            |                |                        | 1             | 1        |           | 1                    |               | 1                       | 1                |                         |                 |            |          |               |           |                         |                         |          |                         | ·                       | <u>'</u> ــــــــــــــــــــــــــــــــــــ |                         |

Legend:

- Not analysed / not calculated

LOR – Limit of Recording

Sample Type: N - Primary, FD - Duplicate, FT - Triplicate

mg/kg = milligrams per kilogram

EIL - V. Cons = very conservative as most sensitive conditions and NEPM criteria has been adopted for the purposes of characterisation

### Action Levels:

| <sup>1</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
|-----------------------------------------------------------------------------------------|
| <sup>2</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
| <sup>3</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
| <sup>4</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
| <sup>5</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
| <sup>6</sup> National Environmental Protection Council (NEPC) 2013 Amendment of the Nat |
|                                                                                         |

Confidential

<sup>0</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact Exceeds two or more action levels - see superscripts for specific action levels

## RAMBOLL

tional Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'A' Residential

tional Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial

tional Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A/B for Soil Vapour Intrusion - Low-High Density Residential (Sand)

tional Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) D for Soil Vapour Intrusion - Commercial/Industrial (Sand)

tional Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Urban residential and public open space. onal Enviromental Protection Measure (NEPM) 1999. Soil Ecological Investigation Levels (EIL) - Commercial/In

<sup>7</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - Urban, Residential and Public Open Space

ational Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Ecological Screening Levels (ESL) for TPH Fractions F1 - F4, BTEX and Benzo(a) pyrene in soil - C/ I

National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Soil Health Screening Levels (HSL) A for Direct Contact



Table 2: Soil Analytical Results - Asbestos Sample Date - 2023-06-15 Location ID: Tarago, NSW Client: UGL Regional Linx

| Sample Location        | Date<br>Sampled | Sample ID     | Depth Range<br>(m) | Soil Type                       | Soil Consistency | Sample Type | Bulk<br>Sample | Sample<br>Volume # | ACM on<br>Surface | ACM in Bulk<br>Sample | Volume of subsample^ | Absestos<br>Fines (AF) | Fibrous<br>Asbestos (FA) | Presence of<br>Respirable<br>Asbestos<br>Fibres? | Presence of<br>other<br>Fibres? | Total AF/FA | Percentage<br>ACM (bonded<br>asbestos) | Percentage<br>FA/AF (friable<br>asbestos) |
|------------------------|-----------------|---------------|--------------------|---------------------------------|------------------|-------------|----------------|--------------------|-------------------|-----------------------|----------------------|------------------------|--------------------------|--------------------------------------------------|---------------------------------|-------------|----------------------------------------|-------------------------------------------|
|                        |                 |               |                    |                                 |                  | LOR         | 0.01           | 0.1                |                   |                       | 1                    | 0.0001                 | 0.0001                   |                                                  |                                 | 0.0001      |                                        |                                           |
| Units                  |                 |               |                    |                                 |                  |             |                | L                  | -                 | g                     | g                    | g                      | g                        |                                                  |                                 | g           | % w/w                                  | % w/w                                     |
| Action Levels          |                 |               |                    |                                 |                  |             |                |                    |                   |                       |                      |                        |                          |                                                  |                                 |             |                                        |                                           |
|                        |                 |               | None visible       |                                 |                  |             |                |                    |                   |                       | 0.05                 | 0.001                  |                          |                                                  |                                 |             |                                        |                                           |
|                        | 15/06/2023      | SMC-HA01-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand topsoil    | COARSE GRAINED   | Ν           | 6.42           | 10.6               | ND                | ND                    | 358                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
|                        | 15/06/2023      | SMC-HA02-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | Ν           | 6.66           | 11.0               | ND                | ND                    | 171                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
|                        | 15/06/2023      | SMC-HA03-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand topsoil    | COARSE GRAINED   | Ν           | 6.74           | 11.1               | ND                | ND                    | 384                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
| Tarago Station Masters | 15/06/2023      | SMC-HA04-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | Ν           | 11.61          | 19.2               | ND                | ND                    | 493                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
| Cottage                | 15/06/2023      | SMC-HA05-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | N           | 4.6            | 7.6                | ND                | ND                    | 356                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
|                        | 15/06/2023      | SMC-HA06-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | Ν           | 4.67           | 7.7                | ND                | ND                    | 325                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
|                        | 15/06/2023      | SMC-HA07-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | N           | 8.34           | 13.8               | ND                | ND                    | 361                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |
|                        | 15/06/2023      | SMC-HA08-0.05 | 0.0 - 0.05         | Fill - Gravelly Sand<br>topsoil | COARSE GRAINED   | N           | 9.07           | 15.0               | ND                | ND                    | 478                  | ND                     | ND                       | NA                                               | Y - OF                          | ND          | 0.00                                   | 0.000                                     |

Legend:

- Not analysed / not calculated ND - Not Detected (laboratory or field) Sample Type: N - Primary % = percent w/w = weight for weight Y - Yes/ N - No

LOR – Limit of Recording

# Soil Density of 1.65 kg/L has been used for calculations based on the gravelly sand material encountered. ^ Subsample weight refers to the fines which were provided to the laboratory

\* Indicates NATA accreditation does not cover the performance of this service **BOLD** indicates non-conformance

Types of other fibres: OF - Organic Fibres; SMF - Synthetic Mineral Fibres

Action Levels:

<sup>1</sup>National Environmental Protection Council (NEPC) 2013 Amendment of the National Enviromental Protection Measure (NEPM) 1999. Health-based Investigation Levels (HIL) 'D' Commercial / Industrial



