Transport for NSW

Byrons Lane Slip Stage V Review of Environmental Factors

October 2022

transport.nsw.gov.au

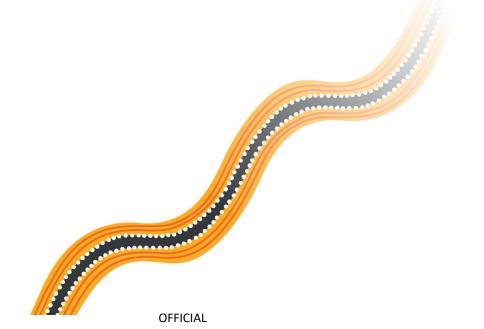
OFFICIAL

Acknowledgement of Country

Transport for NSW acknowledges the Yaegl People, the traditional custodians of the land on which the Byrons Lane Slip Stage V project is proposed.

We pay our respects to their Elders past and present and celebrate the diversity of Aboriginal people and their ongoing cultures and connections to the lands and waters of NSW.

Many of the transport routes we use today – from rail lines, to roads, to water crossings – follow the traditional Songlines, trade routes and ceremonial paths in Country that our nation's First Peoples followed for tens of thousands of years.


Transport for NSW is committed to honouring Aboriginal peoples' cultural and spiritual connections to the land, waters and seas and their rich contribution to society.

Approval and authorisation

Title	Byrons Lane Slip Stage V - Review of Environmental Factors
Accepted on behalf of Transport for NSW by:	Ian Drinkwater Project Manager, Project Services Northern
Signed	San Drinkwater
Date:	28/10/2022

Document review tracking

Draft No.	Date	Comments
Draft 1	23/02/2022	First draft issued to TfNSW
Draft 2	24/03/2022	ECF - First draft report transferred into new TfNSW Project REF template
Draft 2	25/03/2022	AK - Proof newly formatted word doc; PDF
Draft 3	04/04/2022	ECF – Third draft (v3) responding to TfNSW comments
Draft 4	17/05/2022	ECF - Fourth draft (v4) responding to TfNSW comments and version for s199 referral
Draft 5	04/08/2022	ECF (v5) updates after REF finalization meeting, include s199 referral response
Draft 6	17/10/2022	SDS (v6) updates after TfNSW review and comments

3

Executive summary

The proposal

Transport for NSW ('Transport') proposes to carry out remediation works on the South Arm River (south arm of the Clarence River) embankment to repair the riverbank profile in response to a slip as a result of significant rainfall event (declared natural disaster) in March 2021. The South Arm River is located adjacent to the Big River Way (Old Pacific Highway) and the eastern riverbank forms the western embankment for the Big River Way at the proposed remediation site. The slip is located approximately 33.44km north of Grafton in the Clarence Valley Council (CVC) local government area and is located approximately 540m north-east of Byrons Lane.

The scope of works is broadly summarised as implementing a structural piled wall solution for slope remediation in combination with remediation of the riverbank profile.

Key features of the proposal include:

Initial Project Set up

- Establishing a site compound and stockpile site within road reserve on eastern side of Big River Way approximately 700m north of the proposed works. A potential pile stockpile site may be established within land (owner to be confirmed) on the opposite (north-western) side of the riverbank.
- Establishing traffic control management in vicinity of the site.
- Establishing sedimentation and erosion controls on South Arm River embankment and within waterway as required.
- Clearing and disturbance of vegetation (consisting of trees, weeds and native vegetation) alongside the South Arm River to facilitate works (up to a total area of 0.84ha). The slip site consists of removal of approximately 0.27ha of plant community type (PCT) 1235 and 4 swamp oak trees over 10cm diameter at breast height (DBH).
- Vegetation mulched onsite and either temporarily stockpiled for reuse on site or taken to an alternative site for reuse or disposed of at a licenced waste facility.

Piling Works and Slope Remediation

• Proposed shear piles and rock fill construction methodology which seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

Restoration of Big River Way Pavement

- Repair areas of pavement shoulder impacted by loss of formation support.
- Repair/extend existing concrete safety barriers.

Construction was expected to commence in September 2022 and be completed by September 2023, however there is some flexibility around start of construction (which may not commence until 2023) to accommodate the construction procurement process and potential for programming of work around predicted wet periods.

Need for the proposal

The subject site at Clarence riverbank adjacent to Big River Way was inspected on 9 March 2021 by Transport Geotechnical Officers after the slope subsidence was initially identified by Road Maintenance inspections. Observations identified embankment subsidence and increase cracking mechanisms within the road shoulder. This site is located within an area where previous riverbank slope stability treatment have been required. An initial slip occurred at the site as a result of floods in mid-June 2009. The site has been subject to various stages (I-IV) of restoration works to rehabilitate the original slip and prevent further collapse of the averbank to ensure highway safety was maintained.

Big River Way provides an important transport route which sarries low volumes of traffic for a variety of vehicle types (regional freight vehicles, large passenger vehicles, light passenger vehicles and local traffic). The proposal is required to restore the riverbank, prevent further the same trappove safety for road users.

OFFICIAL

The proposal is funded by a state road and natural disaster program and is expected to cost approximately \$4M for delivery.

Proposal objectives

The primary objective of the proposal is to ensure that Big River Way remains a safe and trafficable transport route by preventing further degradation of the road surface from subsidence risk associated with the ALR1 risk rating slope.

Other objectives of the proposal are to:

- Stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way.
- Restoration of the riverbank profile.
- Restore the pavement to the shoulder of Big River Way.
- Undertake works to minimise traffic, environmental, social impacts.

Options considered

The 100% Geotechnical Interpretive and Design Options report outlines 4 possible options and construction sequences. The following options for the proposal were assessed.

Option 1A: Cantilever Sheet Pile Wall

Concept Option 1A seeks to retain the road embankment by installing a row of cantilevered steel sheet piles along the alignment of the existing slip headscarp. The approximate length of the wall is 42m and comprises AZ46-700N sheet piles, at least 16m in length, embedded within the stiff clays.

Option 1B: Anchored Sheet Pile Wall

Concept Option 1B seeks to retain and regain the failed embankment by installing a row of sheet piles on the riverside of the headscarp, through the slip. In this location, the sheet piles are supporting weak, slumped slip materials and are expected to require a row of anchors of the bars to control displacements.

The concept design is a 40m long sheet piled retaining wall comprising approximately 12m long sheet piles. A second row of deadman sheet piles (5m long) are proposed to be located on the opposite side of the road, positioned to avoid buried services (Telstra and water main). A row of steel tie bars anchors the retaining wall to the deadman via horizontal water beams.

Option 2: Contiguous Pile Wall

Concept Option 2 seeks to retain the embankment by installing a row of contiguous piles. The piles are proposed to be installed using continuous flight auger (CFA) drilling rig. Alternatively driven steel tubular piles (possibly interlocked) may be installed and the upper 7m to 10m could be excavated and replaced with reinforced concrete for durability.

The approximate length of the wall is 42m and comprises 750mm diameter piles at close (1200mm to 1400mm) centres. The piles are supposed to be positioned approximately 1.5m back from the existing headscarp, primarily to allow the piles to be installed without further temporary stability or casing requirements. The headscarp is proposed to be battered and rock armoured.

Option 3: Shear Piles and Rock Fill

Concept Option 3 is similar to the adjacent, previous slip remediation. It seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

Option 4: Gabion Wall and Piled Foundation

Concept Option 4 seeks to retain the road embankment will a gabion basket retaining wall founded on a piled raft footing. Two rows of precast, driven, reinforced concrete, also are proposed to be installed and connected to a reinforced concrete pad footing. The concrete raft footing construction on top of the piles. Temporary battered excavations are required to facilitate the construction of the reinforced concrete footing and gabion baskets. A 'do nothing' option involves leaving the existing slip in place. This option does not maintain road safety, a key responsibility of Transport. Furthermore, the 'do nothing' option would not address slope remediation works required alongside Big River Way which in the longer term would risk further damage to the road asset.

Option 3 was selected as the preferred option as it scored the highest when evaluated using weighted multi-criteria analysis (Design, Construction, Environment, Community and Costing Components). Option 3 satisfies the objectives of the proposal and is expected to achieve the highest design life. While the construction method is considered a relatively higher risk option due to working over water, the proposal is considered to have positive environmental impacts as it seeks to restore lost riverbank.

Statutory and planning framework

The proposal is for a road and road infrastructure facilities and is to be carried out by Transport for NSW and can therefore be assessed under Division 5.1 of the *Environmental Planning and Assessment Act 1979 (NSW)*. Development consent from council is not required.

State Environmental Planning Policy (Transport and Infrastructure) 2021 (TISEPP) (previously *State Environmental Planning Policy (Infrastructure) 2007* (ISEPP)) aims to facilitate the effective delivery of infrastructure across the State, including roads and road infrastructure facilities. Section 2.108 of TISEPP (previously Clause 94 ISEPP) permits development on any land for the purpose of a road or road infrastructure facilities to be carried out by or on behalf of a public authority without consent.

The proposal is not located on land reserved under the *National Parks and Wildlife Act* 1974 and does not require development consent or approval under *State Environmental Planning Policy (Resilience and Hazards) 2021, State Environmental Planning Policy (Planning Systems) 2021* or *State Environmental Planning Policy (Precincts - Regional) 2021.*

Part 2.2 of TISEPP (previously Part 2 of ISEPP) contains provisions for public authorities to consult with local councils and other public authorities prior to the commencement of certain types of development. Consultation, including consultation as required by TISEPP (where applicable), is discussed in chapter 5 of this REF.

Community and stakeholder consultation

Preliminary consultation with affected stakeholders, landowners, Council and government agencies has been undertaken and has informed the proposal.

The Transport Procedure for Aboriginal Cultural Heritage Consultation and Investigation (PACHCI) has been undertaken for the proposal. Transport for NSW's Cultural and Heritage Officer advised that the proposal was unlikely to have an impact on Aboriginal cultural heritage. Consultation has also been undertaken under the *Native Title Act*.

Formal consultation has been initiated with Clarence Valley Council (CVC) and State Emergency Services (SES) and internal notification has been provided to Transport – Maritime as per the requirements of TISEPP. NSW Department of Primary Industries (DPI) - Fisheries have also been consulted in accordance with the Fisheries Management Act 1994. Advice received from Transport – Maritime and NSW DPI Fisheries as part of this consultation has been addressed in this REF. No other comments have been received as part of this consultation.

Consultation with key stakeholders affected by the proposal will be ongoing.

Environmental impacts

The main environmental impacts of the proposal are:

Biodiversity Impact

- The proposal involves removing weeds and native growth along the proposed river embankment along the South Arm River as required to facilitate riverbank stabilisation and repair to the road shoulder. A Biodiversity Assessment Report (BAR) has been prepared to assess biodiversity matters relevant to the proposal.
- The BAR concluded that the proposal is unlikely to significantly affect any species, communities or their habitat listed under the BC Act of the EPBC Act A Species Impact Statement is not required, nor is the proposal subject to the EPBC Act Strategic Assessment. The works do not trigger the Transport offset guidelines.

• Safeguards and mitigation measures detailed in the BAR have been recommended to manage potential impacts relating to biodiversity. Refer to the Biodiversity Assessment Report prepared to accompany this report (Appendix A).

Heritage Impact

• The proposal is unlikely to have any impact on Indigenous or Non-Indigenous heritage.

Socio-economic Impact

- Potential short-term impacts including increased traffic, noise and vibration associated with the works can be managed by safeguards and management measures presented in the REF. Overall, while the short-term impacts cannot be avoided completely, no significant or long-term adverse impacts are likely.
- The proposed repair works will have positive long term socio-economic benefits by providing an improved road safety environment with reduced risk of further slips/collapse as a result of restoration of the riverbank.

Soil and Water Quality Impact

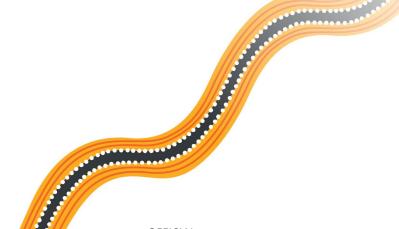
• Potential environmental impacts associated with erosion and sediment, including disturbance of the riverbed and riverbank causing sediment to mobilise, would be suitably managed through effective implementation of safeguards of this REF.

Traffic Impact

• Users of Big River Way would experience traffic delays during the proposed work. Traffic delays may also occur along South Arm Road (on Woodford Island) associated with delivery of piles to the proposed pile storage location on the north-western bank of the Clarence River (with owner approval), which would lessen impacts on Big River Way. An alternative option may include use of an additional barge for temporary storage of piles to avoid impacts on local roads during cane haul season (July to December).

Construction Noise levels

• Predicted noise levels for the works are expected to exceed the established EPAs construction noise management levels for various affected receivers depending on hours of work. Letterbox drops to residents are recommended for sensitive receivers within certain distances from the works site depending on working hours.


No significant impacts to any Matters of National Environmental Significance (MNES) listed in the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) will occur as a result of the proposal.

Other potential environmental impacts would be generally minor in nature. A variety of safeguards have been developed to minimise the risk and potential magnitude of potential impacts posed by the proposal to the environment. The proposal would have a number of positive environmental impacts, including improvements to road safety and prevention of future slips and further degradation of road surface.

Justification and conclusion

The remediation works on the South Arm River embankment are required to improve road safety.

With effective implementation of the safeguards and management measures of this REF, environmental impacts associated with undertaking the work would be minor. Unavoidable impacts required for the work are temporary and not substantial and would not significantly affect the local environment. Overall, the environment would benefit from the proposed restoration and remediation of the riverbank as road safety would be improved.

OFFICIAL

Table of contents

Exec	cutive summary	
1.	Introduction	12
1.1	Proposal identification	
1.2	Purpose of the report	
2.	Need and options considered	17
2.1	Strategic need for the proposal	
2.2	Limitations of existing infrastructure	
2.3	Proposal objectives and development criteria	
2.4	Alternatives and options considered	
2.5	Preferred option	
2.6	Design refinements	
3.	Description of the proposal	21
3.1	The proposal	21
3.2	Design	21
3.3	Construction activities	
3.4	Ancillary facilities	
3.5	Public utility adjustment	
3.6	Property acquisition	
4.	Statutory and planning framework	
4.1	Environmental Planning and Assessment Act 1979	
4.2	Other relevant NSW legislation	
4.3	Commonwealth legislation	
4.4	Confirmation of statutory position	
5.	Consultation	
5.1	Consultation strategy	
5.2	Community involvement	
5.3	Aboriginal community involvement	
5.4	TISEPP (previously ISEPP) consultation	
5.5	Government agency and stakeholder involvement	
5.6	Ongoing or future consultation	
6.	Environmental assessment	40
6.1	Biodiversity	
6.2		
0.2	Hydrology and flooding (surface water and groundwater)	
6.3	Hydrology and flooding (surface water and groundwater) Soils	

6.5	Noise and vibration	
6.6	Aboriginal cultural heritage	63
6.7	Non-Aboriginal heritage	64
6.8	Landscape character and visual impacts	64
6.9	Socio-economic	65
6.10	Air quality	
6.11	Waste and resources	
6.12	Other impacts	73
6.13	Cumulative impacts	
7.	Environmental management	
7.1	Environmental management plans (or system)	
7.2	Summary of safeguards and management measures	
7.3	Licensing and approvals	
8.	Conclusion	94
8.1	Justification	
8.2	Objects of the EP&A Act	
8.3	Conclusion	96
9.	Certification	97
10.	References	

Tables

Table 2.1: Weighted multi-criteria assessment	. 20
Table 4.1: Other relevant NSW legislation	.31
Table 5.1: Issues raised through TISEPP consultation	. 37
Table 6.1: Priority weeds within the site and relevant duty	.41
Table 6.2: Summary of tree and hollow replacement	.46
Table 6.3: Rainfall Data for Harwood Island (Harwood Island Sugar Mill) (1915-2022)	46
Table 6.4: Noise sensitive receivers located within the affected distance (760m) of project footprint	. 57
Table 6.5: Consultation with sensitive receivers	. 58
Table 6.6: Past, present and future projects	.74
Table 7.1: Summary of safeguards and management measures	.76
Table 7.2: Summary of licensing and approvals required	.93

Figures

Figure 1.1: Location of the proposal	14
Figure 1.2: The proposal	15
Figure 3.1: Ancillary Facilities	
Figure 6.1: Waste Stockpile	72

Appendices

Appendix A	Biodiversity Assessment Report
Appendix B	Geotechnical Detailed Design Report
Appendix C	NSW DPI Fisheries consultation and s199 comments
Appendix D	Consideration of Section 171 factors and matters of national environmental significance and Commonwealth land
Appendix E	Transport Procedure for Aboriginal cultural heritage consultation and investigation (PACHCI) and Native Title Consultation
Appendix F	Statutory consultation checklists
Appendix G	TISEPP 2021 (previously ISEPP 2007) Notification
Appendix H	Transport Construction Noise Estimator

1. Introduction

1.1 Proposal identification

Transport proposes to carry out remediation works to the shoulder and riverbank that has eroded away on a section of Big River Way (Old Pacific Highway), Tyndale (the Site). The site is located approximately 33.44km north of Grafton. The project site is approximately 100m in length and extends from the Big River Way into the Clarence River. The section of the roadside shoulder to be repaired is approximately 40m in length on the northbound lane, adjacent to the South Arm of the Clarence River. The works are required to stabilise the riverbank and improve safety along this section of Big River Way.

Key features of the proposal would include:

- Project set up including establishment of site compound and stockpile locations within close proximity to the site.
- Establish traffic controls in vicinity of site (to accommodate temporary restricted/closed lanes of Big River Way).
- Establish sedimentation and erosion controls on riverbank and within the waterway as required.
- Clearing of slip area including clearing of vegetation along slip restoration site to facilitate works.
- Piling works (from road and/or river) to stabilise slope area (detailed below).
- Repair/restoration of pavement shoulder of Big River Way.

The selected construction option seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

The following construction sequence is anticipated:

- 1. Set out piles in river.
- 2. Mobilise barge with a large excavator and displace existing rock fill and rock armour from the proposed pile footprint and obstructions to barge.
- 3. Mobilise a barge with pile driving rig to install the row of sheet piles or precast concrete piles. The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration would be given to hydraulic impacts (use of hammers rather than vibratory hammers).
- 4. Clear vegetation from riverbank to excavate terraces.
- 5. Lay and secure heavy duty geotextile.
- 6. Place rock fill and rock armour to slope commencing from behind the piles. Likely to require some rock fill to be placed from barge and/or a long reach excavator.
- 7. Extend concrete safety barrier.

Construction was expected to commence in September 2022 and be completed by September 2023, however there is some flexibility around start of construction (which may not commence until 2023) to accommodate the construction procurement process and potential for programming of work around predicted wet periods.

On site facilities for workers and stockpile sites will be provided, including use of an existing site compound established within the road reserve on the eastern side of Big River Way approximately 700 m north of the proposed works. A potential stockpile site for piles may be established within land on the opposite side (north-western) riverbank (land owner and approval to be confirmed).

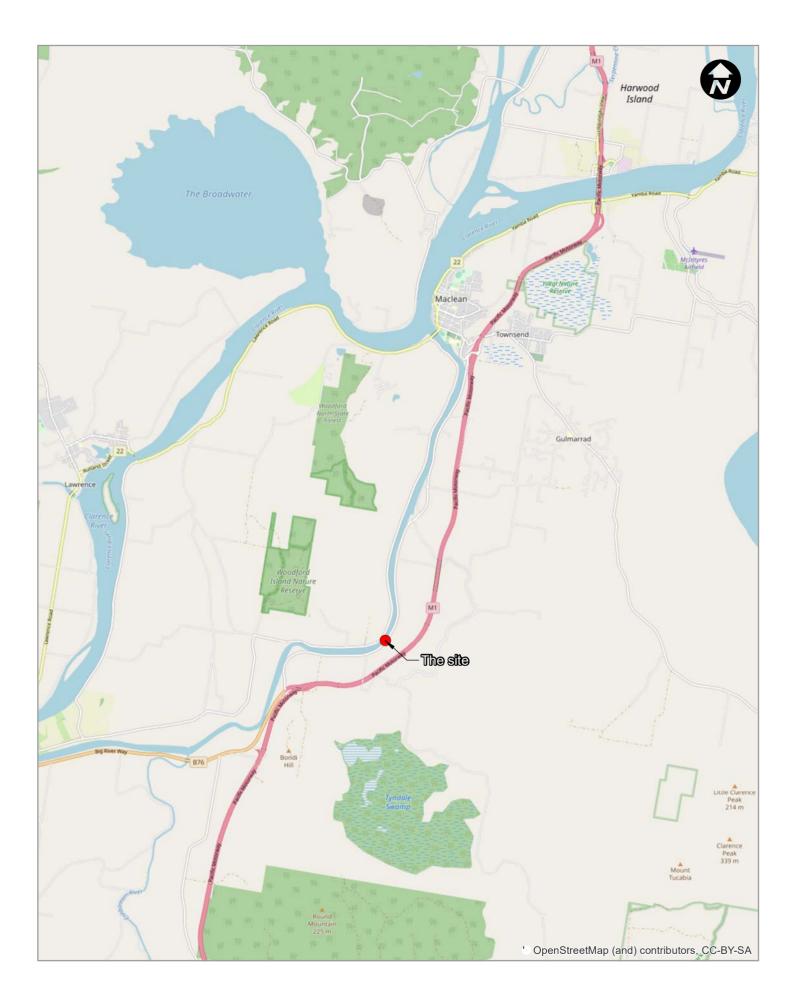

The location of the proposal is shown in Figure 1.1 and an overview of the proposal is provided in Figure 1.2. Chapter 3 describes the proposal in more detail.

Plate 1.1: Existing slip viewed from southern extent of the site showing headscarp profile

Plate 1.2: Existing slip viewed from the northern extent of the site showing headscarp profile

Location Of The Proposal - Illustration 1.1

Geo Byron S Lane Slip Stage V 4099-1009 Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: ECF Source of base data: OpenStreet Map Date: 20/10/2021

517700

517800

6732300

LEGEND

Survey limit New Byron Lane stage V slip Cadastre

30 Meters

Byron's Lane Slip Stage V 4099-1016

The Proposal - Illustration 1.2

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: ECF Source of base data: Department of Customer Services Date: 06/04/2022 Revision: A

1.2 Purpose of the report

This review of environmental factors (REF) has been prepared by GeoLINK on behalf of Transport Northern Region. For the purposes of these works, Transport is the proponent and determining authority under Division 5.1 of the *Environmental Planning and Assessment Act 1979 (NSW) (EP&A Act).*

The purpose of the REF is to describe the proposal, to document the likely impacts of the proposal on the environment, and to detail mitigation and management measures to be implemented.

The description of the proposed work and assessment of associated environmental impacts has been undertaken in the context of Section 171 of the Environmental Planning and Assessment Regulation 2021, the factors in *Is an EIS Required? Best Practice Guidelines for Part 5 of the EP&A Act (Is an EIS required?* guidelines) (DUAP, 1995/1996), *Roads and Related Facilities EIS Guideline* (DUAP 1996), the *Biodiversity Conservation Act, 2016 (BC Act*), the *Fisheries Management Act 1994* (FM Act), and the Australian Government's Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) (EPBC Act).

In doing so, the REF helps to fulfil the requirements of:

• Section 5.5 of the EP&A Act including that Transport examine and take into account, to the fullest extent possible, all matters affecting or likely to affect the environment by reason of the activity.

The findings of the REF would be considered when assessing:

- Whether the proposal is likely to have a significant impact on the environment and therefore the necessity for an environmental impact statement to be prepared and approval sought from the Minister for Planning under Division 5.2 of the EP&A Act.
- The significance of any impact on threatened species as defined by the BC Act and/or FM Act, in section 1.7 of the EP&A Act and therefore the requirement for a Species Impact Statement or a Biodiversity Development Assessment Report
- The significance of any impact on nationally-listed biodiversity matters under the EPBC Act, including whether there is a real possibility that the activity may threaten long-term survival of these matters, and if offsets are required and able to be secured.

The potential for the proposal to significantly impact any other matters of national environmental significance or Commonwealth land and the need, subject to the *EPBC Act* strategic assessment approval, to make a referral to the Australian Government Department of Agriculture, Water and the Environment for a decision by the Commonwealth Minister for the Environment on whether assessment and approval is required under the *EPBC Act*.

2. Need and options considered

2.1 Strategic need for the proposal

The proposed works occur along Big River Way, a state classified road, which provides an important transport route. It carries low volumes of traffic for a variety of vehicle types (regional freight vehicles, large passenger vehicles, light passenger vehicles and local traffic). A risk to road users exists as a result of the slip, which occurred after a significant rainfall event (declared natural disaster) in March 2021. Remediation works are required to repair the current slip, prevent further slips and improve road safety. Delaying the proposed remediation works may result in further slips and additional damage to the road pavement. This may then require major rehabilitation that is likely to involve a higher risk of negative environmental impacts, greater financial cost and lengthy delays for motorists.

The proposal is funded by a state road and natural disaster program and is expected to cost approximately \$4M for delivery.

Transport are responsible for managing road related transport infrastructure and providing safe and efficient access for the road network for the people of NSW. The proposal incorporates Transport's environment policy (2012), which states that:

Transport is committed to carrying out its business in an environmentally responsible manner by effectively identifying and managing any risks which may potentially impact the environment. Transport will take all reasonably practical steps to ensure there is continuous improvement in environmental performance, including ongoing communication and awareness raising, active reporting of environmental incidents and continuous learning from experience.

The proposal will be undertaken with low environmental impacts, and construction activities would be guided by the safeguards described in this REF.

2.2 Limitations of existing infrastructure

The slip along the riverbank means the shoulder along the edge of Big River Way is in a deteriorated condition and poses a risk to road safety. The proposed remediation works along the riverbank are required to stabilise the site and allow restoration of the pavement to the shoulder of Big River Way to meet current safety standards.

This section of the riverbank has a history of slip remediation projects and riverbank slope stability treatments have been required. This includes:

<u>Initial Slip</u>: approximately 60m of the riverbank including road verge, shoulder and 300mm of the north bound lane of the Pacific Highway (now Big River Way) slumped and fell into the Clarence River as a result of floods in mid-June 2009.

Stage I: the south bound lane of the Pacific Highway was moved to the east away from the existing slip site.

<u>Stage II</u>: restoration works to rehabilitate the original slip were completed in August 2009 however upon completion, the works slumped for a second time into the Clarence River.

<u>Stage III:</u> works involved sheet piling along the face of the slip in December 2009 to prevent further collapse of the riverbank and ensure that highway safety was maintained for the travelling public.

<u>Stage IV:</u> works involved installing 11m long timber piles along the toe of the slip scar and reinstating the riverbank between the piles and the slip with rock fill.

The last repairs completed were carried out in 2017. The current slip site (approximately 40m long) is located directly north (downstream) of the stage IV rock fill and piling work slip site.

When first investigated the slip headwall scarp was up to 2.5m high and about 6m from the edge line. A formed concrete barrier is between the scarp and the edge line of the Big River Way for part of the slip. The scarp is about 1m inside the guard rail/edge of formation. The slip scarp is continuing to increase in height as the slip creeps (daily showers are likely contributing to continued slip movement).

The rock fill for the original slip extends about 6m into the river channel from the riverbank. The failed slope adjacent to the original Byrons Lane slip has angular rock on the surface. The riverbank was either covered in rock for scour

protection or rock fill has been placed at some time in the past. The tree and vegetation cover suggests this pre-dates the rock fill for the original Byrons Lane Slip. The current slip site consists of approximately 0.27ha of PCT 1235 and 4 swamp oak trees over 10cm diameter at breast height (DBH).

The riverbank that has not failed downstream of the current site has a near vertical riverbank about 1.5-2m high with leaning trees and local undermining from river scour and tidal action. At the top of the bank is a 3-4m wide low angle terrace. From the terrace, the riverbank rises about 3-4m at 20-30 degrees to the road level. This is likely part fill and part natural slope. Guardrail is at the top of the slope. The shoulder is wide, up to 6m, due to shifting of the road as part of work for the original Byrons Lane Slip.

At low tide, there appears to be some rock at the toe of the riverbank. There appears to be a small shelf. It is assumed the riverbank drops steeply offshore of the riverbank based on the channel morphology in front of the original Byrons Lane Slip.

2.3 Proposal objectives and development criteria

2.3.1 Proposal objectives

The objectives of the proposal include:

- Stabilise the bank of the South Arm River associated with the proposal to prevent further erosion along the edge of Big River Way;
- Restore the riverbank profile;
- Restore the pavement to the shoulder of Big River Way;
- Undertake works to minimise traffic, environmental, social impacts; and
- Ensure Big River Way remains a safe and trafficable transport route.

2.3.2 Development criteria

The development criteria for the proposal include:

• Transport Technical Directions and Specifications.

2.3.3 Urban design objectives

Transport is committed to adopting an urban design approach suitable for all TfNSW transport infrastructure. Urban design has been integrated into the process of developing and designing the proposal with the following objectives:

- Contribute to the accessibility and connectivity of communities.
- Contribute to the overall quality of the public domain for the community.
- Promote road safety through integrated urban design.

2.4 Alternatives and options considered

2.4.1 Methodology for selection of preferred option

Four concept slope remediation options were designed to achieve a minimum design life of 50 years, a long-term slope stability factor of safety of at least 1.3 and short-term slope stability factor of safety of at least 1.2.

These options were considered against the following weighted criteria:

- A. Technical Merit/Design (30%)
- B. Construction (20%)
- C. Environment (20%)
- D. Community Impacts During Construction (10%)
- E. Price/Costing components (20%)

2.4.2 Identified options

Option 1A: Cantilever Sheet Pile Wall

Concept Option 1A seeks to retain the road embankment by installing a row of cantilevered steel sheet piles along the alignment of the existing slip headscarp. The approximate length of the wall is 42m and comprises AZ46-700N sheet piles, at least 16m in length, embedded within the stiff clays.

Option 1B: Anchored Sheet Pile Wall

Concept Option 1B seeks to retain and regain the failed embankment by installing a row of sheet piles on the riverside of the headscarp, through the slip. In this location, the sheet piles are supporting weak, slumped slip materials and are expected to require a row of anchors of the bars to control displacements.

The concept design is a 40m long sheet piled retaining wall comprising approximately 12m long sheet piles. A second row of deadman sheet piles (5m long) are proposed to be located on the opposite side of the road, positioned to avoid buried services (Telstra and water main). A row of steel tie bars anchors the retaining wall to the deadman via horizontal water beams.

Option 2: Contiguous Pile Wall

Concept Option 2 seeks to retain the embankment by installing a row of contiguous piles. The piles are proposed to be installed using continuous flight auger (CFA) drilling rig. Alternatively driven steel tubular piles (possibly interlocked) may be installed and the upper 7m to 10m could be excavated and replaced with reinforced concrete for durability.

The approximate length of the wall is 42m and comprises 750mm diameter piles at close (1200mm to 1400mm) centres. The piles are supposed to be positioned approximately 1.5m back from the existing headscarp, primarily to allow the piles to be installed without further temporary stability or casing requirements. The headscarp is proposed to be battered and rock armoured.

Option 3: Shear Piles and Rock Fill

Concept Option 3 is similar to the adjacent, previous slip remediation. It seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

Option 4: Gabion Wall and Piled Foundation

Concept Option 4 seeks to retain the road embankment with a gabion basket retaining wall founded on a piled raft footing. Two rows of precast, driven, reinforced concrete piles are proposed to be installed and connected to a reinforced concrete pad footing. The gabion baskets to be founded on the concrete raft footing construction on top of the piles. Temporary battered excavations are required to facilitate the construction of the reinforced concrete footing and gabion baskets.

2.4.3 Analysis of options

A weighted multi-criteria assessment was undertaken to compare the four concept slip remediation options within the Geotechnical Interpretive and Design Options Report (refer to **Appendix B**). The assessment criteria and weightings were adopted from other TfNSW slope remediation projects and include design, construction, environmental, community and costing components. The criteria weightings range from 10% to 30% and the criteria score range from 1 (Very poor) to 5 (Excellent).

Table 2.1 presents a summary of the comparative assessment.

Criteria		Technical	Merit	Construc	tion	Environme	nt	Communit	у	Price	Total
Descriptions	Score (1-5)	Design Life/ Durability (15%)	Stability (15%)	to life	Construct- ability (10%)	Impacts/ Footprint (10%)	Long term including visual (10%)	Duration (5%)	Road Closures (5%)	Relative Construction Cost (Estimate) (20%)	
Option 1A – Cantilever Sheet Pile	Score	3	5	4	5	2	2	5	4	3	-
Wall	% of Score	0.45	0.75	0.4	0.5	0.2	0.2	0.25	0.2	0.6	3.55
Option 1B – Anchored Sheet Pile Wall	Score	3	5	3	4	3	2	3	2	2	-
	% of Score	0.45	0.75	0.3	0.4	0.3	0.2	0.15	0.1	0.4	3.05
Option 2 – Contiguous Pile Wall	Score	5	5	3	4	2	3	3	3	3	-
	% of Score	0.75	0.75	0.2	0.4	0.2	0.3	0.15	0.15	0.6	3.5
Option 3 –	Score	4	5	2	3	4	4	2	3	4	-
Shear Piles and Rock Fill	% of Score	0.6	0.75	0.2	0.3	0.4	0.4	0.1	0.15	0.8	3.7
Option 4 – Gabion Wall and Piled Foundation	Score	4	5	2	2	3	3	2	3	1	-
	% of Score	0.6	0.75	0.2	0.2	0.3	0.3	0.1	0.15	1	3.6

Table 2.1: Weighted multi-criteria assessment

2.5 Preferred option

The preferred Option 3 – The Proposal – has been selected to meet the proposal objectives whilst best balancing the impacts of the Proposal.

Option 3 was selected as the preferred option as it scored the highest when evaluated using weighted multi-criteria analysis. Option 3 satisfies the objectives of the proposal and is expected to achieve the highest design life, with 50 – 100-year design life expected depending on type of shear piles. The construction method requires both overwater and land-based construction. Option 3 is considered a relatively higher risk option due to working over water, and has identified other risks including; existing rock fill in the river obstructing pile driving; excavation in the riverbed; maneuvering the barge to enable installation of piles above high tide level and environmental contamination from earthworks. Although the proposal will have a relatively large disturbance footprint associated with rock fill and rock armour treatment, it is considered to have positive environmental impacts as it seeks to restore lost riverbank. Community impacts are relatively minor with single northbound lane closure expected for estimated 4 weeks. The relative construction cost estimate has Option 3 as the second cheapest option.

The objectives of the EP&A Act encourage Ecologically Sustainable Development (ESD). The 'integration' principle of ESD requires the integration of economic, social development and environmental considerations into the decision-making process for all developments. These factors are consistent with the preferred options for the proposal.

2.6 Design refinements

The 80% Geotechnical Detailed Design Report prepared by SMEC considered the detailed design for the preferred shear pile and rock fill solution. The detailed design considered alternate shear pile options comprising of either steel or precast concrete, and was assessed in relation to durability and constructability. Transport advised SMEC of the preferred steel pile type. The 100% Geotechnical Detailed Design Report was prepared (refer to **Appendix B**) which provided the structural detailing and finalisation of construction drawings.

3. Description of the proposal

3.1 The proposal

Transport proposes to carry out remediation works on the Clarence River embankment to repair the slip that occurred as a result of a significant rainfall event (declared natural disaster) in March 2021. The site is located approximately 33.44km north of Grafton. The location of the proposal is shown in Figure 1.1 and an overview of the proposal is shown in Figure 1.2.

Key features of the proposal include:

- Project set up including establishment of site compound and stockpile locations within close proximity to the site.
- Establish traffic controls in vicinity of site (to accommodate temporary restricted/closed lanes of Big River Way).
- Establish sedimentation and erosion controls on riverbank and within waterway (i.e. silt boom) as required.
- Clearing of slip area including clearing of vegetation along slip restoration site to facilitate works.
- Piling works (from road and/or river) to stabilise slope area.
- Repair/restoration of pavement shoulder of Big River Way.

The selected construction option seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

The following construction sequence is anticipated:

- 1. Set out piles in river.
- 2. Mobilise barge with a large excavator and displace existing rock fill and rock armour from the proposed pile footprint and obstructions to barge.
- 3. Loading of piles from opposite riverbank onto ferry and transportation of piles to barge. Mobilise a barge with pile driving rig to install the row of sheet piles or precast concrete piles. The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration should be given to hydraulic impacts (e.g. hammers rather than vibratory hammers).
- 4. Clear vegetation from riverbank to excavate terraces.
- 5. Lay and secure heavy-duty geotextile.
- 6. Place rock fill and rock armour to slope commencing from behind the piles. Likely to require some rock fill to be placed from barge and/or a long reach excavator.
- 7. Extend concrete safety barrier.

Construction was expected to commence in September 2022 and be completed by September 2023, however there is some flexibility around start of construction (which may not commence until 2023) to accommodate the construction procurement process and potential for programming of work around predicted wet periods.

On site facilities for workers and stockpile sites will be provided, including use of an existing site compound established within the road reserve on the eastern side of Big River Way approximately 700 m north of the proposed works. A potential stockpile site for piles may be established within land (owner to be confirmed) on the opposite side (north-western) riverbank.

3.2 Design

3.2.1 Design criteria

The works would be carried out in accordance with:

Transport Technical Directions and Specifications

3.2.2 Engineering constraints

The main engineering constraints related to the proposal are:

• Potential acid sulfate soils.

- Flooding impacts (during and post construction).
- Working within waterways (Clarence River).
- Minimising disruptions to motorists, residents and local businesses.

3.2.3 Major design features

Major design feature 1 - Reinforced concrete shear piles with rock fill and armour

The proposal seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower river bank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

3.3 Construction activities

3.3.1 Work methodology

The proposal would involve the following indicative methodology:

The sequence of construction steps may change, however, will generally be as follows:

Initial Project set-up and cleaning of slip area

- Locate all services (including communication and potentially life-threatening services such as electrical, gas, fuel, etc.) and have current dial before you dig (DBYD) plans on site at all times.
- Establish on site facilities and a site compound within the road reserve on the eastern side of the Pacific Highway approximately 700 m north of the proposed works. Potential stockpile site for piles may be established land (owner and approval to be confirmed) on the opposite side (north-western) riverbank.
- Establish traffic control management in accordance with an approved traffic control guidance plan.
- Establish sedimentation and erosion controls on river embankment as required.
- Remove weeds and native regrowth along the proposed slip restoration site.
- Poison weeds at identified sites prior to removal and mulching to ensure mulch material reused at site is inert.
- Cut select trees to stump level as required for access for riverbank remediation using a cut and grab excavator located on the temporary closed road travel lane. This is to reduce weight on the batter and gain access to the slope.
- Vegetation will be placed in the tree mulcher located on the closed travel lane and either temporarily stockpiled for reuse onsite or taken to an alternative site for re-use or disposed of at a licenced waste facility. Any mulch reused on site would be to aid regeneration of the top of the bank; the mulch is to be spread at no more than 100mm thick across the top of the bank.
- Loose material and slip debris to be removed from slip (no excavation below current surface level). This material is to be taken to the site compound/temporary stockpile area for treatment if required and then disposed of at a licensed waste facility.

Piling Construction Sequence

- Set out piles in river.
- Assemble and launch a barge from closest suitable external site to be ferried to site with a large excavator to excavate and displace existing rock fill and rock armour from the proposed pile footprint and obstructions to barge.
- Float barge to work zone by towing behind a suitable boat and anchored in place.
- Ensure navigation lights and waterway markers are in place and operational.
- Establish a floating sedimentation and control boom and attached silt curtain around barge and proposed area of disturbance to isolate the works site. The silt curtain would be weighted to the bed and secured to accommodate tidal flow.
- Mobilise a barge with pile driving rig to install the row of sheet piles or precast concrete piles. Loading of piles from opposite riverbank onto ferry and transportation of piles to barge. The stability of the site and adjacent

Transport for NSW

riverbanks may be sensitive to vibrations and consideration should be given to hydraulic impact hammers rather than vibratory hammers.

- Clear vegetation from riverbank and excavate terraces.
- Lay and secure heavy-duty geotextile.

Restoration of Riverbank profile

- Install access from road (existing disturbed areas) to the lower bank and river adjacent to the identified slip area.
- Assemble and launch a barge from closest suitable external boat ramp site approved by the Transport Local Environmental Officer, float to slip area and anchor.
- Install floating boom(s) around slip area within river.
- Place rock fill and rock armour to slope commencing from behind the piles. Likely to require some rock fill to be placed from barge and/or a long reach excavator. Rock material to be stockpiled and washed for fines at site compound (or on opposite riverbank) before being delivered directly for use and placed on site. There would be no stockpiling of incoming rock material on site. As required, establish northbound lane closure of Big River Way with approved traffic control management plan.

Restoration of Big River Way Pavement

- Patch out/repair areas of pavement shoulder that have suffered distress due to the loss of formation support.
- Repair and/or extend existing concrete safety barriers.

Site Disestablishment

- Remove onsite facilities and disestablish site compound/stockpiles located 700m north of site and potential stockpile area on opposite side of the riverbank.
- Site remediation to remove waste, compounds and conduct rehabilitation of areas impacted.

3.3.2 Construction workforce

The proposed works would take approximately 14 months and over that time the workforce required for construction of the project is likely to fluctuate through the various phases of the project depending on the activities. The workforce would likely consist of a combination of Transport employees and various contractors/subcontractors. This will not result in a significant influx of workers to the local area, however it could provide some modest short term economic stimulus for the locality.

3.3.3 Construction hours and duration

Construction was expected to commence in September 2022 and be completed by September 2023, however there is some flexibility around start of construction (which may not commence until 2023) to accommodate the construction procurement process and potential for programming of work around predicted wet periods.

The proposed works would generally be undertaken during the hours detailed below:

Monday – Friday	7:00 am to 6:00 pm
Saturday:	7:00 am to 6:00 pm (note extended working hours)
Sunday and Public Holidays:	No work

However, work may be undertaken outside of the working hours on weekends or nights to minimise traffic impacts on the community. If it is determined that work outside the nominated hours is required, an assessment would be undertaken to determine the safeguards and mitigations required.

Noisy works will be undertaken in accordance with RMS "Construction Noise and Vibration Guideline" (August 2016).

3.3.4 Plant and equipment

The main equipment and plant that would be used for the proposal would include, but is not limited to, the following:

- Low loader.
- Excavators.
- Tipper trucks.
- Light vehicles for staff movement to and from site.
- Traffic control devices.
- Small plant items (chain saw, mulch head, chipper, and generators).
- Concrete agitator trucks and pump.
- Earthworks heavy plant items.
- Construction rollers.
- Road broom.
- Bitumen spray truck.
- Punt/boat to ferry staff to riverbank/check environmental controls
- Tree mulcher

Additional items dependent on Geotechnical Engineering Design include:

- Piling rig (to be determined)
 - Continuous flight auger (CFA) drilling rig
 - Sheet pile
- Barges (to be determined)
- Cranes (to be determined)

3.3.5 Earthworks

Earthworks would include:

- Riverbank disturbance when burying barge anchor points for restoration of riverbank profile;
- Remove slumped rock materials from riverbed and replace into slip area; and
- Place rock and fill for restoration of slip area.

3.3.6 Source and quantity of materials

Rock within the vicinity of the slip would be retrieved and reused onsite. Road base, gravel or rock would be sourced locally from licensed bulk landscape suppliers or quarries where possible. Timber concrete, steel and all other materials would be commercially sought, certified uncontaminated and environmentally safe.

3.3.7 Traffic management and access

Traffic will be managed according to the Transport *Traffic Control at Work Sites Manual Version 6.1* (TfNSW February 2022). A site-specific Traffic Management Plan (TMP) will be prepared detailing the specifics of the site and any hazards and constraints. Work would not begin until the plan is approved and strategies to manage traffic within and around the work site are in place.

Access to and from the site occurs primarily along Big River Way, with additional access gained by boat or barge from the South Arm of the Clarence River. The proposed works would generate increased traffic associated with road closure, work crews and material delivery within the locality during standard construction hours. Over the construction period, minor delays would be experienced by traffic along this stretch of Big River Way.

Traffic impacts may also occur on South Arm Road on Woodford Island as a result of deliveries of piles made to the potential pile stockpile site located on the north-western bank of the Clarence River (with owner approval). Piles would then be ferried across the river to the site.

These roads are used by trucks hauling harvested cane during cane haul season (July to December), and the Traffic Control Plan will need to take this into consideration. As an alternative, an additional barge may be used as temporary storage of piles to avoid impacts on the local roads during cane haul season.

The piling works will occur along the bank of the South Arm of the Clarence River associated with the site and would be undertaken from the roadway and from a barge. There may be some impacts on maritime traffic in this waterway but should be easily managed with appropriate safeguards given the width of the navigable channel in this location.

Traffic management issues identified include:

• Single northbound land closure expected.

Traffic control measures would include:

- Temporary lowering of speed limit to 40km/hour;
- Temporary stop/go controls; and
- Temporary one lane alternating flow (periodically).

3.4 Ancillary facilities

On site facilities for workers will be provided and a site compound/stockpile area would be established within the road reserve on the eastern side of Big River Way approximately 700m north of the proposed works on Lot 182 DP 808610 (refer to Plate 3.1 and **Figure 3.1**). The subject lot including the hardstand is a Transport Admin site (usage – 'stockpile site'). This area has been used for a site compound during previous maintenance work undertaken by Transport. No native vegetation clearing would be required to establish/operate this ancillary facility.

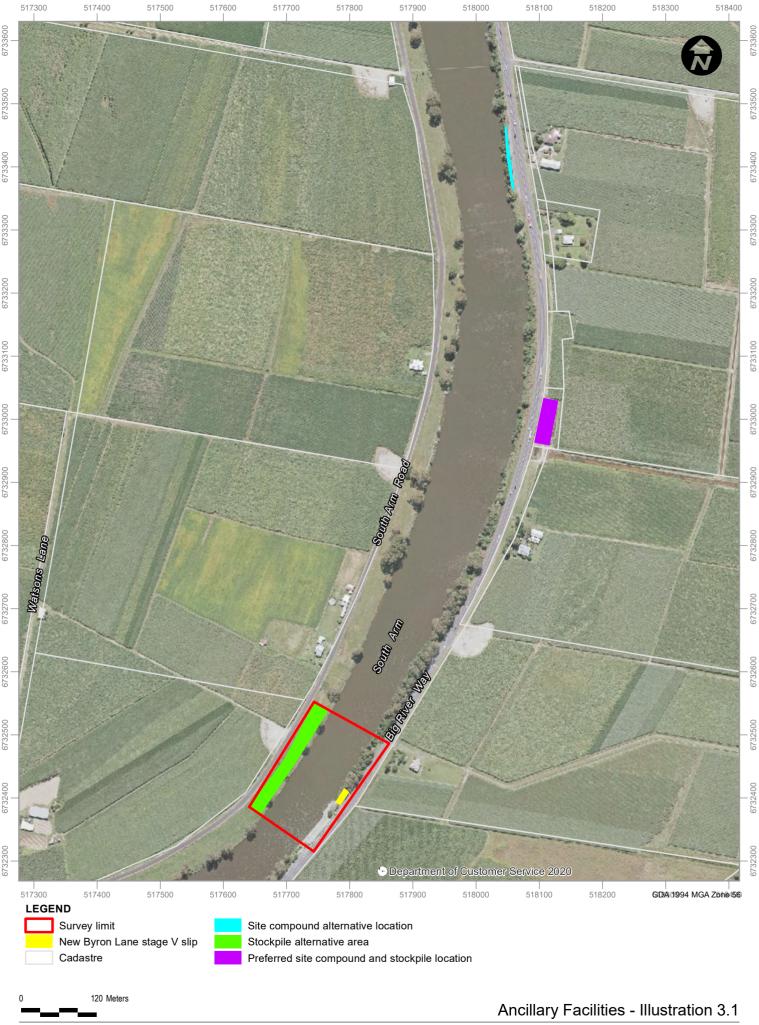
Plate 3.1: Designated site compound/stockpile site 700m north of works site

Possible stockpiling at this compound site may be undertaken of the following materials:

- Vegetation/mulch (small amounts).
- Excavated material (small amounts).
- Construction materials.
- Rock material
- Untreated and treated Acid Sulfate Soils.

As the compound site is located on flood liable land, the site would be vacated when floods are forecast and a flood contingency plan detailing how materials would be removed in the event of a flood would be included in the Construction Environmental Management Plan (CEMP).

This compound site is currently being used for Transport's Culvert upgrade project at Lee's Drain. If the Lee's Drain project is still requiring use of this compound when construction for the Byrons Slip Stage V project commences, an alternative site compound can be established in an area of road reserve on the northbound side of Big River Way, approximately 1km north of the slip site, and 150m south of Norley's Lane (refer to Plate 3.2 and **Figure 3.1**).


Plate 3.2: Alternative site compound available approximately 1km north of slip site within road reserve of Big River Way

An additional stockpile site for piles may be established on land on the opposite (north-western) side of the riverbank to allow the piles to be ferried across the river to site (refer to Plate 3.3 and **Figure 3.1**). Land owner details and approval is to be confirmed.

Plate 3.3: Potential stockpile site for piles within land (owner to be confirmed and consent required) on western riverbank adjacent to South Arm Road, opposite slip site.

Stockpiles would be managed in accordance with Transport's Stockpile Site Management Guideline (EMS-TG-10) and the QA Specification R44 – Earthwork. Ancillary sites may be required for up to fourteen months from the commencement of construction.

Byron's Lane Slip Stage V 4099-1025 Information shown is for illustrative purposes only Drawn by: AB Checked by: SDS Reviewed by: DGH Source of base data: Department of Customer Services Date: 18/10/2022

3.5 Public utility adjustment

The following utilities are associated with the site:

- Overhead powerlines.
- Underground water main.
- Underground communications (Telstra).

Prior to construction commencing, pot holing of underground utilities would be undertaken and location of all services. Public utilities would be adjusted where necessary prior to construction commencing.

The proposed works are not likely to impact on Council's active water main located along the eastern side of Big River Way. An old water main may be contained in the slumped material within the slip area on the eastern side, which will need to be removed from site and disposed of to a licensed facility. Clarence Valley Council has advised the old water main is a 150mm pipe containing asbestos.

The proposed works relating to the slip are not expected to impact on existing overhead powerline infrastructure located on the eastern side of Big River Way.

3.6 Property acquisition

No property acquisition is required for the proposal.

4. Statutory and planning framework

This chapter provides the statutory and planning framework for the proposal and considers the provisions of relevant state environmental planning policies, local environmental plans and other legislation.

4.1 Environmental Planning and Assessment Act 1979

4.1.1 State Environmental Planning Policies

State Environmental Planning Policy (Transport and Infrastructure) 2021

State Environmental Planning Policy (Transport and Infrastructure) 2021 (TISEPP) (previously *State Environmental Planning Policy (Infrastructure) 2007 (ISEPP))* aims to facilitate the effective delivery of infrastructure across the State, including roads and road infrastructure facilities.

Section 2.108 of TISEPP (previously Clause 94 of *ISEPP 2007*) permits development on any land for the purpose of a road or road infrastructure facilities to be carried out by or on behalf of a public authority without consent.

As the proposal is appropriately characterised as development for the purposes of road or road infrastructure facilities and is to be carried out by or on behalf of Transport for NSW, it can be assessed under Division 5.1 of the Environmental Planning and Assessment Act 1979 (NSW). Development consent from council is not required.

The proposal is not located on land reserved under the *National Parks and Wildlife Act 1974* and does not require development consent or approval under *State Environmental Planning Policy (Resilience and Hazards) 2021, State Environmental Planning Policy (Planning Systems) 2021 or State Environmental Planning Policy (Precincts - Regional) 2021.*

Part 2.2 of TISEPP (previously Part 2 of *ISEPP*) contains provisions for public authorities to consult with local councils and other public authorities prior to the commencement of certain types of development. Consultation, including consultation as required by *TISEPP* (where applicable), is discussed in chapter 5 of this REF.

State Environmental Planning Policy (Biodiversity and Conservation) 2021 - Chapter 3 Koala habitat protection (previously State Environmental Planning Policy - Koala Habitat Protection (2020)

Chapter 3 of State Environmental Planning Policy (Biodiversity and Conservation) 2021 aims to encourage the conservation and management of natural vegetation areas that provide habitat for Koalas, to ensure permanent freeliving populations would be maintained over their present range. Section 3.5 states this Part applies to land 'in relation to which a development application has been made'. However, Section 2.108 of TISEPP (previously Clause 94 of ISEPP) precludes the proposal from requiring consent therefore this part of the SEPP does not apply to the proposal. It is Transport policy, however, to consider environmental issues relating to their work to the fullest extent possible, including impacts on Koalas.

This chapter defines potential koala habitat as areas of native vegetation where trees of the types listed in Schedule 1 constitute at least 15 per cent of the total number of trees in the upper or lower strata of the tree component. Forest Red Gum and Tallowwood are both Schedule 2 trees (total of five trees). However, these tree species make up well below <15% of trees at the site. Furthermore, given that only a very small area of fragmented habitat occurs at the site and that Koala records in the study area are scarce the site is not considered to be core Koala Habitat. No further consideration of the policy is required.

State Environmental Planning Policy (Primary Production) 2021 - Chapter 2 Primary production and rural development (previously State Environmental Planning Policy (Primary Production and Rural Development) 2019)

Chapter 2 of State Environmental Planning Policy (Primary Production) aims to facilitate the orderly and economic use and development of rural lands for rural and primary production purposes. Part of the objectives relates to the maintenance of the social, economic and environmental welfare of the state and the reduction of land use conflicts and support for primary production.

The proposal would not impose any significant impacts to local agricultural land or primary production.

4.1.2 Local Environmental Plans

Clarence Valley Local Environmental Plan 2011

The proposal is located on land governed by the Clarence Valley Local Environmental Plan (LEP) 2011, where the following zones apply:

- RU1 Primary Production.
- SP2 Infrastructure.
- W2 Recreational Waterways.

The proposal is not inconsistent with, nor would it hinder the objectives of these zones.

The proposal is precluded from requiring development consent under Section 2.108 of TISEPP (previously Clause 94 of the ISEPP).

In addition, the Clarence Valley LEP 2011 includes a mapping layer which indicates the site is in a flood planning area. The potential impacts and safeguards for flooding are discussed further in Section 6.2 of this REF. The Clarence Valley LEP 2011 includes a mapping layer which indicates the site contains acid sulfate soils. The potential impacts and safeguards for acid sulfate soils are discussed further in Section 6.3 of this REF.

4.2 Other relevant NSW legislation

Table 4.1 lists other NSW legislation relevant to the assessment of the proposal and provides comment on implications for the proposal.

Legislation	Section(s)	Comment
Crown Lands Management Act 2016		The South Arm of the Clarence River is Crown reserve. Transport's use and occupation of Crown reserve within the project footprint and the full width of the river from the slip site to the north western embankment for access to pile storage area, can proceed with notification to DPI's Crown Land Division under s175 Roads Act 1993. Notification (at least 7 days written notice prior to start of activity) should include environmental approvals/the determined REF. A copy of landowner's consent to be provided with s199 referral request (below).
Fisheries Management Act 1994	Sections 199	The proposed slope remediation and piling works will occur within the South Arm of the Clarence River. The installation will be done from land and over water (using a barge). The proposal consists of works within a waterway (including dredging and reclamation works) and as such written notification (s199 referral request) which will include a copy of the final REF, to the Minister for Agriculture and Western NSW is required, a minimum of 28 days prior to the start of work.
		A s199 referral request was made on 9 June 2022. A response with comments was received from NSW DPI Fisheries on 20 July 2022 (refer to Appendix C), which are to be included in the construction environmental management plan (CEMP).
Fisheries Management Act 1994	Schedules 4, 4A, 5 and 6	The proposal is considered unlikely to have a significant impact on any threatened aquatic species or communities listed under Schedules 4, 4A, 5 and 6 of the FM Act.
Heritage Act 1977		There are no heritage items at or near the site. The proposal is considered unlikely to have any impact on the nearest heritage item, which is a locally listed 'Pioneers Memorial' (Item 350) situated approximately 1.5 km away to the east.
National Parks and Wildlife Act 1974	Sections 87(1), 90	The provisions of the Act are unlikely to be triggered by the proposal. Aboriginal heritage investigations found that the proposal is unlikely to have an impact on Aboriginal heritage.

Table 4.1: Other relevant NSW legislation

Legislation	Section(s)	Comment
		Work would cease if an artefact or place of significance is disturbed or encountered during the proposal and the appropriate Local Aboriginal Land Council (LALC) and OEH Cultural Heritage Division notified immediately.
Biosecurity Act 2015		In NSW, the administration of weed control is the responsibility of the Minister for Primary Industries under the <i>Biosecurity Act</i> <i>2015</i> . The Act is implemented and enforced by the Local Control Authority for the area, usually local government or NSW Agencies. Transport are therefore required to control declared weeds on land under their control.
		A search of the WeedWise database (30/09/2021) within the Clarence Valley LGA control area identified 137 priority weed species. Two of these were observed on-site (Fireweed and Lantana). The mitigation measures in place as part of this REF are consistent with the aims and objectives of the Biosecurity Act.
		With the adoption of standard hygiene measures for plant and associated equipment (including barges) during construction, it is unlikely that pathogens or diseases (terrestrial and aquatic) would be introduced to the site.
Protection of the Environment Operations Act 1997		No Protection of the Environment Policies (PEPs) are relevant to the proposal. No licenses would be required pursuant to the <i>Protection of the Environment Operations Act 1997.</i> Transport and/or contractors working on behalf of Transport are required to notify NSW Environment Protection Authority (EPA) when a 'pollution incident' occurs that causes or threatens material harm to the environment.
Protection of the Environment Operations Act 1997	Section 115	It is an offence to negligently dispose of waste in a manner that harms the environment. Waste would be managed in accordance with the <i>Waste Avoidance and Resource Recovery Act 2001</i> . The proposal would aim to reduce the environmental impact of dumping waste and include mechanisms to recover resources and reduce the production of waste where possible.
Protection of the Environment Operations Act 1997	Section 120	It is an offence to pollute any waters of the State. The REF includes safeguard and mitigations measures to ensure that the proposal does not result in pollution of waters.
Protection of the Environment Operations Act 1997	Section 143	A signed s.143 Notice must be submitted prior to transporting waste generated by or for Transport to a place that is not owned or managed by Transport and is not a licensed landfill or resource recovery facility.
		Any stockpiling of material generated from the construction works within private property requires a section 143 notice under the POEO Act. This does not apply to the temporary storage of materials that are purchased for construction purposes (e.g. piles, clean rock, etc.)
		The proposal does not require disposal of waste to a place that is not owned or managed by Transport or is not a licensed landfill or resource recovery facility.
Biodiversity Conservation Act 2016	Section 7.8	For Part 5 activities, the Biodiversity Offset Scheme (BOS) thresholds of the BC Act do not apply. Proponents must instead apply the test of significance (as required). If this results in a decision that the activity will significantly affect threatened species, then:
		 a Species Impact Statement is required (with concurrence from OEH); or the proponent may instead 'opt in' to the BOS.

Legislation	Section(s)	Comment
	Schedules 1, 1A, 2 and 3	 Section 7.3 of the BC Act requires a test of significance ('five-part test') for determining whether a proposed development or activity is likely to significantly affect threatened species or ecological communities, or their habitats. Schedules of threatened species and communities were reviewed and are unlikely to be significantly impacted upon by the proposal (refer to Section 6.1). An Assessment of Significance (Five-part test) was completed (refer to Appendix A) for relevant species. The proposal would incrementally contribute to the Key Threatening Process (KTP) of Anthropogenic Climate Change, through the generation of carbon dioxide during operation of machinery and vehicles and associated fuel consumption.
Water Management Act 2000	Section 91 (2)	Work within water lands or those comprising of extraction or management of water may be subject to approval if they constitute a 'controlled activity'. Transport is, however, exempt from the need to obtain a Controlled Activity Approval. The proposal is located within water lands and does not involve the extraction or management of water. If Transport decide to extract water from waterways, a permit under S56 of the Act would be required.
State Environmental Planning Policy (Biodiversity and Conservation) 2021 - Chapter 2 (previously State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017)	Part 2.2 Clearing vegetation in non-rural areas (previously Part 2 Authority to clear vegetation in non-rural areas)	 This SEPP applies (as applicable) to clearing vegetation in non-rural areas/zones of the State, including environmental zones, not associated with a Development Application. Section 2.7 (previously Clause 8) outlines clearing that does not require authority under this Policy, including: (1) A permit or approval to clear vegetation is not required under this Chapter if it is clearing of a kind that is authorised under the Local Land Services Act 2013, section 600 or Part 5B. On this basis and according to Clause 600 of the LLS Act (refer below), and given the Proposal is Part 5 Activity, any vegetation clearing is authorised by way of compliance with that part of the EP&A Act and authority under the Vegetation SEPP is not required.
Local Land Services Act 2013	Part 5A Land Management (native vegetation)	 Provisions of the Act apply to clearing native vegetation in rural parts of the State and also contains provisions with regard to clearing that is authorised under other legislation. Pursuant to Section 600 (<i>Clearing authorised under other legislation</i>) the following is applicable: (b) Other planning authorisation - The clearing was: (ii) an activity carried out by a determining authority within the meaning of Part 5 of that Act after compliance with that Part, or (iii) authorised by an approval of a determining authority within the meaning of Part 5 of that Act granted after compliance with that Part. As the Proposal is a Part 5 Activity, vegetation clearing is authorised by way of compliance with that part of the EP&A Act.

4.3 Commonwealth legislation

4.3.1 Environment Protection and Biodiversity Conservation Act 1999

Under the *EPBC Act*, a referral is required to the Australian Government for proposed actions that have the potential to significantly impact on matters of national environmental significance or the environment of Commonwealth land. These are considered in **Appendix D** and chapter 6 of the REF.

A referral is not required for proposed road activities that may affect nationally-listed threatened species, endangered ecological communities and migratory species. This is because requirements for considering impacts to these biodiversity matters are the subject of a strategic assessment approval granted under the *EPBC Act* by the Australian Government in September 2015.

Potential impacts to these biodiversity matters are also considered as part of chapter 6 of the REF and Appendix A.

Findings - matters of national environmental significance (refer to Appendix D)

The assessment of the proposal's impact, on matters of national environmental significance and the environment of Commonwealth land, found that there is unlikely to be a significant impact on relevant matters of national environmental significance or on Commonwealth land. Accordingly, the proposal has not been referred to the Australian Government Department of Agriculture, Water and the Environment under the *EPBC Act*.

4.3.2 Other relevant Commonwealth legislation

Native Title Act 1993

The *Native Title Act 1993* recognises and protects native title. The Act covers actions affecting native title and the processes for determining whether native title exists and compensation for actions affecting native title. It establishes the Native Title Registrar, the National Native Title Tribunal, the Register of Native Title Claims and the Register of Indigenous Land Use Agreements, and the National Native Title Register. Under the Act, a future act includes proposed public infrastructure on land or waters that affects native title rights or interest.

A search of the <u>Native Title Tribunal Native Title Vision</u> website was undertaken, with one Native Title holders/claimants identified. South Arm is within the determination area of Yaegl People #2 (Tribunal File No NCD2015/003).

The portion of the project area which falls west of the mean high tide level (i.e. the river) is within the determined Native Title Claim for the Yaegl People. The remainder of the project area to the east is within the road reserve where Native Title has been extinguished.

Transport for NSW provided a notice of the proposal to NTSCorp under Section 24KA of the Act on 16 May 2022. A response from NTSCorp was provided on 15 June 2022 (see **Appendix E**). The letter notes the land and waterways within the Yaegl Native Title Determination Area are of immense cultural significance to Yaegl People, and members of the Yaegl Traditional Owners Aboriginal Corporation RNTBC (YTOAC) hold significant concerns about the location of the proposed works. In particular, the proposed works are within extremely close proximity to known cultural and spiritual sites. A further site visit is required between YTOAC and Transport to discuss the location and nature of works before they occur.

Transport provided a response to NTSCORPs letter on 29 July 2022 (refer to **Appendix E**) to proceed with arrangements for the project team to connect with YTOAC on Country to gain an appreciation of their native title rights and interests relating to the project location and how they might be best considered during project development and delivery.

The Project team will continue to liaise with the Transport's Aboriginal Cultural Heritage Team to inform ongoing processes of consultation throughout the project, which are likely to involve on-site meetings with knowledge holders present at specific points of the work program (i.e. at vegetation clearing and piles installation stages).

4.4 Confirmation of statutory position

The proposal is categorised as development for the purpose of a road and road infrastructure facilities and is being carried out by or on behalf of a public authority. Under Section 2.108 of TISEPP the proposal is permissible without consent. The proposal is not State significant infrastructure or State significant development. The proposal can be assessed under Division 5.1 of the *EP&A Act*.

Transport for NSW is the determining authority for the proposal. This REF fulfils Transport's obligation under section 5.5 of the *EP&A Act* including to examine and take into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of the activity.

5. Consultation

This chapter discusses the consultation undertaken to date for the proposal and the consultation proposed for the future.

5.1 Consultation strategy

A communications officer has been appointed to the proposal. A project-specific consultation strategy will be developed and implemented in accordance with the Transport Community Involvement - Practice Notes and Resource Manual and Transport Minor Project procedure, Communications for minor projects (ILC-MP-TP0-301).

The key aim of the consultation strategy will be:

- To inform the local community and other key stakeholders about the proposal in an effective and timely manner
- To keep the local community and other key stakeholders regularly updated with relevant information
- To encourage participation from the community and other stakeholders, and enable effective feedback on the proposal
- To increase stakeholder understanding of the project and its objectives

5.2 Community involvement

The project team will consult with community stakeholders in relation to the project. Consultation with the community will continue throughout the project.

5.3 Aboriginal community involvement

The Transport Procedure for Aboriginal Cultural Heritage Consultation and Investigation (PACHCI – Stage 1) was undertaken in 2022 by the Transport Aboriginal Cultural and Heritage Officer who advised that the proposal was unlikely to have an impact on Aboriginal cultural heritage (refer to **Appendix E**).

As discussed previously a search of the Native Title Tribunal Native Title Vision website was undertaken, with one Native Title holders/claimants identified. South Arm is within the determination area of Yaegl People #2 (Tribunal File No NCD2015/003). A section 24KA notice was issued, details of correspondence between Transport and NTSCORP is provided in Section 4.3.2 of this report and copies of the letters can be found in **Appendix E**.

The Project team will liaise with the Transport's Aboriginal Cultural Heritage Team about continued consultation and aboriginal community involvement throughout the project.

5.4 TISEPP (previously ISEPP) consultation

A statutory consultation checklist is included in **Appendix F**. As per the requirements of the State Environmental Planning Policy (Transport and Infrastructure) 2021 (previously ISEPP 2007), consultation with the following organisations has occurred.

Clarence Valley Council (CVC) have been consulted as per the requirements of Section 2.10 and 2.12 of TISEPP (previously clause 13 and 15 of the ISEPP) due to the potential impacts on *'Council related infrastructure or services'* and *'development with impacts on flood liable land'*.

The NSW State Emergency Service have also been consulted as per the requirements of Section 2.13 of TISEPP (previously clause 15AA of the ISEPP) due to the Activity occurring on flood liable land.

Transport – Maritime Division have been consulted as per the requirements of Section 2.15 of TISEPP (previously clause 16 of the ISEPP) due to the possible use of a *fixed or floating structure in or over navigable waters*.

Key findings of the consultation informed the proposal, the potential impacts and required impact avoidance or mitigation measures. A summary of the results of TISEPP consultation is included in **Table 5.1** with records of TISEPP consultation included in **Appendix F**.

Issues that have been raised as a result of this consultation are outlined below in Table 5.1.

Table 5.1:	Issues raised	through	TISEPP	consultation
------------	----------------------	---------	--------	--------------

Group	Issue raised	Response / where addressed in REF
Clarence Valley Council	Consultation letter sent 23 Nov 2021 No response received	N/A
NSW SES	Consultation letter sent 23 Nov 2021 No response received	N/A
Transport Roads and Maritime – Maritime Division	 Consultation letter sent 23 Nov 2021 Response received 14 Dec 2021. No objections. The proposal has been assessed as having minimal impact on the safety of navigation under the Marine Safety Act 1998. NSW Maritime requests conditions (provided) to be considered in preparation of the REF: Any works impacting on navigation during the construction phase must seek TfNSW Maritime support. A full scope of works relating to on-water operations including dates is to be provided to <i>navigationadvicenorth@transport.nsw.gov.au</i> 21 days prior to works commencing so a Marine Notice can be prepared and published on the Maritime website. Any work vessels associated with the project must comply with the relevant NSW marine legislation. Any work vessels and crew associated with the project must comply with the Marine Safety (Domestic Commercial Vessels) National Law Act 2012. Any submerged hazards, cables, wires, silt curtains etc. must be marked with yellow aqua buoys (sign written – "Warning – Submerged Hazard). These aqua buoys must be lit with a yellow flashing light if hazards are present before sunrise and after sunset. 	Section 6.4.2 Maritime Traffic During Construction.

5.5 Government agency and stakeholder involvement

Consultation has been undertaken with the NSW (Department of Primary Industries – DPI) Fisheries regarding the proposal as the following relevant matters would occur:

• Construction works within a waterway (including dredging and reclamation works) are required and as such, written notification to the Minister for Agriculture and Western NSW is required. The proposed piling works will be undertaken from within the South Arm of the Clarence River.

A consultation letter was sent on 23 November 2021. A response was received on 9 December 2021 (refer to **Appendix C**), including the following comments:

The proposal should first aim to avoid impacts to fisheries resources, particularly key fish habitats. Where impacts to key fish habitats cannot be avoided, the preference is to impact less sensitive key fish habitats over more highly sensitive key fish habitats. Mangroves and other marine vegetation, as well as riparian vegetation should be avoided where possible. This is relevant both during construction and operation of the structure.

The design should incorporate 'soft' engineering options where possible, and where harder engineering options are required, an integrated approach using planting in combination with natural materials (logs, live stakes, live brush bundles etc.) is preferred. Where possible, rock voids above the tidal limit should be planted with Lomandras, and

existing riparian vegetation at the top of the bank behind the proposed revetment should be augmented with additional plantings of native grasses, shrubs and trees. Components of the wall that provide minimal fish habitat, should be minimised.

A written notification (s199 referral request) to the Minister for Agriculture and Western NSW was subsequently sent to NSW DPI Fisheries on 9 June 2022 and further information on 23 June 2022, which included a copy of the near final REF (refer to **Appendix C**). A response was received on 20 July 2022. Fisheries noted they have no objection to the proposed works and provided matters to be taken into consideration and incorporated into the construction environmental management plan (CEMP) to ensure impacts to key fish habitats are avoided or minimized.

The matters for consideration under s199 of the Fisheries Management Act 1994 are provided below:

Administration

1. DPI Fisheries recommend that a copy of relevant approval documentation be carried by the proponent or their contractor operating on-site. Reason – A DPI Fisheries Compliance Officer may wish to check that the works are being undertaken in accordance with relevant approvals.

2. The subject works, including the final built design, should be consistent with the proposal outlined in the s199 referral to DPI Fisheries by Transport for NSW on 9 June 2022 and additional information provided 23 June 2022. Any proposed changes to the final design should be discussed with DPI Fisheries prior to implementation. Reason – This s199 consultation has been prepared following an assessment of the potential impacts of the described works upon the aquatic and neighbouring environments. Other works, which were not described in the referral have not been assessed and may have significant adverse impacts.

Erosion and sediment control

3. Sediment entering into waterways can directly impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures that: - Erosion and sediment mitigation devices are erected and managed in accordance with all applicable requirements of the Blue Book (i.e. Landcom [2004], Managing Urban Stormwater: Soils and Construction [4th Edition]) (www.landcom.nsw.gov.au/news/publications-and-programs/the-blue-book.aspx); - A floating boom and attached silt curtain are used and maintained to isolate the work site and minimise the impacts of turbidity and mobilised sediment during the construction; and - Stockpiles are located away from adjacent on water land1, and riparian and aquatic vegetation2. Reason – To ensure that sediment generated by the exposure of soil is not transported into the aquatic environment.

Timing of works for low flows and low tides

4. Appropriately timing the works for periods of low flow can assist erosion and sediment control at the site. DPI Fisheries recommend that Transport for NSW ensures that works are undertaken during periods of low flows in the waterway and when Bureau of Metrological forecast for the Northern Rivers district forecast region (available at: www.bom.gov.au/nsw/forecasts/map.shtml) indicates several days of clear, dry weather. Reason – Timing the works for appropriate conditions can reduce delays and minimise impacts on the aquatic environments.

Instream works

5. Instream works can impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures: - The avoidance of machinery entering or working from the waterway unless in accordance best management practice; - That machinery is appropriately cleaned, degreased and serviced prior to use at the site and entry into the waterway; and - That Emergency Spill Kits appropriate for containing and cleaning up petroleum and solvent product spills within waterways be available on site at all times during works. Reason – To reduce the threat of an unintended pollution incident impacting upon the aquatic environment.

Armouring works

6. Poorly designed or constructed bank protection works can have an immediate and lasting impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures that: - Only clean rock is used at the site; - Rock forming bank armouring is placed into position using a rock grab or excavator; and - The rock used for bank armouring be underlaid by geotextile fabric. Reason – To avoid fines, clay and other sediment un-necessarily entering the waterway and ensure rock armouring is constructed using Best Management Practice techniques.

Post works rehabilitation of site

7. DPI Fisheries recommend that Transport for NSW ensures that the site is rehabilitated and stabilised at the completion of the works including: - Removal of surplus construction materials and temporary structures from the site (other than silt fences and other erosion and sediment control devices); - Undertaking plantings of Lomandra hystrix along the toe and top of the banks of the waterway for 5 metres upstream and downstream of the work footprint; and - Appropriate maintenance of erosion and sediment control devices until the vegetation has successfully established and the site has stabilised. Reason – To ensure that habitats are restored as quickly as possible, public safety is not compromised, aesthetic values are not degraded and sediment inputs into the waterway are reduced.

Fish kill contingency

8. DPI Fisheries maintains a fish kill database. To limit the potential of a fish kill incident, DPI Fisheries recommends that the proponent be advised to undertake a visual inspection of the waterway for dead or distressed fish (indicated by fish gasping at the water surface, fish crowding in pools or at the creek's banks) twice daily during the works. Observations of dead or distressed fish should be immediately reported to the Contact Officer by Transport for NSW. If a fish kill occurs, DPI Fisheries recommend works cease until the issue causing the kill is rectified. Reason – Fish kills are also potentially contentious incidents from the public perspective. DPI Fisheries needs to be aware of fish kills so that it can assess the cause and recommend ways to mitigate further incidents in consultation with relevant authorities. Work practices may need to be modified to reduce the impacts upon the aquatic environment.

The matters raised above can mostly be incorporated into the CEMP. However, the recommendation regarding undertaking plantings of Lomandra hystrix along the toe and top of the banks of the waterway for 5m upstream and downstream of the work footprint is most likely unfeasible. While attempts for post works rehabilitation of the site will be made, this proposal is unable to commit to this outcome.

Consultation requirements under the *Native Title Act 1993* have been undertaken and are discussed in Section 4.3.2 and 5.3 of this report.

5.6 Ongoing or future consultation

As indicated above, community consultation is proposed regarding the scope of work and proposed traffic disruptions. Planned traffic disruptions during the proposed work will be advised through advertising using the Transport Traffic Alert system, as well as other means identified via the Consultation Strategy developed for the proposal.

Ongoing stakeholder and community consultation would be undertaken in accordance with the Transport Communication Toolkit during the development and implementation of the project. Consultation would include:

- NSW DPI Fisheries.
- NSW DPI Crown Lands and Water Division.
- Transport (Maritime).
- Clarence Valley Council.
- Native Title representatives (Yaegl LALC).
- Residents and businesses within a minimum of one kilometre of the proposal.
- Emergency services.
- Bus operators.
- NSW Sugar Cane industry and/or Harwood Mill and/or Clarence Cane Growers Association Inc (as required in response to cane haul season traffic impacts).

6. Environmental assessment

This section of the REF provides a detailed description of the potential environmental impacts associated with the construction and operation of the proposal. All aspects of the environment, potentially impacted upon by the proposal, are considered. This includes consideration of:

- Potential impacts on matters of national environmental significance under the *EPBC Act*.
- The factors specified in the Is an EIS required? (DUAP 1995/1996) and as required under section 171 of the Environmental Planning and Assessment Regulation 2021 and the *Roads and Related Facilities EIS Guideline* (*DUAP 1996*). The factors specified in section 171 of the Environmental Planning and Assessment Regulation 2021 are also considered in **Appendix D**.

Site-specific safeguards and management measures are provided to mitigate the identified potential impacts.

6.1 Biodiversity

6.1.1 Methodology

A specialist Biodiversity Assessment Report (BAR) was completed for the proposal by GeoLINK and is provided at **Appendix A**. The methodology used for the biodiversity assessment included:

- Searches of relevant databases.
- Literature review.
- Field survey utilising the following methodology:
 - Mapping vegetation communities on the site and assigning NSW Plant Community Type (PCT) where possible, in accordance with the DPIE/BCD BioNet Vegetation Classification database;
 - Random meander searching for threatened flora and completing a general flora inventory;
 - Targeted survey for Threatened Ecological Communities (TECs);
 - Recording the occurrence and extent of any priority weeds listed in the Biosecurity Act 2016 (Clarence Valley Council Local Control Area); and
 - Opportunistic survey of all fauna based on visual and aural observations.

Areas assessed included all vegetation within the proposal footprint with broader consideration of adjoining vegetation outside this area.

6.1.2 Existing environment

Vegetation

Vegetation alongside the Big River Way comprises patches of regrowth native trees including Swamp Oak (*Casuarina glauca*), Forest Red Gum (*Eucalyptus tereticornis*), Tallowwood (*Eucalyptus* microcorys) Tuckeroo (*Cupaniopsis anacardioides*), Cheese Tree (*Glochidion ferdinandi*), Smooth Clerodendrum (*Clerodendrum floribundum*), Brush Ironbark Wattle (*Acacia disparrima*) and Foambark Tree (*Jagera pseudorhus*). The midstorey comprises immature regrowth of the aforementioned species, banks of Lantana (*Lantana camara**), Mickey Mouse Plant (*Ochna serrulata**), Cottonwood (*Hibiscus tiliaceus*) Coffee Bush (*Breynia oblongifolia*), Burny Vine (*Trophis scandens subsp. scandens*), Snake Vine (*Stephania japonica*) and Coastal Morning Glory (*Sansevieria trifasciata**).

Groundcover within this vegetation is scarce and confined to patches of Common Reed (*Phragmites australis*) occurring along the riverbank and roadside grasses and weeds occurring on the periphery of treed vegetation including Blady Grass (*Imperata cylindrica*), Rhodes Grass (*Chloris gayana*), Guinea Grass (*Panicum maximum**), (Blue Billygoat Weed (*Ageratum houstonianum**), Annual Ragweed (*Ambrosia artemisiifolia**) and Cobbler's Peg (*Bidens pilosa**).

Native vegetation at the site is characteristic of PCT 1235 *Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion.* Removal of vegetation at the slip area consists of approximately 0.27ha of PCT 1235, with potential clearing and disturbance of vegetation (consisting of trees, weeds and native vegetation) of the broader site (up to a total area of 0.84ha) to facilitate works.

The proposed pile storage area on the opposite/western riverbank along South Arm Road does not fit with PCT due to lack of native species and structure. While four isolated Forest Red Gums occur within this area, the remainder is

cleared and dominated with Kikuyu Grass, and appears to be in relatively poor condition due to past disturbance from agriculture and grazing.

Weeds

Environmental and agricultural weeds are common along the disturbed roadside environment of the Big River Way throughout the study area. Priority Weeds for the North Coast Local Land Services Region occurring on the site and relevant duty are included below in **Table 6.1**.

Table 6.1: Priority weeds within the site and relevant duty

Common Name	Species	Duty
Fireweed	Senecio madagascariensis	Prohibition on certain dealings Must not be imported into the state, sold, bartered, exchanged or offered for sale.
Lantana	Lantana camara	Prohibition on certain dealings Must not be imported into the state, sold, bartered, exchanged or offered for sale.

The works are unlikely to result in the spread of weeds provided that relevant mitigation measures relating to machinery hygiene protocols are effectively implemented.

Threatened Flora

No threatened flora species listed under the BC Act or EPBC Act were recorded in the study area during the site assessment. Potentially occurring threatened flora species were readily identifiable at the time the site survey was conducted and therefore were assigned a low likelihood of occurrence on the basis that they were not recorded in the site survey.

Fauna Habitat Values

The site occurs within an area known to be utilised by the Coastal Emu Population which is listed as an endangered population under the BC Act. The Yuraygir sub-population occurring south of the Clarence River is known to occupy the coastal strip of Yuraygir National Park as well as surrounding contiguous areas in the Sandon and Brooms Head area in the north to Minnie Water and Red Rock in the south and Tucabia, Tyndale and Shark Creek to Pillar Valley and the lower Clarence River wetlands in the west.

Threatened Fauna

No threatened fauna was observed onsite. There was no evidence of Koala activity within the site (scratching on trees and scats in leaf litter).

A detailed review of the movements and range of the Yuraygir sub-population of Coastal Emus was undertaken as part of the Coastal Emu Management Plan for the Woolgoolga to Ballina (W2B) Pacific Highway Upgrade project (RMS, 2017). Emus are known to forage within sugar cane land located within the surrounding area, which is separated from the site by Big River Way.

Several other threatened fauna species were identified as having moderate potential to occur at the site. These species were not subjected to sufficient survey (i.e. not in accordance with the guidelines) and were therefore presumed to occur. Potential habitat for these threatened fauna species is associated with small areas of PCT 1235, and surrounding areas of agricultural land. No hollow-bearing trees occur at the site.

Aquatic Habitat

The subject site occurs alongside the South Arm of the Clarence River and is mapped as Key Fish Habitat for the Clarence Valley LGA.

Waterways at the site are unlikely to provide any habitat for FM Act listed threatened aquatic species. A review of the fisheries spatial data portal did not indicate any potential habitat for threatened fish species in any waterways in the study area. The fisheries spatial data portal lists the adjacent section of the South Arm River as having 'fair' freshwater fish community status.

6.1.3 Potential impacts

Removal of vegetation

The proposal would require clearing of a small area of approximately 0.27ha of native vegetation alongside the South Arm River and the Big River Way to facilitate sheet piling, riverbank stability and repair to the road shoulder. This area consists of PCT 1235 and 4 swamp oak trees over 10cm DBH.

A larger area of vegetation of up to approximately 0.84ha may be subject to clearing and disturbance to facilitate the works. This area consists of PCT 1235, weeds, annual ragweed and lantana and a variety of tree species identified in the biodiversity mapping including; acacia (2), camphor laurel (4), cheese tree (1), forest red gum (3), grey gum (1), swamp oak (35), tallow wood (1) and tuckeroo (15).

While the proposed vegetation removal constitutes the Key Threatening Process (KTP) Clearing of Native Vegetation (as listed in the BC Act), the magnitude to which the proposal contributes to this KTP is negligible. Mitigation measures to reduce the risk of direct impacts to native vegetation adjacent to the site are outlined below.

Removal of threatened fauna habitat

The proposal would remove approximately 0.02 hectares of PCT 1235. This vegetation and the subject section of Big River Way, the South Arm River and surrounds provides potential habitat for potentially occurring threatened fauna species, including:

- Potential foraging habitat for a number of threatened bird species
- Potential foraging habitat for Grey-headed Flying-fox

The construction footprint generally comprises degraded habitats with only limited threatened fauna habitat value. There are a limited number of mature trees present (>50 cm DBH) and hollow-bearing trees are absent. The fauna habitat directly affected by the proposal is negligible in a local context.

Imjury and mortality

The proposal may result in a minor risk of fauna injury/mortality through:

- Vegetation removal if the impacted vegetation is occupied at the time of clearing. This is mainly a risk to nesting or non-flying species.
- Vehicle strike during construction for a range of fauna species including Coastal Emus which have potential to occur at the site.

Conclusion on significance of impacts

The proposal is not likely to significantly impact threatened species or ecological communities or their habitats, within the meaning of the *Biodiversity Conservation Act, 2016* or *Fisheries Management Act 1994* and therefore a *Species Impact Statement* is not required.

The proposal is not likely to significantly impact threatened species, ecological communities or migratory species, within the meaning of the *EPBC Act*.

6.1.4 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Biodiversity	A Flora and Fauna Management Plan will be prepared in accordance with Transport for NSW's <i>Biodiversity Guidelines: Protecting and</i> <i>Managing Biodiversity on Projects (RMS,</i> <i>2011)</i> and implemented as part of the CEMP. It will include, but not be limited to:	Contractor	Detailed design / pre-construction	Section 4.8 of QA G36 Environment Protection
	 plans showing areas to be cleared and areas to be protected, including exclusion zones, protected habitat features and revegetation areas 			

Impact	Environmental safeguards	Responsibility	Timing	Reference
	• requirements set out in the <i>Landscape Guideline (RMS, 2008)</i>			
	• pre-clearing survey requirements			
	 procedures for unexpected threatened species finds and fauna handling 			
	• procedures addressing relevant matters specified in the DPI <i>Policy and guidelines for fish habitat conservation and management (2013)</i>			
	 protocols to manage weeds and pathogens 			
Biodiversity	Measures to further avoid and minimise the construction footprint and native vegetation or habitat removal will be investigated during detailed design and implemented where practicable and feasible.	Contractor	Detailed design / pre-construction	
Removal of native vegetation	Native vegetation removal will be minimised throughout the project.	Transport Project Manager/ Contractor	Prior to construction and during construction	
	Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
	Vegetation removal will be undertaken in accordance with <i>Guide 4: Clearing of</i> <i>vegetation and removal of bush rock of the</i> <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
	Native vegetation will be re-established in accordance with <i>Guide 3: Re-establishment of</i> <i>native vegetation</i> of the <i>Biodiversity</i> <i>Guidelines: Protecting and managing</i> <i>biodiversity on RTA projects</i> (RTA 2011). Note: this will be considered for bank stability in areas where it will not compromise the structural integrity of the asset and outside access areas for maintenance.	Transport Project Manager/ Contractor	Post construction	
	Also, it's noted there is little to no opportunity to re-establish native vegetation at the slip remediation site due to the narrow road reserve with rock revetment, unless natural vegetation was to naturally colonise the area over time (which is unlikely due to the amount of rock fill to be placed.) The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines:</i> <i>Protecting and managing biodiversity on RTA</i> <i>projects</i> (RTA 2011) if threatened ecological communities, not assessed in the biodiversity assessment, are identified in the proposal site.	Transport Project Manager/ Contractor	During construction	
Removal of threatened species habitat and	Habitat removal will be minimised throughout the project.	Transport Project Manager/ Contractor	Prior to construction and during construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
habitat features	Habitat removal will be undertaken in accordance with <i>Guide 4: Clearing of</i> <i>vegetation and removal of bush rock of the</i> <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
Removal of threatened plants	Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
	The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines:</i> <i>Protecting and managing biodiversity on RTA</i> <i>projects</i> (RTA 2011) if threatened flora species, not assessed in the biodiversity assessment, are identified in the proposal site.	Transport Project Manager/ Contractor	During construction	
Aquatic impacts	Aquatic habitat will be protected in accordance with <i>Guide 10: Aquatic habitats</i> <i>and riparian zones</i> of the <i>Biodiversity</i> <i>Guidelines: Protecting and managing</i> <i>biodiversity on RTA projects</i> (RTA 2011) and Section 3.3.2 <i>Standard precautions and</i> <i>mitigation measures</i> of the <i>Policy and</i> <i>guidelines for fish habitat conservation and</i> <i>management Update 2013</i> (DPI (Fisheries NSW) 2013).	Transport Project Manager/ Contractor	During construction	
	All activities are to minimise disturbance to shallow water habitats under, and in the immediate vicinity of water based structures, including disturbance of seabed sediments and smothering habitats from propeller strike or excessive propeller wash.			
	 All activities are to be carried out to avoid spreading aquatic/marine pests including: Removal of weeds, animals or sediment from equipment and disposal to an appropriate waste receptacle or facility Disposal of sewage and bilge water at an approved pump out facility 			
Groundwater dependent ecosystems	Interruptions to water flows associated with groundwater dependent ecosystems will be minimised.	Transport Project Engineer/ Contractor	Prior to construction and during construction	
Changes to hydrology	Changes to existing surface water flows will be minimised.	Transport Project Engineer/ Contractor	Prior to construction and during construction	
Edge effects on adjacent native vegetation and habitat	Exclusion zones will be set up at the limit of clearing in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	During construction	
	Fauna will be managed in accordance with <i>Guide 9: Fauna handling</i> of the <i>Biodiversity</i>	Transport Project	During construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
Injury and mortality of	<i>Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Manager/ Contractor		
fauna	Pre-clearing surveys will be undertaken in accordance with Guide 1: Pre-clearing process of the Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
Invasion and spread of weeds	Weed species will be managed in accordance with <i>Guide 6: Weed management</i> of the <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
Invasion and spread of pests	If vegetation is to be mulched, pest species will be managed within the proposal site in accordance with the TfNSW Technical Procedure: Mulch Management	Contractor	During construction	
Invasion and spread of pathogens and disease	Pathogens will be managed in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and</i> <i>managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
Noise, light and vibration	Shading and artificial light impacts will be minimised.	Transport Project Manager/ Contractor	Prior to construction and during construction	
Tree and Hollow replacement	Tree and hollows that require replacement will be identified in accordance with the Tree and Hollow replacement guideline. Where trees and hollows will be replaced within the project boundary prepare a Tree and Hollow Replacement Plan to address the impacts described in Table 7-2 prior to commencement of works. Alternatively, where tree and hollow replacement cannot be accommodated locally or can only be partially accommodated, payment must be made to the TfNSW Conservation fund prior to the commencement of works in accordance with the Tree and Hollow Replacement Guideline.	Transport Project Manager	Prior to construction	

6.1.5 Transport Biodiversity Policy 2022: Biodiversity offset Strategy/Tree and hollow replacement guidelines

The Transport Biodiversity Policy 2022 provides the framework to protect and enhance biodiversity across TfNSW with the goal of achieving no net loss of biodiversity. The Policy commits TfNSW to replace individual trees and hollows removed by TfNSW activities subject to certain exemptions for low-risk activities.

Where tree removal cannot be avoided, the number of native and amenity trees and individual hollows to be removed must be counted and used to calculate the number of replacement trees and hollows (refer to **Table 6.2** below). The site features no amenity trees; therefore, they have been disregarded for the required tree replacement calculation.

This tree replacement is only calculated for the definite slip works as part of the proposal, where known tree removal within the footprint is required. If additional tree removal is required additions to tree replacement calculations will need to be undertaken.

A safeguard has been included in relation to a Tree and Hollow Replacement Plan, which is to be prepared prior to commencement of works for inclusion in the CEMP.

Table 6.2: Summary of tree and hollow replacement

Category	Number impacted	Replacement required	Number to be replaced Native Trees
Very Large Tree (DBH greater than 100cm)	0	Plant minimum 16 trees	0
Large Tree (DBH greater than 50cm but less than 100cm)	0	Plant minimum 8 trees	0
Medium Tree (DBH greater than 20cm but less than 50cm)	12	Plant minimum 4 trees	48
Small Tree (DBH greater than 5cm but less than 20cm)	11	Plant minimum 2 trees	22
Hollows	No hollow-bearing trees occur at the site.	Provide 3 artificial hollows for every occupied hollow removed	N/A

6.2 Hydrology and flooding (surface water and groundwater)

6.2.1 Existing environment

The proposed works are located on the eastern bank of the South Arm of the Clarence River and includes the use of the opposite western bank as a pile storage area, with works likely to encroach into the river. The South Arm joins the Clarence River at Maclean approximately 9km downstream and disembogues into the Pacific Ocean at Yamba approximately 25km downstream. The proposed works would occur over a 100m length of the Big River Way, the river, and its banks. The area is steeply sloping and unstable.

As indicated in **Table 6.3**, the mean annual rainfall is approximately 1305.1mm. Typically the highest rainfall occurs in March, with a pronounced dry season between August and October. The latter six months of the year experiences less rainfall than the first six months. The site has potential to be impacted by flooding.

Month	Mean Monthly Rainfall (mm)
January	144.7
February	166.4
March	174.0
April	133.5
Мау	126.3
June	111.3
July	70.3
August	55.1
September	47.8
October	72.8
November	95.8
December	111.8
Annual	1305.1

Table 6.3: Rainfall Data for Harwood Island (Harwood Island Sugar Mill) (1915-2022)

6.2.2 Potential impacts

Construction

Potential types and impacts of pollution or water quality degradation that could arise from the proposed works include disturbance of the riverbed through barge anchoring or removal of slumped rock materials and excavation, the entry of soil into the water resulting in the sedimentation of, and increased water turbidity in, the South Arm of the Clarence River. Actions that could result in sedimentation and turbidity increases include:

- Removal of vegetation (weeds and native growth) along the proposed slip restoration site;
- Disturbance to soils associated with pedestrian and machinery access;
- Access to the site by barge(s);
- Movement of the barge(s) and anchorage of the barge(s) on site at slip area;
- Removal of slumped rock materials from riverbed to slip area;
- Piling works as specified by Geotechnical design requirements to stabilise the slope;
- Securing of heavy duty geotextile;
- Run off from stockpile locations; and
- Dust or air-borne particles generated during construction works.

A variety of dispersible liquid materials may be used in proximity to, and within, the river and pose a potential pollutant threat to local water quality. These liquids include, but are not limited to, diesel, unleaded petrol, machinery oils and lubricants. The nature of these liquids and their ability to disperse away from the work site means that they could have a negative impact on ground or surface water on or adjacent to the site if not contained, especially during rain.

Flood events within the catchment have the potential to impact the site and potential acid sulfate soils (PASS). And there is potential for water entering the compound site to become contaminated. This is likely to occur if waste, vehicles and machinery and any fuels stored at the compound sites are not removed from the compound site should flood waters breach the Clarence River or Lees Drain (which is adjacent to the compound site).

The above impacts have the potential to cause environmental harm. However, with the implementation of the management measures and safeguards contained herein, the risk associated with such impacts is considered low.

Overall, with the safeguards and management measure described in Section 6.2.3 water quality, hydrology and flooding impacts for the proposal are not expected.

Operation

Following completion of the proposal, stabilisation of the riverbank profile and restoration of Big River Way should result in positive impacts for the surrounding area in relation to water quality, hydrology and flooding impacts by preventing further degradation of the road surface and risk of further slip movements.

6.2.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Hydrological impacts	A CEMP must be prepared in accordance with the specifications set out in the QA Specification G36 - Environmental Protection (Management) System to guide the implementation of environmental impact mitigation measures, identify key roles and responsibilities for environmental monitoring and methods of reporting incidents.	Transport Project Manager	Pre- construction	
Erosion sedimentation	A site-specific Erosion and Sediment Control Plan is to be prepared and implemented as part of the CEMP. The plan is to identify detailed measures and controls to be applied to minimise erosion and sediment control risks including (where relevant), but not limited to: runoff, diversion	Transport Project Manager	Pre- construction, construction	Section 2.2 of QA G38 Soil and Water Management

Impact	Environmental safeguards	Responsibility	Timing	Reference
	and drainage points, sumps, scour protection; stabilising disturbed areas as soon as possible; check dams, fencing and swales and staged implementation arrangements. The plan is to also include arrangements for managing wet weather events, including monitoring of potential high-risk events (such as storms) and specific controls and follow-up measures to be applied in the event of wet weather.			
	Work in areas where soil may be disturbed is to only commence once all relevant erosion and sediment controls have been established. The controls are to be maintained in place until the work is complete and all exposed erodible materials are stable.			
	Erosion and sedimentation controls must be checked and maintained (including clearing of sediment from behind barriers) on a regular basis (including after any precipitation events) and records kept and provided on request.	Transport Project Engineer	Pre- construction, construction	
	An Environmental Work Method Statement (EWMS) is required for proposed instream works and dewatering of any areas prior to commencement of those activities. The EWMS would include measures to avoid or minimise risks from erosion, sedimentation, ASS and PASS to water quality and biodiversity. The EWMS would be approved by the TfNSW Environment Officer and form part of the Construction Environment Management Plan. Dewatering would be undertaken in accordance with TfNSW Environmental Fact	Transport Project Manager	Pre- construction, construction	
	Sheet 10: <i>Dewatering</i> and the EWMS. For all works likely to generate sediment within the waterway or on the adjacent banks of the Clarence River (including piling), a full depth sediment/silt curtain and floating hydrocarbon boom will be placed in the adjacent Clarence River to isolate the work area, weighted to the bed and secured to accommodate tidal flow. The hydrocarbon boom will be installed inside of the silt curtain when both are in operation. Install the curtain prior to commencement of instream works and retain until works that risk mobilising sediment are completed. This will remain in place until the completion of sediment generating activities. Silt curtains/floating booms are to be installed, monitored and maintained as needed to contain any sediment. If sediment plumes are observed outside the containment system, then the activity will stop until the containment system has been repositioned to encompass the area of	Transport Project Engineer	Pre- construction, construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	Disturbance of natural sediments and vegetation must be minimised.	Transport Project Engineer	Pre- construction, construction	
	Erosion and sediment control measures must not be removed until the work is complete or disturbed areas are stabilised.	Transport Project Engineer	Construction, post- construction	
	Maintenance of site compounds must be in accordance with the TfNSW Stockpile Site Management Guideline (EMS-TG-10).	Transport Project Engineer	Pre- construction, construction	
	All rocks will be washed to remove fines.	Transport Project Engineer	Construction	
	Cleaning of tools and equipment must occur within a designated wash-down bay. The wash-down bay must be bunded and placed so that water does not flow directly into the Clarence River but is captured and contained or filtered and allowed to soak into the ground.	Transport Project Engineer	Construction	
	Water utilised for cleaning of tools must be minimised and obtained from a licensed location or town water supply.	Transport Project Engineer	Construction	
	Clean equipment and vehicles must be used, with equipment being cleaned down before being brought to the site	Transport Project Engineer	Pre- construction, construction	
	A site-specific emergency spill plan will be developed and include spill management measures in accordance with the TfNSW <i>Code</i> <i>of Practice for Water Management</i> (RTA, 1999) and relevant EPA guidelines. The plan will address measures to be implemented in the event of a spill, including initial response and containment, notification of emergency services and relevant authorities (including TfNSW and EPA officers).	Transport Project Manager	Detailed design/ Pre- construction	Section 4.3 of QA G36 Environment Protection
	A spill containment kit for aquatic and terrestrial spills must be available at all times. The spill kit must be appropriately sized for the volume of substances at the work site. All personnel must be made aware of the location of the kit and trained in its effective deployment.	Transport proposal Manager	Pre- construction, construction	
Reduced water quality	If a spill occurs, the Transport Environmental Incident Classification and Reporting Procedure must be followed, and the Transport Project Manager notified as soon as practicable.	Transport Project Manager/ Project Engineer	Pre- construction, construction	
	Potential or actual acid sulphate soils are to be managed in accordance with the Roads and Maritime Services Guidelines for the Management of Acid Sulphate Materials 2005.	Transport Project Manager	Construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	Locate stockpiles of dispersible material away from areas of concentrated overland flow.	Transport Project Manager/ Project Engineer	Construction	
	Required fuels and other liquids must be stored in self-safe chemical storage containers.	Transport Project Manager/ Project Engineer	Pre- construction, construction	
	Unnecessary storage of fuels, lubricants or other compounds on-site must be avoided.	Transport Project Manager/ Project Engineer	Pre- construction, construction	
	Refuelling of plant and equipment is to occur in impervious bunded areas located a minimum of 50 metres from drainage lines or waterways otherwise a double bund is required.	Transport Project Manager/ Project Engineer	Construction	
	All equipment must be maintained in good working order and operated according to manufacturer's specifications.	Transport Project Engineer	Pre- construction, construction	
	Visual monitoring of local water quality (i.e. turbidity, hydrocarbon spills/slicks) is to be undertaken on a regular basis to identify any potential spills or deficient silt curtains or erosion and sediment controls.	Transport Project Engineer	Construction	
	Construction vessels (including barges) are only to be used at suitable tides when no less than 600mm clearance is available between the underside of the vessel and the bed of the waterway.	Transport Project Engineer	Construction	
	Prepare an emergency response plan for flood events for the proposed work. Include a procedure for rapid removal in the emergency response plan and location for the material.	Transport Project Manager	Pre- construction	
	Establish the compound site in such a way to limit potential impacts from flooding (e.g. on as high a ground as possible and that are readily removed in the event of a flood).	Transport Project Manager	Construction	
Flooding	 Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Issues to be addressed in the WMS include: Responsibility for monitoring flood threat/flood warning information and how it is to be done Training for staff on evacuation Demonstrate that specific equipment for evacuation is readily available Detail where compound site equipment, waste, materials, site sheds etc. 	RMS Project Manager	Pre- construction	

6.3 Soils

6.3.1 Methodology

The following methodology was undertaken:

- Review of Mitchell Landscape Mapping (2002).
- Review of the NSW EPA contaminated land database and DPI cattle dip site locator (www.epa.nsw.gov.au/prclmapp/aboutregister.aspx) (https://www.dpi.nsw.gov.au/animals-andlivestock/beef-cattle/health-and-disease/parasititic-and-protozoal-diseases/ticks/cattle-dip-site-locator) (both accessed 27 October 2021).
- Review of Department of Planning, Industry and Environment (eSPADE) Soil and Land Information Acid Sulfate Soil (ASS) risk mapping (accessed in October 2021).

6.3.2 Existing environment

One Mitchell Landscape occurs within the study area and is described as follows:

Clarence – Richmond Alluvial Plains: wide valleys, channels, floodplains, terraces and estuaries of the Clarence and Richmond Rivers and other coastal streams on Quaternary alluvium, general elevation 0 to 50 metres, local relief 15 metres. Deep brown earths and structured brown clay on floodplains. Terrace with yellow texture-contrast soil containing ironstone concretions.

The remediation site for the proposed works is located on the eastern bank of the South Arm of the Clarence River, and includes the slip area as well as the bed of the river, with potential disturbance to the riverbed as a result of the works. The proposed site compound is located within an alluvial floodplain comprising of low-lying erosional sediments.

Acid Sulfate Soils (ASS) risk mapping identifies the site as having a high probability (Class 4) of ASS material within the soil profile greater than 2 metres below the natural ground surface. The Geotechnical Report (**Appendix B**) details an acid sulfate test carried out on a soil sample where the results show Net Acidity exceeds recommended guidelines. Accordingly, as soil disturbance is proposed, a precautionary approach to management is required, and the need for an acid sulfate management plan is triggered. Noting, disturbance to acid sulfate soils may also influence corrosion rates.

No records of contaminated land within close proximity to the site are recorded in the EPA contaminated land database (accessed October 2021). The cattle dip site locator identifies five cattle dip sites within the Tyndale locality. The proposal does not occur in proximity to any of these sites.

An old water main may be contained in the slumped material within the slip area on the eastern side, which will need to be removed from site and disposed of to a licensed facility. Clarence Valley Council has advised the old water main is a 150mm pipe containing asbestos.

6.3.3 Potential impacts

Construction

Earthworks required as part of the proposal include:

- Riverbank disturbance when burying barge anchor points for restoration of riverbank profile;
- Remove slumped rock materials from riverbed and replace into slip area; and
- Place rock fill and rock armour for restoration of slip area.

Potential impacts related to soils from the proposal include:

- Erosion and sedimentation impacts which could affect receiving environments such as the Clarence River. The impacts and relevant safeguards are detailed in Section 6.2.
- The presence of Acid Sulfate Soils (ASS) has the potential to result in water quality impacts including acidification of waterways, fish kills and sedimentation. Given that the site is mapped as having ASS material at 2 metres below surface level the risk of encountering ASS during excavation is considered moderate to high. ASS (including any stockpiling of this material) will be managed in accordance with an Acid Sulfate Soil Management Plan (ASSMP) to be included in the CEMP.
- The disturbance of contaminated land (potential presence of asbestos from old water main) has the potential to cause impacts to humans and pollutions to nearby environments.

Acid Sulfate Soil (ASS) Management

• An ASS treatment area for the project will likely need to be provided. It is unlikely there is room within the project worksite for a treatment area to be established. Transport's Lee's Drain Project footprint was able to accommodate a treatment area and treated ASS stockpile area. As this is located in close proximity to the works area (approximately 600m north of the subject site) there may be an option to utilise this existing area. There does not appear to be an opportunity to place treated soils back onsite, and it is likely treated soils will be directed to a licenced waste facility. This will be investigated as part of the ASSMP to be included in the CEMP.

Operation

Following completion of the proposal it is expected that stabilisation of the riverbank profile and associated roadworks would have improved impact on soils by preventing risk of future slips at the site and further degradation of the road surface.

Impact	Environmental safeguards	Responsibility	Timing	Reference
Contaminated land	If contaminated areas are encountered during construction, appropriate control measures will be implemented to manage the immediate risks of contamination. All other works that may impact on the contaminated area will cease until the nature and extent of the contamination has been confirmed and any necessary site-specific controls or further actions identified in consultation with the Transport for NSW Environment Manager and/or EPA.	Contractor	Detailed design / Pre- construction	Section 4.2 of QA G36 Environment Protection
Accidental spill	A site-specific emergency spill plan will be developed and include spill-management measures in accordance with the Transport <i>Code of Practice for Water Management (RTA,</i> 1999) and relevant EPA guidelines. The plan will address measures to be implemented in the event of a spill, including initial response and containment, notification of emergency services and relevant authorities (including Transport EPA officers).	Contractor	Detailed design / Pre- construction	Section 4.3 of QA G36 Environment Protection
Acid sulfate soils	 Potential or actual acid sulfate soils are to be managed in accordance with the <i>TfNSW</i> <i>Services Guidelines for the Management of Acid</i> <i>Sulfate Materials 2005.</i> An Acid Sulfate Management Plan (ASSMP) will be prepared by Transport and approved by the Environment Officer before the commencement of any activities likely to expose ASS/PASS and at a minimum, the plan will include: Management measures for the safe excavation and timing to cover excavation, isolated storage and treatment area, neutralisation and re-use or disposal of neutralised soils Requirements for additional testing to determine predicted liming rates of excavated spoil once quantities are determined. Specific controls to be implemented will include: 	Transport Project Manager	Pre- construction	

6.3.4 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
	 Capping exposed surfaces with clean fill to prevent oxidation Placing excavated ASS separately in a lined, bunded and covered area Neutralising ASS for reuse on site (where appropriate) by using additives such as lime Disposal at a licensed waste facility. The ASSMP will be included in the CEMP. 			
Asbestos	An Unexpected Contaminated Land and Asbestos Finds procedure must be prepared prior to the commencement of construction and must be followed should unexpected contaminated land or asbestos (or suspected contaminated land or asbestos) be excavated or otherwise discovered during construction.	Transport Project Manager	Pre- construction	

6.4 Traffic and transport

6.4.1 Existing environment

Road Traffic

The subject section of Big River Way is a two-lane section of road with a 100 km/hour speed limit providing a link between the Tyndale and Maclean areas. This route is often used by travellers and local residents to access the coastal villages of Maclean, Tyndale and Ulmarra, and is sometimes used as an alternative to the Pacific Highway or as a tourist route for vehicles travelling north or south. Big River Way represents a valued traffic route option used by travellers, local residents and farmers to access surrounding areas.

Traffic impacts may also occur along South Arm Road (on Woodford Island) associated with the delivery of piles to the proposed pile storage site located on the north-western bank of the Clarence River (with owner approval). Piles would then be ferried across the river to the site.

These roads are used by trucks hauling harvested cane during cane haul season (July to December) so traffic impacts and delays will need to be taken into consideration for the Traffic Management Plan (TMP).

Traffic would be managed according to TfNSW's Traffic Control at Work Sites Manual Version 6 (TfNSW, 2020). A sitespecific TMP will be prepared detailing the specifics of the work and any hazards and constraints. Work would not begin until the plan is approved and strategies to manage traffic within and around the work site are in place. During times of traffic disruptions, liaison with local road users would occur through standard Transport communication protocols (e.g. Transport website postings using the Traffic Alert system).

Maritime Traffic

The South Arm of the Clarence River is used by a variety of vessels including trawlers and large and small recreational watercraft. Smaller vessels mostly access this waterway from a boat ramp in Maclean (Ferry Street).

6.4.2 Potential impacts

Road traffic during construction

Single northbound lane closure is expected adjacent to the slip location. The closure would be required for an estimated 12 weeks to allow the works to be undertaken. Speed limits for the subject section of road would be reduced to 40 km/hour during the project.

Potential traffic management impacts include:

- Reduction in speed limits to 40 km/hour.
- Increased construction traffic locally.
- Short delays for road users during the project as a result of the above.

The long duration of construction works for the project (12 months+) means there is likely to be some disruptions to traffic along Big River Way and South Arm Road during cane harvesting season (July to December), with impacts on cane haulage to and from the Harwood Sugar Mill. Consultation with the NSW Sugar Cane Industry, Clarence Cane Growers Association and/or Harwood Island Mill may be required as necessary depending on staging of works coinciding with harvesting season.

The works are required to improve road safety. Without the work and associated construction delays being undertaken, the slip remediation works could not be undertaken. Consequently, the short-term disruptions to traffic are justifiable.

Maritime traffic during construction

Piling works would be undertaken along the bank of the South Arm of the Clarence River associated with the site. This would not impact maritime traffic in this waterway given the large width of the navigable channel in this location.

The proposal was referred to Transport - Maritime Division who were consulted as per the requirements of Section 2.15 of the TISEPP (previously clause 16 of the ISEPP) due to the use of a fixed or floating structure in or over navigable waters. Transport advised the proposal was assessed as having minimal impact on the safety of navigation under the Marine Safety Act 1998 and have no objections. However, NSW Maritime requests the following conditions be considered:

- 1. Any works impacting on navigation during the construction phase must seek TfNSW Maritime support.
- A full scope of works relating to on-water operations including dates is to be provided to <u>navigationadvicenorth@transport.nsw.gov.au</u> 21 days prior to works commencing so a Marine Notice can be prepared and published on the Maritime website.
- 3. Any work vessels associated with the project must comply with the relevant NSW marine legislation.
- 4. Any work vessels and crew associated with the project must comply with the Marine Safety (Domestic Commercial Vessels) National Law Act 2012.
- Any submerged hazards, cables, wires, silt curtains etc must be marked with yellow aqua buoys (sign written
 – "Warning Submerged Hazard). These aqua buoys must be lit with a yellow flashing light if hazards are
 present before sunrise and after sunset.

Operation

The proposal would have no negative impacts on road or maritime traffic post-construction with positive impacts including improved road safety, reduced future maintenance and associated reduced delays and detours on the subject section of Big River Way.

Impact	Environmental safeguards	Responsibility	Timing	Reference
Traffic and transport	A Traffic Management Plan (TMP) will be prepared and implemented as part of the CEMP. The TMP will be prepared in accordance with the Transport <i>Traffic Control at Work</i> <i>Sites Manual</i> (RTA, 2010) and <i>QA Specification</i> <i>G10 Control of Traffic</i> (Transport for NSW, 2008). The TMP will include:	Transport Project Manager	Detailed design / Pre- construction	Section 4.8 of QA G36 Environment Protection
	 confirmation of haulage routes measures to maintain access to local roads and properties site-specific traffic control measures (including signage) to manage and regulate traffic movement measures to maintain pedestrian and cyclist access requirements and methods to consult and inform the local community of impacts on the local road network access to construction sites including entry and exit locations and measures to 			

6.4.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
	 prevent construction vehicles queuing on public roads. a response plan for any construction traffic incident consideration of other developments that may be under construction to minimise traffic conflict and congestion that may occur due to the cumulative increase in construction vehicle traffic 			
	 monitoring, review and amendment mechanisms. 			
	Where possible, current traffic movements must be maintained during the work. Any disturbance must be minimised to prevent unnecessary traffic delays.	Transport Project Engineer	Construction	
	A project-specific consultation strategy must be developed and implemented in accordance with the TfNSW Community Involvement – Practice Notes and Resource Manual and TfNSW Minor Project procedure, Communications for minor projects (ILC-MP-TP0-301).	Transport Project Manager	Pre- construction	
Maritime	Twenty-Eight (28) days prior to works commencing the applicant must provide Transport Maritime with a full scope of works including maps noting all obstructions to navigation associated with the proposed works, (vessel/barge anchoring, scaffolding and silt curtain locations etc.) so a Marine Notice can be prepared and advertised.	Transport Project Manager	Pre- construction	
	Transport Maritime will prepare and advertise the Marine Notice online. The Marine Notice may be required to be placed in the local press and to be advertised at local boat ramps.	Transport Project Manager RMS (Maritime)	Pre- construction	
	Consultation will be required throughout the duration of the works to develop forward plans for the on-water traffic management whilst the works are carried out and as plant and structures are deployed in different locations.	Transport Project Manager RMS (Maritime)	Pre- construction, construction	
	Approved navigational marks, signage and Marine Notices to be implemented and updated during the period of works.	Transport Project Manager/ TfNSW Project Engineer	Pre- construction, construction	
	All navigation aids and traffic management plans must be approved by Transport Maritime.	Transport Project Manager RMS (Maritime)	Pre- construction, construction	
	Any work vessels involved in the project must comply with the relevant NSW Marine Legislation (i.e. day shapes, lights etc.).	Transport Project Manager	Construction	
	Barges, work vessels and crew involved with the project must comply with the <i>Marine Safety</i> (Domestic Commercial Vessels) National Law Act 2012.	Transport Project Manager	Construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	A minimum of one navigable channel span (at least 6 m) must be open to navigation at all times unless approved by TfNSW Maritime.	Transport Project Manager	Construction	
	A 4-knot lit Special Mark buoyage OR signage is to be installed at an appropriate distance (200 m) from the structure/s.	Transport Project Manager	Construction	
	Any submerged hazards must be marked with yellow aqua buoys sign written "Warning Submerged Hazard". These aqua buoys must be lit with yellow flashing lights if hazards are present before sunrise and after sunset.	Transport Project Manager	Construction	

6.5 Noise and vibration

6.5.1 Existing environment

Big River Way provides an important transport route and experiences low volumes of traffic for a variety of vehicle types (regional freight vehicles, large passenger vehicles, light passenger vehicles and local traffic), which results in some noise and vibration impacts. The small township of Tyndale is located about 5 kilometres south-west of the site and Maclean approximately 7.9 kilometres north. The nearest sensitive receivers to the work are listed in **Table 6.4**.

Table 6.4: Noise sensitive receivers located within the affected distance (760m) of project footprint
---	----------------------------

Lot	DP	Distance of residential receiver from project footprint (m)	Direction of residential receiver from project footprint
16	877827	80	East
1	1012109	200	South-west
23	1007618	450	North-east
1	995518	490	West
1	995519	180	North
55	751392	630	North
1	1024565	680	South-west
525	1118832	740	North-west

6.5.2 Potential impacts

Construction

The following are considered to be the highest noise emitting activities to be undertaken as part of the proposal:

- Driving/ vibrating for piling works.
- Saw cutting existing pavement.
- Jack hammering concrete.
- Excavation/ profiling existing pavement.
- Tree mulching.

Noise and vibration would be associated with the construction phase and not endure for the long-term. Noise and vibration are expected from construction activity and the use of a variety of construction vehicles and machinery as part of the Activity (typical construction plant have been outlined previously in the description of the Proposal). The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration should be given to hydraulic impact hammers rather than vibratory hammers.

Noise from the general site compound would be generated by localised sources within the works area, such as a delivery truck or item of mobile plant or works personnel and their vehicles. Noting the scale of the works, these sources would be infrequent and generally have a limited duration. Noise from the compound is likely to be perceived as general construction noise by surrounding receivers.

The proposed works would be undertaken during the following working hours:

- Monday to Friday: 7.00am to 6.00pm
- Saturday: 7.00am to 6.00pm (note extended working hours)
- Sunday and Public Holidays: No work

A distance-based nosiest plant noise assessment was undertaken for this construction site using a bored piling rig as a selected representative for the works, refer to the TfNSW Construction and Maintenance Noise Estimator (**Appendix H**).

The representative noise environment was assessed as category R0 using the 'Representative Noise Environ' tab from RMS Construction Noise Estimator.xlsm as per section 6.2 of RMS 'Construction Noise and Vibration Guideline' (August

2016). Background noise levels during the day, evening and night periods are estimated to be 30, 30 and 30 dB (A) respectively.

The Environmental Protection Authority's (EPA) construction noise management levels for the day, day (Out of Hours Work), evening and night are 40, 35, 35 and 35dB (A) respectively.

The noise assessment related to two scenarios; working during the day (OOWH) period and working during the day (Standard hours).

Working during the day (OOHW)

The noise estimator identifies an affected distance of 760m for nearby residents for the day (OOHW) time period. (The affected distance is the distance up to which noise levels are expected to exceed the Noise Management Level (NML) as defined by the EPA Interim Construction Noise Guidelines). Eight residents are located within this affected distance, listed in **Table 6.1** above.

Five of the eight receivers are located less than 525m from the site and are recommended mitigation measures including notification and respite periods.

The predicted noise level at the nearest receiver can be up to 60dB (A) when works are being undertaken, which is 25 dB(A) above the NML of 35 dB(A) and may require specific notification.

Working during the day (standard hours)

Five residents located less than 525m from the work are identified as impacted by construction noise, three of these are less than 250m from the works and are likely to be impacted by construction noise to a high degree and should be notified.

The predicted noise level at the nearest receiver can be up to 60dB (A) when works are being undertaken, which is 20 dB(A) above the NML of 40 dB(A).

Consultation with sensitive receivers is outlined in Table 6.5, below.

Table 6.5: Consultation with sensitive receivers

Lot	DP	Distance of dwelling from project footprint (m)	Day (standard construction hours)	Day (out of hours work (OOHW))
16	877827	80	Notification	Notification Respite period (R1) Duration respite Phone calls Specific Notification
1	995519	180	Notification	Notification Respite period (R1) Duration respite
1	1012109	200	Notification	Notification Respite period (R1) Duration respite
23	1007618	450	-	Notification Respite period (R1) Duration respite
1	995518	490	-	Notification Respite period (R1) Duration respite

Work would predominantly be undertaken during standard day time construction hours, except for Saturdays where extended working hours will occur. However, extended construction hours outside of working hours on weekend or

night works to minimise traffic impacts on the community may be undertaken. Before any such work proceeds, these impacts would need to be considered and assessed and any additional/ particular management measures need to be determined and implemented by Transport or the contractor as required.

Overall, it is considered unlikely that local residents would be significantly impacted by noise and/or vibration generated by the Activity due to separation distances and with the implementation of recommended measures to safeguard or mitigate against this.

Noise generated by the works would not significantly impact on the surrounding habitat. Noise from piling is unlikely to significantly impact any aquatic organisms as disturbance will be intermittent and temporary but may result in aquatic fauna moving/swimming away from the site area.

If works are undertaken outside of working hours on weekends or nights to minimise traffic impacts on the community, an assessment would be undertaken to determine any safeguards and mitigations required.

Operation

The works would not alter the alignment of the road or lead to an increase in the number of vehicle movements. As such there is unlikely to be any change to the traffic noise level post construction.

Impact	Environmental safeguards	Responsibility	Timing	Reference
Noise and vibration	 A Noise and Vibration Management Plan (NVMP) will be prepared and implemented as part of the CEMP. The NVMP will generally follow the approach in <i>the Interim Construction Noise</i> <i>Guideline (ICNG) (DECC, 2009</i>) and identify: all potential significant noise and vibration generating activities associated with the activity feasible and reasonable mitigation measures to be implemented, taking into account Beyond the Pavement: urban design policy, process and principles (Transport, 2014). a monitoring program to assess performance against relevant noise and vibration criteria arrangements for consultation with affected neighbours and sensitive receivers, including notification and complaint handling procedures contingency measures to be implemented in the event of non- compliance with noise and vibration criteria. 	Contractor	Detailed design / Pre- construction	Section 4.6 of QA G36 Environment Protection
Noise and vibration	 All sensitive receivers (e.g. local residents) likely to be affected will be notified at least 21 days prior to commencement of any works associated with the activity that may have an adverse noise or vibration impact. The notification will provide details of: the project the construction period and construction hours 	Contractor	Detailed design / Pre- construction	

6.5.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
	 contact information for project management staff complaint and incident reporting how to obtain further information. 			
Airborne noise/ground- borne vibration	 Provide phone calls or specific notification for nearby sensitive receivers located less than 120 m from the project footprint, particularly relating to driving/vibrating in piling activities and activities scheduled outside standard construction hours Periodic notification of all receivers (monthly letterbox drop or equivalent) Website (if required) Project info line Construction Response Line Email distribution list. 	Transport Project Manager	Pre- construction, construction	
	 All employees, contractors and subcontractors will receive an environmental induction. The induction must at least include: All relevant project specific and standard noise and vibration mitigation measures Relevant licence and approval conditions Permissible hours of work Any limitations on high noise generating activities Location of nearest sensitive 	Transport Project Manager/Transport Project Engineer	Pre- construction, construction	
	 receivers Construction employee parking areas Designated loading/unloading areas and procedures Site opening/closing times (including deliveries) Environmental incident procedures. 			
	 No swearing or unnecessary shouting or loud stereos/radio on site. No dropping of materials from height, throwing of metal items and slamming of doors. 	Project team	Construction	
	Verification noise monitoring is required to be undertaken for driven sheet piling. Verification noise monitoring is required for noisy activities outside standard construction hours. An environmental noise monitor would be suitable for verification noise monitoring, noting the anticipated emergence of construction noise above the ambient noise environment and also the remoteness of the site. This monitoring could be undertaken by Transport, the construction contractor or a third party.	Transport Project Manager	Construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	Monitoring of noise and vibration should			
	be undertaken upon receipt of			
	complaints. Where feasible and reasonable,	Transport Project	Construction	
	construction should be carried out	Manager	construction	
	during the standard daytime working			
	hours. Work generating high noise			
	and/or vibration levels should be			
	scheduled during less sensitive time periods.			
	The periods 6:00 am – 7:00 am Monday			
	to Friday and 1:00 pm – 6:00 pm			
	Saturday and all of Sunday and public			
	holidays are outside standard			
	construction hours. Scheduling noisy activities during these periods should be			
	avoided where practical. It is noted that			
	work during these periods will be			
	required on occasion.			
	Respite should be negotiated with	Transport Project	Construction	
	nearby sensitive receivers located within	Engineer/Transport		
	525 m of the project footprint during driven piling and other high noise and	Project Manager		
	vibration generating activities outside of			
	standard construction hours. Respite			
	agreed by negotiation may vary from the			
	typical respite period detailed below (i.e.			
	more or less respite may be agreed with impacted residents).			
	In general, the following respite is			
	provided unless otherwise agreed with			
	the relevant receivers. High noise and			
	vibration generating activities – e.g.			
	driven piling – may only be carried out in continuous blocks, not exceeding 3 hours			
	each, with a minimum respite period of			
	one hour in between each block.			
	For longer duration projects, it may be			
	beneficial to increase the work duration, number of evenings or nights worked			
	through Duration Respite so that the			
	project can be completed more quickly.			
	The project team should engage with the			
	community where noise levels are			
	expected to exceed the NML to demonstrate support for Duration			
	Respite. Where there are few receivers			
	above the NML each of these receivers			
	should be visited to discuss the project to			
	gain support for Duration Respite.			
	Support may be demonstrated from surveys, online feedback, contact phone			
	numbers and community events.			
	Use quieter and less vibration emitting	Transport Project	Construction	
	construction methods where feasible and	Engineer	Soust action	
	reasonable.	-		
	The noise levels of plant and equipment will have operating Sound Power or	Transport Project	Pre-	
	Sound Pressure Levels compliant with	Engineer	construction,	
			construction	
	the criteria in Table F.1 of the CNVG.			
		Transport Project	Pre-	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	on site unless compliant with the criteria in Table F.1 of the CNVG.			
	Simultaneous operation of noisy plant within discernible range of a sensitive receiver will be avoided.	Transport Project Engineer	During work	
	The offset distance between noisy plant and adjacent sensitive receivers will be maximised. Plant used intermittently will be throttled down or shut down when not in use. Noise-emitting plant will be directed away from sensitive receivers.	Transport Project Engineer	During work	
	Plan traffic flow, parking and loading/unloading areas to minimise reversing movements within the site.	Transport Project Engineer/ RMS Project Manager	During work	
	Non-tonal reversing beepers (or an equivalent mechanism) will be fitted and used on all construction vehicles and mobile plant regularly used on site and for any out of hours work.	Transport Project Engineer	During work	
	Loading and unloading of materials/deliveries will occur as far as possible from sensitive receivers. Select site access points and roads as far as possible away from sensitive receivers. Dedicated loading/unloading areas will be shielded if close to sensitive receivers. Delivery vehicles will be fitted with straps rather than chains for unloading, wherever possible.	Transport Project Engineer	During work	
	Stationary noise sources will be enclosed or shielded where feasible and reasonable whilst ensuring that the occupational health and safety of workers is maintained. Appendix D of <i>AS</i> 2436: 2010 lists materials suitable for shielding.	Transport Project Engineer	During work	
	 For works to be completed during OOHW day periods: Phone calls and specific notification for residents less than 120m from the works. Notification to all residents located within the rural area less than 525m from the works and offer respite. 	Transport Project Manager	During work	
	 For works to be completed during standard working hours: Notification to all residents located less than 250m from the works. 	Transport Project Manager	During work	

6.6 Aboriginal cultural heritage

6.6.1 Existing environment

Transport's Procedure for Aboriginal Cultural Heritage Consultation and Investigation (PACHCI) was undertaken by Transport's Aboriginal Cultural and Heritage Officer (refer to **Appendix E**). The results of the PACHCI are summarised as follows:

The project, as described in the Stage 1 assessment checklist, was assessed as being unlikely to have an impact on Aboriginal cultural heritage.

The assessment is based on the following due diligence considerations:

- The project works are within the existing road corridor and disturbed areas (disturbed zones).
- The project is unlikely to harm known Aboriginal objects or places (AHIMS sites).
- The AHIMS search indicated that there are no recorded Aboriginal sites within the study area.
- The study area does contain landscape features that indicate the presence of Aboriginal objects, based on the Office of Environment and Heritage's Due diligence Code of Practice for the Protection of Aboriginal objects in NSW and the Roads and Maritime Services' procedure, however, the cultural heritage potential of the study area appears to be reduced due to past disturbances in the form of the construction of the current road corridor and seasonal flood events.
- There is an absence of sandstone rock outcrops likely to contain Aboriginal art.
- No artefacts or other items of cultural significance were identified during the physical site inspection.

The project may proceed in accordance with the environmental impact assessment process, as relevant, and all other relevant approvals.

As discussed previously a search of the Native Title Tribunal Native Title Vision website was undertaken, with one Native Title holders/claimants identified. South Arm is within the determination area of Yaegl People #2 (Tribunal File No NCD2015/003). The portion of the project area which falls west of the mean high tide level (i.e. the river) is within the determined Native Title Claim for the Yaegl People. The remainder of the project area to the east is within the road reserve where Native Title has been extinguished. Consultation requirements under the *Native Title Act 1993* have been undertaken and are discussed in Section 4.3.2 and 5.3 of this report.

6.6.2 Potential impacts

Construction

Minor excavation required at the site has potential to uncover unexpected Aboriginal objects (including skeletal remains). Safeguards are provided.

Operation

It is not expected that following completion of the proposal the operation of Big River Way and subject remediation works area would have any impact on Aboriginal heritage.

6.6.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Aboriginal heritage	The Standard Management Procedure - Unexpected Heritage Items (Transport, 2015) will be followed in the event that an unknown or potential Aboriginal object/s, including skeletal remains, is found during construction. This applies where Transport does not have approval to disturb the object/s or where a specific safeguard for managing the disturbance (apart from the Procedure) is not in place.	Contractor	Detailed design / Pre- construction	Section 4.9 of QA G36 Environment Protection

Impact	Environmental safeguards	Responsibility	Timing	Reference
	Work will only re-commence once the requirements of that Procedure have been satisfied.			
	All personnel working on site must be advised of their responsibilities under the NPW Act.	All personnel on site	Pre- construction	

6.7 Non-Aboriginal heritage

6.7.1 Methodology/ Existing environment

Searches were made of relevant Commonwealth, State and local heritage resisters on which historical heritage places are entered on 27 October 2021. Results are as follows:

- NSW State Heritage Register: no items on the register occur in proximity to the site.
- Clarence Valley Local Environment Plan: The nearest heritage item listed on the LEP is a 'Pioneers Memorial' (Item 350) situated approximately 1.5 km away to the east of the site. This item would not be impacted by the proposal.
- Commonwealth Heritage List: no results were returned within the Clarence Valley LGA.
- National Trust heritage list: no results were returned within 10 kilometres of the site.

6.7.2 Potential impacts

Construction

Given no known Non-Aboriginal heritage items occur at the site it is unlikely that the proposal would have any impacts on such items. There is always potential that the proposal may locate unexpected heritage items, archaeological remains or potential relics of Non-Aboriginal origin, however the likelihood of this is low for the site given its previous disturbance history associated with road works (the Big River Way) and previous remediation works.

Operation

In the operational stage there is unlikely to be any impacts to Non-Aboriginal Heritage items.

6.7.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Non- Aboriginal heritage	The Standard Management Procedure - Unexpected Heritage Items (Transport for NSW, 2015) will be followed in the event that any unexpected heritage items, archaeological remains or potential relics of non-Aboriginal origin are encountered. Work will only re-commence once the requirements of that Procedure have been satisfied.	Contractor	Detailed design / Pre- construction	Section 4.9 of QA G36 Environment Protection

6.8 Landscape character and visual impacts

6.8.1 Existing environment

The proposed works occur along a modified road reserve and rural landscape setting, comprising a slip on the bank of the South Arm of the Clarence River and Big River Way. The subject site comprises the river embankment and associated riparian vegetation while the broader area is dominated by agricultural lands, predominantly sugar cane.

Local road and river users are most likely to be impacted by changes to the visual setting. The visual amenity of the following landholders may also be impacted:

- Dwelling approximately 80 east of the site
- Dwelling approximately 200m southwest of the site
- Dwelling approximately 180m north of the site

6.8.2 Potential impacts

Construction

Some minor amenity impacts to nearby properties and local road/river users are possible during construction. These could include:

- Noise and vibration.
- Air quality.
- Water quality.
- Habitat/vegetation removal.
- Visual impacts.

While the work and associated sites would be obvious to road users, this impact would be minor.

Operation

The proposal has potential to create adverse visual impacts for local residents via changes to the landscape character of the site. The selected Option 3 was higher scoring than other options in relation to its environmental impacts, including long term visual impacts, as the proposal is seeking to restore lost riverbank. Visually, the shear piles and rock fill are exposed, which will have a similar visual appearance to the adjacent slip remediation site.

In general, the aesthetic qualities and value of the locality are not expected to be impacted by the proposal as the character of the general area would largely remain the same post construction.

6.8.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Landscape character and visual impact	All working areas will be maintained, kept free of rubbish and cleaned up at the end of each working day.	Transport Project Engineer	Construction	
	Soil disturbance will be minimised where possible.	Transport Project Engineer	Construction	

6.9 Socio-economic

6.9.1 Existing environment

Big River Way provides a valued transport route used by travellers, local residents and farmers to access surrounding areas and the coastal villages of Maclean, Tyndale and Ulmarra. This section of the road is sometimes used as an alternative to the Pacific Highway or as a tourist route for vehicles travelling north or south. The proposal is required to restore the riverbank and the deteriorated road surface of Big River Way which is imperative to the safety and integrity of the road to prevent further slips and additional damage to the road pavement.

6.9.2 Potential impacts

Construction

During construction, some traffic delays may be experienced by local road users due to traffic as a result of single northbound lane closure although these are likely to be minor given the low volume of traffic that typically uses the subject section of Big River Way. Accordingly impacts on local residents, businesses and services in the local area are unlikely to be affected by the changed road conditions.

Traffic impacts may also be experienced on South Arm Road on Woodford Island as a result of deliveries of piles made to the potential pile stockpile site located on the north-western bank of the Clarence River (with owner approval). These roads are used by trucks hauling harvested cane during cane haul season (July to December). Planned traffic delays of Big River Way and South Arm Road would be mindful of needs of the local community and cane harvesting businesses.

Whilst some visual amenity and noise and vibration impacts are expected during the works these can largely be managed with recommended safeguards outlined in the REF.

Operation

The repair works of the Big River Way pavement would improve the safety of the road environment and the proposed restoration of the riverbank will reduce risk of further slips/collapse. This would have a positive socio-economic impact by reducing risk of additional damage and degradation to the road surface as a result of future slips or slope subsidence.

Impact **Environmental safeguards** Responsibility Timing Reference Socio-Contractor Detailed design / Communication Plan (CP) will be prepared economic Pre-construction and implemented as part of the CEMP to help provide timely and accurate information to the community during construction. The CP will include (as a minimum): mechanisms to provide details and timing of proposed activities to affected residents, including changed traffic and access conditions contact name and number for complaints. The CP will be prepared in accordance with the Community Involvement and Communications Resource Manual (RTA, 2008). All businesses, residential properties and Notification Pre-construction Transport other key stakeholders (e.g. schools, council, project manager and during bus operators) affected by the activity would and construction be notified at least 10 working days prior to communications commencement of the activity. officer Project/community updates would be provided throughout the duration of works as relevant. Notification would utilise both digital and conventional (non-digital) modes of communication (e.g. media release, letter box drops, newsletters and regular updates to a project website). Notification would include an information package, including contact name and number for enquiries or complaints, the expected timeframe of works and any planned or potential disruptions to utilities/services and changed road and traffic conditions. Ongoing stakeholder and community Consultation Pre-construction Transport consultation would be undertaken in and during project manager accordance with the *Roads & Maritime* and construction Communication Toolkit. Consultation would communications include: officer Clarence Valley Shire Council.

6.9.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
	 Residents and businesses within a minimum of 2 kilometres of the proposal. Emergency services. Bus operators. Local schools. Transport Maritime for on water traffic management. Sugar Cane Industry, Clarence Cane Growers Association and/or Harwood Sugar Mill (as necessary depending on staging of works coinciding with cane harvesting season) 			
Noise and vibration specific notification and consultation	 Implement notification and community consultation measures with regard to airborne noise and ground-borne vibration impacts from the works, including: Periodic notification of all identified receivers (letterbox drop or equivalent). Website. Project info line. Construction Response Line. Email distribution list. 	Transport project manager and communications officer	Pre-construction and during construction	
	For highly noise emitting activities and activities scheduled outside of standard construction hours, provide phone calls or specific notification for each of the identified receivers (this is an additional measure as per noise assessment).			
Traffic	As per the notification process, advanced warning signage would be established prior to and during the work to ensure road users are made aware of changed traffic conditions and detour directions. Excluding the required detours, where possible, current traffic movements and property accesses would be maintained during the work. Any disturbance would be minimised to prevent unnecessary traffic delays.	Transport project engineer and work supervisor	Pre-construction and during construction	
Waterway	Advanced warning signage and/or beacons (appropriate for any applicable day and night-time maritime requirements) would be established prior to and during the work to ensure any users of the Clarence River nearby are aware of changed navigational conditions or hazards within the work area and waterway.	Transport project engineer and work supervisor	Pre-construction and during construction	
School bus services	Maintain ongoing consultation and cooperation between Transport and School Bus Services prior to and for the duration of the project, to ensure no adverse or unmanageable impact to important services. Any anticipated traffic disruptions would need to be communicated to the affected School Bus Service.	Transport project manager, communications officer, project engineer and work supervisor	Pre-construction and during construction	
Complaints	A complaint handling procedure and register would be included in the CEMP and would	Transport project manager	During construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	include that all complaints would be responded to within 24 hours.	and communications officer		
Health and safety	Suitable site induction relating to site specific hazards would be undertaken for all contractor and Transport staff. The work would be undertaken in accordance with all NSW health and safety legislative requirements and relevant	Transport project engineer and work supervisor	Pre-construction and during construction	
	Australian Standards.			

6.10 Air quality

6.10.1 Existing environment

The proposed works are located within an agricultural setting, predominantly used for sugarcane production. There are no OEH air quality records for Northern NSW. However, it would be expected that low volumes of vehicle emissions would occur on a regular ongoing basis from the traffic along Big River Way, and dust emission are likely to be very low. Ambient air quality at the site is generally good.

6.10.2 Potential impacts

The proposed works may adversely affect air quality through:

- Exhaust emissions from machinery and associated transportation;
- Dust generated through transport and application of rock and fill; and
- Dust generated from stockpiling materials.

The works would result in elevated emissions during construction from plant and equipment, however, it is unlikely this would be significant when compared to background emissions from regular vehicle movements.

6.10.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Air quality	An Air Quality Management Plan (AQMP) will be prepared and implemented as part of the CEMP. The AQMP will include, but not be limited to:	Transport Project Engineer	Pre- construction/ construction	Section 4.4 of <i>QA G36</i> Environment
	• potential sources of air pollution			Protection
	• air quality management objectives consistent with any relevant published EPA and/or Office of Environment and Heritage (OEH) guidelines			
	 mitigation and suppression measures to be implemented 			
	• methods to manage work during strong winds or other adverse weather conditions			
	• a progressive rehabilitation strategy for exposed surfaces.			
	Vegetation, garbage or other combustible waste materials are not to be burnt on site.	Transport Project Engineer	Construction	
	Vehicles transporting waste or other materials that may produce odours or dust are to be covered during transportation.	Transport Project Engineer	Construction	

Stockpile areas that may generate dust are to be managed to suppress dust emissions in accordance with the TfNSW Stockpile Site Management Guideline (EMS-TG-10).	Transport Project Engineer	Construction
Measures (including watering or covering exposed areas) would be used to minimise or prevent air pollution and dust	Transport Project Engineer	Construction
Works would not be carried out during strong winds or in weather conditions where high levels of dust or air borne particulates are likely	Transport Project Engineer	Construction
Vehicles, machinery and equipment would be maintained in accordance with manufacturer's specifications in order to meet the requirements of the POEO Act and associated regulations	Transport Project Engineer	Construction
Vehicles and equipment would be switched off when not required to be operational	Transport Project Engineer	Construction
Debris and waste would be removed from the works and compound areas as soon as practicable to ensure light-weight material is not dispersed by wind gusts.	Transport Project Engineer	Construction

6.11 Waste and resources

6.11.1 Existing environment

The works site occurs adjacent to the South Arm of the Clarence River which has potential to be polluted and transport pollution to areas away from the site.

6.11.2 Potential impacts

Uncontained waste has the potential to disperse into the surrounding environment and cause visual impacts and potential harm to aquatic flora and fauna. Waste products may also transport contaminants that may degrade local water quality (e.g. fuels and oils).

Waste generated from the proposal is expected to include:

- Removed weeds and vegetation mulch.
- Packaging materials (e.g. machinery oil/lubricant packaging etc), off-cuts, etc.
- Liquid waste from portable toilets.

Poisoned weeds and removed vegetation are to be mulched in the tree mulcher and may follow different management options, including:

- Transport the material to Harwood Sugar Mill compost system, or
- Transport and dispose of at a licenced waste facility.

A Mulch Management Plan is to be developed for the project to form part of the CEMP.

If weeds can be separated from trees prior to mulching, the mulch can be used on landscape garden beds within Transport for NSW rest areas.

A site has been identified by Transport's Far North Coast District team for reuse of excavated spoil material. The site is within the road reserve adjacent to Coldstream Bridge, south bound lane of Big River Way located approximately 6km south-west of the project area (refer to **Figure 6.1**). This hard stand area can be extended with no additional clearing or disturbance required and can accept this material.

The proposal would be undertaken to ensure minimal impacts are generated from waste material produced on site by ensuring that all waste collected and disposed of or recycled is in accordance with Transport waste disposal protocols and EPA guidelines. No materials would be used in a manner that poses a risk to public safety.

Hazardous waste would be separated from other waste on site which would subsequently reduce the risk of contamination of non-hazardous waste streams. Separation on site also reduces the volume of waste to be stored on site and assists with secure storage of waste, which in turn reduces the risk of contamination of the surrounding environment due to loss of containment of waste. To further reduce risks associated with waste, the volume of waste stored on site would be limited to an amount which could be removed from site within a short timeframe; thereby allowing for complete removal of all waste in the event of a flood warning.

6.11.3 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Waste	A Waste Management Plan (WMP) will be prepared and implemented as part of the CEMP. The WMP will include but not be limited to:	Contractor	Detailed design / Pre- construction	Section 4.2 of QA G36 Environment
	 measures to avoid and minimise waste associated with the project 			Protection
	 classification of wastes and management options (re-use, recycle, stockpile, disposal) 			
	• statutory approvals required for managing on- and off-site waste, or application of any relevant resource recovery exemptions			
	• procedures for storage, transport and disposal			
	monitoring, record keeping and reporting.			
	The WMP will align with the <i>Environmental</i> <i>Procedure - Management of Wastes on Transport</i> <i>for NSW Land</i> (Transport, 2014) and relevant Transport Waste fact sheets.			
	If vegetation is to be mulched and transported off site for beneficial reuse, it is to be assessed for the presence of weeds, pest, and other disease and a Mulch Management Plan prepared in accordance with the Transport Technical Procedure: Mulch Management. Note that there may be restrictions to applying mulch to land outside the road reserve.	Transport Project Engineer	Construction	
	Potentially contaminated waste/ hazardous waste is to be stored separately from other waste streams generated at the site.	Transport Project Engineer	Construction	
	To minimise the risk of impacts from flooding, the quantity of waste stored on site is not to exceed the volume of waste that can be removed in one to two days.	Transport Project Engineer	Construction	
	Potentially contaminated waste/ hazardous waste is to be stored separately from other waste streams generated at the site.	Transport Project Engineer	Construction	
	 Resource management hierarchy principles are to be followed: Avoid unnecessary resource consumption as a priority Avoidance is followed by resource recovery (including reuse of materials, reprocessing, recycling and energy recovery) Disposal is undertaken as a last resort. 	Transport Project Engineer	Pre – Construction, Construction	
	(in accordance with the <i>Waste Avoidance</i> & <i>Resource Recovery Act 2001</i>).			

There is to be no disposal or re-use of construction waste on to other land.	Transport Project Engineer	Construction
Waste is not to be burnt on site.	Transport Project Engineer	Construction
All wastewater from vessels is to be discharged at an approved vessel wastewater disposal facility. No vessel wastewater is to be discharged (i.e. pumped out) directly into the water or onto any land adjacent.	Transport Project Engineer	Construction
Waste material is not to be left on site once the work has been completed.	Transport Project Engineer	Construction
Non-recyclable wastes are to be collected and disposed of at licensed waste facilities only.	Transport Project Engineer	Construction
Temporary storage of contaminated waste at the site compound is to be in sealed containers within a self safe storage container and double bunded and sign posted as contaminated waste.	Transport Project Engineer	Construction
Storage of hazardous waste (i.e. removed lead paint flakes and dust), restricted solid waste or liquid waste (or a combination of these) on site at any time is not to exceed five tonnes otherwise an Environment Protection Licence under the POEO Act is required.	Transport Project Engineer	Construction
Any contaminated waste generated by the proposal is to be disposed of in accordance with the EPA approved methods of waste disposal.	Transport Project Engineer	Construction
Bulk project waste (e.g. fill) sent to a site not owned by Roads and Maritime (excluding Office and Environment and Heritage licensed landfills) for land disposal is to have prior formal written approval from the landowner, in accordance with Environmental Direction No. 20 – Legal Off-site disposal of Bulk RTA Project Wastes and Section 143 of the POEO Act.	Transport Project Engineer	Construction

6729

Cadastre

Byrons Lane Slip: Excavated Material Reuse Area

LEGEND

10 Meters

Byron's Lane Slip Stage V 4099-1026

Excavated Material Reuse Area - Illustration 6.1

Information shown is for illustrative purposes only Drawn by: AB Checked by: SDS Reviewed by: DGH Source of base data: Department of Customer Services Date: 18/10/2022

6.12 Other impacts

6.12.1 Existing environment and potential impacts

Environmental factor	Existing environment	Potential impacts
Utilities	 The following utilities are associated with the site: Overhead powerlines. Underground watermain. Underground communications (Telstra). Prior to construction commencing 	Damage to utilities in the vicinity of the proposal.
	identification of underground utilities would be undertaken. Public utilities would be adjusted where necessary prior to construction commencing.	

6.12.2 Safeguards and management measures

Impact	Environmental safeguards	Responsibility	Timing	Reference
Utilities	 Prior to the commencement of works: the location of existing utilities and relocation details will be confirmed following consultation with affected utility owners further assessment will be undertaken if the scope or location of proposed utility relocation works falls outside of the assessed proposal scope and footprint. 	Transport Project Manager	Detailed design / Pre- construction	
Hazards and risk management	 A Hazard and Risk Management Plan (HRMP) will be prepared and implemented as part of the CEMP. The HRMP will include, but not be limited to: details of hazards and risks associated with the activity measures to be implemented during construction to minimise these risks record keeping for materials present on the site, material safety data sheets, and personnel trained and authorised to use such materials a monitoring program to assess performance in managing identified risks contingency measures to be implemented in the event of unexpected hazards, risks arising and emergency situations. The HRMP will be prepared in accordance with relevant guidelines and standards, including relevant Safe Work Australia Codes of Practice, and EPA or OEH publications. 	Contractor	Detailed design / Pre- construction	

6.13 Cumulative impacts

6.13.1 Study area

The study area for the purposes of assessing cumulative impacts is the Clarence Valley LGA.

6.13.2 Other projects and developments

Table 6.6: Past, present and future projects

Project	Construction impacts	Operational impacts
 Transport currently have another project in close proximity to the subject site: Culvert at Lees Drain (500m north of the site) Improved drainage of Shark Creek cane drainage system to protect road assets in the locality and improved stability along a section of Clarence River associated with the outlet of Lees Drain Construction expected to commence late 2021 and be completed early 2022. This project will likely be finished before the subject project commences as there will be shared utilisation of stockpile sites and compounds. 	 Construction impacts of the Culvert at Lees Drain may include: Construction noise exceeding the noise criteria for residences in the surrounding areas. Traffic congestion affecting Big River Way for the duration of the works. 	 Operational impacts of the Lees Drain project may include: An increase in traffic on Big River Way and associated road traffic noise. Although these projects are not part of the same program of work, the timing of these projects has been staggered in order to minimise cumulative impacts.

6.13.3 Potential impacts

The proposal has potential to add a number of cumulative impacts (to a minor extent) during construction including resource consumption, disruption to traffic, noise impacts and generation of greenhouse gas emissions (through operation of vehicles and equipment). In order to minimise the cumulative impacts of the Lees Drain project and the proposal on the immediate surrounding area the timing of the projects have been planned so the Lees Drain project will near completion before works begin for Byrons Lane Slip Stage V. This will help manage potential impacts as well as the extensive mitigation measures stated within Section 6 which aim to minimise the extent to which the proposal contributes to cumulative adverse environmental impacts.

7. Environmental management

This chapter describes how the proposal will be managed to reduce potential environmental impacts during detailed design, construction and operation. A framework for managing potential impacts is provided. A summary of site-specific environmental safeguards is provided and the licence and/or approval requirements required prior to construction are listed.

7.1 Environmental management plans (or system)

Safeguards and management measures have been identified in the REF in order to minimise adverse environmental impacts, including social impacts, which could potentially arise as a result of the proposal. Should the proposal proceed, these safeguards and management measures would be incorporated into the detailed design and applied during the construction and operation of the proposal.

A Construction Environmental Management Plan (CEMP) will be prepared to describe the safeguards and management measures identified. The CEMP will provide a framework for establishing how these measures will be implemented and who would be responsible for their implementation.

The CEMP will be prepared prior to construction of the proposal and must be reviewed and certified by the Transport for NSW Environment Officer, Northern region, prior to the commencement of any on-site works. The CEMP will be a working document, subject to ongoing change and updated as necessary to respond to specific requirements. The CEMP would be developed in accordance with the specifications set out in the *QA Specification G36 - Environmental Protection (Management System), QA Specification G38 - Soil and Water Management (Soil and Water Plan), QA Specification G40 - Clearing and Grubbing, QA Specification G10 - Traffic Management*].

7.2 Summary of safeguards and management measures

Environmental safeguards and management measures outlined in this REF will be incorporated into the detailed design phase of the proposal and during construction and operation of the proposal, should it proceed. These safeguards and management measures will minimise any potential adverse impacts arising from the proposed works on the surrounding environment. The safeguards and management measures are summarised in **Table 7.1**.

Table 7.1: Summary of safeguards and management measures

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
GEN1	General - minimise environmental impacts during construction	 A CEMP will be prepared and submitted for review and endorsement of the Transport for NSW Environment Manager prior to commencement of the activity. As a minimum, the CEMP will address the following: any requirements associated with statutory approvals; details of how the project will implement the identified safeguards outlined in the REF; issue-specific environmental management plans; roles and responsibilities; communication requirements; induction and training requirements; procedures for monitoring and evaluating environmental performance, and for corrective action; reporting requirements and record-keeping; procedures for emergency and incident management; and procedures for audit and review. 	Contractor / Transport for NSW project manager	Pre-construction / detailed design	
GEN2	General - notification	All businesses, residential properties and other key stakeholders (e.g. schools, local councils) affected by the activity will be notified at least five days prior to commencement of the activity.	Contractor / Transport for NSW project manager	Pre-construction	
GEN3	General – environmental awareness	 All personnel working on site will receive training to ensure awareness of environment protection requirements to be implemented during the project. This will include up-front site induction and regular "toolbox" style briefings. Site-specific training will be provided to personnel engaged in activities or areas of higher risk. These include: threatened species habitat. adjoining residential areas requiring particular noise management measures. 	Contractor / Transport for NSW project manager	Pre-construction / detailed design	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
1	Biodiversity	A Flora and Fauna Management Plan will be prepared in accordance with Transport for NSW's <i>Biodiversity Guidelines: Protecting and Managing Biodiversity on Projects (RMS, 2011)</i> and implemented as part of the CEMP. It will include, but not be limited to:	Contractor	Detailed design / pre-construction	Section 4.8 of QA G36 Environment
		• plans showing areas to be cleared and areas to be protected, including exclusion zones, protected habitat features and revegetation areas			Protection
		• requirements set out in the <i>Landscape Guideline (RMS, 2008)</i>			
		• pre-clearing survey requirements			
		• procedures for unexpected threatened species finds and fauna handling			
		• procedures addressing relevant matters specified in the DPI <i>Policy and guidelines for fish habitat conservation and management (2013)</i>			
		protocols to manage weeds and pathogens			
	Biodiversity	Measures to further avoid and minimise the construction footprint and native vegetation or habitat removal will be investigated during detailed design and implemented where practicable and feasible.	Contractor	Detailed design / pre-construction	
	Removal of native vegetation	Native vegetation removal will be minimised throughout the project.	Transport Project Manager/ Contractor	Prior to construction and during construction	
		Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
		Vegetation removal will be undertaken in accordance with <i>Guide 4: Clearing of vegetation and removal of bush rock</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
		Native vegetation will be re-established in accordance with <i>Guide 3: Re-establishment of native vegetation</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011). Note: this will be considered for bank stability in areas where it will not compromise the structural integrity of the asset and outside access areas for maintenance.	Transport Project Manager/ Contractor	Post construction	
		Also, it's noted there is little to no opportunity to re-establish native vegetation at the slip remediation site due to the narrow road reserve with rock revetment, unless natural vegetation was to naturally colonise the area over time (which is unlikely due to the amount of rock fill to be placed.)			
		The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) if threatened ecological communities, not assessed in the biodiversity assessment, are identified in the proposal site.	Transport Project Manager/ Contractor	During construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
	Removal of threatened species habitat and habitat features	Habitat removal will be minimised throughout the project.	Transport Project Manager/ Contractor	Prior to construction and during construction	
		Habitat removal will be undertaken in accordance with <i>Guide 4: Clearing of vegetation and removal of bush rock</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
	Removal of threatened plants	Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
		The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) if threatened flora species, not assessed in the biodiversity assessment, are identified in the proposal site.	Transport Project Manager/ Contractor	During construction	
	Aquatic impacts	Aquatic habitat will be protected in accordance with <i>Guide 10: Aquatic habitats and riparian zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) and Section 3.3.2 <i>Standard precautions and mitigation measures</i> of the <i>Policy and guidelines for fish habitat conservation and management Update 2013</i> (DPI (Fisheries NSW) 2013).	Transport Project Manager/ Contractor	During construction	
		All activities are to minimise disturbance to shallow water habitats under, and in the immediate vicinity of water based structures, including disturbance of seabed sediments and smothering habitats from propeller strike or excessive propeller wash.			
		All activities are to be carried out to avoid spreading aquatic/marine pests including:			
		 Removal of weeds, animals or sediment from equipment and disposal to an appropriate waste receptacle or facility 			
		Disposal of sewage and bilge water at an approved pump out facility			
	Groundwater dependent ecosystems	Interruptions to water flows associated with groundwater dependent ecosystems will be minimised.	Transport Project Engineer/ Contractor	Prior to construction and during construction	
	Changes to hydrology	Changes to existing surface water flows will be minimised.	Transport Project Engineer/ Contractor	Prior to construction and during construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
	Edge effects on adjacent native vegetation and habitat	Exclusion zones will be set up at the limit of clearing in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	During construction	
	Injury and mortality of fauna	Fauna will be managed in accordance with <i>Guide 9: Fauna handling</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Transport Project Manager/ Contractor	During construction	
		Pre-clearing surveys will be undertaken in accordance with Guide 1: Pre-clearing process of the Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects (RTA 2011).	Transport Project Manager/ Contractor	Prior to construction	
	Invasion and spread of weeds	Weed species will be managed in accordance with <i>Guide 6: Weed management</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
	Invasion and spread of pests	If vegetation is to be mulched, pest species will be managed within the proposal site in accordance with the TfNSW Technical Procedure: Mulch Management	Contractor	During construction	
	Invasion and spread of pathogens and disease	Pathogens will be managed in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Contractor	During construction	
	Noise, light and vibration	Shading and artificial light impacts will be minimised.	Transport Project Manager/ Contractor	Prior to construction and during construction	
	Tree and Hollow replacement	Tree and hollows that require replacement will be identified in accordance with the Tree and Hollow replacement guideline. Where trees and hollows will be replaced within the project boundary prepare a Tree and Hollow Replacement Plan to address the impacts described in Table 7-2 prior to commencement of works. Alternatively, where tree and hollow replacement cannot be accommodated locally or can only be partially accommodated, payment must be made to the TfNSW Conservation fund prior to the commencement of works in accordance with the Tree and Hollow Replacement Guideline.	Transport Project Manager	Prior to construction	
2	Hydrological impacts	A CEMP must be prepared in accordance with the specifications set out in the <i>QA Specification G36 - Environmental Protection (Management) System</i> to guide the implementation of environmental impact mitigation measures, identify key roles and responsibilities for environmental monitoring and methods of reporting incidents.	Transport Project Manager	Pre-construction	
	Erosion sedimentation	A site-specific Erosion and Sediment Control Plan is to be prepared and implemented as part of the CEMP. The plan is to identify detailed measures and controls to be applied to minimise erosion and sediment control risks including (where relevant), but not limited to: runoff, diversion and drainage points, sumps, scour protection; stabilising disturbed areas as soon as possible; check dams, fencing and swales and staged implementation arrangements.	Transport Project Manager	Pre-construction, construction	Section 2.2 of QA G38 Soil and Water Management

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		The plan is to also include arrangements for managing wet weather events, including monitoring of potential high-risk events (such as storms) and specific controls and follow-up measures to be applied in the event of wet weather. Work in areas where soil may be disturbed is to only commence once all relevant erosion and sediment controls have been established. The controls are to be maintained in place until the work is complete and all exposed erodible materials are stable.			
		Erosion and sedimentation controls must be checked and maintained (including clearing of sediment from behind barriers) on a regular basis (including after any precipitation events) and records kept and provided on request.	Transport Project Engineer	Pre-construction, construction	
		An Environmental Work Method Statement (EWMS) is required for proposed instream works and dewatering of any areas prior to commencement of those activities. The EWMS would include measures to avoid or minimise risks from erosion, sedimentation, ASS and PASS to water quality and biodiversity. The EWMS would be approved by the TfNSW Environment Officer and form part of the Construction Environment Management Plan.	Transport Project Manager	Pre-construction, construction	
		Dewatering would be undertaken in accordance with TfNSW Environmental Fact Sheet 10: <i>Dewatering</i> and the EWMS.			
		For all works likely to generate sediment within the waterway or on the adjacent banks of the Clarence River (including piling), a full depth sediment/silt curtain and floating hydrocarbon boom will be placed in the adjacent Clarence River to isolate the work area, weighted to the bed and secured to accommodate tidal flow. The hydrocarbon boom will be installed inside of the silt curtain when both are in operation. Install the curtain prior to commencement of instream works and retain until works that risk mobilising sediment are completed. This will remain in place until the completion of sediment generating activities. Silt curtains/floating booms are to be installed, monitored and maintained as needed to contain any sediment.	Transport Project Engineer	Pre-construction, construction	
		If sediment plumes are observed outside the containment system, then the activity will stop until the containment system has been repositioned to encompass the area of disturbance.			
		Disturbance of natural sediments and vegetation must be minimised.	Transport Project Engineer	Pre-construction, construction	
		Erosion and sediment control measures must not be removed until the work is complete or disturbed areas are stabilised.	Transport Project Engineer	Construction, post-construction	
		Maintenance of site compounds must be in accordance with the TfNSW Stockpile Site Management Guideline (EMS-TG-10).	Transport Project Engineer	Pre-construction, construction	
		All rocks will be washed to remove fines.	Transport Project Engineer	Construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		Cleaning of tools and equipment must occur within a designated wash-down bay. The wash- down bay must be bunded and placed so that water does not flow directly into the Clarence River but is captured and contained or filtered and allowed to soak into the ground.	Transport Project Engineer	Construction	
		Water utilised for cleaning of tools must be minimised and obtained from a licensed location or town water supply.	Transport Project Engineer	Construction	
		Clean equipment and vehicles must be used, with equipment being cleaned down before being brought to the site	Transport Project Engineer	Pre-construction, construction	
		A site-specific emergency spill plan will be developed and include spill management measures in accordance with the TfNSW <i>Code of Practice for Water Management</i> (RTA, 1999) and relevant EPA guidelines. The plan will address measures to be implemented in the event of a spill, including initial response and containment, notification of emergency services and relevant authorities (including TfNSW and EPA officers).	Transport Project Manager	Detailed design/ Pre-construction	Section 4.3 of QA G36 Environment Protection
		A spill containment kit for aquatic and terrestrial spills must be available at all times. The spill kit must be appropriately sized for the volume of substances at the work site. All personnel must be made aware of the location of the kit and trained in its effective deployment.	Transport proposal Manager	Pre-construction, construction	
	Reduced water quality	If a spill occurs, the Transport Environmental Incident Classification and Reporting Procedure must be followed, and the Transport Project Manager notified as soon as practicable.	Transport Project Manager/ Project Engineer	Pre-construction, construction	
		Potential or actual acid sulphate soils are to be managed in accordance with the Roads and Maritime Services Guidelines for the Management of Acid Sulphate Materials 2005.	Transport Project Manager	Construction	
		Locate stockpiles of dispersible material away from areas of concentrated overland flow.	Transport Project Manager/ Project Engineer	Construction	
		Required fuels and other liquids must be stored in self-safe chemical storage containers.	Transport Project Manager/ Project Engineer	Pre-construction, construction	
		Unnecessary storage of fuels, lubricants or other compounds on-site must be avoided.	Transport Project Manager/ Project Engineer	Pre-construction, construction	
		Refuelling of plant and equipment is to occur in impervious bunded areas located a minimum of 50 metres from drainage lines or waterways otherwise a double bund is required.	Transport Project Manager/ Project Engineer	Construction	
		All equipment must be maintained in good working order and operated according to manufacturer's specifications.	Transport Project Engineer	Pre-construction, construction	

Impact	Environmental safeguards	Responsibility	Timing	Reference
	Visual monitoring of local water quality (i.e. turbidity, hydrocarbon spills/slicks) is to be undertaken on a regular basis to identify any potential spills or deficient silt curtains or erosion and sediment controls.	Transport Project Engineer	Construction	
	Construction vessels (including barges) are only to be used at suitable tides when no less than 600mm clearance is available between the underside of the vessel and the bed of the waterway.	Transport Project Engineer	Construction	
	Prepare an emergency response plan for flood events for the proposed work. Include a procedure for rapid removal in the emergency response plan and location for the material.	Transport Project Manager	Pre-construction	
	Establish the compound site in such a way to limit potential impacts from flooding (e.g. on as high a ground as possible and that are readily removed in the event of a flood).	Transport Project Manager	Construction	
Flooding	 Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Issues to be addressed in the WMS include: Responsibility for monitoring flood threat/flood warning information and how it is to be done Training for staff on evacuation Demonstrate that specific equipment for evacuation is readily available 	RMS Project Manager	Pre-construction	
	Detail where compound site equipment, waste, materials, site sheds etc.			
Contaminated land	If contaminated areas are encountered during construction, appropriate control measures will be implemented to manage the immediate risks of contamination. All other works that may impact on the contaminated area will cease until the nature and extent of the contamination has been confirmed and any necessary site-specific controls or further actions identified in consultation with the Transport for NSW Environment Manager and/or EPA.	Contractor	Detailed design / Pre-construction	Section 4.2 of QA G36 Environment Protection
Accidental spill	A site-specific emergency spill plan will be developed and include spill-management measures in accordance with the Transport <i>Code of Practice for Water Management (RTA, 1999)</i> and relevant EPA guidelines. The plan will address measures to be implemented in the event of a spill, including initial response and containment, notification of emergency services and relevant authorities (including Transport EPA officers).	Contractor	Detailed design / Pre-construction	Section 4.3 of QA G36 Environment Protection
Acid sulfate soils	 Potential or actual acid sulfate soils are to be managed in accordance with the <i>TfNSW Services Guidelines for the Management of Acid Sulfate Materials 2005</i>. An Acid Sulfate Management Plan (ASSMP) will be prepared by Transport and approved by the Environment Officer before the commencement of any activities likely to expose ASS/PASS and at a minimum, the plan will include: Management measures for the safe excavation and timing to cover excavation, isolated storage and treatment area, neutralisation and re-use or disposal of neutralised soils Requirements for additional testing to determine predicted liming rates of excavated spoil once quantities are determined. Specific controls to be implemented will include: Capping exposed surfaces with clean fill to prevent oxidation 	Transport Project Manager	Pre-construction	
	Flooding Contaminated land Accidental spill	Visual monitoring of local water quality (i.e. turbidity, hydrocarbon spills/slicks) is to be undertaken on a regular basis to identify any potential spills or deficient silt curtains or erosion and sediment controls. Construction vessels (including barges) are only to be used at suitable tides when no less than 600mm clearance is available between the underside of the vessel and the bed of the waterway. Prepare an emergency response plan for flood events for the proposed work. Include a procedure for rapid removal in the emergency response plan and location for the material. Establish the compound site in such a way to limit potential impacts from flooding (e.g. on as high a ground as possible and that are readily removed in the event of a flood). Flooding Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Issues to be addressed in the VMS include: Responsibility for monitoring flood threat/flood warning information and how it is to be done. Training for staff on evacuation Demonstrate that specific equipment for evacuation is readily available Detail where compound site equipment, waste, materials, site sheds etc. Contaminated land If contaminated areas are encountered during construction, appropriate control measures will be implemented to manage the immediate risks of contamination. All other works that may impact on the contaminated area will case until the nature and extent of the contamination has been confirmed and any necessary site-specific controls of further actions identified in consultation with the Transport Code of Practice for Water Management (RTA, 1999) and relevant EPA guidelines. The plan will address measures to be	Visual monitoring of local water quality (i.e. turbidity, hydrocarbon spills/slicks) is to be undertaken on a regular basis to identify any potential spills or deficient silt curtains or ensoion and sediment controls. Transport Project Engineer Construction vessels (including barges) are only to be used at suitable tides when no less than 600mm clearance is available between the underside of the vessel and the bed of the waterway. Transport Project Engineer Prepare an emergency response plan for flood events for the proposed work. Include a top coefficient for rapid removal in the emergency response plan and location for the material. Transport Project Manager Flooding Establish the compound site in such a way to limit potential impacts from flooding (e.g. on as high a ground as possible and that are readily removed in the event of a flood). Transport Project Manager Flooding Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Issues to be addressed in the WMS include: • Responsibility for monitoring flood threat/flood warning information and how it is to be done • Training for staff on evacuation • Demonstrate that specific equipment for evacuation is readily available Detail where compound site equipment, waste, materials, site sheds etc. Contractor Contaminated land If contaminated area are encountered during construction, appropriate onthe contamination has been confirmed and any necessary site-specific controls or further actions identified in consultation with the Transport FO NSE Environment Manager and/or EPA. Contractor Accideental spill A site-specific emergency spill	Visual monitoring of local water quality (i.e. turbidity, hydrocarbon spills/slicks) is to be undertaken on a regular basis to identify any potential spills or deficient silt curtains or erosion and sediment controls. Transport Project Engineer Construction Construction vessels (including barges) are only to be used at suitable tides when no less than 600mm clearance is available between the underside of the vessel and the bed of the waterway. Transport Project Engineer Construction Prepare an emergency response plan for flood events for the proposed work. Include a procedure for rapid removal in the emergency response plan and location for the material. Transport Project Manager Construction Flooding Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Instease to be addressed in the WMS include: Transport Project Manager Construction Flooding Include a Work Method Statement (WMS) in CEMP on compound site evacuation procedure. Instease to be addressed in the WMS include: RMS Project Manager Pre-construction Contaminated land If contaminated areas are encountered during construction, appropriate control measures will be implemented to manage the immediate risks of contamination. All other works that may the implemented to ranspace informed and any seepse contamination. All other works that may the implemented in the ransport for NWE Environment Manager and/or EFA. Contractor Detailed design / Pre-construction Accidential spill A site-specific emergency spill plan will be developed and include spill-management meas

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		 Placing excavated ASS separately in a lined, bunded and covered area Neutralising ASS for reuse on site (where appropriate) by using additives such as lime Disposal at a licensed waste facility. The ASSMP will be included in the CEMP. 			
	Asbestos	An Unexpected Contaminated Land and Asbestos Finds procedure must be prepared prior to the commencement of construction and must be followed should unexpected contaminated land or asbestos (or suspected contaminated land or asbestos) be excavated or otherwise discovered during construction	Transport Project Manager	Pre-construction	
4	Traffic and transport	 A Traffic Management Plan (TMP) will be prepared and implemented as part of the CEMP. The TMP will be prepared in accordance with the Transport <i>Traffic Control at Work Sites Manual</i> (RTA, 2010) and <i>QA Specification G10 Control of Traffic</i> (Transport for NSW, 2008). The TMP will include: confirmation of haulage routes measures to maintain access to local roads and properties site-specific traffic control measures (including signage) to manage and regulate traffic movement measures to maintain pedestrian and cyclist access requirements and methods to consult and inform the local community of impacts on the local road network access to construction sites including entry and exit locations and measures to prevent construction vehicles queuing on public roads. a response plan for any construction traffic incident consideration of other developments that may be under construction to minimise traffic conflict and congestion that may occur due to the cumulative increase in construction vehicle traffic monitoring, review and amendment mechanisms. 	Transport Project Manager	Detailed design / Pre-construction	Section 4.8 of QA G36 Environment Protection
		Where possible, current traffic movements must be maintained during the work. Any disturbance must be minimised to prevent unnecessary traffic delays.	Transport Project Engineer	Construction	
		A project-specific consultation strategy must be developed and implemented in accordance with the TfNSW <i>Community Involvement – Practice Notes and Resource Manual</i> and <i>TfNSW Minor Project procedure, Communications for minor projects (ILC-MP-TP0-301).</i>	Transport Project Manager	Pre-construction	
	Maritime	Twenty-Eight (28) days prior to works commencing the applicant must provide Transport Maritime with a full scope of works including maps noting all obstructions to navigation associated with the proposed works, (vessel/barge anchoring, scaffolding and silt curtain locations etc.) so a Marine Notice can be prepared and advertised.	Transport Project Manager	Pre-construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		Transport Maritime will prepare and advertise the Marine Notice online. The Marine Notice may be required to be placed in the local press and to be advertised at local boat ramps.	Transport Project Manager RMS (Maritime)	Pre-construction	
		Consultation will be required throughout the duration of the works to develop forward plans for the on-water traffic management whilst the works are carried out and as plant and structures are deployed in different locations.	Transport Project Manager RMS (Maritime)	Pre-construction, construction	
		Approved navigational marks, signage and Marine Notices to be implemented and updated during the period of works.	Transport Project Manager/ TfNSW Project Engineer	Pre-construction, construction	
		All navigation aids and traffic management plans must be approved by Transport Maritime.	Transport Project Manager RMS (Maritime)	Pre-construction, construction	
		Any work vessels involved in the project must comply with the relevant NSW Marine Legislation (ie day shapes, lights etc.).	Transport Project Manager	Construction	
		Barges, work vessels and crew involved with the project must comply with the <i>Marine Safety</i> (Domestic Commercial Vessels) National Law Act 2012.	Transport Project Manager	Construction	
		A minimum of one navigable channel span (at least 6 m) must be open to navigation at all times unless approved by TfNSW Maritime.	Transport Project Manager	Construction	
		A 4-knot lit Special Mark buoyage OR signage is to be installed at an appropriate distance (200 m) from the structure/s.	Transport Project Manager	Construction	
		Any submerged hazards must be marked with yellow aqua buoys sign written "Warning Submerged Hazard". These aqua buoys must be lit with yellow flashing lights if hazards are present before sunrise and after sunset.	Transport Project Manager	Construction	
5	Noise and vibration	A Noise and Vibration Management Plan (NVMP) will be prepared and implemented as part of the CEMP. The NVMP will generally follow the approach in <i>the Interim Construction Noise Guideline (ICNG) (DECC, 2009</i>) and identify:	Contractor	Detailed design / Pre-construction	Section 4.6 of QA G36 Environment Protection
		 all potential significant noise and vibration generating activities associated with the activity feasible and reasonable mitigation measures to be implemented, taking into account Beyond the Pavement: urban design policy, process and principles (Transport, 2014). a monitoring program to assess performance against relevant noise and vibration criteria arrangements for consultation with affected neighbours and sensitive receivers, including notification and complaint handling procedures 			Frotection
		contingency measures to be implemented in the event of non-compliance with noise and vibration criteria.			

No.	Impact	Environmental safeguards	Responsibility	Timing R	Reference
		All sensitive receivers (e.g. local residents) likely to be affected will be notified at least 21 days prior to commencement of any works associated with the activity that may have an adverse noise or vibration impact. The notification will provide details of:	Contractor	Detailed design / Pre-construction	
		 the project the construction period and construction hours contact information for project management staff complaint and incident reporting 			
		how to obtain further information.			
	Airborne noise/ground-borne vibration	 Provide phone calls or specific notification for nearby sensitive receivers located less than 120 m from the project footprint, particularly relating to driving/vibrating in piling activities and activities scheduled outside standard construction hours Periodic notification of all receivers (monthly letterbox drop or equivalent) Website (if required) Project info line Construction Response Line 	Transport Project Manager	Pre-construction, construction	
		Email distribution list.			
		 All employees, contractors and subcontractors will receive an environmental induction. The induction must at least include: All relevant project specific and standard noise and vibration mitigation measures Relevant licence and approval conditions Permissible hours of work Any limitations on high noise generating activities Location of nearest sensitive receivers Construction employee parking areas Designated loading/unloading areas and procedures Site opening/closing times (including deliveries) 	Transport Project Manager/Transport Project Engineer	Pre-construction, construction	
		Environmental incident procedures.			
		No swearing or unnecessary shouting or loud stereos/radio onsite. No dropping of materials from height, throwing of metal items and slamming of doors.	Project team	Construction	
		Verification noise monitoring is required to be undertaken for driven sheet piling. Verification noise monitoring is required for noisy activities outside standard construction hours. An environmental noise monitor would be suitable for verification noise monitoring, noting the anticipated emergence of construction noise above the ambient noise environment and also the remoteness of the site. This monitoring could be undertaken by Transport, the construction contractor or a third party.	Transport Project Manager	Construction	
		Monitoring of noise and vibration should be undertaken upon receipt of complaints.			

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		Where feasible and reasonable, construction should be carried out during the standard daytime working hours. Work generating high noise and/or vibration levels should be scheduled during less sensitive time periods.	Transport Project Manager	Construction	
		The periods $6:00 \text{ am} - 7:00 \text{ am}$ Monday to Friday and $1:00 \text{ pm} - 6:00 \text{ pm}$ Saturday and all of Sunday and public holidays are outside standard construction hours. Scheduling noisy activities during these periods should be avoided where practical. It is noted that work during these periods will be required on occasion.			
		Respite should be negotiated with nearby sensitive receivers located within 525 m of the project footprint during driven piling and other high noise and vibration generating activities outside of standard construction hours. Respite agreed by negotiation may vary from the typical respite period detailed below (i.e. more or less respite may be agreed with impacted residents). In general, the following respite is provided unless otherwise agreed with the relevant receivers. High noise and vibration generating activities – e.g. driven piling – may only be carried out in continuous blocks, not exceeding 3 hours each, with a minimum respite period of one hour in between each block. For longer duration projects, it may be beneficial to increase the work duration, number of evenings or nights worked through Duration Respite so that the project can be completed more quickly. The project team should engage with the community where noise levels are expected to exceed the NML to demonstrate support for Duration Respite. Where there are few receivers above the NML each of these receivers should be visited to discuss the project to gain support for Duration Respite. Support may be demonstrated from surveys, online feedback, contact phone numbers and community events.	Transport Project Engineer/Transport Project Manager	Construction	
		Use quieter and less vibration emitting construction methods where feasible and reasonable.	Transport Project Engineer	Construction	
		The noise levels of plant and equipment will have operating Sound Power or Sound Pressure Levels compliant with the criteria in Table F.1 of the CNVG.	Transport Project Engineer	Pre-construction, construction	
		The noise levels of plant and equipment items are to be considered in rental decisions and in any case cannot be used on site unless compliant with the criteria in Table F.1 of the CNVG.	Transport Project Manager	Pre-construction	
		Simultaneous operation of noisy plant within discernible range of a sensitive receiver will be avoided.	Transport Project Engineer	During work	
		The offset distance between noisy plant and adjacent sensitive receivers will be maximised. Plant used intermittently will be throttled down or shut down when not in use. Noise-emitting plant will be directed away from sensitive receivers.	Transport Project Engineer	During work	
		Plan traffic flow, parking and loading/unloading areas to minimise reversing movements within the site.	Transport Project Engineer/ RMS Project Manager	During work	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		Non-tonal reversing beepers (or an equivalent mechanism) will be fitted and used on all construction vehicles and mobile plant regularly used on site and for any out of hours work.	Transport Project Engineer	During work	
		Loading and unloading of materials/deliveries will occur as far as possible from sensitive receivers. Select site access points and roads as far as possible away from sensitive receivers. Dedicated loading/unloading areas will be shielded if close to sensitive receivers.	Transport Project Engineer	During work	
		Delivery vehicles will be fitted with straps rather than chains for unloading, wherever possible.			
		Stationary noise sources will be enclosed or shielded where feasible and reasonable whilst ensuring that the occupational health and safety of workers is maintained. Appendix D of <i>AS</i> 2436: 2010 lists materials suitable for shielding.	Transport Project Engineer	During work	
		 For works to be completed during OOHW day periods: Phone calls and specific notification for residents less than 120m from the works. Notification to all residents located within the rural area less than 525m from the works and offer respite. 	Transport Project Manager	During work	
		For works to be completed during standard working hours: Notification to all residents located less than 250m from the works.	Transport Project Manager	During work	
6	Aboriginal heritage	The <i>Standard Management Procedure - Unexpected Heritage Items</i> (Transport, 2015) will be followed in the event that an unknown or potential Aboriginal object/s, including skeletal remains, is found during construction. This applies where Transport does not have approval to disturb the object/s or where a specific safeguard for managing the disturbance (apart from the Procedure) is not in place.	Contractor	Detailed design / Pre-construction	Section 4.9 of QA G36 Environment Protection
		Work will only re-commence once the requirements of that Procedure have been satisfied.			
		All personnel working on site must be advised of their responsibilities under the NPW Act.	All personnel on site	Pre-construction	
7	Non-Aboriginal heritage	The <i>Standard Management Procedure - Unexpected Heritage Items</i> (Transport for NSW, 2015) will be followed in the event that any unexpected heritage items, archaeological remains or potential relics of non-Aboriginal origin are encountered.	Contractor	Detailed design / Pre-construction	Section 4.9 of QA G36 Environment
		Work will only re-commence once the requirements of that Procedure have been satisfied.			Protection
8	Landscape character and visual impact	All working areas will be maintained, kept free of rubbish and cleaned up at the end of each working day.	Transport Project Engineer	Construction	
		Soil disturbance will be minimised where possible.	Transport Project Engineer	Construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
9	Socio-economic	Communication Plan (CP) will be prepared and implemented as part of the CEMP to help provide timely and accurate information to the community during construction. The CP will include (as a minimum):	Contractor	Detailed design / Pre-construction	
		 mechanisms to provide details and timing of proposed activities to affected residents, including changed traffic and access conditions contact name and number for complaints. 			
		The CP will be prepared in accordance with the <i>Community Involvement and Communications Resource Manual</i> (RTA, 2008).			
	Notification	All businesses, residential properties and other key stakeholders (e.g. schools, council, bus operators) affected by the activity would be notified at least 10 working days prior to commencement of the activity. Project/community updates would be provided throughout the duration of works as relevant.	Transport project manager and communications officer	Pre-construction and during construction	
		Notification would utilise both digital and conventional (non-digital) modes of communication (e.g. media release, letter box drops, newsletters and regular updates to a project website).			
		Notification would include an information package, including contact name and number for enquiries or complaints, the expected timeframe of works and any planned or potential disruptions to utilities/services and changed road and traffic conditions.			
	Consultation	Ongoing stakeholder and community consultation would be undertaken in accordance with the <i>Roads & Maritime Communication Toolkit</i> . Consultation would include:	Transport project manager and	Pre-construction and during	
		 Clarence Valley Shire Council. Residents and businesses within a minimum of 2 kilometres of the proposal. Emergency services. Bus operators. Local schools. Transport Maritime for on water traffic management. 	communications officer	construction	
		Sugar Cane Industry, Clarence Cane Growers Association and/or Harwood Sugar Mill (as necessary depending on staging of works coinciding with cane harvesting season)			
	Noise and vibration specific notification and consultation	 Implement notification and community consultation measures with regard to airborne noise and ground-borne vibration impacts from the works, including: Periodic notification of all identified receivers (letterbox drop or equivalent). Website. Project info line. Construction Response Line. Email distribution list. 	Transport project manager and communications officer	Pre-construction and during construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		For highly noise emitting activities and activities scheduled outside of standard construction hours, provide phone calls or specific notification for each of the identified receivers (this is an additional measure as per noise assessment).			
	Traffic	As per the notification process, advanced warning signage would be established prior to and during the work to ensure road users are made aware of changed traffic conditions and detour directions. Excluding the required detours, where possible, current traffic movements and property accesses would be maintained during the work. Any disturbance would be minimised to prevent unnecessary traffic delays.	Transport project engineer and work supervisor	Pre-construction and during construction	
	Waterway	Advanced warning signage and/or beacons (appropriate for any applicable day and night-time maritime requirements) would be established prior to and during the work to ensure any users of the Clarence River nearby are aware of changed navigational conditions or hazards within the work area and waterway.	Transport project engineer and work supervisor	Pre-construction and during construction	
	School bus services	Maintain ongoing consultation and cooperation between Transport and School Bus Services prior to and for the duration of the project, to ensure no adverse or unmanageable impact to important services. Any anticipated traffic disruptions would need to be communicated to the affected School Bus Service.	Transport project manager, communications officer, project engineer and work supervisor	Pre-construction and during construction	
	Complaints	A complaint handling procedure and register would be included in the CEMP and would include that all complaints would be responded to within 24 hours.	Transport project manager and communications officer	During construction	
	Health and safety	Suitable site induction relating to site specific hazards would be undertaken for all contractor and Transport staff.The work would be undertaken in accordance with all NSW health and safety legislative requirements and relevant Australian Standards.	Transport project engineer and work supervisor	Pre-construction and during construction	
10	Air quality	 An Air Quality Management Plan (AQMP) will be prepared and implemented as part of the CEMP. The AQMP will include, but not be limited to: potential sources of air pollution air quality management objectives consistent with any relevant published EPA and/or Office of Environment and Heritage (OEH) guidelines mitigation and suppression measures to be implemented methods to manage work during strong winds or other adverse weather conditions 	Transport Project Engineer	Pre-construction/ construction	Section 4.4 of QA G36 Environment Protection

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		a progressive rehabilitation strategy for exposed surfaces.			
		Vegetation, garbage or other combustible waste materials are not to be burnt on site.	Transport Project Engineer	Construction	
		Vehicles transporting waste or other materials that may produce odours or dust are to be covered during transportation.	Transport Project Engineer	Construction	
		Stockpile areas that may generate dust are to be managed to suppress dust emissions in accordance with the TfNSW Stockpile Site Management Guideline (EMS-TG-10).	Transport Project Engineer	Construction	
		Measures (including watering or covering exposed areas) would be used to minimise or prevent air pollution and dust	Transport Project Engineer	Construction	
		Works would not be carried out during strong winds or in weather conditions where high levels of dust or air borne particulates are likely	Transport Project Engineer	Construction	
		Vehicles, machinery and equipment would be maintained in accordance with manufacturer's specifications in order to meet the requirements of the POEO Act and associated regulations	Transport Project Engineer	Construction	
		Vehicles and equipment would be switched off when not required to be operational	Transport Project Engineer	Construction	
		Debris and waste would be removed from the works and compound areas as soon as practicable to ensure light-weight material is not dispersed by wind gusts.	Transport Project Engineer	Construction	
11	Waste	A Waste Management Plan (WMP) will be prepared and implemented as part of the CEMP. The WMP will include but not be limited to:	Contractor	Detailed design / Pre-construction	Section 4.2 of QA G36
		 measures to avoid and minimise waste associated with the project 			Environment Protection
		• classification of wastes and management options (re-use, recycle, stockpile, disposal)			
		• statutory approvals required for managing on- and off-site waste, or application of any relevant resource recovery exemptions			
		 procedures for storage, transport and disposal 			
		• monitoring, record keeping and reporting.			
		The WMP will align with the <i>Environmental Procedure - Management of Wastes on Transport for NSW Land</i> (Transport, 2014) and relevant Transport Waste fact sheets.			
		If vegetation is to be mulched and transported off site for beneficial reuse, it is to be assessed for the presence of weeds, pest, and other disease and a Mulch Management Plan prepared in accordance with the Transport Technical Procedure: Mulch Management. Note that there may be restrictions to applying mulch to land outside the road reserve.	Transport Project Engineer	Construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		Potentially contaminated waste/ hazardous waste is to be stored separately from other waste streams generated at the site.	Transport Project Engineer	Construction	
		To minimise the risk of impacts from flooding, the quantity of waste stored on site is not to exceed the volume of waste that can be removed in one to two days.	Transport Project Engineer	Construction	
		Potentially contaminated waste/ hazardous waste is to be stored separately from other waste streams generated at the site.	Transport Project Engineer	Construction	
		 Resource management hierarchy principles are to be followed: Avoid unnecessary resource consumption as a priority Avoidance is followed by resource recovery (including reuse of materials, reprocessing, recycling and energy recovery) Disposal is undertaken as a last resort. (in accordance with the <i>Waste Avoidance & Resource Recovery Act 2001</i>). 	Transport Project Engineer	Pre – Construction, Construction	
		There is to be no disposal or re-use of construction waste on to other land.	Transport Project Engineer	Construction	
		Waste is not to be burnt on site.	Transport Project Engineer	Construction	
		All wastewater from vessels is to be discharged at an approved vessel wastewater disposal facility. No vessel wastewater is to be discharged (i.e. pumped out) directly into the water or onto any land adjacent.	Transport Project Engineer	Construction	
		Waste material is not to be left on site once the work has been completed.	Transport Project Engineer	Construction	
		Non-recyclable wastes are to be collected and disposed of at licensed waste facilities only.	Transport Project Engineer	Construction	
		Temporary storage of contaminated waste at the site compound is to be in sealed containers within a self safe storage container and double bunded and sign posted as contaminated waste.	Transport Project Engineer	Construction	
		Storage of hazardous waste (i.e. removed lead paint flakes and dust), restricted solid waste or liquid waste (or a combination of these) on site at any time is not to exceed five tonnes otherwise an Environment Protection Licence under the POEO Act is required.	Transport Project Engineer	Construction	
		Any contaminated waste generated by the proposal is to be disposed of in accordance with the EPA approved methods of waste disposal.	Transport Project Engineer	Construction	
		Bulk project waste (e.g. fill) sent to a site not owned by Roads and Maritime (excluding Office and Environment and Heritage licensed landfills) for land disposal is to have prior formal	Transport Project Engineer	Construction	

No.	Impact	Environmental safeguards	Responsibility	Timing	Reference
		written approval from the landowner, in accordance with Environmental Direction No. 20 – Legal Off-site disposal of Bulk RTA Project Wastes and Section 143 of the POEO Act.			
12	Utilities	 Prior to the commencement of works: the location of existing utilities and relocation details will be confirmed following consultation with affected utility owners further assessment will be undertaken if the scope or location of proposed utility relocation works falls outside of the assessed proposal scope and footprint. 	Transport Project Manager	Detailed design / Pre-construction	
	Hazards and risk management	 A Hazard and Risk Management Plan (HRMP) will be prepared and implemented as part of the CEMP. The HRMP will include, but not be limited to: details of hazards and risks associated with the activity measures to be implemented during construction to minimise these risks record keeping for materials present on the site, material safety data sheets, and personnel trained and authorised to use such materials a monitoring program to assess performance in managing identified risks contingency measures to be implemented in the event of unexpected hazards, risks arising and emergency situations. The HRMP will be prepared in accordance with relevant guidelines and standards, including relevant Safe Work Australia Codes of Practice, and EPA or OEH publications. 	Contractor	Detailed design / Pre-construction	

7.3 Licensing and approvals

Table 7.2: Summary of licensing and approvals required

Instrument	Requirement	Timing
Fisheries Management Act 1994 (s199)	Notification to the Minister for Agriculture and Western NSW prior to any dredging or reclamation works. [Note exemption under s263A of the Fisheries Management (General) Regulation 2010] Address comments from NSW DPI Fisheries s199 response (refer to Section 5.5 of this report) to TfNSW notification in CEMP	A minimum of 28 days prior to the start of work. Notification (s199 referral) provided 9 June 2022 (refer to Appendix C)
<i>Crown Land</i> <i>Management Act</i> <i>2016</i> (Division 3.4, 5.5 and 5.6)	Lease or licence to occupy areas of Crown land.	Prior to start of the activity. Notification (at least 7 days written notice prior to start of activity) should include environmental approvals/the determined REF. A copy of landowner's consent to be provided with s199 referral request.
Transport and Infrastructure SEPP (TISEPP)	Given the presence of the project on flood liable land, notification of the proposal is required to the local branch of the State Emergency Services (SES), email: <u>erm@ses.nsw.gov.au</u> ; <u>mcl.ops@ses.nsw.gov.au</u> ; <u>ulm.ops@ses.nsw.gov.au</u>	21 days prior to construction.

8. Conclusion

This chapter provides the justification for the proposal taking into account its biophysical, social and economic impacts, the suitability of the site and whether or not the proposal is in the public interest. The proposal is also considered in the context of the objectives of the *EP&A Act*, including the principles of ecologically sustainable development as defined in Section 193 of the Environmental Planning and Assessment Regulation 2021.

8.1 Justification

The remediation works on the South Arm River embankment are required to improve road safety and ensure that Big River Way remains a safe and trafficable transport route by restoring the riverbank, preventing further slips and degradation of the road surface and improve safety for road users.

General objectives of the proposal are to:

- Stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way.
- Restoration of the riverbank profile.
- Restore the pavement to the shoulder of Big River Way.

With effective implementation of the safeguards and management measures of this REF, environmental impacts associated with undertaking the work would be minor. Unavoidable impacts required for the work are temporary and not substantial and would not significantly affect the local environment. Overall, the environment would benefit from the proposed restoration and remediation of the river bank as road safety would be improved.

8.2 Objects of the EP&A Act

Instrument	Requirement
1.3(a) To promote the social and economic welfare of the community and a better environment by the proper management, development and conservation of the State's natural and other resources.	Factored into the design of the proposal.
1.3(b) To facilitate ecologically sustainable development by integrating relevant economic, environmental and social considerations in decision- making about environmental planning and assessment.	Ecologically sustainable development is considered in Sections 8.2.1 below
1.3(c) To promote the orderly and economic use and development of land.	Not relevant to the proposal.
1.3(d) To promote the delivery and maintenance of affordable housing.	Not relevant to the project.
1.3(e) To protect the environment, including the conservation of threatened and other species of native animals and plants, ecological communities and their habitats.	This REF provides a thorough assessment of the environment and recommends extensive safeguards to minimise impacts to the environment with a focus on reducing the impacts of the project.
1.3(f) To promote the sustainable management of built and cultural heritage (including Aboriginal cultural heritage).	This REF provides a thorough assessment of the environment and recommends extensive safeguards to minimise impacts to the environment.
1.3(g) To promote good design and amenity of the built environment.	Factored into the design of the proposal.
1.3(h) To promote the proper construction and maintenance of buildings, including the protection of the health and safety of their occupants.	Not relevant to the project.

Instrument	Requirement
1.3(i) To promote the sharing of the responsibility for environmental planning and assessment between the different levels of government in the State.	Not relevant to the project.
1.3(j) To provide increased opportunity for community participation in environmental planning and assessment.	The public will be consulted about the project.

8.2.1 Ecologically sustainable development

Ecologically sustainable development (ESD) is development that improves the total quality of life, both now and in the future, in a way that maintains the ecological processes on which life depends. The principles of ESD have been an integral consideration throughout the development of the project.

ESD requires the effective integration of economic and environmental considerations in decision-making processes. The four main principles supporting the achievement of ESD are discussed below.

The precautionary principle

The precautionary principle deals with reconciling scientific uncertainty about environmental impacts with certainty in decision-making. It provides that where there is a threat of serious or irreversible environmental damage, the absence of full scientific certainty should not be used as a reason to postpone measures to prevent environmental degradation.

This principle was considered during route options development (refer to Chapter 2) and was applied as part of the Environmental Assessment (Chapter 6). The precautionary principle has guided the assessment of environmental impacts for this REF and the development of mitigation measures.

Intergenerational equity

Social equity is concerned with the distribution of economic, social and environmental costs and benefits. Intergenerational equity introduces a temporal element with a focus on minimising the distribution of costs to future generations.

The proposal would not significantly affect the viability of local or threatened species or any TECs. Therefore, local biodiversity values would not be substantially adversely affected by the proposal and would be maintained for future generations. Without the works proceeding, traffic safety and efficiency would rapidly decline. Overall, the socio-economic, safety and environmental safety benefits of the proposal would occur only at limited minimal potential environmental expense.

Conservation of biological diversity and ecological integrity

The conservation of biological diversity and ecological integrity should be a fundamental consideration in shaping the project.

The impacts to ecological integrity and conservation of biological diversity at the site have been thoroughly assessed as part of this REF. No threatened species or communities are likely to be significantly affected by the proposal. No populations of native species are likely to be made locally rare or unviable as a result of the proposal. Consequently, the ecological integrity and biological diversity would be maintained at the site.

Improved valuation, pricing and incentive mechanisms

The principle of internalising environmental costs into decision making requires consideration of all environmental resources that may be affected by the carrying out of a project, including air, water, land and living things.

It is difficult to assign a monetary value to the environment of a locality or to environmental resources not considered for commercial use. Transport has taken an approach to manage the potential environmental impacts of the proposal by identifying appropriate safeguards (this REF) to mitigate adverse environmental effects with financial support for implementation.

8.3 Conclusion

The proposed remediation works and riverbank restoration at Clarence River embankment, adjcant to Big River Way is subject to assessment under Division 5.1 of the *EP&A Act*. The REF has examined and taken into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of the proposed activity.

This has included consideration (where relevant) of conservation agreements and plans of management under the NPW Act, biodiversity stewardship sites under the *BC Act*, wilderness areas, areas of outstanding value, impacts on threatened species and ecological communities and their habitats, and other protected fauna and native plants. It has also considered potential impacts to matters of national environmental significance listed under the *EPBC Act*.

A number of potential environmental impacts from the proposal have been avoided or reduced during the concept design development and options assessment. The proposal, as described in the REF, best meets the project objectives but would still result in some impacts on biodiversity, traffic, soils and noise. Safeguards and management measures as detailed in this REF would ameliorate or minimise these expected impacts. The proposal would also improve road safety and prevent future slips and degradation of the road surface. On balance, the proposal is considered justified and the following conclusions are made.

Significance of impact under NSW legislation

The proposal would be unlikely to cause a significant impact on the environment. Therefore, it is not necessary for an environmental impact statement to be prepared nor approval to be sought from the Minister for Planning under Division 5.2 of the <u>EP&A Act</u>. A Biodiversity Development Assessment Report or Species Impact Statement is not required, however a BAR has been provided for the project. The proposal is subject to assessment under Division 5.1 of the <u>EP&A Act</u>. Consent from Council is not required.

Significance of impact under Australian legislation

The proposal is not likely to have a significant impact on matters of national environmental significance nor the environment of Commonwealth land within the meaning of the *Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth)*. A referral to the Australian Department of Agriculture, Water and the Environment is not required.

9. Certification

This review of environmental factors provides a true and fair review of the proposal in relation to its potential effects on the environment. It addresses to the fullest extent possible all matters affecting or likely to affect the environment as a result of the proposal.

Name:	David Havilah
Position:	Senior Ecologist
Company name:	GeoLINK
Date:	6 September 2022

I have examined this review of environmental factors and accept it on behalf of Transport for NSW.

Name:	Ian Drinkwater
Position:	Project Manager - Project Services Northern
Transport region/program:	Maintenance and Delivery North Regional and Outer Metropolitan
Date:	October 2022

10. References

Department of Urban Affairs and Planning [DUAP] (1995/1996). *Is an EIS required?* Department of Urban Affairs and Planning.

Terms and acronyms used in this REF

Term / Acronym	Description	
AusLink	Mechanism to facilitate cooperative transport planning and funding by Commonwealth and state and territory jurisdictions	
BC Act	Biodiversity Conservation Act 2016 (NSW)	
CEMP	Construction environmental management plan	
CM SEPP	State Environmental Planning Policy (Coastal Management) 2018	
EIA	Environmental impact assessment	
EP&A Act	Environmental Planning and Assessment Act 1979 (NSW). Provides the legislative framework for land use planning and development assessment in NSW	
EPBC Act	<i>Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth).</i> Provides for the protection of the environment, especially matters of national environmental significance, and provides a national assessment and approvals process	
ESD	Ecologically sustainable development. Development which uses, conserves and enhances the resources of the community so that ecological processes on which life depends, are maintained and the total quality of life, now and in the future, can be increased	
FM Act	Fisheries Management Act 1994 (NSW)	
Heritage Act	Heritage Act 1977 (NSW)	
ISEPP	State Environmental Planning Policy (Infrastructure) 2007	
LALC	Local Aboriginal Land Council	
LEP	Local Environmental Plan. A type of planning instrument made under Part 3 of the <u>EP&A</u> <u>Act</u> .	
LoS	Level of Service. A qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers	
MNES	Matters of national environmental significance under the <i>Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth)</i>	
NPW Act	National Parks and Wildlife Act 1974 (NSW)	
OEH	Office of Environment and Heritage within the Department of Planning and Environment	
PEA Act	Protection of the Environment Administration Act 1991	
QA Specifications	Specifications developed by Transport for use with road work and bridge work contracts let by Transport	
RMS	NSW Roads and Maritime Services, now Transport for NSW	
SEPP	State Environmental Planning Policy. A type of planning instrument made under Part 3 of the <i>EP&A Act</i>	
Transport	Transport for NSW	

Appendix A Biodiversity Assessment Report

Byrons Lane Slip Stage V

Biodiversity Assessment Report

Transport for NSW | February 2022

BLANK PAGE

Byrons Lane Slip Stage V

Biodiversity Assessment Report

Transport for NSW | February 2022

Prepared by GeoLINK

The concepts and information contained in this document are the property of Transport for NSW. Use or copying of this document in whole or in part without the written permission of Transport for NSW constitutes an infringement of copyright.

Executive summary

Transport for NSW (TfNSW) propose to carry out remediation works on the South Arm River (south arm of the Clarence River) embankment in response to a significant rainfall (declared natural disaster) event in March 2021. The South Arm River is located adjacent to the Big River Way (Old Pacific Highway) and the easter riverbank forms the western embankment for the Big River Way at the proposed remediation site. The slip is located approximately 33.44 km north of Grafton within the Clarence Valley Council (CVC) local government area and is located approximately 540 m north-east of Byron's Lanes

The objectives of the proposed works are to:

- Stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way.
- Restoration of the riverbank profile.
- Restore the pavement to the shoulder of Big River Way.
- Undertake works to minimise traffic, environmental, social impacts.
- Ensure Big River Way remains a safe and trafficable transport route.

Based on the site assessment and consideration of the work required, the following biodiversity matters are relevant to the proposal:

- The study area comprises mostly disturbed land lacking native vegetation as a result of historical agricultural pursuits and the construction of Big River Way. Pockets of native vegetation subject to weed incursions are associated with the study area, mainly as riparian vegetation occurring alongside the South Arm River.
- The proposal would result in disturbance of approximately up to 0.84 ha of vegetation (including 0.27 ha of PCT 1235). No hollow-bearing trees would be removed.
- The TEC 'Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions occurs at the site. The proposal would result in the disturbance and/ or removal of approximately up to 0.27 ha of this TEC.
- No threatened flora species were detected at the site and habitat for such species is poor.
- No threatened fauna species were detected at the site.
- Short-term and localized minor impacts aquatic impacts due to sedimentation and erosion, minor disturbance to aquatic flora and fauna.
- There is potential for several threatened fauna species to occur based on available site habitats.
- A number of mitigation measures have been recommended to manage potential impacts relating to biodiversity.
- It was determined that the proposal is unlikely to significantly affect any species, communities or their habitat listed under the BC Act of the EPBC Act. Therefore, a Species Impact Statement is not required, nor is the proposal subject to the EPBC Act Strategic Assessment.
- The works do not trigger the TfNSW offset guidelines.

Contents

1.	Intr	oduction	1
	1.1	Proposal background	1
	1.2	The proposal	1
	1.3	Legislative context	2
2.	Met	thods	6
	2.1	Personnel	6
	2.2	Background research	6
	2.3	Habitat assessment	7
	2.4	Field survey	7
		2.4.1 Vegetation surveys	8
		2.4.2 Targeted flora surveys	8
		2.4.3 Targeted fauna surveys	8
		2.4.4 Aquatic surveys	8
		2.4.5 Summary of survey effort and limitations	9
3.	Exi	sting environment	
	3.1	Vegetation/plant community types	11
		3.1.1 PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion	12
		3.1.2 PCT N/A – Pasture grassland	13
		3.1.3 PCT N/A – Rock armouring area	14
	3.2	Threatened ecological communities	17
	3.3	Groundwater dependent ecosystems	17
	3.4	Threatened species	17
		3.4.1 Threatened flora	17
		3.4.2 Threatened fauna	17
		3.4.3 Aquatic results	18
	3.5	Fauna habitat values	19
	3.6	Areas of outstanding biodiversity value	19
	3.7	Wildlife connectivity corridors	19
	3.8	State Environmental Planning Policies	19
		3.8.1 State Environmental Planning Policy (Biodiversity & Conservation) 2021	19
	3.9	Matters of National Environmental Significance	20
4.	Imp	pact assessment	22
	4.1	Avoidance and minimisation	22
	4.2	Construction impacts	22
		4.2.1 Removal of vegetation	22

		4.2.2 Removal of threatened fauna habitat	23
		4.2.3 Removal of threatened flora	23
		4.2.4 Aquatic impacts	23
		4.2.5 Injury and mortality	24
	4.3	Indirect/operational impacts	24
		4.3.1 Wildlife connectivity and habitat fragmentation	24
		4.3.2 Edge effects on adjacent native vegetation and habitat	24
		4.3.3 Invasion and spread of terrestrial and aquatic weeds	24
		4.3.4 Invasion and spread of terrestrial and aquatic pests	25
		4.3.5 Invasion and spread of pathogens and disease	25
		4.3.6 Changes to hydrology	25
		4.3.7 Noise, light and vibration	25
		4.3.8 Groundwater dependent ecosystems	26
	4.4	Cumulative impacts	26
	4.5	Assessments of significance	26
5.	Miti	gation	28
6.	Offs	set strategy	33
	6.1	Quantification of impacts	33
	6.2	Biodiversity Offset Strategy/Tree and Hollow Replacement Plan	34
7.	Con	nclusion	36
8.	Refe	erences	37

Tables

Table 2.1:	Qualifications and experience of personnel	6
Table 2.2:	Summary of database searches undertaken	6
Table 2.3:	Survey effort	9
Table 3.1:	Summary of desktop assessment results	10
Table 3.2	Plant community types within the study area	12
Table 3.3	Summary of PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion	12
Table 3.4	Summary of pasture grassland	13
Table 3.5	Summary of rock armouring area	14
Table 3.6:	Habitat assessment and surveys results - fauna	18
Table 3.7:	Assessment of MNES	20
Table 4.1:	Potential impacts on vegetation communities	22
Table 4.2:	Impacts on threatened fauna and fauna habitat	23
Table 4.3:	Priority weeds within the site and relevant duty	25

Table 4.4: Summary of BC Act significance assessments	26
Table 5.1: Mitigation measures	. 29
Table 6.1: Summary of TfNSW Biodiversity Offset Guidelines	.33
Table 6.2: Summary of tree and hollow replacement	35

Illustrations

Illustration	1.1: Location of the Proposal	. 4
	1.2: The Proposal	
Illustration	3.1: Vegetation Map	16
Plates		
Plate 3.1	Example of PCT 1225 alongside Big Diver Way and the South Arm Diver, facing porth	12

Plate 5.1	Example of PCT 1255 alongside big River way and the South Am River, facing north	13
Plate 3.2	Example of pasture grassland that occurs along South Arm Road, facing south	14
Plate 3.3	Example of rock armouring area, facing south	15

Annexures

Annexure A	Database search results
Annexure B	Habitat assessment table
Annexure C	Tests of Significance
Annexure D	Fauna and Flora records

Glossary of terms

Definitions	
Biodiversity offsets	Management actions that are undertaken to achieve a gain in biodiversity values on areas of land in order to compensate for losses to biodiversity values from the impacts of development (Office of Environment and Heritage [OEH] 2017).
Construction footprint	The area to be directly impacted by the proposal during construction activities. Analogous with subject land (see definition for subject land).
Cumulative impact	The impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time. Refer to Clause 228(2) of the Environmental Planning and Assessment Regulation 2000 for cumulative impact assessment requirements.
Direct impact	Direct impacts on biodiversity values include those related to clearing native vegetation and threatened species habitat and impacts on biodiversity values prescribed by the Biodiversity Conservation Regulation 2017 (the BC Regulation) (BAM 2017).
Habitat	An area or areas occupied, or periodically or occasionally occupied, by a species, population or ecological community, including any biotic or abiotic component.
Indirect impact	 Indirect impacts include but not limited to: (a) indirect impacts on adjacent vegetation and habitat during construction (b) indirect impacts on adjacent vegetation and habitat during operation (c) impacts on adjacent vegetation and habitat arising from a change in land-use patterns (BAM 2017).
Local population	The population that occurs in the study area. In cases where multiple populations occur in the study area or a population occupies part of the study area, impacts on each subpopulation must be assessed separately (OEH 2017).
MNES	A matter of national environmental significance (MNES) protected by a provision of Part 3 of the <i>Environment Protection and Biodiversity Conservation Act 1999</i> .
Mitchell landscape	Landscapes with relatively homogeneous geomorphology, soils and broad vegetation types, mapped at a scale of 1:250,000 (OEH 2014).
Mitigation	Action to reduce the severity of an impact (OEH 2014).
Mitigation measure	Any measure that facilitates the safe movement of wildlife and/or prevents wildlife mortality or injury.

Definitions	
Native vegetation	 (a) trees (including any sapling or shrub or any scrub), (b) understorey <u>plants</u>, (c) groundcover (being any type of herbaceous vegetation), (d) <u>plants</u> occurring in a wetland. A <u>plant</u> is native to New South Wales if it was established in New South Wales before European settlement (<i>Biodiversity Conservation Act 2016</i>).
OEH BAM Calculator	An online application of the Biodiversity Assessment Method (BAM). The calculator uses the rules and calculations outlined in the BAM and allows the user to apply the BAM at a site and observe the results of the assessment.
Operational footprint	The area that will be subject to ongoing operational impacts from the proposal. This includes the road, surrounding safety verges and infrastructure, fauna connectivity structures and maintenance access tracks and compounds.
Population	A group of organisms, all of the same species, occupying a particular area (BAM 2017).
Proposal area/ proposal site/ development footprint	The area of land that is directly impacted on by the proposal that is being assessed under the EP&A Act, including access roads, and areas used to store construction materials (OEH 2014). It includes the construction and operational areas for the proposal.
Study area	The area directly affected by the development and any additional areas likely to be affected by the development, either directly or indirectly (OEH 2014).
Target species	A species has been identified within the study area or is considered to have a moderate to high likelihood of occurrence and may be impacted by the proposal.

Acronyms

Abbreviations	
BC Act	Biodiversity Conservation Act 2017
BCD	Biodiversity Conservation Division
BOS	Biodiversity Offset Scheme under the BC Act
CEEC	Critically Endangered Ecological Community
CEMP	Construction Environmental Management Plan
DAWE	Department of Agriculture, Water and the Environment

Abbreviations	
DPIE	Department of Planning, Industry and Environment
DPI	Department of Primary Industries
EEC	Endangered ecological community
EPBC Act	Environmental Protection and Biodiversity Conservation Act 1999 (Commonwealth)
FM Act	Fisheries Management Act 1994 (NSW)
GDE	Groundwater dependent ecosystems
IBRA	Interim Biogeographic Regionalisation of Australia
MNES	Matters of National Environmental Significance
PCT	Plant Community Type
REF	Review of Environmental Factors
SEPP	State Environmental Planning Policy
TECs	Threatened Ecological Communities
TBDC	Threatened Biodiversity Data Collection
VEC	Vulnerable Ecological Community
VIS	Vegetation information system

1. Introduction

1.1 Proposal background

Transport for NSW (TfNSW) propose to carry out remediation works to the shoulder and riverbank that has eroded away on a section of Big River Way (Old Pacific Highway), Tyndale ('the site'). The section of the roadside shoulder to be repaired is approximately 40 m in length on the northbound lane, adjacent to the South Arm of the Clarence River. The works are required to improve safety along this section of Big River Way.

The objectives of the proposed works are to:

- Stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way.
- Restoration of the riverbank profile.
- Restore the pavement to the shoulder of Big River Way.
- Undertake works to minimise traffic, environmental, social impacts.
- Ensure Big River Way remains a safe and trafficable transport route.

The site comprises agricultural lands and disturbed habitats associated with Big River Way. Past disturbances include vegetation clearing (for road construction and agricultural pursuits), weed incursion, and structural modification to vegetation through regular roadside maintenance (e.g. slashing). Adjacent land use predominantly consists of agriculture (sugar cane).

1.2 The proposal

Key features of the proposal include:

- Establishment of on-site crib facilities during the works.
- Establishment of stockpile locations on an existing hardstand area.
- Establishment of traffic controls in vicinity of site.
- Establish sedimentation and erosion controls on the South Arm River as required.
- Clearing of vegetation alongside the South Arm River to facilitate work.
- Vegetation mulched onsite and either temporarily stockpiled for reuse onsite or taken to a co-generation plant for re-use or disposed of at a licenced waste facility.

Piling Works Option 1 - Piling works with access from road

- Establish road travel lane restriction to Big River Way with an approved traffic control management plan.
- Construct a platform within the closed lanes of the Big River Way to support a piling rig.
- Establish a piling rig on site.
- Undertake piling works as specified by Geotechnical design requirements to stabilise slope area.

Piling Works Option 2 - Piling works with access from River

- Install access to the lower bank and river adjacent to the identified slip area.
- Assemble and launch a barge at an external boat ramp site approved by the TfNSW Local Environmental Officer, float to slip area and anchor (launched from opposite site from the banks of South Arm Road side of The South Arm River).

- Float barge to work zone by towing behind a suitable boat and anchored in place.
- Ensure navigation lights and waterway markers are in place and operational.
- Establish a floating sedimentation and control boom and attached silt curtain around barge and proposed area of disturbance to isolate the works site. The silt curtain would be weighted to the bed and secured to accommodate tidal flow.
- Undertake piling works as specified by Geotechnical design requirements to stabilise slope area.

Restoration of Riverbank profile

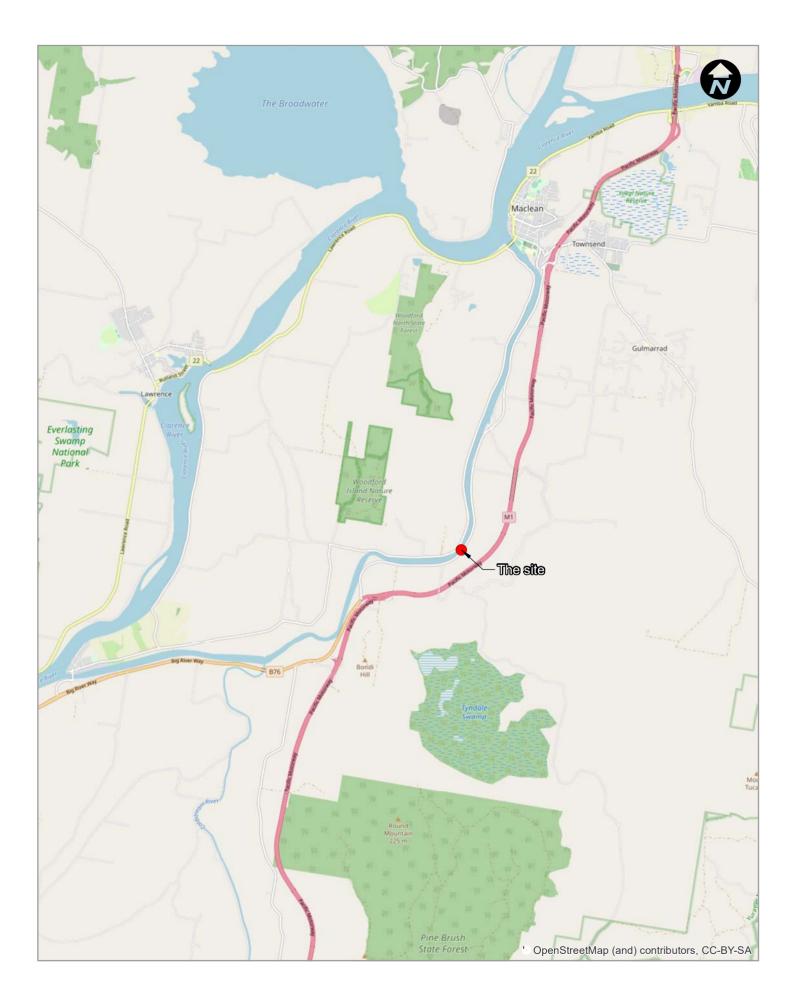
- Install access to the lower bank and river adjacent to the identified slip area.
- Assemble and launch a barge at an external boat ramp site approved by the TfNSW Local Environmental Officer, float to slip area and anchor.
- Install floating boom(s) around slip area within river.
- Rock to be delivered directly to river embankment within the proposed work zone and then immediately placed onto the slope. This would be completed by excavator located on the temporary closed road travel lane or using the barge-mounted excavator. There would be no stockpiling of incoming rock material.