Table 3: QAQC Analytical Results - Relative Percent DifferencesSample Date - 2023-06-15 Location ID: Tarago, NSW Client: UGL Regional Linx

|                                         |                      |                      | I                    | Location:      | SMC_HA01      | SMC_HA01     | SMC_HA01     |                       |                        |              |           |
|-----------------------------------------|----------------------|----------------------|----------------------|----------------|---------------|--------------|--------------|-----------------------|------------------------|--------------|-----------|
|                                         |                      |                      | Sa                   | mple ID:       | SMC-HA01-0.05 | QC100-15.623 | QC200_150623 |                       |                        |              |           |
|                                         |                      |                      | Date S               | Sampled:       | 15/06/2023    | 15/06/2023   | 15/06/2023   | 4                     |                        |              |           |
|                                         |                      |                      | Sam                  | ple Type:      | Primary       | Secondary    | Tertiary     | ]                     |                        |              |           |
| Analyte                                 | Detection Limit Pri. | Detection Limit Dup. | Detection Limit Tri. | Units          |               |              |              | Primary vs. Duplicate | Primary vs. Triplicate | Category1    | Category2 |
| >C10 - C16 Fraction (minus Naphthalene) | 50                   | 50                   | 50                   | mg/kg          | <50           | <50          | <50          | 0.00%                 | 0.00%                  | Pass         | Pass      |
| >C10 - C40 Fraction (sum)               | 100                  | 100                  | 50                   | mg/kg          | <100          | <100         | <50          | 0.00%                 | 66.67%                 | Pass         | Pass-1    |
| 2.4-D                                   | 0.5                  | 0.5                  | 0.02                 | mg/kg          | <0.5          | <0.5         | <0.02        | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| 2.4-DB                                  | 0.5                  | 0.5                  | 0.02                 | mg/kg          | <0.5          | <0.5         | <0.02        | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| 2.4-DP                                  | 0.5                  | 0.5                  | 0.02                 | mg/kg          | <0.5          | <0.5         | < 0.02       | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| 2.4.5-T                                 | 0.5                  | 0.5                  | 0.02                 | mg/kg          | <0.5          | <0.5         | <0.02        | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| 2.4.5-TP (Silvex)                       | 0.5                  | 0.5                  | 0.02                 | mg/kg          | < 0.5         | <0.5         | < 0.02       | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| 4,6-DINITRO-2-METHYLPHENOL              | 0.5                  | 0.5                  | -                    | mg/kg          | < 0.5         | < 0.5        | -            | 0.00%                 | -                      | Pass         | 1         |
| 4.4-DDD                                 | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| 4.4-DDE                                 | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| 4.4-DDT                                 | 0.05                 | 0.05                 | 0.2                  | mg/kg          | < 0.05        | < 0.05       | <0.2         | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Acenaphthene                            | 0.5                  | 0.5                  | 0.5                  | mg/kg          | < 0.5         | <0.5         | < 0.5        | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Acenaphthylene                          | 0.5                  | 0.5                  | 0.5                  | mg/kg          | < 0.5         | <0.5         | < 0.5        | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Aldrin                                  | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Aldrin plus Dieldrin                    | 0.05                 | 0.05                 | -                    | mg/kg          | < 0.05        | < 0.05       | -            | 0.00%                 | -                      | Pass         |           |
| alpha-BHC                               | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | <0.05        | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| alpha-Endosulfan                        | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Anthracene                              | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Arsenic Filtered, T                     | 2                    | 2                    | 5                    | mg/kg          | 13            | 9.3          | 11           | 33.18%                | 16.67%                 | Pass-1       | Pass      |
| Azinphos Methyl                         | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | <0.05        | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Benz(a)anthracene                       | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzene                                 | 0.1                  | 0.1                  | 0.2                  | mg/kg          | <0.1          | <0.1         | <0.2         | 0.00%                 | 66.67%                 | Pass         | Pass-1    |
| Benzo(a)pyrene                          | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(A)pyrene TEQ (half LOR)           | 0.5                  | 0.5                  | 0.5                  | mg/kg          | 0.6           | 0.6          | 0.6          | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(A)pyrene TEQ (LOR)                | 0.5                  | 0.5                  | 0.5                  | mg/kg          | 1.2           | 1.2          | 1.2          | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(A)pyrene TEQ (zero)               | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(b+j)fluoranthene                  | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(g.h.i)perylene                    | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Benzo(k)fluoranthene                    | 0.5                  | 0.5                  | 0.5                  | mg/kg          | <0.5          | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| beta-BHC                                | 0.05                 | 0.05                 | 0.05                 | mg/kg          | <0.05         | <0.05        | <0.05        | 0.00%                 | 0.00%                  | Pass         | Pass      |
| beta-Endosulfan                         | 0.05                 | 0.05                 | 0.05                 | mg/kg          | <0.05         | <0.05        | <0.05        | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Bolstar (Sulprofos)                     | 0.2                  | 0.2                  | -                    | mg/kg          | <0.2          | <0.2         | -            | 0.00%                 | -                      | Pass         |           |
| Cadmium Filtered, T                     | 0.4                  | 0.4                  | 1                    | mg/kg          | 3.3           | 2.5          | 2            | 27.59%                | 49.06%                 | Pass         | Pass-1    |
| Chlordane (alpha +gamma)                | 0.1                  | 0.1                  | 0.05                 | mg/kg          | <0.1          | <0.1         | <0.05        | 0.00%                 | 66.67%                 | Pass         | Pass-1    |
| Chlorfenvinphos                         | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | <0.05        | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Chlorpyrifos                            | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | < 0.05       | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Chlorpyrifos-methyl                     | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | <0.05        | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Chromium Filtered, T                    | 5                    | 5                    | 2                    | mg/kg          | 13            | 9            | 11           | 36.36%                | 16.67%                 | Pass-1       | Pass      |
| Chrysene                                | 0.5                  | 0.5                  | 0.5                  | mg/kg          | < 0.5         | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Copper Filtered, T                      | 5                    | 5                    | 5                    | mg/kg          | 95            | 67           | 70           | 34.57%                | 30.30%                 | Pass-2       | Pass-2    |
| Coumaphos                               | 2                    | 2                    | -                    | mg/kg          | <2            | <2           | -            | 0.00%                 | -                      | Pass         |           |
| delta-BHC                               | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Demeton-O                               | 0.2                  | 0.2                  | -                    | mg/kg          | <0.2          | <0.2         | -            | 0.00%                 | -                      | Pass         |           |
| Demeton-S                               | 0.2                  | 0.2                  | -                    | mg/kg          | <0.2          | <0.2         | -            | 0.00%                 | -                      | Pass         |           |
| Diazinon                                | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | < 0.05       | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Dibenz(a.h)anthracene                   | 0.5                  | 0.5                  | 0.5                  | mg/kg          | < 0.5         | <0.5         | <0.5         | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Dicamba                                 | 0.5                  | 0.5                  | 0.02                 | mg/kg          | <0.5          | <0.5         | < 0.02       | 0.00%                 | 184.62%                | Pass         | Pass-1    |
| Dichlorvos                              | 0.2                  | 0.2                  | 0.05                 | mg/kg          | <0.2          | <0.2         | < 0.05       | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Dieldrin                                | 0.05                 | 0.05                 | 0.05                 | mg/kg          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Dimethoate                              | 0.2                  | 0.2                  | 0.05                 | mg/ka          | <0.2          | <0.2         | < 0.05       | 0.00%                 | 120.00%                | Pass         | Pass-1    |
| Dinoseb (2.4-dinitro-6-sec-butylphenol) | 0.5                  | 0.5                  | -                    | ma/ka          | <0.5          | < 0.5        | -            | 0.00%                 | -                      | Pass         |           |
| Disulfoton                              | 0.2                  | 0.2                  | -                    | ma/ka          | <0.2          | < 0.2        | -            | 0.00%                 | -                      | Pass         | 1         |
| Endosulfan sulfate                      | 0.05                 | 0.05                 | 0.05                 | ma/ka          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Endrin                                  | 0.05                 | 0.05                 | 0.05                 | ma/ka          | < 0.05        | < 0.05       | < 0.05       | 0.00%                 | 0.00%                  | Pass         | Pass      |
| <b></b>                                 | 0.05                 | 0.05                 | 0.05                 | ma/ka          | 0.07          | <0.05        | < 0.05       | 33.33%                | 33.33%                 | Pass-1       | Pass-1    |
| Endrin aldehyde                         | 0.00                 | 0.00                 | 0.00                 | 11100/1110     | 0.01          |              |              |                       |                        |              |           |
| Endrin aldehyde<br>Endrin ketone        | 0.05                 | 0.05                 | 0.05                 | ma/ka          | <0.05         | <0.05        | <0.05        | 0.00%                 | 0.00%                  | Pass         | Pass      |
| Endrin aldehyde<br>Endrin ketone<br>EPN | 0.05                 | 0.05                 | 0.05                 | mg/kg<br>mg/kg | <0.05         | <0.05        | <0.05        | 0.00%                 | 0.00%                  | Pass<br>Pass | Pass      |

|                           |      |      |          | //    |                 |          |             | 0.000/ |           |              | 1            |
|---------------------------|------|------|----------|-------|-----------------|----------|-------------|--------|-----------|--------------|--------------|
| Ethoprop                  | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Ethylbenzene              | 0.1  | 0.1  | 0.5      | mg/kg | <0.1            | <0.1     | <0.5        | 0.00%  | 133.33%   | Pass         | Pass-1       |
| Fenitrothion              | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Fensulfothion             | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Fenthion                  | 0.2  | 0.2  | 0.05     | mg/kg | <0.2            | <0.2     | < 0.05      | 0.00%  | 120.00%   | Pass         | Pass-1       |
| Fluoranthene              | 0.5  | 0.5  | 0.5      | mg/kg | <0.5            | < 0.5    | <0.5        | 0.00%  | 0.00%     | Pass         | Pass         |
| Fluorene                  | 0.5  | 0.5  | 0.5      | ma/ka | <0.5            | < 0.5    | < 0.5       | 0.00%  | 0.00%     | Pass         | Pass         |
| gamma-BHC                 | 0.05 | 0.05 | 0.05     | ma/ka | <0.05           | < 0.05   | <0.05       | 0.00%  | 0.00%     | Pass         | Pass         |
| Hentachlor                | 0.05 | 0.05 | 0.05     | mg/kg | <0.05           | <0.05    | <0.05       | 0.00%  | 0.00%     | Pass         | Pass         |
| Hentachlor enovide        | 0.05 | 0.05 | 0.05     | mg/kg | <0.00           | <0.00    | <0.00       | 0.00%  | 0.00%     | Pass         | Pass         |
| Heyachlorobonzono (HCR)   | 0.05 | 0.05 | 0.05     | mg/kg | <0.05           | <0.05    | <0.05       | 0.00%  | 0.00%     | Pass         | Pass         |
|                           | 0.03 | 0.03 | 0.03     | mg/kg | <0.05           | <0.05    | <0.05       | 0.00%  | 0.00%     | Pass         | Pass<br>Doop |
|                           | 0.5  | 0.5  | 0.5      | mg/kg | <0.5            | <0.5     | <0.5        | 0.00%  | 0.00%     | Pass         | F 855        |
|                           | 0.5  | 0.5  | -        | mg/kg | <0.5            | <0.0     | -           | 0.00%  | -         | Pass         |              |
| Lead Filtered, I          | 5    | 5    | 5        | mg/kg | 330             | 250      | 2/4         | 27.59% | 18.54%    | Pass         | Pass         |
| Malathion                 | 0.2  | 0.2  | 0.05     | mg/kg | <0.2            | <0.2     | <0.05       | 0.00%  | 120.00%   | Pass         | Pass-1       |
| MCPA                      | 0.5  | 0.5  | 0.02     | mg/kg | <0.5            | <0.5     | <0.02       | 0.00%  | 184.62%   | Pass         | Pass-1       |
| МСРВ                      | 0.5  | 0.5  | 0.02     | mg/kg | <0.5            | <0.5     | <0.02       | 0.00%  | 184.62%   | Pass         | Pass-1       |
| Mecoprop                  | 0.5  | 0.5  | 0.02     | mg/kg | <0.5            | <0.5     | < 0.02      | 0.00%  | 184.62%   | Pass         | Pass-1       |
| Mercury Filtered, T       | 0.1  | 0.1  | 0.1      | mg/kg | <0.1            | <0.1     | <0.1        | 0.00%  | 0.00%     | Pass         | Pass         |
| Merphos                   | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| meta- & para-Xylene       | 0.2  | 0.2  | -        | ma/ka | < 0.2           | < 0.2    | -           | 0.00%  | -         | Pass         |              |
| Methoxychlor              | 0.05 | 0.05 | 0.2      | ma/ka | <0.05           | <0.05    | <0.2        | 0.00%  | 120,00%   | Pass         | Pass-1       |
| Meyinphos (Phosdrin)      | 0.2  | 0.2  | -        | mg/kg | <0.2            |          | -           | 0.00%  | -         | Pass         |              |
| Monocratonhos             | 2    | 2    | 0.2      | mg/kg | <2              | -0.2     | <0.2        | 0.00%  | 163 64%   | Pass         | Pass_1       |
|                           | 2    | 2    | 0.2      | mg/kg | <0.0            | <0.2     | <b>~0.2</b> | 0.00%  | 103.0478  |              | 1 833-1      |
|                           | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         | Dees         |
| Naphthalene               | 0.5  | 0.5  | 0.5      | mg/kg | <0.5            | <0.5     | <0.5        | 0.00%  | 0.00%     | Pass         | Pass         |
|                           | 0.5  | 0.5  | 1        | mg/kg | <0.5            | <0.5     | <1          | 0.00%  | 66.67%    | Pass         | Pass-1       |
| Nickel Filtered, I        | 5    | 5    | 2        | mg/kg | 5.6             | <5       | <5          | 11.32% | 11.32%    | Pass         | Pass         |
| Omethoate                 | 2    | 2    | -        | mg/kg | <2              | <2       | -           | 0.00%  | -         | Pass         |              |