On site facilities for workers and stockpile sites will be provided on an existing hardstand area north of the proposal footprint.

The location of the proposal is shown **Illustration 1.1** and an overview of the proposal is provided in **Illustration 1.2**.

1.3 Legislative context

A Review of Environmental Factors (REF) is to be prepared to satisfy TfNSW duties under s.5.5 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) to *"examine and take into account to the fullest extent possible all matters affecting or likely to affect the environment by reason of that activity"* and s.5.7 in making decisions on the likely significance of any environmental impacts. This biodiversity impact assessment forms part of the REF being prepared for the project and assesses the biodiversity impacts of the proposal to meet the requirements of the EP&A Act.


Sections 7.2 A of the *Biodiversity Conservation Act 2016* (BC Act) and Part 7A of the *Fisheries Management Act 1994* (FM Act) require that the significance of the impact on threatened species and endangered ecological communities is assessed using a test of significance. Where a significant impact is likely to occur, a species impact statement (SIS) must be prepared in accordance with the Director-General's requirements or a Biodiversity Development Assessment Report (BDAR) must be prepared by an accredited assessor in accordance with the Biodiversity Assessment Method (BAM).

In September 2015, a "strategic assessment" approval was granted by the Federal Minister in accordance with the EPBC Act. The approval applies to TfNSW activities being assessed under Part 5.1 (formerly Part 5) of the EP&A Act with respect to potential impacts on nationally listed threatened species, ecological communities and migratory species.

As a result, TfNSW proposals assessed via a REF:

- must address and consider potential impacts on nationally listed threatened species, populations, ecological communities and migratory species, including application of the "avoid, minimise, mitigate and offset" hierarchy; and
- do not require referral to the Federal Department of Agriculture, Water and the Environment for these matters, even if the activity is likely to have a significant impact.

To assist with this, assessments are required in accordance with the *Matters of National Environmental Significance: Significant impact guidelines 1.1. Environment Protection and Biodiversity Conservation Act 1999* (DoE 2013).



Geo

Location Of The Proposal - Illustration 1.1

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: SDS Source of base data: OpenStreet Map Date: 06/10/2021

Byron Lane Stage V Slip Biodiversity Report 4099-1005

517800

517700

6732500

6732400

6732300

The Proposal - Illustration 1.2

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: SDS Source of base data: Department of Customer Services Date: 07/04/2022 Revision: A

2. Methods

2.1 Personnel

Qualifications and experience of personnel involved in the assessment is provided in Table 2.1.

Table 2.1: Qualifications and experience of personnel

Name	Qualifications	Years of Experience	Role
Samuel Smith	B.Env.Sc.	5	Field surveys and BAR content
David Havilah	B.Sc (Biology).	14	Field surveys and BAR content

2.2 Background research

To guide targeted field surveys, searches of the databases listed in Table 2.2 were completed. Database search results are provided at **Annexure A**.

Table 2.2: Summary of database search	ies undertaken
---------------------------------------	----------------

Source	Database name	Accessed	Search areas	Date conducted
DPIE/OEH	BioNet	<u>http://www.bionet.nsw.gov.au/</u>	10 km x 10 km grid centred on the site	23/09/2021
	Areas of Outstanding Biodiversity Value	<u>https://www.environment.nsw.gov. au/topics/animals-and- plants/biodiversity</u>	Clarence Valley LGA	23/09/2021
	Vegetation Information System	<u>http://www.environment.nsw.gov.a</u> <u>u/NSWVCA20PRapp/LoginPR.as</u> <u>px</u>	Clarence lowlands subregion	24/09/2021
NSW Department of Primary Industries (DPI)	Fisheries Spatial Data Portal	<u>https://webmap.industry.nsw.gov.</u> <u>au/Html5Viewer/index.html?viewe</u> <u>r=Fisheries Data Portal</u>	Clarence Valley LGA	30/09/2021
	Key Fish habitat mapping	<u>https://www.dpi.nsw.gov.au/fishing</u> /habitat/publications/pubs/key- fish-habitat-maps	Clarence Valley LGA	30/09/2021
	NSW Weedwise	http://weeds.dpi.nsw.gov.au/	Clarence Valley LGA	30/09/2021

Source	Database name	Accessed	Search areas	Date conducted
	Register of critical habitat	http://www.dpi.nsw.gov.au/fisherie s/species- protection/conservation/what/regis ter	NSW	30/09/2021
Australian Government Department of Agriculture, Water and the	Protected Matters Search Tool (PMST) for Matters of National Environmental Significance (MNES)	<u>http://www.environment.gov.au/ep</u> <u>bc/protected-matters-search-tool</u>	10 km radius of the site	23/09/2021
Environment	Directory of important wetlands	<i>http://www.environment.gov.au/cgi</i> - <i>bin/wetlands/search.pl?smode=D</i> <u>OIW</u>	20 km x 20 km grid centred on the site	30/09/2021
Australian Government Bureau of Meteorology	Atlas of Groundwater Dependent Ecosystems (GDE)	<u>http://www.bom.gov.au/water/grou</u> ndwater/gde/map.shtml	20 km x 20 km grid centred on the site	30/09/2021
DPIE/OEH Seed datasets	Coastal Wetlands (SEPP Coastal Management 2018)	<u>https://mapprod1.environment.ns</u> w.gov.au/arcgis/rest/services/Plan ning/SEPP/MapServer	The site	30/09/2021
	Littoral Rainforests (SEPP Coastal Management 2018)	https://mapprod1.environment.ns w.gov.au/arcgis/rest/services/Plan ning/SEPP/MapServer	The site	30/09/2021

2.3 Habitat assessment

A preliminary evaluation of the likelihood of occurrence of threatened flora, fauna and populations within the study area based on background research was undertaken. This evaluation considers the broad habitat types within the study area, ecology of threatened species/populations and occurrence of local records. The initial habitat assessment forms the basis for targeted surveys and consideration of potential impacts of the proposal and was revised upon completion of the field surveys.

2.4 Field survey

The site was assessed on 27 September 2021, 6 April 2022 and 16 August 2022 by ecologist Samuel Smith. The assessment utilised the following methodology over three hours in the field:

- Mapping vegetation communities on the site and where possible assigning a NSW Plant Community Type (PCT) in accordance with the DPIE/BCD BioNet Vegetation Classification database.
- Random meander of the site and compilation of a flora inventory.
- Targeted survey for any threatened flora and/ or Threatened Ecological Communities (TEC) (undertaken following threatened species database searches).

- Record the occurrence and extent of any priority weeds listed in the NSW Biosecurity Act 2015.
- Survey by visual inspection using binoculars of hollow-bearing trees.
- Opportunistic survey of all fauna based on visual or aural observations.

Areas assessed included all vegetation within the proposal footprint with broader consideration of adjoining vegetation outside this area (refer to **Illustration 1.2**).

2.4.1 Vegetation surveys

Vegetation surveys were conducted across the site by undertaking walking transects along the west side of the road in proximity to the slip and works footprint. Vegetation at the site was mapped and classified as a native vegetation PCT where possible. Trees with a diameter at breast height (DBH) greater than 10 cm where also mapped. No plot-based surveys were undertaken given the disturbed nature of vegetation present and the linear nature of vegetation occurring within the road reserve. Additionally, large areas of weed incursions were also mapped.

2.4.2 Targeted flora surveys

Targeted searches were completed for threatened flora species identified by the potential occurrence assessment (refer to **Annexure B**) as having a moderate to high likelihood of occurrence within areas of suitable habitat. Any species that could not be reliably identified/or may have been overlooked in the survey was presumed to occur at the site and therefore subject to a test of significance (refer to **Annexure C**).

Where possible, surveys followed methods described in OEH's NSW Guideline for surveying threatened plants (OEH 2016), and the draft survey guidelines for Australia's threatened orchids <u>http://www.environment.gov.au/resource/draft-survey-guidelines-australias-threatened-orchids</u>.

2.4.3 Targeted fauna surveys

Subject species for targeted fauna surveys were identified as those threatened fauna species that have a moderate to high likelihood of occurrence at the site (refer to **Annexure B**).

Mature trees within the site provide general habitat/ foraging resources for locally occurring fauna species including birds and flying-foxes.

The primary Koala feed tree species Forest Red Gum (*Eucalyptus tereticornis*) and Tallowwood (*Eucalyptus microcorys*) occur throughout the proposal footprint. These Koala feed tree species are lowquality and highly fragmented in a disturbed landscape. Scattered trees within the proposal area provide low-quality potential foraging and refuge resource for any dispersing animals in the locality.

Any species that could not be adequately surveyed during the site assessment according to threatened species survey guidelines was assumed to occur.

Fauna survey efforts included visual canopy searches using binoculars. An assessment of habitat features was also undertaken, including presence of hollow-bearing trees.

2.4.4 Aquatic surveys

The habitat value of the South Arm River (i.e. habitat sensitivity and classification of waterways for fish passage) was characterised in accordance with NSW DPI (Fisheries) document *Policy and Guidelines for fish habitat conservation and management* (NSW DPI (Fisheries) 2013).

2.4.5 Summary of survey effort and limitations

The survey effort undertaken for the fieldwork is summarised below in Table 2.3.

Table 2.3: Survey effort

Field technique	Species	Location	Person hours	Date and time
Habitat assessment	Threatened species habitat	Study area	2.5	27/09/2021; 8:00 – 9:30 and 6/04/2022; 10:00 –
Random meander	Target threatened flora species (refer to Annexure B)	Areas of suitable habitat within study area		11:00
Targeted diurnal bird survey	Potentially occurring threatened bird species (refer to Annexure B)	Study area		
Canopy inspection using binoculars	Koala	Preferred food trees	Random searches while conducting site inspection	

While aspects of the fauna survey effort were not in accordance with the (working) draft Threatened Biodiversity Survey and Assessment Guidelines (DEC 2004), the modified nature of the roadside environment justify the effort expended. While the survey only provides a 'snapshot' of fauna usage during the spring period, the techniques utilised provide suitable sampling for a range of fauna occurring within a modified roadside environment. Based on local fauna records and vegetation/habitat mapping, predictions of fauna usage can be made with a reasonable level of confidence.

Although every effort was made to undertake a full flora inventory, there is a possibility that occurrences of some of the smaller cryptic threatened flora species potentially occurring in the locality were inadvertently overlooked. Consequently, these species were assumed to be present.

The survey timing was considered appropriate for all potentially occurring threatened flora species derived from database searches.

3. Existing environment

The site occurs within the South Eastern Queensland bioregion as per the Interim Biogeographic Regionalisation for Australia (IBRA, version 7). The site lies within the Clarence Lowlands IBRA subregion.

The site lies within the *Clarence – Richmond Alluvial Plains* Mitchell Landscape (Mitchell Landscapes version 3.1), described as follows (DECC 2008):

Wide valleys, channels, floodplains, terraces and estuaries of the Clarence and Richmond Rivers and other coastal streams on Quaternary alluvium, general elevation 0 to 50m, local relief 15m. Deep brown earths and structured brown clay on floodplains. Terrace with yellow texture-contrast soil containing ironstone concretions. Extensively cleared the valley floor supported forest of cabbage gum (Eucalyptus amplifolia), forest red gum (Eucalyptus tereticornis), broad-leaved apple (Angophora subvelutina), river oak (Casuarina cunninghamiana), silky oak (Grevillea robusta), rough-barked apple (Angophora floribunda), native teak (Flindersia australis), coastal grey box (Eucalyptus bosistoana), pink bloodwood (Corymbia intermedia), spotted gum (Corymbia maculata), grey ironbark (Eucalyptus paniculata), broad-leaved paperbark (Melaleuca quinquenervia), blackwood (Acacia melanoxylon) and black she-oak (Casuarina littoralis). On the margins of the basalt based Lamington Volcanic Slopes Landscape; dry closed forest with native cascarilla (Croton verreauxii), yellow tulip (Drypetes deplanchei), silver basswood (Polyscias elegans), guioa (Guioa semiglauca), red cedar (Toona australis) with abundant vines and emergent hoop pine (Araucaria cunninghamii). Salt marsh, mangrove communities and paperbark (Melaleuca quinquenervia) freshwater swamps occur in the estuary.

The geology of the site is described in a nearby Soil Essentials Report as alluvial plain on alluvium lithology.

In general, the study area comprises mostly disturbed land lacking native vegetation because of historical agricultural pursuits and the Construction of Big River Way. Pockets of native vegetation subject to weed incursions are associated with the study area, mainly as riparian vegetation occurring alongside the South Arm River.

A summary of the findings of the desktop assessment are provided in Table 3.1.

Source	Database name	Search area	Results
DPIE/OEH	BioNet	10 km x 10 km grid centred on the site	Records of five threatened flora species, 30 threatened fauna species and 11 TECs known from within the search area (refer to Annexure A)
	Areas of Outstanding Biodiversity Value	Clarence Valley LGA	No Areas of Outstanding Biodiversity Value have been declared in the Clarence Valley LGA
	Vegetation Information System (VIS)	Clarence Lowlands subregion	A range of vegetation communities occur in the locality – final communities occurring on-site determined with results of flora survey and comparison with VIS descriptions

Source	Database name	Search area	Results
NSW Department of Primary Industries (DPI)	Fisheries Spatial Data Portal	Clarence Valley LGA	The adjacent section of the South Arm River is not mapped as potential habitat for any threatened freshwater fish species and is ranked as fair habitat for freshwater fish.
	Key Fish habitat mapping	Clarence Valley LGA	Adjacent sections of the South Arm River the works area are mapped as key fish habitat.
	NSW Weedwise	Clarence Valley LGA	137 weed species are listed under the <i>Biosecurity Act 2015</i> for the Clarence Valley LGA.
	Register of critical habitat	NSW	No critical habitat occurs within 10 km of the site.
Australian Government Department of Environment and Energy	Protected Matters Search Tool (PMST) for Matters of National Environmental Significance (MNES)	10 km radius of the site	Habitat for two threatened ecological communities, 72 threatened species and 40 migratory species occurs within 10 km of the site.
	Directory of important wetlands	10 km radius of the site	The following three nationally important wetlands occur within the search area; Clarence River Estuary, Everlasting Swamp and Upper Coldstream. These areas occur within the buffer search area and would not be impacted by the proposal.
Australian Government Bureau of Meteorology	Atlas of Groundwater Dependent Ecosystems (GDE)	20 km x 20 km grid centred on the site	Mapping indicates that water resources associated with the site are a low probability of being GDEs
OEH Seed datasets	Coastal Wetlands	The site	Not present
ualasels	Littoral Rainforests	The site	Not present

3.1 Vegetation/plant community types

Vegetation at the site is represented alongside Big River Way and the opposite bank of the South Arm River, along South Arm Road (refer to **Illustration 3.1**). One plant community Type (PCT) was identified within the study area and additional miscellaneous areas which do not fall under a PCT category were also identified (refer to **Table 3.2** and **Illustration 3.1**).

Refer to **Annexure D** for a full list of flora recorded onsite.

Table 3.2 Plant community types within the study area

Plant community type (PCT)	Vegetation Formation	Condition	Threatened ecological community? BC Act	Threatened ecological community? EPBC Act	Area (ha) in study area
PCT 1235: - Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion	Forested Wetlands	Poor to Moderate (disturbed)	Yes: - Swamp Oak Floodplain Forest of the NEW South Wales North Coast, Sydney and South East Corner Bioregions	No: - does not meet the EPBC Act patch size of 0.5 ha (refer to Section 3.2)	0.27
PCT N/A: - Pasture Grassland	Grassland	Poor	No	No	0.48
PCT N/A: - Rock Armouring Area	N/A	Poor	No	No	0.09
Total				0.84	

3.1.1 PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion

This area occurs alongside Big River Way (refer to **Illustration 3.1**). For a summary of the characteristics of PCT 1235 refer to **Table 3.3** and is depicted in **Plate 3.1** below.

Table 3.3 Summary of PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion

Description		
PCT justification	The canopy dominated by PCT indicator species: Swamp Oak (<i>Casuarina glauca</i>) and occasional Forest Red Gum (<i>Eucalyptus tereticornis</i>) Characteristic shrub and ground stratum as labelled in VIS are present in the study area.	
Extent in study area (ha)	0.27	
Condition	Poor – Moderate (past disturbance from Big River Way roadworks and maintenance).	
Canopy species in study area	Swamp Oak (<i>C. glauca</i>), Tuckeroo (<i>Cupaniopsis anacardiodes</i>) and Forest Red Gum (<i>E. tereticornis</i>).	

Description		
Mid story and shrub species in study area	Coffee Bush (<i>Breynia oblongifolia</i>), Cheese tree (<i>Glochidion ferinandi var. ferninadi</i>).	
Ground cover species in study area	Blady Grass (<i>Imperata cylindrica</i>), Bracken (<i>Pteridium esculentum</i>), Common Reed (<i>Phragmites australis</i>) and Pennywort (<i>Centella asiatica</i>).	
Exotic species in study area	Lantana (<i>Lantana camara</i> *) and Annual Ragweed (<i>Ambrosia artemisiifolia</i> *), Blue Billygoat Weed (<i>Ageratum houstonianum</i> *) Coastal Morning Glory (<i>Ipomoea cairica</i> *) and Broad-leaved Paspalum (<i>Paspalum mandiocanum</i> *).	

*Denotes exotic species

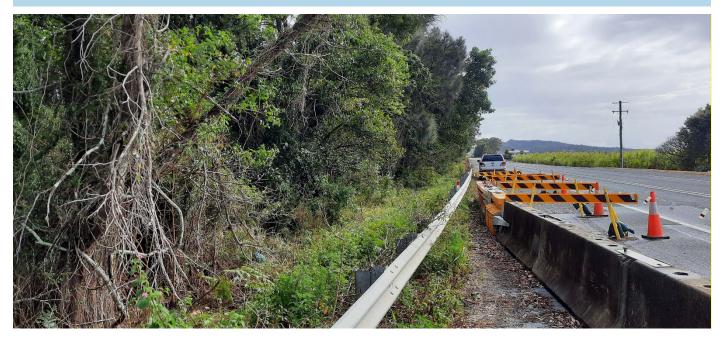


Plate 3.1 Example of PCT 1235 alongside Big River Way and the South Arm River, facing north

3.1.2 PCT N/A – Pasture grassland

This area does not fit with align with PCT due to lack of native species and structure. This area occurs opposite the site, along South Arm Road (refer to **Illustration 3.1**). For a summary of pasture grassland refer to

Table 3.4 and is depicted in Plate 3.2.

Table 3.4 Summary of pasture grassland

Description	
PCT justification	While four isolated Forest Red Gums (<i>E. tereticornis</i>) occur within this area, the remainder is cleared and dominated with Kikuyu Grass (<i>Pennisetum clandestinum</i> *). Likely used for cattle grazing, which is common within the area. Therefore, it does not align with a PCT.
Extent in study area (ha)	0.48

Description	
Condition	Poor (past disturbance agriculture and grazing).
Canopy species in study area	Forest Red Gum (<i>E. tereticornis</i>) and Camphor Laurel (<i>Cinnamomum camphora*</i>).
Mid story and shrub species in study area	Coral Tree (<i>Erythrina crista-galli*</i>).
Ground cover species in study area	Common Reed (<i>Phragmites australis</i>), Pennywort (<i>Centella asiatica</i>) and Dockweed (<i>Rumex brownii</i>).
Exotic species in study area	As above and additional species including Gomphrena Weed (<i>Gomphrena celosiodes*</i>), Lamb's Tongue (<i>Plantago lanceolata*</i>) and White Clover (<i>Trifolium repens*</i>).

*Denotes exotic species

Plate 3.2 Example of pasture grassland that occurs along South Arm Road, facing south

3.1.3 PCT N/A – Rock armouring area

This area does not fit with align with PCT due to lack of native species and structure. This area occurs along the southern portion of the site, adjacent Big River Way (refer to **Illustration 3.1**). For a summary of the rock armouring area, refer to

Table 3.5 and is depicted in Plate 3.3.

Table 3.5 Summary of rock armouring area

Description	
PCT justification	This area is dominated by regrowth exotic species. It lacks native species and community structure. Therefore, it does not align with a PCT.

Description	
Extent in study area (ha)	0.09
Condition	Poor (past disturbance from Big River Way roadworks, maintenance and weed incursion).
Canopy species in study area	None present
Mid story and shrub species in study area	Lantana (<i>L. camara</i> *), Tobacco Bush (<i>Solanum mauritianum</i> *) and Coastal Morning Glory (<i>Ipomoea cairica*</i>).
Ground cover species in study area	Pidgeon Grass (<i>Setaria sphacelata*</i>), Broad-leaved Paspalum (<i>Paspalum mandiocanum*</i>) and Balloon Cotton Bush (<i>Gomphocarpus physocarpus*</i>).
Exotic species in study area	As above.

*Denotes exotic species

Plate 3.3 Example of rock armouring area, facing south

LEGEND

	LEGE	
		Survey limit
		New Byron Lane stage V slip
		Cadastre
		Annual Ragweed
		Lantana
		PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		Pasture / grassland
		Rock armouring area
Λ		30 Motore

Meters

Byron Lane Stage V Slip Biodiversity Report 4099-1018

Vegetation Map - Illustration 3.1

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: SDS Source of base data: Department of Customer Services Date: 11/04/2022 Revision: A

3.2 Threatened ecological communities

PCT 1235 within the study area, on the basis of floristics and geology, is representative of *Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions* which is listed as a TEC under the BC Act.

Swamp Oak forest is also listed in the EPBC Act (as the *TEC Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland*). It is subject to condition thresholds, where a minimum patch size of 0.5 ha applies. The small patches of Swamp Oak at the site equate to 0.27 ha and hence do not meet condition thresholds as per the EPBC Act listed community (DAWE, 2018).

3.3 Groundwater dependent ecosystems

The site is located within the Clarence River catchment. Terrestrial ecosystems within the proposal are most likely fed by surface rather than groundwater. This is supported by groundwater dependent ecosystem (GDE) mapping covering the locality that indicates that the vegetation communities present are a low probability of being GDEs (Bureau of Meteorology 2021).

3.4 Threatened species

3.4.1 Threatened flora

No threatened fauna species listed under the BC Act or EPBC Act were recorded in the study area during the site assessment.

Potentially occurring threatened flora species were readily identifiable at the time the site survey was conducted and therefore were assigned a low likelihood of occurrence on the basis that they were not recorded in the site survey (refer to **Annexure B**).

3.4.2 Threatened fauna

No threatened fauna was observed onsite. There was no evidence of Koala activity within the site (scratching on trees and scats in leaf litter).

The site occurs within an area known to be utilised by the Coastal Emu Population which is listed as an endangered population under the BC Act. The Yuraygir sub population occurring south of the Clarence River is known to occupy the coastal strip of Yuraygir National Park as well as surrounding contiguous areas in the Sandon and Brooms Head area in the north to Minnie Water and Red Rock in the south and Tucabia, Tyndale and Shark Creek to Pillar Valley and the lower Clarence River wetlands in the west. A detailed review of the movements and range of the Yuraygir sub-population of Coastal Emus was undertaken as part of the *Coastal Emu Management Plan* for the Woolgoolga to Ballina (W2B) Pacific Highway Upgrade project (RMS, 2017) by interpretation and discussion of the annual emu census results from NPWS land managers (Gina Hart and Matt Clarke) and interviews with long-standing property owners. Key findings of this review include:

• The majority of the sub-population is centred on Yuraygir National Park including Station Creek to Red Rock, Wooli, Diggers Camp, Minnie Waters, Sandon, Sandon River, Brooms Head, Wooloweyah, James Creek and Taloumbi.

- The population is divided by a number of social groups that show fidelity to particular areas and habitat that support important pre and post-breeding life-cycle events. The degree of relatedness and interaction between the groups is not known.
- Groups range a considerable distance and include:
 - One ranging within the area south of Tucabia from the Coldstream River wetlands in the west to Pillar Valley and Yuraygir National Park in the east.
 - A second group that is largely found on the agricultural land and forests between Pine Brush and Candole State Forest in the south, Tyndale Swamp and north to Shark Creek and Green Hill and the cane farms around Shark Creek including Byrons Lane and McIntyres Lane at Tyndale.
- These two groups frequently access floodplain wetlands and creeks such as Chaffin Swamp and Pillar Valley Creek. They utilise modified agricultural habitats during pre- and post-breeding activities in spring and summer with the cane fields frequently occupied by adult males raising young.
- Anecdotal information on breeding activities suggests that breeding occurs in four broad areas: Station Creek to Red Rock River (south), Wooli - Diggers Camp - Minnie Water - Sandon River (central), Brooms Head - Sandon River - Candole State Forest - Wallaby Lane (north), Pillar Valley around Chaffin Hill and Whites Hill in the western edge of their range (west).

Emus are known to forage within sugar cane land associated with the site.

Several other threatened fauna species were identified as having moderate potential to occur at the site (refer to **Table 3.6** and **Annexure B**). These species were not subjected to sufficient survey (i.e. not in accordance with the guidelines) and were therefore presumed to occur. Potential habitat for these threatened fauna species is associated with small areas of PCT 1235, and surrounding areas of agricultural land. No hollow-bearing trees occur at the site.

Scientific name	Common name	BC Act status	EPBC Act status	Potential occurrence within study area
Dromaius novaehollandiae	Emu population in the NSW North Coast Bioregion and Port Stephens LGA	E	-	Moderate – known to occur in the locality.
Ephippiorhynchus asiaticus	Black-necked Stork	E	-	Moderate - potential foraging habitat associated with the site.
Grus rubicunda	Brolga	V	-	Moderate - potential foraging habitat associated with the site.
Pteropus poliocephalus	Grey-headed Flying-fox	V	V	Moderate - potential foraging habitat associated with the site.
V = Vulnerable E = Endar	ngered			

Table 3.6: Habitat assessment and surveys results - fauna

3.4.3 Aquatic results

The subject site occurs alongside the South Arm River which connects to Clarence River. The South Arm River (and the Clarence River) is mapped as Key Fish Habitat for the Clarence Valley LGA.

Waterways at the site are unlikely to provide any habitat for FM Act listed threatened aquatic species. A review of the fisheries spatial data portal did not indicate any potential habitat for threatened fish species in any waterways in the study area. The fisheries spatial data portal lists the adject section of the South Arm River as having 'fair' freshwater fish community status.

3.5 Fauna habitat values

Vegetation to be affected by the proposal is small in area and generally lacking well-developed native vegetation. Fauna habitat features such as hollow-bearing trees, dense leaf litter and coarse woody debris are largely absent. As such the vegetation present represents a small area of opportunistic foraging habitat for a range of locally occurring fauna species.

The South Arm River and floodplains within the local area provides foraging habitat for wetland birds likely to utilise similar habitats associated with the Clarence River floodplain. The South Arm River also provides habitat to a range of native fish, including Dusky Flathead (*Platycephalus fuscus*), Yellowfin Bream (*Acanthopagrus australis*) and Channel Catfish (*Ictalurus punctatus*).

A range of common fauna species were recorded via incidental survey (refer to Annexure D).

Implementation of relevant safeguards is expected to minimise the risk of injury/mortality to native fauna during the proposed Activity.

3.6 Areas of outstanding biodiversity value

There are no declared areas of outstanding biodiversity value located in the Clarence Valley LGA.

3.7 Wildlife connectivity corridors

The site occurs approximately three kilometres north-west of the 'Tyndale swamp' mapped regional wildlife connectivity corridor (Scotts, 2003). Focus species for this corridor include the Yellow-bellied Glider and Rufous Bettong. However, being in a highly fragmented area, surrounded by cane fields and roads, the site provides poor connectivity.

3.8 State Environmental Planning Policies

3.8.1 State Environmental Planning Policy (Biodiversity & Conservation) 2021

State Environmental Planning Policy (Biodiversity & Conservation) 2021 aims to encourage the conservation and management of natural vegetation areas that provide habitat for Koalas, to ensure permanent free-living populations would be maintained over their present range. Clause 6 of the SEPP states that the SEPP applies only to land 'in relation to which a development application has been made'. Clause 94 of ISEPP precludes the proposal from requiring consent therefore Part 2 of SEPP 44 does not apply to the proposal. It is TfNSW policy, however, to consider environmental issues relating to their work to the fullest extent possible, including impacts on Koalas.

The policy defines potential Koala habitat as areas of native vegetation where Schedule 2 trees constitute at least 15 percent of the total number of trees in the upper or lower strata of the tree component. Forest

Red Gum, Grey Gum and Tallowwood are both Schedule 2 trees. However, these tree species make up well below <15% of trees at the site. Furthermore, given that only a very small area of fragmented habitat occurs at the site and that Koala records in the study area are scarce the site is not considered to be core Koala habitat. No further consideration of the policy is required.

3.9 Matters of National Environmental Significance

The EPBC Act protects/regulates MNES, including:

- World heritage properties
- National heritage places
- Wetlands of international importance
- Nationally threatened species and ecological communities
- Migratory species
- Commonwealth marine areas
- The Great Barrier Reef Marine Park
- Nuclear actions (including uranium mining)
- A water resource, in relation to coal seam gas development and large coal mining development

Based on the search results and site assessment (refer to summary in **Table 3.7**) no significant impacts to any MNES are likely to result from the proposal, nor is the proposal subject to the EPBC Act Strategic Assessment.

Table 3.7: Assessment of MNES

Factor	Impact
Any impact on a World Heritage property? No World Heritage properties occur within 10 km of the site.	Nil
Any impact on a National Heritage place? No National Heritage places occur within 10 km of the site.	Nil
Any impact on a wetland of international importance (often called 'Ramsar' wetlands)? Clarence River Estuary, Everlasting Swamp and Upper Coldstream. These areas occur within the buffer search area and would not be impacted by the proposal.	Negligible
 Any impact on nationally threatened species, ecological communities or migratory species? Habitat for two threatened ecological communities (TECs), 72 threatened species, and 40 migratory species is identified within 10 km of the site. No nationally listed threatened flora species or TECs were recorded in the site survey. No nationally listed threatened fauna species were recorded in the site survey. Several nationally listed threatened fauna species are considered to have a moderate likelihood of occurrence at the site, including Greyheaded Flying-fox, which is also listed as Vulnerable under the EPBC Act. No nationally listed migratory species were recorded in the site survey. It is likely that several listed species (e.g. Satin Flycatcher, Lathams Snipe) may utilise the site on an opportunistic or seasonal basis. However, the 	Minor

Factor	Impact
site does not provide any important foraging or breeding habitat for any migratory species. With consideration of the above information, no nationally listed threatened biodiversity matters are likely to be significantly affected by the proposal.	
Any impact on a Commonwealth marine area? No Commonwealth marine areas occur within 10 km of the site.	Nil
Does the proposal involve a nuclear action (including uranium mining)? The proposal does not involve a nuclear action.	Nil
Additionally, any impact (direct or indirect) on the environment of Commonwealth land? The proposal would not have any impact on any Commonwealth Land within 10 km of the site.	Nil

4. Impact assessment

4.1 Avoidance and minimisation

Efforts have been made to ensure that the hierarchy of avoid and minimise was undertaken for the proposal.

- Avoid in the first instance e.g. positioning of ancillary sites to utilise cleared and disturbed areas and avoid areas of native vegetation.
- Minimise impacts minimising impacts by way of implementing proposed biodiversity mitigation measures.

The construction process for the proposal would continue to apply the principles of avoid and minimise. Any residual biodiversity impacts would be offset according to the TfNSW Guideline for Biodiversity Offsetting (TfNSW 2016), although the proposal does not trigger the need for offset requirements.

4.2 Construction impacts

4.2.1 Removal of vegetation

The proposal would require removal and/ or disturbance of up to 0.03 ha of vegetation in the form of PCT 1235 alongside the South Arm River and the Big River Way to facilitate sheet piling, riverbank stability and repair to the road shoulder.

Additionally, more clearing may be required adjacent this area as (up to 0.27 ha of PCT 1235 and within the rock armouring area). Disturbance of pasture species and grasses at the opposite side of the South Arm River (along South Arm Road) may be required to facilitate loading and unloading of a barge (up to 0.48 ha)

While up to 0.84 ha is the total area of vegetation that may be impacted (via clearing or disturbance) it likely to be much less due to the scope of the proposal. Impacted vegetation is shown in **Illustration 3.1** and summarised in **Table 4.1** below.

Plant community type (PCT)	Status	Proposal	
	TEC BC Act	TEC EPBC Act	area (ha)
PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion	Yes	No	0.27 (removal of 0.03 ha).
Pasture grassland	No	No	0.48
Rock armouring area	No	No	0.09
Total			0.84 ha

Table 4.1: Potential impacts on vegetation communities

While the proposed vegetation removal constitutes the Key Threatening Process (KTP) Clearing of Native Vegetation (as listed in the BC Act) the magnitude to which the proposal contributes to this KTP is negligible. Mitigation measures to reduce the risk of direct impacts to native vegetation adjacent to the site are provided in **Section 5**.

4.2.2 Removal of threatened fauna habitat

The results of the threatened fauna potential occurrence assessment in **Annexure C** indicated several threatened fauna species were considered potential occurrences within the study area and therefore have potential to be impacted by the proposal. These species are detailed in **Table 4.2**.

The proposal would require removal and/ or disturbance of up to 0.84 ha of vegetation, including approximately up to 0.27 ha of PCT 1235. This vegetation and the subject section of Big River Way, the South Arm River, South Arm Road and surrounds provides prospective habitat for potentially occurring threatened fauna species, including:

- Potential foraging habitat for a number of threatened bird species
- Potential foraging habitat for Grey-headed Flying-fox

The construction footprint generally comprises degraded habitats with only limited threatened fauna habitat value. There are a limited number of large mature trees present (>50 cm DBH) and hollow-bearing trees are absent. The fauna habitat directly affected by the proposal is negligible in a local context.

Species	Potential occurrence	Impacted by proposal?	Impact		
Emu population in the NSW North Coast Bioregion and Port Stephens LGA	Moderate - known to occur in the locality.	Yes (minor extent)	foraging habitat comprising 0.84 ha (including 0.27 ha of		
Black-necked Stork	Moderate - potential foraging habitat associated with the site.	Yes (minor extent)	PCT 1235). Direct impacts are unlikely given mitigation measures proposed and that the subject species are all		
Brolga	Moderate - potential foraging habitat associated with the site.	Yes (minor extent)			
Grey-headed Flying-fox	Moderate - potential foraging habitat associated with the site.	Yes (minor extent)	and the second		

Table 4.2: Impacts on threatened fauna and fauna habitat

4.2.3 Removal of threatened flora

No threatened flora species or habitat for such species would be removed as part of the proposal.

4.2.4 Aquatic impacts

Short-term minor and localised impacts during the proposal may occur via the risk of sedimentation of waterways, in particular during piling works. Mitigation measures requiring erosion and sediment controls would limit this impact. Use of the barge within The South Arm River, may result in very minor impacts to aquatic fauna and aquatic flora. In particular some minor impacts to aquatic flora such as Common Reed (*Phragmites australis*), that occurs along the banks of the South Arm River may occur. Mitigation measures

to reduce the potential risk of direct and indirect impacts to waterways from the proposal are included in **Section 5**. Additional aquatic impacts from pests or disease can be found below.

4.2.5 Injury and mortality

The proposal may result in a minor risk of fauna injury/ mortality through:

- Vegetation removal if the impacted vegetation is occupied at the time of clearing. This is mainly a risk to nesting or non-flying species.
- Vehicle strike during construction for a range of fauna species including Coastal Emus.
- Minor impacts to aquatic species (such as turtles and aquatic birds), from potentially being struck by a barge and other watercraft.

Mitigation measures to reduce the potential for fauna mortality or injury are provided within Section 5.

4.3 Indirect/operational impacts

4.3.1 Wildlife connectivity and habitat fragmentation

Given the small amount of clearing required and already fragmented nature of the subject site, the proposal would not:

- Result in any significant increase in the fragmentation of fauna and flora habitats within the study area and the works proposed would not result in any barriers to fauna dispersal (terrestrial or aquatic).
- Impact fauna dispersal across the Big River Way, the South Arm River, South Arm Road and the surrounds (terrestrial or aquatic).
- Increase roadkill.

Consequently, the proposal is unlikely to significantly affect the dispersal of any fauna groups and no permanent barriers to movement would occur.

4.3.2 Edge effects on adjacent native vegetation and habitat

The proposal would result in a minor increase in edge effects by way of vegetation removal and the resulting new fringe of exposed vegetation. Edge effects that may occur include potential for increased exposure of sensitive vegetation to wind and heat and weed infiltration.

However, considering that vegetation within the study area is currently subject to a range of edge effects from the existing cleared and modified corridor of Big River Way (the old Pacific Highway), any increases relating to the proposal would not be significant.

4.3.3 Invasion and spread of terrestrial and aquatic weeds

Environmental and agricultural weeds are common along the disturbed roadside environment of the Big River Way throughout the study area. Weeds of national significance occurring within the study area/ site and relevant duty are included below in **Table 4.3**.

No Aquatic weeds of national significance were observed within the study area.

Table 4.3: Priority weeds within the site and relevant duty

Common Name	Species	Duty
Fireweed	Senecio madagascariensis	Prohibition on certain dealings Must not be imported into the state, sold, bartered, exchanged or offered for sale.
Lantana	Lantana camara	Prohibition on certain dealings Must not be imported into the state, sold, bartered, exchanged or offered for sale.

The works are unlikely to result in the spread of weeds provided that relevant mitigation measures relating to machinery hygiene protocols are effectively implemented (refer to **Section 5**).

4.3.4 Invasion and spread of terrestrial and aquatic pests

While a variety of terrestrial pest species may occur in the locality include Black Rat (*Rattus rattus**), Feral Dog (*Canis lupus familiaris**), Feral Cat (*Felis catus**), Red Fox (*Vulpes vulpes**), European Rabbit (*Oryctolagus cuniculus**). The proposal would not result in any potential to increase conditions such that pest species would become more prevalent.

Potential aquatic pests occurring within the South Arm River include Common Carp (*Cyprinus carpio**), Eastern Gambusia (*Gambusia holbrooki**) and Banded Grunter (*Amniataba percoides*). The proposal would not result in any potential to increase conditions such that pest species would become more prevalent.

*Denotes exotic species

4.3.5 Invasion and spread of pathogens and disease

With the adoption of standard hygiene measures (refer to **Section 5**) for plant and associated equipment during construction, it is unlikely that pathogens or diseases (terrestrial and aquatic) would be introduced to the site.

4.3.6 Changes to hydrology

The works do not involve any substantial excavation or redirecting of the surface water flow to an extent that changes to hydrology would occur.

4.3.7 Noise, light and vibration

During the works, a temporary increase in noise and vibration in proximity to the site is expected in association with machinery operations. The majority of noise and vibration will be a result of the following:

- Driving/ vibrating for piling works
- Saw cutting existing pavement
- Jack hammering concrete
- Excavation/ profiling existing pavement
- Tree mulching

However, it would be expected that terrestrial and aquatic fauna species in close proximity to the existing road alignment are habituated to noise (and vibration to an extent) and that the proposal would not increase these impacts to a level that fauna breeding or behaviour would be significantly impacted. Additionally, the impacts from noise and vibration would only be localised and short-term (length of the construction). Once operational, there will not be an increase in these impacts above what is already experienced at the site.

No significant increase in light impacts would be expected, either during the proposed works or during future operation of the subject section of the Big River Way.

Mitigations for these impacts can be found in **Section5**.

4.3.8 Groundwater dependent ecosystems

Groundwater dependent ecosystem (GDE) mapping covering the locality indicates that the vegetation communities present are a low probability of being GDEs (Bureau of Meteorology 2021). Furthermore, changes to groundwater flows are unlikely to occur as a result of the proposed works.

4.4 Cumulative impacts

Cumulative impacts of road upgrade and maintenance projects along Big River Way at the locality and in the broader region would mostly relate to habitat loss and modification. However, as most individual projects generally impact on previously disturbed road reserve/adjacent areas, and that similar and betterquality habitat are relatively widespread in adjacent areas (such as conservation reserves), this project would be considered unlikely to cumulatively result in any significant impacts to local biodiversity.

4.5 Assessments of significance

The BC Act requires a test of significance (five-part test) when assessing whether an action, development or activity is likely to significantly affect threatened species or ecological communities, or their habitats. Based on the potential for occurrence at the site (refer to **Annexure B**), assessments of significance have been completed for several NSW listed threatened species and threatened ecological communities (refer to **Annexure C**).

The assessments concluded that the proposal would be unlikely to significantly increase the risk of extinction for any of the subject threatened flora and fauna species (refer to **Table 4.4**).

Table 4.4: Summary of BC Act significance assessments

BC Act significance assessments						
Threatened species or communities	Significance assessment question		Likely significant impact?			
		b	с	d	е	
Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions	Ν	N	Ν	Ν	N	No
Emu population in the NSW North Coast Bioregion and Port Stephens LGA	N	Х	Ν	Ν	N	No

BC Act significance assessments						
Black-necked Stork	Ν	Х	Ν	Ν	Ν	No
Brolga	Ν	Х	Ν	Ν	Ν	No
Grey-headed Flying-fox	Ν	Х	Ν	Ν	Ν	No

Notes: Y= Yes (negative impact), N= No (no or positive impact), X= not applicable, ?= unknown impact.

Based on the potential for occurrence at the site (refer to **Annexure B**), several threatened species listed under the EPBC Act may occur.

Under the EPBC Act, actions that have, or are likely to have, a significant impact on a matter of national environmental significance (MNES) require approval from the Australian Government Minister for the Environment (the Minister).

On 24 March 2020, the Australian Government entered into a new agreement ('Amending Agreement No. 1') with the New South Wales Government to amend the bilateral agreement signed in 2015 relating to environmental assessment. The Amending Agreement declares that an action does not require assessment under part 8 of the EPBC Act if it is listed in the declared classes of actions in Schedule 1 of the Amending Agreement. In accordance with declared class of action (ii), the proposal is assessed under Part 5.1 of the EP&A Act and includes an environmental impact statement where the assessment has been undertaken in accordance with the requirements of Item 3 of Schedule 1 of the Amending Agreement.

The proposal is characteristic of declared class action (ii) and hence does not require assessment under part 8 of the EPBC Act.

5. Mitigation

A range of mitigation measures are presented in **Table 5.1** and would be implemented prior to construction, during construction and during post construction phases of the proposal. These measures have been developed to mitigate the potential impacts of the proposal on protected flora and fauna and threatened species and communities that occur in the study area.

Table 5.1: Mitigation measures

Impact	Mitigation measures	Timing and duration	Likely efficacy of mitigation	Residual impacts anticipated	
Removal of native vegetation	Native vegetation removal will be minimised throughout the project.	Prior to construction and during construction	Effective	Loss or disturbance of potential foraging habitat comprising up to 0.84 ha	
	Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Prior to construction	Effective	(including0.27 ha of PCT 1235).	
	Vegetation removal will be undertaken in accordance with <i>Guide 4:</i> <i>Clearing of vegetation and removal of bush rock of the Biodiversity</i> <i>Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Effective		
	Native vegetation will be re-established in accordance with <i>Guide 3: Re-establishment of native vegetation</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	Post construction	Effective		
	The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) if threatened ecological communities, not assessed in the biodiversity assessment, are identified in the proposal site.	During construction	Proven		
Removal of threatened species habitat and habitat features	Habitat removal will be minimised throughout the project.	Prior to construction and during construction	Effective	Loss or disturbance of potential foraging habitat comprising up to 0.84 ha (including0.27 ha of PCT 1235).	
	Habitat removal will be undertaken in accordance with <i>Guide 4: Clearing</i> of vegetation and removal of bush rock of the Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects (RTA 2011).	During construction	Effective		

Impact	Mitigation measures	Timing and duration	Likely efficacy of mitigation	Residual impacts anticipated
	Habitat will be replaced or re-instated (where required) in accordance with <i>Guide 5: Re-use of woody debris and bush rock</i> and <i>Guide 8: Nest boxes</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Proven	
Removal of threatened plants	Pre-clearing surveys will be undertaken in accordance with <i>Guide 1: Pre-clearing process</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Proven	Loss or disturbance of potential foraging habitat comprising up to 0.84 ha (including0.27 ha of PCT 1235).
	The unexpected species find procedure is to be followed under <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) if threatened flora species, not assessed in the biodiversity assessment, are identified in the proposal site.	During construction	Proven	
Aquatic impacts	Aquatic habitat will be protected in accordance with <i>Guide 10: Aquatic habitats and riparian zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011) and Section 3.3.2 <i>Standard precautions and mitigation measures</i> of the <i>Policy and guidelines for fish habitat conservation and management Update 2013</i> (DPI (Fisheries NSW) 2013).	During construction	Effective	Potential sedimentation impacts from work. Potential short-term, minor disturbance to aquatic fauna. Minor disturbance, <0.01 ha to aquatic flora.
Groundwater dependent ecosystems	Interruptions to water flows associated with groundwater dependent ecosystems will be minimised.	Prior to construction and during construction	Effective	None
Changes to hydrology	Changes to existing surface water flows will be minimised.	Prior to construction and during construction	Effective	None

Impact	Mitigation measures	Timing and duration	Likely efficacy of mitigation	Residual impacts anticipated
Edge effects on adjacent native vegetation and habitat	Exclusion zones will be set up at the limit of clearing in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Effective	None
Injury and mortality of fauna	Fauna will be managed in accordance with <i>Guide 9: Fauna handling</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Effective	None
	Pre-clearing surveys will be undertaken in accordance with Guide 1: Pre-clearing process of the Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects (RTA 2011).	During construction	Effective	None
Invasion and spread of weeds	Weed species will be managed in accordance with <i>Guide 6: Weed management</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Effective	None
Invasion and spread of pests	If vegetation is to be mulched, pest species will be managed within the proposal site in accordance with the TfNSW Technical Procedure: Mulch Management	During construction	Effective	None
Invasion and spread of pathogens and disease	Pathogens will be managed in accordance with <i>Guide 2: Exclusion zones</i> of the <i>Biodiversity Guidelines: Protecting and managing biodiversity on RTA projects</i> (RTA 2011).	During construction	Effective	None
Noise, light and vibration	Shading and artificial light impacts will be minimised.	Prior to construction and during construction	Effective	Minor short-term localised impacts to fauna (terrestrial and aquatic).

Impact	Mitigation measures	Timing and duration	Likely efficacy of mitigation	Residual impacts anticipated
Tree loss	Tree and hollows that require replacement will be identified in accordance with the Tree and Hollow replacement guideline, Transport Biodiversity Policy 2022. Where trees and hollows will be replaced within the project boundary, prepare a Tree and Hollow Replacement Plan to address the impacts described in Table 6-2 prior to the commencement of works. Alternatively, where tree and hollow replacement cannot be accommodated locally or can only be partially accommodated, payment must be made to the TfNSW Conservation Fund prior to the commencement of works in accordance with the Tree and Hollow Replacement Guideline. [additional safeguard].	Prior to construction	Effective	None

6. Offset strategy

6.1 Quantification of impacts

Transport for NSW is committed to offsetting impacts associated with the proposal in line with its biodiversity offsetting guidelines (TfNSW, 2016) and in general accordance with the BCD principles for the use of biodiversity offsets in NSW.

Transport for NSW will provide biodiversity offsets or, where offsets are not reasonable or feasible, supplementary measures for impacts that exceed the following thresholds (refer to **Table 6.1**).

Description of activity or impact	Consider offsets or supplementary measures
Activities in accordance with TfNSW Environmental assessment procedure: Routine and Minor Works (RTA 2011)	No
Works on cleared land, plantations, exotic vegetation where there are no threatened species or habitat present	No
Works involving clearing of vegetation planted as part of a road corridor landscaping program (this includes where threatened species or species comprising listed ecological communities have been used for landscaping purposes)	No – vegetation has not been planted as part of a road corridor landscaping program. Consideration of offsets not required.
Works involving clearing of national or NSW listed critically endangered ecological communities (CEEC)	No
Works involving clearing of nationally listed threatened ecological community (TEC) or nationally listed threatened species habitat	Where clearing >one hectare of a TEC or habitat in moderate to good condition No, total area of TEC <i>Swamp Oak Floodplain</i> <i>Forest of the NEW South Wales North Coast,</i> <i>Sydney and South East Corner Bioregions</i> is 0.27 ha. Additionally, this total area would not require clearing.
Works involving clearing of NSW endanger ed or vulnerable ecological community	Where clearing >five hectares or where the ecological community is subject to an SIS
	No

Description of activity or impact	Consider offsets or supplementary measures
Works involving clearing of NSW listed threatened species habitat where the species is a species credit species as defined in the Threatened Biodiversity Data Collection (TBDC)	Where clearing >one hectare or where the species is the subject of an SIS
Works involving clearing of NSW listed threatened species habitat and the species is an ecosystem credit species as defined in the Threatened Biodiversity Data Collection (TBDC)	Where clearing >five hectares or where the species is the subject of an SIS
Type 1 or Type 2 key fish habitats (as defined by NSW Fisheries)	Where there is any net loss of habitat No

Based on the above the works do not trigger the TfNSW offset guidelines.

6.2 Biodiversity Offset Strategy/Tree and Hollow Replacement Plan

This Biodiversity Policy requires that TfNSW replace trees and hollows removed as a consequence of activities unless excluded.

Where tree removal cannot be avoided, the number of native and amenity trees and individual hollows to be removed must be counted and used to calculate the number of replacement trees and hollows (refer to **Table 6.2** below). The site features no amenity trees; therefore, they have been disregarded for the required tree replacement calculation.

The results of this calculation are to be included as a safeguard in the Review of Environment Factors (REF) or similar prepared for the project or a commitment made in the REF to calculate the requirement in accordance with this Plan.

This tree replacement is only calculated for the definite slip works as part of the proposal, where known tree removal within the footprint is required (refer to **Illustration 3.1**). If additional tree removal is required, additions to tree replacement calculations will need to be undertaken.

Table 6.2: Summary of tree and hollow replacement

Category	Number impacted	Replacement required	Number to be replaced	
			Native Trees	
Very Large Tree (DBH greater than 100 cm)	0	Plant minimum 16 trees	0	
Large tree (DBH greater than 50cm, but less than100cm)	0	Plant minimum 8 trees	0	
Medium tree (DBH greater than 20 cm, but less than 50cm)	12	Plant minimum 4 trees	48	
Small tree (DBH greater than 5cm, but less than 20cm)	11	Plant minimum 2 trees	22	
Hollows	No Hollow-bearing trees occur at the site	Provide 3 artificial hollows for every occupied hollow removed	N/A	

7. Conclusion

Based on the site assessment and consideration of the work required, the following biodiversity matters apply to the proposal:

- The study area comprises mostly disturbed land lacking native vegetation because of historical agricultural pursuits and the construction of Big River Way. Pockets of native vegetation subject to weed incursions are associated with the study area, mainly as riparian vegetation occurring alongside the South Arm River.
- The proposal would result in disturbance of approximately 0.84 ha of vegetation (including 0.27 ha of PCT 1235). No hollow-bearing trees would be removed.
- The TEC 'Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions occurs at the site. The proposal would result in the disturbance and/ or removal of approximately 0.27 ha of this TEC.
- No threatened flora species were detected at the site and habitat for such species is poor.
- No threatened fauna species were detected at the site.
- Short-term and localized minor impacts aquatic impacts due to sedimentation and erosion, minor disturbance to aquatic flora and fauna.
- There is potential for several threatened fauna species to occur based on available site habitats.
- A number of mitigation measures have been recommended to manage potential impacts relating to biodiversity.
- It was determined that the proposal is unlikely to significantly affect any species, communities or their habitat listed under the BC Act of the EPBC Act. Therefore, a Species Impact Statement is not required, nor is the proposal subject to the EPBC Act Strategic Assessment.
- The works do not trigger the TfNSW offset guidelines.

8. References

Australian Government. Department of the Environment (2013). *Matters of National Environmental Significance: Significant impact guidelines 1.1. Environment Protection and Biodiversity Conservation Act 1999.* Commonwealth of Australia, Canberra.

Bureau of Meteorology (BOM) (2021). *Daily rainfall Point Lookout*, [Online]. Available: <u>http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=136&p_display_type=dailyDat</u> <u>aFile&p_startYear=&p_c=&p_stn_num=057124</u>. BOM [30 September 2021].

Department of Agriculture, Water and the Environment (2018). *Conservation advice (incorporating listing advice) for the Coastal Swamp Oak* (Casuarina glauca) *Forest of New South Wales and South East Queensland ecological community*. Canberra: Department of the Environment and Energy.

Department of Environment and Climate Change (2007). *Threatened species assessment guidelines, The assessment of significance*. NSW Department of Environment and Climate Change.

Environment, Energy and Science (2021) Threatened Species Profiles [Accessed September 2021] <u>https://www.environment.nsw.gov.au/threatenedspeciesapp/</u>

NSW Roads and Maritime Services (2017). *Woolgoolga to Ballina Pacific Highway Upgrade, Coastal Emu Management Plan*. NSW Government.

Annexure A Database search results

Data from the BioNet Atlas website, which holds records from a number of custodians. The data are only indicative and cannot be considered a comprehensive inventory, and may contain errors and omissions. Species listed under the Sensitive Species Data Policy may have their locations denatured (^ rounded to 0.1°C; ^^ rounded to 0.01°C. Copyright the State of NSW through the Department of Planning, Industry and Environment. Search criteria : Public Report of all Valid Records of Threatened (listed on BC Act 2016) or Commonwealth listed Animals in selected area [North: -29.49 West: 153.13 East: 153.23 South: -29.59] returned a total of 648 records of 30 species. Report generated on 23/09/2021 1:46 PM

Kingdo m	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW statu s	Com m. statu s	Recor ds	Inf o
Animalia	Amphibia	Myobatrachi dae	3137	Crinia tinnula		Wallum Froglet	V,P	-	2	i
Animalia	Aves	Casuariidae	0001	Dromaius novaehollandiae		Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area	E2,P		442	1
Animalia	Aves	Apodidae	0334	Hirundapus caudacutus		White-throated Needletail	Ρ	V,C,J ,K	1	i
Animalia	Aves	Ciconiidae	0183	Ephippiorhynchus asiaticus		Black-necked Stork	E1,P	,	43	i
Animalia	Aves	Accipitridae	0226	Haliaeetus leucogaster		White-bellied Sea- Eagle	V,P		5	i
Animalia	Aves	Accipitridae	0225	Hieraaetus morphnoides		Little Eagle	V,P		1	i
Animalia	Aves	Accipitridae	0230	^^Lophoictinia isura		Square-tailed Kite	V,P,3		2	1
Animalia	Aves	Accipitridae	8739	^^Pandion cristatus		Eastern Osprey	V,P,3		5	i
Animalia	Aves	Gruidae	0177	Grus rubicunda		Brolga	V,P		20	i
Animalia	Aves	Jacanidae	0171	Irediparra gallinacea		Comb-crested Jacana	V,P		1	i
Animalia	Aves	Psittacidae	0260	Glossopsitta pusilla		Little Lorikeet	V,P		2	i
Animalia	Aves	Strigidae	0248	^^Ninox strenua		Powerful Owl	V,P,3		4	i
Animalia	Aves	Tytonidae	0252	^^Tyto longimembris		Eastern Grass Owl	V,P,3		1	i
Animalia	Aves	Tytonidae	0250	^^Tyto novaehollandiae		Masked Owl	V,P,3		2	i
Animalia	Aves	Pomatosto midae	8388	Pomatostomus temporalis temporalis		Grey-crowned Babbler (eastern subspecies)	V,P		11	i
Animalia	Aves	Neosittidae	0549	Daphoenositta chrysoptera		Varied Sittella	V,P		2	i
Animalia	Mammali a	Dasyuridae	1008	Dasyurus maculatus		Spotted-tailed Quoll	V,P	Е	3	1
Animalia	Mammali a	Dasyuridae	1017	Phascogale tapoatafa		Brush-tailed Phascogale	V,P		16	i
Animalia	Mammali a	Phascolarct idae	1162	Phascolarctos cinereus		Koala	V,P	V	3	1
Animalia	Mammali a	Petauridae	1136	Petaurus australis		Yellow-bellied Glider	V,P		1	1
Animalia	Mammali a	Petauridae	1137	Petaurus norfolcensis		Squirrel Glider	V,P		6	1
Animalia	Mammali a	Pseudochei ridae	1133	Petauroides volans		Greater Glider	Ρ	V	5	i
Animalia	Mammali a	Potoroidae	1187	Aepyprymnus rufescens		Rufous Bettong	V,P		17	i
Animalia	Mammali a	Pteropodida e	1280	Pteropus poliocephalus		Grey-headed Flying- fox	V,P	V	23	i
Animalia	Mammali a	Molossidae	1329	Micronomus norfolkensis		Eastern Coastal Free- tailed Bat	V,P		2	i
Animalia	Mammali a	Vespertilion idae	1354	Chalinolobus nigrogriseus		Hoary Wattled Bat	V,P		2	i

Animalia	Mammali a	Vespertilion idae	1357	Myotis macropus	Southern Myotis	V,P	6	i
Animalia	Mammali a	Vespertilion idae	1025	Vespadelus troughtoni	Eastern Cave Bat	V,P	2	1
Animalia	Mammali a	Miniopterida e	1346	Miniopterus australis	Little Bent-winged Bat	V,P	17	1
Animalia	Mammali a	Miniopterida e	3330	Miniopterus orianae oceanensis	Large Bent-winged Bat	V,P	1	1

Data from the BioNet Atlas website, which holds records from a number of custodians. The data are only indicative and cannot be considered a comprehensive inventory, and may contain errors and omissions. Species listed under the Sensitive Species Data Policy may have their locations denatured (^ rounded to 0.1°C; ^^ rounded to 0.01°C. Copyright the State of NSW through the Department of Planning, Industry and Environment. Search criteria : Public Report of all Valid Records of Threatened (listed on BC Act 2016) or Commonwealth listed Plants in selected area [North: -29.49 West: 153.13 East: 153.23 South: -29.59] returned a total of 295 records of 5 species. Report generated on 23/09/2021 1:47 PM

Kingdo m	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW statu s	Com m. statu s	Recor ds	Inf o
Plantae	Flora	Juncaginac eae	3363	Maundia triglochinoides			V		9	i
Plantae	Flora	Myrtaceae	8724	Angophora robur		Sandstone Rough- barked Apple	V	V	281	i
Plantae	Flora	Myrtaceae	4283	Rhodamnia rubescens		Scrub Turpentine	E4A		3	i
Plantae	Flora	Myrtaceae	4284	Rhodomyrtus psidioides		Native Guava	E4A		1	i
Plantae	Flora	Orchidacea e	4480	^Phaius australis		Southern Swamp Orchid	E1,P, 2	Е	1	i

Data from the BioNet Atlas website, which holds records from a number of custodians. The data are only indicative and cannot be considered a comprehensive inventory, and may contain errors and omissions. Species listed under the Sensitive Species Data Policy may have their locations denatured (^ rounded to 0.1°C; ^^ rounded to 0.01°C. Copyright the State of NSW through the Department of Planning, Industry and Environment. Search criteria : Public Report of all Valid Records of Threatened (listed on BC Act 2016) or Commonwealth listed Communities in selected area [North: -29.49 West: 153.13 East: 153.23 South: -29.59] returned 0 records for 11 entities. Report generated on 23/09/2021 1:48 PM

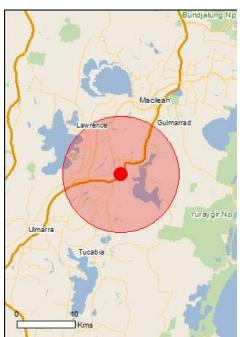
Kingdo m	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW statu s	Com m. statu s	Recor ds	Inf o
Commu nity				Coastal Cypress Pine Forest in the New South Wales North Coast Bioregion		Coastal Cypress Pine Forest in the New South Wales North Coast Bioregion	E3	-	К	1
Commu nity				Coastal Saltmarsh in the New South Wales North Coast, Sydney Basin and South East Corner Bioregions		Coastal Saltmarsh in the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	E3	V	К	1
Commu nity				Freshwater Wetlands on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions		Freshwater Wetlands on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	E3		к	1
Commu nity				Grey Box—Grey Gum Wet Sclerophyll Forest in the NSW North Coast Bioregion		Grey Box—Grey Gum Wet Sclerophyll Forest in the NSW North Coast Bioregion	E3		К	i
Commu nity				Littoral Rainforest in the New South Wales North Coast, Sydney Basin and South East Corner Bioregions		Littoral Rainforest in the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	E3	CE	К	1
Commu nity				Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions		Lowland Rainforest in the NSW North Coast and Sydney Basin Bioregions	E3	CE	К	i
Commu nity				Lowland Rainforest on Floodplain in the New South Wales North Coast Bioregion		Lowland Rainforest on Floodplain in the New South Wales North Coast Bioregion	E3	CE	К	i
Commu nity				Subtropical Coastal Floodplain Forest of the New South Wales North Coast Bioregion		Subtropical Coastal Floodplain Forest of the New South Wales North Coast Bioregion	E3		К	1

Commu nity	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	E3	E	К	1
Commu nity	Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	E3		К	1
Commu nity	Themeda grassland on seacliffs and coastal headlands in the NSW North Coast, Sydney Basin and South East Corner Bioregions	Themeda grassland on seacliffs and coastal headlands in the NSW North Coast, Sydney Basin and South East Corner Bioregions	E3		К	1

Australian Government

Department of Agriculture, Water and the Environment

EPBC Act Protected Matters Report


This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.

Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.

Report created: 24/09/21 09:11:29

Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2015

<u>Coordinates</u> Buffer: 10.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the Administrative Guidelines on Significance.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	2
Listed Threatened Species:	72
Listed Migratory Species:	40

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A permit may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	2
Commonwealth Heritage Places:	None
Listed Marine Species:	45
Whales and Other Cetaceans:	1
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	5
Regional Forest Agreements:	1
Invasive Species:	40
Nationally Important Wetlands:	3
<u>Key Ecological Features (Marine)</u>	None

Matters of National Environmental Significance

Listed Threatened Ecological Communities

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

[Resource Information]

Nama	Statua	Tune of Pressnas
Name	Status	Type of Presence
Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological	Endangered	Community likely to occur within area
community		wittin alea
Lowland Rainforest of Subtropical Australia	Critically Endangered	Community likely to occur
		within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Anthochaera phrygia		
Regent Honeyeater [82338]	Critically Endangered	Species or species habitat likely to occur within area
Botaurus poiciloptilus		
Australasian Bittern [1001]	Endangered	Species or species habitat
		likely to occur within area
<u>Calidris canutus</u>		
Red Knot, Knot [855]	Endangered	Species or species habitat
		may occur within area
Colidria formusinos		
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat
		likely to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Species or species habitat
		may occur within area
Diomedea antipodensis gibsoni		
Gibson's Albatross [82270]	Vulnerable	Species or species habitat
		may occur within area
Diomedea epomophora		
Southern Royal Albatross [89221]	Vulnerable	Species or species habitat may occur within area
		may occur within area
<u>Diomedea exulans</u>		
Wandering Albatross [89223]	Vulnerable	Species or species habitat
		may occur within area
Disconderationali		
Diomedea sanfordi	Endongorod	Oncoine or oncoine hehit-t
Northern Royal Albatross [64456]	Endangered	Species or species habitat may occur within area
		may occur within area
Erythrotriorchis radiatus		
Red Goshawk [942]	Vulnerable	Species or species habitat
		likely to occur within area

Name	Status	Type of Presence
<u>Falco hypoleucos</u> Grey Falcon [929]	Vulnerable	Species or species habitat likely to occur within area
<u>Grantiella picta</u> Painted Honeyeater [470]	Vulnerable	Species or species habitat may occur within area
<u>Hirundapus caudacutus</u> White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Lathamus discolor Swift Parrot [744]	Critically Endangered	Species or species habitat likely to occur within area
<u>Limosa lapponica baueri</u> Nunivak Bar-tailed Godwit, Western Alaskan Bar-tailed Godwit [86380]	Vulnerable	Species or species habitat may occur within area
<u>Macronectes giganteus</u> Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
<u>Numenius madagascariensis</u> Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
Pachyptila turtur subantarctica Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat likely to occur within area
Rostratula australis Australian Painted Snipe [77037]	Endangered	Species or species habitat known to occur within area
<u>Sternula nereis_nereis</u> Australian Fairy Tern [82950]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Species or species habitat may occur within area
<u>Thalassarche eremita</u> Chatham Albatross [64457]	Endangered	Species or species habitat may occur within area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black-browed Albatross [64459]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche melanophris</u> Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Species or species habitat likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Species or species habitat likely to occur within area
<u>Thinornis cucullatus_cucullatus</u> Eastern Hooded Plover, Eastern Hooded Plover [90381]	Vulnerable	Species or species habitat may occur within area

Name	Status	Type of Presence
<u>Turnix melanogaster</u> Black-breasted Button-quail [923]	Vulnerable	Species or species habitat may occur within area
Fish Epinephelus daemelii		
Black Rockcod, Black Cod, Saddled Rockcod [68449]	Vulnerable	Species or species habitat likely to occur within area
<u>Nannoperca oxleyana</u> Oxleyan Pygmy Perch [64468]	Endangered	Species or species habitat may occur within area
Frogs		
<u>Litoria aurea</u> Green and Golden Bell Frog [1870]	Vulnerable	Species or species habitat may occur within area
<u>Litoria olongburensis</u> Wallum Sedge Frog [1821]	Vulnerable	Species or species habitat may occur within area
<u>Mixophyes iteratus</u> Giant Barred Frog, Southern Barred Frog [1944]	Endangered	Species or species habitat may occur within area
Insects		
Argynnis hyperbius_inconstans Australian Fritillary [88056]	Critically Endangered	Species or species habitat may occur within area
Mammals		
<u>Chalinolobus dwyeri</u> Large-eared Pied Bat, Large Pied Bat [183]	Vulnerable	Species or species habitat likely to occur within area
Dasyurus maculatus maculatus (SE mainland populati Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	<u>on)</u> Endangered	Species or species habitat known to occur within area
Petauroides volans Greater Glider [254]	Vulnerable	Species or species habitat known to occur within area
Petrogale penicillata Brush-tailed Rock-wallaby [225]	Vulnerable	Species or species habitat likely to occur within area
Phascolarctos cinereus (combined populations of Qld, Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104]	<u>NSW and the ACT)</u> Vulnerable	Species or species habitat known to occur within area
Potorous tridactylus tridactylus Long-nosed Potoroo (SE Mainland) [66645]	Vulnerable	Species or species habitat likely to occur within area
<u>Pseudomys novaehollandiae</u> New Holland Mouse, Pookila [96]	Vulnerable	Species or species habitat likely to occur within area
Pteropus poliocephalus Grey-headed Flying-fox [186]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
<u>Xeromys myoides</u> Water Mouse, False Water Rat, Yirrkoo [66]	Vulnerable	Species or species habitat may occur within area
Plants		
Acronychia littoralis Scented Acronychia [8582]	Endangered	Species or species habitat known to occur within area

Name	Status	Type of Presence
Angophora robur Sandstone Rough-barked Apple [56088]	Vulnerable	Species or species habitat known to occur within area
<u>Arthraxon hispidus</u> Hairy-joint Grass [9338]	Vulnerable	Species or species habitat likely to occur within area
<u>Cryptocarya foetida</u> Stinking Cryptocarya, Stinking Laurel [11976]	Vulnerable	Species or species habitat may occur within area
<u>Cryptostylis hunteriana</u> Leafless Tongue-orchid [19533]	Vulnerable	Species or species habitat likely to occur within area
<u>Cynanchum elegans</u> White-flowered Wax Plant [12533]	Endangered	Species or species habitat may occur within area
Dichanthium setosum bluegrass [14159]	Vulnerable	Species or species habitat may occur within area
<u>Eucalyptus glaucina</u> Slaty Red Gum [5670]	Vulnerable	Species or species habitat known to occur within area
<u>Eucalyptus tetrapleura</u> Square-fruited Ironbark [7490]	Vulnerable	Species or species habitat known to occur within area
<u>Grevillea quadricauda</u> [64651]	Vulnerable	Species or species habitat known to occur within area
<u>Hibbertia marginata</u> [21970]	Vulnerable	Species or species habitat likely to occur within area
<u>Macadamia integrifolia</u> Macadamia Nut, Queensland Nut Tree, Smooth- shelled Macadamia, Bush Nut, Nut Oak [7326]	Vulnerable	Species or species habitat may occur within area
<u>Macadamia tetraphylla</u> Rough-shelled Bush Nut, Macadamia Nut, Rough- shelled Macadamia, Rough-leaved Queensland Nut [6581]	Vulnerable	Species or species habitat likely to occur within area
Marsdenia longiloba Clear Milkvine [2794]	Vulnerable	Species or species habitat known to occur within area
<u>Olax angulata</u> Minnie Waters Olax [10666]	Vulnerable	Species or species habitat may occur within area
Persicaria elatior Knotweed, Tall Knotweed [5831]	Vulnerable	Species or species habitat known to occur within area
<u>Phaius australis</u> Lesser Swamp-orchid [5872]	Endangered	Species or species habitat likely to occur within area
<u>Rhodamnia rubescens</u> Scrub Turpentine, Brown Malletwood [15763]	Critically Endangered	Species or species habitat likely to occur within area
<u>Rhodomyrtus psidioides</u> Native Guava [19162]	Critically Endangered	Species or species habitat likely to occur within area

Name	Status	Type of Presence
<u>Samadera sp. Moonee Creek (J.King s.n. Nov. 1949)</u> [86885]	Endangered	Species or species habitat known to occur within area
<u>Thesium australe</u> Austral Toadflax, Toadflax [15202]	Vulnerable	Species or species habitat likely to occur within area
<u>Tylophora woollsii</u> [20503]	Endangered	Species or species habitat may occur within area
Reptiles		
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat known to occur within area
Coeranoscincus reticulatus Three-toed Snake-tooth Skink [59628]	Vulnerable	Species or species habitat likely to occur within area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat may occur within area
<u>Eretmochelys imbricata</u> Hawksbill Turtle [1766]	Vulnerable	Species or species habitat known to occur within area
<u>Natator depressus</u> Flatback Turtle [59257]	Vulnerable	Species or species habitat may occur within area
Listed Migratory Species		[Resource Information]
* Species is listed under a different scientific name on		l Species list.
	the EPBC Act - Threatenec Threatened	
* Species is listed under a different scientific name on Name Nigratory Marine Birds Apus pacificus		Species list. Type of Presence
* Species is listed under a different scientific name on Name Migratory Marine Birds <u>Apus pacificus</u> Fork-tailed Swift [678]		l Species list.
* Species is listed under a different scientific name on Name Nigratory Marine Birds Apus pacificus		Species list. Type of Presence Species or species habitat
 * Species is listed under a different scientific name on Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Ardenna grisea Sooty Shearwater [82651] Calonectris leucomelas Streaked Shearwater [1077] 		Species list. Type of Presence Species or species habitat likely to occur within area Species or species habitat
* Species is listed under a different scientific name on Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Ardenna grisea Sooty Shearwater [82651] Calonectris leucomelas		Species list. Type of Presence Species or species habitat likely to occur within area Species or species habitat likely to occur within area Species or species habitat
 * Species is listed under a different scientific name on Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Ardenna grisea Sooty Shearwater [82651] Calonectris leucomelas Streaked Shearwater [1077] Diomedea antipodensis Antipodean Albatross [64458] Diomedea epomophora Southern Royal Albatross [89221] 	Threatened	Species list. Type of Presence Species or species habitat likely to occur within area Species or species habitat likely to occur within area Species or species habitat may occur within area Species or species habitat
 * Species is listed under a different scientific name on Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Ardenna grisea Sooty Shearwater [82651] Calonectris leucomelas Streaked Shearwater [1077] Diomedea antipodensis Antipodean Albatross [64458] Diomedea epomophora 	Threatened	Species list.Type of PresenceSpecies or species habitatlikely to occur within areaSpecies or species habitatlikely to occur within areaSpecies or species habitatmay occur within areaSpecies or species habitatSpecies or species habitatSpecies or species habitat
 * Species is listed under a different scientific name on Name Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Ardenna grisea Sooty Shearwater [82651] Calonectris leucomelas Streaked Shearwater [1077] Diomedea antipodensis Antipodean Albatross [64458] Diomedea epomophora Southern Royal Albatross [89221] Diomedea exulans 	Threatened	 Species list. Type of Presence Species or species habitat likely to occur within area Species or species habitat likely to occur within area Species or species habitat may occur within area Species or species habitat Species or species habitat Species or species habitat

Name	Threatened	Type of Presence
		area
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Species or species habitat may occur within area
<u>Thalassarche eremita</u> Chatham Albatross [64457]	Endangered	Species or species habitat may occur within area
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black-browed Albatross [64459]	Vulnerable	Species or species habitat may occur within area
Thalassarche melanophris Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Species or species habitat likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Species or species habitat likely to occur within area
Migratory Marine Species		
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat known to occur within area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat may occur within area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Species or species habitat known to occur within area
<u>Manta alfredi</u> Reef Manta Ray, Coastal Manta Ray, Inshore Manta Ray, Prince Alfred's Ray, Resident Manta Ray [84994]		Species or species habitat may occur within area
<u>Manta birostris</u> Giant Manta Ray, Chevron Manta Ray, Pacific Manta Ray, Pelagic Manta Ray, Oceanic Manta Ray [84995]		Species or species habitat may occur within area
<u>Natator depressus</u> Flatback Turtle [59257]	Vulnerable	Species or species habitat may occur within area
<u>Sousa chinensis</u> Indo-Pacific Humpback Dolphin [50]		Species or species habitat likely to occur within area
Migratory Terrestrial Species		
<u>Cuculus optatus</u> Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat may occur within area
<u>Hirundapus caudacutus</u> White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Monarcha melanopsis Black-faced Monarch [609]		Species or species

Black-faced Monarch [609]

Species or species

Name	Threatened	Type of Presence
		habitat known to occur within area
Monarcha trivirgatus		
Spectacled Monarch [610]		Species or species habitat known to occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat may occur within area
Myiagra cyanoleuca		On a size on an a size habitat
Satin Flycatcher [612]		Species or species habitat known to occur within area
Rhipidura rufifrons		On a sing an an a sing habitat
Rufous Fantail [592]		Species or species habitat known to occur within area
Migratory Wetlands Species		
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat
		known to occur within area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat
		known to occur within area
Calidris canutus	Fuder neved	Onacian an anacian babitat
Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area
Calidris ferruginea		
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat likely to occur within area
Calidris melanotos		
Pectoral Sandpiper [858]		Species or species habitat may occur within area
Gallinago hardwickii		
Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area
Limosa lapponica		
Bar-tailed Godwit [844]		Species or species habitat known to occur within area
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
Pandion haliaetus		
Osprey [952]		Breeding known to occur within area
<u>Tringa nebularia</u> Common Greenshank, Greenshank [832]		Species or species habitat
,		likely to occur within area

\cap th or Mott ᆔᆔ v th - 1 -1

Other Matters Protected by the EPBC Act		
Commonwealth Land		[Resource Information]
The Commonwealth area listed below may indicate the the unreliability of the data source, all proposals should Commonwealth area, before making a definitive decision department for further information.	be checked as to whether	it impacts on a
Name Commonwealth Land - Australian Telecommunications Commonwealth Land - Commonwealth Trading Bank o	-	
- -		[Decourse Information]
Listed Marine Species * Species is listed under a different scientific name on t	he EPBC Act - Threatened	[Resource Information] Species list.
Name	Threatened	Type of Presence
Birds		
<u>Actitis hypoleucos</u> Common Sandpiper [59309]		Species or species habitat known to occur within area
<u>Anseranas semipalmata</u> Magpie Goose [978]		Species or species habitat may occur within area
<u>Apus pacificus</u> Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Ardea ibis Cattle Egret [59542]		Breeding likely to occur within area
<u>Calidris acuminata</u> Sharp-tailed Sandpiper [874]		Species or species habitat known to occur within area
<u>Calidris canutus</u> Red Knot, Knot [855]	Endangered	Species or species habitat may occur within area
<u>Calidris ferruginea</u> Curlew Sandpiper [856]	Critically Endangered	Species or species habitat likely to occur within area
<u>Calidris melanotos</u> Pectoral Sandpiper [858]		Species or species habitat may occur within area
<u>Calonectris leucomelas</u> Streaked Shearwater [1077]		Species or species habitat may occur within area
<u>Diomedea antipodensis</u> Antipodean Albatross [64458]	Vulnerable	Species or species habitat may occur within area
<u>Diomedea epomophora</u> Southern Royal Albatross [89221]	Vulnerable	Species or species habitat may occur within area
<u>Diomedea exulans</u> Wandering Albatross [89223]	Vulnerable	Species or species habitat may occur within area
<u>Diomedea gibsoni</u> Gibson's Albatross [64466]	Vulnerable*	Species or species habitat may occur within area
Diomedea sanfordi		

Endangered

Northern Royal Albatross [64456]

Species or species habitat may occur within area

Name	Threatened	Type of Presence
Gallinago hardwickii		
Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area
Haliaeetus leucogaster		-
White-bellied Sea-Eagle [943]		Species or species habitat known to occur within area
Hirundapus caudacutus) (On a size on an asian habitat
White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
<u>Lathamus discolor</u> Swift Parrot [744]	Critically Endangered	Species or species habitat likely to occur within area
Limosa lapponica		
Bar-tailed Godwit [844]		Species or species habitat known to occur within area
Macronectes giganteus		.
Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli		
Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
<u>Merops ornatus</u>		
Rainbow Bee-eater [670]		Species or species habitat may occur within area
<u>Monarcha melanopsis</u>		
Black-faced Monarch [609]		Species or species habitat known to occur within area
<u>Monarcha trivirgatus</u>		
Spectacled Monarch [610]		Species or species habitat known to occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat may occur within area
<u>Myiagra cyanoleuca</u>		
Satin Flycatcher [612]		Species or species habitat known to occur within area
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
Pachyptila turtur		
Fairy Prion [1066]		Species or species habitat likely to occur within area
Pandion haliaetus		
Osprey [952] <u>Puffinus griseus</u>		Breeding known to occur within area
Sooty Shearwater [1024]		Species or species habitat
		likely to occur within area
<u>Rhipidura rufifrons</u> Rufous Fantail [592]		Species or species habitat
		known to occur within area
Rostratula benghalensis (sensu lato) Painted Snipe [889]	Endangered*	Species or species habitat
	Lindingered	known to occur within area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Species or species
Ony Albalioss [09224]	Lindingered	Species or species

Name	Threatened	Type of Presence
		habitat may occur within
Thalassarche eremita		area
Chatham Albatross [64457]	Endangered	Species or species habitat may occur within area
Thalassarche impavida		
Campbell Albatross, Campbell Black-browed Albatross [64459]	Vulnerable	Species or species habitat may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
Thalassarche salvini	Vulnerable	Spacios or spacios habitat
Salvin's Albatross [64463]	vumerable	Species or species habitat likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Species or species habitat
	Valliorable	likely to occur within area
Thinornis rubricollis rubricollis		
Hooded Plover (eastern) [66726]	Vulnerable*	Species or species habitat may occur within area
<u>Tringa nebularia</u>		
Common Greenshank, Greenshank [832]		Species or species habitat likely to occur within area
Reptiles		
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Species or species habitat
	Endangered	known to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Species or species habitat
	Vullerable	known to occur within area
<u>Dermochelys coriacea</u> Leatherback Turtle, Leathery Turtle, Luth [1768]	Endongorod	Species or species habitat
Learnerback Turrie, Learnery Turrie, Lurr [1700]	Endangered	may occur within area
<u>Eretmochelys imbricata</u> Hawksbill Turtle [1766]	Vulnerable	Spaciae or aposice hebitat
	vuillerable	Species or species habitat known to occur within area
Natator depressus	Videereble	
Flatback Turtle [59257]	Vulnerable	Species or species habitat may occur within area
Whales and other Cetaceans		[Resource Information]
Name	Status	Type of Presence
Mammals		
<u>Sousa chinensis</u> Indo-Pacific Humpback Dolphin [50]		Species or species habitat
		likely to occur within area

likely to occur within area

Extra Information

State and Territory Reserves	[Resource Information]
Name	State
Everlasting Swamp	NSW
Everlasting Swamp	NSW
Munro Island	NSW
UNE Special Management Zone No1	NSW
Woodford Island	NSW
Regional Forest Agreements	[Resource Information]
Note that all areas with completed RFAs have been included.	
Name	State
North East NSW RFA	New South Wales
Invasive Species	[Resource Information]

Invasive Species

Mammals Bos taurus

Domestic Cattle [16]

Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.

Name	Status	Type of Presence
Birds		
Acridotheres tristis		
Common Myna, Indian Myna [387]		Species or species habitat likely to occur within area
Anas platyrhynchos		
Mallard [974]		Species or species habitat likely to occur within area
Carduelis carduelis		
European Goldfinch [403]		Species or species habitat likely to occur within area
Columba livia		
Rock Pigeon, Rock Dove, Domestic Pigeon [803]		Species or species habitat likely to occur within area
Lonchura punctulata		
Nutmeg Mannikin [399]		Species or species habitat likely to occur within area
Passer domesticus		
House Sparrow [405]		Species or species habitat likely to occur within area
Pycnonotus jocosus		
Red-whiskered Bulbul [631]		Species or species habitat likely to occur within area
Streptopelia chinensis		
Spotted Turtle-Dove [780]		Species or species habitat likely to occur within area
Sturnus vulgaris		
Common Starling [389]		Species or species habitat likely to occur within area
Turdus merula		
Common Blackbird, Eurasian Blackbird [596]		Species or species habitat likely to occur within area
Frogs		
Rhinella marina		
Cane Toad [83218]		Species or species habitat known to occur within area

Species or species

Name	Status	Type of Presence
		habitat likely to occur within area
Canis lupus familiaris Domestic Dog [82654]		Species or species habitat likely to occur within area
Equus caballus		
Horse [5]		Species or species habitat likely to occur within area
Felis catus Cat, House Cat, Domestic Cat [19]		Species or species habitat likely to occur within area
Feral deer Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Lepus capensis Brown Hare [127]		Species or species habitat likely to occur within area
Mus musculus		
House Mouse [120]		Species or species habitat likely to occur within area
Rattus norvegicus		
Brown Rat, Norway Rat [83]		Species or species habitat likely to occur within area
Rattus rattus		
Black Rat, Ship Rat [84]		Species or species habitat likely to occur within area
Sus scrofa		-
Pig [6]		Species or species habitat likely to occur within area
Vulpes vulpes		
Red Fox, Fox [18]		Species or species habitat likely to occur within area
Plants		
Alternanthera philoxeroides Alligator Weed [11620]		Species or species habitat likely to occur within area
Anredera cordifolia		
Madeira Vine, Jalap, Lamb's-tail, Mignonette Vine, Anredera, Gulf Madeiravine, Heartleaf Madeiravine, Potato Vine [2643]		Species or species habitat likely to occur within area
Asparagus aethiopicus Asparagus Fern, Ground Asparagus, Basket Fern,		Species or species habitat
Sprengi's Fern, Bushy Asparagus, Emerald Asparagus [62425]	3	likely to occur within area
Asparagus plumosus Climbing Asparagus-fern [48993]		Species or species habitat
		likely to occur within area
Cabomba caroliniana Cabomba, Fanwort, Carolina Watershield, Fish Grass, Washington Grass, Watershield, Carolina Fanwort, Common Cabomba [5171]		Species or species habitat likely to occur within area
Chrysanthemoides monilifera		Proving or proving habitat
Bitou Bush, Boneseed [18983]		Species or species habitat likely to occur within area
Chrysanthemoides monilifera subsp. rotundata		Chaption of analysis hat the
Bitou Bush [16332]		Species or species habitat likely to occur within area
Dolichandra unguis-cati		

Cat's Claw Vine, Yellow Trumpet Vine, Cat's Claw

Species or species

Name	Status	Type of Presence
Creeper, Funnel Creeper [85119]		habitat likely to occur within area
Eichhornia crassipes		
Water Hyacinth, Water Orchid, Nile Lily [13466]		Species or species habitat likely to occur within area
Genista sp. X Genista monspessulana		
Broom [67538]		Species or species habitat may occur within area
Lantana camara		
Lantana, Common Lantana, Kamara Lantana, La leaf Lantana, Pink Flowered Lantana, Red Flower Lantana, Red-Flowered Sage, White Sage, Wild S [10892] Opuntia spp.	red	Species or species habitat likely to occur within area
Prickly Pears [82753]		Species or species habitat likely to occur within area
Pinus radiata		
Radiata Pine Monterey Pine, Insignis Pine, Wildir Pine [20780]	ng	Species or species habitat may occur within area
Rubus fruticosus aggregate		
Blackberry, European Blackberry [68406]		Species or species habitat likely to occur within area
Salix spp. except S.babylonica, S.x calodendron	& S.x reichardtii	
Willows except Weeping Willow, Pussy Willow an Sterile Pussy Willow [68497]	nd	Species or species habitat likely to occur within area
Salvinia molesta		
Salvinia, Giant Salvinia, Aquarium Watermoss, Ka Weed [13665]	ariba	Species or species habitat likely to occur within area
Senecio madagascariensis		
Fireweed, Madagascar Ragwort, Madagascar Groundsel [2624]		Species or species habitat likely to occur within area
Reptiles		
Hemidactylus frenatus Asian House Gecko [1708]		Species or species habitat likely to occur within area
Nationally Important Wetlands		[Resource Information]
Name		State

Clarence River Estuary Everlasting Swamp Upper Coldstream State NSW NSW NSW

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and

- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites

- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-29.55718 153.1502

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government - Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program -Australian Institute of Marine Science -Reef Life Survey Australia -American Museum of Natural History -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania -Tasmanian Museum and Art Gallery, Hobart, Tasmania -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

Annexure B Habitat assessment table

Table B1 Likelihood of occurrence criteria

Likelihood	Criteria
Recorded	The species was observed in the study area during the current survey
High	It is highly likely that a species inhabits the study area and is dependent on identified suitable habitat (i.e. for breeding or important life cycle periods such as winter flowering resources), has been recorded recently in the locality (10 km) and is known or likely to maintain resident populations in the study area. Also includes species known or likely to visit the study area during regular seasonal movements or migration.
Moderate	Potential habitat is present in the study area. Species unlikely to maintain sedentary populations; however, may seasonally use resources within the study area opportunistically or during migration. The species is unlikely to be dependent (i.e., for breeding or important life cycle periods such as winter flowering resources) on habitat within the study area, or habitat is in a modified or degraded state. Includes cryptic flowering flora species that were not seasonally targeted by surveys and that have not been recorded.
Low	It is unlikely that the species inhabits the study area and has not been recorded recently in the locality (10 km). It may be an occasional visitor, but habitat similar to the study area is widely distributed in the local area, meaning that the species is not dependent (i.e., for breeding or important life cycle periods such as winter flowering resources) on available habitat. Specific habitat is not present in the study area or the species are a non-cryptic perennial flora species that were specifically targeted by surveys and not recorded.
None	Suitable habitat is absent from the study area. Based on a field assessment of the habitat constraints or microhabitats on the study area , the habitat is identified as being substantially degraded such that the species is unlikely to utilise the study area (or specific vegetation zones), or an expert report that is prepared that states the species is unlikely to be present on the study area or specific vegetation zones.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Acronychia littoralis	Scented Acronychia	Е	Е	Littoral rainforest on sand.	Nil (PMST)	Low; not recorded in site survey.
Angophora robur	Sandstone Rough- barked Apple	-	V	Dry open forest in sandy or skeletal soils on sandstone, or occasionally granite, with frequent outcrops of rock.	281 (BioNet)	Low; not recorded in site survey.
Arthraxon hispidus	Hairy Jointgrass	-	V	Moist shady places in or on the edges of rainforest and wet eucalypt forest, often near creeks or swamps.	Nil (PMST)	Low; not recorded in site survey.
Cryptocarya foetida	Stinking Cryptocary a	V	V	Littoral rainforest in sandy soils, mature trees known on basalt soils.	Nil (PMST)	Low; not recorded in site survey.
Cryptostylis hunteriana	Leafless Tongue- orchid	V	V	Does not have well defined habitat and is known from a range of communities, including swampheath and woodland.	Nil (PMST)	Low; not recorded in site survey.
Cynanchum elegans	White- flowered Wax Plant	-	Е	Dry, littoral or subtropical rainforest, and occasionally in scrub or woodland.	Nil (PMST)	Low; not recorded in site survey.

Table B2 Habitat assessment – threatened flora

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Dichanthium setosum	Bluegrass	-	V	In NSW, occurs on the New England Tablelands, North West Slopes and Plains and the Central Western Slopes of NSW, in moderately disturbed areas such as cleared woodland, grassy roadside remnants and highly disturbed pasture.	Nil (PMST)	Low; not recorded in site survey.
Eucalyptus glaucina	Slaty Red Gum	-	V	Found only on the north coast of NSW and in separate districts: near Casino where it can be locally common, and farther south, from Taree to Broke, west of Maitland. Grows in grassy woodland and dry eucalypt forest. Grows on deep, moderately fertile and well-watered soils.	Nil (PMST)	Low; not recorded in site survey.
Eucalyptus tetrapleura	Square- fruited Ironbark	V	V	Dry or moist eucalypt forest on moderately fertile soil, often in low areas with poor drainage.	Nil (PMST)	Low; not recorded in site survey.
Grevillea quadricauda	Four-tailed Grevillea	V	V	Gravelly loam in understorey of dry eucalypt forest near creeks.	Nil (PMST)	Low; not recorded in site survey.
Hibbertia hexandra	Tree Guinea Flower	E	-	Heath, open forest or rainforest.	Nil (PMST)	Low; not recorded in site survey.
Macadamia tetraphylla	Rough- shelled Bush Nut	-	V	Subtropical rainforest usually near the coast.	Nil (PMST)	Low; not recorded in site survey.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Marsdenia Iongiloba	Slender Milkvine	-	V	Subtropical and warm temperate rainforest, lowland moist eucalypt forest adjoining rainforest and, sometimes, in areas with rock outcrops.	Nil (PMST)	Low; not recorded in site survey.
Maundia triglochinoides	-	V	-	Swamps, lagoons, dams, channels, creeks or shallow freshwater 30 - 60 cm deep on heavy clay, low nutrients.	9 (BioNet)	Low; not recorded in site survey.
Olax angulata	Square- stemmed Olax	V	V	Low-lying coastal heaths and heathy woodlands on sandy soils near swamps, often in association with Wallum Banksia (Banksia aemula).	Nil (PMST)	Low; not recorded in site survey.
Persicaria elatior	Tall Knot- weed	-	V	Damp or swampy situations and sometimes with Melaleuca linariifolia.	Nil (PMST)	Low; not recorded in site survey.
Phaius australis	Southern Swamp Orchid	-	E	Swampy grassland or swampy forest including rainforest, eucalypt or paperbark forest mostly in coastal areas.	1 (BioNet)	Low; not recorded in site survey.
Rhodamnia rubescens	Scrub Turpentine	CE	-	Subtropical rainforests, warm temperate rainforests, littoral rainforests, and wet sclerophyll forests. It may also occur as a pioneer in adjacent areas of dry sclerophyll and grassy woodland associations.	3 (BioNet)	Low; not recorded in site survey.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Rhodomyrtus psidioides	Native Guava	E	-	Rainforest and its margins with sclerophyll vegetation, often near creeks and drainage lines. Pioneer species in disturbed environments such as regrowth and rainforest margins.	1 (BioNet)	Low; not recorded in site survey.
Samadera sp. Moonee Creek (J.King s.n. 1949)(formerly Quassia sp. Mooney Creek)	Moonee Quassia	Е	E	Shrubby layer below tall moist and dry eucalypt forest, including forest edges, generally at low altitudes.	Nil (PMST)	Low; not recorded in site survey.
Thesium australe	Austral Toadflax	-	V	Grassland or grassy eucalypt woodland where Themeda australis is predominant, on grassy headlands.	Nil (PMST)	Low; not recorded in site survey.
Tylophora woollsii		-	E	Moist eucalypt forest, moist sites in dry eucalypt forest and rainforest margins.	Nil (PMST)	Low; not recorded in site survey.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Amphibians						
Crinia tinnula	Wallum Froglet	V	-	Acid paperbark and sedge swamps known as 'wallum', this is a banksia-dominated lowland heath ecosystem characterised by acidic waterbodies.	2 (BioNet)	None – Suitable habitat is absent from study area.
Litoria aurea	Green and Golden Bell Frog	E	V	Amongst vegetation in and around permanent swamps, lagoons, farm dams and on flood-prone river flats, particularly where there are bullrushes or spikerushes.	Nil (PMST)	None – Suitable habitat is absent from study area.
Litoria olongburensis	Olongburra Frog	V	V	Paperbark swamps and sedge swamps of the coastal 'wallum' country amongst sedges and rushes.	Nil (PMST)	None – Suitable habitat is absent from study area.
Mixophyes iteratus	Giant Barred Frog	E	E	Deep, damp leaf litter in rainforests, moist eucalypt forest and near dry eucalypt forest.	Nil (PMST)	None – Suitable habitat is absent from study area.
Avifauna						
Anthochaera phrygia	Regent Honeyeate r	CE	CE	Dry open forest and woodland with an abundance of nectar-producing eucalypts, particularly box-ironbark woodland, swamp mahogany forests, and riverine sheoak woodlands.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.

Table B3 Habitat assessment – threatened fauna

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Botaurus poiciloptilus	Australasia n Bittern	E	E	Permanent freshwater wetlands with tall dense vegetation, particularly bullrushes and spikerushes.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Calidris ferruginea	Curlew Sandpiper	E	CE	Tidal mudflats, sandy ocean shores and occasionally inland freshwater or salt- lakes.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Daphoenositta chrysoptera	Varied Sittella	V	-	Inhabits eucalypt forests and woodlands, especially rough-barked species and mature smooth-barked gums with dead branches, mallee and Acacia woodland.	2 (BioNet)	Low – marginal foraging habitat occurs at the site.
Dromaius novaehollandia e	Emu population in the NSW North Coast Bioregion and Port Stephens LGA	Е	-	Open forest, woodland, coastal heath, coastal dunes, wetland areas, tea tree plantations and open farmland, and occasionally in littoral rainforest.	442 (BioNet)	Moderate – Know to occur in locality.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Ephippiorhynch us asiaticus	Black- necked Stork	Е	-	Swamps, mangroves, mudflats, dry floodplains.	43 (BioNet)	Moderate – Local records adjacent study area.
Erythrotriorchis radiatus	Red Goshawk	CE	V	Open woodland and forest, preferring a mosaic of vegetation types, a large population of birds as a source of food, and permanent water. Typically found in riparian habitats along or near watercourses or wetlands. In NSW, preferred habitats include mixed subtropical rainforest, Melaleuca swamp forest and riparian Eucalyptus forest of coastal rivers. Population in NSW is naturally small (probably only one pair), and lies at extreme of the natural range of the species in Australia.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Falco hypoleucos	Grey Falcon	E	V	The Grey Falcon is sparsely distributed in NSW, chiefly throughout the Murray- Darling Basin, with the occasional vagrant east of the Great Dividing Range.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Glossopsitta pusilla	Little Lorikeet	V	-	Forages in open Eucalyptus forest and woodland; also feeds on Angophora, Melaleuca and other tree species. Riparian habitats are particularly used, due to higher soil fertility and hence greater productivity.	2 (BioNet)	Low –Marginal foraging habitat occurs at the site.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Grantiella picta	Painted Honeyeate r	V	V	Boree, Brigalow and Box-Gum Woodlands and Box-Ironbark Forests. Specialist feeder on the fruits of mistletoes growing on woodland eucalypts and acacias. Prefers mistletoes of the genus Amyema.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Grus rubicunda	Brolga	V	-	Shallow swamps, floodplains, grasslands and pastoral lands, usually in pairs or parties.	20 (BioNet)	Moderate – Local records adjacent study area.
Haliaeetus leucogaster	White- bellied Sea-eagle	V	-	Coastal habitats and around terrestrial wetlands characterised by the presence of large areas of open water (larger rivers, swamps, lakes, ocean). Habitats may include freshwater swamps, lakes, reservoirs, billabongs, saltmarsh and sewage ponds in addition to bays and inlets, beaches, reefs, lagoons, estuaries and mangroves.	5 (BioNet)	Low – could fly over site but unlikely to utilise the site.
Hieraaetus morphnoides	Little Eagle	V	-	Open eucalypt forest, woodland or open woodland. Sheoak or acacia woodlands and riparian woodlands of interior NSW are also used.	1 (BioNet)	Low – could fly over site but unlikely to utilise the site.
Hirundapus caudacutus	White- throated Needletail	-	V	Most often recorded aerial foraging above wooded areas, including open forest and rainforest, and may also fly between trees or in clearings, below the canopy. Breeding does not occur in Australia.	1 (BioNet)	Low – could fly over site but unlikely to utilise the site.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
lrediparra gallinacea	Comb- crested Jacana	V	-	Among vegetation floating on slow-moving rivers and permanent lagoons, swamps, lakes and dams.	1 (BioNet)	None – Suitable habitat is absent from the study area.
Lathamus discolor	Swift Parrot	Ε	CE	On mainland Australia foraging occurs where eucalypts are flowering profusely or where abundant lerp infestations occur. Favoured feed trees include winter flowering species such as Swamp Mahogany Eucalyptus robusta, Spotted Gum Corymbia maculata, Red Bloodwood C. gummifera, Forest Red Gum E. tereticornis, Mugga Ironbark E. sideroxylon, and White Box E. albens. Commonly used lerp infested trees include Inland Grey Box E. microcarpa, Grey Box E. moluccana, Blackbutt E. pilularis and Yellow Box E. melliodora.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Lophoictinia isura	Square- tailed Kite	V	-	Dry woodland and open forest, particularly along major rivers and belts of trees in urban or semi-urban areas. Home ranges can extend over at least 100 km2.	2 (BioNet)	Low – could fly over site but unlikely to utilise the site.
Ninox strenua	Powerful Owl	V	-	Woodland and open forest to tall moist forest and rainforest. Requires large tracts of forest or woodland habitat but may also occur in fragmented landscapes.	4 (BioNet)	Low – marginal foraging habitat occurs at the site.
Numenius madagascarien sis	Eastern Curlew	-	CE	Estuaries, bays, harbours, inlets and coastal lagoons, intertidal mudflats and sometimes saltmarsh of sheltered coasts.	Nil (PMST)	None – Suitable habitat is absent from the study area.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Pandion cristatus	Eastern Osprey	V	-	Littoral and coastal habitats and terrestrial wetlands of tropical and temperate Australia and offshore islands. Typically occur in coastal areas but occasionally travel inland along major rivers. Wetland habitats include inshore waters, reefs, bays, coastal cliffs, beaches, estuaries, mangrove swamps, broad rivers, reservoirs and large lakes and waterholes.	5 (BioNet)	Low – could fly over site but unlikely to utilise the site.
Pomatostomus temporalis	Grey- crowned Babbler	V	-	Open woodlands dominated by mature eucalypts, with regenerating trees, tall shrubs, and an intact ground cover of grass and forbs.	11 (BioNet)	Low – marginal foraging habitat occurs at the site.
Rostratula australis	Australian Painted Snipe	E	E	Well-vegetated shallows and margins of wetlands, dams, sewage ponds, wet pastures, marshy areas, irrigation systems, lignum, tea-tree scrub, and open timber.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Sternula nereis	Australian Fairy Tern	-	V	Nests on sheltered sandy beaches, spits and banks above the high tide line and below vegetation. Feeds in Coastal waters.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Thinornis cucullatus	Eastern Hooded Dotterel	CE	V	Open flat sandy beaches and sand dunes. Occasionally tidal bays and estuaries, rock platforms and rocky or sand-covered reefs	Nil (PMST)	None – Suitable habitat is absent from the study area.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Turnix melanogaster	Black- breasted Button- quail	CE	V	Drier rainforests and vine scrubs, often in association with Hoop Pine and a deep moist leaf litter layer. During drought it may move to adjacent wetter rainforests.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Tyto Iongimembris	Eastern Grass Owl	V	-	Areas of tall grass, including tussocks in swampy areas, grassy plains, swampy heath, cane grass, sedges on flood plains.	1 (BioNet)	None – Suitable habitat is absent from the study area.
Tyto novaehollandia e	Masked Owl	V	-	Dry eucalypt forest and woodlands.	2 (BioNet)	Low – marginal foraging habitat occurs at the site.
Insecta						
Argynnis hyperbius	Australian Fritillary	E	CE	Open swampy coastal habitat where the caterpillar's food plant, Arrowhead Violet (Viola betonicifolia) occurs.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Mammals						
Aepyprymnus rufescens	Rufous Bettong	V	-	Tall moist eucalypt forest to open woodland with tussock grass understorey.	17 (BioNet)	Low – marginal foraging habitat occurs at the site.
Chalinolobus dwyeri	Large- eared Pied Bat	V	V	Near cave entrances and crevices in cliffs.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Chalinolobus nigrogriseus	Hoary Wattled Bat	V	-	Dry open eucalypt forest dominated by spotted gum, boxes and ironbarks. Also healthy coastal forests where Red Bloodwood and Scribbly Gum are common. Naturally sparse understorey is favourable.	2 (BioNet)	Low – marginal foraging habitat occurs at the site.
Dasyurus maculatus	Spotted- tailed Quoll	V	Е	Dry and moist eucalypt forests and rainforests, fallen hollow logs, large rocky outcrops.	3 (BioNet)	Low – marginal foraging habitat occurs at the site.
Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	V	-	Occurs in dry sclerophyll forest and woodland east of the Great Dividing Range. Roosts in tree hollows.	2 (BioNet)	Low – marginal foraging habitat occurs at the site.
Miniopterus australis	Little Bent- winged Bat	V	-	Moist eucalypt forest, rainforest and dense coastal scrub.	17 (BioNet)	Low – marginal foraging habitat occurs at the site.
Miniopterus orianae oceanensis	Large Bent- winged Bat	V	-	Forest or woodland, roost in caves, old mines and stormwater channels.	1 (BioNet)	Low – marginal foraging habitat occurs at the site.
Myotis macropus	Southern Myotis	V	-	Bodies of water, rainforest streams, large lakes, reservoirs.	6 (BioNet)	Low – marginal foraging habitat occurs at the site.
Petauroides volans	Greater Glider	-	V	Ranges and coastal plains of eastern Australia, where it inhabits a variety of eucalypt forests and woodlands.	5 (BioNet)	None – Suitable habitat is absent from the study area.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Petaurus australis	Yellow- bellied Glider	V	-	Tall mature eucalypt forest generally in areas with high rainfall and nutrient rich soils. Dens in tree hollows of large trees, often in family groups. Forest type preferences vary with latitude and elevation; mixed coastal forests to dry escarpment forests in the north; moist coastal gullies and creek flats to tall montane forests in the south.	1 (BioNet)	None – Suitable habitat is absent from the study area.
Petaurus norfolcensis	Squirrel Glider	V	-	Blackbutt, bloodwood and ironbark eucalypt forest with heath understorey in coastal areas, and box-ironbark woodlands and River Red Gum forest inland.	6 (BioNet)	Low – marginal foraging habitat occurs at the site.
Petrogale penicillata	Brush- tailed Rock Wallaby	E	V	North-facing cliffs and dry eucalypt forest and woodland, inhabiting rock crevices, caves, overhangs during the day, and foraging in grassy areas nearby at night.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Phascogale tapoatafa	Brush- tailed Phascogal e	V	-	Drier forests and woodlands with hollow- bearing trees and sparse ground cover.	16 (BioNet)	None – Suitable habitat is absent from the study area.
Phascolarctos cinereus	Koala	V	V	Appropriate food trees in forests and woodlands, and treed urban areas.	3 (BioNet)	Low – marginal foraging habitat occurs at the site.