| ortho-Xylene              | 0.1  | 0.1  | 0.5      | mg/kg | <0.1            | <0.1     | <0.5        | 0.00%  | 133.33%   | Pass         | Pass-1       |
| Parathion                 | 0.2  | 0.2  | 0.2      | mg/kg | <0.2            | <0.2     | <0.2        | 0.00%  | 0.00%     | Pass         | Pass         |
| Parathion-methyl          | 0.2  | 0.2  | 0.2      | mg/kg | <0.2            | <0.2     | <0.2        | 0.00%  | 0.00%     | Pass         | Pass         |
| Phenanthrene              | 0.5  | 0.5  | 0.5      | mg/kg | <0.5            | <0.5     | <0.5        | 0.00%  | 0.00%     | Pass         | Pass         |
| Phorate                   | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Pirimiphos-methyl         | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Prothiophos (Tokuthion)   | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Pvrazophos                | 0.2  | 0.2  | -        | ma/ka | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Pvrene                    | 0.5  | 0.5  | 0.5      | ma/ka | <0.5            | < 0.5    | < 0.5       | 0.00%  | 0.00%     | Pass         | Pass         |
| Ronnel                    | 0.2  | 0.2  | -        | ma/ka | <0.2            | <0.2     | -           | 0.00%  | -         | Pass         |              |
| Terbufos                  | 0.2  | 0.2  | -        | mg/kg | <0.2            | <0.2     | -           | 0.00%  | _         | Pass         |              |
| Tetrachlorvinnhos         | 0.2  | 0.2  |          | mg/kg | <0.2            | <0.2     |             | 0.00%  | _         | Pass         |              |
| Toluene                   | 0.2  | 0.2  | 0.5      | mg/kg | <0.2            | <0.2     | <0.5        | 0.00%  | 133 33%   | Pass         | Pass_1       |
|                           | 0.05 | 0.05 | 0.0      | mg/kg | <0.1            | <0.05    | -0.0        | 0.00%  | 100.00 /0 | Pass         | 1 455 1      |
|                           | 0.03 | 0.03 | -        | mg/kg | <0.05           | <0.05    | -           | 0.00%  | -         | Pass<br>Dass |              |
|                           | 0.5  | 0.3  | <u> </u> | mg/kg | <0.0            | <0.0     | -           | 0.00%  |           |              |              |
|                           | 0.3  | 0.3  | 0.5      | mg/kg | <0.3            | <0.3     | <0.5        | 0.00%  | 50.00%    | Pass         | Pass-1       |
|                           | 0.5  | 0.5  | -        | mg/kg | <0.5            | <0.5     | -           | 0.00%  | -         | Pass         |              |
| TPH C10-C14 Fraction      | 20   | 20   | 50       | mg/kg | <20             | <20      | <50         | 0.00%  | 85.71%    | Pass         | Pass-1       |
| TPH C15-C28 Fraction      | 50   | 50   | 100      | mg/kg | <50             | <50      | <100        | 0.00%  | 66.67%    | Pass         | Pass-1       |
| TPH C29-C36 Fraction      | 50   | 50   | 100      | mg/kg | <50             | <50      | <100        | 0.00%  | 66.67%    | Pass         | Pass-1       |
| TPH C6-C9 Fraction        | 20   | 20   | 10       | mg/kg | <20             | <20      | <10         | 0.00%  | 66.67%    | Pass         | Pass-1       |
| TRH >C10-C16              | 50   | 50   | 50       | mg/kg | <50             | <50      | <50         | 0.00%  | 0.00%     | Pass         | Pass         |
| TRH >C16-C34              | 100  | 100  | 100      | mg/ka | <100            | <100     | <100        | 0.00%  | 0.00%     | Pass         | Pass         |
| TRH >C34-C40              | 100  | 100  | 100      | mg/ka | <100            | <100     | <100        | 0.00%  | 0.00%     | Pass         | Pass         |
| TRH C10-36 (Total)        | 50   | 50   | 50       | ma/ka | <50             | <50      | <50         | 0.00%  | 0.00%     | Pass         | Pass         |
| TRH C6-C10                | 20   | 20   | 10       | ma/ka | <20             | <20      | <10         | 0.00%  | 66.67%    | Pass         | Pass-1       |
| TRH C6-C10 less BTFX (F1) | 20   | 20   | 10       | ma/ka | <20             | <20      | <10         | 0.00%  | 66 67%    | Pase         | Pass_1       |
|                           | 0.2  | 0.2  |          | ma/ka | ~0.2            | -0.0     |             | 0.00%  |           | Doco         | 1 433-1      |
|                           | 0.2  | 0.2  | -        | mg/kg | <u> </u>        | <u> </u> | -           | 0.00%  | -         |              | <del> </del> |
|                           | 0.1  | 0.1  | -        | mg/Kg | <u><u> </u></u> | <u> </u> | -           | 0.00%  | -         | Pass         | <u> </u>     |
| Zing Filtered T           |      | 0.1  | -        | mg/Kg | <u>&lt;0.1</u>  | <u> </u> | -           |        | -         | Pass         | Deet         |
| ZINC FIITEREA, I          | 5    | 5    | 5        | mg/kg | 490             | 380      | 390         | 25.29% | 22.73%    | Pass         | Pass         |