Scientific name	Common name	BC Act	EPBC Act	Habitat requirements	Number of records (source)	Likelihood of occurrence
Potorous tridactylus	Long- nosed Potoroo	V	V	Cool temperate rainforest, moist and dry forests, and wet heathland, inhabiting dense layers of grass, ferns, vines and shrubs.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Pseudomys novaehollandia e	New Holland Mouse	-	V	Occurs in open heathlands, open woodlands with a heathland understorey, and vegetated sand dunes.	Nil (PMST)	None – Suitable habitat is absent from the study area.
Pteropus poliocephalus	Grey- headed Flying-fox	V	V	Subtropical and temperate rainforests, tall sclerophyll forests and woodlands, heaths and swamps as well as urban gardens and cultivated fruit crops.	23 (BioNet)	Moderate – Potential foraging habitat associated with the site.
Vespadelus troughtoni	Eastern Cave Bat	V	-	Cave roosting species found in dry open forest and woodland near cliffs and rocky overhangs.	2 (BioNet)	Low – marginal foraging habitat occurs at the site.
Xeromys myoides	False Water-rat	-	V	Primarily in habitats mangrove forests but has been recorded in a variety of well- watered habitats including, freshwater lagoons, sedged lakes close to foredunes, and swamps.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.
Reptiles						
Coeranoscincu s reticulatus	Three-toed Snake- tooth Skink	V	Е	Rainforest and occasionally moist eucalypt forest, on loamy or sandy soils.	Nil (PMST)	Low – marginal foraging habitat occurs at the site.

Annexure C Tests of Significance

BC Act five-part tests for TECs

TEC

Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions.

The study area habitat values and extent of local population per species/species group are detailed below. To minimise repetition, the responses to the five-part tests are structured as follows:

Part (a), (c), (d) and (e) are answered per species or as a collective group of species depending on the nature of impacts.

Part (b) deals specifically with threatened ecological communities.

in the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

- a) in the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:
- (i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or
- (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Considering that equivalent or better quality areas of Swamp Oak floodplain forest TEC are present in the broader locality that will not be affected by the proposal, and that the proposal is unlikely to result in significant fragmentation or isolation of habitat of the TEC, it would be highly unlikely that an adverse effect of the TEC that it is likely to be placed at risk of extinction.

b) in relation to the habitat of a threatened species or ecological community:

(i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and

TEC: The potential for direct loss or disturbance of up to 0.27 ha of Swamp Oak floodplain forest TEC would not affect the life cycle of the species which makes up the ecological community or simplify floristic composition or vegetation structure, as areas of similar ecological value in the surrounding area would not be affected. As such, it is unlikely that the composition of the ecological community would be substantially or adversely modified such that its local occurrence is likely to be placed at risk of extinction.

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and

TEC: The Proposal would result in a minor increase in clearing alongside the South Arm River within an already fragmented landscape. In addition, the Proposal would not affect the potential for cross-pollination to occur between individuals which make up the ecological community or simplify floristic composition or vegetation structure, as areas of similar ecological value at the site would not be affected. Considering the above, no significant fragmentation or isolation of habitat for the subject TEC is likely.

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality,

TEC: The habitat affected occurs within previously disturbed road reserve of Big River Way. The vegetation proposed for removal or disturbance consists of approximately 0.27 ha of Swamp Oak floodplain forest TEC. Given the minor area of disturbance, the area proposed for clearing would be of such a minor nature as to be negligible. Additionally, the area proposed for clearing makes up a small proportion of this

vegetation community in the locality and equivalent or better habitat is present in the broader locality that can be utilised, and that this habitat will not be affected by the proposal.

c) whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly),

No areas of outstanding biodiversity value have been declared in Clarence Valley LGA.

d) whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

A key threatening process (KTP) is a process that threatens, or may have the capability to threaten, the survival or evolutionary development of species or ecological communities. The current list of KTP under the BC Act, and whether the proposal is recognised as a KTP is shown in **Table C.1**.

Table C.1 Key Threatening Processes

Key Threatening Process (as per Schedule 4 of the BC Act)	Is the development or activity proposed of a class of development or activity that is recognised as a threatening process?			
	Likely	Possible	Unlikely	
Aggressive exclusion of birds by noisy miners (<i>Manorina melanocephala</i>)			✓	
Alteration of habitat following subsidence due to longwall mining			\checkmark	
Alteration to the natural flow regimes of rivers and streams and their floodplains and wetlands			\checkmark	
Anthropogenic climate change			\checkmark	
Bushrock removal			\checkmark	
Clearing of native vegetation	\checkmark			
Competition and grazing by the feral European Rabbit (<i>Oryctolagus cuniculus</i>)			\checkmark	
Competition and habitat degradation by feral goats (Capra hircus)			\checkmark	
Competition from feral honeybees (Apis mellifera)			\checkmark	
Death or injury to marine species following capture in shark control programs on ocean beaches			\checkmark	
Entanglement in or ingestion of anthropogenic debris in marine and estuarine environments			\checkmark	
Forest eucalypt dieback associated with over-abundant psyllids and bell miners			\checkmark	
Habitat degradation by Feral Horses, Equus caballus			\checkmark	
Herbivory and environmental degradation caused by feral deer			\checkmark	
High frequency fire resulting in the disruption of life cycle processes in plants and animals and loss of vegetation structure and composition			\checkmark	
Importation of red imported fire ants (Solenopsis invicta)			\checkmark	

Key Threatening Process (as per Schedule 4 of the BC Act)	Is the development or activity proposed of a class of development or activity that is recognised as a threatening process?			
	Likely	Possible	Unlikely	
Infection by <i>Psittacine circoviral</i> (beak and feather) disease affecting endangered psittacine species and populations			✓	
Infection of frogs by amphibian chytrid causing the disease chytridiomycosis			✓	
Infection of native plants by Phytophthora cinnamomi			\checkmark	
Introduction and Establishment of Exotic Rust Fungi of the order Pucciniales pathogenic on plants of the family Myrtaceae			✓	
Introduction of the large earth bumblebee (Bombus terrestris)			\checkmark	
Invasion and establishment of exotic vines and scramblers			\checkmark	
Invasion and establishment of Scotch Broom (Cytisus scoparius)			\checkmark	
Invasion and establishment of the Cane Toad (Bufo marinus)			\checkmark	
Invasion, establishment and spread of Lantana (Lantana camara)			\checkmark	
Invasion of native plant communities by African Olive (<i>Olea europaea L. subsp. cuspidata</i>)			✓	
Invasion of native plant communities by <i>Chrysanthemoides monilifera</i> (bitou bush and boneseed)			\checkmark	
Invasion of native plant communities by exotic perennial grasses			\checkmark	
Invasion of the Yellow Crazy Ant (Anoplolepis gracilipes) into NSW			\checkmark	
Loss and degradation of native plant and animal habitat by invasion of escaped garden plants, including aquatic plants			✓	
Loss of hollow-bearing trees			\checkmark	
Loss or degradation (or both) of sites used for hill-topping by butterflies			✓	
Predation and hybridisation by feral dogs (Canis lupus familiaris)			\checkmark	
Predation by the European Red Fox (Vulpes vulpes)			✓	
Predation by the feral cat (<i>Felis catus</i>)			\checkmark	
Predation by Gambusia holbrooki (Plague Minnow or Mosquito Fish)			\checkmark	
Predation by the Ship Rat (Rattus rattus) on Lord Howe Island			\checkmark	
Predation, habitat degradation, competition and disease transmission by feral pigs (<i>Sus scrofa</i>)			✓	
Removal of dead wood and dead trees			\checkmark	

The KTP, 'clearing of native vegetation' is likely to be contributed to by the proposal.

Clearing of native vegetation: Clearing is defined as the destruction of a sufficient proportion of one or more strata (layers) within a stand or stands of native vegetation so as to result in the loss, or long-term modification, of the structure, composition and ecological function of stand or stands. The proposal would have a relatively minor contribution to this KTP due to the loss of a small section of roadside vegetation. Considering the relatively small area of native vegetation to be removed, it is unlikely that the proposal would contribute significantly to this KTP more broadly.

Conclusion

It is considered unlikely that the local population of Swamp Oak floodplain forest TEC would be placed at significant risk of extinction as a result of the proposal.

BC Act five-part tests for threatened fauna

<u>Birds</u>

Wetland

- Black-necked Stork
- Brolga

Populations

• Emu population in the NSW North Coast Bioregion and Port Stephens LGA

Flying foxes

• Grey-headed Flying-fox

The study area habitat values and extent of local population per species/species group are detailed below. To minimise repetition, the responses to the five-part tests are structured as follows:

Part (a), (c), (d) and (e) are answered per species or as a collective group of species depending on the nature of impacts.

Part (b) deals specifically with threatened ecological communities, and hence is not relevant to the subject threatened species assessment.

a) in the case of a threatened species, whether the proposed development or activity is likely to have an adverse effect on the life cycle of the species such that a viable local population of the species is likely to be placed at risk of extinction,

<u>Birds</u>

Brolga

Brolgas inhabit shallow swamps, floodplains, grasslands and pastoral lands, usually in pairs or parties. They are omnivorous and utilise a diverse range of food items on a seasonal basis. The main food items are vegetable materials, particularly the fleshy tubers of wetland plants, which are obtained by digging and foraging. The residues of grain and potato crops are also taken. Amphibians, sometimes small fish and a wide range of invertebrates are also taken including freshwater molluscs, crustaceans and insects.

During summer and autumn, many birds flock to deep freshwater marshes and permanent open water and adjacent dryland areas. These sites provide for the birds' drinking, feeding and roosting requirements. In late autumn and winter, the flocks disperse back to the breeding areas where bonded pairs re-establish substantial territories. Nests are generally constructed on a slight rise or island in shallow herb-dominated or sedge-dominated freshwater marshes and consist of a platform of coarse vegetation. Usually two eggs are laid, and the parents share in nest building, incubation of the eggs and rearing of the young. The chicks fledge 90-100 days after hatching and remain with the parents until the onset of the next breeding season or for another year if the parents do not re-nest.

Threatening processes for this species include:

- Drainage and modification of wetlands.
- Alteration of flood regimes during the breeding season which can cause nest abandonment.
- Modification of vegetation structure and species composition, water quality or soil structure at breeding and feeding sites.
- Widespread use of herbicides and pesticides especially in close proximity to breeding sites.
- Disturbance by hunting activities where young birds are still in the breeding wetland.
- Introduced predators taking eggs and killing chicks.

- Wildfire and burning programs, which remove nest material.
- Grazing by stock.
- Subdivision and fencing of large private landholdings.
- Erection of structures such as overhead powerlines.
- Use of wetlands for irrigation and/or re-use systems.

Black-necked Stork

Black-necked Storks (BNS) occur in floodplain wetlands (swamps, billabongs, watercourses and dams) of the major coastal rivers in NSW. Secondary habitat includes minor floodplains, coastal sandplain wetlands and estuaries. BNS usually forage in water 5-30 centimetres deep for vertebrate and invertebrate prey. Eels regularly contribute the greatest biomass to their diet, but they feed on a wide variety of animals, including other fish, frogs and invertebrates (such as beetles, grasshoppers, crickets and crayfish).

BNS build large nests high in tall trees close to water. Trees usually provide clear observation of the surroundings and are at low elevation (reflecting the floodplain habitat). In NSW, breeding activity occurs May - January; incubation May - October; nestlings July - January; fledging from September. Parents share nest duties and in one study about 1.3-1.7 birds were fledged per nest.

The NSW breeding population has been estimated at about 75 pairs. Territories are large and variable in size and estimated to average about 9000 ha, ranging from 3000-6000 ha in high quality habitat and 10,000-15,000 ha in areas where habitat is poor or dispersed.

Threatening processes for this species include:

- Powerlines, especially close to wetlands or over floodplains, are a significant cause of mortality of Storks and one of the most critical threats to the species in NSW.
- Modification or degradation of wetlands through changes in natural water flows. It is important to
 maintain or reintroduce flows to provide wetland habitats suitable for foraging by Storks as they require
 large amounts of vertebrate prey from such habitats.
- Loss of wetland habitat through clearing and draining for development.
- Loss of key habitat as a result of wetland drainage for flood mitigation and agricultural development.
- Degradation of wetland habitats through pollution.

Potential Impacts of the Proposal to Birds

The proposal occurs within a portion of Big River Way, the South Arm River and surrounding floodplain which provides a small area of potential foraging habitat for the subject species. In the long-term this habitat would not be adversely affected by the proposal. The subject habitat comprises a relatively minor amount of potential foraging and dispersal habitat for the subject avifauna in the context of the site and adjacent areas of floodplain habitat. On this basis, and with effective implementation of safeguards, particularly in relation to vegetation removal, it is considered unlikely that an adverse effect on the life cycle of the subject species would occur such that a viable local population of these species is likely to be placed at risk of extinction.

Populations

Emu (population in the New South Wales North Coast Bioregion and Port Stephens LGA)

The Emu formerly occurred throughout mainland Australia and Tasmania though only rarely in dense tropical forests or parts of the arid interior. It is now generally absent from densely settled regions and largely absent from south-eastern coastal and subcoastal regions. The species was formerly widespread in north-eastern NSW, but is now restricted to coastal and near-coastal areas between Evans Head and Red Rock and a small isolated population further west in the Bungawalbin area. The range of the species

continues to contract in recent years. It now appears to be absent from Broadwater National Park, there are few recent sightings from its former stronghold in Bundjalung National Park and it is not known whether a natural population continues to persist in the Port Stephens area.

On the NSW north coast, Emus occur in a range of predominantly open lowland habitats, including grasslands, heathland, shrubland, open and shrubby woodlands, forest, and swamp and sedgeland communities, as well as the ecotones between these habitats. They also occur in plantations of tea-tree and open farmland, and occasionally in littoral rainforest.

Emus are omnivorous, taking a wide range of seeds and fruits, invertebrates (mainly insects) and foliage and other plant material. They take material directly from plants or bend down to take items from the ground, picking up the food and tossing them back in the throat before swallowing.

The population of Emus in the NSW North Coast Bioregion and Port Stephens LGA is of significant conservation value as the last known population in northern coastal NSW, and for the role that birds play in dispersing large seeds of native plant species, and over long distances.

Most breeding occurs in late autumn and winter, but better data are needed for the north-eastern NSW population. Eggs are laid on a platform of grass, twigs, leaves and bark on the ground, often at the base of some vegetation and with good views from the nest. Incubation and all parental care is by the male.

Threatening processes for this species include:

- The species is the risk of continued local extinctions owing to the small size of the extant population, fragmentation, isolation of individuals and groups within the total population, following past major declines.
- The habitat of the north coast population of Emus has been reduced and fragmented as a result of agricultural and rural and urban development, with consequent declines and isolation of subpopulations and local extinctions, a process that is continuing.
- Inappropriate fire regimes, rendering habitat unsuitable and loss of breeding habitat, and fires, including control burns, in areas where Emus are nesting. Back-burning operations can also trap and kill Emus fleeing fires.
- Predation of young and eggs by Red Foxes (*Vulpes vulpes*), feral Pigs (*Sus scrofa*), feral and domestic Dogs, native avian and reptilian predators.
- Vehicle collisions, with increasing human use and vehicular traffic leading to many deaths of adults and young.
- Deliberate killing through poisoning or shooting.
- Loss of habitat through weed and native shrub encroachment.
- Lack of knowledge about key threats, breeding locations and territories and diet and plant preferences.
- Impediments to movement and access to resources through artificial barriers, agricultural development, highway upgrades and urban development.

Potential impacts to this population

The proposal occurs within a portion of Big River Way, the South Arm River and surrounding cane fields which provides a small area of potential foraging habitat for the subject population. In the long-term this habitat would not be adversely affected by the proposal. The subject habitat comprises a relatively minor amount of potential foraging and dispersal habitat for the subject avifauna in the context of the site and adjacent areas of habitat. On this basis, and with effective implementation of safeguards, particularly in relation to vegetation removal, it is considered unlikely that an adverse effect on the life cycle of the subject population would occur such that a viable local population of these species is likely to be placed at risk of extinction.

Megachiropteran bats

Grey-headed Flying-fox (GHFF)

Grey-headed Flying-foxes (GHFF) have a distribution that typically extends approximately 200 km from the coast of Eastern Australia, from Rockhampton in Queensland to Adelaide in South Australia. Foraging areas include subtropical and temperate rainforests, tall sclerophyll forests and woodlands, heaths and swamps as well as urban gardens and cultivated fruit crops. GHFF feed on the nectar and pollen of native trees, in particular *Eucalyptus, Melaleuca* and *Banksia*, and fruits of rainforest trees and vines, as well as from cultivated gardens and orchards. Roosting camps are generally located within 20 km of a regular food source and are commonly found in gullies, close to water, in vegetation with a dense canopy. Individual camps may have tens of thousands of animals and are used for mating, and for giving birth and rearing young. Annual mating commences in January and conception occurs in April or May; a single young is born in October or November. Site fidelity to camps is high; some camps have been used for over a century. GHFF may travel up to 50 km from the camp to forage; commuting distances are more often <20 km.

Threatening processes for this species include:

- Clearing of woodlands for agriculture.
- Loss of roosting and foraging sites.
- Electrocution on powerlines, entanglement in netting and on barbed-wire.
- Heat stress.
- Conflict with humans.
- Incomplete knowledge of abundance and distribution across the species' range.

Potential Impacts from the Proposal

The works may require the disturbance and/ or removal of up to 0.27 ha of PCT 1235, with adjoining forest within the study area and adjacent lands remaining unaffected and occurring extensively in the locality (refer to CRAFTI vegetation mapping). No known roost habitat occurs within the study area (CVC Flying-fox Camp Monitor). In a local context, the works are unlikely to result in significant impacts to foraging resources for GHFF.

On this basis, it would be highly unlikely that an adverse effect on the life cycle of GHFF would occur such that a viable local population of the species is likely to be placed at risk of extinction.

- b) in the case of an endangered ecological community or critically endangered ecological community, whether the proposed development or activity:
- (i) is likely to have an adverse effect on the extent of the ecological community such that its local occurrence is likely to be placed at risk of extinction, or
- (ii) is likely to substantially and adversely modify the composition of the ecological community such that its local occurrence is likely to be placed at risk of extinction,

Not relevant to assessment of threatened species.

- c) in relation to the habitat of a threatened species or ecological community:
- (i) the extent to which habitat is likely to be removed or modified as a result of the proposed development or activity, and
- *Birds*: Temporary utilisation of a small area of potential foraging habitat. Retained areas of floodplain habitat will continue to provide foraging and nesting resources.
- *Emu Population*: very minor contraction to foraging habitat. Retained areas of local cane fields and open vegetated areas will continue to provide foraging, refuge and breeding resources.

• *Grey-headed Flying-fox*: very minor contraction of foraging habitat. Retained areas of adjacent forest will continue to provide foraging, refuge and breeding resources.

(ii) whether an area of habitat is likely to become fragmented or isolated from other areas of habitat as a result of the proposed development or activity, and

No significant fragmentation of habitat would occur; the works (both in construction and operational phases) are unlikely to result in significant barriers to dispersal.

(iii) the importance of the habitat to be removed, modified, fragmented or isolated to the long-term survival of the species or ecological community in the locality,

- *Birds*: Habitat to be impacted by the proposal represents a small area of potential foraging habitat which is well represented on the Clarence floodplain in the locality.
- *Emu Population*: very minor contraction of foraging habitat. Retained areas of adjacent cane fields and open vegetated areas will continue to provide foraging, refuge and breeding resources.
- *Grey-headed Flying-fox*: very minor contraction of foraging habitat. Retained areas of adjacent forest will continue to provide foraging, refuge and breeding resources.
- d) whether the proposed development or activity is likely to have an adverse effect on any declared area of outstanding biodiversity value (either directly or indirectly),

No areas of outstanding biodiversity value have been declared in Clarence Valley LGA.

e) whether the proposed development or activity is or is part of a key threatening process or is likely to increase the impact of a key threatening process.

A key threatening process (KTP) is a process that threatens, or may have the capability to threaten, the survival or evolutionary development of species or ecological communities. The current list of KTP under the BC Act, and whether the proposal is recognised as a KTP is shown in **Table C.2**.

Table C.2 Key Threatening Processes

	Is the development or activity proposed of a class of development or activity that is recognised as a threatening process?			
	Likely	Possible	Unlikely	
Aggressive exclusion of birds by noisy miners (Manorina melanocephala)			\checkmark	
Alteration of habitat following subsidence due to longwall mining			✓	
Alteration to the natural flow regimes of rivers and streams and their floodplains and wetlands			✓	
Anthropogenic climate change			\checkmark	
Bushrock removal			\checkmark	
Clearing of native vegetation	✓			
Competition and grazing by the feral European Rabbit (Oryctolagus cuniculus)			\checkmark	
Competition and habitat degradation by feral goats (Capra hircus)			\checkmark	
Competition from feral honeybees (Apis mellifera)			\checkmark	
Death or injury to marine species following capture in shark control programs on ocean beaches			✓	
Entanglement in or ingestion of anthropogenic debris in marine and estuarine environments			✓	
Forest eucalypt dieback associated with over-abundant psyllids and bell miners			\checkmark	
Habitat degradation by Feral Horses, Equus caballus			\checkmark	
Herbivory and environmental degradation caused by feral deer			\checkmark	
High frequency fire resulting in the disruption of life cycle processes in plants and animals and loss of vegetation structure and composition			√	
Importation of red imported fire ants (Solenopsis invicta)			\checkmark	
Infection by <i>Psittacine circoviral</i> (beak and feather) disease affecting endangered psittacine species and populations			✓	
Infection of frogs by amphibian chytrid causing the disease chytridiomycosis			✓	
Infection of native plants by Phytophthora cinnamomi			\checkmark	
Introduction and Establishment of Exotic Rust Fungi of the order Pucciniales pathogenic on plants of the family Myrtaceae			√	
Introduction of the large earth bumblebee (Bombus terrestris)			\checkmark	
Invasion and establishment of exotic vines and scramblers			✓	
Invasion and establishment of Scotch Broom (Cytisus scoparius)			\checkmark	
Invasion and establishment of the Cane Toad (Bufo marinus)			✓	
Invasion, establishment and spread of Lantana (Lantana camara)			✓	
Invasion of native plant communities by African Olive (<i>Olea europaea L. subsp. cuspidata</i>)			✓	

Key Threatening Process (as per Schedule 4 of the BC Act)	Is the development or activity proposed of a class of development or activity that is recognised as a threatening process?			
	Likely	Possible	Unlikely	
Invasion of native plant communities by <i>Chrysanthemoides monilifera</i> (bitou bush and boneseed)			✓	
Invasion of native plant communities by exotic perennial grasses			\checkmark	
Invasion of the Yellow Crazy Ant (Anoplolepis gracilipes) into NSW			\checkmark	
Loss and degradation of native plant and animal habitat by invasion of escaped garden plants, including aquatic plants			✓	
Loss of hollow-bearing trees			\checkmark	
Loss or degradation (or both) of sites used for hill-topping by butterflies			\checkmark	
Predation and hybridisation by feral dogs (Canis lupus familiaris)			\checkmark	
Predation by the European Red Fox (Vulpes vulpes)			✓	
Predation by the feral cat (<i>Felis catus</i>)			\checkmark	
Predation by Gambusia holbrooki (Plague Minnow or Mosquito Fish)			✓	
Predation by the Ship Rat (Rattus rattus) on Lord Howe Island			✓	
Predation, habitat degradation, competition and disease transmission by feral pigs (<i>Sus scrofa</i>)			✓	
Removal of dead wood and dead trees			\checkmark	

Clearing of native vegetation: Clearing is defined as the destruction of a sufficient proportion of one or more strata (layers) within a stand or stands of native vegetation so as to result in the loss, or long-term modification, of the structure, composition and ecological function of stand or stands. The proposal would have a relatively minor contribution to this KTP due to the loss of a small area of native vegetation. Considering the relatively small area of native vegetation to be removed, it is unlikely that the proposal would contribute significantly to this KTP more broadly.

The proposal is such that no other KTPs are considered likely to be substantially contributed to, especially with effective implementation of the mitigation measures in this report. Overall, although the action proposed constitutes or is part of four key threatening process, the nature of the proposal is such that this contribution is very small and insignificant within the broader locality.

Conclusion

It is considered unlikely that the local population of any of the subject species would be placed at significant risk of extinction as a result of the proposal.

Annexure D Fauna and flora records

Table D1Recorded fauna

Taxa/Fauna group	Scientific Name	Common name	Status		
			BC Act	EPBC Act	
Aves	Anas superciliosa	Pacific Black Duck	-	-	
Aves	Anthochaera chrysoptera	Little Wattlebird	-	-	
Aves	Cracticus tibicen	Australian Magpie	-	-	
Aves	Grallina cyanoleuca	Magpie-lark	-	-	
Aves	Hirundo neoxena	Welcome Swallow	-	-	
Aves	Myzomela sanguinolenta	Scarlet Honeyeater	-	-	
Aves	Pelecanus conspicillatus	Australian Pelican	-	-	
Aves	Rhipidura albiscapa	Grey Fantail	-	-	
Aves	Rhipidura leucophrys	Willie Wagtail	-	-	
Aves	Threskiornis molucca	Australian White Ibis	-	-	
Aves	Vanellus miles	Masked Lapwing	-	-	

Table D2 Recorded flora

Family	Scientific name	Common name
Adiantaceae	Adiantum hispidulum	Rough Maidenhair
Apocynaceae	Gomphocarpus physocarpus*	Balloon Cotton Bush
Apocynaceae	Parsonsia straminea	Monkey Rope
Asteraceae	Ageratum houstonianum*	Blue Billygoat Weed
Asteraceae	Ambrosia artemisiifolia*	Annual Ragweed
Asteraceae	Bidens pilosa*	Cobbler's Pegs
Asteraceae	Conyza sumatrensis*	Tall fleabane
Asteraceae	Senecio madagascariensis*	Fireweed
Asteraceae	Sonchus oleraceus*	Common Sowthistle
Caryophyllaceae	Stellaria media*	Common Chickweed
Casuarinaceae	Casuarina glauca	Swamp Oak
Commelinaceae	Commelina cyanea	Scurvy Weed
Convolvulaceae	Ipomoea cairica*	Coastal Morning Glory
Dennstaedtiaceae	Pteridium esculentum	Bracken
Dracaenaceae	Sansevieria trifasciata*	Mother-in-law's Tongue
Euphorbiaceae	Breynia oblongifolia	Coffee Bush
Euphorbiaceae	Glochidion ferdinandi var. ferdinandi	Cheese Tree
Fabaceae	Desmodium uncinatum*	Silverleaf Desmodium
Fabaceae (Faboideae)	Macroptilium atropurpureum *	Siratro
Fabaceae (Mimosoideae)	Acacia disparrima var. disparrima	Brush Ironbark Wattle
Lamiaceae	Clerodendrum floribundum	Smooth Clerodendrum
Luzuriagaceae	Eustrephus latifolius	Wombat Berry
Malvaceae	Hibiscus tiliaceus	Cottonwood
Menispermaceae	Stephania japonica var. discolor	Snake Vine
Moraceae	Trophis scandens subsp. scandens	Burny Vine
Myrtaceae	Eucalyptus microcorys	Tallowwood
Myrtaceae	Eucalyptus tereticornis	Forest Red Gum

Family	Scientific name	Common name
Plantaginaceae	Plantago lanceolata*	Lamb's Tongues
Poaceae	Cenchrus clandestinus*	Kikuyu
Poaceae	Chloris gayana*	Rhodes Grass
Poaceae	Cynodon dactylon	Common Couch
Poaceae	Imperata cylindrica	Blady Grass
Poaceae	Panicum maximum*	Guinea Grass
Poaceae	Paspalum dilatatum*	Paspalum
Poaceae	Paspalum mandiocanum*	Broad-leafed Paspalum
Poaceae	Phragmites australis	Common Reed
Poaceae	Setaria sphacelata*	South African Pigeon Grass
Polygonaceae	Rumex brownii	Swamp Dock
Rosaceae	Rubus moluccanus	Molucca Bramble
Rutaceae	Citrus limon*	Lemon Tree
Sapindaceae	Cupaniopsis anacardioides	Tuckeroo
Sapindaceae	Jagera pseudorhus var. pseudorhus	Foambark Tree
Verbenaceae	Lantana camara*	Lantana

*Introduced species

Appendix B Geotechnical Detailed Design Reports

SMEC INTERNAL REF. 30013154

100% Geotechnical Interpretive and Design Options Report

Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design

Client Reference No. 21.0000129127.1219 Prepared for TfNSW 10 December 2021

Document Control

Document	Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design
File Location	X:\Projects\300131\30013154\100 Concept Design
Project Name	100% Geotechnical Interpretive and Design Options Report
Project Number	30013154
Revision Number	2

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
1	13/09/2021	Sheena Cai /Mark Maharaj	Hasan Wijaya	Mark Maharaj
2	7/12/2021	Mark Maharaj	David Malorey	Mark Maharaj

Issue Register

Distribution List	Date Issued	Number of Copies
TfNSW	13/10/2021	1
TfNSW	10/12/2021	1

SMEC Company Details

Approved by	Mark Maharaj		
Address	52 Victoria Street, Grafton, NSW		
Telephone	02 6644 2607	Website	www.smec.com
Email	mark.maharaj@smec.com		

The information within this document is and shall remain the property of: TfNSW

Important Notice

This report is confidential and is provided solely for the purposes of Transport for New South Wales (TfNSW) use. This report is provided pursuant to a Contract Agreement between SMEC Australia Pty Limited ("SMEC") and TfNSW, under which SMEC undertook to perform a specific and limited task for TfNSW. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than TfNSW. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Geotechnical reports are prepared by qualified personnel on the information supplied or obtained and are based on current engineering standards of interpretation and analysis.

Information may be gained from limited subsurface testing, surface observations, previous work, and is supplemented by knowledge of the local geology and experience of the range of properties that may exhibited by the materials present. For this reason, geotechnical reports should be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely. Every care is taken with the report content, however, it is not always possible to anticipate or assume responsibility for the following conditions:

- Unexpected variations in ground conditions. The potential for this depends on the amount of investigative work undertaken.
- Changes in policy or interpretation by statutory authorities
- The actions of contractors responding to commercial pressures

If these occur, SMEC would be pleased to resolve the matter through further investigation, analysis or advice.

Logs of a borehole, recovered core, test pit, excavated face, or cone penetration test are an engineering and/or geological interpretation of the subsurface conditions. The reliability of the logged information depends on the drilling/testing method, sampling/observation spacing's and the ground conditions. It is not always possible or economic to obtain continuous high-quality data. It should also be recognised that the volume of material observed or tested is only a fraction of the total subsurface profile.

Interpretation of subsurface information and application to design and construction must take into consideration the spacing of the test locations, the frequency of observations and testing, and the possibility that geological boundaries may vary between observation points.

It should also be recognised that ground conditions can change over time (e.g. through drought, wet periods, snow/summer and disturbance after site investigation occurs). As such, ground information is only a representation of the site at a point in time and may change.

Should conditions encountered on site differ markedly from those anticipated from the information contained in the report, SMEC should be notified immediately. Early identification of site anomalies generally results in any problems being more readily resolved and allows re-interpretation and assessment of the implications for future work.

Table of Contents

1		Introdu	ction 1	
	1.1	Chang	es from previous issue	1
2		Availab	le Information	1
3		Backgro	ound 2	
	3.1	Timelir	ne of Events	2
4		Site Des	scription 2	
	4.1	Slip Lo	cation	2
	4.2		vations	
	4.3	Previo	us Remediation Design for Adjacent Site	6
		4.3.1	Concept Design of a Contiguous Pile Wall	6
		4.3.2	Northern Transition Zone	6
5		Geotec	hnical Model	7
	5.1	-	gy Maps	
	5.2		ulfate Soil Maps	
	5.3	Geoteo	chnical Investigations	8
		5.3.1	Previous Investigations	8
		5.3.2	Recent TfNSW Geotechnical Investigations	9
	5.4	Interpr	eted Subsurface Conditions	9
		5.4.1	Subsurface Conditions	9
		5.4.2	Concept Design Parameters	9
		5.4.3	Water Levels	9
6		Slip Fail	lure Modes and Mechanisms	12
	6.1	Review	v of Slope Risk Assessment Data	
	6.2	Stabilit	ty Analyses	
		6.2.1	Back-analysis	
		6.2.2	Stability of Road Embankment	
7		Prelimir	nary Durability Assessment	14
	7.1	Previou	us Durability Assessments	14
	7.2	Aggres	ssivity Testing	15
	7.3	Acid S	ulfate Soils	
	7.4	Corros	ion Rates for Concept Design	15
8		Concep	ot Slope Remediation Options	16
	8.1	Design	n Criteria	
		8.1.1	Purpose	16
		8.1.2	Design Life	16
		8.1.3	Global Stability Factor of Safety	16
		8.1.4	Design Loading	
	8.2	Option	1A – Cantilever Sheet Piled Retaining Wall	
		8.2.1	Summary	
		8.2.2	Analysis and Results	
		8.2.3	Anticipated Construction Sequence	
		8.2.4	Maintenance and Monitoring Considerations	
		5.2.7		10

		8.2.5	Considerations for Detailed Design	20	
	8.3	Option	1B – Anchored Sheet Piled Retaining Wall	20	
		8.3.1	Summary	20	
		8.3.2	Analysis and Results	21	
		8.3.3	Anticipated Construction Sequence	22	
		8.3.4	Maintenance and Monitoring Considerations	22	
		8.3.5	Considerations for Detailed Design	22	
	8.4	Option	2 – Contiguous Pile Wall	23	
		8.4.1	Summary	23	
		8.4.2	Analysis and Results	23	
		8.4.3	Anticipated Construction Sequence	24	
		8.4.4	Maintenance and Monitoring Considerations	25	
		8.4.5	Considerations for Detailed Design	25	
	8.5	Option	3 – Shear Piles and Rock Fill	25	
		8.5.1	Description	25	
		8.5.2	Analysis and Results	26	
		8.5.3	Anticipated Construction Sequence	27	
		8.5.4	Maintenance and Monitoring Considerations	27	
		8.5.5	Considerations for Detailed Design	27	
	8.6	Option	4 - Micro Pile and Gabion Wall		
		8.6.1	Description		
		8.6.2	Analysis and Results	29	
		8.6.3	Anticipated Construction Sequence	29	
		8.6.4	Maintenance and Monitoring Considerations	30	
		8.6.5	Considerations for Detailed Design	30	
	8.7	Compa	rison of Options		
9		Schedu	le of Quantities and Relative Cost Estimate	34	
10		Safety i	n Design 34		
11		Comme	nts Register	34	
12		Conclusions and Recommendations			

Appendices

Appendix A	Interpreted Geotechnical Model
Appendix B	Concept Option 1 Sketches
Appendix C	Concept Option 1 Analyses
Appendix D	Concept Option 2 – Sketches
Appendix E	Concept Option 2 – Analyses
Appendix F	Concept Design Option 3 – Sketches
Appendix G	Concept Design Option 3 – Analyses
Appendix H	Concept Design Option 4 – Sketches
Appendix I	Concept Design Option 4 – Analyses

Appendix J	Schedule of Quantities
Appendix K	Safety in Design Register
Appendix L	Relevant Information
Appendix M	Comments Register

List of Figures

Figure 4-1 Site Locality Plan – Source: Six Maps, NSW (maps.six.nsw.gov.au)	3
Figure 4-2 Layout Plan – Former Slip Remediation	7
Figure 6-1 Slope/W Back Analysis Output	13
Figure 6-2 Slope/W Output for Slumped Riverbank Profile	13
Figure 8-1 Sketch layout of Option 1A	17
Figure 8-2 Slope/W output showing critical 4.2 m setback distance for 40 kPa surcharge load	19
Figure 8-3 Sketch layout of Option 1B	20
Figure 8-4 Sketch layout of Option 2	23
Figure 8-5 Sketch layout of Option 3	26
Figure 8-6 Sketch layout of Option 4	28

List of Tables

Table 5-1: Geotechnical Investigation Summary Data	
Table 5-2: Summary of Subsurface Conditions	10
Table 5-3: Summary of Design Parameters	11
Table 7-1: Corrosion Rates for Steel Sheet Piles	14
Table 7-2: Estimated Corrosion Per Exposed Face	15
Table 8-1 Factor of Safety (FOS) for different consequence class scenarios	16
Table 8-2: Summary of Wallap Analyses	
Table 8-3: Summary of Slope Stability Analyses	
Table 8-4: Summary of Wallap Analyses	21
Table 8-5: Summary of Wallap Analyses	
Table 8-6: Summary of Slope Stability Analyses	
Table 8-7: Summary of Slope Stability Analyses	29
Table 8-8: Description of Options Against Criteria	31
Table 8-9: Weighted Multicriteria Analysis	33

1 Introduction

Transport for NSW (TfNSW) has engaged SMEC Australia Pty Ltd (SMEC) to design a slope remediation solution for an approximate 40 m long slip situated along Clarence River - South Arm, Big River Way, Tyndale, NSW.

This report presents the **100% Geotechnical Interpretive and Design Options Report**. It includes the following sections:

- Project background
- Site description
- Geological and geotechnical models
- Assessment of slip modes and mechanisms
- Design criteria and assumptions
- Presentation of concept remediation design options including engineering assessments and sketches of arrangements.
- Evaluation of relative merits of each option, including technical merit, constructability, traffic restrictions, environmental and community impacts, relative cost and maintenance considerations.
- Recommended preferred option for detailed design.

1.1 Changes from previous issue

This revised (Rev.02) includes the following changes and amendments:

- Amended terminology from landslide to slip.
- Section 5.4.1 and Appendix A Interpreted geotechnical model cross sections and long section included.
- Section 6.1: Comments on the abandoned watermain.
- Sections 8.2 and 8.3: Discussion on potential drainage options and corrosion monitoring requirements.
- Section 8.4.1: Comment on alternate steel tubular pile option.
- Section 8.6.2.2 and Appendix I: Preliminary sliding and overturning calculations included for proposed gabion wall structure.
- Section 8.7: Revised weighted multi-criteria assessment with 1-5 scoring.
- Appendix K: Safety in Design register.
- Section 11 and Appendix M: TfNSW comments register with SMEC responses to the 80% concept design report.
- Section 12: Conclusions and Recommendations.

2 Available Information

Information obtained by SMEC as part of previous project work for TfNSW:

- SMEC Geotechnical Detailed Design Report Rev.06 HW10 Pacific Highway Byrons Lane Slip Stage 4, dated May 2014.
- Byrons Lane Slip Stage 4 IFC Drawings (Ref. 30011433-DGT-0001 to 0300)

TfNSW has supplied SMEC with the following information to assist with the design:

• 04 Scope of Services – Byrons Lane Slip Stage V

- 20211031 Draft PS331 Big River Way Slip on the Clarence River, Geotechnical Investigation Factual Report
- TfNSW Draft Project QA Specification PS331
- Byrons Lane Slip SRA 20210309
- AECOM Byrons Slip Corrosion Protection Final Report Rev 0
- Topographical Site Survey, dated 20210507

3 Background

3.1 Timeline of Events

This area of the riverbank has a recent history of instability. A brief timeline of events is presented below:

- 14 June 2009: 60 m long slip occurred after flooding in June 2009. Situated adjacent to the subject slip site.
- June to September 2009: Stage 1 Pacific Highway realigned away from slip and Stage 2 Rock fill treatment constructed by TfNSW.
- 12 September 2009: Stage 2 rock fill treatment failed with most of the rock sliding in to the river.
- November to December 2009: Stage 3 Cantilevered steel sheet pile wall constructed.
- December 2010 Sheet pile corrosion assessment undertaken indicating relatively low design life for sheet pile and costly treatment measures.
- 2012: Alternative design involving steel tube stabilisation piles and rock fill developed. Design not constructed.
- January 2013: SMEC developed a 15% Concept Design for Contiguous Pile Wall. Design not developed further.
- September 2013: Stage 4 Detailed design of timber slope stabilisation piles and rock fill buttress completed and IFC drawings issued.
- May 2014: Stage 4 timber slope stabilisation piles, rock fill buttress and rock armour works completed.
- 2 March 2021: Subject slip site identified by TfNSW immediately north of the previously remediated site.

4 Site Description

4.1 Slip Location

The slip site is situated along the outer, east bank of the Clarence River - South Arm, along Big River Way, Tyndale, NSW. Byrons Lane is located approximately 650 m southwest of the site and the Pacific Highway is approximately 500 m to the east. Refer to the site location map presented in Figure 4-1.

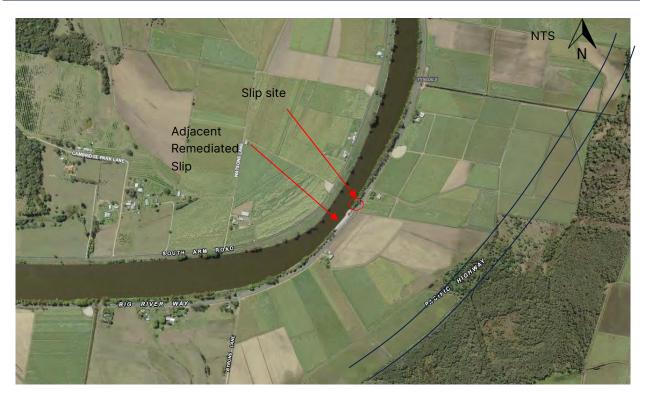


Figure 4-1 Site Locality Plan – Source: Six Maps, NSW (maps.six.nsw.gov.au)

4.2 **Observations**

A geotechnical engineer from the SMEC Grafton office visited the slip site on 29 June 2021 to observe the extent of the slip. The steep headscarp and the risk of instability constrained the site observations to viewing from the road shoulder.

The following photographs depict the site.

Dense vegetation obscured riverbank

Some patch repairs to Big River Way carriageway around Ch33480 m

No obvious tension cracks observed in sealed shoulder.

Photograph 1: Ch33490 m - view south; wide sealed shoulder at southern end of slip.

100% Geotechnical Interpretive and Design Options Report Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design Client Reference: 21.0000129127.1219 Prepared for TfNSW SMEC Internal Ref. 30013154 10 December 2021

Landslip headscarp with some slumping observed regressing back beneath pavement

Photograph 2: Ch33490 m - view north showing slip headscarp profile.

No obvious tension cracks observed in pavement. Pavement cross fall is towards the riverbank.

Headscarp located approximately 5.5 m from edgeline.

Photograph 3: Ch33500 m – view north; slip headscarp and pavement profile viewed from southern end.

Photograph 4: ~Ch33515 - view of slumped road embankment and riverbank below headscarp.

Recent slumping of headscarp pavement and fill materials. Regression back beneath pavement.

Ponding water on subsided pavement

Photograph 5: Ch33530 – slip headscarp and subsidence viewed from southern end of headscarp.

100% Geotechnical Interpretive and Design Options Report Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design Client Reference: 21.0000129127.1219 Prepared for TfNSW SMEC Internal Ref. 30013154 10 December 2021

Photograph 6: Ch33540 - Formation and vegetated riverbank north of slip (view south).

4.3 Previous Remediation Design for Adjacent Site

4.3.1 Concept Design of a Contiguous Pile Wall

SMEC previously developed a concept contiguous pile wall option (15% concept design) for the adjacent slip site before it was terminated due to TfNSW funding considerations and an alternative design pursued.

The preliminary concept contiguous pile wall design considered the following:

- Consideration of temporary stability of piling rig and an estimated maximum surcharge load = 30 kPa behind existing sheet piles.
- 900 mm diameter reinforced concrete piles at 925 mm centres. Sacrificial steel casing proposed for additional short term stability.

Consideration has been given to a contiguous pile wall option at the subject slip site.

4.3.2 Northern Transition Zone

The slope remediation design for the adjacent slip comprised a row of timber piles installed within the river, a rock fill buttress between the failed bank and the timber piles and placement of additional rock armour for scour protection. Refer Figure 4-2 below showing the previous detailed design layout in relation to the subject slip.

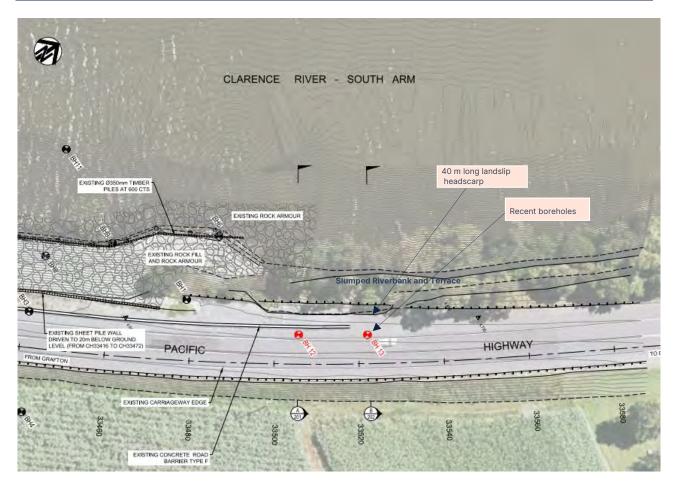


Figure 4-2 Layout Plan – Former Slip Remediation

The subject 40 m long slip is situated between approximately Ch33490 m and Ch33530 m. Rock armour was placed over the river bank in this area to form a 6H:1V longitudinal transition. However, as-built construction drawings have not been sighted.

5 Geotechnical Model

5.1 Geology Maps

Reference to the NSW Department of Primary Industries, Grafton Area Coastal Quaternary Geology Map, 1:100,000 scale, describes the geology of the site as Holocene levee; fluvial sand, silt and clay.

From experience on the nearby Woolgoolga to Ballina Pacific Highway Upgrade, the Holocene sediments situated within the Clarence River floodplain are understood to comprise alluvial, estuarine and deltaic clays, silts and sand. The cohesive materials range from very soft to stiff consistency, are grey to dark grey in colour and typically overly stiffer Pleistocene deposits.

5.2 Acid Sulfate Soil Maps

Reference to the published acid sulfate soil risk map geodatabase rates the site as a high probability of occurrence for acid sulfate soils below 4 m depth.

Acid Sulfate Soils (ASS) are soils containing significant concentrations of pyrite, which when exposed to oxygen in the presence of sufficient moisture, oxidises, resulting in the generation of sulfuric acid. Unoxidised pyritic soils are referred to as potential ASS (PASS). When the soils are exposed, the oxidation of pyrite occurs and sulfuric acids are generated, at which stage the soils are said to be actual ASS (AASS).

Disturbance or poorly managed development and use of ASS can generate significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels (generally pH <4) and produce acid soils, resulting in high salinity.

The low pH, high salinity soils can reduce or altogether preclude vegetation growth and can produce aggressive conditions which may be detrimental to concrete and steel components of structures, foundations, pipelines and other engineering works.

5.3 Geotechnical Investigations

5.3.1 Previous Investigations

Eleven boreholes were drilled in 2009 to investigate the adjacent slip site. Two holes (BH1 and BH2) drilled at either end of the failed section, three holes (BH3, BH4 and BH10) on the existing embankment and the remaining six holes drilled in the river.

Hole Number	Hole Surface RL*	Hole Depth^ (m)	Termination Strata	Water Table
	(m AHD)			RL (m AHD)
BH1	5.143	24.00	very stiff Clay	2.04
BH2	5.239	24.00	very stiff Clay	0.54
ВНЗ	5.172	24.75	stiff Clay	0.37
BH4	3.161	23.65	very stiff Clay	0.06
BH5	-4.741	18.05	very stiff Clay	-0.04
BH6	-3.873	16.35	stiff Clay	-0.27
BH7	-3.852	16.05	stiff Clay	0.55
BH8	-3.0	18.25	stiff Clay	-0.2
ВН9	-1.8	19.35	stiff Clay	-0.1
BH10	5.232	11.25	very stiff Clay	1.03
BH11	-7.934	15.45	medium dense to dense Sand	-0.33

Table 5-1 below provides a summary of the boreholes.

Table 5-1:	Geotechnical	Investigation	Summary	/ Data

Note: * Hole Surface RL starts from any earth material including slumped rock fill which may differ from those on logs; ^ Hole Depth starts from Hole Surface RL.

Borehole logs are provided in Appendix L.

5.3.2 Recent TfNSW Geotechnical Investigations

TfNSW conducted a geotechnical investigation comprising two boreholes (BH12 and BH13) at the subject slip site in April 2021. The results of the investigation are documented in the Geotechnical Factual Report Ref. N2021031, dated 07.06.2021, presented in Appendix L.

5.4 Interpreted Subsurface Conditions

5.4.1 Subsurface Conditions

The interpreted subsurface conditions are presented in Table 5-2 on the following page. The interpreted subsurface conditions are also presented on annotated cross sections and a long section; presented in Appendix A.

5.4.2 Concept Design Parameters

SMEC has developed geotechnical design parameters utilising the available geotechnical investigation data, the adjacent slip remediation design, experience from the Woolgoolga to Ballina Pacific Highway upgrade project and SMEC pile foundation design guidelines. Effective shear strength parameters were also adjusted based on slope stability back-analysis discussed in Section 6.1.

Table 5-3 presents the preliminary geotechnical design parameters for concept design.

5.4.3 Water Levels

5.4.3.1 Tidal Levels

Published tidal information for the Clarence River at Tyndale has been obtained the NSW Public Works Manly Hydraulics Laboratory.

This data indicates an annual average Mean High Water Spring = RL0.35 m and Mean Low Water Spring = RL-0.108 m.

5.4.3.2 Groundwater Levels

Groundwater levels were measured in the following boreholes during geotechnical investigations by others.

- BH3: RL0.37 m
- BH4: RL0.06 m
- BH10: RL1.03 m
- BH13: RL-0.08 m

No longer term groundwater monitoring has been undertaken at the site. Groundwater levels are expected to fluctuate with changing climate and river levels. Consideration has been given to elevated groundwater levels within the embankment as part of the design assessment.

Table 5-2: Summary of Subsurface Conditions						
			Dept	h (m)	RL (m	AHD)
Unit No.	Unit	General Material Description	BH12	BH13	BH12	BH13
1	Pavement	200 mm thick Asphaltic Concrete over 300 mm to 400 mm Gravel layer.	0 to 0.5	0 to 0.6	4.93 to 4.43	4.92 to 4.32
2	Fill	Silty SAND, fine grained, medium dense relative density.	0.5 to 2.0	0.6 to 2.2	4.43 to 2.93	4.32 to 2.72
За	Alluvium	Clayey SILT, low to medium plasticity; soft to firm consistency	2.0 to 3.4	2.2 to 3.5	2.93 to 1.53	2.72 to 1.42
Зb	Alluvium	Silty CLAY, medium plasticity, with trace sand; firm consistency	3.4 to 5.0	3.5 to 5.0	1.53 to - 0.07	1.42 to -0.08
4a		Clayey SILT/CLAY, medium to high plasticity, some fine sand, trace shell fragments; soft consistency	5. 0 to 6.0	5. 0 to 8.0	-0.07 to -1.07	-0.08 to -3.08
4b	Estuarine	Silty CLAY, high plasticity, trace shell fragments; soft to firm consistency	6.0 - 9.5	8.0 - 11.0	-1.07 to -4.57	-3.08 to -6.08
4c		Silty CLAY, medium to high plasticity; stiff consistency	9.5 -16.2	11.0 – 17.0	-4.57 to -11.27	-6.08 to -12.08
5a		SAND, fine to medium grained, loose to medium dense relative density.	16.2 - 17.8	17.0 - 18.5	-11.27 to -12.87	-12.08 to -13.58
5b	Alluvium	CLAY, Sandy Clay, Silty Clay; medium to high plasticity, trace fine sand; stiff to very consistency	17.8 - 22.45 (EOH)	18.5 – 23.0	-12.87 to -17.52 (EOH)	-13.58 to -18.08
0.0		Sandy SILT, stiff consistency	N.E.	23.0 – 23.95 (EOH)	N.E.	-18.08 to -19.03 (EOH)

Notes: NE = Not encountered, EOH = End of borehole

Table 5-3: Summary of Design Parameters								
Unit /Material	Unit Weight y' (KN/m³)	Cohesion c' (kPa)	Friction Angle ¢' (°)	Undraine d Shear Strength C _u (kPa)	Youngs Modulus E'v (MPa)	Horizontal Modulus E'h (MPa)		
1. Pavement – Gravel; dense	20	0	40	-	40	30		
2. Fill – Silty Sand; medium dense	18	0	34	-	7	5		
3a. Clayey Silt, soft to firm consistency	17	4	26	30	6	4.5		
3b. Silty Clay; firm consistency	18	5	27	50	10	7.5		
4a. Clayey Silt/CLAY; soft consistency	17	2	26	25	5	3.75		
4b. Silty Clay; soft to firm consistency	17	4	26	30	6	4.5		
4c. Silty Clay; stiff consistency	19	8	27	75	15	11		
5a. Sand; loose to medium dense	18	0	33	-	8	6		
5b. Clay, Sandy Clay, Silty Clay; stiff/very stiff consistency	19	10	27	100	20	15		
Unit 3a/4a/4b - Soft Clay residual strength parameters along inferred failure surfaces	17	0	22	12	2.5	1.8		
New Rock Fill	18	0	40	-	40	30		

6 Slip Failure Modes and Mechanisms

6.1 Review of Slope Risk Assessment Data

TfNSW conducted a preliminary slope risk assessment (SRA) of the slip site in March 2021. Reference to the preliminary SRA document and sketches (included in Appendix L) indicates the following:

- Evidence of undercutting of riverbank in tidal zone with localised slumping.
- Rock fill and crushed rock exposed on parts of slip slope and along water line.

The following apparent slip mechanisms were noted:

- Erosion of riverbank
- High water levels
- Low strength materials at depth
- Abandoned water main.

TfNSW have not provided SMEC with information on the abandoned watermain. Details such as the size and location of the abandoned watermain are not known and it is not clear how the abandoned watermain could have contributed to the slip.

The following slip modes/hazards were noted:

- 1. Collapse of headscarp. Erosion and slumping of sand fill, with potential to regress back beneath pavement towards carriageway. Assessed as ARL1 and C3 consequence class.
- 2. Shallow slip along inferred failure plane above tide level. Assessed as ARL2 to 3 and C3 consequence class.
- 3. Deeper slip along potential failure plane. Assessed as ARL4 and C3 consequence class.

Hazard 1 appeared active and is likely to regress back towards the carriageway. There is uncertainty about whether the slip is relatively shallow seated (Hazard 2) or deeper seated (Hazard 3). To investigate the potential critical slip surfaces, SMEC has undertaken slope stability analyses as discussed in the following section.

6.2 Stability Analyses

6.2.1 Back-analysis

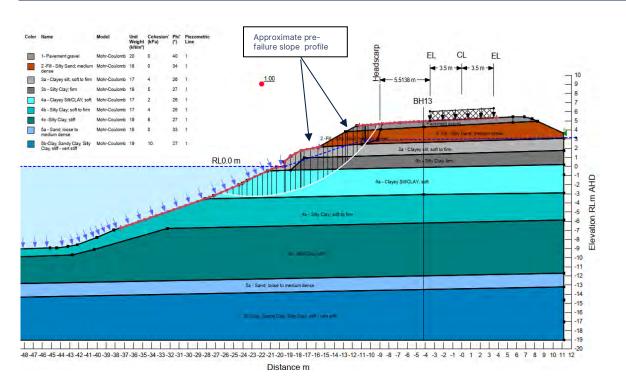
SMEC has attempted to back-analyse the slip and investigate the critical slide surface using a representative geotechnical cross section through the slip (cross section B-B at ~Ch33520 m). The pre-failure slope profile has been estimated from the survey and the SRA data.

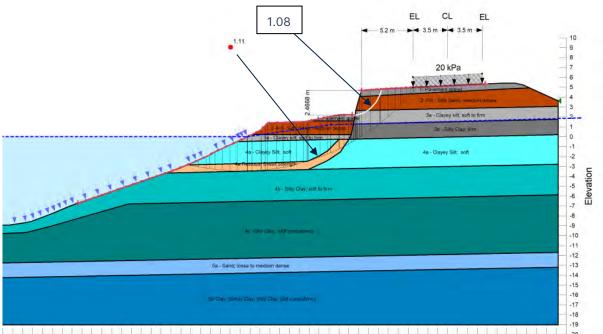
For back-analysis, ground water levels were assumed to be elevated within the embankment and tide levels adjusted as part of the analyses.

The slip was observed on 2 March 2021; before significant flooding of the Clarence River in late March. Rainfall records from the nearby Brushgrove Station indicate approximately 150 mm of rainfall between 15 and 25 February 2021 and with minimal rainfall between 26 February and 2 March 2021. It is likely that elevated water levels were present in the embankment at the time of failure.

Geostudio 2019 - SLOPE/W limit equilibrium software was used to conduct the analyses.

Figure 6-1 presents the results of the analyses.




Figure 6-1 Slope/W Back Analysis Output

The analysis shows that the critical slip surface aligns close to the actual headscarp and exits the slope through the inferred soft clay layer at approximately RL-3 m. This failure mode is consistent with Hazard 3 – deeper seated slip.

Groundwater levels were modelled at RL0.0 m in the river and rising to approximately RL3.0 m within the embankment. The slope stability analyses is sensitive to water levels.

6.2.2 Stability of Road Embankment

Figure 6- 2 below shows presents the Slope/W analyses for the slumped riverbank profile at cross section B-B.

-20 15-44-43-42-41-40-39-38-37-36-35-34-33-32-31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10-9-8-7-6-5-4-3-22-1-0-12-3-4-5-6-7-8-9-10-11-12

100% Geotechnical Interpretive and Design Options Report Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design Client Reference: 21.0000129127.1219 Prepared for TfNSW SMEC Internal Ref. 30013154 10 December 2021 The stability analyses for the slip profile indicates low factors of safety (1.08) for slip surfaces extending back behind the headscarp and low factors of safety (1.11) for deeper slide surfaces reaching the carriageway. These deeper slide surfaces are passing through an inferred shear zone modelled with residual shear strength parameters. The analyses is sensitive to assumed groundwater levels.

7 Preliminary Durability Assessment

7.1 Previous Durability Assessments

Reference has been made to the 2010 durability and corrosion assessment report prepared for the steel sheet piles installed at the adjacent slip site. The corrosion assessment assumed the water to be brackish and predicted the following corrosion rates for steel sheet piles.

Exposure Zone	Exposure Classification	Corrosion Rate (mm/ year)	Comment
In soil, above groundwater	Mild	0.01 – 0.02	AS2159 Exposure classification assessed from limited lab testing to be non-aggressive. However, given the different soil horizons and the possibility of SRB, this has conservatively been raised to "Mild" above groundwater.
In soil, in groundwater	Moderate	0.02 - 0.04	AS2159 Exposure classification assessed from limited lab testing to be mild. However, given the different soil horizons and the possibility of SRB, this has conservatively been raised to "Moderate" in groundwater.
In rock fill, atmospheric exposure	Medium	0.025 – 0.05	"Medium" (C3) as per AS 4312 (2008)
In rock fill, tidal Exposure	Very Severe	0.1	AS2159 Exposure classification "Very Severe" in seawater tidal/splash zone.
In rock fill, submerged	Severe	0.04	AS2159 Exposure classification "Severe" for piles submerged in seawater

Table 7-1: Corrosion Rates for Steel Sheet Piles

The following table summarises the estimated corrosion losses per exposed face for untreated steel for a 50 and 100 year design life.

Table 7-2: Estimated Corrosion Per Exposed Face							
Exposure Zone	Exposure Classification	Assumed Corrosion Rates (mm/ year)	50 year Corrosion (mm)	100 year Corrosion (mm)			
In soil, above groundwater	Mild	0.02	1	2			
In soil, in groundwater	Moderate	0.04	2	4			
Atmospheric exposure	Medium	0.04	2	4			
Tidal Exposure	Very Severe	0.1	5	10			
Submerged	Severe	0.04	2	4			

7.2 Aggressivity Testing

One aggressivity test was carried out on a soil sample (BH12: 7.0m – 7.45m depth, Silty Clay). Compared AS2159-2009, the results of the aggressivity test indicate a **non-aggressive** exposure classification for steel and concrete piles embedded in the soil.

However, as indicated in section 6.2.1, other considerations are likely to govern the exposure classification for this site.

7.3 Acid Sulfate Soils

One acid sulfate soil test was carried out on a soil sample (BH12: 5.5m - 5.95m depth, Sandy Clayey Silt). The laboratory test results were Net Acidity = 462 mol H⁺/t. This exceeds recommended guidelines, triggering the need for an acid sulfate management plan if soil disturbance is proposed.

Disturbance to acid sulfate soils may also influence corrosion rates.

7.4 Corrosion Rates for Concept Design

For concept design, SMEC has adopted the corrosion rates per exposed face presented in Table 7-2.

8 **Concept Slope Remediation Options**

8.1 Design Criteria

8.1.1 Purpose

The purpose of the concept remediation options are to investigate feasible alternative design solutions to primarily protect Big River Way from further regression of the slip. As per the project brief, consideration has been given to three piled solutions and an alternative structural solution.

8.1.2 Design Life

In accordance with the project brief, the remediation works are to achieve a minimum design life of 50 years. Consideration has also been given to solutions that can achieve a 100 year design life.

8.1.3 Global Stability Factor of Safety

Reference to TfNSW technical Direction GTD 2018/001 | TfNSW 18.748 – "Geotechnical design for Remediation of Existing Slopes and Embankments" 22 February 2018, the recommended factors of safety for different consequence classes are presented in Table 8-1.

Consequence Class	C1	C2	C3	C4	C5
Long Term FOS	1.5	1.4	1.3	1.25	1.25
Short Term FOS	1.25	1.25	1.2	1.2	1.2

Table 8-1 Factor of Safety (FOS) for different consequence class scenarios

In accordance with the contract, a long-term FOS of 1.3, a short-term FOS of 1.2 has been targeted in design remediation for a Consequence Class C3 slope.

8.1.4 Design Loading

The following design loads have been considered for concept design:

- Long term, 20 kPa vertical traffic live load applied to carriageway, breakdown lane and shoulder.
- Variable short term, 30 + kPa vertical live loads to represent construction plant such as a piling rig or crane.

8.2 Option 1A – Cantilever Sheet Piled Retaining Wall

8.2.1 Summary

Concept Option 1A seeks to retain the road embankment by installing a row of cantilevered steel sheetpiles along the alignment of the existing slip headscarp. The approximately length of the wall is 42 m and comprises AZ46-700N sheetpiles, at least 16 m length, embedded within the stiff clays.

The following Figure 8-1 presents a sketch layout of Option 1A.

Concept sketches showing Option 1A are presented in Appendix B.

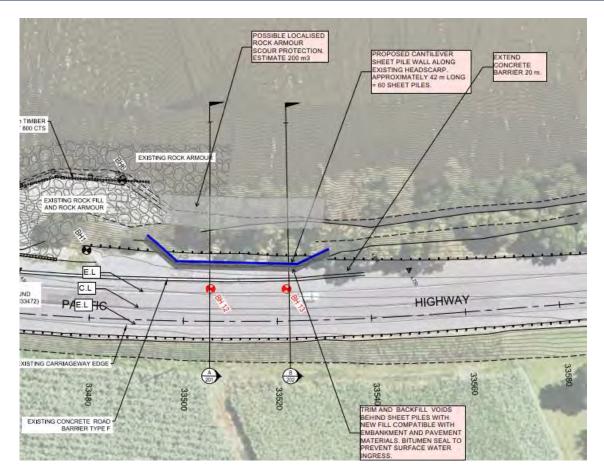


Figure 8-1 Sketch layout of Option 1A

8.2.2 Analysis and Results

8.2.2.1 Preliminary Design Life Assessment

Based on the predicted corrosion rates presented in Table 6-2, the steel sheetpiles will struggle to achieve a 100 year design life without robust corrosion treatment. However, a 50 year design life is considered achievable with allowance for sacrificial steel for corrosion.

The geotechnical assessment discussed in following sections has indicated a AZ24-700N sheet pile to be satisfactory. Allowing for corrosion in the critical tidal splash zone, a total of 7 mm of sacrificial steel thickness is assessed. A corresponding thicker AZ46-700N sheetpile is therefore proposed.

8.2.2.2 Scour Considerations

Consideration has been given to continued slumping, scour and erosion of the slip mass and riverbank located below the sheet piles. The inferred long term riverbank profile in front of the sheetpiles is presented on the sketch cross sections. This results in an estimated long term retained height of approximately 3.5 m.

Localised rock armour treatment within the undercut tidal zone has been proposed.

8.2.2.3 Geotechnical Assessment

Wallap Analysis

WALLAP retaining wall analysis software has been used to assess performance of the cantilever sheet piles.

- AZ24-700N sheet piles were modelled at 16 m long, pile toe elevation = RL-11 m.
- A uniform 20 kPa surcharge was applied, setback 2 m from the rear face of the wall.

The results of the analyses are summarised in the following table and the Wallap output is presented in Appendix C.

Scenario	Calculated Factor of Safety	Calculated Bending Moment (kNm)	Calculated Pile Head Deflection (mm)
Drained Analyses – water level RL0 m in river, RL 0 m in embankment.	1.53	66	29
Drained Analyses – water level RL0 m in river, RL 1m in embankment	1.47	84	54
Drained Analyses – water level RL0 m in river, RL2m in embankment	1.40	120	100
Drained Analyses – water level RL0 m in river, RL3m in embankment	1.31	204	195

Table	8-2:	Summary	of W	allap	Analyses
-------	------	---------	------	-------	----------

Relatively large sheetpile displacements are calculated at high differential groundwater levels. Drainage could be incorporated behind the wall to reduce the likelihood of prolonged high differential groundwater levels and associated high sheetpile deflections.

Drainage behind the sheetpiles could comprise a drainage aggregate layer wrapped in geotextile with perforated subsoil drainage pipes discharging beyond the end of the wall or through the face of the wall. Alternately, a row of closely spaced weep holes with removable filter drains could be installed through the face of the sheet pile wall to dissipate water pressures behind the wall.

Drainage measures could

Slope Stability Analyses

SLOPE/W limit equilibrium software has been used to assess the stability of the embankment under short term construction loading at various setback distances.

The results of the analyses are summarised in the following table and example output is presented below.

Scenario	Surcharge Load (kPa)	Horizontal Setback from Headscarp (m)	Calculated Factor of Safety
	20	3.0	1.2
Undrained Analyses - short term construction surcharge (ignoring sheet piles)	35	3.0	1.2
	40	4.2	1.2

 Table 8-3: Summary of Slope Stability Analyses

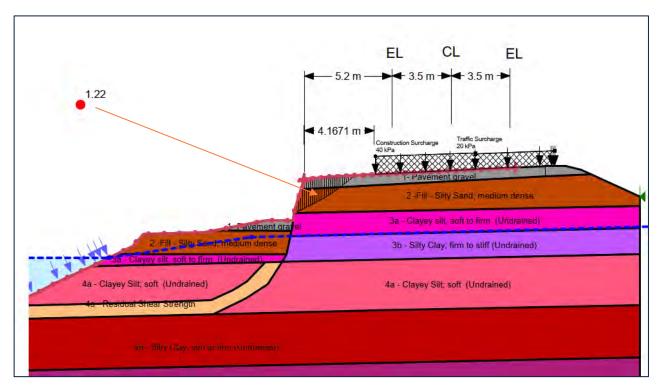


Figure 8-2 Slope/W output showing critical 4.2 m setback distance for 40 kPa surcharge load

8.2.2.4 Preliminary Structural Assessment

Allowing for sacrificial corrosion equivalent to AZ24-700N Grade 270GP sheetpile properties, the assessed design bending moment capacity = $0.9 \times 656 = 590 \text{ kNm/m}$ which exceeds the design bending moment action.

8.2.3 Anticipated Construction Sequence

The following construction sequence is anticipated for the sheetpiles:

- 1. Set up traffic control, close northbound lane.
- 2. Construct temporary working platform for excavator mounted or crane mounted sheet piling rig.
- 3. Install sheet piles using hydraulic impact hammer or vibratory hammers. The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration should be given to alternate installation methods such as jacking.
- 4. Install drainage behind wall, fill voids and reinstate pavement and bitumen wearing course to prevent surface water ingress.
- 5. Extend concrete safety barrier.

Requirements to install rock armour scour protection including any necessary clearing to vegetated riverbank are to be discussed and confirmed with TfNSW.

8.2.4 Maintenance and Monitoring Considerations

- Monitoring of sheet pile deflections is recommended to compare with design estimates.
- Monitor, repair and sealing of tension cracks that may form in the shoulder as a result of sheetpile wall deflections.
- Monitoring of corrosion and maintenance to any proposed corrosion treatments. Sheet pile thickness
 would need to be measured periodically, say every 3 to 5 years to compare corrosion rates against
 design assumptions. Localised excavation would likely be required in front of the sheet piles to enable
 measurements to be undertaken using ultrasonic gauges within the tidal zone where corrosion rate are
 expected to be greatest. A corrosion monitoring and maintenance plan would need to be developed.
 Corrosion treatment could also be applied to the upper 7 m section of sheet piles to protect against
 corrosion in the critical zones.

• Maintenance and monitoring of riverbank profile in front of sheetpile wall. If the retained height exceeds approximately 3.5 m, rock fill and rock armour may need to be placed to restore and maintain passive support to wall.

8.2.5 Considerations for Detailed Design

- Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deflections.
- Detailing of measures to control sheet pile deflections to within acceptable limits such as incorporating drainage behind the wall.
- Consideration to corrosion treatments to achieve a 50+ year design life.
- Extent and staging of any proposed scour treatment to riverbank.

8.3 Option 1B – Anchored Sheet Piled Retaining Wall

8.3.1 Summary

Concept Option 1B seeks to retain and regain the failed embankment by installing a row of sheetpiles on the riverside of the headscarp, through the slip. In this location, the sheetpiles are supporting weak, slumped slip materials and are expected to require a row of anchors or tie bars to control displacements.

The concept design is a 40 m long sheet piled retaining wall comprising approximately 12 m long sheet piles. A second row of deadman sheetpiles (5 m long) are proposed to be located on the opposite side of the road, positioned to avoid buried services (Telstra and watermain). A row of steel tie bars anchor the retaining wall to the deadman via horizontal waler beams.

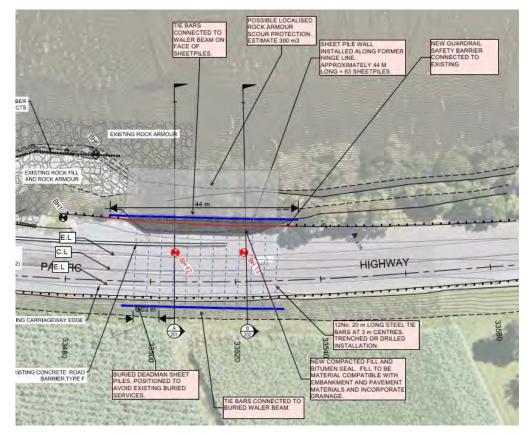


Figure 8-3 Sketch layout of Option 1B

Concept sketches showing Option 1B are presented in Appendix B.

8.3.2 Analysis and Results

8.3.2.1 Preliminary Design Life Assessment

A 50 year design life is considered achievable with a sacrificial steel allowance for corrosion. The geotechnical assessment discussed in following sections has indicated a AZ24-700N sheet pile to be satisfactory. Allowing for corrosion in the critical tidal splash zone, a total of 7 mm of sacrificial steel thickness is assessed. A thicker AZ46-700N sheetpile is proposed.

8.3.2.2 Scour Considerations

Similar to Option 1A with a 4 m high retained height considered.

8.3.2.3 Geotechnical Assessment

Wallap Analysis

WALLAP retaining wall analysis software has been used to assess performance of the cantilever sheet piles.

- AZ24-700N sheet piles were modelled at 12 m long, pile toe elevation = RL-7.0 m.
- A uniform 20 kPa surcharge was applied, setback 2 m from the rear face of the wall.

The results of the analyses are summarised in the following table and the Wallap output is presented in Appendix C.

Scenario	Calculated Factor of Safety	Calculated Bending Moment (kNm/m)	Calculated Pile Deflection (mm)	Anchor Force (kN/m run)
Drained Analyses – water level RL0 m in river, RL 0 m in embankment. Anchors installed.	1.83	64	17	53.3
Drained Analyses – water level RL0 m in river, RL 1m in embankment. Anchors installed.	1.76	94	13	63.0
Drained Analyses – water level RL0 m in river, RL2 m in embankment. Anchors installed.	1.69	139	20	79.0
Drained Analyses – water level RL0 m in river, RL3 m in embankment. Anchors installed.	1.61	190	32	102.6

Table 8-4: Summary of Wallap Analyses

Drainage could be installed behind the sheetpiles to control water levels and could comprise a drainage aggregate layer wrapped in geotextile with perforated subsoil drainage pipes discharging beyond the end of the wall or through the face of the wall. Alternately, a row of closely spaced weep holes with removable filter drains could be installed through the face of the sheet pile wall.

Slope Stability Analyses

SLOPE/W limit equilibrium software has been used to assess the stability of the embankment under short term construction loading at various setback distances. Refer previous Table 8.3.

Option 1B requires the sheet piles to be installed below the existing headscarp, through unstable slip material. To maintain safe setback distances from the unstable slip headscarp, a large crane with hammer attachment is expected to be required to install the piles.

8.3.2.4 Preliminary Structural Assessment

Allowing for sacrificial corrosion equivalent to AZ24-700N Grade 270GP sheetpile properties, the assessed design bending moment capacity = $0.9 \times 656 = 590 \text{ kNm/m}$ which exceeds the design bending moment action.

Based on the assessed anchor forces, the concept design requires 38 mm diameter steel anchor bars at 3 m centres, connected to AZ36-700N deadman sheetpiles. The deadman sheet piles are required to be embedded 5 m deep to develop the requisite passive resistance. A factor of safety of 3 has been incorporated into the assessment of the passive pressure.

8.3.3 Anticipated Construction Sequence

The anticipated construction sequence for the sheetpiles is as follows:

- 1. Set up traffic control, close northbound lane.
- 2. Construct temporary working platform for specialist large excavator or crane mounted sheet piling rig.
- 3. Install sheet piles using hydraulic impact hammer or vibratory hammers. The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration should be given to alternate installation methods such as jacking.
- 4. Construct new fill behind sheet pile wall.
- 5. Switch traffic, close southbound lane.
- 6. Construct temporary working platform.
- 7. Install deadman sheet piles.
- 8. Install tie rods either by drilling or trenching.
- 9. Install waler beams and connect tie rods.
- 10. Repair/reinstate pavements.
- 11. Install new guardrail safety barrier.

Requirements to install rock armour scour protection including any necessary clearing to vegetated riverbank are to be discussed and confirmed with TfNSW.

8.3.4 Maintenance and Monitoring Considerations

- Monitoring of sheet pile deflections recommended to compare with design estimates.
- Monitor, repair and sealing of tension cracks that may form in the shoulder as a result of sheetpile wall deflections.
- Monitoring of corrosion and maintenance to any proposed corrosion treatments. Monitoring of
 corrosion and maintenance to any proposed corrosion treatments. Sheet pile and waler thicknesses
 would need to be measured periodically, say every 3 to 5 years to compare corrosion rates against
 design assumptions. Localised excavation would likely be required in front of the sheet piles to enable
 measurements to be undertaken using ultrasonic gauges within the tidal zone where corrosion rate are
 expected to be greatest. A corrosion monitoring and maintenance plan would need to be developed.
 Corrosion treatment could also be applied to the upper 7 m section of sheet piles to protect against
 corrosion in the critical zones.
- Monitoring riverbank profile in front of sheetpile wall. If retained height exceeds approximately 4 m, rock fill/rock armour may need to be placed to maintain passive support in front of the wall.

8.3.5 Considerations for Detailed Design

- Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deflections.
- Detailed assessment of corrosion rates and any necessary corrosion treatments to achieve a minimum 50 year design life.
- Extent and staging of any proposed scour treatment to riverbank.
- Location of buried services (Watermain and Telstra) in relation to deadman sheetpiles and anchors.

8.4 Option 2 – Contiguous Pile Wall

8.4.1 Summary

Concept Option 2 seeks to retain the road embankment by installing a row of contiguous piles. The piles are proposed to be installed using a continuous flight auger (CFA) drilling rig. Alternately, driven steel tubular piles (possibly interlocked) may be installed and the upper 7 m to 10 m could be excavated and replaced with reinforced concrete for durability.

The approximately length of the wall is 42 m and comprises 750 mm diameter piles at close (1200 mm to 1400 mm) centres. The piles are proposed to be positioned approximately 1.5 m back from the existing headscarp, primarily to allow the piles to be installed without further temporary stability or casing requirements. The headscarp is proposed to be battered and rock armoured.

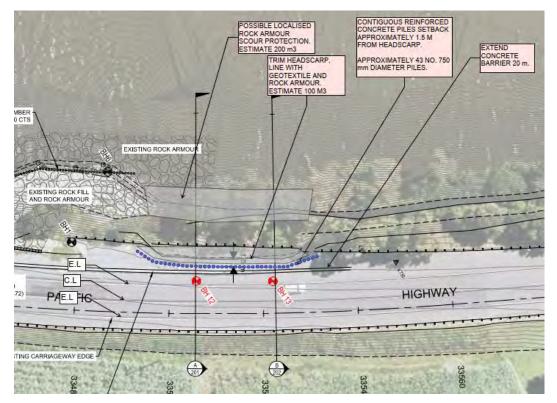


Figure 8-4 Sketch layout of Option 2

Concept sketches showing Option 2 are presented in Appendix D.

8.4.2 Analysis and Results

8.4.2.1 Preliminary Design Life Assessment

A 100 year design life is considered achievable with reinforced concrete piles.

8.4.2.2 Scour Considerations

Consideration has been given to continued slumping, scour and erosion of the slip mass located below the row of piles. The inferred long term embankment and riverbank profile in front of the piles is presented on the sketch cross sections and a retained height of approximately 3.5 m is estimated.

Allowance for some localised rock armour treatment near the tidal zone has been included in the concept. Trimming and rock armouring to the headscarp is also proposed.

8.4.2.3 Geotechnical Assessment

Wallap Analysis

WALLAP retaining wall analysis software has been used to assess performance of the cantilever sheet piles.

- 750 mm diameter, reinforced concrete piles were modelled, 17 m long with pile toe at RL-12 m.
- A uniform 20 kPa surcharge was applied, setback 1 m from the rear face of the wall.

The results of the analyses are summarised in the following table and the Wallap output is presented in Appendix E.

Table 8-5: Summary of Wallap Analyses							
Scenario	Calculated Factor of Safety	Calculated Bending Moment (kNm)	Calculated Pile Head Deflection (mm)				
Drained Analyses – water level RL0 m in river, RL 0 m in embankment.	1.56	168	26				
Drained Analyses – water level RL0 m in river, RL 1m in embankment	1.50	193	40				
Drained Analyses – water level RL0 m in river, RL2m in embankment	1.43	245	61				
Drained Analyses – water level RL0 m in river, RL3m in embankment	1.35	337	95				

Slope Stability Analyses

SLOPE/W limit equilibrium software has been used to assess the stability of the embankment under short term construction loading and associated setback distances.

The results of the analyses are summarised in the following table and the output is presented in Appendix E.

8.4.2.4 Structural Assessment

Pile reinforcement cage requirements have not been assessed as part of the concept design.

8.4.3 Anticipated Construction Sequence

The following construction sequence is anticipated for the sheetpiles:

- 1. Set up traffic control, close northbound lane.
- 2. Excavate and batter back headscarp.
- 3. Construct temporary working platform for CFA piling rig. CFA piling rigs typically have high track bearing pressures in the order of 250 kPa to 350 kPa. One or two rows of sacrificial micropiles may be required to be installed beneath working platform to provide the necessary temporary stability.
- 4. Drill and install reinforced concrete piles in a predetermined sequence (E.g. every 4th pile).
- 5. Collect and transport pile spoil offsite for treatment (such as ASS liming treatment) and subsequent disposal.
- 6. Trim headscarp and apply rock armour to slope face and riverbank.
- 7. Extend concrete safety barrier.

Requirements to install rock armour scour protection including any necessary clearing to vegetated riverbank are to be discussed and confirmed with TfNSW.

8.4.4 Maintenance and Monitoring Considerations

- Monitor, repair and sealing of tension cracks that may form in the shoulder as a result of pile wall deflections.
- Monitoring riverbank profile in front of pile wall. If piles become exposed, rock armouring or local shotcrete treatment to soils in between piles may be required to prevent erosion and scour. If retained height exceeds approximately 3.5m, rock fill/rock armour may need to be placed to maintain passive support to wall.

8.4.5 Considerations for Detailed Design

- Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deflections.
- Detailed assessment of cover and reinforcing requirements to achieve a 100 year design life.
- Extent and staging of any proposed scour treatment to riverbank.

8.5 Option 3 – Shear Piles and Rock Fill

8.5.1 Description

Concept Option 3 is similar to the adjacent, previous slip remediation. It seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower river bank and backfilling behind the piles with rock fill and rock armour to reinstate the slumped riverbank profile and prevent further slip regression towards the carriageway.

Figure 8 -4 presents the concept arrangement layout. Concept sketches showing Option 3 are presented in Appendix F.

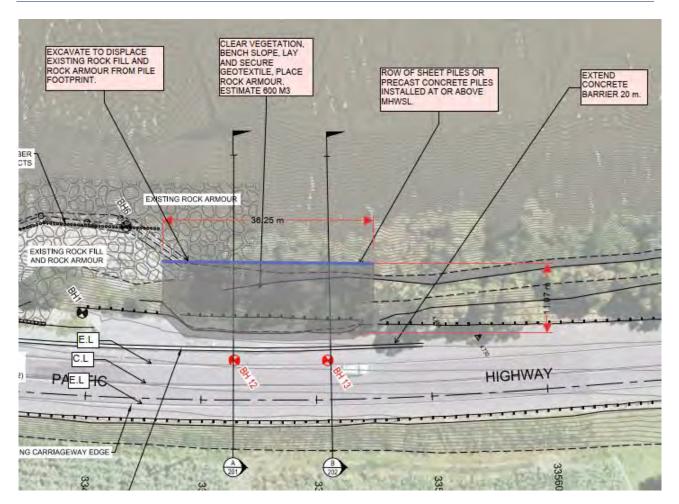


Figure 8-5 Sketch layout of Option 3

8.5.2 Analysis and Results

8.5.2.1 Preliminary Design Life Assessment

If sheet piles are used, a 50 year design life is expected to be achieved. Alternately, interlocking tubular steel piles could be used. If alternate precast reinforced concrete piles are adopted, a 100 year design life is expected for the piles.

8.5.2.2 Geotechnical Assessment

Slope Stability Analyses

SLOPE/W limit equilibrium software has been used to assess the stability of the embankment under short term and long term loading.

The results of the analyses are summarised in the following table and the output is presented in Appendix G.

Scenario	Calculated Factor of Safety	Shear Force (kN/m)
Undrained Analyses - short term - shear piles installed	1.38	
Undrained Analyses - short term - shear piles and rock fill installed	1.39	90
Drained Analyses – long term - shear piles and rock fill installed	1.33	

Table 8-6: Summary of Slope Stability Analyses

8.5.2.3 Structural Assessment

The Slope/W analyses indicates a 90kN pile shear force is required to achieve a long term factor of safety of at least 1.3.

At the adjacent slip site, SMEC previously designed similar timber shear piles supporting rock fill and rock armour. The 350 mm diameter timber shear piles were assessed to have a mobilised shear capacity of 96.7 kN per pile.

The proposed sheet piles or alternate reinforced concrete piles are expected to have similar or greater shear capacity and no further detailed assessment has been undertaken as part of this concept design stage.

8.5.3 Anticipated Construction Sequence

The following construction sequence is anticipated for this option:

- 1. Set out piles in river.
- 2. Mobilise a barge with a large excavator to excavate and displace existing rock fill and rock armour from the proposed pile footprint and obstructions to barge.
- 3. Mobilise a barge with pile driving rig to install the row of sheet piles or precast concrete piles. The stability of the site and adjacent riverbanks may be sensitive to vibrations and consideration should be given to hydraulic impact hammers rather than vibratory hammers.
- 4. Clear vegetation from riverbank and excavate terraces.
- 5. Lay and secure heavy duty geotextile.
- 6. Place rock fill and rock armour to slope commencing from behind the piles. Likely to require some rock fill to be placed from barge and/or a long reach excavator.
- 7. Extend concrete safety barrier.

8.5.4 Maintenance and Monitoring Considerations

- Monitoring of pile deflections recommended to compare with design estimates.
- Monitor, repair and sealing of cracks that may form in the shoulder as a result of settlement.
- Monitoring riverbank profile in front of shear piles. If retained height exceeds approximately 2.3m, rock fill/rock armour may need to be placed to maintain passive support to wall.

8.5.5 Considerations for Detailed Design

• Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deflections.

- Detailed assessment of corrosion rates and corrosion treatments to achieve a minimum 50 year design life.
- Extent and staging of any proposed scour treatment to riverbank.

8.6 Option 4 - Micro Pile and Gabion Wall

8.6.1 Description

Concept Option 4 seeks to retain the road embankment with a gabion basket retaining wall founded on a piled raft footing. Two rows of precast, driven, reinforced concrete piles are proposed to be installed and connected to a reinforced concrete pad footing. The gabion baskets to be founded on the concrete raft footing constructed on top of the piles.

Temporary battered excavations are required to facilitate the construction of the reinforced concrete footing and gabion baskets. Figure 8-5 below shows the general layout of the gabion wall. Concept sketches showing Option 4 are presented in Appendix H.

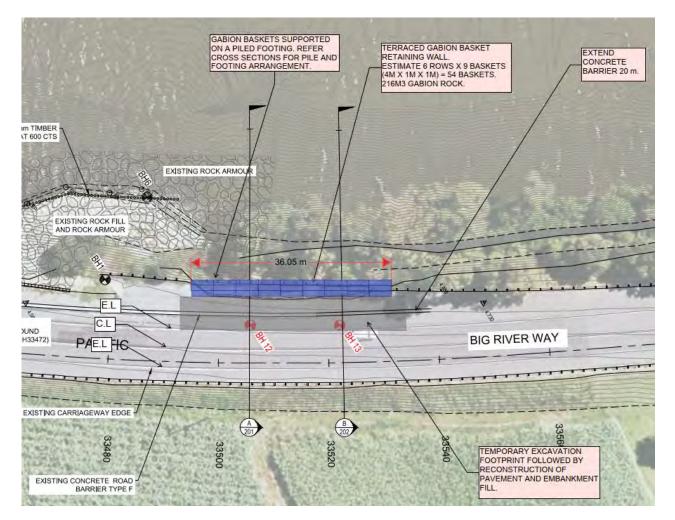


Figure 8-6 Sketch layout of Option 4

8.6.2 Analysis and Results

8.6.2.1 Preliminary Design Life Assessment

The piled foundation is expected to achieve a 100 year design life. The gabion baskets are expected to achieve a 50 year design life.

8.6.2.2 Geotechnical Assessment

Slope Stability Analyses

SLOPE/W limit equilibrium software has been used to assess the stability of the embankment under short term and long term loading.

The results of the analyses are summarised in the following table and the output is presented in Appendix I.

Scenario	Calculated Factor of Safety	Pile Shear Force (kN/m)
Undrained Analyses - short term - prior to installing piles.	1.22	N/A
Undrained Analyses - short term - piles installed.	1.36	70
Undrained Analyses - short term - temporary excavation batter	1.27	N/A
Drained Analyses – long term - shear piles gabion wall installed.	1.30	70

 Table 8-7: Summary of Slope Stability Analyses

The proposed piles are designed support the weight of the gabion baskets and provide lateral shear restraint. The piles are required to found within the stiff clays to achieve the requisite axial capacity through a combination of skin friction and end bearing.

The Slope/W analyses indicates a 70 kN pile shear force is required to achieve a long term factor of safety of at least 1.3. Based on previous analyses undertaken at the adjacent slip site, at least 12 m long, 450 mm square reinforced concrete piles are expected to provide the necessary shear capacity and axial capacity, subject to further detailed analyses.

Sliding and Overturning Checks

Preliminary calculations have been carried out to check sliding and overturning stability of the proposed gabion wall structure founded upon a reinforced concrete foundation. The calculations were undertaken in accordance with AS5100.3:2017, adopting a geotechnical strength reduction factor of 0.55 and are presented in Appendix I. The calculations indicate the proposed geometry is adequate. However, to satisfy sliding stability, the concrete foundation must be roughened and potentially be inclined back towards the carriageway at 3 degrees. Further detailed calculations would be carried out as part of detailed design.

8.6.3 Anticipated Construction Sequence

The following construction sequence is anticipated for this option:

- 1. Set up traffic control, close northbound lane.
- 2. Excavate to facilitate piling.
- 3. Construct temporary working platform for excavator or crane mounted piling rig. Minimum 3 m setback required from slip headscarp.
- 4. Install driven piles.
- 5. Excavate temporary 2H:1V construction batter.

- 6. Construct reinforced concrete footing connected to piles.
- 7. Construct gabion basket retaining wall.
- 8. Fill in front and behind gabion wall. Rock armour on the river side to prevent undercutting of the piled raft and exposure of the mini piles
- 9. Reinstate pavement.
- 10. Extend concrete safety barrier.

Requirements to install rock armour scour protection including any necessary clearing to vegetated riverbank are to be discussed and confirmed with TfNSW.

8.6.4 Maintenance and Monitoring Considerations

- Monitoring riverbank profile in front of wall. If retained height exceeds approximately 3m, rock fill/rock armour may need to be placed to maintain passive support to wall.
- Monitor corrosion of gabion baskets and undertake repairs as necessary.

8.6.5 Considerations for Detailed Design

- Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deflections.
- Detailed assessment of piled footing and reinforcement requirements.
- Detailed arrangement of gabion basket wall.
- Detailed assessment of corrosion rates and corrosion treatments to achieve a minimum 50 year design life.
- Extent and staging of any proposed scour treatment to riverbank.

8.7 Comparison of Options

SMEC has undertaken a weighted multicriteria assessment to compare the four concept slip remediation options. The assessment criteria and weightings were adopted from other TfNSW slope remediation projects and include design, construction, environmental, community and costing components.

The criteria weightings range from 10% to 30% and the criteria scores range from 1 (Very Poor) to 5 (Excellent).

The following Table 8-8 and Table 8-9 present the comparative assessment.

	Descriptions														
Criteria	Option 1A - Cantilever Sheet Pile Wall	Option 1B - Anchored Sheet Pile Wall	Option 2 - Contiguous Pile Wall	Option 3 – Shear Piles and Rock Fill	Option 4 – Gabion Wall and Piled Foundation										
Technical Merit															
Design life/durability	50 year design life expected with sacrificial corrosion allowance.	50 year design life expected with sacrificial corrosion allowance.	100 year design life expected with reinforced concrete.	50 to 100 year design life expected depending on type of shear piles.	100 year design life for foundation. 50 year design life for gabion walls.										
Stability	GTD 2018/001 Factors of Safety met. Temporary stability requires minimum setbacks. Stability sensitive to groundwater levels and riverbank profile.	GTD 2018/001 Factors of Safety met. Temporary stability requires minimum setbacks. Stability less sensitive to fluctuating groundwater levels.	GTD 2018/001 Factors of Safety met. Temporary stability requires minimum setbacks and possibly micropiles.	GTD 2018/001 Factors of Safety met. Shear piles need to be accurately positioned.	GTD 2018/001 Factors of Safety met. Temporary stability requires minimum setbacks and battered excavations.										
Construction															
Risks to Life	Temporary embankment stability. Heavy tracked plant and equipment. Vehicle movements.	Temporary embankment stability. Heavy tracked plant and equipment. Vehicle movements.	Temporary embankment stability. Heavy tracked plant and equipment. Vehicle movements. Deep excavations.	Temporary embankment stability. Working over water. Vehicle movements, plant roll over.	Temporary embankment and excavation stability. Tracked plant. Vehicle movements. Deep excavations.										
Other Risks	Sheet pile driveability and adverse vibrations.	Sheet pile driveability and adverse vibrations. Proximity to buried services.	Quality assurance and control heavily reliant on contractor. Environmental contamination.	Existing rock fill in river obstructing pile driving. Excavation in riverbed. Manoeuvring barge to enable installation of piles above high tide level. Environmental contamination from earthworks. Rock fill transition zones.	Manual handling injuries, slip, trips and falls. Existing rock fill in river obstructing pile driving.										
Constructability	Relatively simple construction sequence that has been done previously on adjacent site.	Relatively complex construction sequence with additional stages and traffic switches.	Relatively simple construction sequence. Specialist and experienced CFA piling contractor required.	Construction requires both overwater and land based construction activities.	Construction requires several elements; precast piles, cast in- situ slab, earthworks, gabion baskets, gabion rock.										

Table 8-8: Description of Options Against Criteria

100% Geotechnical Interpretive and Design Options Report Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design Client Reference: 21.0000129127.1219 Prepared for TfNSW

	Descriptions													
Criteria	Option 1A - Cantilever Sheet Pile Wall	Option 1B - Anchored Sheet Pile Wall	Option 2 - Contiguous Pile Wall	Option 3 – Shear Piles and Rock Fill	Option 4 – Gabion Wall and Piled Foundation									
Environment														
Impacts/ Footprint	Smallest disturbance footprint. Possible vegetation clearance and rock armouring (to be confirmed).	Relatively small disturbance footprint. Additional excavation for anchors and waler beams. Possible vegetation clearance and rock armouring (to be confirmed).	Relatively small disturbance footprint. However, a moderate volume of pile spoil (soils and water mixtures) will be displaced and requires collection, possible treatment and disposal.	Relatively large disturbance footprint associated with rock fill and rock armour treatment to embankment and transition zones.	Moderate disturbance footprint involving excavation to construct gabion wall structure.									
Long term including visual	Sheet pile wall face exposed and deflection predicted to occur. Sheet piles expected to be obscured by regenerating riverbank vegetation.	Sheet pile wall face and anchors exposed. Expected to be obscured by regenerating riverbank vegetation.	Initially buried. Piles may become exposed with long term erosion and scour.	Shear piles and rock fill exposed. Similar visual appearance to adjacent slip remediation site.	Gabion wall structure visible.									
Community Impac	cts During Construction													
Travel time	Minor delays due to lane closure.													
Road closure	Single northbound lane closure expected.	Single northbound and southbound lane closures expected.	Single northbound lane closure expected.	Single northbound lane closure expected.	Single northbound lane closure expected.									
Property Access	Not expected to be required.													
Duration	Estimated at 2 weeks.	Estimated at 3 weeks.	Estimated at 3 weeks.	Estimated at 4 weeks.	Estimated at 4 weeks.									
Noise	Not expected to be an issue her	e.												
Price														
Relative Construction Cost Estimate	\$1.2 million	\$1.2 million \$1.3 million		\$1.0 million	\$0.8 million									
	Interpretive and Design Options Repor River Way, Tyndale Geotechnical Desig 0000129127.1219		SMEC Internal Ref. 30013154 10 December 2021		32									

						s-9: weigh	ited Multicri	tena Analy				
Criteria	Weighting	Option 1a Cantilever Sheet Pile Wall		Option 1b Anchored Sheet Pile Wall		Option 2– Contiguous Pile Wall		Option 3 – Shear Piles And Rock Fill		Option 4 – Gabion Wall And Piled Footing		Comments
	(%)	Score (1 - 5)	Weighting % X Score	Score (1 - 5)	Weighting % X Score	Score (1 - 5)	Weighting % X Score	Score (1 - 5)	Weighting % X Score	Score (1 - 5)	Weighting % X Score	
Technical Merit ((30%)											
Design life/ durability	15%	3	0.45	3	0.45	5	0.75	4	0.6	4	0.6	Option 3 expected to achieve highest design life. Option 2 scored lowest due to numerous steel components prone to corrosion.
Stability	15%	5	0.75	5	0.75	5	0.75	5	0.75	5	0.75	All options expected to achieve stability criteria.
Construction (20)%)											
Risks to Life and Other Risks	10%	4	0.4	3	0.3	3	0.2	2	0.2	2	0.2	Option 2, 3 and 4 considered relatively high risk due to either working overwater, quality control, temporary/deep excavations.
Constructability	10%	5	0.5	4	0.4	4	0.4	3	0.3	2	0.2	Option 1a scored highest as has been done before on adjacent site. Option 3 and 4 scored lowest due to multiple construction activities.
Environment (20	%)											
Impacts/ Footprint	10%	2	0.2	3	0.3	2	0.2	4	0.4	3	0.3	Options that seek to restore lost river bank (Option 1b, Option 3) now score higher.
Long term including visual	10%	2	0.2	2	0.2	3	0.3	4	0.4	3	0.3	Option 4 will blend in with adjacent slopes best.
Community Impa	icts During C	onstructio	n (10%)									
Duration	5%	5	0.25	3	0.15	3	0.15	2	0.1	2	0.1	Option 1A expected to be quickest to construct. Material supply delays not accounted for.
Road Closures	5%	4	0.2	2	0.1	3	0.15	3	0.15	3	0.15	Option 1B scored lowest due to additional disruptions to install tie bars.
Price (20%)												
Relative Construction Cost (Estimate)	20%	3	0.6	2	0.4	3	0.6	4	0.8	5	1	Relative cost estimate has Option 4 as cheapest and Option 1b as costliest.
TOTALS	100%	-	3.55	-	3.05	-	3.5	-	3.7	-	3.6	

Table 8-9: Weighted Multicriteria Analysis

Based on the comparative options assessment, Option 3 is considered the preferred option followed closely by Option 4 and Option 1.

9 Schedule of Quantities and Relative Cost Estimate

The schedule of quantities and relative cost estimates prepared for this concept options report have been prepared by engineers, not quantity surveyors and are estimates. A qualified and appropriately experienced quantity surveyor should be engaged to evaluate quantities and costs more accurately for budgeting purposes and appropriate contingency allowed.

It is our experience that factors outside the unit rate approach often override the projects final costs. These include:

- Site access and the contractors' approach to work on the site;
- Delays due to weather and rain;
- Project quality issues and contractor reliability;
- Variation of the ground conditions from those expected.

The schedules of quantities estimates and relative cost estimates are presented in Appendix J.

10 Safety in Design

The Principal should hold a Health Safety in Design (HSID) workshop with the Contractor and Designer (i.e. SMEC) prior to construction commencing to use a systematic risk based approach that includes the identification of hazards.

The Contractor should be aware of:

- The site is a slip and stability is marginal.
- Providing a safe work area for construction personnel;
- Traffic management to provide safe passage past the site for road users;
- General safety issues with working on slopes, and how they are to manage these risks.

An initial safety in design is presented in Appendix K.

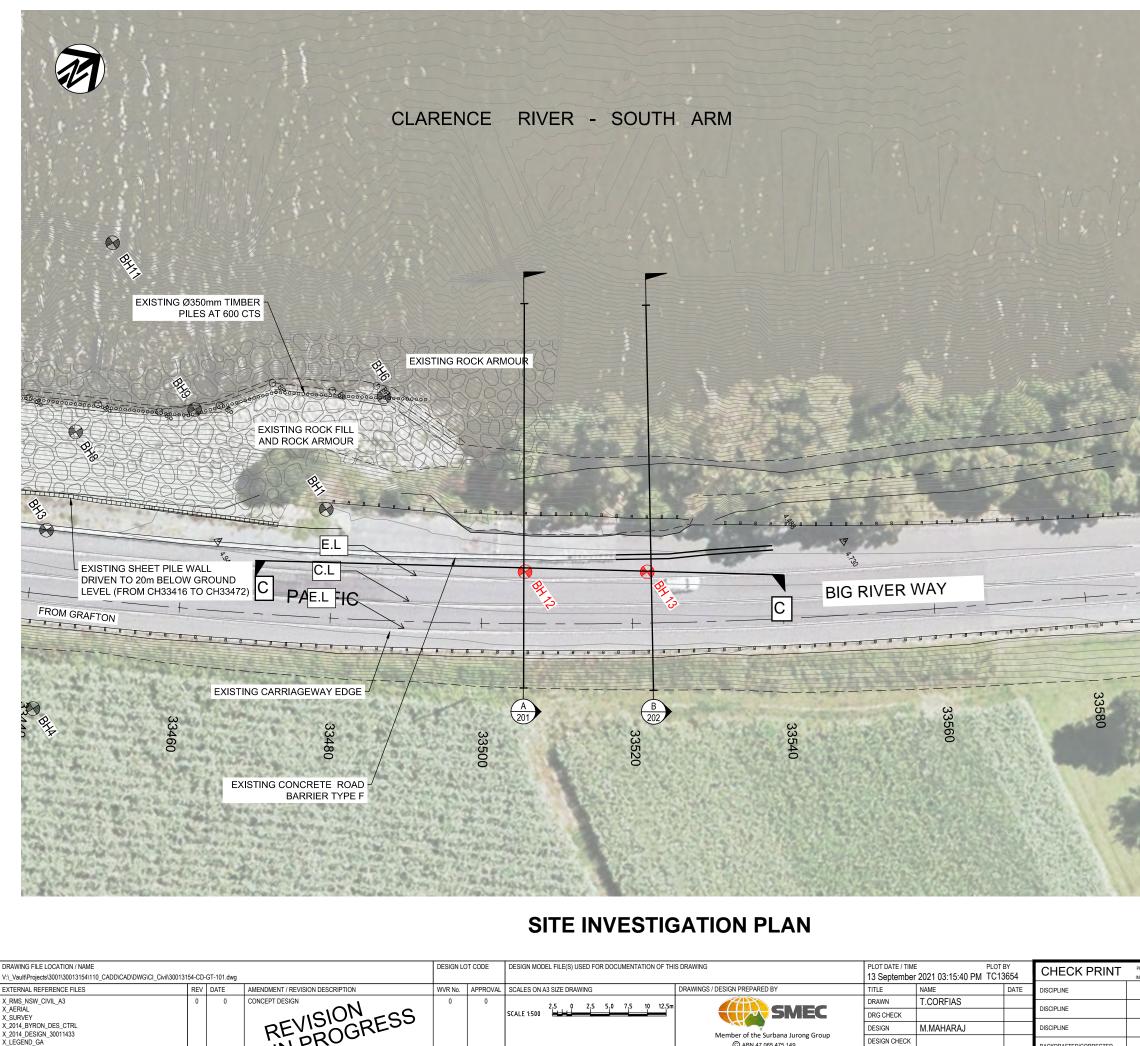
11 Comments Register

The TfNSW comments register with SMEC responses is presented in Appendix M.

12 Conclusions and Recommendations

A 40 m long landslip has occurred resulting in slumping of the road embankment and terraced riverbank and a 2.5 m high headscarp that is regressing back towards the Byrons Lane carriageway. The interpreted geotechnical model and slope stability analyses indicates the failure mode is a relatively deep, circular failure passing through soft alluvial and estuarine clays. The failure mechanisms are inferred to be a combination of riverbank erosion and high differential water levels between the river and the embankment.

Four concept slope remediation options have been designed to achieve a minimum design life of 50 years, a long term slope stability factor of safety of at least 1.3 and a short term slope stability factor of safety of at least 1.2.


The options were evaluated using a weighted multicriteria analysis and Option 3 – Shear Piles and Rock Fill scored highest.

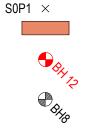
A key assumption in the concept design development was riverbank scour profiles. No scour assessment has been undertaken and estimated scour profiles were assumed in the concept designs. Reference to Figure 1 shows that the river is contracted at this location which might be influencing scour processes and riverbank instability.

The following is recommended to inform and support detailed design of the preferred concept:

- Undertake a scour assessment to inform design of remediation systems including predicted scour profiles and sizing of any proposed rock armour treatment.
- Finite element analysis to model anticipated construction sequence, assess the soil-structure interaction, structural design actions and deformations.
- Further assessment of corrosion rates and whether any necessary corrosion treatments or detailing is required to achieve a minimum 50 year design life or an alternate 100 year design life.
- Investigate the location of buried services including the abandoned watermain.
- Consideration to be given to additional site investigation comprising cone penetrometer testing (CPT) to provide further information on the strength, stiffness and variability of the sediments.
- Consideration to shifting the road away from the riverbank. This would involve clarification on actual pavement requirements through this section with a view to reducing the verge and carriageway widths and amending the scope of any proposed riverbank treatment with a view to reducing the design loads and project costs.