### **RPD Control Limits**

Pass - RPD ≤ 30%

Pass-1 - RPD > 30%, Analysis results < 10 times Detection Limit Pass-2 - RPD > 30% and RPD  $\leq$  50%, Analysis results  $\geq$  10 times Detection Limit and < 20 times Detection Limit **Exceeds RPD Control Limits** 

## RAMBOLL

Table 4: QAQC Analytical Results - Trip Spike and Trip BlankSample Date - 2023-06-15Location ID: Tarago, NSWClient: UGL Regional Linx

|                 |              |                   |               |             |             | BTE          | XN           |               |                     |
|-----------------|--------------|-------------------|---------------|-------------|-------------|--------------|--------------|---------------|---------------------|
|                 |              |                   |               | Benzene     | Toluene     | Ethylbenzene | ortho-Xylene | Total Xylenes | meta- & para-Xylene |
|                 |              |                   | LOR           | 0.1         | 0.1         | 0.1          | 0.1          | 0.3           | 0.2                 |
|                 |              |                   | Action Levels |             |             |              |              |               |                     |
| Sample Location | Date Sampled | Sample ID         | Sample Type   |             |             |              |              |               |                     |
| 0400            | 15/06/2023   | TRIP BLANK-150623 | TB            | < 0.1 mg/kg | < 0.1 mg/kg | < 0.1 mg/kg  | < 0.1 mg/kg  | < 0.1 mg/kg   | < 0.1 mg/kg         |
| QAQU            | 15/06/2023   | TRIP SPIKE-150625 | TS            | 110%        | 110%        | 110%         | 100%         | 100%          | 100%                |

### Legend:

- Not analysed / not calculated LOR – Limit of Recording Sample Type: TS - Trip Spike, TB - Trip Blank mg/kg = milligrams per kilogram

## RAMBOLL

Table 5: QAQC Analytical Results - Rinsate Sample Date - 2023-06-15 Location ID: Tarago, NSW Client: UGL Regional Linx

|                 |              |              |               | Metals  |          |          |         |       |          |         |         |  |  |  |
|-----------------|--------------|--------------|---------------|---------|----------|----------|---------|-------|----------|---------|---------|--|--|--|
|                 |              |              |               | Arsenic | Cadmium  | Chromium | Copper  | Lead  | Mercury  | Nickel  | Zinc    |  |  |  |
|                 |              |              | LOR           | 0.001   | 0.0002   | 0.001    | 0.001   | 0.001 | 0.0001   | 0.001   | 0.005   |  |  |  |
|                 |              |              | Units         | mg/l    | mg/l     | mg/l     | mg/l    | mg/l  | mg/l     | mg/l    | mg/l    |  |  |  |
|                 |              |              | Action Levels |         |          |          |         |       |          |         |         |  |  |  |
| Sample Location | Date Sampled | Sample ID    | Sample Type   |         |          |          |         |       |          |         |         |  |  |  |
| QAQC            | 15/06/2023   | QC300-15.623 | RB            | < 0.001 | < 0.0002 | < 0.001  | < 0.001 | 0.001 | < 0.0001 | < 0.001 | < 0.005 |  |  |  |