Appendix A Interpreted Geotechnical Model

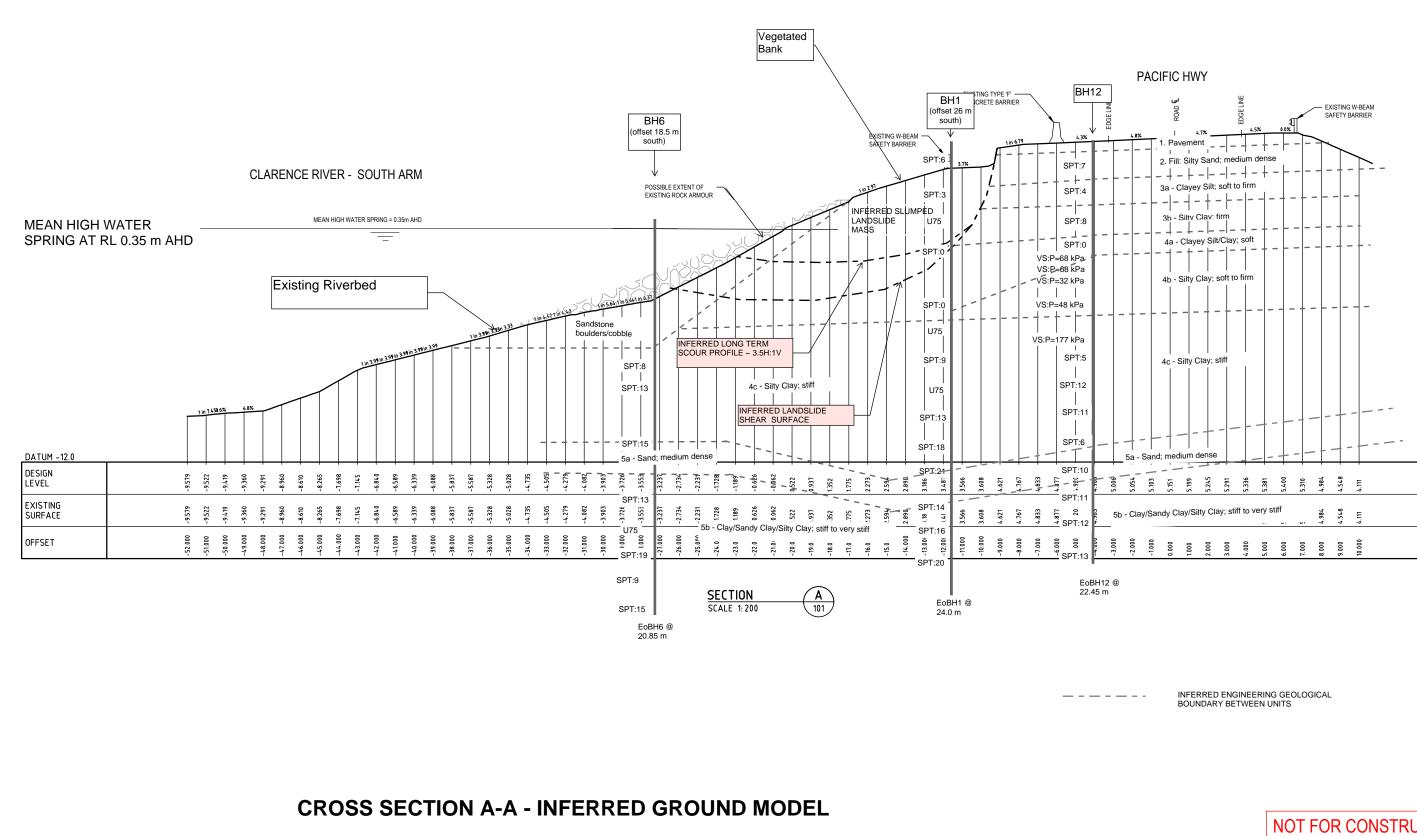
/ING FILE LOCATION / NAME ault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-GT-101.dwg		DESIGN LOT CODE DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS DRAWING		IS DRAWING	PLOT DATE / TIME PLOT BY 13 September 2021 03:15:40 PM TC13654			CHECK PRIN	
RNAL REFERENCE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE
S_NSW_CIVIL_A3	0 0	CONCEPT DESIGN	0	0	2,5 0 2,5 5,0 7,5 10 12.5m		DRAWN	T.CORFIAS		DISCIPLINE
RVEY		119101 - cS			SCALE 1:500 2.5 0 2.5 5.0 7.5 10 12.5m	SMEC	DRG CHECK			DISCIPLINE
AL VEY BYRON_DES_CTRL DESIGN 30011433		REVISION				Marshar of the Suchara Lunar Court	DESIGN	M.MAHARAJ		DISCIPLINE
GEND_GA		INTPRUC.				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED
		INFI			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			5/6/6/01/120/2014/20120
					MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED


LEGEND - EXISTING

MAJOR CONTOURS MINOR CONTOURS 450Ø PIPE STORMWATER PIT HEADWALL TREE VEGETATION SAFETY BARRIER GUARD FENCE

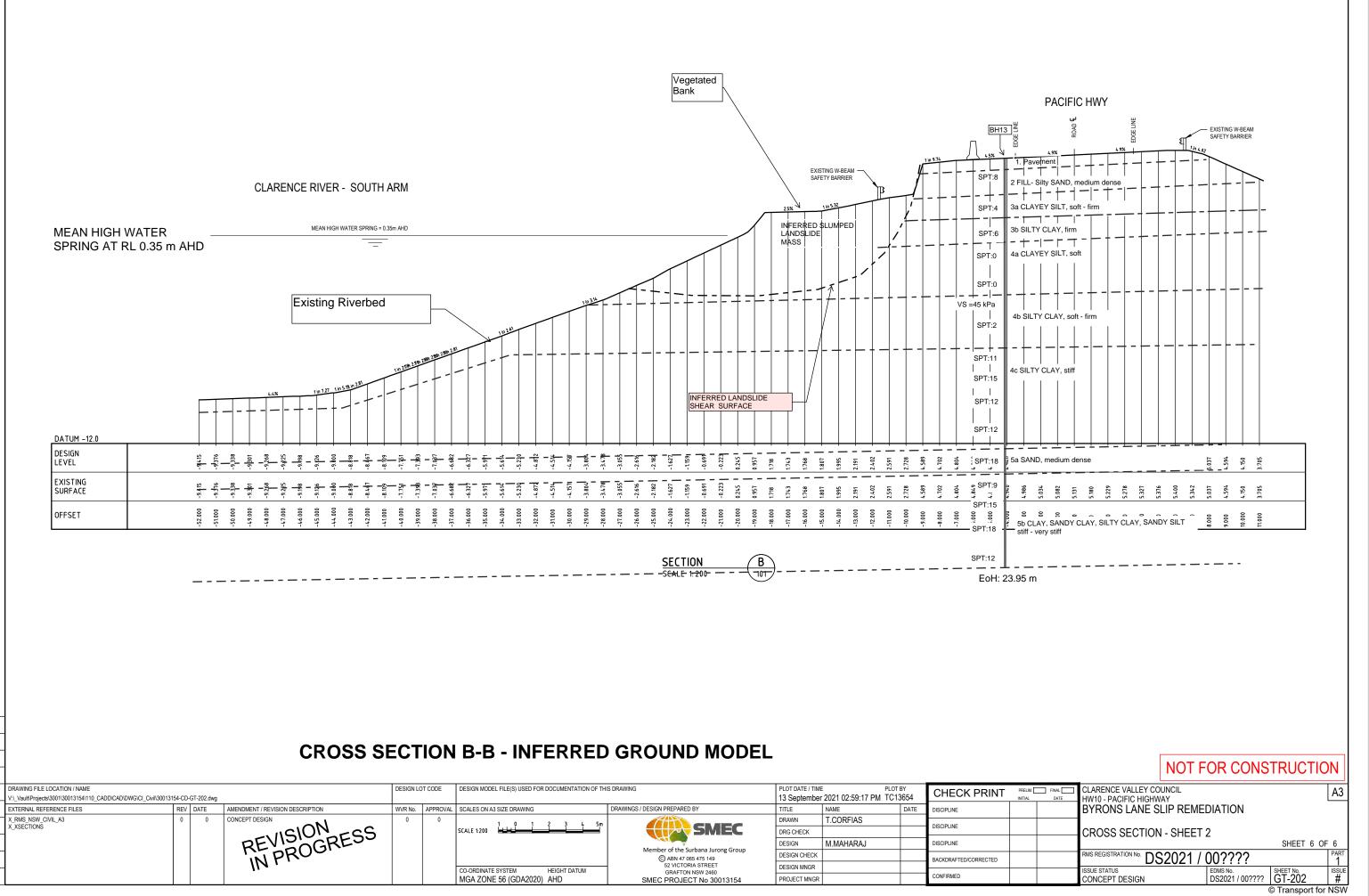
LEGEND

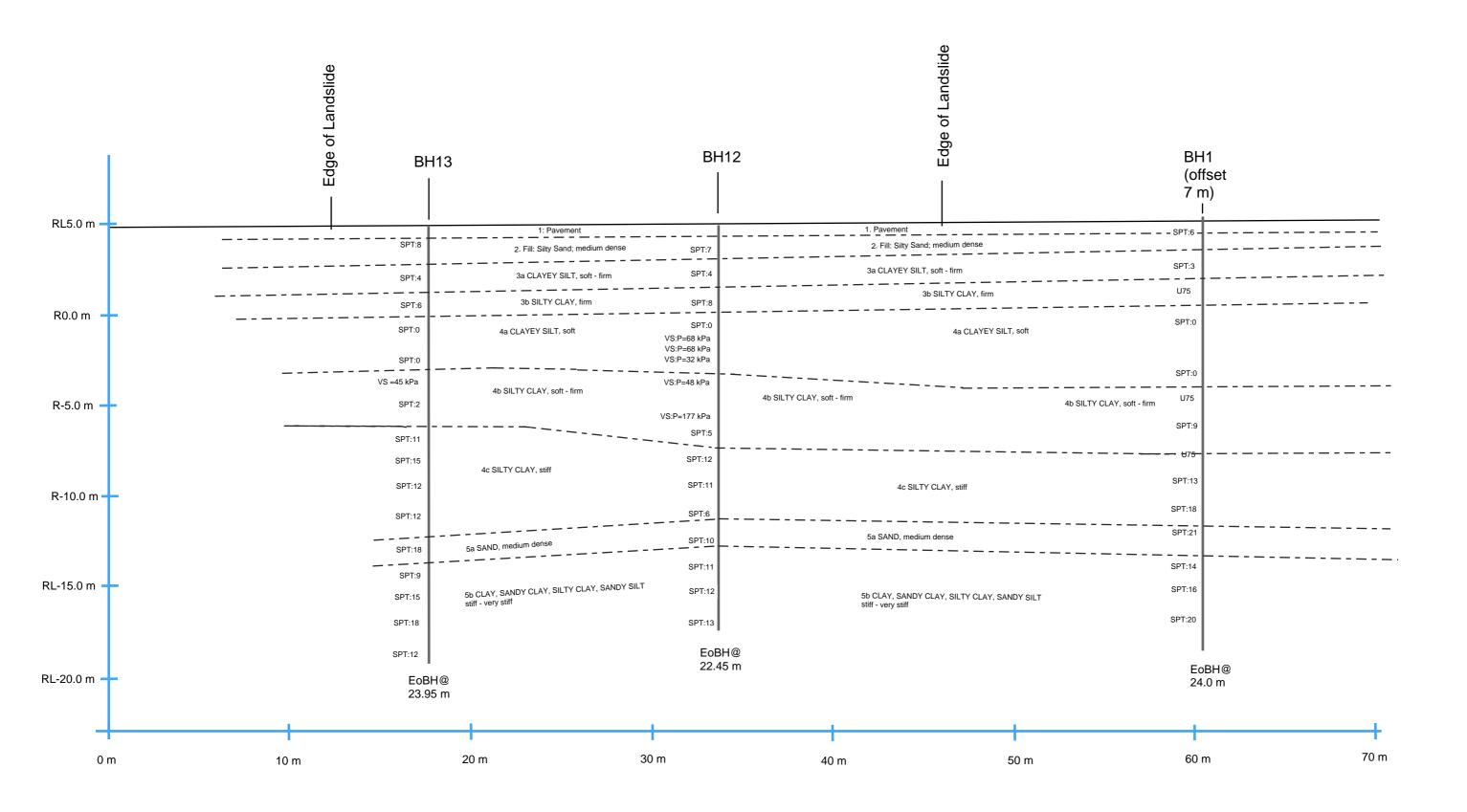
CONTROL LINE NEW SAFETY BARRIER GUARD FENCE


SETOUT POINT AREA OF SLIP TO BE REMEDIATED

TfNSW BORE HOLE (2021)

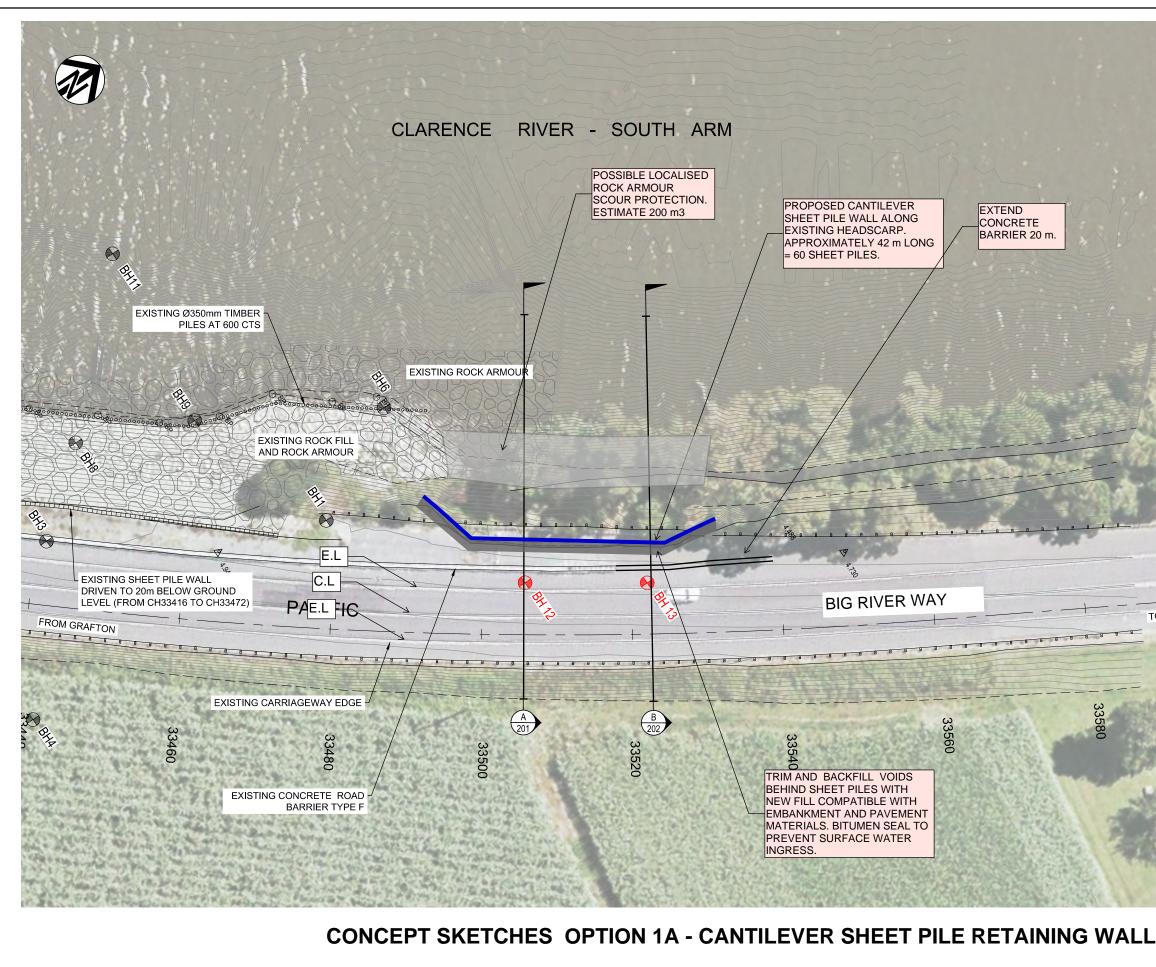
TfNSW BORE HOLE (2009)

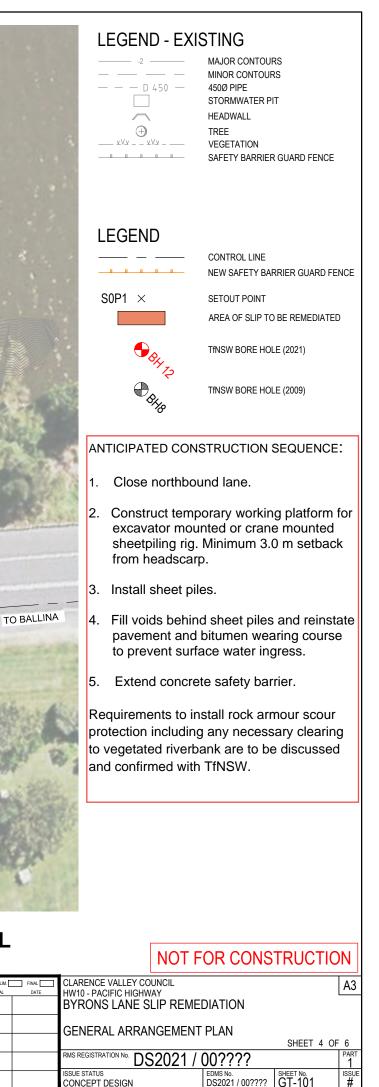

NOT FOR CONSTRUCTION


ELIM.	FINAL	CLARENCE VALLEY COUNCIL			A3								
FIAL	DATE	HW10 - PACIFIC HIGHWAY			1.0								
		BYRONS LANE SLIP REMEI	DIATION										
		GENERAL ARRANGEMENT	PI AN										
		SHEET 4 OF											
		RMS REGISTRATION NO. DS2021 /	00????		PART 1								
		ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET №. GT-101	ISSUE #								
			(© Transport for	MSW/								

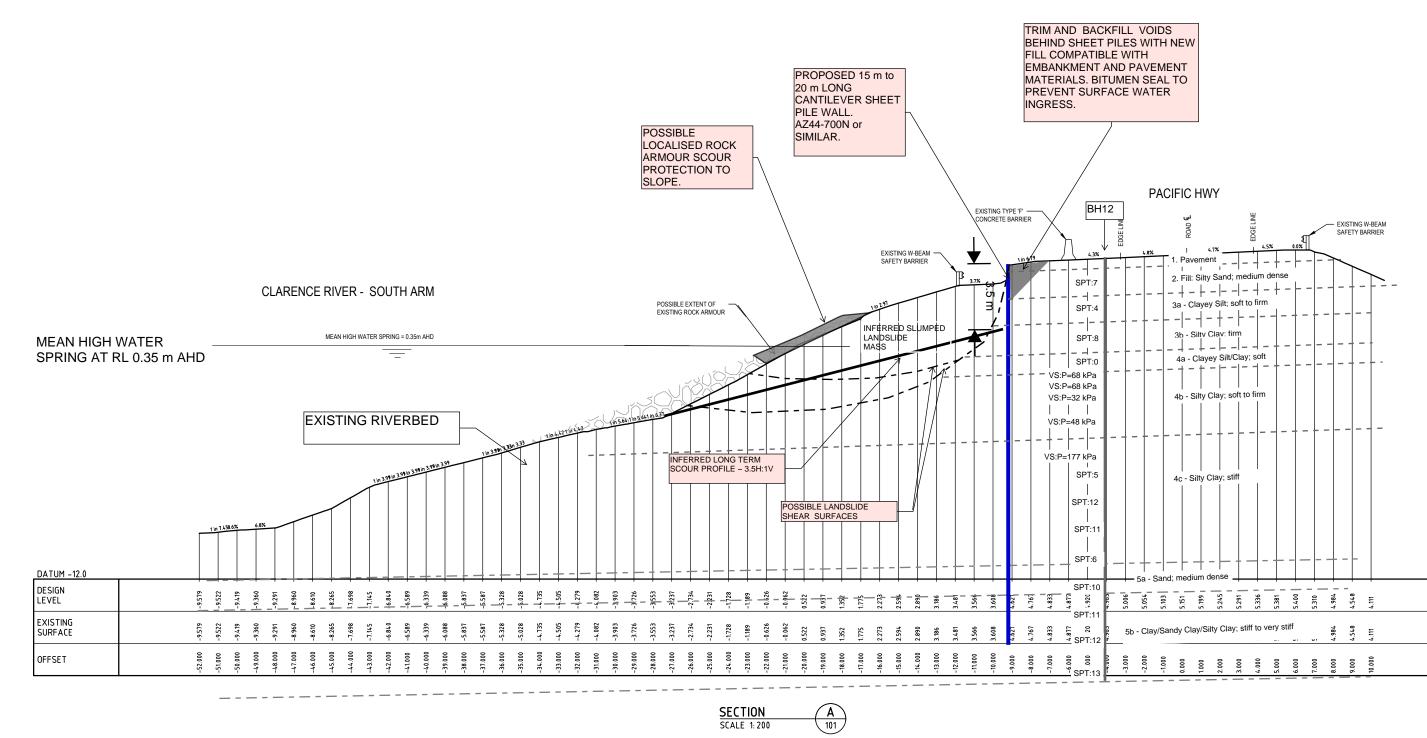
~	DRAWING FILE LOCATION / NAME V:\ Vault\Projects\3001\30013154\110 CADD\CAD\DWG\CI Civil\3001315	54-CD-GT-201.dwg		DESIGN LOT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	IS DRAWING	PLOT DATE / TIME	е PLOT BY 2021 02:53:37 PM TC13654	CHECK PRINT	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY			A3
		REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No. APPROVAL	L SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE		DISCIPLINE	BYRONS LANE SLIP REME	DIATION	-	
	X_RMS_NSW_CIVIL_A3 X_XSECTIONS	0 0	CONCEPT DESIGN	0 0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS					
<u>c</u>	X_XSECTIONS				SCALE 1:200	SMEC	DRG CHECK		DISCIPLINE	CROSS SECTION - SHEET			
2			REVISION			Marshare of the Surbara Lunar Consur	DESIGN	M.MAHARAJ	DISCIPLINE		·	SHEET 5 OF	- 6
						C ABIN 47 005 475 149	DESIGN CHECK		BACKDRAFTED/CORRECTED	RMS REGISTRATION NO. DS2021 /	00????	ļ	PART 1
n			INPIC		CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET GRAFTON NSW 2460	DESIGN MNGR			ISSUE STATUS		SHEET No.	ISSUE
0					MGA ZONE 56 (GDA2020) AHD		PROJECT MNGR		CONFIRMED	CONCEPT DESIGN	DS2021 / 00????	SHEET №. GT-201	#
	· · · · · · · · · · · · · · · · · · ·										(© Transport for I	NSW

NOT FOR CONSTRUCTION



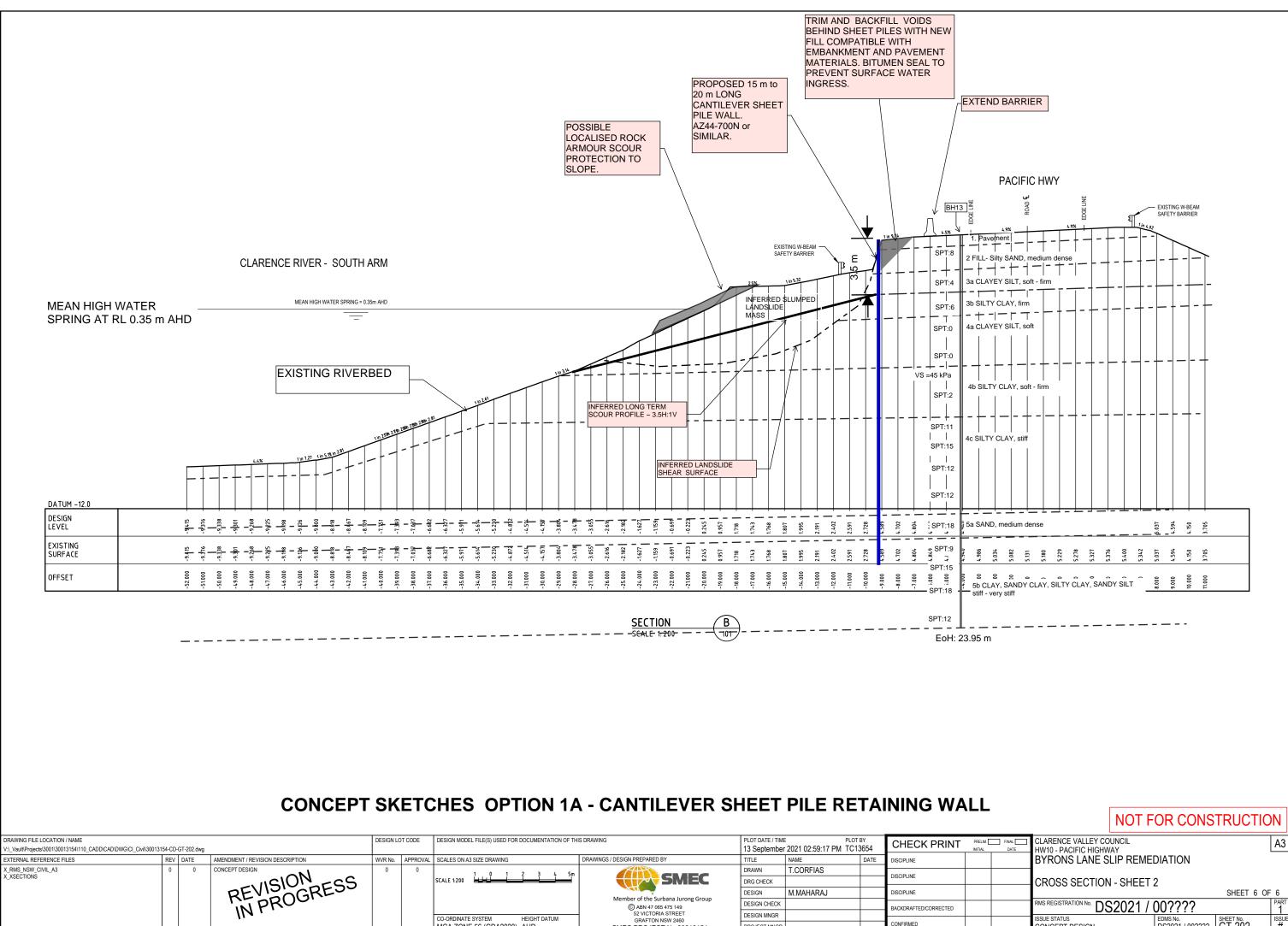

LONG SECTION C-C - INFERRED GROUND MODEL 1:200

Appendix B Concept Option 1 Sketches


l

DRAWING FILE LOCATION / NAME				DESIGN LOT CODE		DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH		PLOT DATE / TIME PLO			CHECK PRINT	PRE
V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-(GT-101.dwg						13 Septembe	r 2021 03:15:40 PM TC1	13654		INIT
EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	2,5 0 2,5 5,0 7,5 10 12.5m		DRAWN	T.CORFIAS			
X_AERIAL X_SURVEY						SCALE 1:500	SMEC	DRG CHECK			DISCIPLINE	
X_2014_BYRON_DES_CTRL X_2014_DESIGN_30011433			REVISIOGRESS					DESIGN	M.MAHARAJ	DISCIPLINE		
X_2014_DESIGN_30011433 X_LEGEND_GA			I DKU-				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
			INFI				52 VICTORIA STREET	DESIGN MNGR			BAORDINA TEDIOORITEOTED	
			•-			CO-ORDINATE SYSTEM HEIGHT DATUM	GRAFTON NSW 2460				CONFIRMED	
						MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR			SOLUTIONED	

© Transport for NSW


CONCEPT SKETCHES OPTION 1A - CANTILEVER SHEET PILE RETAINING WALL

8															
	DRAWING FILE LOCATION / NAME				OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION O	F THIS DRAWING	PLOT DATE / TIM	ME PLOT E	BY	CHECK PRINT	CLARENCE VALLEY COUNCIL			A3
55	V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-GT-201.dwg					1		er 2021 02:53:37 PM TC13	ONEORTHAN	HW10 - PACIFIC HIGHWAY		L	7.0	
~	· ·	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	BYRONS LANE SLIP REMED	IATION		
	X_RMS_NSW_CIVIL_A3 X_XSECTIONS	0 0	CONCEPT DESIGN	0	0	1 0 1 2 3 4	5m	DRAWN	T.CORFIAS		DISCIPLINE				
15	A_ASECTIONS					SCALE 1:200	SMEC	DRG CHECK			DIGGIFEINE	CROSS SECTION - SHEET 1			
9			REVISION					DESIGN	M.MAHARAJ		DISCIPLINE			SHEET 5 OF	6
							Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	RMS REGISTRATION NO. DS2021 / 0	07777		PART
2			INFI			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR							
0						MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGF	2		CONFIRMED		DS2021 / 00????	SHEET №. GT-201	#
													-	© Transport for N	NSW

 B
 PREPARED IN COLOUR AND MAY BE INCOMPLETE IF COPIED

 [20]
 [35]
 [30]
 [45]
 [50mm on A3 SIZE ORIGINAL
 3 MAY I S DRAWING N 5 1¹⁰ 1¹⁵ THIS 0

NOT FOR CONSTRUCTION

CO-ORDINATE SYSTEM

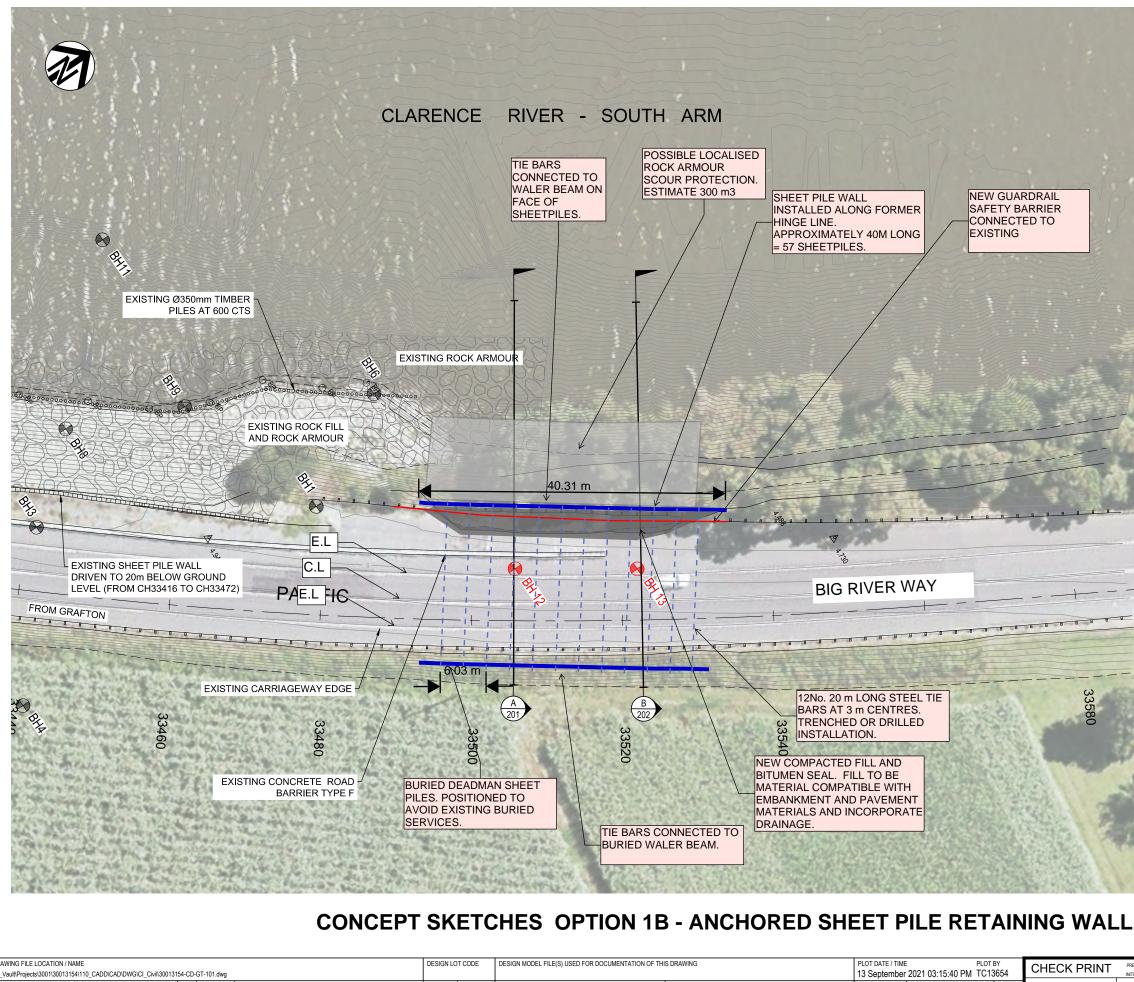
MGA ZONE 56 (GDA2020) AHD

HEIGHT DATUM

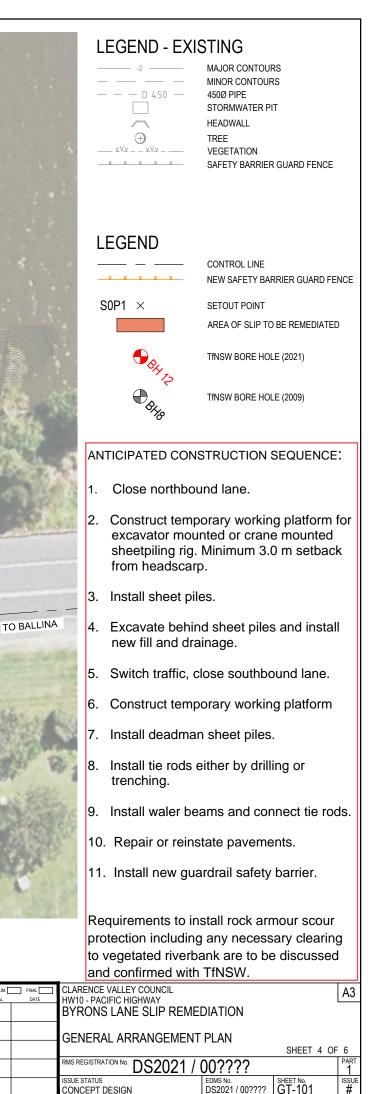
BACKDRAFTED/CORRECTED

CONFIRMED

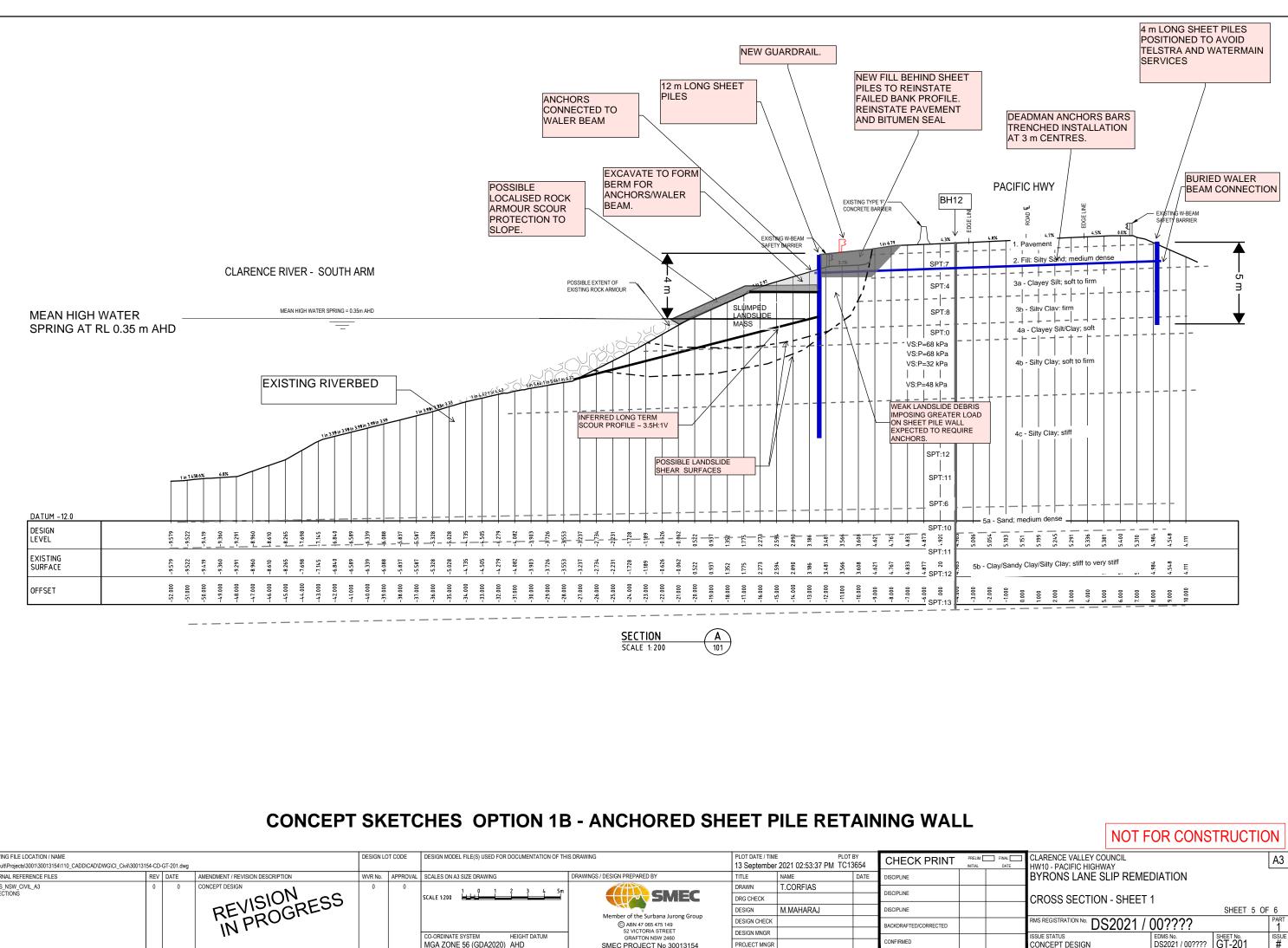
SSUE STATUS


CONCEPT DESIGN

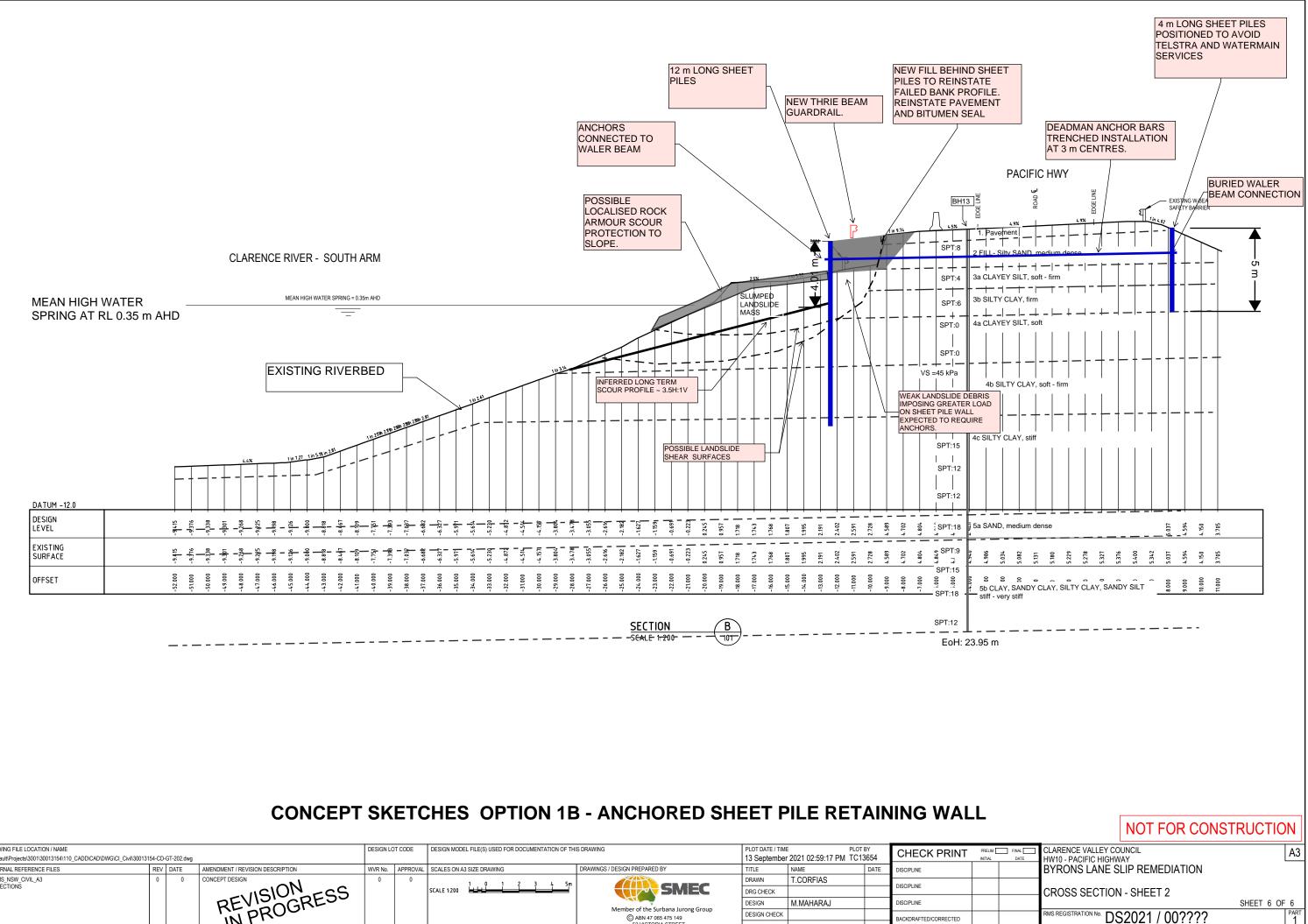
DESIGN MNGR


PROJECT MNGR

SMEC PROJECT No 30013154


EDMS No. DS2021 / 00???? SHEET №. GT-202 ISSUE # © Transport for NSW

DRAWING FILE LOCATION / NAME				DESIGN L	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	HIS DRAWING	PLOT DATE / TIM			CHECK PRINT	PRE
V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\3	30013154-CD	GI-101.dwg						13 Septembe	r 2021 03:15:40 PM TC	13034		INITIA
EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	2.5 0 2.5 5.0 7.5 10 12.5r		DRAWN	T.CORFIAS			
X_AERIAL X_SURVEY			InclON res			SCALE 1:500	SMEC	DRG CHECK			DISCIPLINE	
X_2014_BYRON_DES_CTRL X_2014_DESIGN_30011433			REVISION					DESIGN	M.MAHARAJ		DISCIPLINE	
X_2014_DESIGN_30011433 X_LEGEND_GA			IN PROU				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
_			INFI				52 VICTORIA STREET	DESIGN MNGR			BACKBINALTED/CORRECTED	
						CO-ORDINATE SYSTEM HEIGHT DATUM MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	



	U	-	101		π
(D T	rar	sport	for	NSV

8													
~	DRAWING FILE LOCATION / NAME V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	154-CD	-GT-201.dwg		DESIGN L	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF T	HIS DRAWING	PLOT DATE / TIM 13 September	PLOT 2021 02:53:37 PM TC1		CHECK PRINT	PRELIN
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS		DISCIPLINE	
15	X_XSECTIONS						SCALE 1:200	SMEC	DRG CHECK			DISCIPLINE	
9				REVISION				Member of the Surbana Jurong Group	DESIGN	M.MAHARAJ		DISCIPLINE	
				IN PROU				© ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
ŝ				IN FT.			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BROKBINA TEBIOORREOTED	
0				-			MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	

•	0.	201		
(© Tra	insport	for	NSV

DRAWING FILE LOCATION / NAME V:VauithProjectsi30011300131541110_CADD/CADIDWG/CI_Civili30013154-CD-GT-202.dwg		DESIGN LOT CODE DESIGN		DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS DRAWING		PLOT DATE / TIME P 13 September 2021 02:59:17 PM T		от вү 1 3654	CHECK PRINT	PF		
EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	l
X_RMS_NSW_CIVIL_A3 X_XSECTIONS	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS			
X_XSECTIONS			$1 $ $1 $ 10^{N} $- $ cS			SCALE 1:200	SMEC	DRG CHECK			DISCIPLINE	
			REVISION					DESIGN	M.MAHARAJ		DISCIPLINE	i
1							Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	·
			INFI				52 VICTORIA STREET	DESIGN MNGR			BACKBINAL TED/CONNECTED	
			•			CO-ORDINATE SYSTEM HEIGHT DATUM MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	

THIS

SSUE STATUS

CONCEPT DESIGN

EDMS No. DS2021 / 00???? SHEET №. GT-202 ISSUE # © Transport for NSW

Appendix C Concept Option 1 Analyses

l

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_DrainedDate:24-09-2021Byron Lane SlipDate:24-09-2021AZ 24-700N Sheet PileChecked :

INPUT DATA

Units: kN,m

SOIL PROFILEStratumElevation of------ Soil types ------no.top of stratumLeft sideRight side14.9211 Pavement124.3222 FILL232.7233a s-f Clayey SILT341.4243b firm Silty CLAY45-0.0854a s Sandy CLAY56-3.0864b s-f Silty CLAY67-6.0874c St Silty CLAY78-12.0885a 1-md SAND89-13.5895b stiff mix CLAY9

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	I	Passive	
5	Soil type	density	Modulus	coeff.	state.	limit		limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka		Кр	kN/m2
(I	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	1 Pavement	20.00	30000	0.357	OC	0.196		8.175	
					(0.200)	(0.000)	(0.000)	
2	2 FILL	18.00	5000	0.441	OC	0.251		5.756	
					(0.300)	(0.000)	(0.000)	
3	3a s-f	17.00	4500	0.562	OC	0.341		3.799	4.000d
	Clayey SILT				(0.300)	(1.342)	(5.039)	
4	3b firm	18.00	7500	0.546	OC	0.329		3.992	5.000d
	Silty CLAY				(0.300)	(1.310)	(5.162)	
5	4a s Sandy	17.00	3750	0.577	OC	0.333		3.799	2.000d
	CLAY				(0.300)	(1.378)	(5.039)	
6	4b s-f	17.00	4500	0.562	OC	0.341		3.799	4.000d
	Silty CLAY				(0.300)	(1.342)	(5.039)	
7	4c St Silty	19.00	11000	0.546	OC	0.329		3.992	8.000d
	CLAY				(0.300)	(1.310)	(5.162)	
8	5a l-md	18.00	6000	0.455	OC	0.263		5.449	
	SAND				(0.300)	(0.000)	(0.000)	
9	5b stiff	19.00	15000	0.546	OC	0.333		4.238	10.00d
	mix CLAY				(0.300)	(1.310)	(5.162)	

Additional soil parameters associated with Ka and Kp

	-	param	eters for	Ka	param	eters for	Кр
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	1 Pavement	40.00	0.297	0.00	41.70	0.297	0.00
2	2 FILL	34.00	0.370	0.00	35.63	0.370	0.00
3	3a s-f Clayey SILT	26.00	0.511	0.00	29.05	0.352	0.00
4	3b firm Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
5	4a s Sandy CLAY	25.84	0.819	0.00	29.05	0.352	0.00
6	4b s-f Silty CLAY	26.00	0.511	0.00	29.05	0.352	0.00
7	4c St Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
8	5a l-md SAND	33.00	0.384	0.00	34.62	0.384	0.00
9	5b stiff mix CLAY	27.00	0.489	0.00	32.10	0.264	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

		Left	side	Right s	ide
Initial water table	elevation	0.	.00	0.	00

Automatic water pressure balancing at toe of wall : No

Water press.		Left	side			Right	side 	
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.
1	1	m 0.00	m 0.00	kN/m2 0.0	1	m 1.00	m 1.00	kN/m2 0.0
2	1	0.00	0.00	0.0	1	2.00	2.00	0.0
3	1	0.00	0.00	0.0	1	3.00	3.00	0.0

WALL PROPERTIES

Type of structure =	Fully Embedded Wall
Elevation of toe of wall =	-11.00
Maximum finite element length =	0.80 m
Youngs modulus of wall E =	2.1000E+08 kN/m2
Moment of inertia of wall I =	5.5890E-04 m4/m run
E.I =	117369 kN.m2/m run
Yield Moment of wall =	Not defined

SURCHARGE LOADS

Surch	Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge	from	parallel	perpend.	kN/	m2	soil	factor/
no. Ele	v. wall	to wall	to wall	Near edge	Far edge	type	Category
1 4.	92 -2.00(R)	40.00	12.00	20.00	=	N/A	N/A

Note: L = Left side, R = Right side

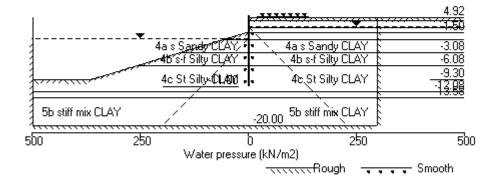
CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Excavate to elevation 1.50 on LEFT side
	Toe of berm at elevation -9.30
	Width of top of berm = 0.50
	Width of toe of berm = 36.50
2	Change EI of wall to 117369 kN.m2/m run
	Reset wall displacements to zero at this stage
3	Apply surcharge no.1 at elevation 4.92
4	Apply water pressure profile no.1
5	Apply water pressure profile no.2
б	Apply water pressure profile no.3

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.30						
Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m						
Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Active limit arching modelled? - Yes Non-linear Modulus Parameter (L) = 20.00 m						
Boundary conditions: Length of wall (normal to plane of analysis) = 40.00 m						
Width of excavation on Left side of wall = 50.00 m Width of excavation on Right side of wall = 20.00 m						
Distance to rigid boundary on Left side = 50.00 m Distance to rigid boundary on Right side = 30.00 m						

Elevation of rigid lower boundary = -20.00 Lower rigid boundary at elevation -20.00 - Rough Rigid boundary on Left side - Rough Rigid boundary on Right side - Rough Wall / soil interface - Smooth


OUTPUT OPTIONS

Stage Stage description	Output	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev. 1.50 on LEFT side	Yes	Yes	Yes
2 Change EI of wall to 117369kN.m2/m run	Yes	Yes	Yes
3 Apply surcharge no.1 at elev. 4.92	Yes	Yes	Yes
4 Apply water pressure profile no.1	Yes	Yes	Yes
5 Apply water pressure profile no.2	Yes	Yes	Yes
6 Apply water pressure profile no.3	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2020 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_DrainedDate:24-09-2021Byron Lane SlipDate:24-09-2021AZ 24-700N Sheet PileChecked :

Units: kN,m

Stage No.6 Apply water pressure profile no.3

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_DrainedDate:24-09-2021Byron Lane SlipDate:24-09-2021AZ 24-700N Sheet PileChecked :

Units: kN,m

Stage No. 1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

			FoS fo elev. =	r toe -11.00		ev. for 1.300		
Stage	Ground	<u>l level</u>	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		<u>-ation</u>	failure
1	4.92	1.50	Cant.	1.628	-10.08	-6.04	7.54	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

No	ode Y	Nett	Wall	Wall	Shear	Bending	Prop
nc	o. coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.087	-6.01E-03	0.0	0.0	
2	4.32	-2.35	-0.083	-6.01E-03	-0.7	-0.3	
		-3.01	-0.083	-6.01E-03	-0.7	-0.3	
3	3.66	-6.00	-0.079	-6.01E-03	-3.7	-1.8	
4	£ 3.00	-8.98	-0.076	-5.98E-03	-8.6	-5.9	
5	5 2.72	-10.24	-0.074	-5.97E-03	-11.3	-8.7	
		-8.55	-0.074	-5.97E-03	-11.3	-8.7	
6	5 2.00	-12.73	-0.070	-5.88E-03	-19.0	-19.6	
7	1.50	-15.62	-0.067	-5.77E-03	-26.1	-30.9	
		4.53	-0.067	-5.77E-03	-26.1	-30.9	
8	3 1.42	9.24	-0.066	-5.75E-03	-25.5	-33.0	
		11.46	-0.066	-5.75E-03	-25.5	-33.0	
9) 1.00	26.53	-0.064	-5.62E-03	-17.5	-42.7	
10	0.50	33.45	-0.061	-5.42E-03	-2.5	-48.1	
11	0.00	32.87	-0.058	-5.22E-03	14.0	-45.2	
12	2 -0.08	28.89	-0.058	-5.19E-03	16.5	-44.0	
		-18.64	-0.058	-5.19E-03	16.5	-44.0	
13	3 -0.84	-3.87	-0.054	-4.93E-03	8.0	-36.4	
14	l −1.60	-2.07	-0.050	-4.71E-03	5.7	-31.4	
15	5 -2.34	-3.81	-0.047	-4.53E-03	3.5	-27.8	
16	5 -3.08	-5.03	-0.044	-4.36E-03	0.3	-26.2	
		-0.77	-0.044	-4.36E-03	0.3	-26.2	
17	7 -3.54	-2.04	-0.042	-4.25E-03	-0.4	-26.2	
18	-4.00	-3.81	-0.040	-4.15E-03	-1.7	-26.6	
19	-4.80	-5.65	-0.037	-3.96E-03	-5.5	-29.2	
20) -5.44	-7.65	-0.034	-3.79E-03	-9.8	-33.8	

Sheet No. Date:24-09-2021 Checked : _____

(continued)

Stage No.1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50Width of toe of berm = 36.50

Nod	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
21	-6.08	-7.31	-0.032	-3.58E-03	-14.6	-41.7	
		20.16	-0.032	-3.58E-03	-14.6	-41.7	
22	-6.64	16.56	-0.030	-3.37E-03	-4.3	-46.6	
23	-7.20	10.93	-0.028	-3.15E-03	3.4	-46.4	
24	-8.00	6.65	-0.026	-2.86E-03	10.5	-40.2	
25	-8.65	3.28	-0.024	-2.66E-03	13.7	-32.0	
26	-9.30	0.93	-0.022	-2.50E-03	15.1	-22.4	
27	-9.73	-1.20	-0.021	-2.44E-03	15.0	-15.9	
28	-10.15	-3.58	-0.020	-2.39E-03	14.0	-9.7	
29	-10.58	-8.71	-0.019	-2.36E-03	11.4	-4.0	
30	-11.00	-30.45	-0.018	-2.36E-03	3.0	-0.0	
31	-11.20	-0.01	-0.018	0	-0.0	0.0	
32	-12.08	10.49	-0.018	0	4.6	0.0	
		-6.17	-0.018	0	4.6	0.0	
33	-13.58	-11.40	-0.014	0	-8.6	0.0	
		10.65	-0.014	0	-8.6	0.0	
34	-15.19	-0.00	-0.011	0	-0.0	0.0	
35	-16.79	-0.00	-0.008	0	-0.0	0.0	
36	-18.40	-0.00	-0.005	0	-0.0	0.0	
37	-20.00	0.04	-0.001	0	-0.0	0.0	

		LEFT side						
				Total	Adjusted			
Node	Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4689
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4689
		0.00	1.36	0.00	25.59b	25.59	25.59p	7816
9	1.00	0.00	8.92	0.00	43.14b	43.14	43.14p	7816
10	0.50	0.00	17.92	0.00	57.00b	53.02	53.02	7816
11	0.00	0.00	26.92	2.30	72.95b	55.40	55.40	7816
12	-0.08	0.80	27.56	2.51	57.82b	53.12	53.92	7816
		0.80	27.56	6.41	20.56b	20.56	21.36p	3908
13	-0.84	8.40	32.88	8.18	38.95b	38.95	47.35p	3908
14	-1.60	16.00	38.21	9.95	62.59b	44.46	60.46	3908
15	-2.34	23.40	43.39	11.67	72.22b	46.35	69.75	3908
16	-3.08	30.80	48.58	13.40	81.16b	48.55	79.35	3908
		30.80	48.58	11.20	155.51b	49.17	79.97	4689
17	-3.54	35.40	51.81	12.30	129.81b	50.16	85.56	4689
18	-4.00	40.00	55.03	13.41	100.66b	50.99	90.99	4689
19	-4.80	48.00	60.65	15.32	110.72b	53.14	101.14	4689
20	-5.44	54.40	65.15	16.86	119.11b	54.59	108.99	4689
21	-6.08	60.80	69.65	18.39	127.09b	57.07	117.87	4689
		60.80	69.65	12.42	319.32	69.04	129.84	11463
22	-6.64	66.40	74.71	14.08	297.94	69.53	135.93	11463
23	-7.20	72.00	79.77	15.75	196.22b	69.35	141.35	11463

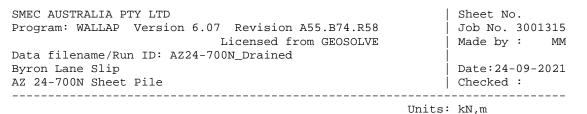
| Sheet No. | Date:24-09-2021 | Checked :

(continued)

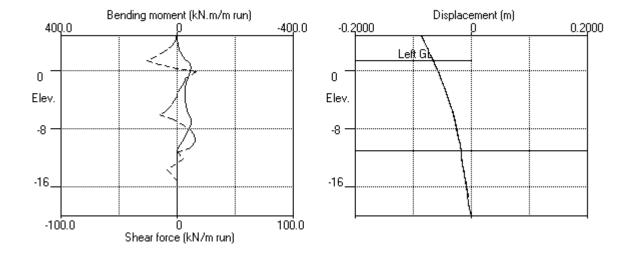
Stage No.1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

					LEFT s	side		_
				Effectiv	ve stresses	3	Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
24	-8.00	80.00	87.01	18.13	149.25b	71.06	151.06	11463
25	-8.65	86.50	92.90	20.06	249.94b	72.50	159.00	11463
26	-9.30	93.00	98.79	22.00	356.64b	74.48	167.48	11463
27	-9.73	97.25	102.64	23.26	351.40b	75.49	172.74	11463
28	-10.15	101.50	106.50	24.53	366.80b	76.35	177.85	11463
29	-10.58	105.75	110.36	25.80	382.20b	75.89	181.64	11463
30	-11.00	110.00	114.22	27.07	396.81b	66.00	176.00	11463
31	-11.20	112.00	116.04	27.67	407.25b	83.51	195.51	11463
32	-12.08	120.80	124.04	30.30	433.79b	93.24	214.04	11463
		120.80	124.04	32.67	519.74b	68.06	188.86	6253
33	-13.58	135.80	136.21	35.87	570.71b	70.90	206.70	6253
		135.80	136.21	32.22	600.85b	99.81	235.61	15632
34	-15.19	151.85	150.86	37.09	627.91b	102.22	254.07	15632
35	-16.79	167.90	165.55	41.98	653.42b	110.48	278.38	15632
36	-18.40	183.95	180.27	46.88	715.85b	118.28	302.23	15632
37	-20.00	200.00	195.03	51.79	774.87b	120.19	320.19	15632

		RIGHT side _							
				S	Total	Adjusted			
Node	Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30580	
2	4.32	0.00	12.00	2.35	98.10	2.35	2.35a	30580	
		0.00	12.00	3.01	69.07	3.01	3.01a	5097	
3	3.66	0.00	23.88	6.00	137.44	6.00	6.00a	5097	
4	3.00	0.00	35.76	8.98	205.82	8.98	8.98a	5097	
5	2.72	0.00	40.80	10.24	234.82	10.24	10.24a	5097	
		0.00	40.80	8.55	175.17	8.55	8.55a	4587	
б	2.00	0.00	53.04	12.73	221.68	12.73	12.73a	4587	
7	1.50	0.00	61.54	15.62	253.97	15.62	15.62a	4587	
8	1.42	0.00	62.90	16.09	259.14	16.09	16.09a	4587	
		0.00	62.90	14.13	276.90	14.13	14.13a	7645	
9	1.00	0.00	70.46	16.61	307.08	16.61	16.61a	7645	
10	0.50	0.00	79.46	19.57	343.00	19.57	19.57a	7645	
11	0.00	0.00	88.46	22.53	378.93	22.53	22.53a	7645	
12	-0.08	0.80	89.10	22.74	381.49	24.23	25.03	7645	
		0.80	89.10	26.88	348.56	39.20	40.00	3822	
13	-0.84	8.40	94.42	28.65	368.76	42.82	51.22	3822	
14	-1.60	16.00	99.74	30.41	388.97	46.52	62.52	3822	
15	-2.34	23.40	104.92	32.14	408.65	50.17	73.57	3822	
16	-3.08	30.80	110.10	33.86	428.33	53.58	84.38	3822	
		30.80	110.10	32.19	438.47	49.94	80.74	4587	
17	-3.54	35.40	113.32	33.29	450.71	52.20	87.60	4587	
18	-4.00	40.00	116.54	34.39	462.94	54.80	94.80	4587	
19	-4.80	48.00	122.14	36.30	484.22	58.78	106.78	4587	
20	-5.44	54.40	126.62	37.82	501.24	62.25	116.65	4587	
21	-6.08	60.80	131.10	39.35	518.26	64.39	125.19	4587	
		60.80	131.10	32.62	564.63	48.87	109.67	11213	
22	-6.64	66.40	136.14	34.28	584.75	52.97	119.37	11213	
23	-7.20	72.00	141.18	35.93	604.87	58.42	130.42	11213	

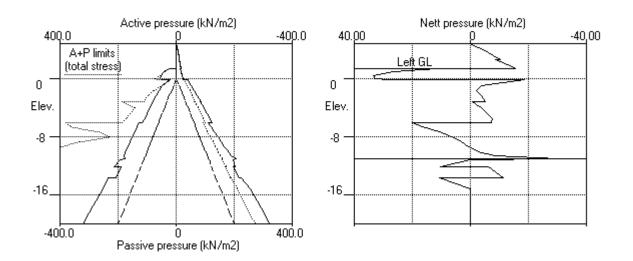

| Sheet No. | Date:24-09-2021 | Checked :

(continued)


Stage No.1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

			RIGHT side						
				Effecti	ve stresse	s	Total	Adjusted	
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	<u>-al</u>	<u>limit</u>	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
24	-8.00	80.00	148.38	38.30	633.61	64.40	144.40	11213	
25	-8.65	86.50	154.23	40.22	656.96	69.22	155.72	11213	
26	-9.30	93.00	160.08	42.15	680.32	73.56	166.56	11213	
27	-9.73	97.25	163.91	43.40	695.58	76.69	173.94	11213	
28	-10.15	101.50	167.73	44.66	710.85	79.93	181.43	11213	
29	-10.58	105.75	171.56	45.92	726.12	84.61	190.36	11213	
30	-11.00	110.00	175.38	47.17	741.39	96.45	206.45	11213	
31	-11.20	112.00	177.18	47.77	748.58	83.52	195.52	11213	
32	-12.08	120.80	185.10	50.37	780.19	82.75	203.55	11213	
		120.80	185.10	48.75	1008.59	74.23	195.03	6116	
33	-13.58	135.80	197.10	51.91	1073.97	82.30	218.10	6116	
		135.80	197.10	52.48	886.99	89.16	224.96	15290	
34	-15.19	151.85	211.55	57.28	948.21	102.22	254.07	15290	
35	-16.79	167.90	225.99	62.09	1009.43	110.48	278.38	15290	
36	-18.40	183.95	240.44	66.90	1070.65	118.28	302.23	15290	
37	-20.00	200.00	254.88	71.70	1131.87	120.14	320.14	15290	

Note: 22.53 a Soil pressure at active limit 47.35 p Soil pressure at passive limit 774.87 b Passive limit reduced because of berm



Stage No.1 Excav. to elev. 1.50 on LEFT side

Stage No.1 Excav. to elev. 1.50 on LEFT side

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained	
Byron Lane Slip	Date:24-09-2021
AZ 24-700N Sheet Pile	Checked :
Units	: kN,m

Stage No. 3 Apply surcharge no.1 at elevation 4.92

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo			ev. for	
				elev. =	-11.00	FoS =	1.300	
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
3	4.92	1.50	Cant.	1.534	-10.12	-7.36	8.86	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.029	-2.14E-03	0.0	0.0	
2	4.32	-2.39	-0.027	-2.14E-03	-0.7	-0.3	
		-3.06	-0.027	-2.14E-03	-0.7	-0.3	
3	3.66	-6.35	-0.026	-2.14E-03	-3.8	-1.8	
4	3.00	-9.82	-0.025	-2.14E-03	-9.2	-6.2	
5	2.72	-11.31	-0.024	-2.14E-03	-12.1	-9.1	
		-9.99	-0.024	-2.14E-03	-12.1	-9.1	
6	2.00	-14.88	-0.022	-2.13E-03	-21.1	-21.1	
7	1.50	-18.21	-0.021	-2.12E-03	-29.3	-33.8	
		1.95	-0.021	-2.12E-03	-29.3	-33.8	
8	1.42	6.59	-0.021	-2.12E-03	-29.0	-36.1	
		8.91	-0.021	-2.12E-03	-29.0	-36.1	
9	1.00	23.69	-0.020	-2.11E-03	-22.2	-47.5	
10	0.50	34.30	-0.019	-2.08E-03	-7.7	-55.6	
11	0.00	41.05	-0.018	-2.04E-03	11.2	-55.2	
12	-0.08	31.68	-0.018	-2.04E-03	14.1	-54.2	
		-19.33	-0.018	-2.04E-03	14.1	-54.2	
13	-0.84	-5.19	-0.017	-1.96E-03	4.8	-48.7	
14	-1.60	0.11	-0.015	-1.87E-03	2.8	-46.6	
15	-2.34	-2.70	-0.014	-1.77E-03	1.9	-44.5	
16	-3.08	-4.64	-0.013	-1.67E-03	-0.8	-43.8	
		0.78	-0.013	-1.67E-03	-0.8	-43.8	
17	-3.54	-1.11	-0.012	-1.60E-03	-0.9	-44.1	
18	-4.00	-3.65	-0.011	-1.52E-03	-2.0	-44.7	
19	-4.80	-6.22	-0.010	-1.40E-03	-6.0	-47.4	
20	-5.44	-8.95	-0.009	-1.30E-03	-10.8	-52.5	
21	-6.08	-8.26	-0.008	-1.20E-03	-16.3	-61.3	
		25.69	-0.008	-1.20E-03	-16.3	-61.3	

| Sheet No. | Date:24-09-2021 | Checked :

(continued)

Stage No.3 Apply surcharge no.1 at elevation 4.92

Nod		Nett	Wall	Wall	Shear	Bending	Prop
no.	<u>coord</u>	<u>pressure</u> kN/m2	<u>disp.</u> m	rotation rad.	<u>force</u> kN/m	<u>moment</u> kN.m/m	<u>forces</u> kN/m
22	-6.64	21.12	-0.008	-1.10E-03	-3.2	-66.4	1210/111
23	-7.20	13.69	-0.007	-1.01E-03	6.5	-64.9	
24	-8.00	8.14	-0.006	-9.01E-04	15.3	-55.3	
25	-8.65	3.80	-0.006	-8.27E-04	19.1	-43.6	
26	-9.30	0.80	-0.005	-7.73E-04	20.6	-30.4	
27	-9.73	-1.95	-0.005	-7.48E-04	20.4	-21.5	
28	-10.15	-5.07	-0.004	-7.32E-04	18.9	-13.0	
29	-10.58	-11.87	-0.004	-7.24E-04	15.3	-5.4	
30	-11.00	-40.92	-0.004	-7.21E-04	4.1	0.0	
31	-11.20	-0.05	-0.004	0	-0.0	0.0	
32	-12.08	12.31	-0.004	0	5.4	0.0	
		-7.29	-0.004	0	5.4	0.0	
33	-13.58	-13.33	-0.003	0	-10.1	0.0	
		12.44	-0.003	0	-10.1	0.0	
34	-15.19	-0.00	-0.002	0	-0.1	0.0	
35	-16.79	-0.00	-0.002	0	-0.1	0.0	
36	-18.40	-0.00	-0.001	0	-0.1	0.0	
37	-20.00	0.12	-0.000	0	-0.0	0.0	

		LEFT side							
				5	Total	Adjusted			
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
		0.00	0.00	0.00	20.16	20.16	20.16p	4689	
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4689	
		0.00	1.36	0.00	25.59b	25.59	25.59p	7816	
9	1.00	0.00	8.92	0.00	43.14b	43.14	43.14p	7816	
10	0.50	0.00	17.92	0.00	57.00b	57.00	57.00p	7816	
11	0.00	0.00	26.92	2.30	72.95b	66.95	66.95	7816	
12	-0.08	0.80	27.56	2.51	57.82b	57.82	58.62p	7816	
		0.80	27.56	6.41	20.56b	20.56	21.36p	3908	
13	-0.84	8.40	32.88	8.18	38.95b	38.95	47.35p	3908	
14	-1.60	16.00	38.21	9.95	62.59b	48.58	64.58	3908	
15	-2.34	23.40	43.39	11.67	72.22b		73.34	3908	
16	-3.08	30.80	48.58	13.40	81.16b		82.56	3908	
		30.80	48.58	11.20	155.51b		83.83	4689	
17	-3.54	35.40	51.81	12.30	129.81b	53.65	89.05	4689	
18	-4.00	40.00	55.03	13.41	100.66b		94.07	4689	
19	-4.80	48.00	60.65	15.32	110.72b		103.83	4689	
20	-5.44	54.40	65.15	16.86	119.11b	56.89	111.29	4689	
21	-6.08	60.80	69.65	18.39	127.09b	59.44	120.24	4689	
		60.80	69.65	12.42	319.32	74.81	135.61	11463	
22	-6.64	66.40	74.71	14.08	297.94	74.62	141.02	11463	
23	-7.20	72.00	79.77	15.75	196.22b	73.47	145.47	11463	
24	-8.00	80.00	87.01	18.13	149.25b	74.46	154.46	11463	
25	-8.65	86.50	92.90	20.06	249.94b	75.35	161.85	11463	
26	-9.30	93.00	98.79	22.00	356.64b	76.94	169.94	11463	
27	-9.73	97.25	102.64	23.26	351.40b	77.59	174.84	11463	
28	-10.15	101.50	106.50	24.53	366.80b	78.04	179.54	11463	

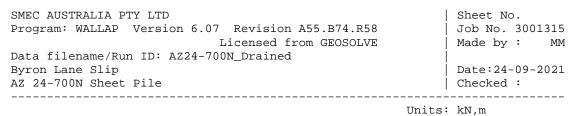
| Sheet No. | Date:24-09-2021 | Checked :

(continued)

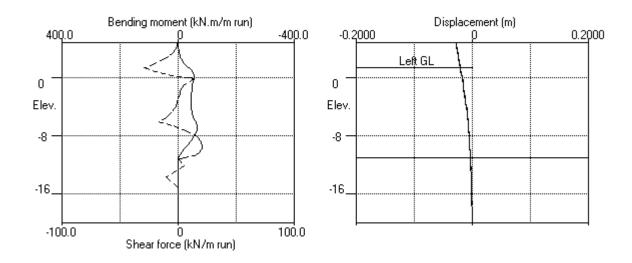
Stage No.3 Apply surcharge no.1 at elevation 4.92

justed soil odulus
odulus
<n m2<="" td=""></n>
11463
11463
11463
11463
6253
6253
15632
15632
15632
15632
15632

		RIGHT side							
				Total	Adjusted				
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30580	
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30580	
		0.00	12.21	3.06	70.25	3.06	3.06a	5097	
3	3.66	0.00	25.29	6.35	145.55	6.35	6.35a	5097	
4	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5097	
5	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5097	
		0.00	45.03	9.99	191.25	9.99	9.99a	4587	
6	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4587	
7	1.50	0.00	69.12	18.21	282.76	18.21	18.21a	4587	
8	1.42	0.00	70.66	18.74	288.62	18.74	18.74a	4587	
		0.00	70.66	16.68	307.87	16.68	16.68a	7645	
9	1.00	0.00	79.10	19.45	341.56	19.45	19.45a	7645	
10	0.50	0.00	88.98	22.70	381.03	22.70	22.70a	7645	
11	0.00	0.00	98.72	25.90	419.89	25.90	25.90a	7645	
12	-0.08	0.80	99.47	26.15	422.87	26.15	26.95a	7645	
		0.80	99.47	30.32	387.94	39.89	40.69	3822	
13	-0.84	8.40	105.64	32.38	411.37	44.15	52.55	3822	
14	-1.60	16.00	111.57	34.35	433.92	48.47	64.47	3822	
15	-2.34	23.40	117.17	36.21	455.20	52.65	76.05	3822	
16	-3.08	30.80	122.63	38.03	475.94	56.40	87.20	3822	
		30.80	122.63	36.46	486.09	52.25	83.05	4587	
17	-3.54	35.40	125.97	37.60	498.76	54.76	90.16	4587	
18	-4.00	40.00	129.26	38.72	511.27	57.72	97.72	4587	
19	-4.80	48.00	134.91	40.65	532.74	62.04	110.04	4587	
20	-5.44	54.40	139.37	42.17	549.67	65.84	120.24	4587	
21	-6.08	60.80	143.78	43.68	566.43	67.70	128.50	4587	
		60.80	143.78	36.79	615.25	49.13	109.93	11213	
22	-6.64	66.40	148.73	38.41	635.00	53.50	119.90	11213	
23	-7.20	72.00	153.65	40.03	654.65	59.78	131.78	11213	
24	-8.00	80.00	160.65	42.33	682.59	66.32	146.32	11213	
25	-8.65	86.50	166.31	44.19	705.18	71.54	158.04	11213	
26	-9.30	93.00	171.95	46.05	727.71	76.14	169.14	11213	
27	-9.73	97.25	175.63	47.26	742.40	79.54	176.79	11213	
28	-10.15	101.50	179.31	48.47	757.08	83.11	184.61	11213	
29	-10.58	105.75	182.98	49.67	771.74	88.59	194.34	11213	
30	-11.00	110.00	186.65	50.88	786.38	103.65	213.65	11213	
31	-11.20	112.00	188.38	51.45	793.27	85.95	197.95	11213	

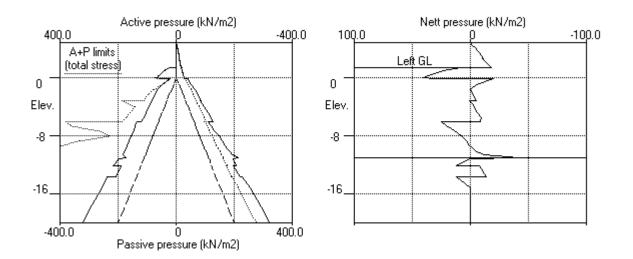

| Sheet No. | Date:24-09-2021 | Checked :

(continued)


Stage No.3 Apply surcharge no.1 at elevation 4.92

	RIGHT side _								
			Effectiv	ve stresse	S	Total	Adjusted		
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil		
no. coord	press.	-al	limit	limit	pressure	pressure	modulus		
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2		
32 -12.08	120.80	195.96	53.94	823.55	84.21	205.01	11213		
	120.80	195.96	51.61	1067.76	77.14	197.94	6116		
33 -13.58	135.80	207.38	54.61	1129.98	85.47	221.27	6116		
	135.80	207.38	55.90	930.55	90.48	226.28	15290		
34 -15.19	151.85	221.20	60.50	989.13	104.23	256.08	15290		
35 -16.79	167.90	235.04	65.10	1047.78	112.43	280.33	15290		
36 -18.40	183.95	248.90	69.71	1106.54	120.10	304.05	15290		
37 -20.00	200.00	262.80	74.34	1165.43	120.70	320.70	15290		

Note: 26.95 a Soil pressure at active limit 47.35 p Soil pressure at passive limit 774.87 b Passive limit reduced because of berm



Stage No.3 Apply surcharge no.1 at elev. 4.92

Stage No.3 Apply surcharge no.1 at elev. 4.92

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: AZ24-700N_Drained Byron Lane Slip	 Date:24-09-2021
AZ 24-700N Sheet Pile	Checked :
·	
Units	: kN,m

Stage No. 4 Apply water pressure profile no.1

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe		Toe el	ev. for	
				elev. =	-11.00	FoS =	1.300	
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
4	4.92	1.50	Cant.	1.472	-10.11	-8.16	9.66	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	<u><u> </u></u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.054	-3.78E-03	0.0	0.0	
2	4.32	-2.39		-3.78E-03	-0.7	-0.3	
		-3.06	-0.052	-3.78E-03	-0.7	-0.3	
3	3.66	-6.35	-0.049	-3.78E-03	-3.8	-1.8	
4	3.00	-9.82	-0.047	-3.78E-03	-9.2	-6.2	
5	2.72	-11.31	-0.046	-3.78E-03	-12.1	-9.1	
		-9.99	-0.046	-3.78E-03	-12.1	-9.1	
6	2.00	-14.88	-0.043	-3.77E-03	-21.1	-21.1	
7	1.50	-18.21	-0.041	-3.76E-03	-29.3	-33.8	
		1.95	-0.041	-3.76E-03	-29.3	-33.8	
8	1.42	6.59	-0.041	-3.76E-03	-29.0	-36.1	
		8.91	-0.041	-3.76E-03	-29.0	-36.1	
9	1.00	23.69	-0.039	-3.75E-03	-22.2	-47.5	
10	0.50	30.94	-0.037	-3.72E-03	-8.5	-55.8	
11	0.00	40.33	-0.035	-3.68E-03	9.3	-56.3	
12	-0.08	24.96	-0.035	-3.67E-03	11.9	-55.4	
		-21.21	-0.035	-3.67E-03	11.9	-55.4	
13	-0.84	-7.29	-0.032	-3.59E-03	1.1	-52.1	
14	-1.60	1.73	-0.030	-3.46E-03	-1.0	-53.4	
15	-2.34	-1.85	-0.027	-3.31E-03	-1.1	-53.7	
16	-3.08	-4.34	-0.025	-3.14E-03	-3.4	-55.0	
		2.29	-0.025	-3.14E-03	-3.4	-55.0	
17	-3.54	-0.17	-0.023	-3.03E-03	-2.9	-56.3	
18	-4.00	-3.40	-0.022	-2.91E-03	-3.7	-57.6	
19	-4.80	-6.64	-0.020	-2.69E-03	-7.7	-61.6	
20	-5.44	-10.06	-0.018	-2.51E-03	-13.0	-67.9	
21	-6.08	-9.21	-0.016	-2.31E-03	-19.2	-78.3	
		31.64	-0.016	-2.31E-03	-19.2	-78.3	

| Sheet No. | Date:24-09-2021 | Checked :

(continued)

Stage No.4 Apply water pressure profile no.1	e no.1
--	--------

Nod	e Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
22	-6.64	25.93	-0.015	-2.14E-03	-3.1	-84.1	
23	-7.20	16.71	-0.014	-1.96E-03	8.8	-81.8	
24	-8.00	9.87	-0.013	-1.74E-03	19.5	-69.4	
25	-8.65	4.53	-0.012	-1.60E-03	24.2	-54.6	
26	-9.30	0.83	-0.011	-1.50E-03	25.9	-37.9	
27	-9.73	-2.56	-0.010	-1.45E-03	25.5	-26.9	
28	-10.15	-6.42	-0.009	-1.42E-03	23.6	-16.2	
29	-10.58	-14.87	-0.009	-1.40E-03	19.1	-6.8	
30	-11.00	-51.01	-0.008	-1.39E-03	5.1	-0.0	
31	-11.20	-0.05	-0.008	0	-0.0	0.0	
32	-12.08	14.61	-0.008	0	6.4	0.0	
		-8.64	-0.008	0	6.4	0.0	
33	-13.58	-15.82	-0.006	0	-11.9	0.0	
		14.77	-0.006	0	-11.9	0.0	
34	-15.19	-0.00	-0.005	0	-0.1	0.0	
35	-16.79	-0.00	-0.003	0	-0.1	0.0	
36	-18.40	-0.00	-0.002	0	-0.1	0.0	
37	-20.00	0.12	-0.000	0	-0.0	0.0	

		LEFT side							
	Effective stresses						Total	Adjusted	
Nod	е ү	Water	Vertic	Active	Passive	Earth	earth	soil	
no.		press.	-al	limit	limit	pressure	pressure	modulus	
	·	 kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
		0.00	0.00	0.00	20.16	20.16	20.16p	4689	
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4689	
		0.00	1.36	0.00	25.59b		25.59p	7816	
9	1.00	0.00	8.92	0.00	43.14b		43.14p	7816	
10	0.50	0.00	17.92	0.00	57.00b		57.00p	7816	
11	0.00	0.00	26.92	2.30	72.95b		72.95p	7816	
12	-0.08	0.80	27.56	2.51	57.82b		58.62p	7816	
		0.80	27.56	6.41	20.56b		21.36p	3908	
13	-0.84	8.40	32.88	8.18	38.95b		47.35p	3908	
14	-1.60	16.00	38.21	9.95	62.59b		68.61	3908	
15	-2.34	23.40	43.39	11.67	72.22b		76.92	3908	
16	-3.08	30.80	48.58	13.40	81.16b		85.81	3908	
		30.80	48.58	11.20	155.51b		87.73	4689	
17	-3.54	35.40	51.81	12.30	129.81b		92.60	4689	
18	-4.00	40.00	55.03	13.41	100.66b		97.25	4689	
19	-4.80	48.00	60.65	15.32	110.72b		106.64	4689	
20	-5.44	54.40	65.15	16.86	119.11b		113.73	4689	
21	-6.08	60.80	69.65	18.39	127.09b		122.70	4689	
		60.80	69.65	12.42	319.32	80.84	141.64	11463	
22	-6.64	66.40	74.71	14.08	297.94	79.93	146.33	11463	
23	-7.20	72.00	79.77	15.75	196.22b		149.86	11463	
24	-8.00	80.00	87.01	18.13	149.25b		158.17	11463	
25	-8.65	86.50	92.90	20.06	249.94b		165.03	11463	
26	-9.30	93.00	98.79	22.00	356.64b		172.76	11463	
27	-9.73	97.25	102.64	23.26	351.40b		177.34	11463	
28	-10.15	101.50	106.50	24.53	366.80b	80.15	181.65	11463	

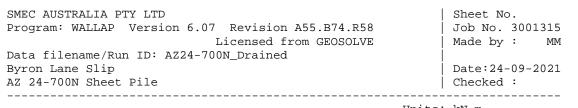
Sheet No. Date:24-09-2021 Checked : _____

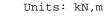
(continued)

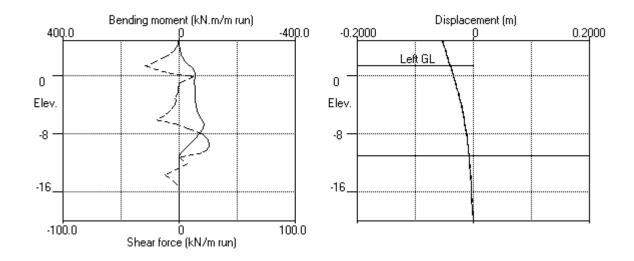
Stage No.4 Apply water pressure profile no.1

			_				
			Effectiv	Total	Adjusted		
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	<u>-al</u>	<u>limit</u>	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
29 -10.58	105.75	110.36	25.80	382.20b	78.01	183.76	11463
30 -11.00	110.00	114.22	27.07	396.81b	60.10	170.10	11463
31 -11.20	112.00	116.04	27.67	407.25b	88.77	200.77	11463
32 -12.08	120.80	124.04	30.30	433.79b	100.55	221.35	11463
	120.80	124.04	32.67	519.74b	72.04	192.84	6253
33 -13.58	135.80	136.21	35.87	570.71b	73.75	209.55	6253
	135.80	136.21	32.22	600.85b	106.93	242.73	15632
34 -15.19	151.85	150.86	37.09	627.91b	107.02	258.87	15632
35 -16.79	167.90	165.55	41.98	653.42b	115.30	283.20	15632
36 -18.40	183.95	180.27	46.88	715.85b	122.94	306.89	15632
37 -20.00	200.00	195.03	51.79	774.87b	122.23	322.23	15632

				side				
				Total	Adjusted			
Node	e Y	Water	Vertic	Active	ve stresse Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30580
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30580
		0.00	12.21	3.06	70.25	3.06	3.06a	5097
3	3.66	0.00	25.29	6.35	145.55	6.35	6.35a	5097
4	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5097
5	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5097
		0.00	45.03	9.99	191.25	9.99	9.99a	4587
6	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4587
7	1.50	0.00	69.12	18.21	282.76	18.21	18.21a	4587
8	1.42	0.00	70.66	18.74	288.62	18.74	18.74a	4587
		0.00	70.66	16.68	307.87	16.68	16.68a	7645
9	1.00	0.00	79.10	19.45	341.56	19.45	19.45a	7645
10	0.50	5.00	83.98	21.06	361.07	21.06	26.06a	7645
11	0.00	10.00	88.72	22.62	379.98	22.62	32.62a	7645
12	-0.08	10.80	89.47	22.86	382.95	22.86	33.66a	7645
		10.80	89.47	27.00	349.95	31.77	42.57	3822
13	-0.84	18.40	95.64	29.05	373.38	36.24	54.64	3822
14	-1.60	26.00	101.57	31.02	395.94	40.89	66.89	3822
15	-2.34	33.40	107.17	32.89	417.21	45.37	78.77	3822
16	-3.08	40.80	112.63	34.70	437.95	49.35	90.15	3822
		40.80	112.63	33.05	448.10	44.64	85.44	4587
17	-3.54	45.40	115.97	34.19	460.76	47.37	92.77	4587
18	-4.00	50.00	119.26	35.31	473.28	50.64	100.64	4587
19	-4.80	58.00	124.91	37.24	494.74	55.28	113.28	4587
20	-5.44	64.40	129.37	38.76	511.68	59.40	123.80	4587
21	-6.08	70.80	133.78	40.27	528.44	61.11	131.91	4587
		70.80	133.78	33.50	575.33	39.20	110.00	11213
22	-6.64	76.40	138.73	35.13	595.08	44.00	120.40	11213
23	-7.20	82.00	143.65	36.74	614.74	51.15	133.15	11213
24	-8.00	90.00	150.65	39.05	642.67	58.30	148.30	11213
25	-8.65	96.50	156.31	40.91	665.27	64.00	160.50	11213
26	-9.30	103.00	161.95	42.76	687.79	68.93	171.93	11213
27	-9.73	107.25	165.63	43.97	702.49	72.65	179.90	11213
28	-10.15	111.50	169.31	45.18	717.16	76.57	188.07	11213
29	-10.58	115.75	172.98	46.39	731.82	82.88	198.63	11213
30	-11.00	120.00	176.65	47.59	746.46	101.11	221.11	11213
31	-11.20	122.00	178.38	48.16	753.35	78.81	200.81	11213

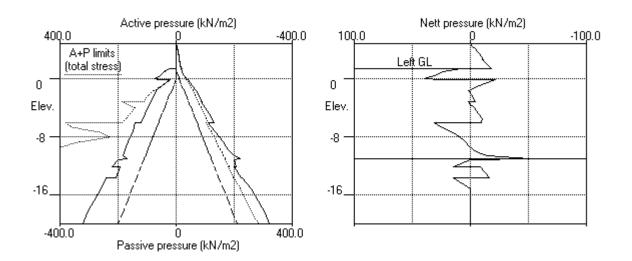

| Sheet No. | Date:24-09-2021 | Checked :


(continued)


Stage No.4 Apply water pressure profile no.1

		RIGHT side						
			Effective stresses				Adjusted	
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no. coc	rd press.	-al	limit	limit	pressure	pressure	modulus	
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
32 -12.	08 130.80	185.96	50.65	783.63	75.94	206.74	11213	
	130.80	185.96	48.97	1013.28	70.68	201.48	6116	
33 -13.	58 145.80	197.38	51.98	1075.49	79.57	225.37	6116	
	145.80	197.38	52.57	888.16	82.16	227.96	15290	
34 -15.	19 161.85	211.20	57.17	946.75	97.02	258.87	15290	
35 -16.	79 177.90	225.04	61.77	1005.40	105.30	283.20	15290	
36 -18.	40 193.95	238.90	66.39	1064.16	112.94	306.89	15290	
37 -20.	00 210.00	252.80	71.01	1123.05	112.10	322.10	15290	

Note: 33.66 a Soil pressure at active limit 47.35 p Soil pressure at passive limit 774.87 b Passive limit reduced because of berm



Stage No.4 Apply water pressure profile no.1

Stage No.4 Apply water pressure profile no.1

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: AZ24-700N_Drained	
Byron Lane Slip	Date:24-09-2021
AZ 24-700N Sheet Pile	Checked :
Unit	s: kN,m

Stage No. 5 Apply water pressure profile no.2

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe		Toe el	ev. for	
				elev. =	-11.00	FoS =	1.300	
Stage	Ground	llevel	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
5	4.92	1.50	Cant.	1.399	-10.09	-9.31	10.81	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.100	-7.29E-03	0.0	0.0	
2	4.32	-2.39	-0.095	-7.29E-03	-0.7	-0.3	
		-3.06	-0.095	-7.29E-03	-0.7	-0.3	
3	3.66	-6.35	-0.091	-7.29E-03	-3.8	-1.8	
4	3.00	-9.82	-0.086	-7.29E-03	-9.2	-6.2	
5	2.72	-11.31	-0.084	-7.29E-03	-12.1	-9.1	
		-9.99	-0.084	-7.29E-03	-12.1	-9.1	
6	2.00	-14.88	-0.078	-7.28E-03	-21.1	-21.1	
7	1.50	-21.50	-0.075	-7.27E-03	-30.2	-33.9	
		-1.35	-0.075	-7.27E-03	-30.2	-33.9	
8	1.42	2.77	-0.074	-7.27E-03	-30.1	-36.3	
		5.02	-0.074	-7.27E-03	-30.1	-36.3	
9	1.00	16.97	-0.071	-7.25E-03	-25.5	-48.6	
10	0.50	24.23	-0.068	-7.22E-03	-15.2	-59.3	
11	0.00	33.62	-0.064	-7.15E-03	-0.7	-64.0	
12	-0.08	18.25	-0.063	-7.14E-03	1.3	-64.0	
		-23.11	-0.063	-7.14E-03	1.3	-64.0	
13	-0.84	-7.64	-0.058	-6.97E-03	-10.3	-69.3	
14	-1.60	7.10	-0.053	-6.71E-03	-10.5	-79.3	
15	-2.34	1.83	-0.048	-6.37E-03	-7.2	-85.2	
16	-3.08	-1.78	-0.043	-5.99E-03	-7.2	-90.1	
		6.49	-0.043	-5.99E-03	-7.2	-90.1	
17	-3.54	2.96	-0.041	-5.74E-03	-5.0	-92.7	
18	-4.00	-1.60	-0.038	-5.47E-03	-4.7	-94.7	
19	-4.80	-6.08	-0.034	-5.00E-03	-7.8	-99.0	
20	-5.44	-10.74	-0.031	-4.62E-03	-13.2	-105.3	
21	-6.08	-9.22	-0.028	-4.22E-03	-19.6	-115.9	
		39.85	-0.028	-4.22E-03	-19.6	-115.9	

| Sheet No. | Date:24-09-2021 | Checked :

(continued)

Stage No.5	Apply water	pressure	profile no.2
------------	-------------	----------	--------------

Node	e Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
22	-6.64	32.69	-0.026	-3.87E-03	0.7	-120.6	
23	-7.20	20.60	-0.024	-3.53E-03	15.7	-115.1	
24	-8.00	11.77	-0.021	-3.10E-03	28.6	-96.0	
25	-8.65	4.98	-0.019	-2.83E-03	34.0	-74.9	
26	-9.30	0.27	-0.017	-2.63E-03	35.8	-51.7	
27	-9.73	-4.10	-0.016	-2.54E-03	34.9	-36.5	
28	-10.15	-9.15	-0.015	-2.48E-03	32.1	-22.0	
29	-10.58	-20.38	-0.014	-2.45E-03	25.8	-9.1	
30	-11.00	-68.85	-0.013	-2.44E-03	6.9	-0.0	
31	-11.20	-0.05	-0.013	0	-0.0	0.0	
32	-12.08	16.90	-0.013	0	7.4	0.0	
		-9.99	-0.013	0	7.4	0.0	
33	-13.58	-18.32	-0.010	0	-13.8	0.0	
		17.10	-0.010	0	-13.8	0.0	
34	-15.19	-0.00	-0.008	0	-0.1	0.0	
35	-16.79	-0.00	-0.006	0	-0.1	0.0	
36	-18.40	-0.00	-0.004	0	-0.1	0.0	
37	-20.00	0.12	-0.001	0	-0.0	0.0	

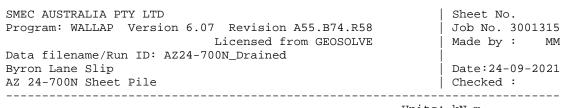
		LEFT side							
				Effectiv	<i>v</i> e stresse		Total	 Adjusted	
Nod	е Ү	Water	Vertic	Active	Passive	Earth	earth	soil	
no.		press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
		0.00	0.00	0.00	20.16	20.16	20.16p	4689	
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4689	
		0.00	1.36	0.00	25.59b		25.59p	7816	
9	1.00	0.00	8.92	0.00	43.14b		43.14p	7816	
10	0.50	0.00	17.92	0.00	57.00b		57.00p	7816	
11	0.00	0.00	26.92	2.30	72.95b		72.95p	7816	
12	-0.08	0.80	27.56	2.51	57.82b		58.62p	7816	
		0.80	27.56	6.41	20.56b		21.36p	3908	
13	-0.84	8.40	32.88	8.18	38.95b		47.35p	3908	
14	-1.60	16.00	38.21	9.95	62.59b		75.04	3908	
15	-2.34	23.40	43.39	11.67	72.22b		82.34	3908	
16	-3.08	30.80	48.58	13.40	81.16b		90.53	3908	
10	2 54	30.80	48.58	11.20	155.51b		93.39	4689	
17	-3.54	35.40	51.81	12.30	129.81b		97.58	4689	
18 19	-4.00 -4.80	$40.00 \\ 48.00$	55.03 60.65	13.41 15.32	100.66b 110.72b		101.49 110.20	4689	
19 20	-4.80 -5.44	48.00 54.40	65.15	15.32	110.72b 119.11b		116.63	4689 4689	
20 21	-5.44	54.40 60.80	69.65	18.39	127.09b		125.77	4689	
21	-0.08	60.80	69.65	12.42	319.32	88.35	149.15	11463	
22	-6.64	66.40	74.71	14.08	297.94	86.40	152.80	11463	
23	-7.20	72.00	79.77	15.75	196.22b		154.81	11463	
24	-8.00	80.00	87.01	18.13	149.25b		162.06	11463	
25	-8.65	86.50	92.90	20.06	249.94b		168.14	11463	
26	-9.30	93.00	98.79	22.00	356.64b		175.34	11463	
27	-9.73	97.25	102.64	23.26	351.40b		179.40	11463	
28	-10.15	101.50	106.50	24.53	366.80b		183.09	11463	

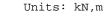
Sheet No. Date:24-09-2021 Checked : _____

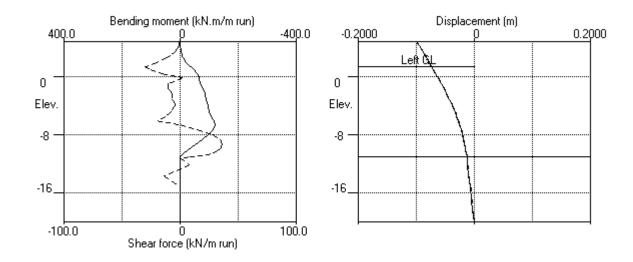
(continued)

Stage No.5 Apply water pressure profile no.2

	LEFT side _						
			Effective stresses				Adjusted
<u>Node</u> <u>Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	<u>limit p</u>	ressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
29 -10.58	105.75	110.36	25.80	382.20b	78.06	183.81	11463
30 -11.00	110.00	114.22	27.07	396.81b	53.32	163.32	11463
31 -11.20	112.00	116.04	27.67	407.25b	91.70	203.70	11463
32 -12.08	120.80	124.04	30.30	433.79b	104.65	225.45	11463
	120.80	124.04	32.67	519.74b	74.28	195.08	6253
33 -13.58	135.80	136.21	35.87	570.71b	75.37	211.17	6253
	135.80	136.21	32.22	600.85b	111.00	246.80	15632
34 -15.19	151.85	150.86	37.09	627.91b	109.82	261.67	15632
35 -16.79	167.90	165.55	41.98	653.42b	118.20	286.10	15632
36 -18.40	183.95	180.27	46.88	715.85b	125.84	309.79	15632
37 -20.00	200.00	195.03	51.79	774.87b	123.46	323.46	15632

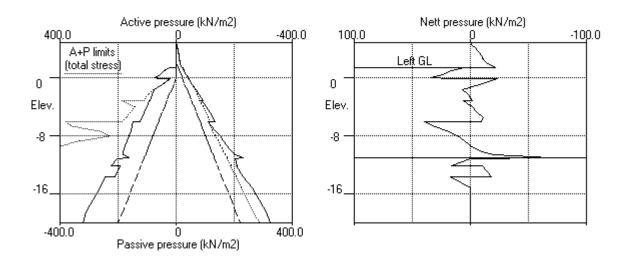

					side			
				Effectiv	ve stresse		Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30580
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30580
		0.00	12.21	3.06	70.25	3.06	3.06a	5097
3	3.66	0.00	25.29	6.35	145.55	6.35	6.35a	5097
4	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5097
5	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5097
		0.00	45.03	9.99	191.25	9.99	9.99a	4587
б	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4587
7	1.50	5.00	64.12	16.50	263.77	16.50	21.50a	4587
8	1.42	5.80	64.86	16.76	266.58	16.76	22.56a	4587
		5.80	64.86	14.77	284.72	14.77	20.57a	7645
9	1.00	10.00	69.10	16.17	301.64	16.17	26.17a	7645
10	0.50	15.00	73.98	17.77	321.15	17.77	32.77a	7645
11	0.00	20.00	78.72	19.33	340.06	19.33	39.33a	7645
12	-0.08	20.80	79.47	19.57	343.03	19.57	40.37a	7645
		20.80	79.47	23.67	311.96	23.67	44.47a	3822
13	-0.84	28.40	85.64	25.72	335.40	26.59	54.99	3822
14	-1.60	36.00	91.57	27.70	357.95	31.94	67.94	3822
15	-2.34	43.40	97.17	29.56	379.23	37.11	80.51	3822
16	-3.08	50.80	102.63	31.38	399.96	41.51	92.31	3822
		50.80	102.63	29.64	410.10	36.09	86.89	4587
17	-3.54	55.40	105.97	30.78	422.77	39.22	94.62	4587
18	-4.00	60.00	109.26	31.90	435.29	43.09	103.09	4587
19	-4.80	68.00	114.91	33.83	456.75	48.28	116.28	4587
20	-5.44	74.40	119.37	35.35	473.68	52.97	127.37	4587
21	-6.08	80.80	123.78	36.86	490.45	54.20	135.00	4587
		80.80	123.78	30.21	535.41	28.50	109.30A	11213
22	-6.64	86.40	128.73	31.84	555.16	33.71	120.11	11213
23	-7.20	92.00	133.65	33.46	574.82	42.22	134.22	11213
24	-8.00	100.00	140.65	35.76	602.75	50.29	150.29	11213
25	-8.65	106.50	146.31	37.62	625.35	56.67	163.17	11213
26	-9.30	113.00	151.95	39.47	647.87	62.07	175.07	11213
27	-9.73	117.25	155.63	40.68	662.57	66.25	183.50	11213
28	-10.15	121.50	159.31	41.89	677.24	70.74	192.24	11213
29	-10.58	125.75	162.98	43.10	691.90	78.44	204.19	11213
30	-11.00	130.00	166.65	44.30	706.54	102.17	232.17	11213
31	-11.20	132.00	168.38	44.87	713.43	71.75	203.75	11213


Sheet No. Date:24-09-2021 Checked : _____


(continued)

					RIGHT	side		_
				Effective stresses			Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
32	-12.08	140.80	175.96	47.37	743.71	67.74	208.54	11213
		140.80	175.96	46.34	958.79	64.27	205.07	6116
33	-13.58	155.80	187.38	49.35	1021.00	73.69	229.49	6116
		155.80	187.38	49.24	845.78	73.90	229.70	15290
34	-15.19	171.85	201.20	53.84	904.37	89.82	261.67	15290
35	-16.79	187.90	215.04	58.45	963.02	98.20	286.10	15290
36	-18.40	203.95	228.90	63.06	1021.78	105.84	309.79	15290
37	-20.00	220.00	242.80	67.68	1080.67	103.33	323.33	15290

Note: 44.47 a Soil pressure at active limit 47.35 p Soil pressure at passive limit 774.87 b Passive limit reduced because of berm 109.30A Arching - soil pressure below active limit



Stage No.5 Apply water pressure profile no.2

Stage No.5 Apply water pressure profile no.2

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained	
Byron Lane Slip	Date:24-09-2021
AZ 24-700N Sheet Pile	Checked :
Units	: kN,m

Stage No. 6 Apply water pressure profile no.3

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe		Toe el	ev. for	
				elev. =	-11.00	FoS =	1.300	
Stage	Ground	llevel	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
6	4.92	1.50	Cant.	1.314	-10.05	-10.77	12.27	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.195	-1.50E-02	0.0	-0.0	
2	4.32	-2.39	-0.186	-1.50E-02	-0.7	-0.3	
		-3.06	-0.186	-1.50E-02	-0.7	-0.3	
3	3.66	-6.35	-0.176	-1.50E-02	-3.8	-1.8	
4	3.00	-9.82	-0.166	-1.50E-02	-9.2	-6.2	
5	2.72	-13.40	-0.161	-1.50E-02	-12.4	-9.2	
		-11.84	-0.161	-1.50E-02	-12.4	-9.2	
6	2.00	-21.47	-0.151	-1.50E-02	-24.4	-22.2	
7	1.50	-28.09	-0.143	-1.50E-02	-36.8	-37.4	
		-7.94	-0.143	-1.50E-02	-36.8	-37.4	
8	1.42	-3.82	-0.142	-1.50E-02	-37.3	-40.4	
		-1.69	-0.142	-1.50E-02	-37.3	-40.4	
9	1.00	10.26	-0.136	-1.49E-02	-35.5	-56.3	
10	0.50	17.51	-0.128	-1.49E-02	-28.5	-72.9	
11	0.00	26.90	-0.121	-1.47E-02	-17.4	-85.1	
12	-0.08	11.54	-0.120	-1.47E-02	-15.9	-86.4	
		-29.79	-0.120	-1.47E-02	-15.9	-86.4	
13	-0.84	-13.45	-0.108	-1.43E-02	-32.3	-106.6	
14	-1.60	8.22	-0.098	-1.38E-02	-34.3	-135.1	
15	-2.34	13.12	-0.088	-1.30E-02	-26.4	-158.3	
16	-3.08	7.38	-0.078	-1.21E-02	-18.8	-174.2	
		16.92	-0.078	-1.21E-02	-18.8	-174.2	
17	-3.54	12.61	-0.073	-1.16E-02	-12.0	-181.1	
18	-4.00	5.04	-0.068	-1.09E-02	-8.0	-185.3	
19	-4.80	-2.16	-0.059	-9.90E-03	-6.8	-190.0	
20	-5.44	-9.51	-0.053	-9.02E-03	-10.5	-194.8	
21	-6.08	-6.31	-0.048	-8.14E-03	-15.6	-203.5	
		55.23	-0.048	-8.14E-03	-15.6	-203.5	

| Sheet No. | Date:24-09-2021 | Checked :

(continued)

Stage No.6	Apply water	pressure	profile no.3	
------------	-------------	----------	--------------	--

Nod	e Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
22	-6.64	45.37	-0.043	-7.38E-03	12.6	-203.6	
23	-7.20	27.39	-0.040	-6.66E-03	32.9	-189.4	
24	-8.00	14.67	-0.035	-5.79E-03	49.8	-154.3	
25	-8.65	5.08	-0.031	-5.23E-03	56.2	-118.8	
26	-9.30	-1.58	-0.028	-4.83E-03	57.3	-81.2	
27	-9.73	-7.85	-0.026	-4.65E-03	55.3	-57.0	
28	-10.15	-15.34	-0.024	-4.53E-03	50.4	-34.2	
29	-10.58	-32.34	-0.022	-4.47E-03	40.3	-14.2	
30	-11.00	-106.82	-0.020	-4.45E-03	10.7	-0.0	
31	-11.20	-0.05	-0.020	0	-0.0	0.0	
32	-12.08	19.19	-0.020	0	8.4	0.0	
		-11.33	-0.020	0	8.4	0.0	
33	-13.58	-20.81	-0.016	0	-15.7	0.0	
		19.43	-0.016	0	-15.7	0.0	
34	-15.19	-0.00	-0.012	0	-0.1	0.0	
35	-16.79	-0.00	-0.009	0	-0.1	0.0	
36	-18.40	-0.00	-0.005	0	-0.1	0.0	
37	-20.00	0.12	-0.001	0	-0.0	0.0	

	LEFT side							
				Effectiv	<i>v</i> e stresses		Total	Adjusted
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4689
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4689
		0.00	1.36	0.00	25.59b	25.59	25.59p	7816
9	1.00	0.00	8.92	0.00	43.14b	43.14	43.14p	7816
10	0.50	0.00	17.92	0.00	57.00b	57.00	57.00p	7816
11	0.00	0.00	26.92	2.30	72.95b	72.95	72.95p	7816
12	-0.08	0.80	27.56	2.51	57.82b	57.82	58.62p	7816
		0.80	27.56	6.41	20.56b	20.56	21.36p	3908
13	-0.84	8.40	32.88	8.18	38.95b	38.95	47.35p	3908
14	-1.60	16.00	38.21	9.95	62.59b	62.59	78.59p	3908
15	-2.34	23.40	43.39	11.67	72.22b	69.36	92.76	3908
16	-3.08	30.80	48.58	13.40	81.16b	68.53	99.33	3908
		30.80	48.58	11.20	155.51b	73.15	103.95	4689
17	-3.54	35.40	51.81	12.30	129.81b	71.18	106.58	4689
18	-4.00	40.00	55.03	13.41	100.66b	68.82	108.82	4689
19	-4.80	48.00	60.65	15.32	110.72b	68.03	116.03	4689
20	-5.44	54.40	65.15	16.86	119.11b	66.61	121.01	4689
21	-6.08	60.80	69.65	18.39	127.09b	69.83	130.63	4689
~ ~		60.80	69.65	12.42	319.32	100.22	161.02	11463
22	-6.64	66.40	74.71	14.08	297.94	96.23	162.63	11463
23	-7.20	72.00	79.77	15.75	196.22b	89.52	161.52	11463
24	-8.00	80.00	87.01	18.13	149.25b	86.68	166.68	11463
25	-8.65	86.50	92.90	20.06	249.94b	84.73	171.23	11463
26	-9.30	93.00	98.79	22.00	356.64b	84.38	177.38	11463
27 28	-9.73	97.25	102.64	23.26	351.40b	83.18	180.43	11463
28	-10.15	101.50	106.50	24.53	366.80b	81.34	182.84	11463

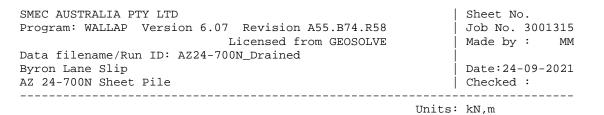
Sheet No. Date:24-09-2021 Checked : _____