### Legend:

- Not analysed / not calculated LOR – Limit of Recording Sample Type: RB - Rinsate Blank mg/I = milligrams per litre **Rinsate Blank result detected above laboratory LOR**  APPENDIX 6 95%UCLAVERAGE CALCULATIONS
|    | A                                                       | В                     | C            | D                       | E                  | F               | G                                                               | Н                                              | I            |           | J       |                | K        |               | L     |   |
|----|---------------------------------------------------------|-----------------------|--------------|-------------------------|--------------------|-----------------|-----------------------------------------------------------------|------------------------------------------------|--------------|-----------|---------|----------------|----------|---------------|-------|---|
| 1  |                                                         |                       |              |                         | UCL Statis         | tics for Unce   | ensored Full                                                    | Data Sets                                      |              |           |         |                |          |               |       |   |
| 2  |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 3  |                                                         | User Sele             | cted Option  | s                       |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 4  | Date/Time of Computation ProUCL 5.107-Sep-23 3:46:46 PM |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 5  | From File WorkSheet.xls                                 |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 6  |                                                         | Fu                    | II Precision | OFF                     |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 7  | Confidence Coefficient 95%                              |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 8  | Number                                                  | of Bootstrap          | Operations   | 2000                    |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 9  |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 10 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 11 | Lead in S                                               | urface Soil (m        | ıg/kg)       |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 12 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 13 |                                                         |                       |              |                         |                    | General         | Statistics                                                      |                                                |              |           |         |                |          |               |       |   |
| 14 |                                                         |                       | Tota         | al Number of Ob         | servations         | 22              |                                                                 |                                                | Numbe        | er of Dis | tinct ( | Obse           | rvations | 3             | 20    |   |
| 15 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                | Numbe        | er of Mis | sing (  | Obse           | rvations | 3             | 0     |   |
| 16 |                                                         |                       |              |                         | Minimum            | 120             |                                                                 |                                                |              |           |         |                | Mear     | 18            | 354.1 |   |
| 17 |                                                         |                       |              |                         | Maximum            | 3800            | Median 725                                                      |                                                |              |           |         | 725            |          |               |       |   |
| 18 |                                                         |                       |              |                         | SD                 | 775.2           |                                                                 |                                                |              |           | Std. E  | Error          | of Mear  | 1 1           | 165.3 |   |
| 19 |                                                         |                       |              | Coefficient of          | of Variation       | 0.908           |                                                                 |                                                |              |           |         | Sk             | ewness   | 3             | 2.756 | ; |
| 20 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 21 |                                                         |                       |              |                         |                    | Normal G        | OF Test                                                         |                                                |              |           |         |                |          |               |       |   |
| 22 |                                                         |                       | ;            | Shapiro Wilk Te         | st Statistic       | 0.723           |                                                                 |                                                | Shapiro W    | ilk GOF   | Test    | !              |          |               |       |   |
| 23 | 5% Shapiro Wilk Critical Value                          |                       |              |                         |                    | 0.911           |                                                                 | Data Not                                       | Normal at    | 5% Sig    | nifica  | nce L          | .evel    |               |       |   |
| 24 | Lilliefors Test Statistic                               |                       |              |                         |                    | 0.192           | Lilliefors GOF Test                                             |                                                |              |           |         |                |          |               |       |   |
| 25 | 5% Lilliefors Critical Value                            |                       |              |                         |                    | 0.184           | Data Not Normal at 5% Significance Level                        |                                                |              |           |         |                |          |               |       |   |
| 26 |                                                         |                       |              |                         | Data Not           | Normal at 5     | % Significan                                                    | ce Level                                       |              |           |         |                |          |               |       |   |
| 27 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 28 |                                                         |                       |              |                         | As                 | suming Norn     | nal Distributi                                                  | on                                             |              |           |         |                |          |               |       |   |
| 29 |                                                         |                       | 95% N        | Iormal UCL              | -                  |                 |                                                                 | 95%                                            | UCLs (Adj    | usted fo  | r Ske   | wnes           | is)      |               |       |   |
| 30 | 95% Student's-t UCL                                     |                       |              |                         | 1138               |                 | ç                                                               | 95% Adjust                                     | ted-CLT      | UCL       | (Che    | n-1995)        | ) 1      | 230           |       |   |
| 31 | 95% Modified-t UCL (Johnson-1978) 1155                  |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 32 |                                                         |                       |              |                         |                    |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 33 |                                                         |                       |              |                         | at Chatiatia       | Gamma           | JOF Test                                                        | A m d a m                                      | on Dorlin    | - 0       |         |                |          |               |       |   |
| 34 |                                                         | A-D Test Statistic    |              |                         |                    | 0.32            | Detector                                                        |                                                |              | g Gamr    |         |                | SL       |               |       |   |
| 35 |                                                         | 5% A-D Critical Value |              |                         | 0.757              | Detected        | Kolmogorov-Smirnov Gamma GOE Test                               |                                                |              |           |         | Levei          |          |               |       |   |
| 36 |                                                         |                       |              |                         |                    | 0.100           | Detected data appear Gamma Distributed at 5% Significance Level |                                                |              |           |         |                |          |               |       |   |
| 37 |                                                         |                       |              | Detected c              |                    | 0.100           | Delected                                                        |                                                |              | JISUIDUU  |         | 5/0 3          | iyiinca  | nce           | Level |   |
| 38 |                                                         |                       |              | Delected                | iala appea         | Gamina Dia      |                                                                 | % Significan                                   |              |           |         |                |          |               |       |   |
| 39 |                                                         |                       |              |                         |                    | Gamma           | Statistics                                                      |                                                |              |           |         |                |          |               |       |   |
| 40 |                                                         |                       |              | I                       | hat (MI E)         |                 |                                                                 |                                                |              |           |         |                |          |               |       |   |
| 41 |                                                         |                       |              | Thoto                   |                    | 1.704<br>478 8  | K star (bias corrected MLE                                      |                                                |              |           |         |                | /<br>) [ | 542.7         |       |   |
| 42 |                                                         |                       |              | nela                    |                    | 78 /0           |                                                                 |                                                | ineta        |           | as CO   | 28.00          |          | / c           | 60 12 |   |
| 43 |                                                         |                       | δ            | /IU<br>/II E Mean (biac |                    | 70.49<br>85/1 1 |                                                                 |                                                |              | MIEC      |         | 35.00          | rected   | /<br>)        | 39.12 |   |
| 44 |                                                         |                       | IV           |                         | conected)          | 004.1           |                                                                 |                                                | nprovimat    | te Chi S  |         | 13 CU          |          | $\frac{1}{1}$ | 50 08 |   |
| 45 |                                                         |                       | ٥di          | Isted I eval of 9       | ignificance        | ሀ ሀሪያይ          |                                                                 | F                                              | n<br>۱       | Adjustad  | 10010   | une v<br>icun6 | e Value  | /             | 40 80 |   |
| 46 |                                                         |                       | Auju         |                         | grincance          | 0.0000          |                                                                 |                                                | F            | Jusieu    |         | qual           |          | ·             |       |   |
| 47 |                                                         |                       |              |                         | Δε                 | sumina Gem      | ma Distributi                                                   | ion                                            |              |           |         |                |          |               |       |   |
| 48 |                                                         | 95% Annroy            | imate Gamr   | na UCL (use wh          | رين<br>۱۹۵۱ n>=۲۵۱ | 1158            |                                                                 | 05% Adi                                        | usted Com    | nma LICI  | (uer    | who            | n n<50   | ) 1           | 185   |   |
| 49 |                                                         | 50 /0 /2ppi0X         |              | 10 00L (USE WI          |                    | 1100            |                                                                 | 5570 Auj                                       | uotou Uall   |           | _ (use  |                |          | / 1           | 100   |   |
| 50 |                                                         |                       |              |                         |                    | lognormal       | GOF Teet                                                        |                                                |              |           |         |                |          |               |       |   |
| 51 |                                                         |                       |              | Shaniro Wilk Te         | st Statistic       | 0 974           |                                                                 | Shan                                           | iro Wilk I o | anome     |         | - Toc          |          |               |       |   |
| 52 |                                                         |                       | 5% (         | Shaniro Wilk Cri        | tical Value        | 0.074           |                                                                 | Data annear Lognormal at 5% Significance Level |              |           |         |                |          |               |       |   |
| 53 |                                                         |                       |              | jillipfore Te           | st Statistic       | 0 121           |                                                                 | Lilliefors Loanormal GOF Test                  |              |           |         |                |          |               |       |   |
| 54 |                                                         |                       |              | 5%   illiefore Cri      | tical Value        | 0.121<br>0.121  |                                                                 | Data annear Lognormal at 5% Significance Loyal |              |           |         |                |          |               |       |   |
| 55 | 5% Lilliefors Critical Value                            |                       |              |                         | 0.104              |                 | Dara ahheai                                                     | Lognomia                                       | ar at J /0   | Juli      | loand   | 'e reve        | •        |               |       |   |