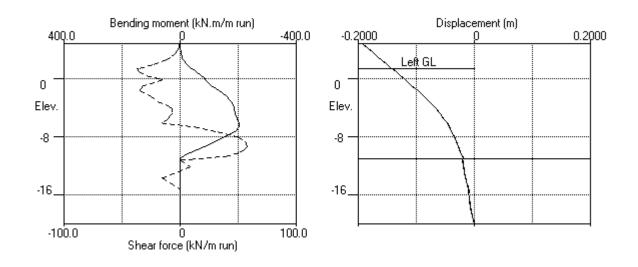
(continued)

Stage No.6 Apply water pressure profile no.3

			2		_		
			Effective stresses				Adjusted
Node Y	Water	Vertic	Active	Passive E	larth	earth	soil
no. coord	press.	-al	limit	limit pre	essure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2 k	cN/m2	kN/m2	kN/m2
29 -10.58	105.75	110.36	25.80	382.20b 7	4.93	180.68	11463
30 -11.00	110.00	114.22	27.07	396.81b 3	35.74	145.74	11463
31 -11.20	112.00	116.04	27.67	407.25b 9	94.82	206.82	11463
32 -12.08	120.80	124.04	30.30	433.79b 10	8.92	229.72	11463
	120.80	124.04	32.67	519.74b 7	6.61	197.41	6253
33 -13.58	135.80	136.21	35.87	570.71b 7	7.05	212.85	6253
	135.80	136.21	32.22	600.85b 11	5.20	251.00	15632
34 -15.19	151.85	150.86	37.09	627.91b 11	2.61	264.46	15632
35 -16.79	167.90	165.55	41.98	653.42b 12	21.17	289.07	15632
36 -18.40	183.95	180.27	46.88	715.85b 12	28.85	312.80	15632
37 -20.00	200.00	195.03	51.79	774.87b 12	24.21	324.21	15632

				side				
				Effectiv	ve stresse	S	Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30580
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30580
		0.00	12.21	3.06	70.25	3.06	3.06a	5097
3	3.66	0.00	25.29	6.35	145.55	6.35	6.35a	5097
4	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5097
5	2.72	2.80	42.23	10.60	243.06	10.60	13.40a	5097
		2.80	42.23	9.04	180.61	9.04	11.84a	4587
б	2.00	10.00	49.37	11.47	207.74	11.47	21.47a	4587
7	1.50	15.00	54.12	13.09	225.77	13.09	28.09a	4587
8	1.42	15.80	54.86	13.35	228.59	13.35	29.15a	4587
		15.80	54.86	11.49	244.80	11.49	27.29a	7645
9	1.00	20.00	59.10	12.88	261.72	12.88	32.88a	7645
10	0.50	25.00	63.98	14.49	281.23	14.49	39.49a	7645
11	0.00	30.00	68.72	16.04	300.14	16.04	46.04a	7645
12	-0.08	30.80	69.47	16.29	303.11	16.29	47.09a	7645
		30.80	69.47	20.35	273.97	20.35	51.15a	3822
13	-0.84	38.40	75.64	22.40	297.41	22.40	60.80a	3822
14	-1.60	46.00	81.57	24.37	319.96	24.37	70.37a	3822
15	-2.34	53.40	87.17	26.24	341.24	26.24	79.64a	3822
16	-3.08	60.80	92.63	28.05	361.98	31.15	91.95	3822
		60.80	92.63	26.23	372.11	26.23	87.03a	4587
17	-3.54	65.40	95.97	27.37	384.77	28.57	93.97	4587
18	-4.00	70.00	99.26	28.49	397.29	33.78	103.78	4587
19	-4.80	78.00	104.91	30.42	418.76	40.19	118.19	4587
20	-5.44	84.40	109.37	31.94	435.69	46.12	130.52	4587
21	-6.08	90.80	113.78	33.44	452.45	46.14	136.94	4587
		90.80	113.78	26.92	495.49	14.99	105.79A	11213
22	-6.64	96.40	118.73	28.55	515.24	20.86	117.26A	11213
23	-7.20	102.00	123.65	30.17	534.90	32.13	134.13	11213
24	-8.00	110.00	130.65	32.47	562.83	42.01	152.01	11213
25	-8.65	116.50	136.31	34.33	585.43	49.66	166.16	11213
26	-9.30	123.00	141.95	36.19	607.95	55.95	178.95	11213
27	-9.73	127.25	145.63	37.40	622.65	61.04	188.29	11213
28	-10.15	131.50	149.31	38.60	637.32	66.68	198.18	11213
29	-10.58	135.75	152.98	39.81	651.98	77.28	213.03	11213
30	-11.00	140.00	156.65	41.02	666.62	112.56	252.56	11213
31	-11.20	142.00	158.38	41.58	673.51	64.87	206.87	11213


| Sheet No. | Date:24-09-2021 | Checked :


(continued)

Stage No.6 Apply water pressure profile no.3

		RIGHT side						
			Effective stresses				Total	Adjusted
Node	Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. c	oord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
32 -1	2.08	150.80	165.96	44.08	703.79	59.72	210.52	11213
		150.80	165.96	43.71	904.30	57.94	208.74	6116
33 -1	3.58	165.80	177.38	46.71	966.51	67.87	233.67	6116
		165.80	177.38	45.92	803.40	65.77	231.57	15290
34 -1	5.19	181.85	191.20	50.52	861.98	82.61	264.46	15290
35 -1	6.79	197.90	205.04	55.12	920.63	91.17	289.07	15290
36 -1	8.40	213.95	218.90	59.73	979.39	98.85	312.80	15290
37 -2	0.00	230.00	232.80	64.35	1038.29	94.09	324.09	15290

Note: 87.03 a Soil pressure at active limit 78.59 p Soil pressure at passive limit 774.87 b Passive limit reduced because of berm 117.26A Arching - soil pressure below active limit

Stage No.6 Apply water pressure profile no.3

Stage No.6 Apply water pressure profile no.3

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM		
Data filename/Run ID: AZ24-700N_Drained			
Byron Lane Slip	Date:24-09-2021		
AZ 24-700N Sheet Pile	Checked :		
Units	: kN,m		

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -11.00		ev. for 1.300	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	4.92	1.50	Cant.	1.628	-10.08	-6.04	7.54	R to L
2	1.50	4.92		No anal	ysis at th	nis stage		
3	4.92	1.50	Cant.	1.534	-10.12	-7.36	8.86	R to L
4	4.92	1.50	Cant.	1.472	-10.11	-8.16	9.66	R to L
5	4.92	1.50	Cant.	1.399	-10.09	-9.31	10.81	R to L
6	4.92	1.50	Cant.	1.314	-10.05	-10.77	12.27	R to L

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_DrainedDate:24-09-2021Byron Lane SlipDate:24-09-2021AZ 24-700N Sheet PileChecked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

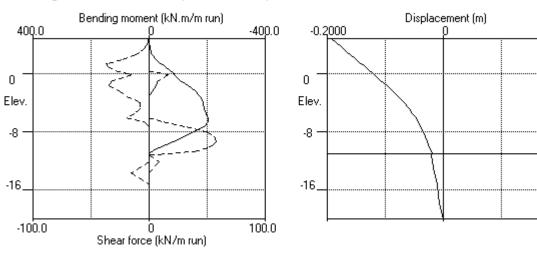
Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:Left side 50.00 from wallRough boundaryRight side 30.00 from wallRough boundaryLower rigid boundary at elevation -20.00Rough boundary

Bending moment, shear force and displacement envelopes

Nod	<u>e Y</u>	Displac		Bending	moment	Shear f	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	4.92	0.000	-0.195	0.0	-0.0	0.0	0.0
2	4.32	0.000	-0.186	0.0	-0.3	0.0	-0.7
3	3.66	0.000	-0.176	0.0	-1.8	0.0	-3.8
4	3.00	0.000	-0.166	0.0	-6.2	0.0	-9.2
5	2.72	0.000	-0.161	0.0	-9.2	0.0	-12.4
6	2.00	0.000	-0.151	0.0	-22.2	0.0	-24.4
7	1.50	0.000	-0.143	0.0	-37.4	0.0	-36.8
8	1.42	0.000	-0.142	0.0	-40.4	0.0	-37.3
9	1.00	0.000	-0.136	0.0	-56.3	0.0	-35.5
10	0.50	0.000	-0.128	0.0	-72.9	0.0	-28.5
11	0.00	0.000	-0.121	0.0	-85.1	14.0	-17.4
12	-0.08	0.000	-0.120	0.0	-86.4	16.5	-15.9
13	-0.84	0.000	-0.108	0.0	-106.6	8.0	-32.3
14	-1.60	0.000	-0.098	0.0	-135.1	5.7	-34.3
15	-2.34	0.000	-0.088	0.0	-158.3	3.5	-26.4
16	-3.08	0.000	-0.078	0.0	-174.2	0.3	-18.8
17	-3.54	0.000	-0.073	0.0	-181.1	0.0	-12.0
18	-4.00	0.000	-0.068	0.0	-185.3	0.0	-8.0
19	-4.80	0.000	-0.059	0.0	-190.0	0.0	-7.8
20	-5.44	0.000	-0.053	0.0	-194.8	0.0	-13.2
21	-6.08	0.000	-0.048	0.0	-203.5	0.0	-19.6
22	-6.64	0.000	-0.043	0.0	-203.6	12.6	-4.3
23	-7.20	0.000	-0.040	0.0	-189.4	32.9	0.0
24	-8.00	0.000	-0.035	0.0	-154.3	49.8	0.0
25	-8.65	0.000	-0.031	0.0	-118.8	56.2	0.0
26	-9.30	0.000	-0.028	0.0	-81.2	57.3	0.0
27	-9.73	0.000	-0.026	0.0	-57.0	55.3	0.0
28	-10.15	0.000	-0.024	0.0	-34.2	50.4	0.0
29	-10.58	0.000	-0.022	0.0	-14.2	40.3	0.0
30	-11.00	0.000	-0.020	0.0	-0.0	10.7	0.0
31	-11.20	0.000	-0.020	0.0	0.0	0.0	-0.0
32	-12.08	0.000	-0.020	0.0	0.0	8.4	0.0
33	-13.58	0.000	-0.016	0.0	0.0	0.0	-15.7
34	-15.19	0.000	-0.012	0.0	0.0	0.0	-0.1
35	-16.79	0.000	-0.009	0.0	0.0	0.0	-0.1
36	-18.40	0.000	-0.005	0.0	0.0	0.0	-0.1
37	-20.00	0.000	-0.001	0.0	0.0	0.0	-0.0

Summary of results (continued)


Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	0.0	4.92	-48.1	0.50	16.5	-0.08	-26.1	1.50
2	No calcul	ation at	this stag	ge				
3	0.0	4.92	-66.4	-6.64	20.6	-9.30	-29.3	1.50
4	0.0	4.92	-84.1	-6.64	25.9	-9.30	-29.3	1.50
5	0.0	4.92	-120.6	-6.64	35.8	-9.30	-30.2	1.50
6	0.0	4.92	-203.6	-6.64	57.3	-9.30	-37.3	1.42

Maximum and minimum displacement at each stage

Stage		Displac	ement				
no.	maximum	elev.	minimum	elev.	Stage description _		
	m		m				
1	0.000	4.92	-0.087	4.92	Excav. to elev. 1.50 on LEFT side		
2	Wall di	splaceme	ents reset	to zero	Change EI of wall to 117369kN.m2/m run		
3	0.000	4.92	-0.029	4.92	Apply surcharge no.1 at elev. 4.92		
4	0.000	4.92	-0.054	4.92	Apply water pressure profile no.1		
5	0.000	4.92	-0.100	4.92	Apply water pressure profile no.2		
6	0.000	4.92	-0.195	4.92	Apply water pressure profile no.3		

	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: AZ24-700N_Drained Byron Lane Slip	Date:24-09-2021 Checked :
Units:	kN,m

0.2000

Bending moment, shear force, displacement envelopes

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_Drained_proppedDate:27-09-2021Byron Lane SlipDate:27-09-2021AZ 24-700N proppedChecked :

INPUT DATA

Units: kN,m

SOIL PROFILEStratumElevation of------ Soil types ------no.top of stratumLeft sideRight side14.9211 Pavement124.3222 FILL232.7233a s-f Clayey SILT341.4243b firm Silty CLAY45-0.0854a s Sandy CLAY5

 2
 4.32
 2
 2
 FILL
 2
 2
 FILL

 3
 2.72
 3
 3a s-f Clayey SILT
 3
 3a s-f Clayey SILT

 4
 1.42
 4
 3b firm Silty CLAY
 4
 3b firm Silty CLAY

 5
 -0.08
 5
 4a s Sandy CLAY
 5
 4a s Sandy CLAY

 6
 -3.08
 6
 4b s-f Silty CLAY
 6
 4b s-f Silty CLAY

 7
 -6.08
 7
 4c St Silty CLAY
 7
 4c St Silty CLAY

 8
 -12.08
 8
 5a l-md SAND
 8
 5a l-md SAND

 9
 -13.58
 9
 5b stiff mix CLAY
 9
 5b stiff mix CLAY

SOIL PROPERTIES

	Bulk	Young's	At rest	Consol	Active	Passive	
Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No. Descript	ion kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Кр	kN/m2
(Datum ele	v.)	(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1 1 Paveme	nt 20.00	30000	0.357	OC	0.196	8.175	
				(0.200)	(0.000)	(0.000)	
2 2 FILL	18.00	5000	0.441	OC	0.251	5.756	
				(0.300)	(0.000)	(0.000)	
3 3a s-f	17.00	4500	0.562	OC	0.341	3.799	4.000d
Clayey S	ILT			(0.300)	(1.342)	(5.039)	
4 3b firm	18.00	7500	0.546	OC	0.329	3.992	5.000d
Silty CL	AY			(0.300)	(1.310)	(5.162)	
5 4a s San	dy 17.00	2500	0.577	OC	0.392	2.619	0.0d
CLAY				(0.300)	(1.505)	(4.007)	
6 4b s-f	17.00	4500	0.562	OC	0.341		4.000d
Silty CL	AY			. ,	(1.342)	(5.039)	
7 4c St Si	lty 19.00	11000	0.546	OC	0.329	3.992	8.000d
CLAY				,	. ,	(5.162)	
8 5a l-md	18.00	6000	0.455	OC	0.263	5.449	
SAND				,	(0.000)	,	
9 5b stiff	19.00	15000	0.546	OC	0.333	4.238	10.00d
mix CLAY				(0.300)	(1.310)	(5.162)	

Additional soil parameters associated with Ka and Kp

	_	param	eters for	Ka	parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	1 Pavement	40.00	0.297	0.00	41.70	0.297	0.00
2	2 FILL	34.00	0.370	0.00	35.63	0.370	0.00
3	3a s-f Clayey SILT	26.00	0.511	0.00	29.05	0.352	0.00
4	3b firm Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
5	4a s Sandy CLAY	22.00	0.819	0.00	22.00	0.352	0.00
б	4b s-f Silty CLAY	26.00	0.511	0.00	29.05	0.352	0.00
7	4c St Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
8	5a l-md SAND	33.00	0.384	0.00	34.62	0.384	0.00
9	5b stiff mix CLAY	27.00	0.489	0.00	32.10	0.264	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

-		Left side	Right side
Initial water	table elevation	0.00	0.00

Automatic water pressure balancing at toe of wall : No

Water Left side Righ					Right side			
profile no.	Point no.	Elev. m	Piezo elev. m	Water press. kN/m2	Point no.	Elev.	Piezo elev. m	Water press. kN/m2
1	1	0.00	0.00	0.0	1	1.00	1.00	0.0
2	1	0.00	0.00	0.0	1	2.00	2.00	0.0
3	1	0.00	0.00	0.0	1	3.00	3.00	0.0

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = -7.00 Maximum finite element length = 0.60 m Youngs modulus of wall E = 2.1000E+08 kN/m2 Moment of inertia of wall I = 5.5890E-04 m4/m run E.I = 117369 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

DIROI	b unu i	HICHORD								
			Cross-			Inclin	Pre-	Strut	Allow	
Prop		Prop	section	Youngs	Free	-ation	stress	or	tensio	n
no.	Elev.	spacing	area	modulus	length	(degs)	/prop	Anchor	?	L/R
		m	sq.m	kN/m2	m		kN			
1	3.00	3.00	0.000804	2.100E+08	20.00	0.00	20.00	Anchor	n/a	L

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	4.92	-2.00(R)	40.00	12.00	20.00	=	N/A	N/A

Note: L = Left side, R = Right side

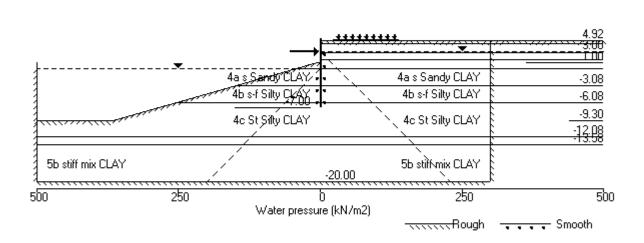
CONSTRUCTION STAGES

compineerion .	
Construction	Stage description
stage no.	
1	Excavate to elevation 2.50 on LEFT side
	Toe of berm at elevation -9.30
	Width of top of berm = 0.50
	Width of toe of berm = 36.50
2	Change EI of wall to 117369 kN.m2/m run
	Reset wall displacements to zero at this stage
3	Apply surcharge no.1 at elevation 4.92
4	Install strut or anchor no.1 at elevation 3.00
5	Excavate to elevation 1.00 on LEFT side
	Toe of berm at elevation -9.30
	Width of top of berm = 0.50
	Width of toe of berm = 36.50
б	Apply water pressure profile no.1
7	Apply water pressure profile no.2
8	Apply water pressure profile no.3

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.30 Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Active limit arching modelled? - Yes Non-linear Modulus Parameter (L) = 12.00 m Boundary conditions: Length of wall (normal to plane of analysis) = 40.00 m Width of excavation on Left side of wall = 50.00 m Width of excavation on Right side of wall = 20.00 m Distance to rigid boundary on Left side = 50.00 m Distance to rigid boundary on Right side = 30.00 m Elevation of rigid lower boundary = -20.00Lower rigid boundary at elevation -20.00 - Rough Rigid boundary on Left side- RoughRigid boundary on Right side- Rough Wall / soil interface - Smooth


OUTPUT OPTIONS


Stage Stage description no.	Outpu Displacement Bending mom.	Active,	Graph.
	Shear force	pressures	1
1 Excav. to elev. 2.50 on LEFT side	Yes	Yes	Yes
2 Change EI of wall to 117369kN.m2/m run	Yes	Yes	Yes
3 Apply surcharge no.1 at elev. 4.92	No	No	No
4 Install prop no.1 at elev. 3.00	Yes	Yes	Yes
5 Excav. to elev. 1.00 on LEFT side	Yes	Yes	Yes
6 Apply water pressure profile no.1	Yes	Yes	Yes
7 Apply water pressure profile no.2	Yes	Yes	Yes
8 Apply water pressure profile no.3	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2020 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped	
Byron Lane Slip	Date:27-09-2021
AZ 24-700N propped	Checked :

Units: kN,m

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_Drained_proppedDate:27-09-2021Byron Lane SlipDate:27-09-2021AZ 24-700N proppedChecked :

Units: kN,m

Stage No. 1 Excavate to elevation 2.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -7.00		ev. for 1.300	
<u>Stage</u> <u>No.</u>	<u>Ground</u> <u>Act.</u>	level Pass.	Prop Elev.	of	Moment equilib.	<u>Toe</u> elev.	<u>Wall</u> <u>Penetr</u>	Direction
1	4.92	2.50	Cant.	<u>Safety</u> 1.422	<u>at elev.</u> -6.41	-5.57	<u>-ation</u> 8.07	<u>failure</u> R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

Node	<u> </u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.065	-4.82E-03	0.0	0.0	
2	4.32	-2.35	-0.062	-4.82E-03	-0.7	-0.3	
		-3.01	-0.062	-4.82E-03	-0.7	-0.3	
3	3.96	-4.64	-0.060	-4.82E-03	-2.1	-0.8	
4	3.60	-6.27	-0.058	-4.81E-03	-4.0	-1.9	
5	3.00	-8.98	-0.055	-4.79E-03	-8.6	-5.7	
6	2.72	-10.24	-0.054		-11.3	-8.5	
		-8.55	-0.054	-4.78E-03	-11.3	-8.5	
7	2.50	-9.83	-0.053	-4.76E-03	-13.3	-11.2	
		-6.89	-0.053	-4.76E-03	-13.3	-11.2	
8	2.00	-2.59	-0.051	-4.69E-03	-15.7	-18.7	
9	1.42	3.31	-0.048	-4.58E-03	-15.5	-28.2	
		9.51	-0.048	-4.58E-03	-15.5	-28.2	
10	1.00	15.10	-0.046	-4.47E-03	-10.3	-33.8	
11	0.50	22.58	-0.044	-4.32E-03	-0.9	-37.1	
12	0.00	28.31	-0.042	-4.16E-03	11.8	-34.7	
13	-0.08	27.34	-0.041	-4.14E-03	14.0	-33.7	
		-3.19	-0.041	-4.14E-03	14.0	-33.7	
14	-0.64	-3.88	-0.039	-4.00E-03	12.1	-26.3	
15	-1.20	-4.46	-0.037	-3.89E-03	9.7	-20.2	
16	-1.80	-5.07	-0.035	-3.80E-03	6.9	-15.2	
17	-2.40	-5.60	-0.032	-3.73E-03	3.7	-12.0	
18	-2.74	-6.09	-0.031	-3.69E-03	1.7	-11.0	
19	-3.08	-5.86	-0.030	-3.66E-03	-0.4	-10.8	
		4.72	-0.030	-3.66E-03	-0.4	-10.8	
20	-3.64	3.36	-0.028	-3.61E-03	1.9	-10.3	
21	-4.20	1.11	-0.026	-3.57E-03	3.2	-8.7	
22	-4.80	-1.10	-0.024	-3.53E-03	3.2	-6.6	
23	-5.40	-3.00	-0.022	-3.50E-03	1.9	-4.9	
24	-5.74	-4.68	-0.020	-3.48E-03	0.6	-4.4	

| Sheet No. | Date:27-09-2021 | Checked :

(continued)

Stage No.1 Excavate to elevation 2.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

Nod	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
25	-6.08	-4.02	-0.019	-3.47E-03	-0.9	-4.4	
		17.69	-0.019	-3.47E-03	-0.9	-4.4	
26	-6.54	7.01	-0.018	-3.46E-03	4.8	-3.0	
27	-7.00	-21.12	-0.016	-3.45E-03	1.6	-0.0	
28	-7.15	-0.01	-0.016	0	-0.0	0.0	
29	-9.30	0.00	-0.013	0	-0.0	0.0	
30	-10.69	-0.00	-0.012	0	-0.0	0.0	
31	-12.08	5.83	-0.011	0	4.0	0.0	
		-5.41	-0.011	0	4.0	0.0	
32	-13.58	-8.24	-0.009	0	-6.2	0.0	
		7.67	-0.009	0	-6.2	0.0	
33	-15.19	-0.00	-0.007	0	-0.0	0.0	
34	-16.80	-0.00	-0.005	0	-0.0	0.0	
35	-18.40	-0.00	-0.003	0	-0.0	0.0	
36	-20.00	0.03	-0.001	0	-0.0	0.0	

		LEFT side						
				3	Total	Adjusted		
Node	Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	<u>-al</u>	<u>limit</u>	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	2.93b	2.93	2.93p	4580
8	2.00	0.00	8.50	0.00	10.13b		10.13p	4580
9	1.42	0.00	18.36	0.90	21.07b		21.07p	4580
		0.00	18.36	0.00	23.64b		23.64p	7633
10	1.00	0.00	25.92	1.97	31.71b		31.71p	7633
11	0.50	0.00	34.92	4.93	42.15b		42.15p	7633
12	0.00	0.00	43.92	7.89	52.32b		52.32p	7633
13	-0.08	0.80	44.56	8.10	53.97b		54.77p	7633
		0.80	44.56	17.46	57.84b		41.69	2544
14	-0.64	6.40	48.48	19.00	53.73b		49.19	2544
15	-1.20	12.00	52.41	20.54	48.76b		56.68	2544
16	-1.80	18.00	56.61	22.18	53.90b	46.73	64.73	2544
17	-2.40	24.00	60.82	23.83	58.85b	48.83	72.83	2544
18	-2.74	27.40	63.20	24.77	62.03b	49.93	77.33	2544
19	-3.08	30.80	65.59	25.70	64.68b		82.10	2544
		30.80	65.59	17.00	269.35	55.12	85.92	4580
20	-3.64	36.40	69.51	18.34	250.96	56.54	92.94	4580
21	-4.20	42.00	73.44	19.69	170.22b		99.57	4580
22	-4.80	48.00	77.66	21.12	121.92b		106.79	4580
23	-5.40	54.00	81.87	22.56	128.86b	60.18	114.18	4580
24	-5.74	57.40	84.26	23.38	133.09b	60.66	118.06	4580
25	-6.08	60.80	86.65	24.19	136.89b		122.98	4580
		60.80	86.65	18.01	387.20	70.98	131.78	11195
26	-6.54	65.40	90.81	19.37	290.71	67.80	133.20	11195
27	-7.00	70.00	94.96	20.74	172.83b		126.15	11195
28	-7.15	71.50	96.32	21.19	219.90b	67.16	138.66	11195

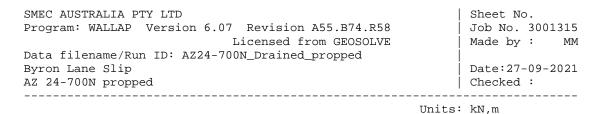
| Sheet No. | Date:27-09-2021 | Checked :

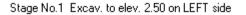
(continued)

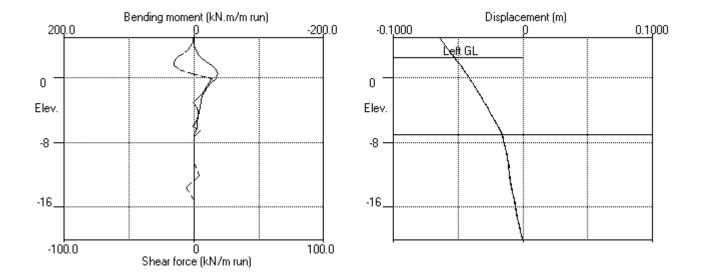
Stage No.1 Excavate to elevation 2.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

		LEFT side						
				Effectiv	ve stresses	3	Total	Adjusted
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
29	-9.30	93.00	115.77	27.58	297.12b	77.73	170.73	11195
30	-10.69	106.90	128.37	31.72	385.99b	84.53	191.43	11195
31	-12.08	120.80	140.98	35.87	429.41b	94.37	215.17	11195
		120.80	140.98	37.13	545.21b	71.98	192.78	6106
32	-13.58	135.80	153.12	40.32	592.13b	76.08	211.88	6106
		135.80	153.12	37.85	591.21b	101.90	237.70	15266
33	-15.19	151.90	167.78	42.72	620.70b	105.99	257.89	15266
34	-16.80	168.00	182.46	47.61	653.00b	113.98	281.98	15266
35	-18.40	184.00	197.08	52.47	715.03b	122.02	306.02	15266
36	-20.00	200.00	211.72	57.34	771.49b	131.44	331.44	15266

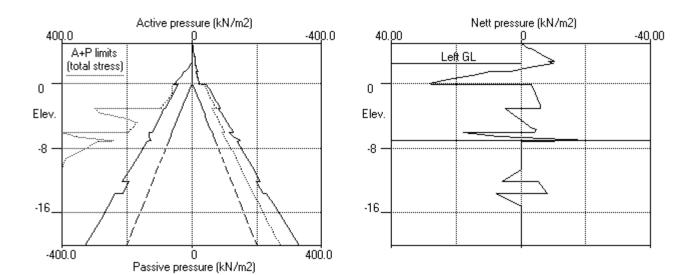
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 4.32 0.00 12.00 2.35 98.10 2.35 2.35a 30296 0.00 12.00 3.01 69.07 3.01 3.01a 5049 3 3.96 0.00 18.48 4.64 106.36 4.64 4.64a 5049 4 3.60 0.00 24.96 6.27 143.66 6.27 6.27a 5049 5 3.00 0.00 35.76 8.98 205.82 8.98 8.98a 5049 6 2.72 0.00 40.80 10.24 234.82 10.24 10.24a 5049
0.0012.003.0169.073.013.01a504933.960.0018.484.64106.364.644.64a504943.600.0024.966.27143.666.276.27a504953.000.0035.768.98205.828.988.98a504962.720.0040.8010.24234.8210.2410.24a5049
33.960.0018.484.64106.364.644.64a504943.600.0024.966.27143.666.276.27a504953.000.0035.768.98205.828.988.98a504962.720.0040.8010.24234.8210.2410.24a5049
43.600.0024.966.27143.666.276.27a504953.000.0035.768.98205.828.988.98a504962.720.0040.8010.24234.8210.2410.24a5049
53.000.0035.768.98205.828.988.98a504962.720.0040.8010.24234.8210.2410.24a5049
6 2.72 0.00 40.80 10.24 234.82 10.24 10.24a 5049
0.00 40.80 8.55 175.17 8.55 8.55a 4544
7 2.50 0.00 44.54 9.83 189.38 9.83 9.83 4544
8 2.00 0.00 53.04 12.73 221.68 12.73 12.73a 4544
9 1.42 0.00 62.90 16.09 259.14 17.76 17.76 4544
0.00 62.90 14.13 276.90 14.13 14.13a 7574
10 1.00 0.00 70.46 16.61 307.08 16.61 16.61a 7574
11 0.50 0.00 79.46 19.57 343.00 19.57 19.57a 7574
12 0.00 0.00 88.46 22.53 378.93 24.02 24.02 7574
13 -0.08 0.80 89.10 22.74 381.49 26.63 27.43 7574
0.80 89.10 34.91 233.34 44.07 44.87 2525
14 -0.64 6.40 93.02 36.45 243.60 46.67 53.07 2525
15 -1.20 12.00 96.94 37.99 253.87 49.13 61.13 2525
16 -1.80 18.00 101.14 39.63 264.87 51.79 69.79 2525
17 -2.40 24.00 105.34 41.28 275.87 54.44 78.44 2525
18 -2.74 27.40 107.72 42.21 282.10 56.03 83.43 2525
19 -3.08 30.80 110.10 43.14 288.33 57.15 87.95 2525
30.80 110.10 32.19 438.47 50.40 81.20 4544
20 -3.64 36.40 114.02 33.53 453.37 53.18 89.58 4544
21 -4.20 42.00 117.94 34.86 468.26 56.46 98.46 4544
22 -4.80 48.00 122.14 36.30 484.22 59.89 107.89 4544
23 -5.40 54.00 126.34 37.73 500.18 63.18 117.18 4544
24 -5.74 57.40 128.72 38.54 509.22 65.34 122.74 4544
25 -6.08 60.80 131.10 39.35 518.26 66.20 127.00 4544
60.80 131.10 32.62 564.63 53.29 114.09 11109
26 -6.54 65.40 135.24 33.98 581.16 60.79 126.19 11109
27 -7.00 70.00 139.38 35.34 597.68 77.27 147.27 11109
28 -7.15 71.50 140.73 35.78 603.07 67.17 138.67 11109
29 -9.30 93.00 160.08 42.15 680.32 77.72 170.72 11109


(continued)


Stage No.1 Excavate to elevation 2.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50Width of toe of berm = 36.50


	RIGHT side _							
			Effecti	ve stresse	s	Total	Adjusted	
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no. coord	press.	-al	limit	limit	pressure	pressure	modulus	
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
30 -10.69	106.90	172.59	46.26	730.25	84.54	191.44	11109	
31 -12.08	120.80	185.10	50.37	780.19	88.54	209.34	11109	
	120.80	185.10	48.75	1008.59	77.39	198.19	6059	
32 -13.58	135.80	197.10	51.91	1073.97	84.32	220.12	6059	
	135.80	197.10	52.48	886.99	94.23	230.03	15148	
33 -15.19	151.90	211.59	57.30	948.40	105.99	257.89	15148	
34 -16.80	168.00	226.08	62.12	1009.81	113.98	281.98	15148	
35 -18.40	184.00	240.48	66.91	1070.84	122.02	306.02	15148	
36 -20.00	200.00	254.88	71.70	1131.87	131.41	331.41	15148	

Note:


19.57 a Soil pressure at active limit 54.77 p Soil pressure at passive limit 771.49 b Passive limit reduced because of berm

Stage No.1 Excav. to elev. 2.50 on LEFT side

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped Byron Lane Slip AZ 24-700N propped	Date:27-09-2021 Checked :
Units	: kN,m

Stage No. 3 Apply surcharge no.1 at elevation 4.92

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo	r toe -7.00		ev. for 1.300	
<u>Stage</u> No.	<u>Ground</u> Act.	level Pass.	Prop Elev.	Factor of	Moment equilib.	Toe elev.	<u>Wall</u> Penetr	Direction of
3	4.92	2.50	Cant.	<u>Safety</u> 1.338	<u>at elev.</u> -6.45	-6.40	-ation 8.90	failure R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2 $\,$

Node	<u><u> </u></u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.037	-2.96E-03	0.0	0.0	
2	4.32	-2.39	-0.035	-2.96E-03	-0.7	-0.3	
		-3.06	-0.035	-2.96E-03	-0.7	-0.3	
3	3.96	-4.82	-0.034	-2.96E-03	-2.1	-0.8	
4	3.60	-6.66	-0.033	-2.96E-03	-4.2	-1.9	
5	3.00	-9.82	-0.031	-2.96E-03	-9.1	-6.0	
6	2.72	-11.31	-0.030	-2.96E-03	-12.1	-9.0	
		-9.99	-0.030	-2.96E-03	-12.1	-9.0	
7	2.50	-11.50	-0.030	-2.96E-03	-14.5	-11.9	
		-8.57	-0.030	-2.96E-03	-14.5	-11.9	
8	2.00	-4.75	-0.028	-2.95E-03	-17.8	-20.1	
9	1.42	2.33	-0.027	-2.94E-03	-18.5	-31.2	
		6.96	-0.027	-2.94E-03	-18.5	-31.2	
10	1.00	12.26	-0.025	-2.93E-03	-14.5	-38.4	
11	0.50	19.45	-0.024	-2.90E-03	-6.5	-44.1	
12	0.00	26.42	-0.022	-2.87E-03	4.9	-45.0	
13	-0.08	27.82	-0.022	-2.86E-03	7.1	-44.5	
		0.80	-0.022	-2.86E-03	7.1	-44.5	
14	-0.64	-0.68	-0.021	-2.80E-03	7.1	-40.4	
15	-1.20	-2.04	-0.019	-2.73E-03	6.4	-36.5	
16	-1.80	-3.40	-0.017	-2.64E-03	4.7	-33.1	
17	-2.40	-4.56	-0.016	-2.55E-03	2.4	-30.9	
18	-2.74	-5.51	-0.015	-2.49E-03	0.6	-30.3	
19	-3.08	-5.09	-0.014	-2.43E-03	-1.2	-30.4	
		10.40	-0.014	-2.43E-03	-1.2	-30.4	
20	-3.64	7.93	-0.013	-2.34E-03	4.0	-29.5	
21	-4.20	4.04	-0.012	-2.25E-03	7.3	-26.0	
22	-4.80	0.34	-0.010	-2.17E-03	8.6	-20.9	
23	-5.40	-2.79	-0.009	-2.11E-03	7.9	-15.6	
24	-5.74	-5.56	-0.008	-2.08E-03	6.5	-13.1	
25	-6.08	-4.16	-0.008	-2.06E-03	4.8	-11.2	
		25.19	-0.008	-2.06E-03	4.8	-11.2	

| Sheet No. | Date:27-09-2021 | Checked :

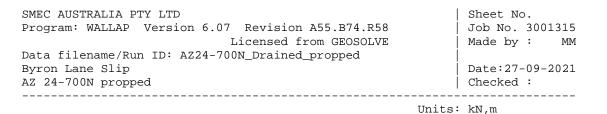
(continued)

Stage No.3 Apply surcharge no.1 at elevation 4.92

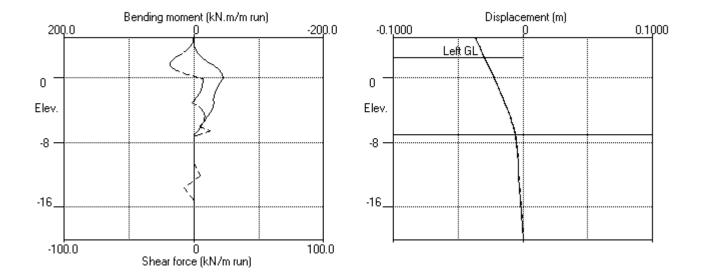
Nod	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	<u>pressure</u>	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
26	-6.54	6.84	-0.007	-2.04E-03	12.2	-6.3	
27	-7.00	-45.15	-0.006	-2.03E-03	3.4	-0.0	
28	-7.15	-0.09	-0.006	0	-0.0	0.0	
29	-9.30	0.03	-0.005	0	-0.1	0.0	
30	-10.69	-0.00	-0.004	0	-0.1	0.0	
31	-12.08	7.26	-0.003	0	5.0	0.0	
		-6.75	-0.003	0	5.0	0.0	
32	-13.58	-10.17	-0.003	0	-7.7	0.0	
		9.46	-0.003	0	-7.7	0.0	
33	-15.19	-0.00	-0.002	0	-0.1	0.0	
34	-16.80	0.00	-0.001	0	-0.1	0.0	
35	-18.40	0.00	-0.001	0	-0.1	0.0	
36	-20.00	0.11	-0.000	0	-0.0	0.0	

LEFT side

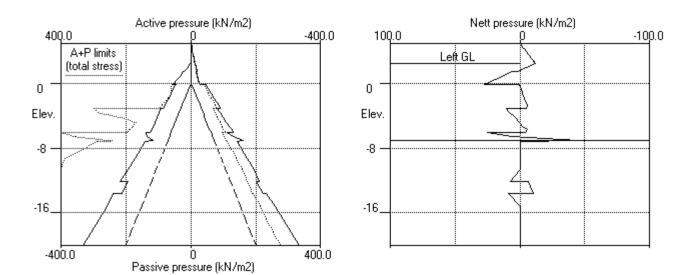
						Juc		
Mad	- V	Maham			ve stresses		Total	Adjusted
Nod		Water	Vertic	Active	Passive	<u>Earth</u>	<u>earth</u>	<u>soil</u>
no.	coord	press.	-al	<u>limit</u>		pressure	pressure	modulus
1	1 00	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
б	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	2.93b	2.93	2.93p	4580
8	2.00	0.00	8.50	0.00	10.13b	10.13	10.13p	4580
9	1.42	0.00	18.36	0.90	21.07b		21.07p	4580
		0.00	18.36	0.00	23.64b	23.64	23.64p	7633
10	1.00	0.00	25.92	1.97	31.71b	31.71	31.71p	7633
11	0.50	0.00	34.92	4.93	42.15b	42.15	42.15p	7633
12	0.00	0.00	43.92	7.89	52.32b	52.32	52.32p	7633
13	-0.08	0.80	44.56	8.10	53.97b	53.97	54.77p	7633
		0.80	44.56	17.46	57.84b	45.60	46.40	2544
14	-0.64	6.40	48.48	19.00	53.73b	47.22	53.62	2544
15	-1.20	12.00	52.41	20.54	48.76b	48.76	60.76p	2544
16	-1.80	18.00	56.61	22.18	53.90b	50.48	68.48	2544
17	-2.40	24.00	60.82	23.83	58.85b	52.31	76.31	2544
18	-2.74	27.40	63.20	24.77	62.03b	53.18	80.58	2544
19	-3.08	30.80	65.59	25.70	64.68b	54.57	85.37	2544
		30.80	65.59	17.00	269.35	61.01	91.81	4580
20	-3.64	36.40	69.51	18.34	250.96	61.83	98.23	4580
21	-4.20	42.00	73.44	19.69	170.22b	62.02	104.02	4580
22	-4.80	48.00	77.66	21.12	121.92b	62.46	110.46	4580
23	-5.40	54.00	81.87	22.56	128.86b	63.21	117.21	4580
24	-5.74	57.40	84.26	23.38	133.09b	63.12	120.52	4580
25	-6.08	60.80	86.65	24.19	136.89b	64.89	125.69	4580
		60.80	86.65	18.01	387.20	77.62	138.42	11195
26	-6.54	65.40	90.81	19.37	290.71	70.50	135.90	11195
27	-7.00	70.00	94.96	20.74	172.83b	47.06	117.06	11195
28	-7.15	71.50	96.32	21.19	219.90b	69.78	141.28	11195
29	-9.30	93.00	115.77	27.58	297.12b	80.26	173.26	11195
30	-10.69	106.90	128.37	31.72	385.99b	86.91	193.81	11195
31	-12.08	120.80	140.98	35.87		97.39	218.19	11195
		120.80				73.62	194.42	6106
32	-13.58	135.80	153.12	37.13 40.32	592.13b	77.32	213.12	6106
-		135.80	153.12	37.85	591.21b	104.98	240.78	15266


Stage No.3 Apply surcharge no.1 at elevation 4.92

			LEFT side								
				Effectiv	Total	Adjusted					
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil			
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus			
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2			
33	-15.19	151.90	167.78	42.72	620.70b	108.01	259.91	15266			
34	-16.80	168.00	182.46	47.61	653.00b	115.90	283.90	15266			
35	-18.40	184.00	197.08	52.47	715.03b	123.88	307.88	15266			
36	-20.00	200.00	211.72	57.34	771.49b	133.64	333.64	15266			


				Effectiv	RIGHT ve stresse		Total	Adjusted
Node	е ү	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30296
		0.00	12.21	3.06	70.25	3.06	3.06a	5049
3	3.96	0.00	19.21	4.82	110.55	4.82	4.82a	5049
4	3.60	0.00	26.53	6.66	152.67	6.66	6.66a	5049
5	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5049
6	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5049
		0.00	45.03	9.99	191.25	9.99	9.99a	4544
7	2.50	0.00	49.44	11.50	208.02	11.50	11.50a	4544
8	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4544
9	1.42	0.00	70.66	18.74	288.62	18.74	18.74a	4544
		0.00	70.66	16.68	307.87	16.68	16.68a	7574
10	1.00	0.00	79.10	19.45	341.56	19.45	19.45a	7574
11	0.50	0.00	88.98	22.70	381.03	22.70	22.70a	7574
12	0.00	0.00	98.72	25.90	419.89	25.90	25.90a	7574
13	-0.08	0.80	99.47	26.15	422.87	26.15	26.95a	7574
		0.80	99.47	38.98	260.49	44.80	45.60	2525
14	-0.64	6.40	104.04	40.77	272.46	47.90	54.30	2525
15	-1.20	12.00	108.47	42.51	284.07	50.81	62.81	2525
16	-1.80	18.00	113.10	44.32	296.19	53.88	71.88	2525
17	-2.40	24.00	117.62	46.09	308.03	56.87	80.87	2525
18	-2.74	27.40	120.14	47.08	314.63	58.69	86.09	2525
19	-3.08	30.80	122.63	48.05	321.15	59.66	90.46	2525
		30.80	122.63	36.46	486.09	50.61	81.41	4544
20	-3.64	36.40	126.69	37.85	501.49	53.90	90.30	4544
21	-4.20	42.00	130.68	39.21	516.67	57.98	99.98	4544
22	-4.80	48.00	134.91	40.65	532.74	62.13	110.13	4544
23	-5.40	54.00	139.09	42.08	548.62	66.00	120.00	4544
24	-5.74	57.40	141.44	42.88	557.55	68.69	126.09	4544
25	-6.08	60.80	143.78	43.68	566.43	69.05	129.85	4544
		60.80	143.78	36.79	615.25	52.42	113.22	11109
26	-6.54	65.40	147.85	38.12	631.48	63.67	129.07	11109
27	-7.00	70.00	151.90	39.45	647.65	92.21	162.21	11109
28	-7.15	71.50	153.21	39.89	652.90	69.88	141.38	11109
29	-9.30	93.00	171.95	46.05	727.71	80.23	173.23	11109
30	-10.69	106.90	183.97	50.00	775.70	86.91	193.81	11109
31	-12.08	120.80	195.96	53.94	823.55	90.13	210.93	11109
		120.80	195.96	51.61	1067.76	80.37	201.17	6059
32	-13.58	135.80	207.38	54.61	1129.98	87.49	223.29	6059
		135.80	207.38	55.90	930.55	95.53	231.33	15148
33	-15.19	151.90	221.24	60.51	989.31	108.01	259.91	15148
34	-16.80	168.00	235.13	65.13	1048.15	115.90	283.90	15148
35	-18.40	184.00	248.95	69.73	1106.73	123.88	307.88	15148
36	-20.00	200.00	262.80	74.34	1165.43	133.53	333.53	15148

| Sheet No. | Date:27-09-2021 | Checked :


(continued)

Stage No.3 Apply surcharge no.1 at elev. 4.92

Stage No.3 Apply surcharge no.1 at elev. 4.92

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped	
Byron Lane Slip	Date:27-09-2021
AZ 24-700N propped	Checked :
Units	s: kN,m

Stage No. 4 Install strut or anchor no.1 at elevation 3.00

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo			ev. for		
				elev. =	-7.00	FoS =	1.300		
Stage	Ground	level	Prop	Factor	Moment	Toe	Wall	Direction	
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of	
				Safety	at elev.		-ation	failure	
4	4.92	2.50	3.00	2.142	n/a	-3.35	5.85	R to L	

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2 $\,$

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.035	-2.75E-03	0.0	0.0	
2	4.32	-7.88	-0.033	-2.75E-03	-2.4	-0.3	
		-3.98	-0.033	-2.75E-03	-2.4	-0.3	
3	3.96	-5.72	-0.032	-2.75E-03	-4.1	-1.4	
4	3.60	-7.51	-0.031	-2.74E-03	-6.5	-3.4	
5	3.00	-10.62	-0.030	-2.73E-03	-11.9	-8.9	6.7
		-10.62	-0.030	-2.73E-03	-5.3	-8.9	
6	2.72	-12.04	-0.029	-2.72E-03	-8.4	-10.9	
		-10.65	-0.029	-2.72E-03	-8.4	-10.9	
7	2.50	-12.10	-0.028	-2.72E-03	-10.9	-13.0	
		-10.14	-0.028	-2.72E-03	-10.9	-13.0	
8	2.00	-6.13	-0.027	-2.72E-03	-15.0	-19.7	
9	1.42	1.19	-0.025	-2.71E-03	-16.4	-29.4	
		5.05	-0.025	-2.71E-03	-16.4	-29.4	
10	1.00	10.70	-0.024	-2.70E-03	-13.1	-35.9	
11	0.50	18.22	-0.023	-2.69E-03	-5.9	-41.1	
12	0.00	25.40	-0.021	-2.67E-03	5.0	-41.8	
13	-0.08	27.12	-0.021	-2.66E-03	7.1	-41.3	
		0.56	-0.021	-2.66E-03	7.1	-41.3	
14	-0.64	-0.87	-0.020	-2.62E-03	7.0	-37.3	
15	-1.20	-2.20	-0.018	-2.56E-03	6.2	-33.5	
16	-1.80	-3.53	-0.017	-2.49E-03	4.4	-30.2	
17	-2.40	-4.66	-0.015	-2.41E-03	2.0	-28.2	
18	-2.74	-5.59	-0.015	-2.36E-03	0.2	-27.8	
19	-3.08	-5.21	-0.014	-2.31E-03	-1.6	-28.0	
		10.19	-0.014	-2.31E-03	-1.6	-28.0	
20	-3.64	7.76	-0.012	-2.23E-03	3.4	-27.3	
21	-4.20	3.93	-0.011	-2.15E-03	6.7	-24.2	
22	-4.80	0.29	-0.010	-2.08E-03	8.0	-19.4	
23	-5.40	-2.79	-0.009	-2.02E-03	7.2	-14.6	
24	-5.74	-5.51	-0.008	-2.00E-03	5.8	-12.3	

| Sheet No. | Date:27-09-2021 | Checked :

(continued)

Stage No.4 Install strut or anchor no.1 at elevation 3.00

					~1		_
Noc	<u>le Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no	<u>coord</u>	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
25	-6.08	-4.18	-0.007	-1.98E-03	4.2	-10.7	
		25.15	-0.007	-1.98E-03	4.2	-10.7	
26	-6.54	7.16	-0.006	-1.96E-03	11.6	-6.1	
27	-7.00	-43.40	-0.006	-1.95E-03	3.3	-0.0	
28	-7.15	-0.09	-0.006	0	-0.0	0.0	
29	-9.30	0.03	-0.004	0	-0.1	0.0	
30	-10.69	-0.00	-0.004	0	-0.1	0.0	
31	-12.08	7.26	-0.003	0	5.0	0.0	
		-6.75	-0.003	0	5.0	0.0	
32	-13.58	-10.17	-0.003	0	-7.7	0.0	
		9.46	-0.003	0	-7.7	0.0	
33	-15.19	-0.00	-0.002	0	-0.1	0.0	
34	-16.80	0.00	-0.001	0	-0.1	0.0	
35	-18.40	0.00	-0.001	0	-0.1	0.0	
36	-20.00	0.11	-0.000	0	-0.0	0.0	
At	elev.	3.00		Prop force	= б	.7 kN/m rur	L

LEFT sideNodeY 7633 11 0.50 0.00 34.92 4.93 42.15b 41.41 41.41 12 0.00 0.00 43.92 7.89 52.32b 51.70 51.70 7633 13 -0.08 0.80 44.56 8.10 53.97b 53.49 54.29 7633 0.80 44.56 17.46 57.84b 45.44 14 -0.64 6.40 48.48 19.00 53.73b 47.09 2544 46.24 53.49 60.65 68.38 2544 15 -1.20 12.00 52.41 20.54 48.76b 48.65 2544 16 -1.80 18.00 56.61 22.18 2544 53.90b 50.38 2544 17 -2.40 24.00 60.82 23.83 58.85b 52.23 76.23

 -2.40
 24.00
 60.82
 23.83
 58.85D
 52.23
 76.23

 -2.74
 27.40
 63.20
 24.77
 62.03b
 53.11
 80.51

 -3.08
 30.80
 65.59
 25.70
 64.68b
 54.49
 85.29

 30.80
 65.59
 17.00
 269.35
 60.87
 91.67

 -3.64
 36.40
 69.51
 18.34
 250.96
 61.72
 98.12

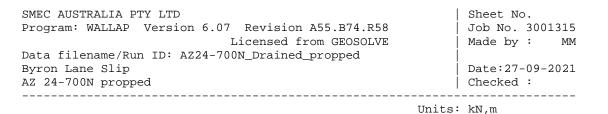
 -4.20
 42.00
 73.44
 19.69
 170.22b
 61.94
 103.94

 -4.80
 48.00
 77.66
 21.12
 121.92b
 62.42
 110.42

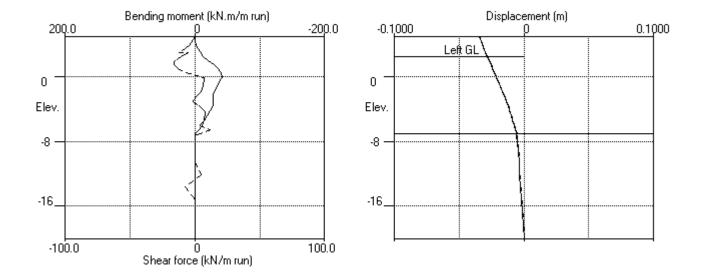
 -5.40
 54.00
 81.87
 22.56
 128.86b
 63.19
 117.19

 2544 18 19 2544 4580 4580 20 4580 21 4580 22 23 4580 24 -5.74 57.40 84.26 23.38 133.09b 63.13 120.53 4580 25 -6.08 60.80 86.65 24.19 136.89b 64.87 125.67 4580 138.37 11195 60.80 86.65 18.01 387.20 77.57 26 -6.54 65.40 90.81 19.37 290.71 70.65 136.05 11195 -7.00 70.00 94.96 20.74 172.83b 47.91 117.91 27 11195 -7.15 71.50 96.32 21.19 219.90b 69.77 141.27 11195 28 -9.30 93.00 115.77 27.58 297.12b 80.25 173.25 11195 29 30 -10.69 106.90 128.37 31.72 385.99b 86.91 193.81 11195

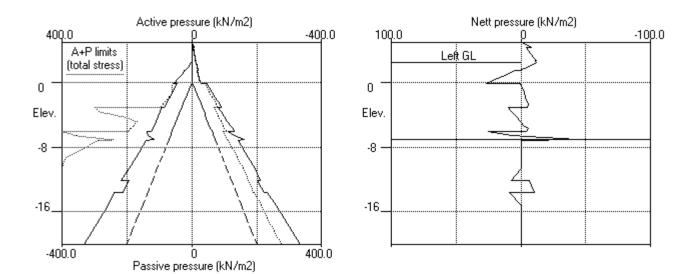
Stage No.4 Install strut or anchor no.1 at elevation 3.00


	LEFT side _								
			Total	Adjusted					
<u>Node</u> <u>Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil		
no. coord	press.	-al	limit	limit	pressure	pressure	modulus		
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2		
31 -12.08	120.80	140.98	35.87	429.41b	97.38	218.18	11195		
	120.80	140.98	37.13	545.21b	73.62	194.42	6106		
32 -13.58	135.80	153.12	40.32	592.13b	77.32	213.12	6106		
	135.80	153.12	37.85	591.21b	104.98	240.78	15266		
33 -15.19	151.90	167.78	42.72	620.70b	108.01	259.91	15266		
34 -16.80	168.00	182.46	47.61	653.00b	115.89	283.89	15266		
35 -18.40	184.00	197.08	52.47	715.03b	123.87	307.87	15266		
36 -20.00	200.00	211.72	57.34	771.49b	133.63	333.63	15266		

		RIGHT side _									
				Effectiv	ve stresse	S	Total	Adjusted			
Node	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil			
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus			
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2			
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296			
2	4.32	0.00	12.21	2.39	99.79	7.88	7.88	30296			
		0.00	12.21	3.06	70.25	3.98	3.98	5049			
3	3.96	0.00	19.21	4.82	110.55	5.72	5.72	5049			
4	3.60	0.00	26.53	6.66	152.67	7.51	7.51	5049			
5	3.00	0.00	39.11	9.82	225.12	10.62	10.62	5049			
6	2.72	0.00	45.03	11.31	259.17	12.04	12.04	5049			
		0.00	45.03	9.99	191.25	10.65	10.65	4544			
7	2.50	0.00	49.44	11.50	208.02	12.10	12.10	4544			
8	2.00	0.00	59.37	14.88	245.73	15.42	15.42	4544			
9	1.42	0.00	70.66	18.74	288.62	19.19	19.19	4544			
		0.00	70.66	16.68	307.87	17.44	17.44	7574			
10	1.00	0.00	79.10	19.45	341.56	20.07	20.07	7574			
11	0.50	0.00	88.98	22.70	381.03	23.19	23.19	7574			
12	0.00	0.00	98.72	25.90	419.89	26.30	26.30	7574			
13	-0.08	0.80	99.47	26.15	422.87	26.37	27.17	7574			
		0.80	99.47	38.98	260.49	44.87	45.67	2525			
14	-0.64	6.40	104.04	40.77	272.46	47.96	54.36	2525			
15	-1.20	12.00	108.47	42.51	284.07	50.85	62.85	2525			
16	-1.80	18.00	113.10	44.32	296.19	53.92	71.92	2525			
17	-2.40	24.00	117.62	46.09	308.03	56.89	80.89	2525			
18	-2.74	27.40	120.14	47.08	314.63	58.71	86.11	2525			
19	-3.08	30.80	122.63	48.05	321.15	59.70	90.50	2525			
		30.80	122.63	36.46	486.09	50.69	81.49	4544			
20	-3.64	36.40	126.69	37.85	501.49	53.96	90.36	4544			
21	-4.20	42.00	130.68	39.21	516.67	58.01	100.01	4544			
22	-4.80	48.00	134.91	40.65	532.74	62.13	110.13	4544			
23	-5.40	54.00	139.09	42.08	548.62	65.98	119.98	4544			
24	-5.74	57.40	141.44	42.88	557.55	68.64	126.04	4544			
25	-6.08	60.80	143.78	43.68	566.43	69.05	129.85	4544			
		60.80	143.78	36.79	615.25	52.42	113.22	11109			
26	-6.54	65.40	147.85	38.12	631.48	63.49	128.89	11109			
27	-7.00	70.00	151.90	39.45	647.65	91.31	161.31	11109			
28	-7.15	71.50	153.21	39.89	652.90	69.87	141.37	11109			
29	-9.30	93.00	171.95	46.05	727.71	80.22	173.22	11109			
30	-10.69	106.90	183.97	50.00	775.70	86.91	193.81	11109			
31	-12.08	120.80	195.96	53.94	823.55	90.12	210.92	11109			
		120.80	195.96	51.61	1067.76	80.37	201.17	6059			
32	-13.58	135.80	207.38	54.61	1129.98	87.48	223.28	6059			
		135.80	207.38	55.90	930.55	95.52	231.32	15148			


Stage No.4 Install strut or anchor no.1 at elevation 3.00

	RIGHT side									
			Effectiv	Total	Adjusted					
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil			
no. coord	press.	<u>-al</u>	limit	limit	pressure	pressure	modulus			
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2			
33 -15.19	151.90	221.24	60.51	989.31	108.01	259.91	15148			
34 -16.80	168.00	235.13	65.13	1048.15	115.89	283.89	15148			
35 -18.40	184.00	248.95	69.73	1106.73	123.87	307.87	15148			
36 -20.00	200.00	262.80	74.34	1165.43	133.51	333.51	15148			


Note: 771.49 b Passive limit reduced because of berm

Stage No.4 Install prop no.1 at elev. 3.00

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_Drained_proppedDate:27-09-2021Byron Lane SlipDate:27-09-2021AZ 24-700N proppedChecked :

Units: kN,m

Stage No. 5 Excavate to elevation 1.00 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo			ev. for	
				elev. =	-7.00	FOS =	1.300	
Stage	Ground	level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
5	4.92	1.00	3.00	1.834	n/a	-4.13	5.13	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.047	-5.64E-04	0.0	0.0	
2	4.32	-2.39	-0.047	-5.64E-04	-0.7	-0.3	
		-3.06	-0.047	-5.64E-04	-0.7	-0.3	
3	3.96	-4.82	-0.047	-5.63E-04	-2.1	-0.8	
4	3.60	-6.66	-0.046	-5.63E-04	-4.2	-1.9	
5	3.00	-9.82	-0.046	-5.63E-04	-9.1	-6.0	53.2
		-9.82	-0.046	-5.63E-04	44.1	-6.0	
6	2.72	-11.31	-0.046	-5.79E-04	41.1	5.9	
		-9.99	-0.046	-5.79E-04	41.1	5.9	
7	2.50	-11.50	-0.046	-6.17E-04	38.8	14.7	
8	2.00	-14.88	-0.046	-7.82E-04	32.2	32.5	
9	1.42	-18.74	-0.045	-1.09E-03	22.4	48.0	
		-16.68	-0.045	-1.09E-03	22.4	48.0	
10	1.00	-19.45	-0.044	-1.39E-03	14.8	55.7	
		-16.14	-0.044	-1.39E-03	14.8	55.7	
11	0.50	-12.20	-0.044	-1.79E-03	7.8	60.9	
12	0.00	-4.90	-0.043	-2.21E-03	3.5	63.3	
13	-0.08	-2.45	-0.042	-2.27E-03	3.2	63.5	
		-11.29	-0.042	-2.27E-03	3.2	63.5	
14	-0.64	-11.39	-0.041	-2.72E-03	-3.2	63.6	
15	-1.20	-13.50	-0.039	-3.12E-03	-10.1	59.9	
16	-1.80	-10.85	-0.037	-3.50E-03	-17.4	51.7	
17	-2.40	-8.23	-0.035	-3.80E-03	-23.2	39.5	
18	-2.74	-6.60	-0.034	-3.94E-03	-25.7	31.1	
19	-3.08	-5.08	-0.033	-4.05E-03	-27.7	22.0	
		19.89	-0.033	-4.05E-03	-27.7	22.0	
20	-3.64	15.84	-0.030	-4.17E-03	-17.7	9.6	
21	-4.20	10.29	-0.028	-4.24E-03	-10.3	2.2	

| Sheet No. | Date:27-09-2021 | Checked :

(continued)

Stage No.5 Excavate to elevation 1.00 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

Nod		<u>Nett</u> pressure	<u>Wall</u> disp.	<u>Wall</u> rotation		<u>Bending</u> moment	<u>Prop</u> forces
no.	<u></u>	kN/m2	m	rad.	kN/m	kN.m/m	kN/m
22	-4.80	4.87	-0.025	-4.28E-03	-5.8	-2.1	
23	-5.40	0.36	-0.023	-4.30E-03	-4.2	-4.7	
24	-5.74	-3.47	-0.021	-4.29E-03	-4.8	-6.2	
25	-6.08	-2.99	-0.020	-4.29E-03	-5.9	-8.0	
		44.12	-0.020	-4.29E-03	-5.9	-8.0	
26	-6.54	18.99	-0.018	-4.27E-03	8.7	-6.0	
27	-7.00	-42.72	-0.016	-4.27E-03	3.2	-0.0	
28	-7.15	-0.10	-0.016	0	-0.0	0.0	
29	-9.30	0.03	-0.012	0	-0.1	0.0	
30	-10.69	-0.00	-0.011	0	-0.1	0.0	
31	-12.08	10.68	-0.010	0	7.4	0.0	
		-9.92	-0.010	0	7.4	0.0	
32	-13.58	-15.00	-0.008	0	-11.3	0.0	
		13.96	-0.008	0	-11.3	0.0	
33	-15.19	-0.00	-0.006	0	-0.1	0.0	
34	-16.80	-0.00	-0.004	0	-0.1	0.0	
35	-18.40	-0.00	-0.003	0	-0.1	0.0	
36	-20.00	0.13	-0.000	0	-0.0	0.0	
At	elev.	3.00		Prop force =	53.2	kN/m run	

LEFT side Total Adjusted Effective stresses <u>Node Y Water Vertic Active Passive Earth</u> earth soil 65.88p 72.84p 79.38p 18 -2.74 27.40 37.27 14.61 45.44b 45.44 2540 19 -3.08 30.80 39.66 15.54 48.58b 48.58 2540 30.80 39.66 8.16 170.83 59.72 90.52 4573 96.29 20 -3.64 36.40 43.58 9.50 181.72 59.89 4573 21 -4.20 42.00 47.51 10.84 142.61b 59.27 101.27 4573 -4.80 48.00 51.73 12.28 104.45b 58.87 106.87 22 4573 23-5.4054.0055.9413.71112.52b58.9124-5.7457.4058.3314.53117.24b58.27 112.91 4573 115.67 4573 25 -6.08 60.80 60.72 15.35 121.75b 59.71 120.51 4573 60.80 60.72 9.48 283.69 81.00 141.80 11178

| Sheet No. | Date:27-09-2021 | Checked :

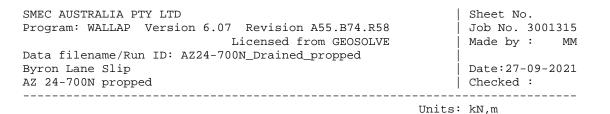
(continued)

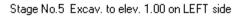
Stage No.5 Excavate to elevation 1.00 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

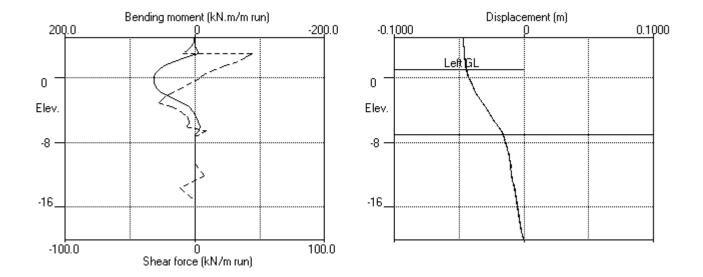
		LEFT side						_
				Effecti	ve stresses	3	Total	Adjusted
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
26	-6.54	65.40	64.88	10.85	300.29	70.69	136.09	11178
27	-7.00	70.00	69.04	12.22	296.50	42.44	112.44	11178
28	-7.15	71.50	70.40	12.66	189.79b	63.97	135.47	11178
29	-9.30	93.00	89.87	19.06	273.97b	74.49	167.49	11178
30	-10.69	106.90	102.49	23.21	386.22b	81.21	188.11	11178
31	-12.08	120.80	115.13	27.37	433.51b	93.37	214.17	11178
		120.80	115.13	30.32	506.64b	66.40	187.20	6097
32	-13.58	135.80	127.31	33.53	560.23b	69.28	205.08	6097
		135.80	127.31	29.26	591.20	101.47	237.27	15242
33	-15.19	151.90	142.03	34.16	630.97	102.35	254.25	15242
34	-16.80	168.00	156.79	39.07	661.72b	110.24	278.24	15242
35	-18.40	184.00	171.50	43.96	716.50b	118.27	302.27	15242
36	-20.00	200.00	186.24	48.87	776.71b	128.85	328.85	15242

		RIGHT side						_
				Effectiv	ve stresse	S	Total	Adjusted
Node	Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30296
		0.00	12.21	3.06	70.25	3.06	3.06a	5049
3	3.96	0.00	19.21	4.82	110.55	4.82	4.82a	5049
4	3.60	0.00	26.53	6.66	152.67	6.66	6.66a	5049
5	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5049
6	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5049
		0.00	45.03	9.99	191.25	9.99	9.99a	4544
7	2.50	0.00	49.44	11.50	208.02	11.50	11.50a	4544
8	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4544
9	1.42	0.00	70.66	18.74	288.62	18.74	18.74a	4544
		0.00	70.66	16.68	307.87	16.68	16.68a	7574
10	1.00	0.00	79.10	19.45	341.56	19.45	19.45a	7574
11	0.50	0.00	88.98	22.70	381.03	22.70	22.70a	7574
12	0.00	0.00	98.72	25.90	419.89	25.90	25.90a	7574
13	-0.08	0.80	99.47	26.15	422.87	26.15	26.95a	7574
		0.80	99.47	38.98	260.49	38.98	39.78a	2525
14	-0.64	6.40	104.04	40.77	272.46	40.77	47.17a	2525
15	-1.20	12.00	108.47	42.51	284.07	43.71	55.71	2525
16	-1.80	18.00	113.10	44.32	296.19	46.97	64.97	2525
17	-2.40	24.00	117.62	46.09	308.03	50.11	74.11	2525
18	-2.74	27.40	120.14	47.08	314.63	52.03	79.43	2525
19	-3.08	30.80	122.63	48.05	321.15	53.66	84.46	2525
		30.80	122.63	36.46	486.09	39.82	70.62	4544
20	-3.64	36.40	126.69	37.85	501.49	44.05	80.45	4544
21	-4.20	42.00	130.68	39.21	516.67	48.99	90.99	4544
22	-4.80	48.00	134.91	40.65	532.74	54.00	102.00	4544
23	-5.40	54.00	139.09	42.08	548.62	58.55	112.55	4544
24	-5.74	57.40	141.44	42.88	557.55	61.74	119.14	4544
25	-6.08	60.80	143.78	43.68	566.43	62.70	123.50	4544
		60.80	143.78	36.79	615.25	36.88	97.68	11109
26	-6.54	65.40	147.85	38.12	631.48	51.70	117.10	11109

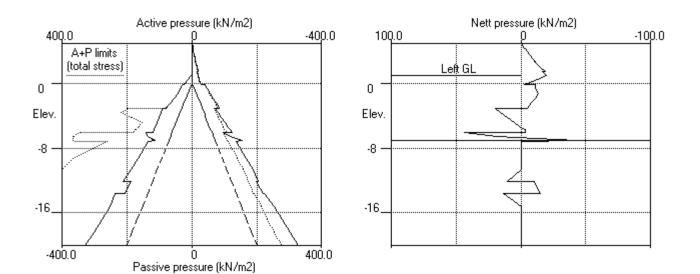
(continued)


Stage No.5 Excavate to elevation 1.00 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50


			RIGHT side _					
				Effecti	ve stresse	s	Total	Adjusted
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	<u>-al</u>	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
27	-7.00	70.00	151.90	39.45	647.65	85.16	155.16	11109
28	-7.15	71.50	153.21	39.89	652.90	64.07	135.57	11109
29	-9.30	93.00	171.95	46.05	727.71	74.46	167.46	11109
30	-10.69	106.90	183.97	50.00	775.70	81.22	188.12	11109
31	-12.08	120.80	195.96	53.94	823.55	82.69	203.49	11109
		120.80	195.96	51.61	1067.76	76.31	197.11	6059
32	-13.58	135.80	207.38	54.61	1129.98	84.28	220.08	6059
		135.80	207.38	55.90	930.55	87.51	223.31	15148
33	-15.19	151.90	221.24	60.51	989.31	102.35	254.25	15148
34	-16.80	168.00	235.13	65.13	1048.15	110.25	278.25	15148
35	-18.40	184.00	248.95	69.73	1106.73	118.27	302.27	15148
36	-20.00	200.00	262.80	74.34	1165.43	128.73	328.73	15148


Note:

47.17 a Soil pressure at active limit


79.38 p Soil pressure at passive limit 776.71 b Passive limit reduced because of berm

Stage No.5 Excav. to elev. 1.00 on LEFT side

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped	
Byron Lane Slip	Date:27-09-2021
AZ 24-700N propped	Checked :

Stage No. 6 Apply water pressure profile no.1

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS for toe			ev. for	
				elev. =	-7.00	FoS =	1.300	
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
6	4.92	1.00	3.00	1.761	n/a	-4.25	5.25	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2 $\,$

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.049	3.26E-04	0.0	0.0	
2	4.32	-4.63	-0.049	3.26E-04	-1.4	-0.3	
		-3.44	-0.049	3.26E-04	-1.4	-0.3	
3	3.96	-4.63	-0.049	3.27E-04	-2.8	-1.0	
4	3.60	-6.08	-0.049	3.28E-04	-4.8	-2.4	
5	3.00	-8.87	-0.050	3.32E-04	-9.3	-6.7	63.1
		-8.87	-0.050	3.32E-04	53.8	-6.7	
6	2.72	-11.31	-0.050	3.14E-04	51.0	8.0	
		-9.99	-0.050	3.14E-04	51.0	8.0	
7	2.50	-11.50	-0.050	2.70E-04	48.6	18.9	
8	2.00	-14.88	-0.050	7.81E-05	42.0	41.6	
9	1.42	-18.74	-0.050	-2.95E-04	32.3	62.8	
		-16.68	-0.050	-2.95E-04	32.3	62.8	
10	1.00	-19.45	-0.050	-6.52E-04	24.7	74.6	
		-16.20	-0.050	-6.52E-04	24.7	74.6	
11	0.50	-15.56	-0.049	-1.14E-03	16.7	84.7	
12	0.00	-11.61	-0.048	-1.66E-03	10.0	91.0	
13	-0.08	-9.16	-0.048	-1.75E-03	9.1	91.7	
		-17.37	-0.048	-1.75E-03	9.1	91.7	
14	-0.64	-17.47	-0.047	-2.34E-03	-0.6	94.1	
15	-1.20	-18.37	-0.046	-2.89E-03	-10.7	91.0	
16	-1.80	-14.30	-0.044	-3.42E-03	-20.5	81.5	
17	-2.40	-11.69	-0.042	-3.87E-03	-28.3	66.8	
18	-2.74	-10.04	-0.040	-4.08E-03	-32.0	56.5	
19	-3.08	-8.76	-0.039	-4.26E-03	-35.2	45.1	
		20.99	-0.039	-4.26E-03	-35.2	45.1	
20	-3.64	16.66	-0.036	-4.49E-03	-24.6	28.7	
21	-4.20	10.85	-0.034	-4.64E-03	-16.9	17.5	
22	-4.80	5.11	-0.031	-4.75E-03	-12.1	9.3	
23	-5.40	0.31	-0.028	-4.81E-03	-10.5	2.9	
24	-5.74	-3.72	-0.027	-4.83E-03	-11.1	-0.6	

Sheet No. Date:27-09-2021 Checked :

(continued)

Stage No.6	Apply water	pressure	profile no.1
beage no.o	inppij wacci	Pressure	prorrec no.r

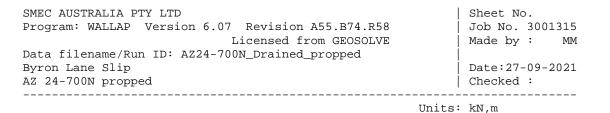
Noc	le Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
25	-6.08	-3.68	-0.025	-4.83E-03	-12.3	-4.6	
		50.67	-0.025	-4.83E-03	-12.3	-4.6	
26	-6.54	24.67	-0.023	-4.83E-03	5.0	-4.9	
27	-7.00	-34.96	-0.020	-4.82E-03	2.6	-0.0	
28	-7.15	-0.10	-0.020	0	-0.0	0.0	
29	-9.30	0.03	-0.016	0	-0.1	0.0	
30	-10.69	-0.00	-0.014	0	-0.1	0.0	
31	-12.08	12.45	-0.013	0	8.6	0.0	
		-11.55	-0.013	0	8.6	0.0	
32	-13.58	-17.50	-0.010	0	-13.2	0.0	
		16.29	-0.010	0	-13.2	0.0	
33	-15.19	-0.00	-0.008	0	-0.1	0.0	
34	-16.80	-0.00	-0.006	0	-0.1	0.0	
35	-18.40	-0.00	-0.004	0	-0.1	0.0	
36	-20.00	0.13	-0.001	0	-0.0	0.0	
At	elev.	3.00		Prop force	= 63	.1 kN/m run	

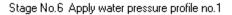
				side		_		
		Effective stresses					Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
б	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	3.32b	3.25	3.25	7621
11	0.50	0.00	9.00	0.00	10.50b	10.50	10.50p	7621
12	0.00	0.00	18.00	0.00	21.01b	21.01	21.01p	7621
13	-0.08	0.80	18.64	0.00	23.70b	23.70	24.50p	7621
		0.80	18.64	7.30	27.68b	27.68	28.48p	2540
14	-0.64	6.40	22.56	8.84	29.38b	29.38	35.78p	2540
15	-1.20	12.00	26.48	10.38	30.22b	30.22	42.22p	2540
16	-1.80	18.00	30.69	12.02	36.12b	36.12	54.12p	2540
17	-2.40	24.00	34.89	13.67	41.88b	41.88	65.88p	2540
18	-2.74	27.40	37.27	14.61	45.44b	45.44	72.84p	2540
19	-3.08	30.80	39.66	15.54	48.58b	48.58	79.38p	2540
		30.80	39.66	8.16	170.83	62.86	93.66	4573
20	-3.64	36.40	43.58	9.50	181.72	62.96	99.36	4573
21	-4.20	42.00	47.51	10.84	142.61b	62.24	104.24	4573
22	-4.80	48.00	51.73	12.28	104.45b	61.68	109.68	4573
23	-5.40	54.00	55.94	13.71	112.52b	61.57	115.57	4573
24	-5.74	57.40	58.33	14.53	117.24b	60.83	118.23	4573
25	-6.08	60.80	60.72	15.35	121.75b	62.11	122.91	4573
		60.80	60.72	9.48	283.69	86.88	147.68	11178
26	-6.54	65.40	64.88	10.85	300.29	76.21	141.61	11178
27	-7.00	70.00	69.04	12.22	296.50	48.97	118.97	11178
28	-7.15	71.50	70.40	12.66	189.79b	66.69	138.19	11178
29	-9.30	93.00	89.87	19.06	273.97b	77.23	170.23	11178
30	-10.69	106.90	102.49	23.21	386.22b	83.99	190.89	11178
31	-12.08	120.80	115.13	27.37	433.51b	97.01	217.81	11178
		120.80	115.13	30.32	506.64b	68.38	189.18	6097

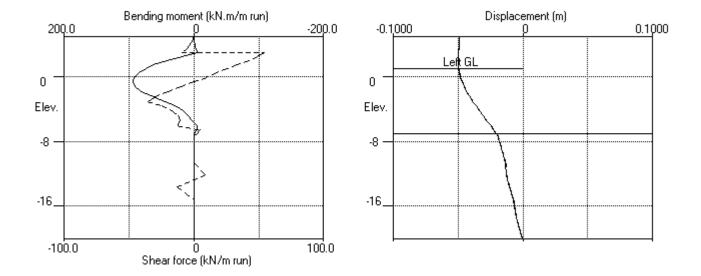
Stage No.6 Apply water pressure profile no.1

		LEFT side						
			Effectiv	ve stresses	3	Total	Adjusted	
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no. coord	press.	-al	limit	limit	pressure	pressure	modulus	
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
32 -13.58	135.80	127.31	33.53	560.23b	70.84	206.64	6097	
	135.80	127.31	29.26	591.20	105.38	241.18	15242	
33 -15.19	151.90	142.03	34.16	630.97	105.14	257.04	15242	
34 -16.80	168.00	156.79	39.07	661.72b	113.03	281.03	15242	
35 -18.40	184.00	171.50	43.96	716.50b	121.06	305.06	15242	
36 -20.00	200.00	186.24	48.87	776.71b	132.03	332.03	15242	

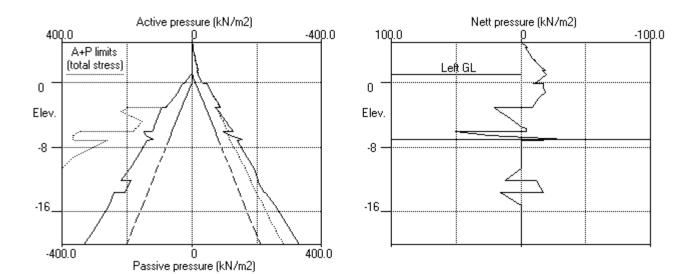
		RIGHT side							
			Effective stresse		s Total		Adjusted		
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296	
2	4.32	0.00	12.21	2.39	99.79	4.63	4.63	30296	
		0.00	12.21	3.06	70.25	3.44	3.44	5049	
3	3.96	0.00	19.21	4.82	110.55	4.63	4.63A	5049	
4	3.60	0.00	26.53	6.66	152.67	6.08	6.08A	5049	
5	3.00	0.00	39.11	9.82	225.12	8.87	8.87A	5049	
6	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5049	
		0.00	45.03	9.99	191.25	9.99	9.99a	4544	
7	2.50	0.00	49.44	11.50	208.02	11.50	11.50a	4544	
8	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4544	
9	1.42	0.00	70.66	18.74	288.62	18.74	18.74a	4544	
		0.00	70.66	16.68	307.87	16.68	16.68a	7574	
10	1.00	0.00	79.10	19.45	341.56	19.45	19.45a	7574	
11	0.50	5.00	83.98	21.06	361.07	21.06	26.06a	7574	
12	0.00	10.00	88.72	22.62	379.98	22.62	32.62a	7574	
13	-0.08	10.80	89.47	22.86	382.95	22.86	33.66a	7574	
		10.80	89.47	35.06	234.30	35.06	45.86a	2525	
14	-0.64	16.40	94.04	36.85	246.27	36.85	53.25a	2525	
15	-1.20	22.00	98.47	38.59	257.89	38.59	60.59a	2525	
16	-1.80	28.00	103.10	40.40	270.01	40.42	68.42	2525	
17	-2.40	34.00	107.62	42.17	281.84	43.56	77.56	2525	
18	-2.74	37.40	110.14	43.16	288.44	45.48	82.88	2525	
19	-3.08	40.80	112.63	44.14	294.97	47.34	88.14	2525	
		40.80	112.63	33.05	448.10	31.87	72.67A	4544	
20	-3.64	46.40	116.69	34.44	463.50	36.30	82.70	4544	
21	-4.20	52.00	120.68	35.80	478.68	41.38	93.38	4544	
22	-4.80	58.00	124.91	37.24	494.74	46.57	104.57	4544	
23	-5.40	64.00	129.09	38.67	510.63	51.27	115.27	4544	
24	-5.74	67.40	131.44	39.47	519.56	54.55	121.95	4544	
25	-6.08	70.80	133.78	40.27	528.44	55.80	126.60	4544	
		70.80	133.78	33.50	575.33	26.21	97.01A	11109	
26	-6.54	75.40	137.85	34.84	591.56	41.54	116.94	11109	
27	-7.00	80.00	141.90	36.17	607.73	73.93	153.93	11109	
28	-7.15	81.50	143.21	36.60	612.98	56.79	138.29	11109	
29	-9.30	103.00	161.95	42.76	687.79	67.20	170.20	11109	
30	-10.69	116.90	173.97	46.71	735.78	73.99	190.89	11109	
31	-12.08	130.80	185.96	50.65	783.63	74.57	205.37	11109	
20	10 50	130.80	185.96	48.97	1013.28	69.94	200.74	6059	
32	-13.58	145.80	197.38	51.98	1075.49	78.34	224.14	6059	
2.2	15 10	145.80	197.38	52.57	888.16	79.09	224.89	15148	
33	-15.19	161.90	211.24	57.18	946.93	95.14	257.04	15148	
34	-16.80	178.00	225.13	61.80	1005.77	103.03	281.03	15148	


DICUT aide


Stage No.6 Apply water pressure profile no.1


		RIGHT side					
			Effectiv	ve stresse	S	Total	Adjusted
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
35 -18.40	194.00	238.95	66.40	1064.34	111.06	305.06	15148
36 -20.00	210.00	252.80	71.01	1123.05	121.90	331.90	15148

Note:


60.59 a Soil pressure at active limit 79.38 p Soil pressure at passive limit 776.71 b Passive limit reduced because of berm 97.01A Arching - soil pressure below active limit

Stage No.6 Apply water pressure profile no.1

SMEC AUSTRALIA PTY LTD	Sheet No.					
Program: WALLAP Version 6.07 Revision A55.B74.R58 Job No. 300						
Licensed from GEOSOLVE	Made by : MM					
Data filename/Run ID: AZ24-700N_Drained_propped						
Byron Lane Slip	Date:27-09-2021					
AZ 24-700N propped	Checked :					

Stage No. 7 Apply water pressure profile no.2

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS fo			ev. for		
				elev. =	-7.00	FoS =	1.300		
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction	
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of	
				Safety	at elev.		-ation	failure	
7	4.92	1.00	3.00	1.686	n/a	-4.90	5.90	R to L	

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2 $\,$

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.052	1.49E-03	0.0	0.0	
2	4.32	-4.94	-0.053	1.49E-03	-1.5	-0.3	
		-3.49	-0.053	1.49E-03	-1.5	-0.3	
3	3.96	-3.85	-0.054	1.49E-03	-2.8	-1.1	
4	3.60	-4.76	-0.054	1.49E-03	-4.4	-2.4	
5	3.00	-9.82	-0.055	1.50E-03	-8.7	-6.2	79.0
		-9.82	-0.055	1.50E-03	70.2	-6.2	
б	2.72	-11.31	-0.056	1.47E-03	67.3	13.0	
		-9.99	-0.056	1.47E-03	67.3	13.0	
7	2.50	-11.50	-0.056	1.41E-03	64.9	27.6	
8	2.00	-14.88	-0.057	1.17E-03	58.3	58.4	
9	1.42	-22.56	-0.057	6.92E-04	47.5	88.9	
		-20.57	-0.057	6.92E-04	47.5	88.9	
10	1.00	-26.17	-0.057	2.31E-04	37.6	106.7	
		-22.85	-0.057	2.31E-04	37.6	106.7	
11	0.50	-22.27	-0.057	-4.07E-04	26.4	122.4	
12	0.00	-18.32	-0.057	-1.10E-03	16.2	132.6	
13	-0.08	-15.88	-0.057	-1.21E-03	14.8	133.9	
		-23.46	-0.057	-1.21E-03	14.8	133.9	
14	-0.64	-23.55	-0.056	-2.01E-03	1.7	138.5	
15	-1.20	-24.45	-0.055	-2.77E-03	-11.8	135.7	
16	-1.80	-20.36	-0.053	-3.53E-03	-25.2	124.5	
17	-2.40	-16.38	-0.050	-4.18E-03	-36.2	105.9	
18	-2.74	-13.80	-0.049	-4.51E-03	-41.4	92.6	
19	-3.08	-11.63	-0.047	-4.78E-03	-45.7	77.8	
		17.78	-0.047	-4.78E-03	-45.7	77.8	
20	-3.64	16.29	-0.045	-5.15E-03	-36.1	55.0	
21	-4.20	13.68	-0.042	-5.42E-03	-27.7	37.3	
22	-4.80	7.24	-0.038	-5.61E-03	-21.5	23.1	
23	-5.40	1.86	-0.035	-5.73E-03	-18.7	11.5	
24	-5.74	-2.59	-0.033	-5.76E-03	-18.9	5.3	

Stage No.7	Apply water	pressure	profile no.2
beage no.,	ippij wacci	Pressure	Prorrec no.2

Noc	de Y	Nett	Wall	Wall	Shear	Bending	Prop
no	. coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
25	-6.08	-3.10	-0.031	-5.78E-03	-19.8	-1.3	
		60.35	-0.031	-5.78E-03	-19.8	-1.3	
26	-6.54	31.97	-0.028	-5.79E-03	1.4	-4.0	
27	-7.00	-28.72	-0.026	-5.79E-03	2.2	-0.0	
28	-7.15	-0.10	-0.025	0	-0.0	0.0	
29	-9.30	0.03	-0.020	0	-0.1	0.0	
30	-10.69	-0.00	-0.017	0	-0.1	0.0	
31	-12.08	14.21	-0.016	0	9.8	0.0	
		-13.19	-0.016	0	9.8	0.0	
32	-13.58	-20.00	-0.013	0	-15.1	0.0	
		18.61	-0.013	0	-15.1	0.0	
33	-15.19	-0.00	-0.010	0	-0.1	0.0	
34	-16.80	-0.00	-0.007	0	-0.1	0.0	
35	-18.40	-0.00	-0.005	0	-0.1	0.0	
36	-20.00	0.13	-0.001	0	-0.0	0.0	
At	elev.	3.00		Prop force	= 79.	0 kN/m run	

					_			
		Effective stresses					Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
б	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	3.32b	3.32	3.32p	7621
11	0.50	0.00	9.00	0.00	10.50b	10.50	10.50p	7621
12	0.00	0.00	18.00	0.00	21.01b	21.01	21.01p	7621
13	-0.08	0.80	18.64	0.00	23.70b	23.70	24.50p	7621
		0.80	18.64	7.30	27.68b	27.68	28.48p	2540
14	-0.64	6.40	22.56	8.84	29.38b	29.38	35.78p	2540
15	-1.20	12.00	26.48	10.38	30.22b	30.22	42.22p	2540
16	-1.80	18.00	30.69	12.02	36.12b	36.12	54.12p	2540
17	-2.40	24.00	34.89	13.67	41.88b	41.88	65.88p	2540
18	-2.74	27.40	37.27	14.61	45.44b	45.44	72.84p	2540
19	-3.08	30.80	39.66	15.54	48.58b	48.58	79.38p	2540
		30.80	39.66	8.16	170.83	67.42	98.22	4573
20	-3.64	36.40	43.58	9.50	181.72	67.32	103.72	4573
21	-4.20	42.00	47.51	10.84	142.61b	66.32	108.32	4573
22	-4.80	48.00	51.73	12.28	104.45b	65.42	113.42	4573
23	-5.40	54.00	55.94	13.71	112.52b	65.02	119.02	4573
24	-5.74	57.40	58.33	14.53	117.24b	64.06	121.46	4573
25	-6.08	60.80	60.72	15.35	121.75b	65.14	125.94	4573
		60.80	60.72	9.48	283.69	94.28	155.08	11178
26	-6.54	65.40	64.88	10.85	300.29	82.52	147.92	11178
27	-7.00	70.00	69.04	12.22	296.50	54.74	124.74	11178
28	-7.15	71.50	70.40	12.66	189.79b	69.40	140.90	11178
29	-9.30	93.00	89.87	19.06	273.97b	79.96	172.96	11178
30	-10.69	106.90	102.49	23.21	386.22b	86.75	193.65	11178
31	-12.08	120.80	115.13	27.37	433.51b	100.65	221.45	11178
		120.80	115.13	30.32	506.64b	70.36	191.16	6097

Sheet No. Date:27-09-2021 Checked : _____

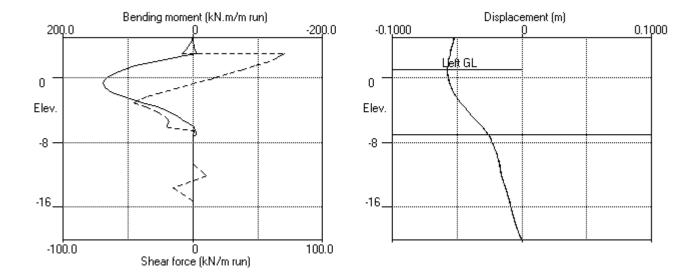
(continued)

Stage No.7 Apply water pressure profile no.2

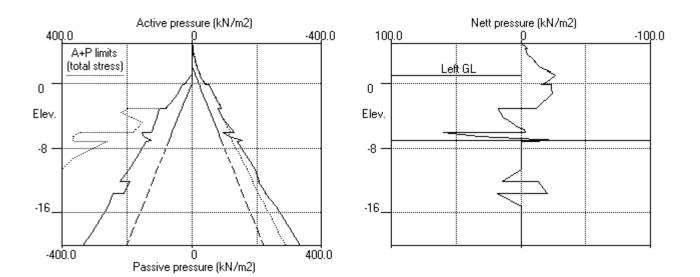
	LEFT side _						
		Effective stresses				Total	Adjusted
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
32 -13.58	135.80	127.31	33.53	560.23b	72.40	208.20	6097
	135.80	127.31	29.26	591.20	109.27	245.07	15242
33 -15.19	151.90	142.03	34.16	630.97	107.92	259.82	15242
34 -16.80	168.00	156.79	39.07	661.72b	115.80	283.80	15242
35 -18.40	184.00	171.50	43.96	716.50b	123.85	307.85	15242
36 -20.00	200.00	186.24	48.87	776.71b	135.22	335.22	15242

		RIGHT side						
			Effective stresses			Total	Adjusted	
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296
2	4.32	0.00	12.21	2.39	99.79	4.94	4.94	30296
		0.00	12.21	3.06	70.25	3.49	3.49	5049
3	3.96	0.00	19.21	4.82	110.55	3.85	3.85A	5049
4	3.60	0.00	26.53	6.66	152.67	4.76	4.76A	5049
5	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5049
6	2.72	0.00	45.03	11.31	259.17	11.31	11.31a	5049
		0.00	45.03	9.99	191.25	9.99	9.99a	4544
7	2.50	0.00	49.44	11.50	208.02	11.50	11.50a	4544
8	2.00	0.00	59.37	14.88	245.73	14.88	14.88a	4544
9	1.42	5.80	64.86	16.76	266.58	16.76	22.56a	4544
		5.80	64.86	14.77	284.72	14.77	20.57a	7574
10	1.00	10.00	69.10	16.17	301.64	16.17	26.17a	7574
11	0.50	15.00	73.98	17.77	321.15	17.77	32.77a	7574
12	0.00	20.00	78.72	19.33	340.06	19.33	39.33a	7574
13	-0.08	20.80	79.47	19.57	343.03	19.57	40.37a	7574
		20.80	79.47	31.14	208.11	31.14	51.94a	2525
14	-0.64	26.40	84.04	32.93	220.08	32.93	59.33a	2525
15	-1.20	32.00	88.47	34.67	231.70	34.67	66.67a	2525
16	-1.80	38.00	93.10	36.48	243.82	36.48	74.48a	2525
17	-2.40	44.00	97.62	38.25	255.65	38.25	82.25a	2525
18	-2.74	47.40	100.14	39.24	262.25	39.24	86.64a	2525
19	-3.08	50.80	102.63	40.22	268.78	40.22	91.02a	2525
		50.80	102.63	29.64	410.10	29.64	80.44a	4544
20	-3.64	56.40	106.69	31.02	425.50	31.02	87.42a	4544
21	-4.20	62.00	110.68	32.39	440.69	32.63	94.63	4544
22	-4.80	68.00	114.91	33.83	456.75	38.18	106.18	4544
23	-5.40	74.00	119.09	35.26	472.63	43.16	117.16	4544
24	-5.74	77.40	121.44	36.06	481.56	46.65	124.05	4544
25	-6.08	80.80	123.78	36.86	490.45	48.24	129.04	4544
0.5	6 54	80.80	123.78	30.21	535.41	13.93	94.73A	11109
26	-6.54	85.40	127.85	31.55	551.64	30.55	115.95A	11109
27	-7.00	90.00	131.90	32.88	567.81	63.46	153.46	11109
28	-7.15	91.50	133.21	33.31	573.06	49.50	141.00	11109
29	-9.30	113.00	151.95	39.47	647.87	59.93	172.93	11109
30	-10.69	126.90	163.97	43.43	695.86	66.76	193.66	11109
31	-12.08	140.80	175.96	47.37	743.71	66.44	207.24	11109
20	12 50	140.80	175.96	46.34	958.79	63.55	204.35	6059
32	-13.58	155.80	187.38	49.35	1021.00	72.40	228.20	6059 15140
22	16 10	155.80	187.38 201.24	49.24	845.78	70.65	226.45	15148
33 34	-15.19 -16.80	171.90 188.00	201.24 215.13	53.86 58.47	904.55 963.38	87.92 95.80	259.82 283.80	15148 15148
54	-10.00	100.00	∠⊥⊃.⊥3	20.4/	203.38	93.00	203.00	10140

Stage No.7 Apply water pressure profile no.2


		RIGHT side _					
		Effective stresses				Total	Adjusted
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
35 -18.40	204.00	228.95	63.07	1021.96	103.85	307.85	15148
36 -20.00	220.00	242.80	67.68	1080.67	115.09	335.09	15148

Note: 87.42 a Soil pressure at active limit 79.38 p Soil pressure at passive limit 776.71 b Passive limit reduced because of berm 115.95A Arching - soil pressure below active limit


SMEC AUSTRALIA PTY LTD	Sheet No.					
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315					
Licensed from GEOSOLVE	Made by : MM					
Data filename/Run ID: AZ24-700N_Drained_propped						
Byron Lane Slip	Date:27-09-2021					
AZ 24-700N propped	Checked :					

Stage No.7 Apply water pressure profile no.2

Units: kN,m

Stage No.7 Apply water pressure profile no.2

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped	
Byron Lane Slip	Date:27-09-2021
AZ 24-700N propped	Checked :
	: kN,m

Stage No. 8 Apply water pressure profile no.3

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

			FoS fo	r toe	Toe el			
				elev. =	-7.00	FoS =	1.300	
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
8	4.92	1.00	3.00	1.611	n/a	-5.96	6.96	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2 $\,$

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.058	2.79E-03	0.0	0.0	
2	4.32	-2.39	-0.060	2.79E-03	-0.7	-0.3	
		-3.06	-0.060	2.79E-03	-0.7	-0.3	
3	3.96	-4.82	-0.061	2.79E-03	-2.1	-0.8	
4	3.60	-6.66	-0.062	2.79E-03	-4.2	-1.9	
5	3.00	-9.82	-0.064	2.79E-03	-9.1	-6.0	102.6
		-9.82	-0.064	2.79E-03	93.5	-6.0	
6	2.72	-13.40	-0.064	2.76E-03	90.2	19.7	
		-11.84	-0.064	2.76E-03	90.2	19.7	
7	2.50	-14.79	-0.065	2.68E-03	87.3	39.3	
8	2.00	-21.47	-0.066	2.36E-03	78.2	80.7	
9	1.42	-29.15	-0.068	1.75E-03	63.6	121.7	
		-27.29	-0.068	1.75E-03	63.6	121.7	
10	1.00	-32.88	-0.068	1.16E-03	50.9	145.7	
		-29.56	-0.068	1.16E-03	50.9	145.7	
11	0.50	-28.98	-0.069	3.46E-04	36.3	167.1	
12	0.00	-25.03	-0.069	-5.49E-04	22.8	181.5	
13	-0.08	-22.59	-0.068	-6.96E-04	20.9	183.3	
		-29.54	-0.068	-6.96E-04	20.9	183.3	
14	-0.64	-29.63	-0.068	-1.73E-03	4.3	190.3	
15	-1.20	-30.53	-0.067	-2.74E-03	-12.5	188.0	
16	-1.80	-26.45	-0.065	-3.76E-03	-29.6	175.3	
17	-2.40	-22.46	-0.062	-4.67E-03	-44.3	152.9	
18	-2.74	-19.89	-0.060	-5.12E-03	-51.5	136.5	
19	-3.08	-17.71	-0.059	-5.52E-03	-57.9	117.9	
		17.18	-0.059	-5.52E-03	-57.9	117.9	
20	-3.64	15.45	-0.055	-6.06E-03	-48.8	88.2	
21	-4.20	12.74	-0.052	-6.47E-03	-40.9	63.3	
22	-4.80	9.96	-0.048	-6.77E-03	-34.1	41.0	
23	-5.40	5.73	-0.044	-6.97E-03	-29.4	22.4	
24	-5.74	0.75	-0.041	-7.03E-03	-28.3	12.8	

Run ID. AZ24-700N_Drained_propped Byron Lane Slip AZ 24-700N propped ------

Sheet No. Date:27-09-2021 Checked :

(continued)

Stage No.8	Apply water	pressure	profile no.3
bluge No.0	mppij wacci	PICDDUIC	PIOLIC HO.J

Noc	le Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
25	-6.08	-0.40	-0.039	-7.07E-03	-28.2	3.2	
		74.25	-0.039	-7.07E-03	-28.2	3.2	
26	-6.54	33.18	-0.036	-7.08E-03	-3.5	-1.9	
27	-7.00	-13.61	-0.032	-7.08E-03	1.0	-0.0	
28	-7.15	-0.10	-0.032	0	-0.0	0.0	
29	-9.30	0.03	-0.024	0	-0.1	0.0	
30	-10.69	-0.00	-0.021	0	-0.1	0.0	
31	-12.08	15.97	-0.020	0	11.0	0.0	
		-14.82	-0.020	0	11.0	0.0	
32	-13.58	-22.50	-0.016	0	-17.0	0.0	
		20.94	-0.016	0	-17.0	0.0	
33	-15.19	-0.00	-0.012	0	-0.1	0.0	
34	-16.80	-0.00	-0.009	0	-0.1	0.0	
35	-18.40	-0.00	-0.006	0	-0.1	0.0	
36	-20.00	0.13	-0.001	0	-0.0	0.0	
At	elev.	3.00		Prop force	= 102	.6 kN/m run	

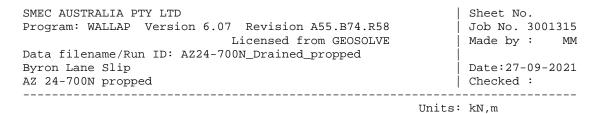
		LEFT side							
				3	Total	Adjusted			
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
3	3.96	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
4	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
5	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
6	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
7	2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
8	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
9	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
		0.00	0.00	0.00	3.32b	3.32	3.32p	7621	
11	0.50	0.00	9.00	0.00	10.50b	10.50	10.50p	7621	
12	0.00	0.00	18.00	0.00	21.01b	21.01	21.01p	7621	
13	-0.08	0.80	18.64	0.00	23.70b	23.70	24.50p	7621	
		0.80	18.64	7.30	27.68b	27.68	28.48p	2540	
14	-0.64	6.40	22.56	8.84	29.38b	29.38	35.78p	2540	
15	-1.20	12.00	26.48	10.38	30.22b	30.22	42.22p	2540	
16	-1.80	18.00	30.69	12.02	36.12b	36.12	54.12p	2540	
17	-2.40	24.00	34.89	13.67	41.88b	41.88	65.88p	2540	
18	-2.74	27.40	37.27	14.61	45.44b	45.44	72.84p	2540	
19	-3.08	30.80	39.66	15.54	48.58b	48.58	79.38p	2540	
		30.80	39.66	8.16	170.83	73.41	104.21	4573	
20	-3.64	36.40	43.58	9.50	181.72	73.06	109.46	4573	
21	-4.20	42.00	47.51	10.84	142.61b	71.71	113.71	4573	
22	-4.80	48.00	51.73	12.28	104.45b	70.38	118.38	4573	
23	-5.40	54.00	55.94	13.71	112.52b	69.60	123.60	4573	
24	-5.74	57.40	58.33	14.53	117.24b	68.37	125.77	4573	
25	-6.08	60.80	60.72	15.35	121.75b	69.22	130.02	4573	
		60.80	60.72	9.48	283.69	104.25	165.05	11178	
26	-6.54	65.40	64.88	10.85	300.29	91.44	156.84	11178	
27	-7.00	70.00	69.04	12.22	296.50	64.89	134.89	11178	
28	-7.15	71.50	70.40	12.66	189.79b	72.11	143.61	11178	
29	-9.30	93.00	89.87	19.06	273.97b	82.68	175.68	11178	
30	-10.69	106.90	102.49	23.21	386.22b	89.51	196.41	11178	
31	-12.08	120.80	115.13	27.37	433.51b	104.26	225.06	11178	
		120.80	115.13	30.32	506.64b	72.34	193.14	6097	

Sheet No. Date:27-09-2021 Checked : _____

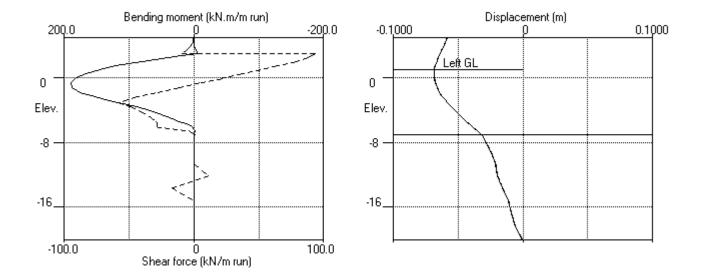
(continued)

Stage No.8 Apply water pressure profile no.3

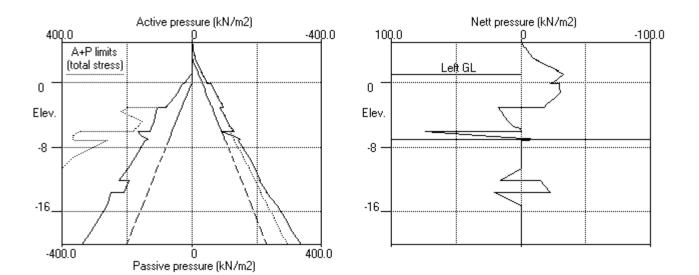
				LEFT s	side		_
			Effectiv	ve stresses	3	Total	Adjusted
<u>Node</u> Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
32 -13.58	135.80	127.31	33.53	560.23b	73.94	209.74	6097
	135.80	127.31	29.26	591.20	113.14	248.94	15242
33 -15.19	151.90	142.03	34.16	630.97	110.68	262.58	15242
34 -16.80	168.00	156.79	39.07	661.72b	118.56	286.56	15242
35 -18.40	184.00	171.50	43.96	716.50b	126.62	310.62	15242
36 -20.00	200.00	186.24	48.87	776.71b	138.43	338.43	15242


					RIGHT	side		
				Total	Adjusted			
Node	e Y	Water	Vertic	Active	ve stresse Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30296
2	4.32	0.00	12.21	2.39	99.79	2.39	2.39a	30296
		0.00	12.21	3.06	70.25	3.06	3.06a	5049
3	3.96	0.00	19.21	4.82	110.55	4.82	4.82a	5049
4	3.60	0.00	26.53	6.66	152.67	6.66	6.66a	5049
5	3.00	0.00	39.11	9.82	225.12	9.82	9.82a	5049
б	2.72	2.80	42.23	10.60	243.06	10.60	13.40a	5049
		2.80	42.23	9.04	180.61	9.04	11.84a	4544
7	2.50	5.00	44.44	9.79	189.02	9.79	14.79a	4544
8	2.00	10.00	49.37	11.47	207.74	11.47	21.47a	4544
9	1.42	15.80	54.86	13.35	228.59	13.35	29.15a	4544
		15.80	54.86	11.49	244.80	11.49	27.29a	7574
10	1.00	20.00	59.10	12.88	261.72	12.88	32.88a	7574
11	0.50	25.00	63.98	14.49	281.23	14.49	39.49a	7574
12	0.00	30.00	68.72	16.04	300.14	16.04	46.04a	7574
13	-0.08	30.80	69.47	16.29	303.11	16.29	47.09a	7574
		30.80	69.47	27.22	181.92	27.22	58.02a	2525
14	-0.64	36.40	74.04	29.01	193.89	29.01	65.41a	2525
15	-1.20	42.00	78.47	30.75	205.51	30.75	72.75a	2525
16	-1.80	48.00	83.10	32.56	217.63	32.56	80.56a	2525
17	-2.40	54.00	87.62	34.34	229.46	34.34	88.34a	2525
18	-2.74	57.40	90.14	35.32	236.06	35.32	92.72a	2525
19	-3.08	60.80	92.63	36.30	242.59	36.30	97.10a	2525
		60.80	92.63	26.23	372.11	26.23	87.03a	4544
20	-3.64	66.40	96.69	27.61	387.51	27.61	94.01a	4544
21	-4.20	72.00	100.68	28.98	402.69	28.98	100.98a	4544
22	-4.80	78.00	104.91	30.42	418.76	30.42	108.42a	4544
23	-5.40	84.00	109.09	31.84	434.64	33.88	117.88	4544
24	-5.74	87.40	111.44	32.65	443.57	37.62	125.02	4544
25	-6.08	90.80	113.78	33.44	452.45	39.61	130.41	4544
26	-6.54	90.80	113.78 117.85	26.92	495.49 511.72	0.00 28.26	90.80A 123.66a	11109
∠6 27	-0.54	95.40 100.00	121.90	28.26 29.59	511.72	28.26 48.49	123.66a 148.49	11109 11109
28	-7.15	100.00	121.90	30.03	527.89	48.49	148.49	11109
∠o 29	-9.30	123.00	141.95	36.19	607.95	52.65	175.65	11109
29 30	-9.30	123.00	141.95	40.14	655.94	52.65 59.51	196.41	11109
30 31	-10.69	136.90	165.96	40.14	655.94 703.79	59.51	209.09	11109
JΤ	-12.00	150.80	165.96	44.08 43.71	904.30	58.29	209.09	6059
32	-13.58	165.80	177.38	45.71	904.30 966.51	66.44	232.24	6059
JZ	T2.20	165.80	177.38	45.92	803.40	62.20	228.00	15148
33	-15.19	181.90	191.24	50.53	862.17	80.68	262.58	15148
34	-16.80	198.00	205.13	55.15	921.00	88.56	286.56	15148
51	10.00	10.00	203.13	55.15	221.00	00.00	200.30	19110