|    | А                                              | В                                                          | С              | D              | E              | F              | G                                | Н               |              | J             | K                | L    |
|----|------------------------------------------------|------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------------------------|-----------------|--------------|---------------|------------------|------|
| 56 | Data appear Lognormal at 5% Significance Level |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 57 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 58 | Lognormal Statistics                           |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 59 |                                                | Minimum of Logged Data4.787Mean of logged Data6.444        |                |                |                |                |                                  |                 |              |               |                  |      |
| 60 | Maximum of Logged Data 8.243 SD of logged Data |                                                            |                |                |                |                |                                  |                 |              |               | 0.813            |      |
| 61 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 62 | Assuming Lognormal Distribution                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 63 | 95% H-UCL 1326 90% Chebyshev (MVUE) UCL        |                                                            |                |                |                |                |                                  |                 |              | 1347          |                  |      |
| 64 |                                                |                                                            | 95%            | Chebyshev      | (MVUE) UCL     | 1568           |                                  |                 | 97.5%        | Chebyshev (   | MVUE) UCL        | 1874 |
| 65 |                                                |                                                            | 99%            | Chebyshev      | (MVUE) UCL     | 2476           |                                  |                 |              |               |                  |      |
| 66 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 67 |                                                |                                                            |                |                | Nonparame      | etric Distribu | tion Free UC                     | L Statistics    |              |               |                  |      |
| 68 |                                                |                                                            |                | Data appea     | ar to follow a | Discernible I  | Distribution a                   | t 5% Signific   | ance Level   |               |                  |      |
| 69 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 70 |                                                |                                                            |                |                | Nonpa          | rametric Dis   | tribution Free                   | UCLs            |              |               |                  |      |
| 71 | 95% CLT UCL 1126 95% Jackknife UCI             |                                                            |                |                |                | ckknife UCL    | 1138                             |                 |              |               |                  |      |
| 72 |                                                | 95% Standard Bootstrap UCL 1117 95% Bootstrap-t UCL        |                |                |                | 1327           |                                  |                 |              |               |                  |      |
| 73 |                                                | 95% Hall's Bootstrap UCL 2390 95% Percentile Bootstrap UCL |                |                |                | 1147           |                                  |                 |              |               |                  |      |
| 74 |                                                | 95% BCA Bootstrap UCL 1210                                 |                |                |                |                |                                  |                 |              |               |                  |      |
| 75 |                                                |                                                            | 90% Cł         | nebyshev(Me    | ean, Sd) UCL   | 1350           | 95% Chebyshev(Mean, Sd) UCL      |                 |              | 1575          |                  |      |
| 76 |                                                |                                                            | 97.5% Ch       | nebyshev(Me    | ean, Sd) UCL   | 1886           | 99% Chebyshev(Mean, Sd) UCL 2499 |                 |              |               | 2499             |      |
| 77 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 78 |                                                |                                                            |                |                |                | Suggested      | UCL to Use                       |                 |              |               |                  |      |
| 79 |                                                |                                                            | 95             | % Adjusted     | Gamma UCL      | 1185           |                                  |                 |              |               |                  |      |
| 80 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |
| 81 |                                                | Note: Sugge                                                | stions regard  | ding the sele  | ction of a 95% | 6 UCL are pr   | ovided to hel                    | p the user to   | select the n | nost appropri | ate 95% UCL      |      |
| 82 |                                                |                                                            | F              | Recommend      | ations are ba  | sed upon dat   | a size, data o                   | distribution, a | nd skewnes   | SS.           |                  |      |
| 83 |                                                | These recor                                                | mmendations    | s are based    | upon the resu  | Its of the sim | ulation studie                   | es summarize    | ed in Singh, | Maichle, and  | d Lee (2006).    |      |
| 84 | Ho                                             | wever, simu                                                | lations result | ts will not co | ver all Real V | /orld data se  | ts; for additio                  | nal insight the | e user may   | want to cons  | ult a statistici | an.  |
| 85 |                                                |                                                            |                |                |                |                |                                  |                 |              |               |                  |      |