(continued)


Stage No.8 Apply water pressure profile no.3

				RIGHT	side		_
			Effecti	ve stresse	S	Total	Adjusted
Node Y	Water	Vertic	Active	Passive	Earth	earth	soil
no. coord	press.	-al	limit	limit	pressure	pressure	modulus
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
35 -18.40	214.00	218.95	59.75	979.58	96.62	310.62	15148
36 -20.00	230.00	232.80	64.35	1038.29	108.30	338.30	15148


123.66 a Soil pressure at active limit Note: 79.38 p Soil pressure at passive limit 776.71 b Passive limit reduced because of berm 90.80A Arching - soil pressure below active limit

Stage No.8 Apply water pressure profile no.3

Stage No.8 Apply water pressure profile no.3

SMEC AUSTRALIA PTY LTD	Sheet No.			
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315			
Licensed from GEOSOLVE	Made by : MM			
Data filename/Run ID: AZ24-700N_Drained_propped				
Byron Lane Slip	Date:27-09-2021			
AZ 24-700N propped	Checked :			

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS fo elev. =			ev. for 1.300	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	4.92	2.50	Cant.	1.422	-6.41	-5.57	8.07	R to L
2	2.50	4.92		No anal	ysis at th	is stage		
3	4.92	2.50	Cant.	1.338	-6.45	-6.40	8.90	R to L
4	4.92	2.50	3.00	2.142	n/a	-3.35	5.85	R to L
5	4.92	1.00	3.00	1.834	n/a	-4.13	5.13	R to L
б	4.92	1.00	3.00	1.761	n/a	-4.25	5.25	R to L
7	4.92	1.00	3.00	1.686	n/a	-4.90	5.90	R to L
8	4.92	1.00	3.00	1.611	n/a	-5.96	6.96	R to L

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: AZ24-700N_Drained_proppedDate:27-09-2021Byron Lane SlipDate:27-09-2021AZ 24-700N proppedChecked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

Bending moment, shear force and displacement envelopes

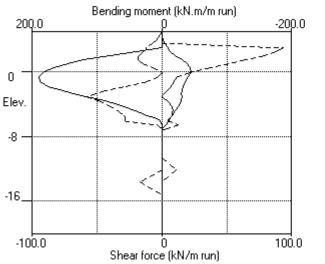
Nod	e Y	Displac	cement	Bending	moment	Shear i	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	4.92	0.000	-0.058	0.0	0.0	0.0	0.0
2	4.32	0.000	-0.060	0.0	-0.3	0.0	-2.4
3	3.96	0.000	-0.061	0.0	-1.4	0.0	-4.1
4	3.60	0.000	-0.062	0.0	-3.4	0.0	-6.5
5	3.00	0.000	-0.064	0.0	-8.9	93.5	-11.9
6	2.72	0.000	-0.064	19.7	-10.9	90.2	-12.1
7	2.50	0.000	-0.065	39.3	-13.0	87.3	-14.5
8	2.00	0.000	-0.066	80.7	-20.1	78.2	-17.8
9	1.42	0.000	-0.068	121.7	-31.2	63.6	-18.5
10	1.00	0.000	-0.068	145.7	-38.4	50.9	-14.5
11	0.50	0.000	-0.069	167.1	-44.1	36.3	-6.5
12	0.00	0.000	-0.069	181.5	-45.0	22.8	0.0
13	-0.08	0.000	-0.068	183.3	-44.5	20.9	0.0
14	-0.64	0.000	-0.068	190.3	-40.4	12.1	-3.2
15	-1.20	0.000	-0.067	188.0	-36.5	9.7	-12.5
16	-1.80	0.000	-0.065	175.3	-33.1	6.9	-29.6
17	-2.40	0.000	-0.062	152.9	-30.9	3.7	-44.3
18	-2.74	0.000	-0.060	136.5	-30.3	1.7	-51.5
19	-3.08	0.000	-0.059	117.9	-30.4	0.0	-57.9
20	-3.64	0.000	-0.055	88.2	-29.5	4.0	-48.8
21	-4.20	0.000	-0.052	63.3	-26.0	7.3	-40.9
22	-4.80	0.000	-0.048	41.0	-20.9	8.6	-34.1
23	-5.40	0.000	-0.044	22.4	-15.6	7.9	-29.4
24	-5.74	0.000	-0.041	12.8	-13.1	6.5	-28.3
25	-6.08	0.000	-0.039	3.2	-11.2	4.8	-28.2
26	-6.54	0.000	-0.036	0.0	-6.3	12.2	-3.5
27	-7.00	0.000	-0.032	0.0	-0.0	3.4	0.0
28	-7.15	0.000	-0.032	0.0	0.0	0.0	-0.0
29	-9.30	0.000	-0.024	0.0	0.0	0.0	-0.1
30	-10.69	0.000	-0.021	0.0	0.0	0.0	-0.1
31	-12.08	0.000	-0.020	0.0	0.0	11.0	0.0
32	-13.58	0.000	-0.016	0.0	0.0	0.0	-17.0
33	-15.19	0.000	-0.012	0.0	0.0	0.0	-0.1
34	-16.80	0.000	-0.009	0.0	0.0	0.0	-0.1
35	-18.40	0.000	-0.006	0.0	0.0	0.0	-0.1
36	-20.00	0.000	-0.001	0.0	0.0	0.0	-0.0

Summary of results (continued)

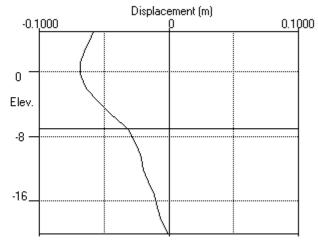
Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	0.0	4.92	-37.1	0.50	14.0	-0.08	-15.7	2.00
2	No calcul	ation at	this stag	je				
3	0.0	4.92	-45.0	0.00	12.2	-6.54	-18.5	1.42
4	0.0	4.92	-41.8	0.00	11.6	-6.54	-16.4	1.42
5	63.6	-0.64	-8.0	-6.08	44.1	3.00	-27.7	-3.08
6	94.1	-0.64	-6.7	3.00	53.8	3.00	-35.2	-3.08
7	138.5	-0.64	-6.2	3.00	70.2	3.00	-45.7	-3.08
8	190.3	-0.64	-6.0	3.00	93.5	3.00	-57.9	-3.08

Maximum and minimum displacement at each stage

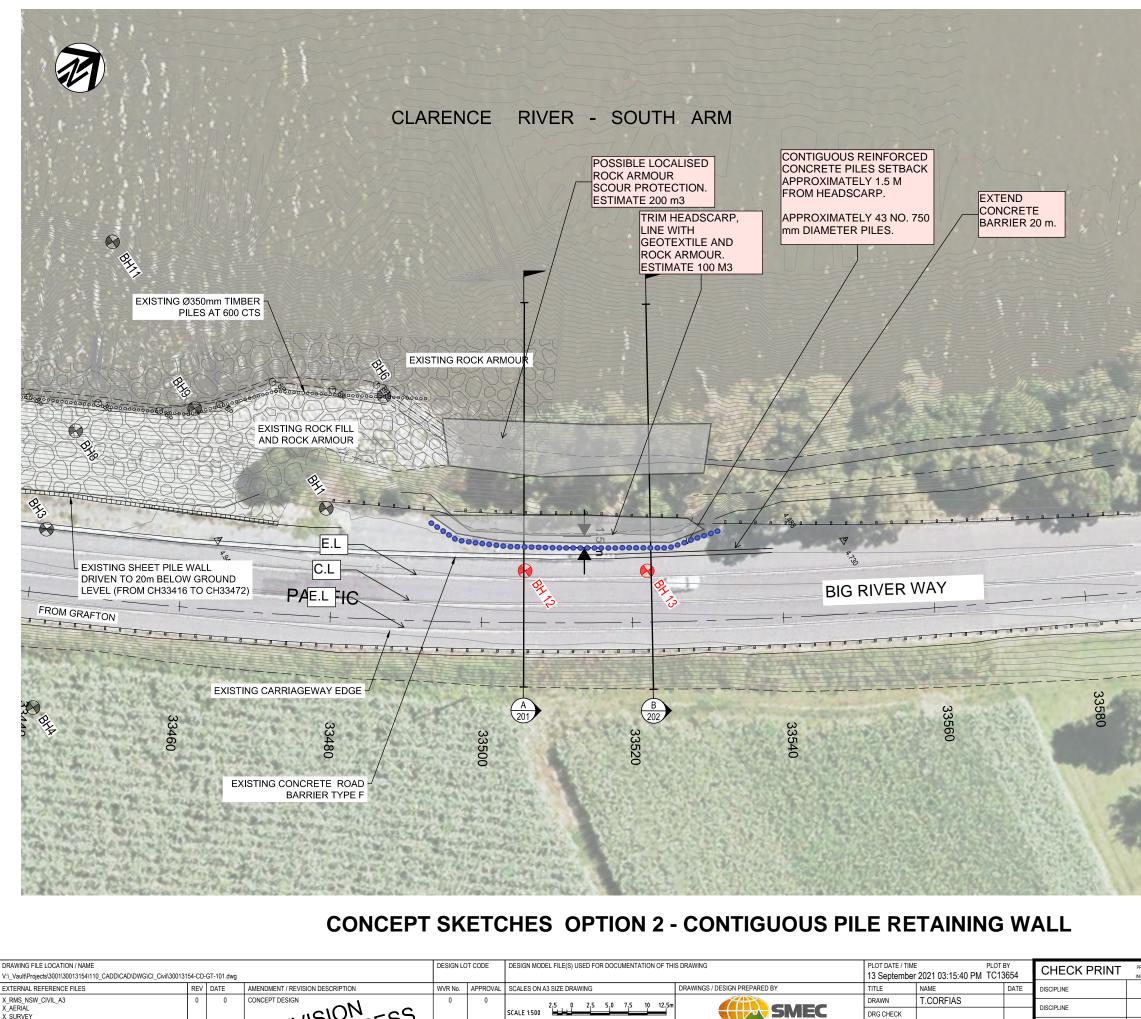

Stage		Displac	ement		
no.	maximum	elev.	minimum	elev.	Stage description _
	m		m		
1	0.000	4.92	-0.065	4.92	Excav. to elev. 2.50 on LEFT side
2	Wall di	splaceme	ents reset	to zero	Change EI of wall to 117369kN.m2/m run
3	0.000	4.92	-0.037	4.92	Apply surcharge no.1 at elev. 4.92
4	0.000	4.92	-0.035	4.92	Install prop no.1 at elev. 3.00
5	0.000	4.92	-0.047	4.92	Excav. to elev. 1.00 on LEFT side
6	0.000	4.92	-0.050	2.00	Apply water pressure profile no.1
7	0.000	4.92	-0.057	1.00	Apply water pressure profile no.2
8	0.000	4.92	-0.069	0.50	Apply water pressure profile no.3

Prop forces at each stage (horizontal components)


Stage	Anchor	no. 1
no.	at elev	v. 3.00
	kN/m run	kN/prop
4	-6.67	-20.00
5	-53.25	-159.74
6	-63.06	-189.17
7	-78.96	-236.89
8	-102.63	-307.89

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58	Sheet No. Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: AZ24-700N_Drained_propped	
Byron Lane Slip	Date:27-09-2021
AZ 24-700N propped	Checked :

```
Units: kN,m
```



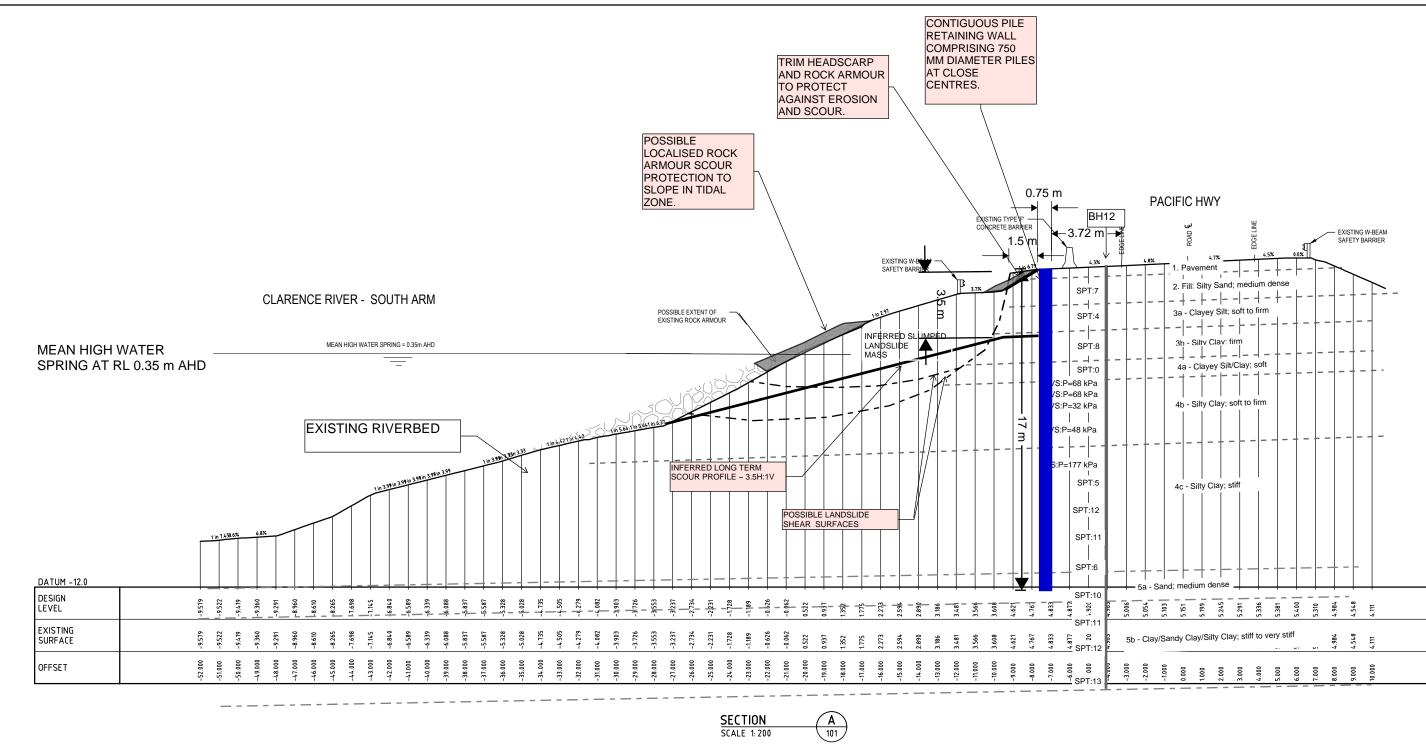
Bending moment, shear force, displacement envelopes

Appendix D Concept Option 2 – Sketches

l

PLETE IF COPIED	
EPREPARED IN COLOUR AND MAY BE INCOMPLE	
D MAY BE	130 130 13E 140 14E 1E0 ON A3 617E ODION
UR AN	1 45 15
COLO	071
NI CI	1 20
PARE	001
PRE	10
¥Y BE	6
ß M∕	140
'HIS DRAWING MAY BE PREPARED IN CO	140 145 150
HIS DRA	4
÷	~

V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-	GT-101.dwg		DEGIGITE	ST CODE			13 Septembe	er 2021 03:15:40 PM TC13		CHECK PRINT	INITIAL	_
EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE		
X_RMS_NSW_CIVIL_A3 X_AERIAL	0	0		0	0	2,5 0 2,5 5,0 7,5 10 12,5m	SMEC	DRAWN	T.CORFIAS		DISCIPLINE		
X_SURVEY X_2014_BYRON_DES_CTRL			DEVISION DESS			SCALE 1:500	DIVIEC	DRG CHECK DESIGN	M.MAHARAJ		DISCIPLINE		
X_2014_DESIGN_30011433 X LEGEND_GA			REVISION				Member of the Surbana Jurong Group © ABN 47 065 475 149	DESIGN CHECK	-				
			INFI			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BACKDRAFTED/CORRECTED		
			-			MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNG	R		CONFIRMED		



SSUE STATUS

CONCEPT DESIGN

EDMS No.	SHEET №.	ISSL
DS2021 / 00????	GT-101	#
(© Transport for	

ISSUE

CONCEPT SKETCHES OPTION 2 - CONTIGUOUS PILE RETAINING WALL

Ř													
	DRAWING FILE LOCATION / NAME				DESIGN LO	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH		PLOT DATE / TIME			CHECK PRINT	PRELIN
52	V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD	-GT-201.dwg						13 September	2021 02:53:37 PM TC1	3654	GHEORTKINT	INITIAL
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	10123/5m		DRAWN	T.CORFIAS			
15	X_XSECTIONS						SCALE 1:200	SMEC	DRG CHECK			DISCIPLINE	
0				REVISION					DESIGN	M.MAHARAJ		DISCIPLINE	
—				N L BRUUM				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK				
2				INF'				52 VICTORIA STREET	DESIGN MNGR			BACKDRAFTED/CORRECTED	
				``			CO-ORDINATE SYSTEM HEIGHT DATUM	GRAFTON NSW 2460				CONFIRMED	
0							MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR			oon males	

NOT FOR CONSTRUCTION

RELIM.	FINAL DATE	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY				A3
		BYRONS LANE SLIP REMEI	DIATION			
		CROSS SECTION - SHEET	1			
				SHEET 5	OF	6
		RMS REGISTRATION NO. DS2021 /	00????			PART 1
		ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET NO. GT-201		ISSUE #
				© Transport	for	NSW

		SHEET 6 OF	6
RMS REGISTRATION NO. DS2021 /	00????		PART 1
ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET NO. GT-202	ISSUE #
-	(© Transport for	NSW

Appendix E Concept Option 2 – Analyses

I

SMEC AUSTRALIA PTY LTD	Sheet No.				
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315				
Licensed from GEOSOLVE	Made by : MM				
Data filename/Run ID: Dia750mm_SecantPileWall					
Byron Lane Slip	Date:28-09-2021				
750diam secant pile wall	Checked :				

INPUT DATA

Units: kN,m

SOIL PRO	FILE				
Stratum	Elevation of		Soil	type	s
no.	top of stratum	L	eft side	Ri	ght side
1	4.92	1	1 Pavement	1	1 Pavement
2	4.32	2	2 FILL	2	2 FILL
3	2.72	3	3a s-f Clayey SILT	3	3a s-f Clayey SILT
4	1.42	4	3b firm Silty CLAY	4	3b firm Silty CLAY
5	-0.08	5	4a s Sandy CLAY	5	4a s Sandy CLAY
6	-3.08	6	4b s-f Silty CLAY	6	4b s-f Silty CLAY
7	-6.08	7	4c St Silty CLAY	7	4c St Silty CLAY
8	-12.08	8	5a l-md SAND	8	5a l-md SAND
9	-13.58	9	5b stiff mix CLAY	9	5b stiff mix CLAY

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
;	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
(]	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	1 Pavement	20.00	30000	0.357	OC	0.196	8.175	
					(0.200)	(0.000)	(0.000)	
2	2 FILL	18.00	5000	0.441	OC	0.251	5.756	
					(0.300)	(0.000)	(0.000)	
3	3a s-f	17.00	4500	0.562	OC	0.341	3.799	4.000d
	Clayey SILT				(0.300)	(1.342)	(5.039)	
4	3b firm	18.00	7500	0.546	OC	0.329	3.992	5.000d
	Silty CLAY				(0.300)	(1.310)	(5.162)	
5	4a s Sandy	17.00	3750	0.577	OC	0.333	3.799	2.000d
	CLAY				(0.300)	(1.378)	(5.039)	
б	4b s-f	17.00	4500	0.562	OC	0.341	3.799	4.000d
	Silty CLAY				(0.300)	(1.342)	(5.039)	
7	4c St Silty	19.00	11000	0.546	OC	0.329	3.992	8.000d
	CLAY				(0.300)	(1.310)	(5.162)	
8	5a l-md	18.00	6000	0.455	OC	0.263	5.449	
	SAND				(0.300)	(0.000)	(0.000)	
9	5b stiff	19.00	15000	0.546	OC	0.333	4.238	10.00d
	mix CLAY				(0.300)	(1.310)	(5.162)	

Additional soil parameters associated with Ka and Kp

	-	param	eters for	Ka	param	eters for	Кр
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	1 Pavement	40.00	0.297	0.00	41.70	0.297	0.00
2	2 FILL	34.00	0.370	0.00	35.63	0.370	0.00
3	3a s-f Clayey SILT	26.00	0.511	0.00	29.05	0.352	0.00
4	3b firm Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
5	4a s Sandy CLAY	25.84	0.819	0.00	29.05	0.352	0.00
6	4b s-f Silty CLAY	26.00	0.511	0.00	29.05	0.352	0.00
7	4c St Silty CLAY	27.00	0.489	0.00	30.10	0.336	0.00
8	5a l-md SAND	33.00	0.384	0.00	34.62	0.384	0.00
9	5b stiff mix CLAY	27.00	0.489	0.00	32.10	0.264	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

			Left	side	Right side
Initial water	table	elevation	0	.00	0.00

Automatic water pressure balancing at toe of wall : No

Water press.		Left	side			Right	side 	
profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.
1	1	m 0.00	m 0.00	kN/m2 0.0	1	m 1.00	m 1.00	kN/m2 0.0
2	1	0.00	0.00	0.0	1	2.00	2.00	0.0
3	1	0.00	0.00	0.0	1	3.00	3.00	0.0

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = -12.00Maximum finite element length = 1.00 m Youngs modulus of wall E = 3.5000E+07 kN/m2Moment of inertia of wall I = 0.015532 m4/m run E.I = 543604 kN.m2/m runYield Moment of wall = Not defined

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	4.92	-1.00(R)	40.00	12.00	20.00	=	N/A	N/A

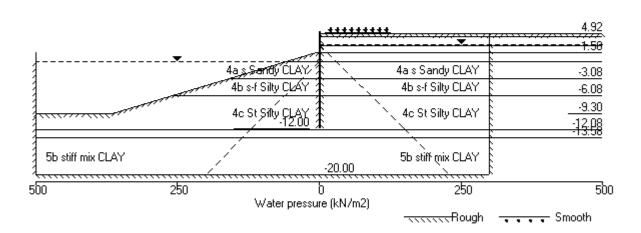
Note: L = Left side, R = Right side

CONSTRUCTION Construction stage no.	-
1	Excavate to elevation 1.50 on LEFT side
	Toe of berm at elevation -9.30
	Width of top of berm = 0.50
	Width of toe of berm = 36.50
2	Change EI of wall to 543604 kN.m2/m run
	Reset wall displacements to zero at this stage
3	Apply surcharge no.1 at elevation 4.92
4	Apply water pressure profile no.1
5	Apply water pressure profile no.2
б	Apply water pressure profile no.3

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.30				
Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m				
Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Active limit arching modelled? - Yes Non-linear Modulus Parameter (L) = 18.00 m				
Boundary conditions: Length of wall (normal to plane of analysis) = 40.00 m				
Width of excavation on Left side of wall = 50.00 m Width of excavation on Right side of wall = 20.00 m				
Distance to rigid boundary on Left side = 50.00 m Distance to rigid boundary on Right side = 30.00 m				

Elevation of rigid lower boundary = -20.00 Lower rigid boundary at elevation -20.00 - Rough Rigid boundary on Left side - Rough Rigid boundary on Right side - Rough Wall / soil interface - Rough


OUTPUT OPTIONS

Stage Stage description	Output	c options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Excav. to elev. 1.50 on LEFT side	Yes	Yes	Yes
2 Change EI of wall to 543604kN.m2/m run	Yes	Yes	Yes
3 Apply surcharge no.1 at elev. 4.92	Yes	Yes	Yes
4 Apply water pressure profile no.1	Yes	Yes	Yes
5 Apply water pressure profile no.2	Yes	Yes	Yes
6 Apply water pressure profile no.3	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2020 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units	: kN,m

Stage No.6 Apply water pressure profile no.3

SMEC AUSTRALIA PTY LTD	Sheet No.
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :

Units: kN,m

Stage No. 1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50 Width of toe of berm = 36.50

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

			FoS fo elev. =	r toe -12.00		ev. for 1.300		
Stage	Ground	level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		<u>-ation</u>	failure
1	4.92	1.50	Cant.	1.695	-10.92	-6.11	7.61	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	<u>coord</u>	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.061	-3.43E-03	0.0	0.0	
2	4.32	-2.35	-0.059	-3.43E-03	-0.7	-0.3	
		-3.01	-0.059	-3.43E-03	-0.7	-0.3	
3	3.66	-6.00	-0.056	-3.43E-03	-3.7	-1.8	
4	3.00	-8.98	-0.054	-3.43E-03	-8.6	-5.9	
5	2.72	-10.24	-0.053	-3.42E-03	-11.3	-8.7	
		-8.55	-0.053	-3.42E-03	-11.3	-8.7	
б	2.00	-12.73	-0.051	-3.40E-03	-19.0	-19.6	
7	1.50	-16.23	-0.049	-3.38E-03	-26.2	-30.9	
		3.92	-0.049	-3.38E-03	-26.2	-30.9	
8	1.42	9.81	-0.049	-3.38E-03	-25.7	-33.0	
		24.31	-0.049	-3.38E-03	-25.7	-33.0	
9	1.00	23.44	-0.047	-3.35E-03	-15.6	-41.6	
10	0.00	20.49	-0.044	-3.27E-03	6.3	-45.5	
11	-0.08	8.10	-0.044	-3.26E-03	7.5	-44.9	
		-18.30	-0.044	-3.26E-03	7.5	-44.9	
12	-1.04	-3.71	-0.041	-3.18E-03	-3.1	-46.2	
13	-2.00	-4.09	-0.038	-3.09E-03	-6.8	-50.9	
14	-2.54	-4.41	-0.036	-3.04E-03	-9.1	-55.1	
15	-3.08	-4.39	-0.034	-2.98E-03	-11.5	-60.7	
		0.00	-0.034	-2.98E-03	-11.5	-60.7	
16	-4.04	-2.84	-0.031	-2.87E-03	-12.9	-71.7	
17	-5.00	-3.39	-0.029	-2.73E-03	-15.9	-85.4	
18	-5.54	-2.20	-0.027	-2.64E-03	-17.4	-94.5	
19	-6.08	-0.35	-0.026	-2.54E-03	-18.1	-104.1	
		37.18	-0.026	-2.54E-03	-18.1	-104.1	

Run ID. Dia750mm_SecantPileWall Byron Lane Slip 750diam secant pile wall _____

Sheet No. Date:28-09-2021 Checked :

(continued)

Stage No.1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50Width of toe of berm = 36.50

Nod		Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
20	-7.04	16.19	-0.024	-2.36E-03	7.6	-104.3	
21	-8.00	8.21	-0.021	-2.18E-03	19.3	-89.6	
22	-8.65	4.11	-0.020	-2.09E-03	23.3	-75.3	
23	-9.30	1.02	-0.019	-2.01E-03	24.9	-59.3	
24	-10.15	-1.98	-0.017	-1.93E-03	24.5	-37.8	
25	-11.00	-6.57	-0.015	-1.89E-03	20.9	-17.6	
26	-12.00	-32.63	-0.013	-1.87E-03	1.3	-0.0	
27	-12.08	19.83	-0.014	0	0.8	0.0	
		-1.08	-0.014	0	0.8	0.0	
28	-13.58	-13.21	-0.011	0	-9.9	0.0	
		6.12	-0.011	0	-9.9	0.0	
29	-16.79	-0.01	-0.006	0	-0.1	0.0	
30	-20.00	0.08	-0.001	0	-0.0	0.0	

					_			
				Effectiv	Total	Adjusted		
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4677
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4677
		0.00	1.36	0.00	25.59b	25.59	25.59p	7795
9	1.00	0.00	8.92	0.00	40.06b	40.06	40.06p	7795
10	0.00	0.00	26.92	2.30	76.03b	50.45	50.45	7795
11	-0.08	0.80	27.56	2.51	57.82b	42.69	43.49	7795
		0.80	27.56	6.41	26.08b	26.08	26.88p	3897
12	-1.04	10.40	34.28	8.65	44.19b	41.49	51.89	3897
13	-2.00	20.00	41.01	10.88	67.36b	44.75	64.75	3897
14	-2.54	25.40	44.79	12.14	74.83b	46.55	71.95	3897
15	-3.08	30.80	48.58	13.40	81.36b	48.57	79.37	3897
		30.80	48.58	11.20	120.14b	49.21	80.01	4677
16	-4.04	40.40	55.32	13.50	118.35b	51.38	91.78	4677
17	-5.00	50.00	62.06	15.80	113.16b	54.76	104.76	4677
18	-5.54	55.40	65.85	17.10	120.41b	57.45	112.85	4677
19	-6.08	60.80	69.65	18.39	127.14b	60.43	121.23	4677
		60.80	69.65	12.42	297.73b	77.24	138.04	11432
20	-7.04	70.40	78.33	15.27	239.66b	71.31	141.71	11432
21	-8.00	80.00	87.01	18.13	155.16b	71.89	151.89	11432
22	-8.65	86.50	92.90	20.06	249.94b	72.95	159.45	11432
23	-9.30	93.00	98.79	22.00	352.24b		167.54	11432
24	-10.15	101.50	106.50	24.53	366.72b	77.17	178.67	11432
25	-11.00	110.00	114.22	27.07	398.07b	78.99	188.99	11432
26	-12.00	120.00	123.31	30.06	430.71b	71.39	191.39	11432
27	-12.08	120.80	124.04	30.30	436.57b	96.84	217.64	11432
		120.80	124.04	32.67	519.74b		190.82	6236
28	-13.58	135.80	136.21	35.87	570.71b		205.71	6236
		135.80	136.21	32.22	570.15b	97.33	233.13	15589

Run ID. Dia750mm_SecantPileWall Byron Lane Slip 750diam secant pile wall

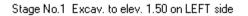
Sheet No. Date:28-09-2021 Checked : _____

(continued)

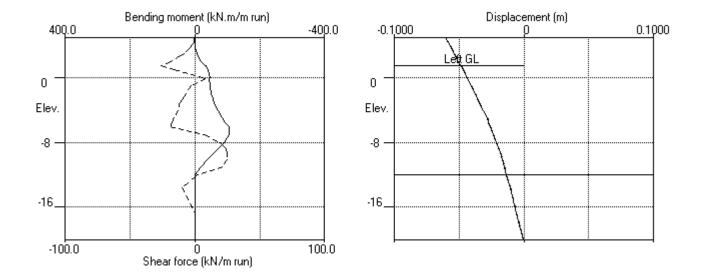
Stage No.1 Excavate to elevation 1.50 on LEFT side Toe of berm at elevation -9.30 Width of top of berm = 0.50Width of toe of berm = 36.50

			side		_			
				Effectiv	ve stresse:	S	Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
29	-16.79	167.90	165.55	41.98	672.06b	110.23	278.13	15589
30	-20.00	200.00	195.03	51.79	770.91b	127.54	327.54	15589

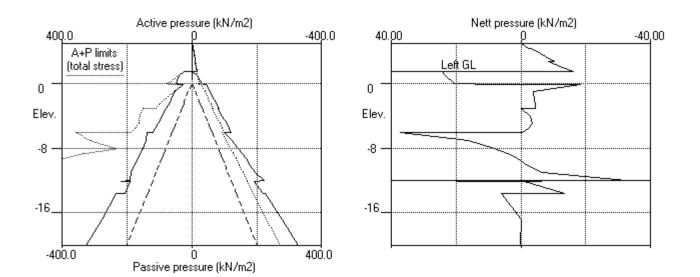
				side		_		
			Effective stresses				Total	Adjusted
Node	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30555
2	4.32	0.00	12.00	2.35	98.10	2.35	2.35a	30555
		0.00	12.00	3.01	69.07	3.01	3.01a	5092
3	3.66	0.00	23.88	6.00	137.44	6.00	6.00a	5092
4	3.00	0.00	35.76	8.98	205.82	8.98	8.98a	5092
5	2.72	0.00	40.80	10.24	234.82	10.24	10.24a	5092
		0.00	40.80	8.55	175.17	8.55	8.55a	4583
6	2.00	0.00	53.04	12.73	221.68	12.73	12.73a	4583
7	1.50	0.00	61.54	15.62	253.97	16.23	16.23	4583
8	1.42	0.00	62.90	16.09	259.14	15.51	15.51A	4583
		0.00	62.90	14.13	276.90	1.29	1.29A	7639
9	1.00	0.00	70.46	16.61	307.08	16.61	16.61a	7639
10	0.00	0.00	88.46	22.53	378.93	29.96	29.96	7639
11	-0.08	0.80	89.10	22.74	381.49	34.59	35.39	7639
		0.80	89.10	26.88	348.56	44.38	45.18	3819
12	-1.04	10.40	95.82	29.11	374.08	45.19	55.59	3819
13	-2.00	20.00	102.54	31.35	399.61	48.84	68.84	3819
14	-2.54	25.40	106.32	32.60	413.97	50.96	76.36	3819
15	-3.08	30.80	110.10	33.86	428.33	52.97	83.77	3819
		30.80	110.10	32.19	438.47	49.20	80.00	4583
16	-4.04	40.40	116.82	34.48	464.00	54.22	94.62	4583
17	-5.00	50.00	123.54	36.77	489.54	58.15	108.15	4583
18	-5.54	55.40	127.32	38.06	503.90	59.65	115.05	4583
19	-6.08	60.80	131.10	39.35	518.26	60.78	121.58	4583
		60.80	131.10	32.62	564.63	40.06	100.86	11203
20	-7.04	70.40	139.74	35.46	599.12	55.12	125.52	11203
21	-8.00	80.00	148.38	38.30	633.61	63.68	143.68	11203
22	-8.65	86.50	154.23	40.22	656.96	68.84	155.34	11203
23	-9.30	93.00	160.08	42.15	680.32	73.52	166.52	11203
24	-10.15	101.50	167.73	44.66	710.85	79.15	180.65	11203
25	-11.00	110.00	175.38	47.17	741.39	85.56	195.56	11203
26	-12.00	120.00	184.38	50.13	777.32	104.01	224.01	11203
27	-12.08	120.80	185.10	50.37	780.19	77.02	197.82	11203
		120.80	185.10	48.75	1008.59	71.10	191.90	6111
28	-13.58	135.80	197.10	51.91	1073.97	83.12	218.92	6111
		135.80	197.10	52.48	886.99	91.21	227.01	15277
29	-16.79	167.90	225.99	62.09	1009.43	110.24	278.14	15277
30	-20.00	200.00	254.88	71.70	1131.87	127.45	327.45	15277


Note:

16.61 a Soil pressure at active limit 26.88 p Soil pressure at passive limit


770.91 b Passive limit reduced because of berm

1.29A Arching - soil pressure below active limit


SMEC AUSTRALIA PTY LTD Sheet No.							
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315						
Licensed from GEOSOLVE	Made by : MM						
Data filename/Run ID: Dia750mm_SecantPileWall							
Byron Lane Slip	Date:28-09-2021						
750diam secant pile wall	Checked :						

Units: kN,m

Stage No.1 Excav. to elev. 1.50 on LEFT side

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall Byron Lane Slip	 Date:28-09-2021
750diam secant pile wall	Checked :
	·
Units	: kN,m

Stage No. 3 Apply surcharge no.1 at elevation 4.92

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS for toe		Toe el	ev. for	
				elev. =	-12.00	FoS =	1.300	
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
3	4.92	1.50	Cant.	1.561	-10.96	-7.89	9.39	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	<u>coord</u>	pressure	disp.	<u>rotation</u>	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.026	-1.77E-03	0.0	-0.0	
2	4.32	-2.59	-0.025	-1.77E-03	-0.8	-0.3	
		-3.33	-0.025	-1.77E-03	-0.8	-0.3	
3	3.66	-7.31	-0.024	-1.77E-03	-4.3	-2.0	
4	3.00	-11.15	-0.022	-1.77E-03	-10.4	-6.9	
5	2.72	-12.69	-0.022	-1.77E-03	-13.7	-10.3	
		-11.87	-0.022	-1.77E-03	-13.7	-10.3	
6	2.00	-16.75	-0.021	-1.76E-03	-24.0	-23.9	
7	1.50	-19.99	-0.020	-1.76E-03	-33.2	-38.3	
		0.17	-0.020	-1.76E-03	-33.2	-38.3	
8	1.42	4.83	-0.020	-1.75E-03	-33.0	-40.9	
		7.22	-0.020	-1.75E-03	-33.0	-40.9	
9	1.00	19.00	-0.019	-1.75E-03	-27.5	-54.1	
10	0.00	33.36	-0.017	-1.71E-03	-1.3	-72.2	
11	-0.08	14.85	-0.017	-1.71E-03	0.6	-72.2	
		-22.18	-0.017	-1.71E-03	0.6	-72.2	
12	-1.04	-3.83	-0.015	-1.65E-03	-11.9	-81.9	
13	-2.00	-2.46	-0.014	-1.58E-03	-14.9	-95.0	
14	-2.54	-3.13	-0.013	-1.53E-03	-16.4	-103.4	
15	-3.08	-3.26	-0.012	-1.48E-03	-18.1	-112.7	
		2.67	-0.012	-1.48E-03	-18.1	-112.7	
16	-4.04	-1.50	-0.011	-1.39E-03	-17.6	-128.9	
17	-5.00	-2.38	-0.009	-1.28E-03	-19.4	-146.4	
18	-5.54	-0.81	-0.009	-1.22E-03	-20.3	-157.3	
19	-6.08	1.81	-0.008	-1.16E-03	-20.0	-168.3	
		51.45	-0.008	-1.16E-03	-20.0	-168.3	
20	-7.04	22.42	-0.007	-1.05E-03	15.4		

Run ID. Dia750mm_SecantPileWall Byron Lane Slip 750diam secant pile wall _____

Sheet No. Date:28-09-2021 Checked :

(continued)

Stage No.3 Apply surcharge no.1 at elevation 4.92

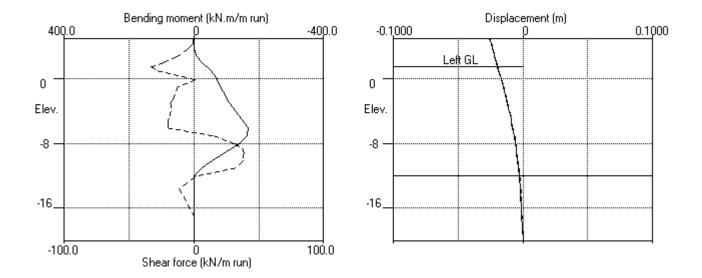
Node	e Y	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
21	-8.00	11.16	-0.006	-9.59E-04	31.6	-138.6	
22	-8.65	5.30	-0.005	-9.06E-04	36.9	-115.7	
23	-9.30	0.83	-0.005	-8.63E-04	38.9	-90.6	
24	-10.15	-3.58	-0.004	-8.23E-04	37.7	-57.2	
25	-11.00	-10.68	-0.004	-8.01E-04	31.7	-26.4	
26	-12.00	-48.78	-0.003	-7.93E-04	1.9	-0.0	
27	-12.08	23.47	-0.003	0	0.9	0.0	
		-1.38	-0.003	0	0.9	0.0	
28	-13.58	-15.65	-0.002	0	-11.8	0.0	
		7.10	-0.002	0	-11.8	0.0	
29	-16.79	0.00	-0.001	0	-0.4	0.0	
30	-20.00	0.27	-0.000	0	-0.0	0.0	

					LEFT s	side		_
				Total	Adjusted			
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4677
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4677
		0.00	1.36	0.00	25.59b	25.59	25.59p	7795
9	1.00	0.00	8.92	0.00	40.06b	40.06	40.06p	7795
10	0.00	0.00	26.92	2.30	76.03b	62.54	62.54	7795
11	-0.08	0.80	27.56	2.51	57.82b	50.95	51.75	7795
		0.80	27.56	6.41	26.08b	26.08	26.88p	3897
12	-1.04	10.40	34.28	8.65	44.19b	44.19	54.59p	3897
13	-2.00	20.00	41.01	10.88	67.36b	49.31	69.31	3897
14	-2.54	25.40	44.79	12.14	74.83b	50.82	76.22	3897
15	-3.08	30.80	48.58	13.40	81.36b	52.68	83.48	3897
		30.80	48.58	11.20	120.14b	54.13	84.93	4677
16	-4.04	40.40	55.32	13.50	118.35b	55.51	95.91	4677
17	-5.00	50.00	62.06	15.80	113.16b	58.61	108.61	4677
18	-5.54	55.40	65.85	17.10	120.41b	61.42	116.82	4677
19	-6.08	60.80	69.65	18.39	127.14b	64.69	125.49	4677
		60.80	69.65	12.42	297.73b	87.66	148.46	11432
20	-7.04	70.40	78.33	15.27	239.66b	77.56	147.96	11432
21	-8.00	80.00	87.01	18.13	155.16b	76.34	156.34	11432
22	-8.65	86.50	92.90	20.06	249.94b	76.41	162.91	11432
23	-9.30	93.00	98.79	22.00	352.24b	77.21	170.21	11432
24	-10.15	101.50	106.50	24.53	366.72b	79.02	180.52	11432
25	-11.00	110.00	114.22	27.07	398.07b	79.44	189.44	11432
26	-12.00	120.00	123.31	30.06	430.71b	65.90	185.90	11432
27	-12.08	120.80	124.04	30.30	436.57b	100.80	221.60	11432
		120.80	124.04	32.67	519.74b	72.18	192.98	6236
28	-13.58	135.80	136.21	35.87	570.71b	71.00	206.80	6236
		135.80	136.21	32.22	570.15b	100.07	235.87	15589
29	-16.79	167.90	165.55	41.98	672.06b	112.19	280.09	15589
30	-20.00	200.00	195.03	51.79	770.91b	129.55	329.55	15589

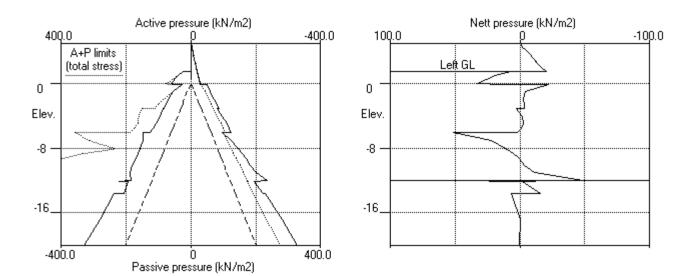
| Sheet No. | Date:28-09-2021 | Checked :

(continued)

Stage No.3 Apply surcharge no.1 at elevation 4.92



		RIGHT side							
					ve stresse		Total	Adjusted	
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	<u>earth</u>	soil	
no.	coord	press.	<u>-al</u>	<u>limit</u>	<u>limit</u>	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30555	
2	4.32	0.00	13.26	2.59	108.43	2.59	2.59a	30555	
		0.00	13.26	3.33	76.33	3.33	3.33a	5092	
3	3.66	0.00	29.13	7.31	167.66	7.31	7.31a	5092	
4	3.00	0.00	44.40	11.15	255.54	11.15	11.15a	5092	
5	2.72	0.00	50.53	12.69	290.80	12.69	12.69a	5092	
		0.00	50.53	11.87	212.13	11.87	11.87a	4583	
6	2.00	0.00	64.83	16.75	266.48	16.75	16.75a	4583	
7	1.50	0.00	74.32	19.99	302.54	19.99	19.99a	4583	
8	1.42	0.00	75.82	20.49	308.22	20.49	20.49a	4583	
		0.00	75.82	18.37	328.46	18.37	18.37a	7639	
9	1.00	0.00	83.99	21.06	361.08	21.06	21.06a	7639	
10	0.00	0.00	102.97	27.30	436.84	29.18	29.18	7639	
11	-0.08	0.80	103.66	27.53	439.62	36.11	36.91	7639	
		0.80	103.66	31.72	403.88	48.26	49.06	3819	
12	-1.04	10.40	110.87	34.12	431.25	48.02	58.42	3819	
13	-2.00	20.00	117.80	36.42	457.59	51.77	71.77	3819	
14	-2.54	25.40	121.61	37.69	472.06	53.95	79.35	3819	
15	-3.08	30.80	125.37	38.94	486.35	55.94	86.74	3819	
		30.80	125.37	37.40	496.50	51.46	82.26	4583	
16	-4.04	40.40	131.95	39.64	521.49	57.01	97.41	4583	
17	-5.00	50.00	138.43	41.85	546.10	60.99	110.99	4583	
18	-5.54	55.40	142.03	43.08	559.80	62.23	117.63	4583	
19	-6.08	60.80	145.62	44.30	573.42	62.89	123.69	4583	
		60.80	145.62	37.39	622.59	36.21	97.01A	11203	
20	-7.04	70.40	153.87	40.10	655.54	55.15	125.55	11203	
21	-8.00	80.00	162.09	42.81	688.34	65.19	145.19	11203	
22	-8.65	86.50	167.64	44.63	710.48	71.11	157.61	11203	
23	-9.30	93.00	173.18	46.45	732.59	76.38	169.38	11203	
24	-10.15	101.50	180.41	48.83	761.48	82.59	184.09	11203	
25	-11.00	110.00	187.64	51.21	790.35	90.12	200.12	11203	
26	-12.00	120.00	196.15	54.00	824.31	114.69	234.69	11203	
27	-12.08	120.80	196.83	54.23	827.03	77.33	198.13	11203	
		120.80	196.83	51.84	1072.52	73.56	194.36	6111	
28	-13.58	135.80	208.11	54.80	1133.96	86.65	222.45	6111	
		135.80	208.11	56.14	933.64	92.97	228.77	15277	
29	-16.79	167.90	235.55	65.27	1049.93	112.19	280.09	15277	
30	-20.00	200.00	263.16	74.45	1166.95	129.29	329.29	15277	


Note: 21.06 a Soil pressure at active limit 54.59 p Soil pressure at passive limit 770.91 b Passive limit reduced because of berm 97.01A Arching - soil pressure below active limit

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units:	 kN,m

Stage No.3 Apply surcharge no.1 at elev. 4.92

Stage No.3 Apply surcharge no.1 at elev. 4.92

SMEC AUSTRALIA PTY LTD	Sheet No.		
Program: WALLAP Version 6.07 Revision A55.B74.R58	Job No. 3001315		
Licensed from GEOSOLVE	Made by : MM		
Data filename/Run ID: Dia750mm_SecantPileWall			
Byron Lane Slip	Date:28-09-2021		
750diam secant pile wall	Checked :		

Stage No. 4 Apply water pressure profile no.1

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Units: kN,m

				FoS fo elev. =	r toe -12.00		ev. for 1.300	
<u>Stage</u> <u>No.</u>	Ground Act.	l level Pass.	Prop Elev.	Factor of	<u>Moment</u> equilib.	<u>Toe</u> elev.	<u>Wall</u> Penetr	Direction of
4	4.92	1.50	Cant.	<u>Safety</u> 1.501	<u>at elev.</u> -10.93	-8.74	<u>-ation</u> 10.24	<u>failure</u> R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node		Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.040	-2.50E-03	0.0	-0.0	
2	4.32	-2.59	-0.038	-2.50E-03	-0.8	-0.3	
		-3.33	-0.038		-0.8	-0.3	
3	3.66	-7.31	-0.036	-2.50E-03	-4.3	-2.0	
4	3.00	-11.15	-0.035	-2.50E-03	-10.4	-6.9	
5	2.72	-12.69	-0.034	-2.50E-03	-13.7	-10.3	
		-11.87	-0.034	-2.50E-03	-13.7	-10.3	
6	2.00	-16.75	-0.032	-2.49E-03	-24.0	-23.9	
7	1.50	-19.99	-0.031	-2.49E-03	-33.2	-38.3	
		0.17	-0.031	-2.49E-03	-33.2	-38.3	
8	1.42	4.83	-0.031	-2.48E-03	-33.0	-40.9	
		7.22	-0.031	-2.48E-03	-33.0	-40.9	
9	1.00	19.00	-0.030	-2.48E-03	-27.5	-54.1	
10	0.00	35.18	-0.027	-2.44E-03	-0.4	-73.2	
11	-0.08	17.44	-0.027	-2.44E-03	1.7	-73.1	
		-26.16	-0.027	-2.44E-03	1.7	-73.1	
12	-1.04	-7.12	-0.025	-2.38E-03	-14.3	-83.5	
13	-2.00	-2.88	-0.022	-2.30E-03	-19.1	-100.5	
14	-2.54	-3.64	-0.021	-2.25E-03	-20.8	-111.3	
15	-3.08	-3.78	-0.020	-2.19E-03	-22.8	-123.0	
		3.19	-0.020	-2.19E-03	-22.8	-123.0	
16	-4.04	-1.68	-0.018	-2.07E-03	-22.1	-143.5	
17	-5.00	-2.72	-0.016	-1.94E-03	-24.2	-165.5	
18	-5.54	-0.89	-0.015	-1.86E-03	-25.2	-178.9	
19	-6.08	2.14	-0.014	-1.77E-03	-24.9	-192.7	
		60.51	-0.014	-1.77E-03	-24.9	-192.7	
20	-7.04	26.50	-0.012	-1.62E-03	16.9	-188.6	

Sheet No. Date:28-09-2021 Checked :

(continued)

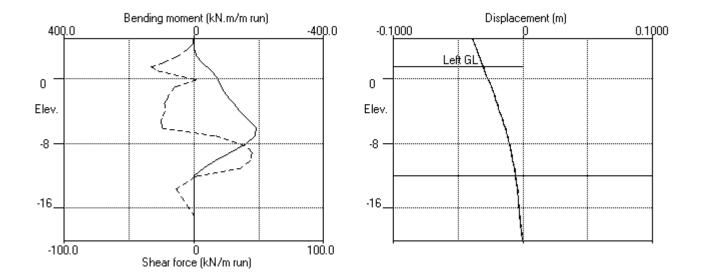
Stage No.4 App	ly water	pressure	profile	no.1	
----------------	----------	----------	---------	------	--

Node	Y	Nett	Wall	Wall	Shear	Bending	Prop
no. o	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
21 -	-8.00	13.30	-0.011	-1.48E-03	36.0	-160.2	
22 -	-8.65	6.43	-0.010	-1.40E-03	42.4	-134.0	
23 -	-9.30	1.18	-0.009	-1.34E-03	44.9	-105.0	
24 -2	10.15	-3.99	-0.008	-1.28E-03	43.7	-66.4	
25 -2	11.00	-12.28	-0.007	-1.25E-03	36.8	-30.7	
26 -2	12.00	-56.74	-0.006	-1.24E-03	2.3	-0.0	
27 -2	12.08	27.81	-0.006	0	1.1	0.0	
		-1.61	-0.006	0	1.1	0.0	
28 -2	13.58	-18.54	-0.005	0	-14.0	0.0	
		8.45	-0.005	0	-14.0	0.0	
29 -2	16.79	0.00	-0.003	0	-0.4	0.0	
30 -2	20.00	0.27	-0.000	0	-0.0	0.0	

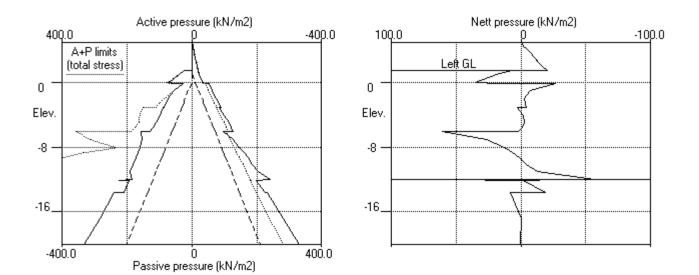
					LEFT s	side		
				Total	Adjusted			
Node	e Y	Water	Vertic	Active	ve stresses Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4677
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4677
		0.00	1.36	0.00	25.59b	25.59	25.59p	7795
9	1.00	0.00	8.92	0.00	40.06b	40.06	40.06p	7795
10	0.00	0.00	26.92	2.30	76.03b	69.19	69.19	7795
11	-0.08	0.80	27.56	2.51	57.82b	55.80	56.60	7795
		0.80	27.56	6.41	26.08b	26.08	26.88p	3897
12	-1.04	10.40	34.28	8.65	44.19b	44.19	54.59p	3897
13	-2.00	20.00	41.01	10.88	67.36b	52.14	72.14	3897
14	-2.54	25.40	44.79	12.14	74.83b	53.55	78.95	3897
15	-3.08	30.80	48.58	13.40	81.36b	55.37	86.17	3897
		30.80	48.58	11.20	120.14b	57.36	88.16	4677
16	-4.04	40.40	55.32	13.50	118.35b	58.35	98.75	4677
17	-5.00	50.00	62.06	15.80	113.16b	61.34	111.34	4677
18	-5.54	55.40	65.85	17.10	120.41b	64.27	119.67	4677
19	-6.08	60.80	69.65	18.39	127.14b	67.74	128.54	4677
		60.80	69.65	12.42	297.73b	95.10	155.90	11432
20	-7.04	70.40	78.33	15.27	239.66b	82.48	152.88	11432
21	-8.00	80.00	87.01	18.13	155.16b	80.25	160.25	11432
22	-8.65	86.50	92.90	20.06	249.94b	79.80	166.30	11432
23	-9.30	93.00	98.79	22.00	352.24b	80.19	173.19	11432
24	-10.15	101.50	106.50	24.53	366.72b	81.60	183.10	11432
25	-11.00	110.00	114.22	27.07	398.07b	81.41	191.41	11432
26	-12.00	120.00	123.31	30.06	430.71b	64.81	184.81	11432
27	-12.08	120.80	124.04	30.30	436.57b	105.58	226.38	11432
		120.80	124.04	32.67	519.74b	74.79	195.59	6236
28	-13.58	135.80	136.21	35.87	570.71b	72.39	208.19	6236
		135.80	136.21	32.22	570.15b	103.53	239.33	15589
29	-16.79	167.90	165.55	41.98	672.06b	115.00	282.90	15589
30	-20.00	200.00	195.03	51.79	770.91b	132.67	332.67	15589

Sheet No. Date:28-09-2021 Checked : _____

(continued)


Stage No.4 Apply water pressure profile no.1

		RIGHT side _							
				Effectiv	ve stresse	S	Total	Adjusted	
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	<u>-al</u>	<u>limit</u>	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30555	
2	4.32	0.00	13.26	2.59	108.43	2.59	2.59a	30555	
		0.00	13.26	3.33	76.33	3.33	3.33a	5092	
3	3.66	0.00	29.13	7.31	167.66	7.31	7.31a	5092	
4	3.00	0.00	44.40	11.15	255.54	11.15	11.15a	5092	
5	2.72	0.00	50.53	12.69	290.80	12.69	12.69a	5092	
		0.00	50.53	11.87	212.13	11.87	11.87a	4583	
6	2.00	0.00	64.83	16.75	266.48	16.75	16.75a	4583	
7	1.50	0.00	74.32	19.99	302.54	19.99	19.99a	4583	
8	1.42	0.00	75.82	20.49	308.22	20.49	20.49a	4583	
		0.00	75.82	18.37	328.46	18.37	18.37a	7639	
9	1.00	0.00	83.99	21.06	361.08	21.06	21.06a	7639	
10	0.00	10.00	92.97	24.01	396.92	24.01	34.01a	7639	
11	-0.08	10.80	93.66	24.24	399.70	28.36	39.16	7639	
		10.80	93.66	28.39	365.89	42.24	53.04	3819	
12	-1.04	20.40	100.87	30.79	393.26	41.31	61.71	3819	
13	-2.00	30.00	107.80	33.10	419.60	45.02	75.02	3819	
14	-2.54	35.40	111.61	34.36	434.08	47.19	82.59	3819	
15	-3.08	40.80	115.37	35.61	448.36	49.15	89.95	3819	
		40.80	115.37	33.99	458.50	44.17	84.97	4583	
16	-4.04	50.40	121.95	36.23	483.50	50.04	100.44	4583	
17	-5.00	60.00	128.43	38.44	508.10	54.06	114.06	4583	
18	-5.54	65.40	132.03	39.67	521.81	55.17	120.57	4583	
19	-6.08	70.80	135.62	40.89	535.43	55.60	126.40	4583	
		70.80	135.62	34.10	582.67	24.59	95.39A	11203	
20	-7.04	80.40	143.87	36.82	615.62	45.98	126.38	11203	
21	-8.00	90.00	152.09	39.52	648.42	56.95	146.95	11203	
22	-8.65	96.50	157.64	41.34	670.56	63.36	159.86	11203	
23	-9.30	103.00	163.18	43.16	692.67	69.00	172.00	11203	
24	-10.15	111.50	170.41	45.54	721.56	75.59	187.09	11203	
25	-11.00	120.00	177.64	47.92	750.43	83.69	203.69	11203	
26	-12.00	130.00	186.15	50.72	784.39	111.55	241.55	11203	
27	-12.08	130.80	186.83	50.94	787.11	67.77	198.57	11203	
		130.80	186.83	49.20	1018.03	66.40	197.20	6111	
28	-13.58	145.80	198.11	52.17	1079.47	80.93	226.73	6111	
		145.80	198.11	52.81	891.26	85.08	230.88	15277	
29	-16.79	177.90	225.55	61.94	1007.55	105.00	282.90	15277	
30	-20.00	210.00	253.16	71.13	1124.57	122.40	332.40	15277	


Note: 34.01 a Soil pressure at active limit 54.59 p Soil pressure at passive limit 770.91 b Passive limit reduced because of berm 95.39A Arching - soil pressure below active limit

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE Data filename/Run ID: Dia750mm SecantPileWall	Sheet No. Job No. 3001315 Made by : MM
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units	 kN,m

Stage No.4 Apply water pressure profile no.1

Stage No.4 Apply water pressure profile no.1

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021 Checked :
750diam secant pile wall	Checked :
Units	: kN,m

Stage No. 5 Apply water pressure profile no.2

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -12.00		ev. for 1.300	
<u>Stage</u> <u>No.</u>	Ground Act.	l level Pass.	Prop Elev.	Factor of	Moment equilib.	Toe elev.	<u>Wall</u> Penetr	Direction of failure
5	4.92	1.50	Cant.	<u>Safety</u> 1.430	<u>at elev.</u> -10.91	-9.91	<u>-ation</u> 11.41	R to L

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node	<u>Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	<u>coord</u>	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.061	-3.86E-03	0.0	-0.0	
2	4.32	-2.59	-0.059	-3.86E-03	-0.8	-0.3	
		-3.33	-0.059	-3.86E-03	-0.8	-0.3	
3	3.66	-7.31	-0.056	-3.86E-03	-4.3	-2.0	
4	3.00	-11.15	-0.054	-3.86E-03	-10.4	-6.9	
5	2.72	-12.69	-0.053	-3.86E-03	-13.7	-10.3	
		-11.87	-0.053	-3.86E-03	-13.7	-10.3	
6	2.00	-16.75	-0.050	-3.86E-03	-24.0	-23.9	
7	1.50	-23.28	-0.048	-3.85E-03	-34.0	-38.4	
		-3.12	-0.048	-3.85E-03	-34.0	-38.4	
8	1.42	1.01	-0.048	-3.85E-03	-34.1	-41.1	
		3.32	-0.048	-3.85E-03	-34.1	-41.1	
9	1.00	12.28	-0.046	-3.84E-03	-30.8	-55.2	
10	0.00	35.31	-0.042	-3.80E-03	-7.0	-80.9	
11	-0.08	16.87	-0.042	-3.79E-03	-5.0	-81.4	
		-29.61	-0.042	-3.79E-03	-5.0	-81.4	
12	-1.04	-9.50	-0.038	-3.71E-03	-23.7	-99.8	
13	-2.00	-1.21	-0.035	-3.60E-03	-28.9	-127.0	
14	-2.54	-2.24	-0.033	-3.52E-03	-29.8	-142.7	
15	-3.08	-2.51	-0.031	-3.43E-03	-31.1	-159.1	
		5.86	-0.031	-3.43E-03	-31.1	-159.1	
16	-4.04	-0.20	-0.028	-3.24E-03	-28.4	-186.2	
17	-5.00	-1.61	-0.025	-3.02E-03	-29.2	-213.5	
18	-5.54	0.51	-0.023	-2.89E-03	-29.5	-229.5	
19	-6.08	4.14	-0.022	-2.76E-03	-28.3	-245.4	
		73.66	-0.022	-2.76E-03	-28.3	-245.4	
20	-7.04	32.40	-0.019	-2.51E-03	22.6	-238.6	

(continued)

Stage No.5	Apply water	pressure	profile no.2	
------------	-------------	----------	--------------	--

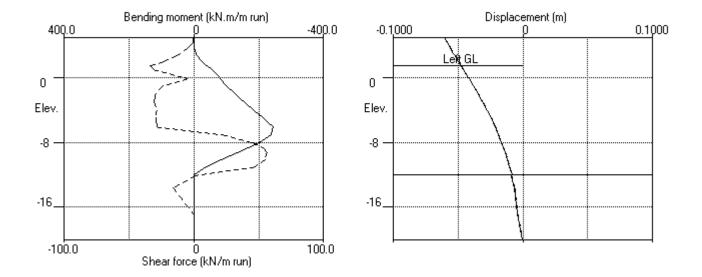
	forces
no. coord pressure disp. rotation force moment	TOTCCD
kN/m2 m rad. kN/m kN.m/m	kN/m
21 -8.00 16.22 -0.017 -2.30E-03 46.0 -201.9	
22 -8.65 7.76 -0.015 -2.17E-03 53.8 -168.5	
23 -9.30 1.26 -0.014 -2.07E-03 56.7 -131.9	
24 -10.15 -5.21 -0.012 -1.98E-03 55.0 -83.3	
25 -11.00 -15.69 -0.011 -1.93E-03 46.1 -38.3	
26 -12.00 -70.92 -0.009 -1.91E-03 2.8 -0.0	
27 -12.08 32.15 -0.009 0 1.3 0.0	
-1.84 -0.009 0 1.3 0.0	
28 -13.58 -21.43 -0.007 0 -16.2 0.0	
9.80 -0.007 0 -16.2 0.0	
29 -16.79 0.00 -0.004 0 -0.4 0.0	
30 -20.00 0.27 -0.000 0 -0.0 0.0	

		LEFT side						
		Effective stresses					Total	Adjusted
Nod	е ү	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0
б	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	20.16	20.16	20.16p	4677
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4677
		0.00	1.36	0.00	25.59b	25.59	25.59p	7795
9	1.00	0.00	8.92	0.00	40.06b	40.06	40.06p	7795
10	0.00	0.00	26.92	2.30	76.03b	76.03	76.03p	7795
11	-0.08	0.80	27.56	2.51	57.82b	57.82	58.62p	7795
		0.80	27.56	6.41	26.08b	26.08	26.88p	3897
12	-1.04	10.40	34.28	8.65	44.19b	44.19	54.59p	3897
13	-2.00	20.00	41.01	10.88	67.36b	56.20	76.20	3897
14	-2.54	25.40	44.79	12.14	74.83b	57.38	82.78	3897
15	-3.08	30.80	48.58	13.40	81.36b	59.07	89.87	3897
		30.80	48.58	11.20	120.14b	61.79	92.59	4677
16	-4.04	40.40	55.32	13.50	118.35b	62.12	102.52	4677
17	-5.00	50.00	62.06	15.80	113.16b	64.87	114.87	4677
18	-5.54	55.40	65.85	17.10	120.41b	67.92	123.32	4677
19	-6.08	60.80	69.65	18.39	127.14b	71.65	132.45	4677
		60.80	69.65	12.42	297.73b	104.65	165.45	11432
20	-7.04	70.40	78.33	15.27	239.66b	88.36	158.76	11432
21	-8.00	80.00	87.01	18.13	155.16b	84.58	164.58	11432
22	-8.65	86.50	92.90	20.06	249.94b	83.29	169.79	11432
23	-9.30	93.00	98.79	22.00	352.24b	83.03	176.03	11432
24	-10.15	101.50	106.50	24.53	366.72b	83.77	185.27	11432
25	-11.00	110.00	114.22	27.07	398.07b	82.45	192.45	11432
26	-12.00	120.00	123.31	30.06	430.71b	60.64	180.64	11432
27	-12.08	120.80	124.04	30.30	436.57b	110.25	231.05	11432
		120.80	124.04	32.67	519.74b	77.34	198.14	6236
28	-13.58	135.80	136.21	35.87	570.71b	73.76	209.56	6236
		135.80	136.21	32.22	570.15b	106.97	242.77	15589
29	-16.79	167.90	165.55	41.98	672.06b	117.79	285.69	15589
30	-20.00	200.00	195.03	51.79	770.91b	135.77	335.77	15589

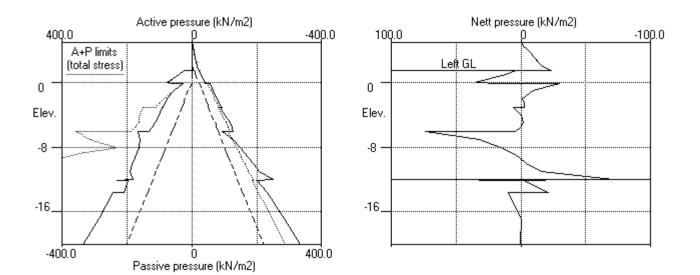
| Sheet No. | Date:28-09-2021 | Checked :

(continued)

Stage No.5	Apply water	pressure	profile no.2



		RIGHT side						
				Effectiv	ve stresse	S	Total	Adjusted
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil
no.	coord	press.	<u>-al</u>	limit	limit	pressure	pressure	modulus
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30555
2	4.32	0.00	13.26	2.59	108.43	2.59	2.59a	30555
		0.00	13.26	3.33	76.33	3.33	3.33a	5092
3	3.66	0.00	29.13	7.31	167.66	7.31	7.31a	5092
4	3.00	0.00	44.40	11.15	255.54	11.15	11.15a	5092
5	2.72	0.00	50.53	12.69	290.80	12.69	12.69a	5092
		0.00	50.53	11.87	212.13	11.87	11.87a	4583
6	2.00	0.00	64.83	16.75	266.48	16.75	16.75a	4583
7	1.50	5.00	69.32	18.28	283.55	18.28	23.28a	4583
8	1.42	5.80	70.02	18.52	286.18	18.52	24.32a	4583
		5.80	70.02	16.47	305.31	16.47	22.27a	7639
9	1.00	10.00	73.99	17.77	321.16	17.77	27.77a	7639
10	0.00	20.00	82.97	20.73	357.00	20.73	40.73a	7639
11	-0.08	20.80	83.66	20.95	359.78	20.95	41.75a	7639
		20.80	83.66	25.07	327.90	35.69	56.49	3819
12	-1.04	30.40	90.87	27.46	355.27	33.69	64.09	3819
13	-2.00	40.00	97.80	29.77	381.61	37.40	77.40	3819
14	-2.54	45.40	101.61	31.04	396.09	39.62	85.02	3819
15	-3.08	50.80	105.37	32.29	410.37	41.57	92.37	3819
		50.80	105.37	30.58	420.51	35.93	86.73	4583
16	-4.04	60.40	111.95	32.82	445.51	42.32	102.72	4583
17	-5.00	70.00	118.43	35.03	470.11	46.48	116.48	4583
18	-5.54	75.40	122.03	36.26	483.81	47.41	122.81	4583
19	-6.08	80.80	125.62	37.48	497.44	47.51	128.31	4583
		80.80	125.62	30.82	542.75	11.00	91.80A	11203
20	-7.04	90.40	133.87	33.53	575.70	35.96	126.36	11203
21	-8.00	100.00	142.09	36.23	608.50	48.36	148.36	11203
22	-8.65	106.50	147.64	38.05	630.64	55.53	162.03	11203
23	-9.30	113.00	153.18	39.88	652.76	61.77	174.77	11203
24	-10.15	121.50	160.41	42.25	681.64	68.98	190.48	11203
25	-11.00	130.00	167.64	44.63	710.51	78.14	208.14	11203
26	-12.00	140.00	176.15	47.43	744.47	111.56	251.56	11203
27	-12.08	140.80	176.83	47.65	747.19	58.10	198.90	11203
		140.80	176.83	46.57	963.54	59.18	199.98	6111
28	-13.58	155.80	188.11	49.54	1024.98	75.19	230.99	6111
		155.80	188.11	49.49	848.88	77.17	232.97	15277
29	-16.79	187.90	215.55	58.61	965.16	97.79	285.69	15277
30	-20.00	220.00	243.16	67.80	1082.18	115.50	335.50	15277


Note: 41.75 a Soil pressure at active limit 54.59 p Soil pressure at passive limit 770.91 b Passive limit reduced because of berm 91.80A Arching - soil pressure below active limit

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58	Sheet No. Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units	kN,m

Stage No.5 Apply water pressure profile no.2

Stage No.5 Apply water pressure profile no.2

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021 Checked :
750diam secant pile wall	Checked :
Units	: kN,m

Stage No. 6 Apply water pressure profile no.3

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

					FoS for toe		ev. for		
				elev. =	-12.00	FoS =	1.300		
Stage	Ground	l level	Prop	Factor	Moment	Toe	Wall	Direction	
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of	
				Safety	at elev.		-ation	failure	
6	4.92	1.50	Cant.	1.349	-10.87	-11.25	12.75	R to L	

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:	Left side 50.00 from wall	Rough boundary
	Right side 30.00 from wall	Rough boundary
Lower rigid boundary	at elevation -20.00	Rough boundary

*** Wall displacements reset to zero at stage 2

Node		Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	4.92	0.00	-0.095	-6.20E-03	0.0	-0.0	
2	4.32	-2.59	-0.091	-6.20E-03	-0.8	-0.3	
		-3.33	-0.091	-6.20E-03	-0.8	-0.3	
3	3.66	-7.31	-0.087	-6.20E-03	-4.3	-2.0	
4	3.00	-11.15	-0.083	-6.20E-03	-10.4	-6.9	
5	2.72	-14.78	-0.081	-6.20E-03	-14.0	-10.3	
		-13.71	-0.081	-6.20E-03	-14.0	-10.3	
6	2.00	-23.34	-0.077	-6.19E-03	-27.4	-25.0	
7	1.50	-29.87	-0.074	-6.19E-03	-40.7	-41.9	
		-9.71	-0.074	-6.19E-03	-40.7	-41.9	
8	1.42	-5.58	-0.073	-6.19E-03	-41.3	-45.2	
		-3.39	-0.073	-6.19E-03	-41.3	-45.2	
9	1.00	5.57	-0.070	-6.17E-03	-40.8	-62.9	
10	0.00	28.59	-0.064	-6.10E-03	-23.7	-102.0	
11	-0.08	10.16	-0.064	-6.09E-03	-22.2	-103.8	
		-32.26	-0.064	-6.09E-03	-22.2	-103.8	
12	-1.04	-10.52	-0.058	-5.96E-03	-42.7	-139.9	
13	-2.00	3.62	-0.052	-5.76E-03	-46.0	-185.8	
14	-2.54	2.05	-0.049	-5.61E-03	-44.5	-210.1	
15	-3.08	1.52	-0.046	-5.45E-03	-43.5	-233.8	
		11.83	-0.046	-5.45E-03	-43.5	-233.8	
16	-4.04	3.85	-0.041	-5.12E-03	-36.0	-270.1	
17	-5.00	1.79	-0.037	-4.75E-03	-33.3	-302.9	
18	-5.54	4.27	-0.034	-4.53E-03	-31.6	-320.6	
19	-6.08	8.78	-0.032	-4.31E-03	-28.1	-337.0	
		87.55	-0.032	-4.31E-03	-28.1	-337.0	
20	-7.04	41.32	-0.028	-3.91E-03	33.7	-323.6	

(continued)

Stage No.6 Apply water pressure profile no.3

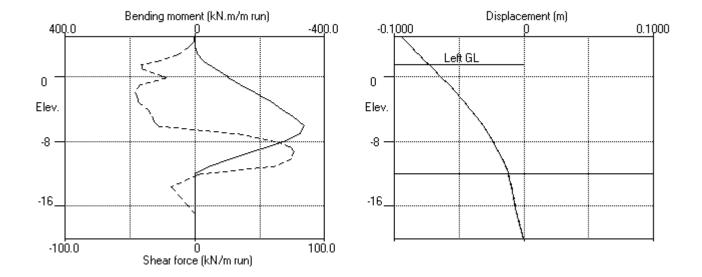
Nod	<u>e Y</u>	Nett	Wall	Wall	Shear	Bending	Prop
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
21	-8.00	20.57	-0.024	-3.55E-03	63.4	-272.2	
22	-8.65	9.62	-0.022	-3.35E-03	73.3	-226.6	
23	-9.30	1.13	-0.020	-3.19E-03	76.7	-176.9	
24	-10.15	-7.45	-0.017	-3.04E-03	74.1	-111.2	
25	-11.00	-21.65	-0.015	-2.96E-03	61.7	-50.9	
26	-12.00	-94.23	-0.012	-2.93E-03	3.8	-0.0	
27	-12.08	36.48	-0.012	0	1.4	0.0	
		-2.07	-0.012	0	1.4	0.0	
28	-13.58	-24.32	-0.010	0	-18.3	0.0	
		11.15	-0.010	0	-18.3	0.0	
29	-16.79	0.00	-0.006	0	-0.4	0.0	
30	-20.00	0.27	-0.001	0	-0.0	0.0	

		LEFT side							
				Effecti	ve stresses	3	Total	Adjusted	
Nod	e Y	Water	Vertic	Active	Passive	Earth	earth	soil	
no.	coord	press.	-al	limit	limit	pressure	pressure	modulus	
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
2	4.32	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
3	3.66	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
4	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
5	2.72	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
6	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
7	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0	
		0.00	0.00	0.00	20.16	20.16	20.16p	4677	
8	1.42	0.00	1.36	0.00	25.32	25.32	25.32p	4677	
		0.00	1.36	0.00	25.59b	25.59	25.59p	7795	
9	1.00	0.00	8.92	0.00	40.06b	40.06	40.06p	7795	
10	0.00	0.00	26.92	2.30	76.03b	76.03	76.03p	7795	
11	-0.08	0.80	27.56	2.51	57.82b	57.82	58.62p	7795	
		0.80	27.56	6.41	26.08b	26.08	26.88p	3897	
12	-1.04	10.40	34.28	8.65	44.19b	44.19	54.59p	3897	
13	-2.00	20.00	41.01	10.88	67.36b	62.10	82.10	3897	
14	-2.54	25.40	44.79	12.14	74.83b	62.87	88.27	3897	
15	-3.08	30.80	48.58	13.40	81.36b	64.29	95.09	3897	
		30.80	48.58	11.20	120.14b	68.07	98.87	4677	
16	-4.04	40.40	55.32	13.50	118.35b	67.31	107.71	4677	
17	-5.00	50.00	62.06	15.80	113.16b	69.64	119.64	4677	
18	-5.54	55.40	65.85	17.10	120.41b	72.83	128.23	4677	
19	-6.08	60.80	69.65	18.39	127.14b	76.92	137.72	4677	
		60.80	69.65	12.42	297.73b	117.55	178.35	11432	
20	-7.04	70.40	78.33	15.27	239.66b	95.83	166.23	11432	
21	-8.00	80.00	87.01	18.13	155.16b	89.68	169.68	11432	
22	-8.65	86.50	92.90	20.06	249.94b	87.08	173.58	11432	
23	-9.30	93.00	98.79	22.00	352.24b	85.77	178.77	11432	
24	-10.15	101.50	106.50	24.53	366.72b	85.42	186.92	11432	
25	-11.00	110.00	114.22	27.07	398.07b	82.17	192.17	11432	
26	-12.00	120.00	123.31	30.06	430.71b	51.96	171.96	11432	
27	-12.08	120.80	124.04	30.30	436.57b	114.76	235.56	11432	
		120.80	124.04	32.67	519.74b	79.80	200.60	6236	
28	-13.58	135.80	136.21	35.87	570.71b	75.12	210.92	6236	
		135.80	136.21	32.22	570.15b	110.37	246.17	15589	
29	-16.79	167.90	165.55	41.98	672.06b	120.54	288.44	15589	
30	-20.00	200.00	195.03	51.79	770.91b	138.87	338.87	15589	

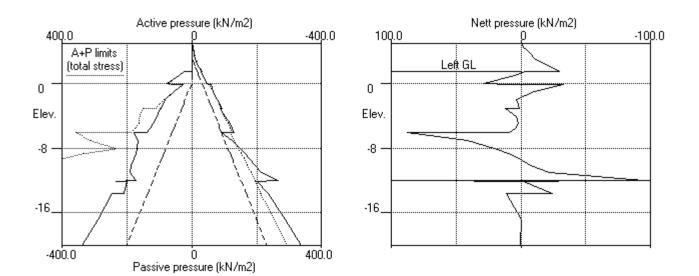
| Sheet No. | Date:28-09-2021 | Checked :

(continued)

Stage No.6	Apply water	pressure	profile no.	3
------------	-------------	----------	-------------	---



		RIGHT side _								
				Effectiv	ve stresse	S	Total	Adjusted		
Nod	<u>e Y</u>	Water	Vertic	Active	Passive	Earth	earth	soil		
no.	coord	press.	<u>-al</u>	limit	limit	pressure	pressure	modulus		
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2		
1	4.92	0.00	0.00	0.00	0.00	0.00	0.00	30555		
2	4.32	0.00	13.26	2.59	108.43	2.59	2.59a	30555		
		0.00	13.26	3.33	76.33	3.33	3.33a	5092		
3	3.66	0.00	29.13	7.31	167.66	7.31	7.31a	5092		
4	3.00	0.00	44.40	11.15	255.54	11.15	11.15a	5092		
5	2.72	2.80	47.73	11.98	274.69	11.98	14.78a	5092		
		2.80	47.73	10.91	201.49	10.91	13.71a	4583		
6	2.00	10.00	54.83	13.34	228.49	13.34	23.34a	4583		
7	1.50	15.00	59.32	14.87	245.55	14.87	29.87a	4583		
8	1.42	15.80	60.02	15.11	248.19	15.11	30.91a	4583		
		15.80	60.02	13.18	265.39	13.18	28.98a	7639		
9	1.00	20.00	63.99	14.49	281.24	14.49	34.49a	7639		
10	0.00	30.00	72.97	17.44	317.08	17.44	47.44a	7639		
11	-0.08	30.80	73.66	17.67	319.86	17.67	48.47a	7639		
		30.80	73.66	21.74	289.91	28.34	59.14	3819		
12	-1.04	40.40	80.87	24.14	317.28	24.71	65.11	3819		
13	-2.00	50.00	87.80	26.44	343.62	28.48	78.48	3819		
14	-2.54	55.40	91.61	27.71	358.10	30.81	86.21	3819		
15	-3.08	60.80	95.37	28.96	372.38	32.78	93.58	3819		
		60.80	95.37	27.16	382.51	26.24	87.04A	4583		
16	-4.04	70.40	101.95	29.41	407.51	33.46	103.86	4583		
17	-5.00	80.00	108.43	31.62	432.11	37.85	117.85	4583		
18	-5.54	85.40	112.03	32.85	445.82	38.56	123.96	4583		
19	-6.08	90.80	115.62	34.07	459.44	38.14	128.94	4583		
		90.80	115.62	27.53	502.83	0.00	90.80A	11203		
20	-7.04	100.40	123.87	30.24	535.78	24.51	124.91A	11203		
21	-8.00	110.00	132.09	32.94	568.58	39.11	149.11	11203		
22	-8.65	116.50	137.64	34.77	590.72	47.46	163.96	11203		
23	-9.30	123.00	143.18	36.59	612.84	54.65	177.65	11203		
24	-10.15	131.50	150.41	38.97	641.72	62.87	194.37	11203		
25	-11.00	140.00	157.64	41.34	670.59	73.82	213.82	11203		
26	-12.00	150.00	166.15	44.14	704.55	116.19	266.19	11203		
27	-12.08	150.80	166.83	44.36	707.27	48.28	199.08	11203		
		150.80	166.83	43.93	909.05	51.87	202.67	6111		
28	-13.58	165.80	178.11	46.90	970.49	69.44	235.24	6111		
		165.80	178.11	46.16	806.49	69.22	235.02	15277		
29	-16.79	197.90	205.55	55.29	922.78	90.54	288.44	15277		
30	-20.00	230.00	233.16	64.47	1039.80	108.60	338.60	15277		


Note: 48.47 a Soil pressure at active limit 54.59 p Soil pressure at passive limit 770.91 b Passive limit reduced because of berm 124.91A Arching - soil pressure below active limit

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall Byron Lane Slip 750diam secant pile wall	Date:28-09-2021 Checked :
Units	: kN,m

Stage No.6 Apply water pressure profile no.3

SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58	Sheet No. Job No. 3001315
Licensed from GEOSOLVE	Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units	: kN,m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe -12.00		ev. for 1.300	
Stage	Ground	d level	Prop	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	4.92	1.50	Cant.	1.695	-10.92	-6.11	7.61	R to L
2	1.50	4.92		No anal	ysis at th	nis stage		
3	4.92	1.50	Cant.	1.561	-10.96	-7.89	9.39	R to L
4	4.92	1.50	Cant.	1.501	-10.93	-8.74	10.24	R to L
5	4.92	1.50	Cant.	1.430	-10.91	-9.91	11.41	R to L
6	4.92	1.50	Cant.	1.349	-10.87	-11.25	12.75	R to L

SMEC AUSTRALIA PTY LTDSheet No.Program: WALLAP Version 6.07 Revision A55.B74.R58Job No. 3001315Licensed from GEOSOLVEMade by : MMData filename/Run ID: Dia750mm_SecantPileWallDate:28-09-2021Byron Lane SlipDate:28-09-2021750diam secant pile wallChecked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

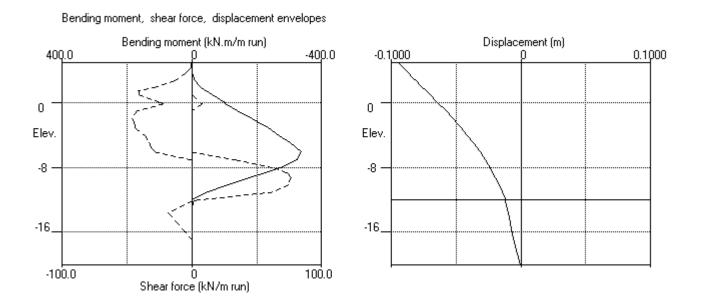
Length of wall perpendicular to section = 40.00m 2-D finite element model. Active limit arching modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.02

Rigid boundaries:Left side 50.00 from wallRough boundaryRight side 30.00 from wallRough boundaryLower rigid boundary at elevation -20.00Rough boundary

Bending moment, shear force and displacement envelopes

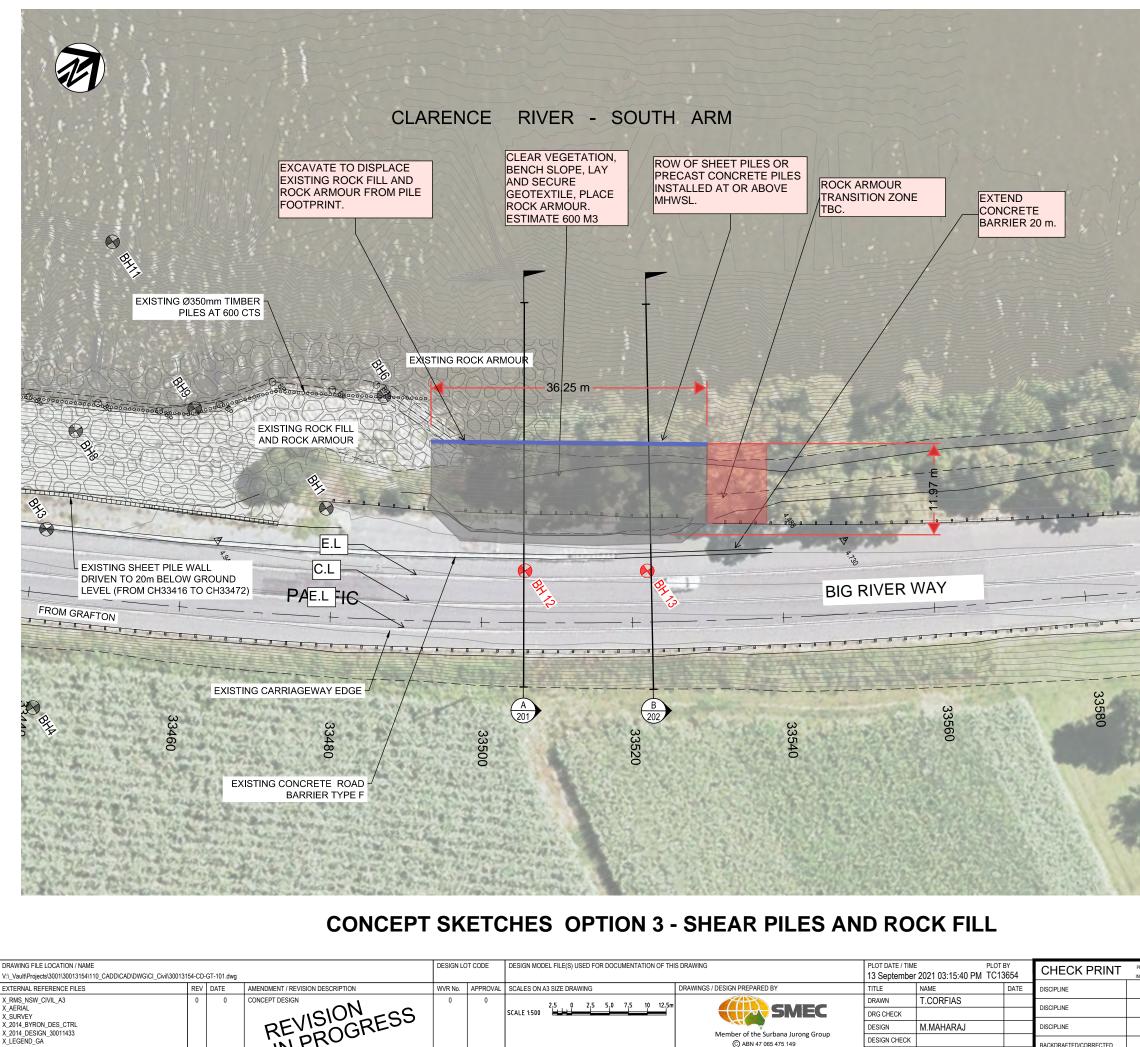
Nod	e Y	Displac	cement	Bending	g moment	Shear f	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	4.92	0.000	-0.095	0.0	-0.0	0.0	0.0
2	4.32	0.000	-0.091	0.0	-0.3	0.0	-0.8
3	3.66	0.000	-0.087	0.0	-2.0	0.0	-4.3
4	3.00	0.000	-0.083	0.0	-6.9	0.0	-10.4
5	2.72	0.000	-0.081	0.0	-10.3	0.0	-14.0
б	2.00	0.000	-0.077	0.0	-25.0	0.0	-27.4
7	1.50	0.000	-0.074	0.0	-41.9	0.0	-40.7
8	1.42	0.000	-0.073	0.0	-45.2	0.0	-41.3
9	1.00	0.000	-0.070	0.0	-62.9	0.0	-40.8
10	0.00	0.000	-0.064	0.0	-102.0	6.3	-23.7
11	-0.08	0.000	-0.064	0.0	-103.8	7.5	-22.2
12	-1.04	0.000	-0.058	0.0	-139.9	0.0	-42.7
13	-2.00	0.000	-0.052	0.0	-185.8	0.0	-46.0
14	-2.54	0.000	-0.049	0.0	-210.1	0.0	-44.5
15	-3.08	0.000	-0.046	0.0	-233.8	0.0	-43.5
16	-4.04	0.000	-0.041	0.0	-270.1	0.0	-36.0
17	-5.00	0.000	-0.037	0.0	-302.9	0.0	-33.3
18	-5.54	0.000	-0.034	0.0	-320.6	0.0	-31.6
19	-6.08	0.000	-0.032	0.0	-337.0	0.0	-28.3
20	-7.04	0.000	-0.028	0.0	-323.6	33.7	0.0
21	-8.00	0.000	-0.024	0.0	-272.2	63.4	0.0
22	-8.65	0.000	-0.022	0.0	-226.6	73.3	0.0
23	-9.30	0.000	-0.020	0.0	-176.9	76.7	0.0
24	-10.15	0.000	-0.017	0.0	-111.2	74.1	0.0
25	-11.00	0.000	-0.015	0.0	-50.9	61.7	0.0
26	-12.00	0.000	-0.012	0.0	-0.0	3.8	0.0
27	-12.08	0.000	-0.012	0.0	0.0	1.4	0.0
28	-13.58	0.000	-0.010	0.0	0.0	0.0	-18.3
29	-16.79	0.000	-0.006	0.0	0.0	0.0	-0.4
30	-20.00	0.000	-0.001	0.0	0.0	0.0	-0.0

Summary of results (continued)


Maximum and minimum bending moment and shear force at each stage

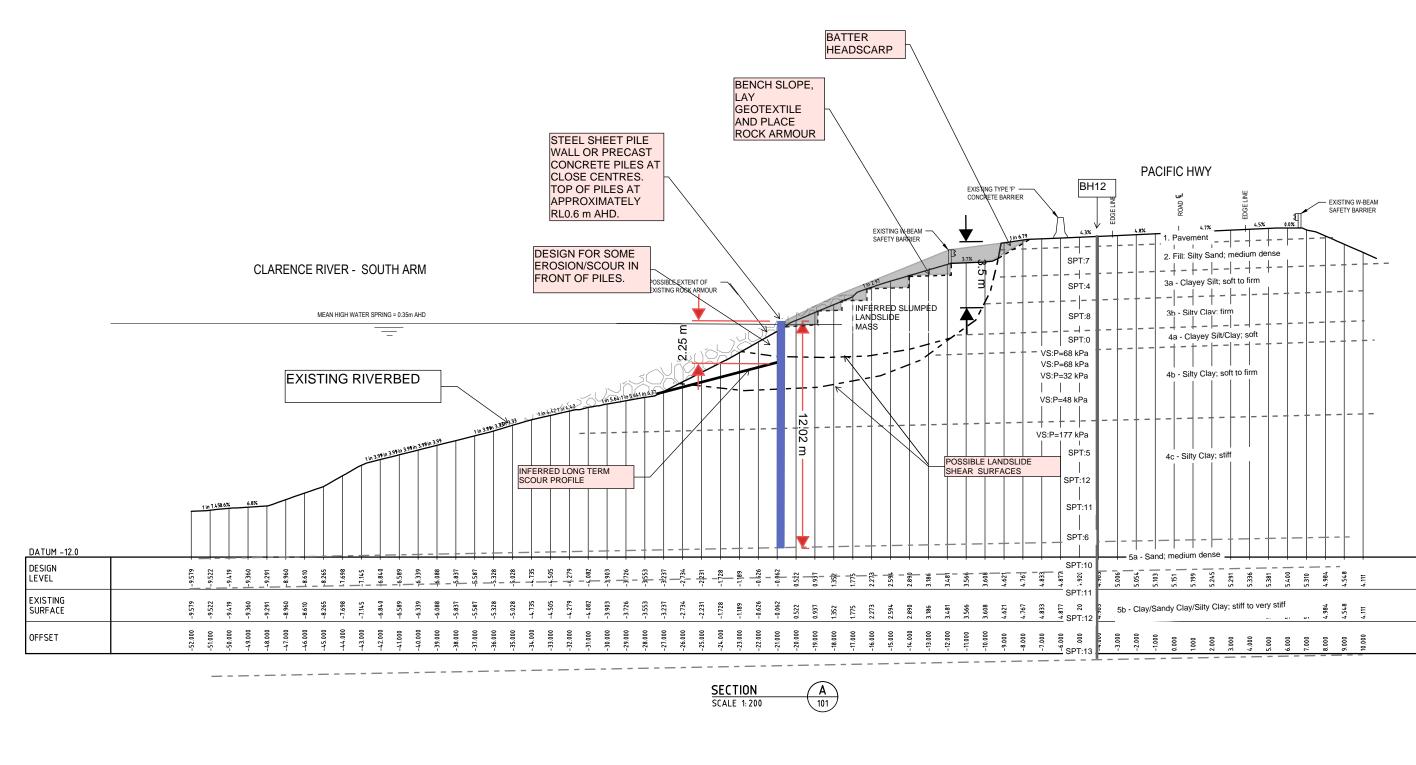
Stage		Bending	moment		Shear force			
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	0.0	4.92	-104.3	-7.04	24.9	-9.30	-26.2	1.50
2	No calcula	ation at	this stag	je				
3	0.0	4.92	-168.3	-6.08	38.9	-9.30	-33.2	1.50
4	0.0	4.92	-192.7	-6.08	44.9	-9.30	-33.2	1.50
5	0.0	4.92	-245.4	-6.08	56.7	-9.30	-34.1	1.42
6	0.0	4.92	-337.0	-6.08	76.7	-9.30	-46.0	-2.00

Maximum and minimum displacement at each stage


Stage		Displac	ement		-
no.	maximum	elev.	minimum	elev.	Stage description _
	m		m		
1	0.000	4.92	-0.061	4.92	Excav. to elev. 1.50 on LEFT side
2	Wall di	splaceme	ents reset	to zero	Change EI of wall to 543604kN.m2/m run
3	0.000	4.92	-0.026	4.92	Apply surcharge no.1 at elev. 4.92
4	0.000	4.92	-0.040	4.92	Apply water pressure profile no.1
5	0.000	4.92	-0.061	4.92	Apply water pressure profile no.2
6	0.000	4.92	-0.095	4.92	Apply water pressure profile no.3

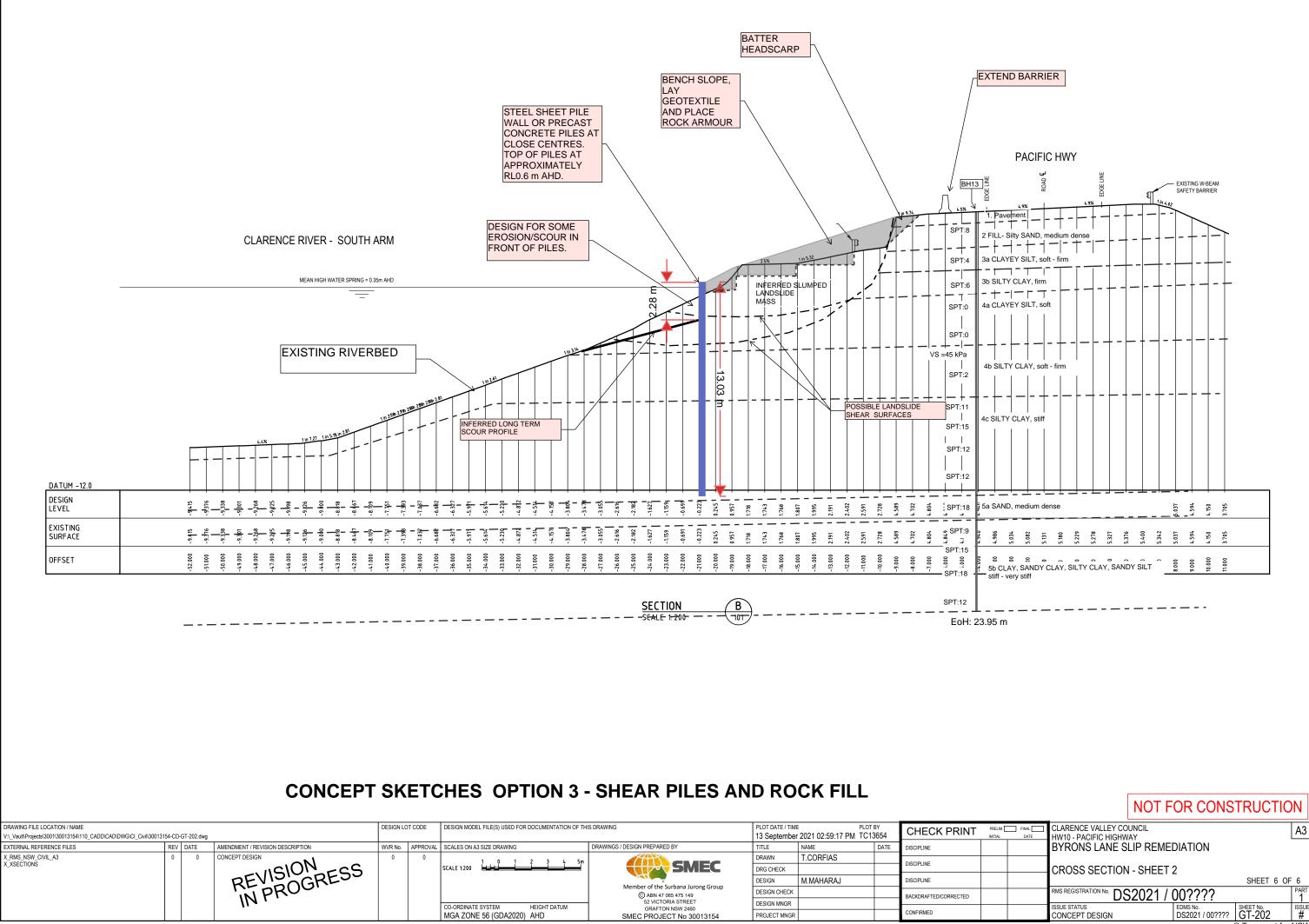
SMEC AUSTRALIA PTY LTD Program: WALLAP Version 6.07 Revision A55.B74.R58 Licensed from GEOSOLVE	Sheet No. Job No. 3001315 Made by : MM
Data filename/Run ID: Dia750mm_SecantPileWall	
Byron Lane Slip	Date:28-09-2021
750diam secant pile wall	Checked :
Units	s: kN,m


Appendix F Concept Design Option 3 – Sketches


l

COPIED	
Y BE PREPARED IN COLOUR AND MAY BE INCOMPLETE IF COPIED	136 140 146 160 mm ON A2 SIZE OFICINIA
IN COLOUR AND M	145
COLC	071
N N	100
PAREI	061
PRE	30
/ BE	6
THIS DRAWING MAN	1E 110 11E 120 12E 130
MIN	10
S DR/	4
Ĕ	~

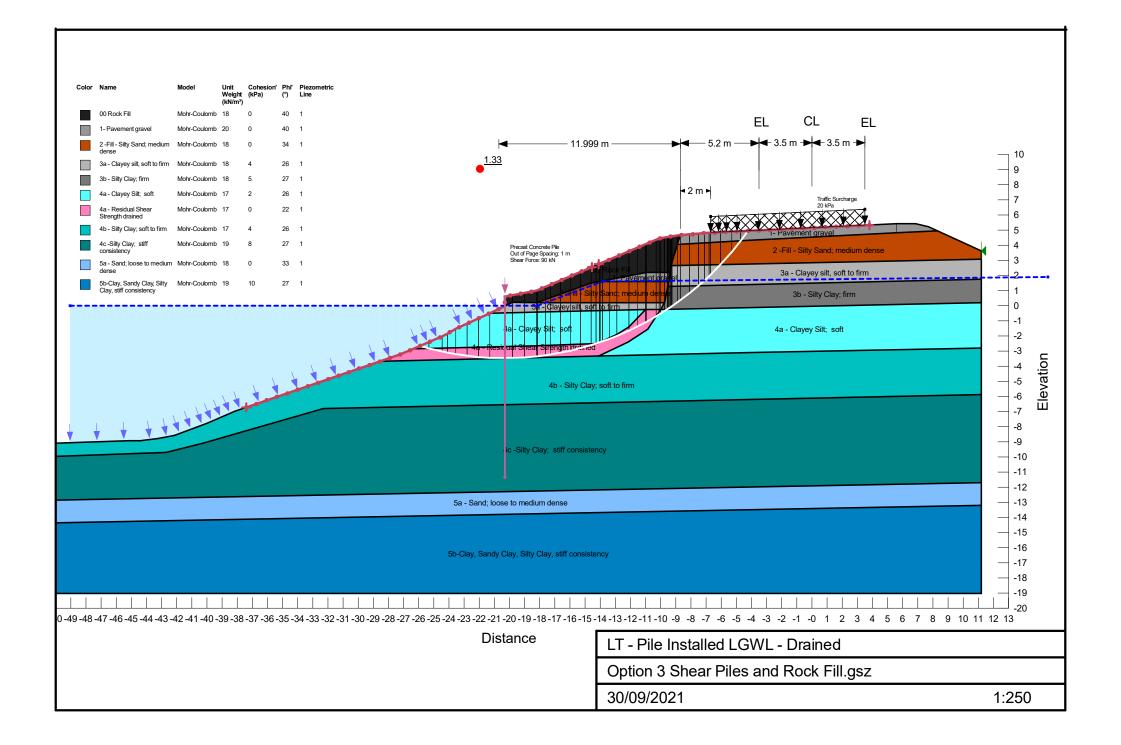
30013154\110_CADD\CAD\DWG\CI_Civil\3001	0013154/110_CADDICADIDWGICI_Civili30013154-CD-GT-101.dwg						13 Septemb	er 2021 03:15:40 PM TC1	13654		HW10 - PACIFIC HIGHWAY			73
CE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	BYRONS LANE SLIP REME	DIATION		
3	0 0	CONCEPT DESIGN	0	0	2.5 0 2.5 5.0 7.5 10 12.5m		DRAWN	T.CORFIAS		DISCIPLINE				
		INGION FES			SCALE 1:500	SMEC	DRG CHECK			DISCIPLINE	GENERAL ARRANGEMENT	PLAN		
CTRL		BEVISIGRESS					DESIGN	M.MAHARAJ		DISCIPLINE			SHEET 4 (OF 6
1455		REVISION				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK	(BACKDRAFTED/CORRECTED	RMS REGISTRATION NO. DS2021 /	002222		PART 1
		INPI				<u> </u>	DESIGN MNGR			BAORDINA TED/OORREOTED				
		1			CO-ORDINATE SYSTEM HEIGHT DATUM	GRAFTON NSW 2460	DEGIGINININGIN				ISSUE STATUS	EDMS No.	SHEET No.	ISSUE
					MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNG	R		CONFIRMED	CONCEPT DESIGN	DS2021 / 00????	SHEET NO. GT-101	#
											-	C	Transport fo	or NSW