APPENDIX 7 SITE-SPECIFIC EIL DATA INPUTS Appendix 7, Table i: Summary of EIL Inputs



|                                   |          | SS94 | SS95 | SS101      | SS112  | D03_230919 | Average |
|-----------------------------------|----------|------|------|------------|--------|------------|---------|
|                                   | Units    |      |      |            |        |            |         |
| Cation exchange capacity          | cmol/kg  | 15   | 15   | 10         | 15     | 9          | 12.8    |
| pH (calcium chloride method)      | pH Units | 5.9  | 5.4  | 5.2        | 4.7    | 4.9        | 5.22    |
| Organic carbon content            | %        | 2.2  | 2.5  | 0.8        | 1.3    | 2.1        | 1.78    |
| Iron content (aqua regia method)  | %        | 1.1  | 0.76 | 0.88       | 1.4    | 1.1        | 1.048   |
| % clay                            | %        | 13   | 13   | 8.5        | 18     | 7.5        | 12      |
| Measured background concentration | on       | -    |      |            | -<br>- |            |         |
| Copper                            | mg/kg    | -    | -    | 6.9        | -      | -          | -       |
| Nickel                            | mg/kg    | -    | -    | <u>2.5</u> | -      | -          | -       |
| Chromium                          | mg/kg    | -    | -    | 7.2        | -      | -          | -       |
| Zinc                              | mg/kg    | -    | -    | 31         | -      | -          | -       |

<u>Underlined</u> values were reported <LOR and have been halved to allow for comparison of data.

SS101 selected for background due to low concentrations.

| Inputs                                                                                               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Select contaminant from list below                                                                   |  |  |  |  |  |  |
| Cu                                                                                                   |  |  |  |  |  |  |
| Below needed to calculate fresh and aged<br>ACLs                                                     |  |  |  |  |  |  |
| Enter cation exchange capacity (silver<br>thiourea method) (values from 0 to 100<br>cmolc/kg dwt)    |  |  |  |  |  |  |
| 12.8                                                                                                 |  |  |  |  |  |  |
| Enter soil pH (calcium chloride method)<br>(values from 1 to 14)                                     |  |  |  |  |  |  |
| 5.22                                                                                                 |  |  |  |  |  |  |
| Enter organic carbon content (%OC)<br>(values from 0 to 50%)                                         |  |  |  |  |  |  |
| 1.78                                                                                                 |  |  |  |  |  |  |
| Below needed to calculate fresh and aged ABCs                                                        |  |  |  |  |  |  |
| Measured background concentration                                                                    |  |  |  |  |  |  |
| (mg/kg). Leave blank if no measured value                                                            |  |  |  |  |  |  |
| 6.9                                                                                                  |  |  |  |  |  |  |
| or for fresh ABCs only                                                                               |  |  |  |  |  |  |
| Enter iron content (aqua regia method)                                                               |  |  |  |  |  |  |
| (values from 0 to 50%) to obtain estimate                                                            |  |  |  |  |  |  |
| of background concentration                                                                          |  |  |  |  |  |  |
|                                                                                                      |  |  |  |  |  |  |
| a fan an d ADO, and                                                                                  |  |  |  |  |  |  |
| or for aged ABCs only                                                                                |  |  |  |  |  |  |
| or for aged ABCs only<br>Enter State (or closest State)                                              |  |  |  |  |  |  |
| or for aged ABCs only Enter State (or closest State) NSW                                             |  |  |  |  |  |  |
| or for aged ABCs only<br>Enter State (or closest State)<br>NSW<br>Enter traffic volume (high or low) |  |  |  |  |  |  |

| Outputs                                                |                       |               |  |  |  |  |
|--------------------------------------------------------|-----------------------|---------------|--|--|--|--|
| Land use                                               | Cu soil-specific EILs |               |  |  |  |  |
|                                                        | (mg contaminant       | /kg dry soil) |  |  |  |  |
|                                                        | Fresh                 | Aged          |  |  |  |  |
|                                                        | 116311                | Ageu          |  |  |  |  |
| National parks and areas of<br>high conservation value | 35                    | 40            |  |  |  |  |
| Urban residential and open<br>public spaces            | 60                    | 110           |  |  |  |  |
| Commercial and industrial                              | 85                    | 160           |  |  |  |  |

| Inputs                                                                                                             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Select contaminant from list below                                                                                 |  |  |  |  |  |  |  |
| Elow needed to calculate fresh and aged<br>ACLs                                                                    |  |  |  |  |  |  |  |
| Enter cation exchange capacity (silver<br>thiourea method) (values from 0 to 100<br>cmolc/kg dwt)                  |  |  |  |  |  |  |  |
| 12.8                                                                                                               |  |  |  |  |  |  |  |
| Enter soil pH (calcium chloride method)<br>(values from 1 to 14)                                                   |  |  |  |  |  |  |  |
| 5.22                                                                                                               |  |  |  |  |  |  |  |
| Below needed to calculate fresh and aged                                                                           |  |  |  |  |  |  |  |
| Measured background concentration<br>(mg/kg). Leave blank if no measured value<br>31                               |  |  |  |  |  |  |  |
| or for fresh ABCs only                                                                                             |  |  |  |  |  |  |  |
| Enter iron content (aqua regia method)<br>(values from 0 to 50%) to obtain estimate<br>of background concentration |  |  |  |  |  |  |  |
| or for aged ABCs only                                                                                              |  |  |  |  |  |  |  |
| Enter State (or closest State)                                                                                     |  |  |  |  |  |  |  |
| NSW                                                                                                                |  |  |  |  |  |  |  |
| Enter traffic volume (high or low)                                                                                 |  |  |  |  |  |  |  |
|                                                                                                                    |  |  |  |  |  |  |  |

| Outputs                                                |                       |               |  |  |  |  |  |
|--------------------------------------------------------|-----------------------|---------------|--|--|--|--|--|
| Land use                                               | Zn soil-specific EILs |               |  |  |  |  |  |
|                                                        | (mg contaminant       | /kg dry soil) |  |  |  |  |  |
|                                                        | Fresh                 | Aged          |  |  |  |  |  |
| National parks and areas of<br>high conservation value | 50                    | 80            |  |  |  |  |  |
| Urban residential and open<br>public spaces            | 120                   | 250           |  |  |  |  |  |
| Commercial and industrial                              | 160                   | 370           |  |  |  |  |  |