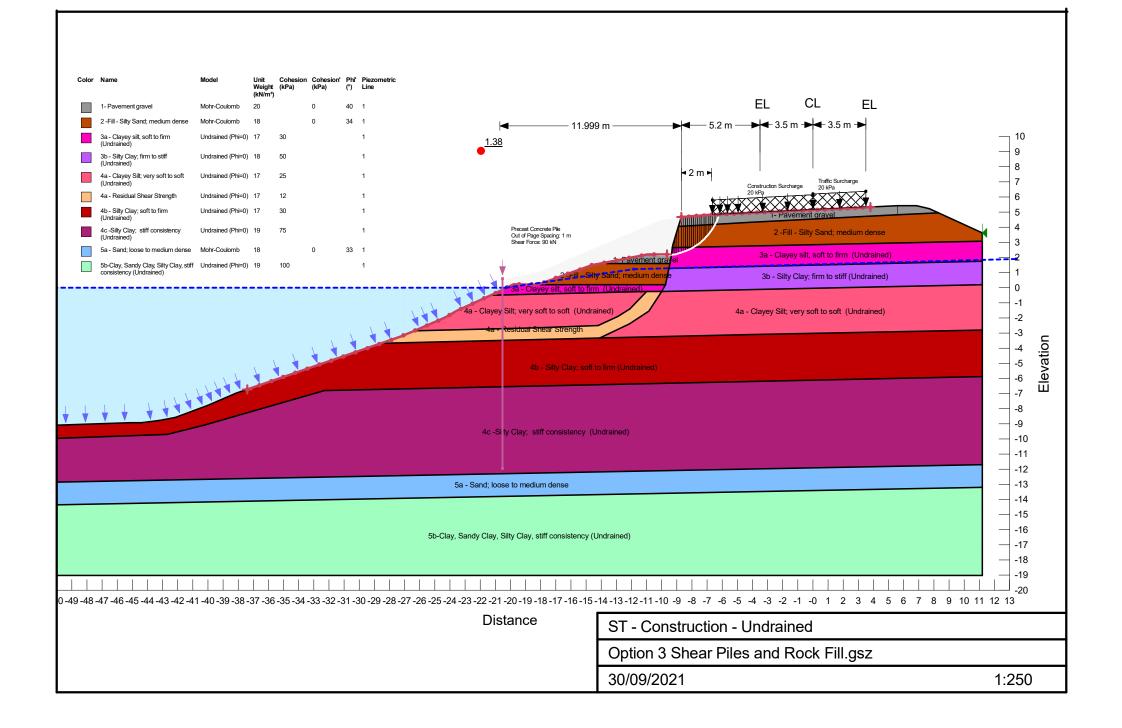


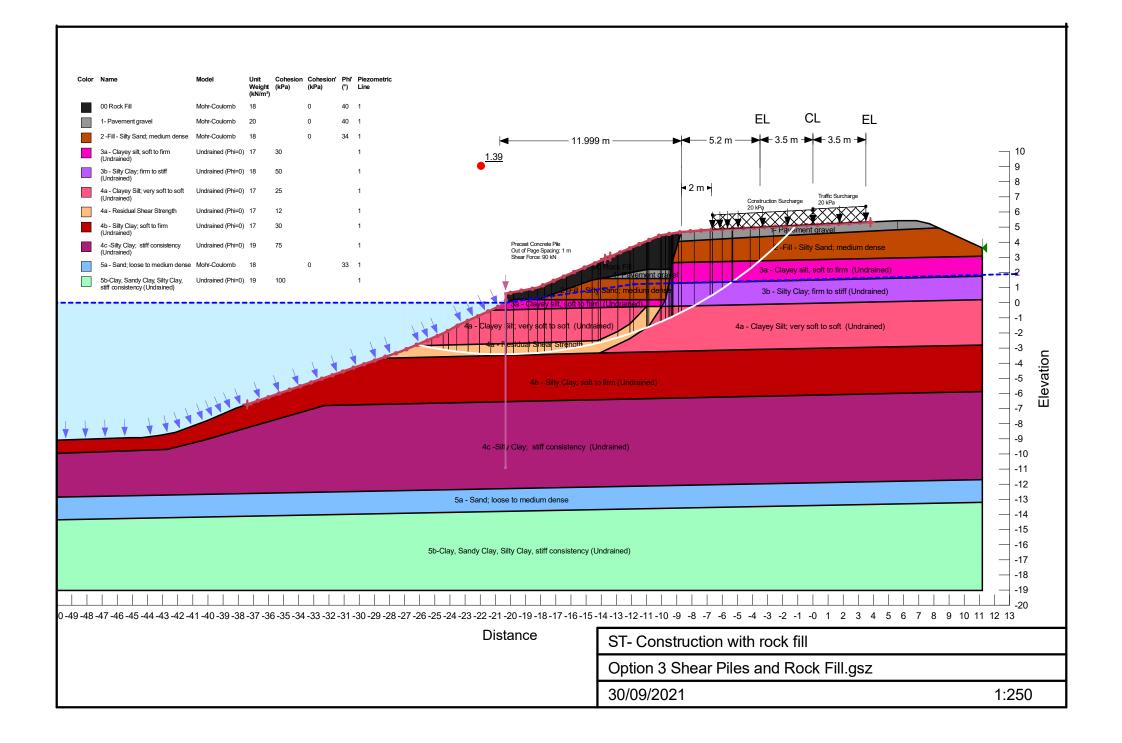
CONCEPT SKETCHES OPTION 3 - SHEAR PILES AND ROCK FILL

30													
	DRAWING FILE LOCATION / NAME V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131		OT 201 due		DESIGN LC	DT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	HS DRAWING	PLOT DATE / TI	ME PLO er 2021 02:53:37 PM TC1		CHECK PRINT	PRELI
	-	154-00	-G1-201.dwg						13 Septemb	EI 2021 02.33.37 FIVI TO	13034		INITIAL
8	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS			<u> </u>
15	X_XSECTIONS						SCALE 1:200	SMEC	DRG CHECK			DISCIPLINE	
9				REVISIOGRESS					DESIGN	M.MAHARAJ		DISCIPLINE	l
_				L'ALDRO -				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK	(BACKDRAFTED/CORRECTED	
ŝ	4			INT'			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR				<u> </u>
0							MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNG	R		CONFIRMED	

NOT FOR CONSTRUCTION

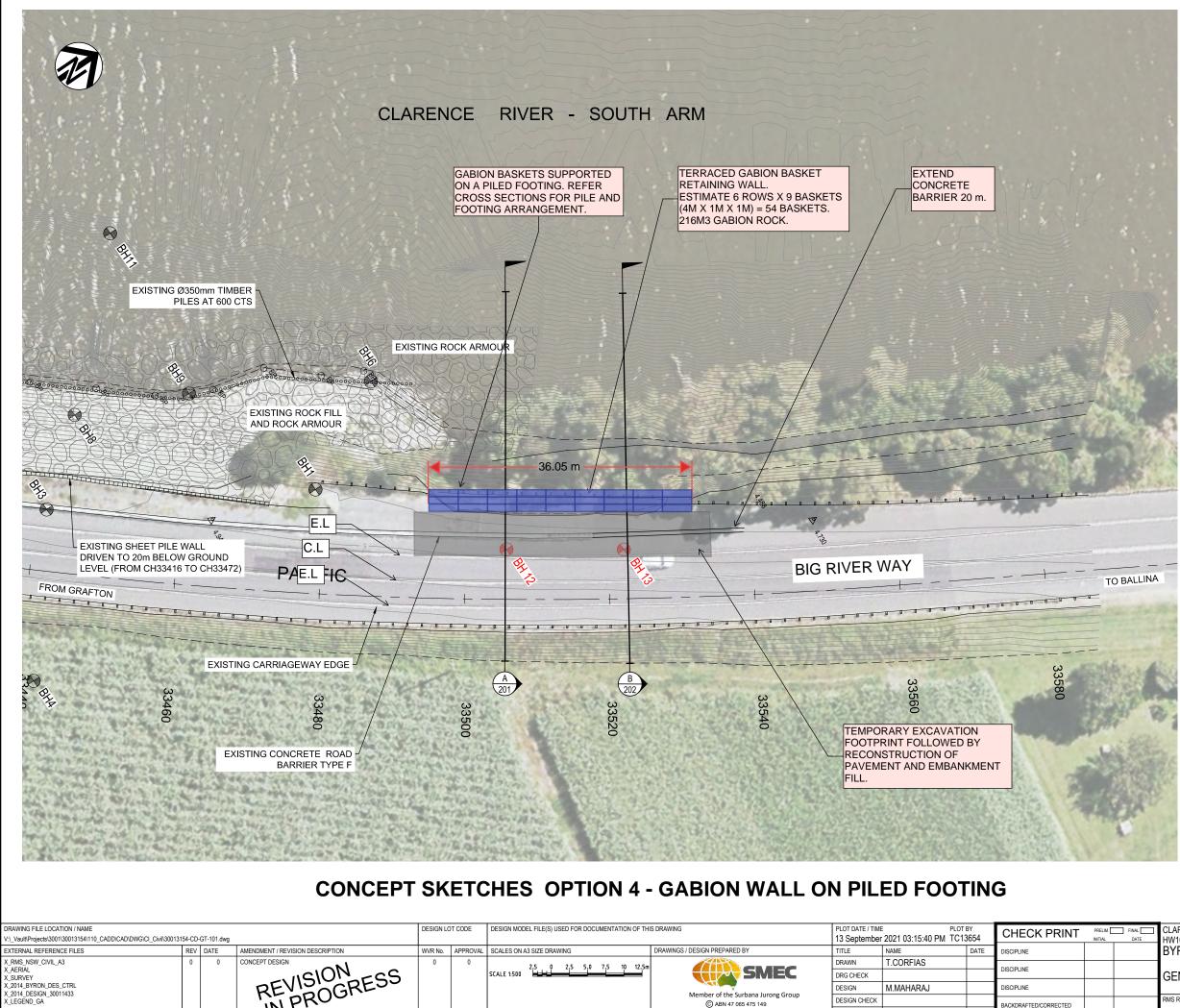

RELIM. 🗌 TIAL	FINAL DATE	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY				A3
		BYRONS LANE SLIP REMEI	DIATION			
		CROSS SECTION - SHEET	1			
				SHEET 5	5 OF	6
		RMS REGISTRATION NO. DS2021 /	00????			PART 1
		ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET №. GT-201		ISSUE #
			(© Transport	for	NSW




SHEET 6 OF 6 ISSUE # © Transport for NSW

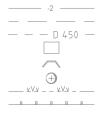
Appendix G Concept Design Option 3 – Analyses

l



Appendix H Concept Design Option 4 – Sketches

l



 BE PREPARED IN COLOUR AND MAY BE INCOMPLETE IF COPIED

 20
 25
 33
 145
 150mm ON A3 SIZE ORIGINAL
 MAY DRAWING LES

DCATION / NAME			DESIGN LC	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH		PLOT DATE / TIN		PLOT BY	CHECK PRINT	PRELIM.	FINAL	CLARENCE VALLEY COUNCIL		1	A3
001\30013154\110_CADD\CAD\DWG\CI_Civil\3001315	4-CD-GT-101.dw	9					13 Septembe	er 2021 03:15:40 PM	TC13654	GHEORTKINT	INITIAL		HW10 - PACIFIC HIGHWAY		ļ	7.0
RENCE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE			BYRONS LANE SLIP REME	.DIATION		
IL_A3	0 0		0	0	2.5 0 2.5 5.0 7.5 10 12.5m	SMEC	DRAWN DRG CHECK	T.CORFIAS		DISCIPLINE			GENERAL ARRANGEMENT			
DES_CTRL 30011433		REVISION				Member of the Surbana Jurong Group	DESIGN	M.MAHARAJ		DISCIPLINE			GENERAL ARRANGEMENT	FLAN	SHEET 4 OF	[:] 6
00011100		IN PROCH				© ABN 47 065 475 149 52 VICTORIA STREET	DESIGN CHECK DESIGN MNGR			BACKDRAFTED/CORRECTED			RMS REGISTRATION NO. $DS2021$ /			PART 1
		(i -			CO-ORDINATE SYSTEM HEIGHT DATUM MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR	2		CONFIRMED			ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET №. GT-101	ISSUE #
														¢	Transport for I	NSW

LEGEND - EXISTING

MAJOR CONTOURS MINOR CONTOURS 450Ø PIPE STORMWATER PIT HEADWALL TREE VEGETATION SAFETY BARRIER GUARD FENCE

LEGEND

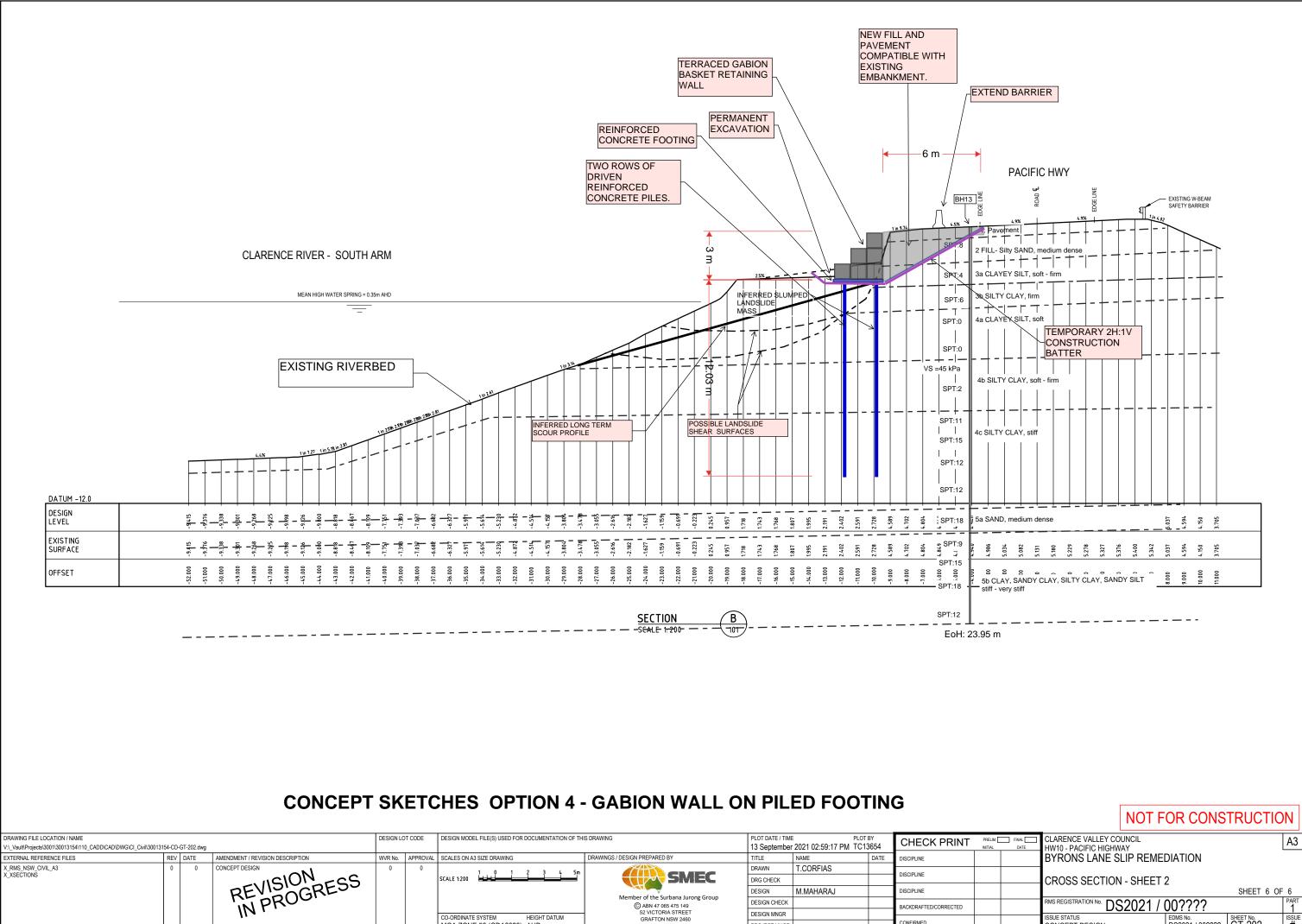
CONTROL LINE NEW SAFETY BARRIER GUARD FENCE

SETOUT POINT AREA OF SLIP TO BE REMEDIATED

TfNSW BORE HOLE (2021)

TfNSW BORE HOLE (2009)

NOT FOR CONSTRUCTION



CONCEPT SKETCHES OPTION 4 - GABION WALL ON PILED FOOTING

š													
	DRAWING FILE LOCATION / NAME				DESIGN LO	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF T		PLOT DATE / TIM			CHECK PRINT	PRELI
2	V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\30013	154-CD	GT-201.dwg						13 Septembe	er 2021 02:53:37 PM TC1	3654		INITIA
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS		DISCIPLINE	<u> </u>
15	X_XSECTIONS			11910N-595			SCALE 1:200	SMEC	DRG CHECK			DISCIPLINE	└──
9				BEVISIGRES					DESIGN	M.MAHARAJ		DISCIPLINE	
				REVISION				Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
ŝ				INFI			CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BRONDING TED/OONTREOTED	┝──
0							MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNG	2		CONFIRMED	

NOT FOR CONSTRUCTION

RELIM.	FINAL DATE	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY				A3
		BYRONS LANE SLIP REMEI	DIATION			
		CROSS SECTION - SHEET	1			
				SHEET 5	OF	6
		RMS REGISTRATION NO. DS2021 /	00????			PART 1
		ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET NO. GT-201		ISSUE #
			(© Transport	for	NSW

© ABN 47 065 475 149 52 VICTORIA STREET GRAFTON NSW 2460

SMEC PROJECT No 30013154

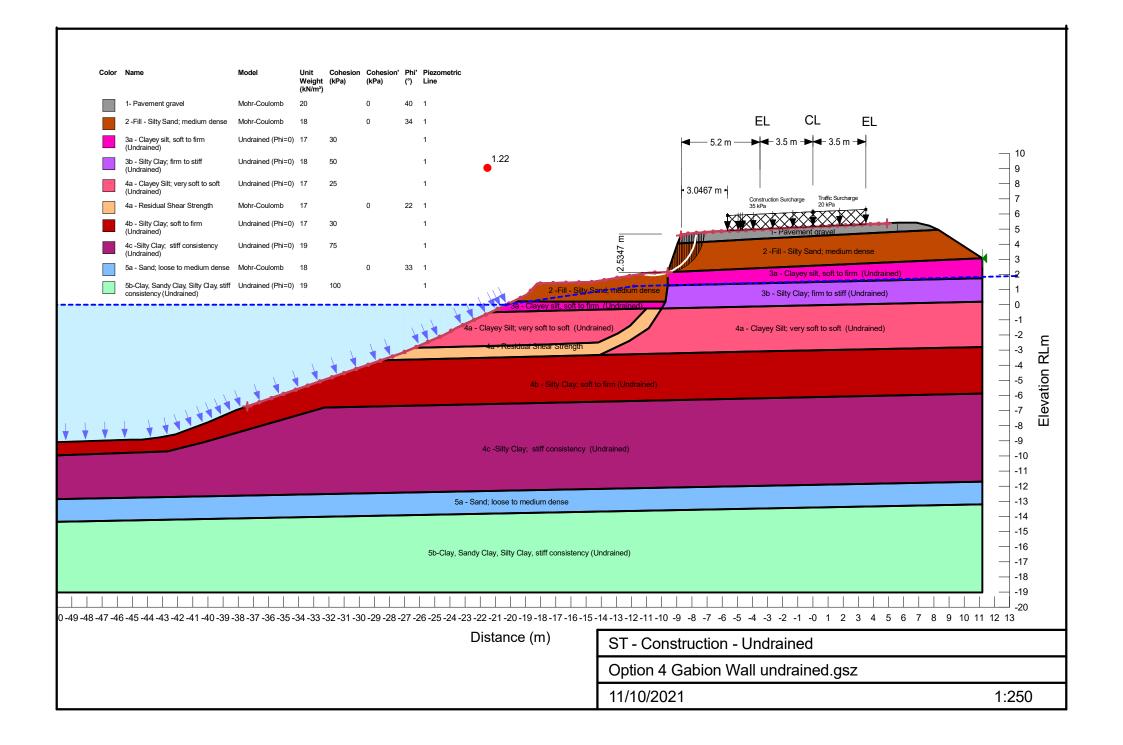
CO-ORDINATE SYSTEM

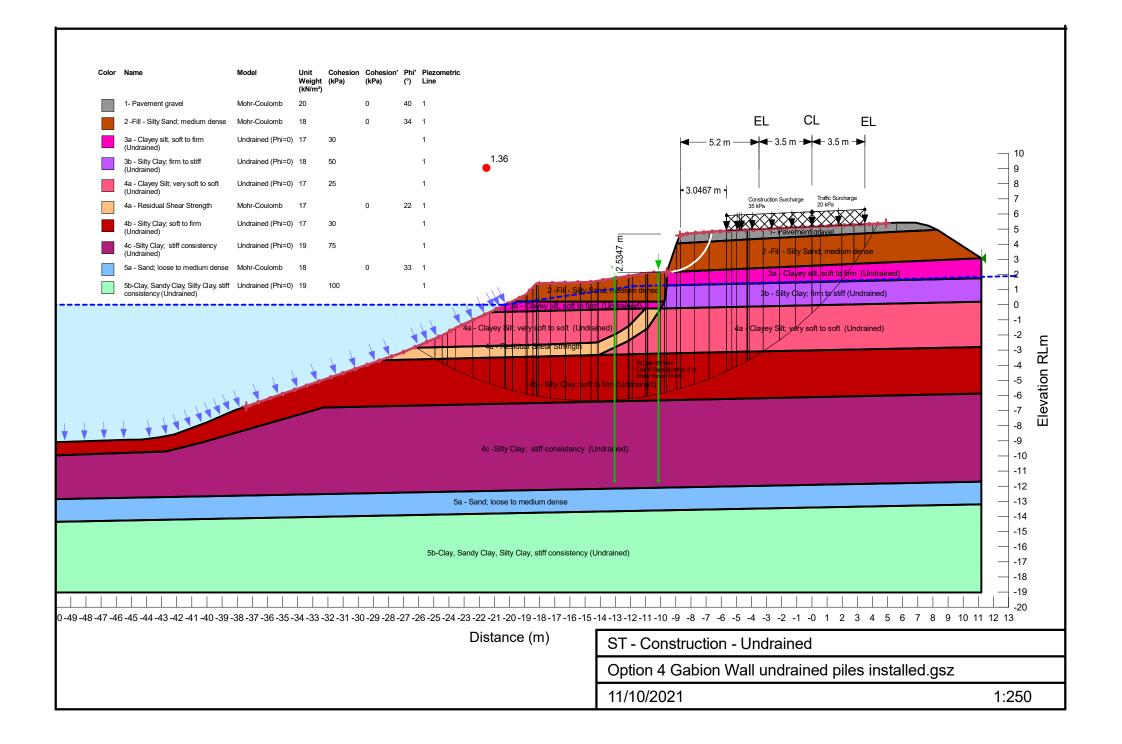
MGA ZONE 56 (GDA2020) AHD

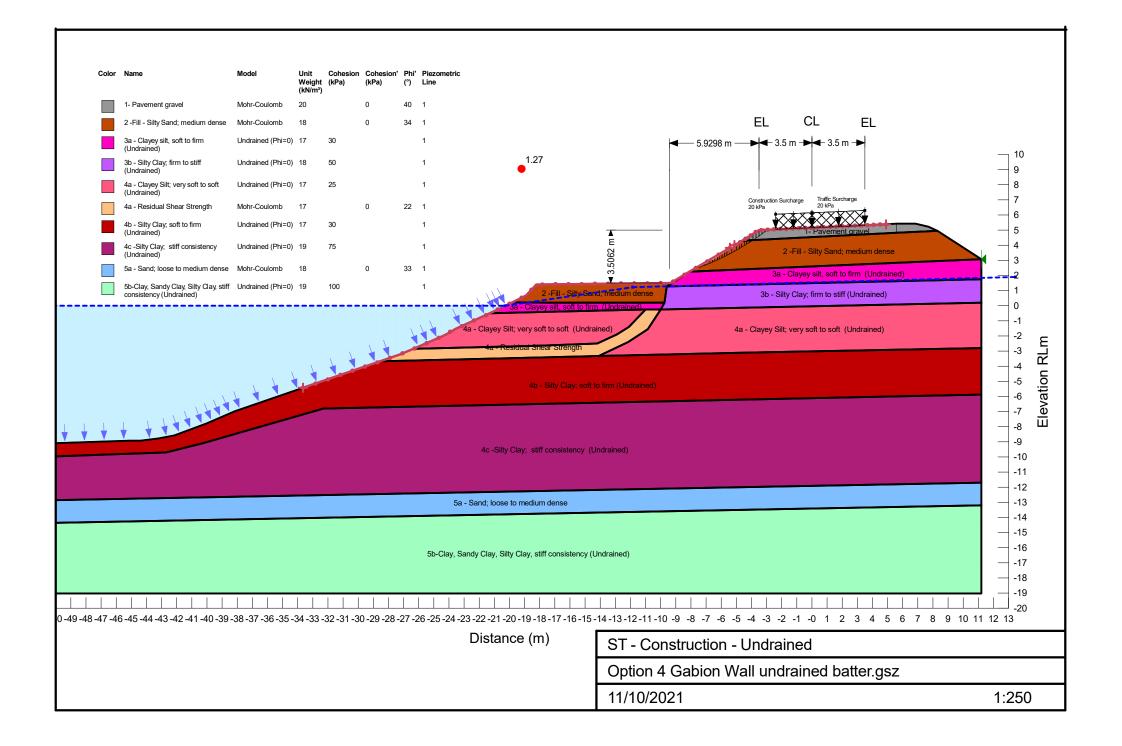
HEIGHT DATUM

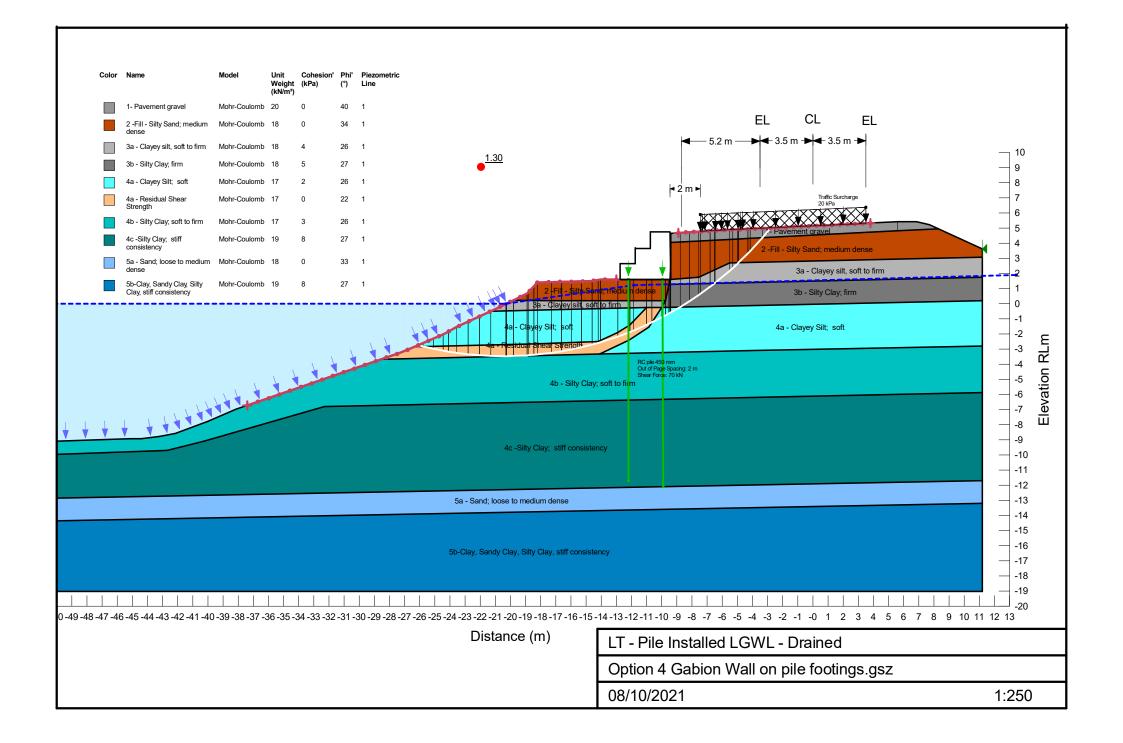
DESIGN MNGR

PROJECT MNGR

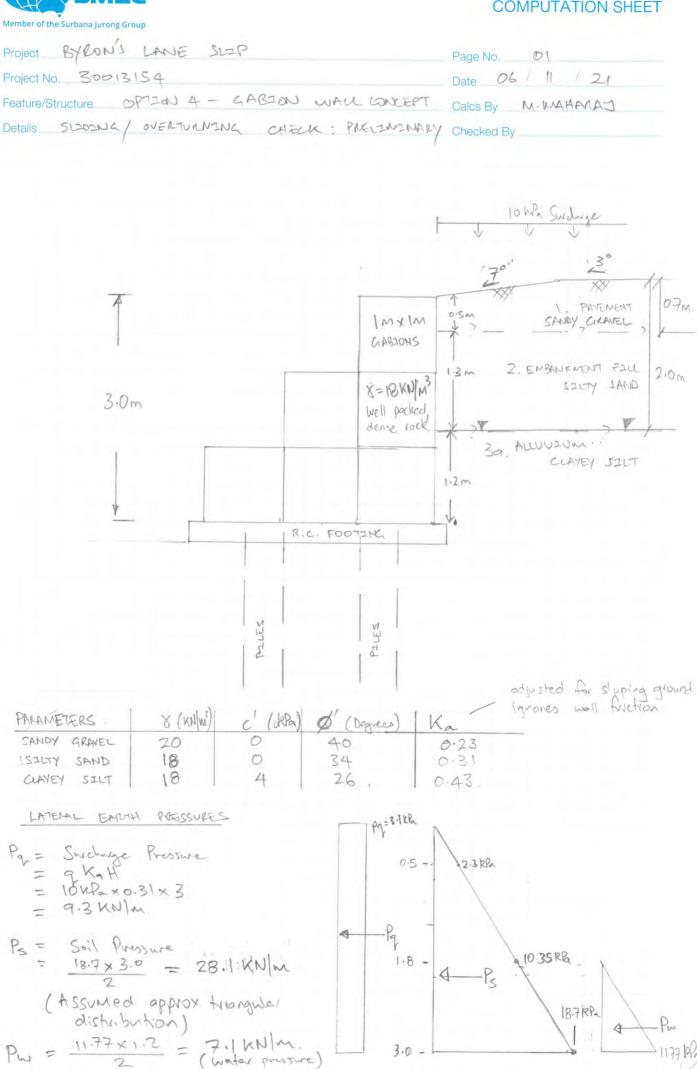

	CROSS SECTION - SHEET	2								
	SHEET 6 OF									
	RMS REGISTRATION NO. DS2021 /	00????			PART 1					
	ISSUE STATUS CONCEPT DESIGN	EDMS No. DS2021 / 00????	SHEET №. GT-202		ISSUE #					
	•	(© Transport	for	NSW					


BACKDRAFTED/CORRECTED


CONFIRMED


Appendix I Concept Design Option 4 – Analyses

I



COMPUTATION SHEET

177 122

3.0 -

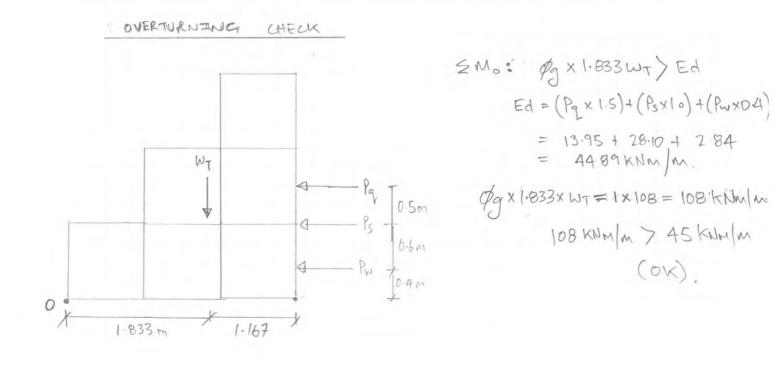
Member of the Surbana Jurong Group

COMPUTATION SHEET

Calcs By M. MAHARAJ

Checked By

Project	BYRON'S LANE	SLZP	Page No.	02
Project No.	30013154		Date 66	/ 11 / 21


Feature/Structure OP120N A - GABION WALL LONGEPT

Details SLZOZNC/ OVERTURNING CHECK: PRELIMINARY

AS 5100.
$$2:2017$$

Rdg = $9gR_{NS} \ge Ed$
 $gg = 0.55$
Ed = $P_2 + P_S + P_W = 44.5 \text{ kN/m}$
 $1 \text{ BASKET} 2 \text{ BASKETS} 3 \text{ BASKETS} 3 \text{ BASKETS} 3 \text{ BASKETS} 3 \text{ Comments} 3 \text{$

Friction organ between gabions and corevete flooting assumed rough = 40° $S_1 = W_1 \tan 40^\circ \times 1m = 15.1 \times N/m$ $S_2 = W_2 \tan 40^\circ \times 1m = 30.2 \times N/m$ $S_3 = W_3 \tan 40^\circ \times 1m = 45.3 \times KN/m$ $R_{us} = S_1 + S_2 + S_3 = 90.6 \times N/m$ $g_g R_{us} = 49.83 \times N > 4A.5 \times N$ (DK).

199// FEDUMEND INCLINE FOOTING MINIMUM 3° BACK IN TO SUDRE TO PROVIDE ADDITIONAL RESISTANCE.

Appendix J Schedule of Quantities

I

Job No. Date 30013154 30.09.2021

Byrons Lane Landslide Remediation

	Re lative Cost Estimate Including GST (\$)
Option 1A - Cantilevered Sheet Pile Wall	\$1,156,100
Option 1B - Anchored Sheet Pile Wall	\$1,315,402
Option 2 - Contiguous Pile Wall	\$1,199,990
Option 3 - Shear Piles and Rock Fill	\$986,480
Option 4 - Gabion Wall with Piled Foundation	\$745,052

Byrons	ule of Quantities and Relative Cost Estimates s Lane Landslide Remediation n 1A - Cantilevered Sheet Pile Wall		Job No Date		30013154 30/09/2021			Comments and Calcs
ltem	Description	Units	Quantity		Unit Rate		Totals	
1	Preliminaries and General Items							
	Establishment of plant to site	Item	1	\$	50,000	\$	50,000	Assumes sheet piling rig and medium
	Site Compound, Barriers, Security, Amenities	Item	1	\$	15,000	\$	15,000	
	Traffic Control	week	2	\$	15,000	\$	30,000	Assumes 2 weeks construction timefr
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice							
	3D coordinated survey and set-out, as-builts	Item	1	\$	6,000	\$	6,000	
	Engineer Construction Supervision	week	2	\$	7,500	\$	15,000	Experienced engineer supervision
	Project Management	Item	1	\$	10,000	\$	10,000	
3	Clearing and Environmental Control							
	Erosion and Sediment Control	Item	1	\$	5,000	\$	5,000	Sediment and erosion control measur
	Environmental REF and monitoring	Item	1	\$	7,500	\$	7,500	
4	Construct Cantilevered Sheet Pile Wall							
	Supply and install sheet piles	m2	672	\$	1,200	\$	806,400	AZ46-700N sheet piles: 158kg/m. 42
								Rawinson Rate = 74 kg/m = \$620/m2
	Fill voids behind sheet pile wall	m³	24	Ś	150.0	Ś	3,600	Allow 0.3 m width and 2 m deep x 40
				Ŧ		Ŧ	-,	Allow for cement stabilised sand.
5	Other Items	2						
	Vegetation clearance	m ²	100	\$	10.0	\$	1,000	Localised clearing for rock armouring
	Geotextile Seperation Fabric Strength Class E	m²	200	\$	10.0	\$	2,000	Beneath rock armour.
	Rock Armour to riverbank	m³	200	\$	200	\$	40,000	500 mm to 700 mm size rock
	Repair pavement wearing course + line marking	m ²	300	\$	100	\$	30,000	50 m x 6 m width (including shoulder)
	Lengthen existing concrete barrier	m	20	\$	400	\$	8,000	Allow 20 m.
	Removal of Excavated Spoil - Off Site Disposal	m ³	10	\$	150	\$	1,500	Nominal excess material removed fro
	Temporary Working Platform	allow	1	\$	20,000	\$	20,000	
	Total - Ex GST					\$	1,051,000	
	GST					\$	105,100	
	Total - Incl GST					\$	1,156,100	

Excludes: Estimated maintenance cost over design life im excavator

eframe - single lane closure

sures

42 m @ 16 m long = 672 m2. m2. Estimate Rate for 158 kg/m = \$1,200 m2. 40 m = 24 m3.

ng to riverbank.

ler) = 300 m2

from site.

	<u>ule of Quantities and Relative Cost Estimates</u> s Lane Landslide Remediation n 1B - Anchored Sheet Pile Wall		Job No Date	30013154 30/09/2021			Comments and Calcs
ltem	Description	Units	Quantity	Unit Rate		Totals	
1	Preliminaries and General Items						
	Establishment of plant to site	Item	1 \$	50,000	\$	50,000	Assumes sheet piling rig and medium excavator
	Site Compound, Barriers, Security, Amenities	Item	1 \$	15,000	\$	15,000	
	Traffic Control	week	4 \$	15,000	\$	60,000	Assumes 2 weeks construction timeframe - single lane closure
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice	9					
	3D coordinated survey and set-out, as-builts	Item	1 \$	6,000	\$	6,000	
	Engineer Construction Supervision	week	4 \$	7,500		30,000	Experienced engineer supervision
	Project Management	Item	1 \$	15,000	\$	15,000	
3	Clearing and Environmental Control						
	Erosion and Sediment Control	Item	1 \$	5,000	\$	5,000	Sediment and erosion control measures
	Environmental REF and monitoring	Item	1 \$	7,500	\$	7,500	
4	Construct Anchored Sheet Pile Wall						
	Supply and install riverbank sheet piles	m2	480 \$	1,200	\$	576,000	AZ46-700N sheet piles: 158kg/m. 40 m @ 12m long = 480 m2.
							Rawinson Rate = 74 kg/m = \$620/m2. Estimate Rate for 158 kg/m = \$1,200 m2. Estimate
	Supply and install deadman sheet piles	m2	200 \$	1,000	\$	200,000	AZ36-700N sheet piles: 119kg/m. 40 m @ 5m long = 200 m2.
	Supply and install anchor bars	m	240 \$	80	\$	19,200	12 No. @ 20 m length steel tie bars: 38 mm; Grade 500, Galvanised. Estimate supply rate
	Install anchor bars between sheet piles in trenches	m ³	162 \$	80	\$	12,960	Allow for excavation and backfill of anchor trenches for tie bars. Asumed trenched installa
	Supply and install waler beams	tonne	3.64 \$	4,000	\$	14,560	Allow for 2 x steel channel sections per waler beam comprising estimated 200 mm x 75 m
5	Earthworks						Allow \$4000/tonne for supply and install.
	Construct new fill behind sheet pile wall	m³	240 \$	30.0	Ś	7,200	Reinstate landslide. Allow 3 m width and 2 m deep x 40 m = 240 m3. Allow for silty sand o
	Excavate for waler beam installation	m ³	80 \$	30.0	-	2,400	Allow 1 m width and 2 m deep x 42 m = 84 m3. Allow for excavation and back fill excavate
6	Other Items	. 2	200 Å				
	Vegetation clearance	m ²	200 \$	10.0	-	2,000	Localised clearing for rock armouring to riverbank.
	Geotextile Seperation Fabric Strength Class E	m ²	300 \$	10.0	-	3,000	Beneath rock armour.
	Rock Armour to riverbank	m ³	300 \$	200		60,000	500 mm to 700 mm size rock
	Repair pavement wearing course + line marking	m ²	600 \$	100		60,000	50 m x 12 m width (including shoulder) = 600 m2
	Lengthen existing concrete barrier	m	20 \$	400		8,000	Allow 20 m.
	Removal of Excavated Spoil - Off Site Disposal	m ³	80 \$	150	\$	12,000	Excess material removed from site.
	Temporary Working Platform	allow	1 \$	30,000	\$	30,000	
	Total - Ex GST				\$ 3	1,195,820	
	GST				\$	119,582	
	Total - Incl GST				\$	1,315,402	

Excludes: Estimated maintenance cost over design life Temporary working platforms ate Rate for 119 kg/m = \$1,000 m2.

rate for standard 6 m length from Dywidag = \$60/m. Allow \$80/m. tallation due to sand fill. 20 m long x 450 mm wide x 1.5 m deep. 75 mm channels = 22.9kg/m. 22.9 x 4 x 40m = 3664 kg = 3.64 tonnes.

d compatible with existing. vated material.

<u>Schedule of Quantities and Relative Cost Estimates</u> Byrons Lane Landslide Remediation Option 2 - Contiguous Pile Wall		Job No Date	30013154 30/09/2022			Comments and Calcs	
ltem	Description	Units	Quantity	Unit Rate	9	Totals	
1	Preliminaries and General Items						
	Establishment of plant to site	Item	1 \$	75,000	\$	75,000	Assumes CFA piling rig and excavator.
	Site Compound, Barriers, Security, Amenities	Item	1 \$	15,000	\$	15,000	
	Traffic Control	week	3 \$	15,000	\$	45,000	Assumes 3 weeks construction timeframe - sing
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice						
	3D coordinated survey and set-out, as-builts	Item	1 \$	6,000	\$	6,000	
	Engineer Construction Supervision	week	3 \$	7,500	\$	22,500	Experienced engineer supervision
	Project Management	Item	1 \$	12,000	\$	12,000	
3	Clearing and Environmental Control						
	Erosion and Sediment Control	Item	1 \$	5,000	\$	5,000	Sediment and erosion control measures
	Environmental REF and monitoring	Item	1 \$	7,500	\$	7,500	
4	Construct Contiguous Pile Wall						
	Construct Contiguous Piles	m	731 \$	1,000	\$	731,000	750 mm diameter piles. 43 No. Piles at 17 m lo
5	Earthworks						
	Excavate and form 2H:1V batter in front of piles	m³	80 \$	30.0	\$	2,400	Allow 80 m3
	Rock armour batter face	m³	100 \$		\$	20,000	Allow 100 m3. 500 mm to 700 mm size rock
6	Other Items						
·	Vegetation clearance	m²	200 \$	10.0	¢	2,000	Localised clearing for rock armouring to riverba
	Geotextile Seperation Fabric Strength Class E	m ²	350 \$			3,500	Beneath rock armour.
		m ³					500 mm to 700 mm size rock
	Rock Armour to riverbank	m ²	200 \$			40,000	
	Repair pavement wearing course + line marking		300 \$			30,000	$50 \text{ m x } 6 \text{ m width (including shoulder)} = 300 \text{ m}^2$
	Lengthen existing concrete barrier	m 3	20 \$			8,000	Allow 20 m.
	Removal of Excavated Spoil and water - Off Site Disposal	m ³	80 Ş	200	Ş	16,000	Allow for ASS treatment
	Temporary Working Platform	allow	1 \$	50,000	\$	50,000	May require micropiles.
	Total - Ex GST				\$	1,090,900	
	GST				\$	109,090	
	Total - Incl GST				\$	1,199,990	

Excludes: Estimated maintenance cost over design life single lane closure

long = 731 m. 50 MPa concrete, reinforced.

bank.

m2

Schedule of Quantities and Relative Cost Estimates Byrons Lane Landslide Remediation Option 3 - Shear Piles and Rock Fill			Job No Date	3001315 30/09/202				Comments and Calcs
ltem	Description	Units	Quantity		Unit Rate		Totals	
1	Preliminaries and General Items							
	Establishment of plant to site	Item	1	\$	150,000	\$	150,000	Assumes barge, piling rig and excavat
	Site Compound, Barriers, Security, Amenities	Item	1	\$	15,000	\$	15,000	
	Traffic Control	week	2	-	15,000	-	30,000	Assumes 2 out of 4 weeks single lan
	Barge Hire	Day	10	\$	5,000	\$	50,000	Estimated day rate.
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice							
	3D coordinated survey and set-out, as-builts	Item	1	\$	6,000	\$	6,000	
	Engineer Construction Supervision	week	3	\$	7,500	\$	22,500	Experienced engineer supervision
	Project Management	Item	1	\$	12,000	\$	12,000	
3	Clearing and Environmental Control							
	Erosion and Sediment Control	Item	1	\$	5,000	\$	5,000	Sediment and erosion control measu
	Environmental REF and monitoring	Item	1	\$	7,500	\$	7,500	
4	Construct Shear Piles							
	Excavate to remove rock armour from pile footprint	allow	1	\$	10,000	\$	10,000	Estimate allowance for excavator wo
	Construct Driven Reinforced Concrete Piles	m	481	-	800	-	384,800	Allow for 450 mm square piles at 1 r
				T		T		Allow \$800/m for piling off barge.
5	Earthworks and Rock Armouring	2						
	Vegetation clearance	m ²	500	\$	10.0	\$	5,000	Clear riverbank for rock armouring. A
	Excavate to form benches.	m³	200	\$	30.0	\$	6,000	0.5 m max height benches. Allow 200
	Geotextile Seperation Fabric Strength Class E	m ²	500	\$	10.0	\$	5,000	Beneath rock armour.
	Rock armour batter face	m ³	600	\$	200.0	\$	120,000	500 mm to 700 mm size rock
6	Other Items							
U	Repair pavement wearing course + line marking	m ²	300	ć	100	ć	30,000	50 m x 6 m width (including shoulder
	Lengthen existing concrete barrier	m	20	•	400	-	8,000	Allow 20 m.
	Removal of Excavated Spoil - Off Site Disposal	m ³	200	-	150	-	30,000	Excess material removed from site.
	Temporary Working Platform	allow	0			\$	-	Not expected to be required
	Total - Ex GST					\$	896,800	
	GST					; \$	89,680	
	Total - Incl GST					Å	986,480	

Excludes:

Estimated maintenance cost over design life

vator.

lane closure

asures

working off barge. 1 m centres = 37 piles. Piles @ 13m long = 481 m.

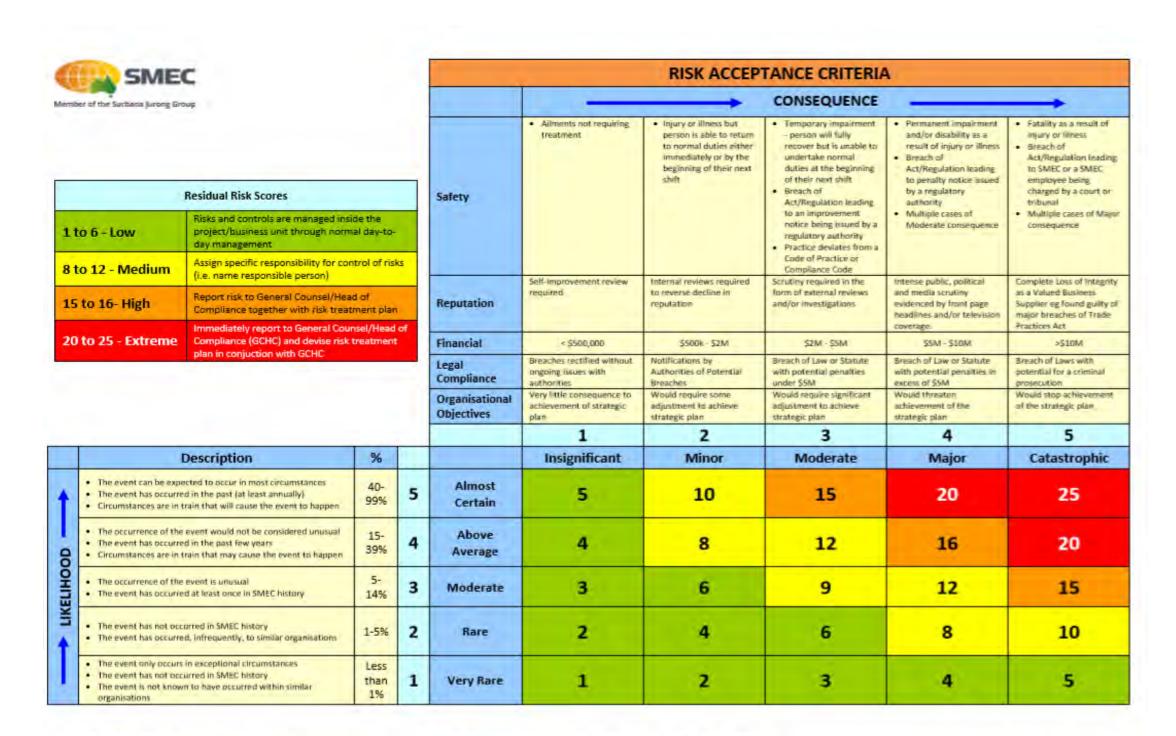
g. Allow 500 m2. 200 m3

der) = 300 m2

Byron	Schedule of Quantities and Relative Cost Estimates Byrons Lane Landslide Remediation Option 4 - Gabion Wall with Piled Foundation		Job No Date	3001315 30/09/202			Comments and Calcs			
Item	Description	Units	Quantity	Unit Rat	e	Totals				
1	Preliminaries and General Items									
	Establishment of plant to site	Item	1 \$	50,000) \$	50,000	Assumes piling rig and excavator.			
	Site Compound, Barriers, Security, Amenities	Item	1 \$	15,000) \$	15,000				
	Traffic Control	week	4 \$	15,000)\$	60,000	Assumes 4 weeks single lane closure			
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice									
	3D coordinated survey and set-out, as-builts	Item	1 \$	6,000) \$	6,000				
	Engineer Construction Supervision	week	4 \$	7,500) \$	30,000	Experienced engineer supervision			
	Project Management	Item	1 \$	12,000)\$	12,000				
3	Clearing and Environmental Control									
	Erosion and Sediment Control	Item	1 \$	5,000) \$	5,000	Sediment and erosion control measures			
	Environmental REF and monitoring	Item	1 \$	7,500)\$	7,500				
4	Construct Foundation									
	Supply and Install Driven Reinforced Concrete Piles	m	456 \$	600) \$	273,600	Allow for 2 rows of 450 mm square piles at 2			
	Construct reinforced concrete footing	m ³	37.00 \$			37,000	37 m x 3.3 m x 0. 3 m 36.6 m3 = 37 m3.			
5	Construct Gabion Wall									
	Supply gabion baskets with Polimac coating	each	54 \$	250) \$	13,500	4m x 1m x 1m baskets			
	Install and fasten gabion baskets	Allow	1 \$			15,000				
	Supply and install gabion rock 120 mm - 250 mm	tonnes	389 \$	-		15,560	216 m3 x 1.8 tonnes/m3 = 389 tonnes. Supply			
	Supply and place geotextile seperation fabric Strength Class E	m²	108 \$	10.0)\$	1,080	Behind Gabions.			
6	Earthworks									
· ·	Excavate for reinforced concrete footing	m ³	114.00 \$	30.0) \$	3,420	Estimate 38 m x 1 m x 3 m = 114 m2			
	Excavate temporary 2H:1V batter	m ³	372 \$)\$	11,160	Estimated 372 m3			
	Fill to reinstate excavation	m ³	400 \$, ,) \$	20,000				
_					·	·				
7	Other Items	2								
	Repair pavement wearing course + line marking	m ²	300 \$) \$	30,000	50 m x 6 m width (including shoulder) = 300 m			
	Lengthen existing concrete barrier	m 3	20 \$)\$	8,000	Allow 20 m.			
	Removal of Excavated Spoil - Off Site Disposal	m³	90 \$	150)\$	13,500	Excess material removed from site.			
	Temporary Working Platform	allow	1 \$	50,000)\$	50,000	May require micropiles.			
	Total - Ex GST				\$	677,320				
	GST				\$	67,732				
	Total - Incl GST				\$	745,052				

Excludes: Estimated maintenance cost over design life t 2 m centres = 38 piles. Piles @ 12m long = 456 m.

pply rate = \$30/tonne. Allow \$40/tonne.


) m2

Appendix K Safety in Design Register

l

T-PM10701 SAFETY IN DESIGN RISK REGISTER		STER	Member of the									
Project Name: Byrons Lane Slip Remediation	S.I.D. Register Rev: 00		member of the	San Bana Jarong Ore	ab							
Design Package: Concept Options Design	Date: 06/12/2021											
			Initia	I Risk Assessi	ment		Resid	ual Risk Asses				
<u>-POT</u>	ENTIAL RISK		Initial Risk Likelihood (0-	Initial Risk Consequence	Initial Risk Rating	POTENTIAL ELIMINATION MEASURE, DESIGN INITIATIVE or	Likelihood (0-		Residual Risk Rating			
HAZARD	DESCRIPTION	POTENTIAL CONSEQUENCES	5)	(0-5)		CONTROL (Identify any Standard or Code of practice used)	5)	(0-5)		RESIDUAL RISK	Date SID Risk closed out	ľ
Geotechnical												F
Unexpected ground conditions	Ground conditions differ from assumed. Variable alluvium profiles, unexpected rock armour.	Design Changes, delays during construction	3	4	12	Provide for some redundancy in design for variable ground conditions. Consider additional geotechnical investigation such as CPT to provide more understanding of subsurface conditions.	2	4	8	TfNSW/ Contractor		
Further slips	Existing slip scarp and marginally stable embankment slopes	Slips and engulfment during construction	4	5	20	Design for temporary stability and staging of works, identify exclusion zones for heavy plant. Review of contractors proposed methodologies. Avoid work during floods or prolonged wet periods.	2	5	10	Contractor		
Survey						Allow provision to undertake additional detailed site survey.						F
Insufficient or innacurate survey	Insufficient information to undertake design. Discrepancies between design and site.	Unable to complete design or design does not correlate with site conditions	3	4	12	Require contractor to setout and verify design dimensions at critical stages, prior to proceeding.	1	4	4	Contractor		
Environment		Habitat destruction, removal of native				Undertake review of environmental factors. Develop and enforce						┝
Impact on Habitat	Vegetation clearance, sediment runoff	species, contamination of waterways	4	4	16	environmental construction management plan.	2	4	8	TfNSW		
Design						Meetings held to discuss constructability as part of the multicriteria						F
Constructability	Design cannot be practically or safely constructed	Re-design and associated costs	4	4	16	analysis of concept options. Plan a constructability workshop to ensure design is safely constructible. Review contractors construction methodolgies and seek clarification from designer/ constructors	2	4	8	TfNSW		
Excessive Deformations	Embankment and Pavement deformations	Personal iunjury, vehicle damage, excessive maintenance	3	3	9	Design for serviceability	2	3	6	SMEC		Г
Durability	Remediation solutions not do not meet durability requirements	Remediation solution or components do not achieve intended design life	3	4	12	Design for durability. Highlight maintenance requirements.	2	4	8	TfNSW		
Loads	Loadings greater than expected	Failure due to over stressing	3	4	12	Model construction staging and traffic loads, adopt safety factors, specify load limits and set backs	2	4	8	SMEC/ Contractor		
Scour	Lack of hydraulic/ scour assessment information for clarence river. Incorrect long term scour profiles and scour treatments	Failure due to excessive scour	4	4	16	Investigate and assess hdyraulics and scour	2	4	8	TfNSW		
Construction												F
Unexpected ground conditions	Ground conditions differ from the design assumptions	Construction difficulties, variations	3	4	12	Provide for some redundancy in design for variable ground conditions. Consider additional geotechnical investigation such as CPT to provide more understanding of subsurface conditions. Staged testing or trials at early stages of construction. Provision for a suitably qualified geotechnical engineer to supervise and document works during construction.	2	4	8	Contractor		
Instability	Unstable slopes during construction	LTI / injury / death,	4	5	20	Visual monitoring of slopes for deformation during construction. Undertake works during dry weather. Limit construction plant bearing pressures within designated setbacks or exclusion zones. Limit plant vibrations.	3	5	15	Contractor		
Excavations	Temporary and permanent excavations	Falling into excavations, wall collapse, striking services. LTI / injury / death,	4	5	20	Ensure that code of practice for excavations are complied with. Construct barriers where necessary. Provide shoring where necessary. Check for underground services.	2	5	10	Contractor		
Under / Above Ground Services	Striking Services during construction	Disruptions to live traffic, construction and increased risk to construction crews.	4	5	20	Investigate and identify buried services (abandoned water main may be present through site). Relocate/ protect services where practicable.	1	5	5	Contractor		
Inadequate Concrete Strength	Durability and strength	Structural collapse, durability issues.	2	4	8	Concrete quality control practices in place. Ensure that design team has been notified as a Non Conformance.	1	4	4	Contractor		Γ
Fall from heights	Working on and adjacent to steep slopes	LTI / injury / death,	4	5	20	Follow WHS practices for working at heights.	2	4	8	Contractor		Γ
Working adjacent to live traffic	Potential for accidents during construction in outer lane	Increased potential for accidents - LTI / injury / death,	4	5	20	Ensure adequate TCPs and safe working conditions are implemented, including reduction of speed limit. Review space	3	5	15	Contractor		ľ
Pavement Damage	Damaged pavements creating unsafe pavement	Increased risk of accidents	3	4	12	constraints in relation to construction plant. Provision to repair and reinstate pavements	1	4	4	Contractor		t
Noise	Excessive construction noise	Disruption to neighbourhood	2	3	6	Rural setting. Evaluate high noise activities and consider restrict	1	3	3	Contractor		t
Vibration	Excessive vibration	Generate slope instability	4	4	16	working hours for noisy work. Adopt construction methodologies and plant/equipment that do no	2	4	8	Contractor		F
Maintenance Issues						generate excessive vibrations.						F
Access to structures	Lack of safe access for maintenance	Increased risk to maintenance crews	2	4	8	Provide safe working conditions for maintenance	1	4	4	TfNSW		1

SID Risk Closed Out by:

G-CLR10402: SMEC's Risk Acceptance Critieria

This document is only controlled when accessed online via the BMS

1 of 1

9

Appendix L Relevant Information

I

Big River Way Slip on Clarence River North of Byrons Lane

Geotechnical Investigation Factual Report

Report No: N2021031 Report Issued Date: 7/6/2021 Prepared by: Northern Pavements and Geotechnical

THIS PAGE LEFT INTENTIONALLY BLANK

Report	Registration
--------	--------------

Report Title:	Geotechnical Investigation Report
Report Subtitle:	Big River Way – Slip on Clarence River North of Byrons lane
Report Number:	N2021031
Project Reference Number:	N2021031
Responsible Capability:	Northern Pavements and Geotechnical
Responsible Discipline:	Geotechnical Science
Report Authorisation:	Manager Pavements and Geotechnical Northern
Report Manager:	Geotechnical Scientist
Issue Number:	01
Version Date:	7/6/2021
Contact for this Report:	Rob Ticknor
Distribution List:	Shaun Gillespie

Report Prepared By:		Report Reviewed By:	
Name:	Rob Ticknor	Name:	David Groth
Title:	Geotechnical Scientist	Title:	Manager Pavements and Geotechnical
Team:	Engineering Services Northern	Team:	Engineering Services Northern
Unit:	Pavements and Geotechnical	Unit:	Pavements and Geotechnical
Date:	7/6/2021	Date:	7/6/2021

Note: The functions of the former State Government agency Roads and Maritime Services (RMS or Roads and Maritime) are now administered by Transport for NSW.

Important Disclaimer

While all care is taken in producing and publishing this work, no responsibility is taken or warranty made with respect to the accuracy of any information, data or representation. The authors (including copyright owners) and publishers expressly disclaim all liability in respect of anything done or omitted to be done and the consequences upon reliance of the contents of this publication.

Copyright

This work is copyright. © Transport for NSW.

Users are welcome to copy, reproduce and distribute the information contained in this report for noncommercial purposes only, provided acknowledgement is given to the Transport for NSW, Pavements and Geotechnical Unit as the source.

Printed and electronically stored copies of this document are uncontrolled.

Contents

1	Introduction	.1
2	Site description	.1
	Field Investigation	
	Laboratory Testing	
	4.1 Acid sulfate soil testing	. 2
	4.2 Soil aggressivity testing	. 3
5	Discussion	.3
6	References	.3

Appendices

Appendix A	Site Location Plans
Appendix B	Borehole Logs and Explanatory Notes
Appendix C	Laboratory Reports

1 Introduction

This report presents the results of a geotechnical investigation undertaken to support design and construction for treatment of a slip on the Big River Way north of Byrons Lane along the Clarence River.

The work was requested by the TfNSW Project/Contract Manager Shaun Gillespie. The scope consisted of drilling two boreholes through the pavement with Standard Penetration Testing, in situ shear vane testing and sampling soils for Acid Sulfate Soils and for aggressivity testing.

This report provides the following information for each site:

- Details of material types and observations of groundwater inflows;
- Standard penetration tests to determine consistency and density of soils;
- Laboratory test results of samples for aggressivity and acid sulphate.

This report should be read in conjunction with the following investigation and design reports prepared for the adjacent slip on the same road (formerly the Pacific Highway).

- HW10 Pacific Highway Byrons Lane Slip Stage 4 Geotechnical Design, SMEC, Project Number 30011433, 5 May 2014.
- HW10 Pacific Highway Road Embankment Slip at Byrons Lane Tyndale, Stage 3 Remedial Work using Sheet Piles and H-Piles, Pavement and Geotechnical Engineering Section, Roads And Traffic Authority, Report No. G4054, 5/11/2010.

2 Site description

The site is located on the bank of the Clarence River on the Big River Way between Tyndale and Maclean. (See Figure 1). The site is north of Byrons Lane, immediately downstream of a larger river bank slip that was previously repaired.

Location Number	Borehole Position	Site Description
	MGA Zone 56	
BH12	517797.377E	In pavement adjacent to
	6732393.964N	slip scarp
	RL 4.928m AHD	
BH13	517806.491E	In pavement adjacent to
	6732407.305N	slip scarp
	RL 4.920m AHD	

Table 1: Location and site description.

Appendix A includes a site location plan (Figure 1) and geotechnical investigation plan (Figure 2).

3 Field Investigation

Fieldwork for the investigation comprised drilling of two boreholes using a geotechnical rotary drilling rig. The borehole was advanced using auger drilling using a TC followed by wash bore drilling using a roller bit. Rock requiring core drilling was not encountered.

Sampling was undertaken using standard penetration testing (SPT) at 1.5m intervals which also provided information on material consistency and density. Undisturbed samples were collected in U75 tubes in soft

materials. In situ vane shear testing was conducted in soft conditions. Hand Penetrometer testing was conducted on SPT and U75 samples. Hand vane shear testing was conducted on U75 samples. A scientific officer from TfNSW supervised the field work including sampling and logging. A detailed bore log and explanatory notes are provided in Appendix B. The SPT and undisturbed soil samples have been retained by TfNSW if additional testing is required. A selection of samples was sent to a NATA certified laboratory for aggressivity and acid sulfate testing. Laboratory test reports are included in Appendix C.

Survey of borehole levels and positions was provided by TfNSW Surveyors and is provided on the log sheets.

4 Laboratory Testing

4.1 Acid sulfate soil testing

Acid sulfate soils (ASS) are those which contain iron sulphides such as pyrite (FeS₂). Exposure of iron sulphides to water and oxygen leads to generation of sulphuric acid and subsequent mobilization of heavy metals such as aluminum and iron into water bodies. This affects water quality and can lead to death of aquatic organisms and deterioration of engineered structures.

Advice regarding implementation of an acid sulfate soils management plan is based on the national acid sulfate soils guidance manual produced by the Department of Agriculture and Water Resources (2018). For disturbed soil volumes of less than 1000t, an acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture (eg sand/gravel) \geq 0.03% S or 18 mol H⁺/t; medium texture (eg sandy clay) \geq 0.06% S or 36 mol H⁺/t; fine texture (eg clay) \geq 0.1% S or 62 mol H⁺/t.

One samples was selected from BH12 for acid sulfate soil analysis at the Environmental Analysis Laboratory in Lismore. Results are summarized in Table 2 and presented in Appendix C.

Site + Depth (m)	Soil Texture	рН _{ксі}	Potential Sulfidic Acidity mole H ⁺ /t	TAA mole H⁺/t	Net Acidity mole H⁺/t	Lime Calc. kg CaCO3/t DW
BH12 5.5-5.95	Medium	5.57	455	7	462	35

Table 2: Summary of Acid Sulfate Soil Analysis

Based on results of the testing, it is recommended that an acid sulfate management plan is prepared.

4.2 Soil aggressivity testing

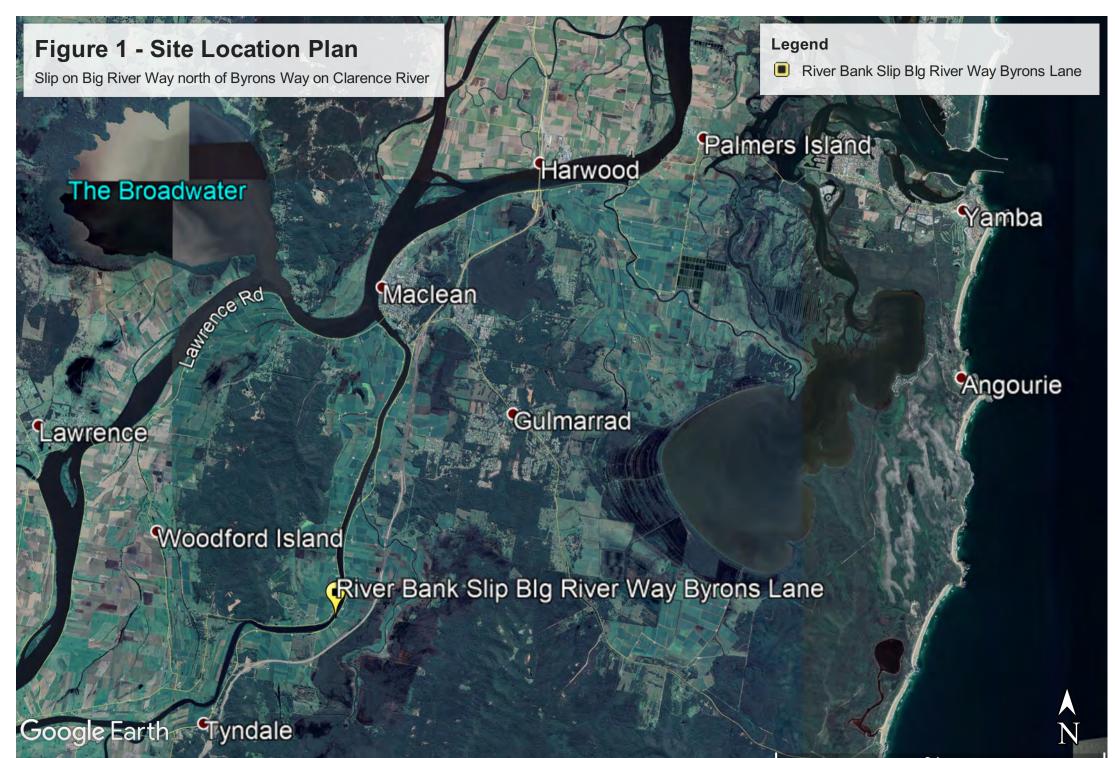
Soil aggressivity testing was undertaken on selected samples to inform design of the concrete/steel elements of the footings. Testing was carried out by the Environmental Analysis Laboratory in Lismore with results presented in Appendix C. A summary of the findings is shown in Table 3 below.

Site	BH12
Sample Depth (m)	7.0-7.45
Texture Class	Fine
pH (in water)	8.19
EC (dS/m)	0.294
Resistivity (ohm.mm)	33,972
Chloride (mgCl/kg)	119
Sulfate (mgSO4/kg)	251
Chloride/Sulfate Ratio	0.5

Table 3: Results of Soil Aggressivity Analysis.

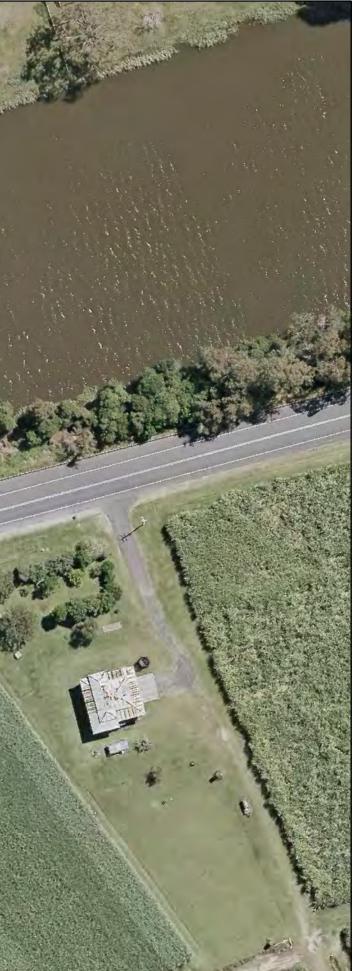
5 Discussion

Two geotechnical boreholes were adjacent to a slip on the river bank of the Clarence River on the Big River Way north of Byrons Lane. Standard Penetration Testing and in situ vane shear testing was conducted in the boreholes. Samples were submitted for acid sulfate soil and aggressivity testing.


The results of these investigations should be read in conjunction with the results of investigations conducted for the previous adjacent slip.

6 References

Australian Standard: AS 1726-1993, Geotechnical Site Investigations.


Sullivan L, Ward N, Toppler N and Lancaster G 2018, National Acid Sulphate Soils Guidance, Department of Agriculture and Water Resources, Canberra, ACT.

Appendix A. Site Location Plans

			1 serence		
Legend					
2009 Investigations			7350	Ele dese	A service and
+ Borehole	and the second			-	
2021 Investigations	The seals	Sand and a set	475-10	1 Bits	
Borehole					
A Martin Contraction	and the second second				
San Artistan and and	and the state of the	. A shirt of			
		BH11			And Street Street
			BH6		THE PLANE
	BH5	BH7 BH9 d			and the second
		BHB	A AND A	BH12	BH13
	the second second	BH10BH10 BH3	<u>83</u>		
					A CAR WAR AND A CAR
			- All All All		
	and the second s	B/14			
	the second second				
Map data copyright (C) 2021 Roads a	nd Maritime Services, NSW. Some spatial c		f Lands.		
0 5 10 20 30 40 50	REPORT No. 2021021 Date: 2/06/2021	A			
Metres	2021031 Date: 2/06/2021	7 SCALES		NSW	Transport for NSW
DESIGNED: RT REVIEWED: DG	CLIENT: Maintenance and Delivery north	1:1,000	@ A3	GOVERNMENT	Place - Northern Technical Services

Path: C:\Users\ticknorr\Ticknor\03_Slopes\HW10 Byrons Lane\GIS\Byrons Lane Slip.mxd

Geotechnical Investigation plan

FIGURE: 2

Appendix B. Borehole Logs and Explanatory Notes

EXPLANATORY NOTES - DRILL & EXCAVATION LOGS

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation -Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

AS	Auger Screwing
AD/V	Auger Drilling with V-Bit
AD/T	Auger Drilling with TC Bit
WB	Wash-bore drilling
RR	Rock Roller
NMLC	NMLC core barrel
NQ	NQ core barrel
HMLC	HMLC core barrel
HQ	HQ core barrel

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
F	Firm
н	Hard
VH	Very Hard

Groundwater Levels

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately ∇ after drilling

Samples/Tests

D	Disturbed
U	Undisturbed
С	Core Sample
SPT	Standard Penetration Test
Ν	Result of SPT (* sample taken)
VS	Vane Shear Test
IMP	Borehole Impression Test
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer

Angle/Orientation: Angle from horizontal and orientation to magnetic north.

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D	Dry, looks and feels dry
М	Moist, No free water on remoulding
w	Wet, free water on remoulding

Consistency - In accordance with AS 1726-1993, Appendix A2.5

	Description	Su	HP		
VS	Very Soft	≤ 12kPa	< 25kPa		
S	Soft 12 - 25 kPa		25 - 50 kPa		
F	Firm	25 - 50 kPa	50 - 100 kPa		
St	Stiff	50 - 100 kPa	100 - 200 kPa		
VSt	Very Stiff	100 - 200 kPa	200 - 400 kPa		
н	Hard	≥ 200 kPa	≥ 400 kPa		

Strength figures quoted are the approximate range of Unconfined Compressive Strength for each class.

Density Index (%) is estimated or is based on SPT results. Approximate N Value correlation is shown in right column.

	Description	Density Index	SPT Value		
VL	Very Loose	< 15%	0 – 4		
L	Loose	15 – 35%	4 – 10		
MD	Medium Dense	35 – 65%	10 – 30		
D	Dense	65 – 85%	30 – 50		
VD	Very Dense	> 85%	> 50		

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

Description	Spacing (mm)
Thinly Laminated	< 6
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 -200
Medium Bedded	200 - 600
Thickly Bedded	600 - 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

F	Fresh	Rock substance unaffected by weathering
sw	Slightly Weathered	Rock substance partly stained or discoloured. Colour and texture of fresh rock recognisable.
MW	Moderately Weathered	Staining or discolouration extends throughout rock substance. Fresh rock colour not recognisable.
нw	Highly Weathered	Stained or discoloured throughout. Signs of chemical or physical alteration. Rock texture retained.
EW	Extremely Weathered	Rock texture evident but material has soil properties and can be remoulded.

 $\ensuremath{\textit{Strength}}$ - The following terms are used to described rock strength:

	Rock Strength Class	Point Load Strength Index, Is(50) (MPa)
EL	Extremely Low	< 0.03
VL	Very Low	0.03 - 0.1
L	Low	0.1 - 0.3
м	Medium	0.3 - 1.0
н	High	1.0 - 3.0
VH	Very High	3.0 - 10.0
EH	Extremely High	≥ 10.0

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

- O Diametral Point Load Test
- Axial Point Load Test

MATERIALS STRUCTURE/FRACTURES

<u>ROCK</u>

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	 Defects open in-situ or clay sealed
	 Defects closed in-situ
	 Breaks through rock substance

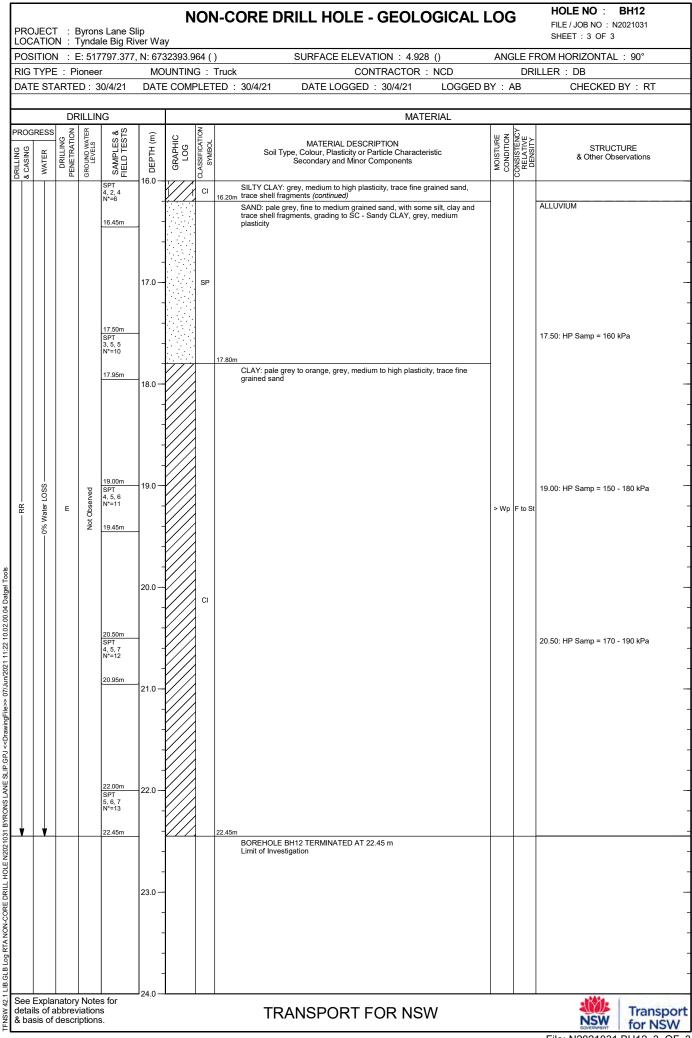
Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Туре	BP	Bedding Parting					
	JT	Joint					
	SM	Seam					
	FZ	Fracture Zone					
	SZ	Shear Zone					
	VN	Vein					
	FL	Foliation					
	CL	Cleavage					
	DL	Drill Lift					
	HB	Handling Break					
	DB	Drilling Break					

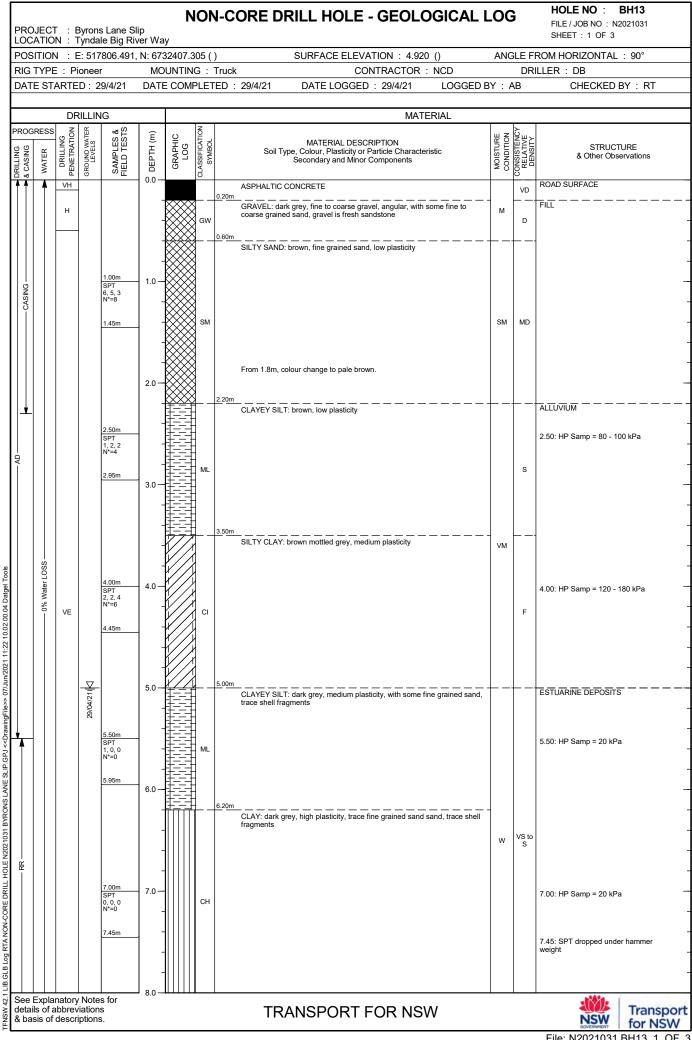
Orientation - angle relative to the plane normal to the core axis.

Infilling	CN	Clean					
5	Х	Carbonaceous					
	Clay	Clay					
	кт	Chlorite					
	CA	Calcite					
	Fe	Iron Oxide					
	Qz	Quartz					
	MS	Secondary Mineral					
	MU	Unidentified Mineral					
Shape	PR	Planar					
	CU	Curved					
	UN	Undulose					
	ST	Stepped					
	IR	Irregular					
	DIS	Discontinuous					
Roughness	POL	Polished					
	SL	Slickensided					
	S	Smooth					
	RF	Rough					
	VR	Very Rough					

<u>SOIL</u>


Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

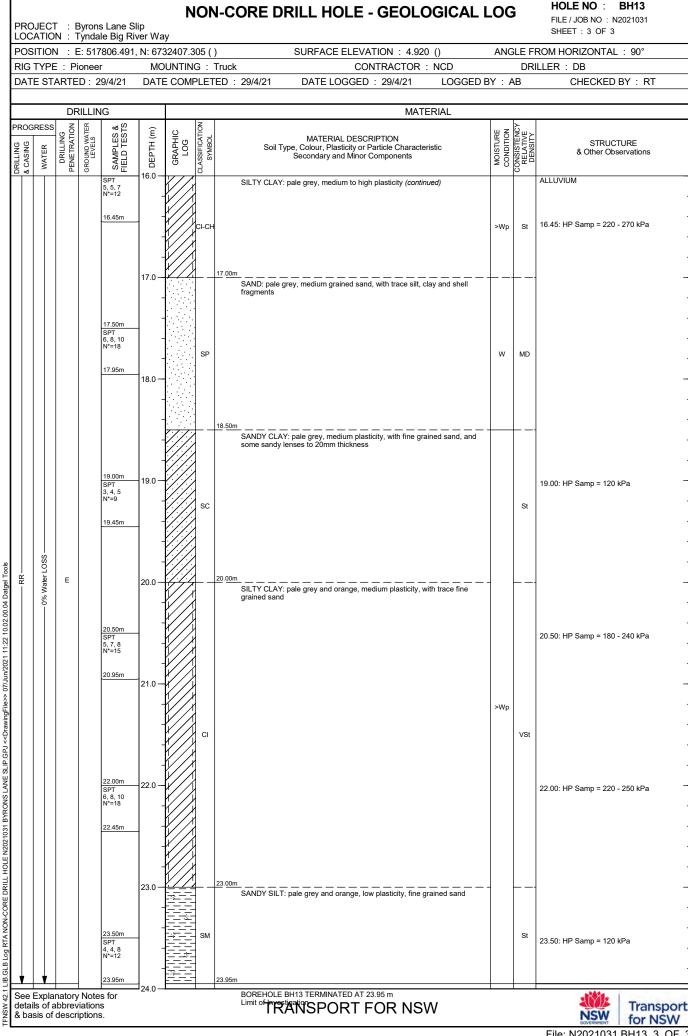
Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.


PRO.	PROJECT : Byrons Lane Slip LOCATION : Tyndale Big River Way												
LOCA	ATIOI	N : T	ynda	le Big Riv	/er Wa								
POSI RIG T						32393.964)UNTING	.,	SURFACE ELEVATION : 4.928 () k CONTRACTOR : NCD	ANC		ROM HORIZONTAL : 90° ILLER : DB		
				80/4/21					3Y : /		CHECKED BY : RT		
								MATERIAL					
PROGE 9NISED & 9NISED &	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG CLASSIFICATION	SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations		
	•	Н			0.0	0		ASPHALTIC CONCRETE		VD	ROAD SURFACE		
		F			-	G G	0.20 W 0.50	GRAVEL: dark grey to orange, fine to medium gravel, angular, with some fine to coarse grained sand	-		FILL		
AD - CASING -				1.00m SPT 6,4,3 N*=7 1.45m	- 1.0		 M	SILTY SAND: brown, fine grained sand, with medium plasticity fines and some clay	м	MD			
<u>•</u> ••				2.50m SPT 2, 2, 2 N*=4 2.95m	2.0		1L 3.40		_	s	ALLUVIUM		
2001 - Served Laborator 1997	0% Water LOSS	VE	Not Observed	4.00m SPT 2, 3, 5 N*=8 4.45m	- 4.0		CI	SILTY CLAY: brown mottled grey, medium plasticity, trace fine grained sand	VM	F to St	- 4.00: HP Samp = 150 kPa - - -		
				5.50m	5.0		5.00	ANDY CLAYEY SILT: grey, low to medium plasticity, fine grained sand, trace shell fragments	-		ESTUARINE DEPOSITS		
				SPT 1, 0, 0 N*=0 5.95m 6.10m	- - 6.0-		6.00	SILTY CLAY: dark grey, high plasticity, with some fine grained sand,		-	5.50: HP Samp = 30 - 40 kPa - -		
				6.10m in-stitu VS P=68kPa R=41kPA 6.70m in-stitu VS P=68kPa R=27kPA 7.40m V75 7.40m V75 7.40m V5 Samp VS P=32kPa R=13.5kPA V.50m	- 7.0	- - - - - -	:н	SILTY CLAY: dark grey, nigh plasticity, with some fine grained sand, trace shell fragments	> WL	s	- - - 7.40: HP Samp = 20 kPa - -		
See E details & bas	s of a	bbrev	iation	S	8.0			TRANSPORT FOR NSW	<u> </u>	I	Transport for NSW		

File: N2021031 BH12 1 OF 3

LOC	ATIO	N : 1	İynda	s Lane S le Big Ri	ver Wa	у		-CORE DRILL HOLE - GEOLOGICAL	LOG	•	HOLE NO : BH12 FILE / JOB NO : N2021031 SHEET : 2 OF 3
				797.377	-			SURFACE ELEVATION : 4.928 ()	ANG		ROM HORIZONTAL : 90°
				r 60/4/21				ruck CONTRACTOR : NCD ED : 30/4/21 DATE LOGGED : 30/4/21 LOGGED	BY · /		LLER : DB CHECKED BY : RT
	_ 01/		ۍ <i>د</i> .	51-7121	UAI			LE . WITIET DATE LOGGED . JUNIET LOGGED	JI. F	ت.	
			RILLIN				7	MATERIAL			
DRILLING & CASING	RESS WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				8.50m U7575	- 8.0			SILTY CLAY: dark grey, high plasticity, with some fine grained sand, trace shell fragments (continued)			8.50: HP Samp = 30 kPa
				8.95m	9.0 —		СН	From 9.0m, with some organics.	> WL	S	8.90: Samp VS P=48kPa R=15kPA
				<u>10.00m</u> U75	- - - - 10.0			Om SILTY CLAY: grey, medium to high plasticity, trace fine grained sand, trace shell fragments			
		VE		10.40m Samp VS P=177kPa R=45kPA 10.50m						St	10.40: HP Samp = 150 kPa
				11.50m	11.0			From 11.0m, colour change to pale grey mottled brown.			11.00: ALLUVIUM
- RR -			Not Observed	SPT 2, 2, 3 N*=5 11.95m	- - 12.0 — - -				> Wp		11.95: HP Samp = 150 kPa
		E		13.00m SPT 4, 5, 7 N*=12 13.45m	- - - 13.0 -		CI	13.0-13.5m, iron oxide zones up to 2mm.			13.00: HP Samp = 180 - 200 kPa
					- - 14.0 — -						
				14.50m SPT 3, 4, 7 N*=11 14.95m							14.50: HP Samp = 150 kPa
Sec		natory	Note	16.00m	- - - 16.0 —						1444 (
detail	s of a	bbrev descri	riation	s				TRANSPORT FOR NSW			File: N2021031 BH12 2 OF

File: N2021031 BH12 3 OF 3



File: N2021031 BH13 1 OF 3

	PRO		T:E	Byron:	s Lane Sl Ile Big Riv	ip ver Wa		101	I-COR	RE DI	RILL H	OLE -	GEOL	OGICA	LLOG	6	HOLE NO : FILE / JOB NO : N: SHEET : 2 OF 3	BH13 2021031
- H					7806.491,		,	7.305 () SURFACE ELEVATION : 4.920 () ANGLE FR							ROM HORIZONTAL	: 90°		
- H	RIG TYPE : Pioneer MOUNTING : Truck												TRACTOR				ILLER : DB	
	DATE STARTED : 29/4/21 DATE COMPLETED :								ED : 29/2	4/21	DATEL	OGGED	: 29/4/21	LOGG	ED BY:A	AB	CHECKED	BY : RI
t			DF	RILLIN									MA	ATERIAL				
- F	& CASING	RESS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		Soil Ty	MATER pe, Colour, Pl Secondary a	IAL DESCR asticity or Pa and Minor C	article Chara	cteristic	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCI & Other Obs	
					8.50m U75	- 8.0		СН	CLA fragr	Y: dark gi ments <i>(co</i>	rey, high plasti ntinued)	city, trace fir	e grained sa	nd sand, trace s			8.50: HP Samp = 40 kPa	- - a -
			VE	8.5 Sa P= R= <u>9.</u> (8.90m Samp VS P=45kPa R=18kPA 9.00m	9.0	-	<u>9.50m</u>		Y: pale grey, medium to high plasticity			s					
					10.00m SPT 0, 0, 2 N*=2 10.45m	- 10.0 - -							10.00: HP Samp = 50 kF	- Pa				
gFile>> 07/Jun/2021 11:22 10.02.00.04 Datgel Tools	- KR	- 0% Water LOSS			11.50m U75 11.90m 2.5,6 N*=11 12.45m 13.00m SPT 5,7,8 N*=15)m 6 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1					colour change thered, angula			with some zone il strength).	s of >Wp		11.50: HP Samp = 110 H 11.90: HP Samp = 110 H HV Samp P: 113 kPa R: 12.45: HP Samp = 110 - 13.00: HP Samp = 230 -	- - 45 kPa - - - - - - - - - - - -
TFNSW 42.1 LB.GLB Log RTA NON-CORE DRILL HOLE N2021031 BYRONS LANE SLIP.GPJ < <drawingfile>> 07/Jun/2021 11:22 10.02.00.04 Datgel Tools ※ 鼻 り</drawingfile>			E		13.45m 14.50m SPT 4, 4, 8 N*=12 14.95m 16.00m	14.0 - - - - - - - - - - - - - - - - - -			clay.		zones of iron c some silty sand			ure' structures in	VSt to St	14.50: HP Samp = 250 H	- - - - - - - - - - - - - - - - - - -	
TFNSW 42.	deta	ils of a	abbrev descr	viation	S					TR	ANSPO	DRT F	OR NS	SW				Transport for NSW

File: N2021031 BH13 2 OF 3

File: N2021031 BH13 3 OF 3

Appendix C. Laboratory Reports

RESULTS OF ACID SULFATE SOIL ANALYSIS

1 sample supplied by Transport For NSW on 5/05/2021 . Lab Job No. K6526. Analysis requested by Adam Brown. Your Job: N2021031.

3/76 Victoria Street GRAFTON NSW 2460											Non-tre	ated soil	Non-tre	ated soil
Sample Identification	EAL Lab Code	Texture	Moisture	Content	Potential Sulf	fidic Acidity		Actual Acidity	Retaine	d Acidity	Acid Neutrali	sing Capacity	Net Acidity	Lime Calculation
					(Chromium Red CRS			(Titratable Actual Acidity - TAA)			(AN	C _{BT})		
				(g moisture / g of oven dry soil)		(mol H⁺/t)	рН _{ксі}	(mol H [*] /t)	(%S _{NAS})	(mol H ⁺ /t)	(% CaCO ₃)	(mol H⁺/t)	(mol H*/t)	(kg CaCO ₃ /t DW)
Method Info.		**	*	*	(In-house me	ethod S20)	(In-hou:	se method 16b)	×	*	(In-house n	nethod S14)	**	**
BH12 5.5-5.95m	K6526/1	Medium	32.2	0.47	0.730	455	5.57	7	:				462	35

NOTES:

1. All analysis is reported on a dry weight (DW) basis, unless wet weight (WW) is specified.

2. Samples are dried and ground immediately upon arrival (unless supplied dried and ground).

3. Analytical procedures are sourced from Sullivan L, Ward N, Toppler N and Lancaster G. 2018. National acid sulfate soils guidance: national acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.

4. The Acid Base Accounting Equation, where Acid Neutralising Capacity has not been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (Eq. 3.2; Sullivan et al. 2018 - full reference above).

5. The Acid Base Accounting Equation for post-limed soil materials is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity - (post treatment Acid Neutralising Capacity - initial Acid Neutralising Capacity) (Eq. 3.3; Sullivan et al. 2018 - full reference above). While the Acid Neutralising Capacity of a soil material may not be included in the Net Acidity calculation (Note 4), it must be measured to give an Initial Acid Neutralising Capacity if verification testing is planned post-liming. The Initial Acid Neutralising Capacity must be provided by the client to enable EAL to produce Verification Net Acidity and Liming calculations for post-limed soil materials.

6. The Acid Base Accounting Equation, where Acid Neutralising Capacity has been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Actual Acidity - Acid Neutralising Capacity (Eq. 3.1; Sullivan et al. 2018 - full reference above).

7. The lime calculation includes a Safety Factor of 1.5 as a safety margin for acid neutralisation (Sullivan et al. 2018). This is only applied to positive values. An increased Safety Factor may be required in some cases.

8. Retained Acidity is required when the pH_{KCI} < 4.5 or where jarosite has been visually observed.

9. A negative Net Acidity result indicates an excess acid neutralising capacity

10. If insufficient mixing occurs during intial sampling, or during post-liming, or both: the Potential Sulfidic Acidity may be greater in the post-limed sample than in the intial sample; the post-liming Acid Neutralising Capacity may be lower in the post-limed sample than in the intial sample.

11. An acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture ≥ 0.03% S or 18 mol H*/t; medium texture ≥ 0.06% S or 36 mol H*/t; fine texture ≥ 0.1% S or 62 mol H*/t) (Table 1.1; Sullivan et al. 2018 - full reference above)

12. For projects that disturb > 1000 t of soil material, the coarse trigger of ≥ 0.03% S or ≥ 18 mol H⁺/t must be applied in accordance with Sullivan et al. (2018) (full reference above).

13. Acid sulfate soil texture triggers can be related to NCST (2009) textures: coarse and peats = sands to loamy sands; medium = clayey sand to light clays; fine = light medium to heavy clays (Sullivan et al. 2018 - full reference above).

14. Bulk density is required to convert liming rates to soil volume based results. Field bulk density rings can be submitted to EAL for bulk density determination.

15. A negative Net Acidity result indicates an excess acid neutralising capacity.

16. '..' is reported where a test is either not requested or not required. Where pH_{KCl} is < 4.5 or > 6.5, zero is reported for S_{NAS} and ANC in Net Acidity calculations, respectively.

17. Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.

18. ** NATA accreditation does not cover the performance of this service.

19. Analysis conducted between sample arrival date and reporting date.

20. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

21. Results relate to the samples tested.

22. This report was issued on 11/05/2021.

checked: Graham Lancaster Laboratory Manager

RESULTS OF SOIL ANALYSIS

1 samples supplied by Transport For NSW on 5/05/2021. Lab Job No. K6527. Analysis requested by Adam Brown. Your Job: N2021031 3/76 Victoria St GRAFTON NSW 2460

3/70 VICTORIA ST GRAFT ON INSW 2460		Sample 3
	Method	BH12 7.0-7.45m
	EAL job No.	K6527/1
Moisture (%)	inhouse	35
Texture	See note 2 below.	Fine
рН	Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.19
Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.294
Resistivity (ohm.mm)	** Calculation	33,972
Resistivity (ohm.cm)	** Calculation (ohm.mm / 10)	3,397
Chloride (mg/kg)	** Water Extract - ISE (1:5 Water)	119
Chloride (as %)	** Calculation	0.012
Sulfate (mg/kg)	** Water Extract-APHA 3120 ICPOES	251
Sulfate (as % SO₄)	** Calculation	0.025
Chloride / Sulfate Ratio	** Calculation	0.5

Notes:

1. ppm = mg/kg dried soil

2. For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and sitty clays

3. All results as dry weight DW - soils were dried at 60°C for 48hrs prior to crushing and analysis.

4. For conductivity 1 dS/m = 1 mS/cm = 1000 μ S/cm

5. Methods from Rayment and Lyons, 2011. Soil Chemical Methods - Australasia.CSIRO Publishing: Collingwood.

6. Based on Australian Standard AS: 2159-2009

7. Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.

8. Analysis conducted between sample arrival date and reporting date.

9. ** NATA accreditation does not cover the performance of this service.

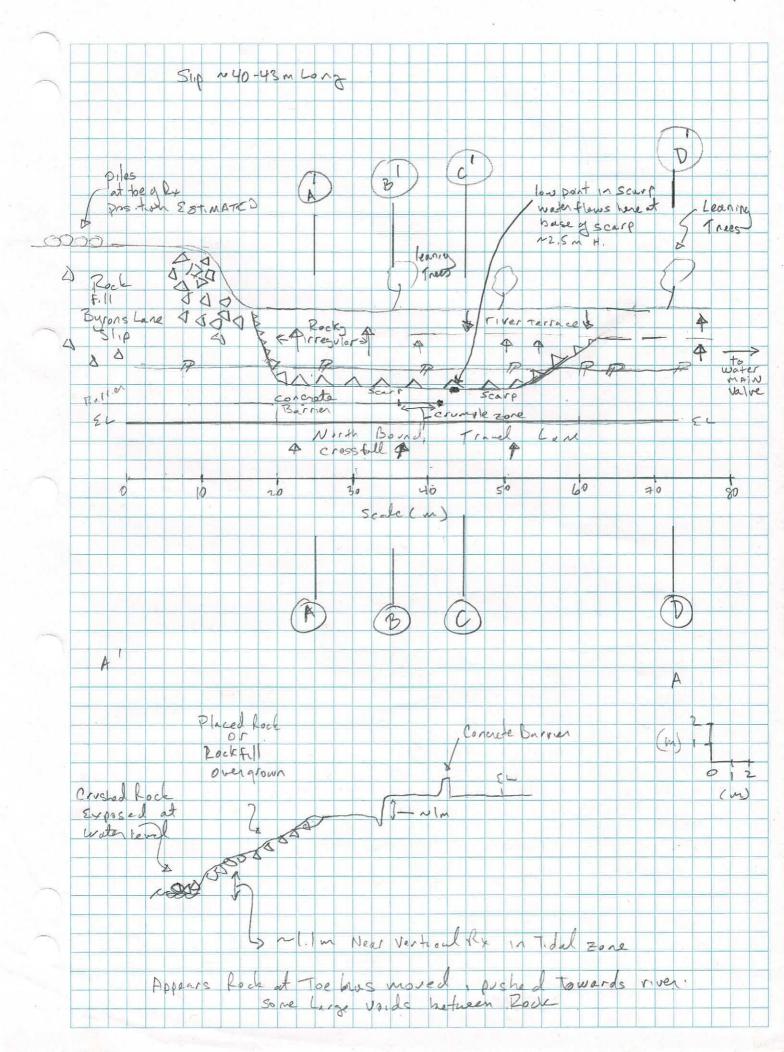
10... Denotes not requested.

11. This report is not to be reproduced except in full.

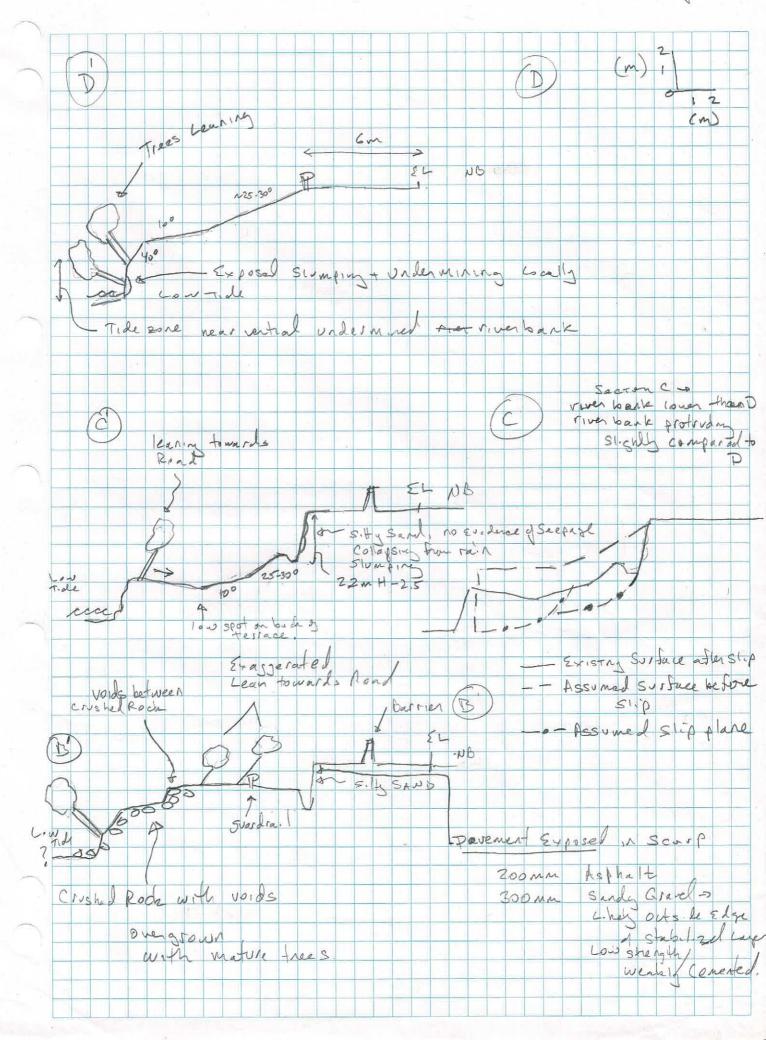
12. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

13. Results relate only to the samples tested.

14. This report was issued on 18/05/2020.



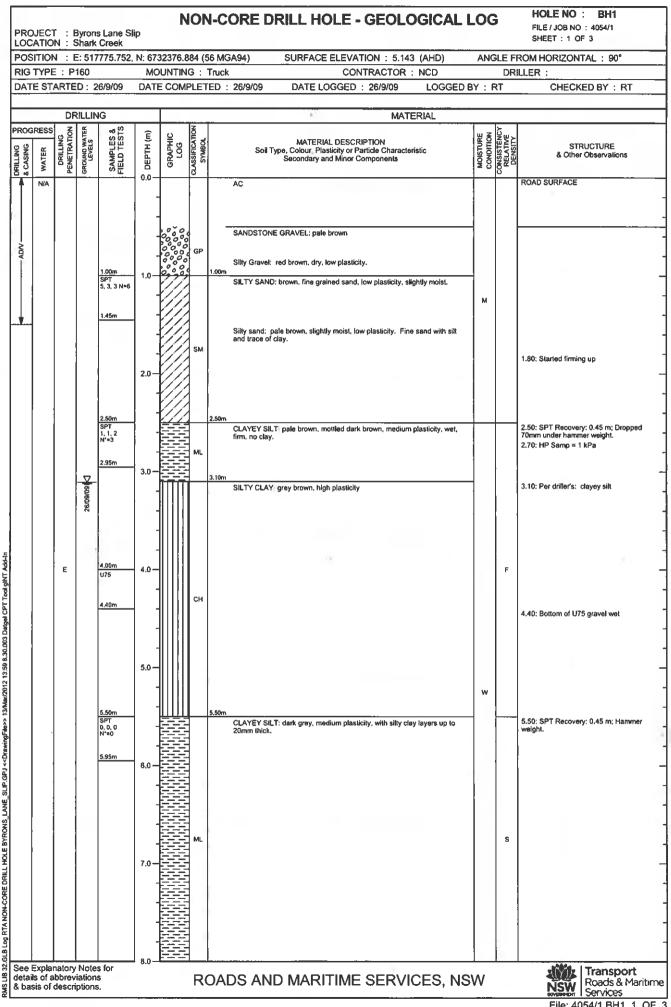
Å.


checked: Graham Lancaster Laboratory Manager

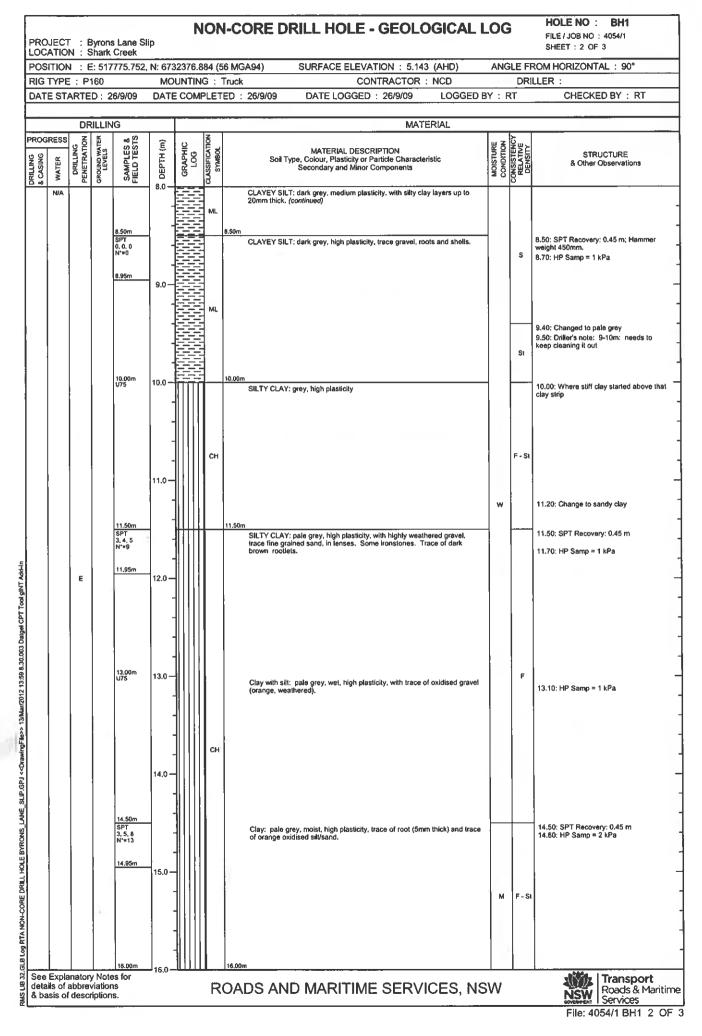
Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

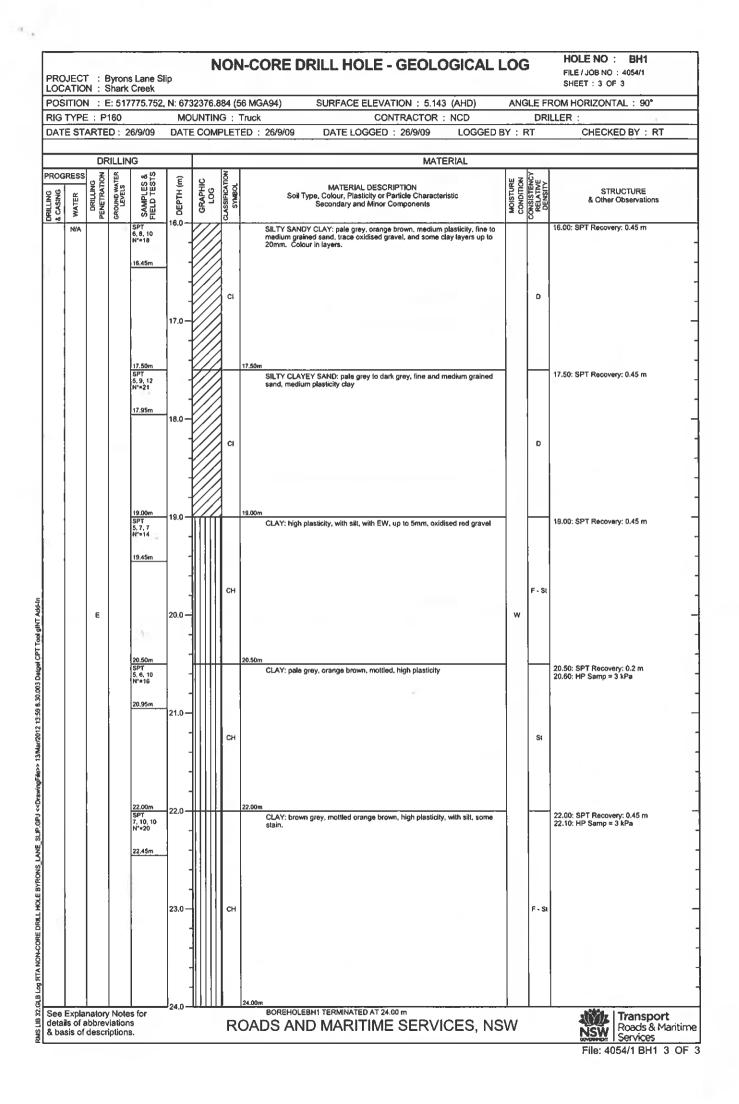
sketch 172

Sketch Z of Z



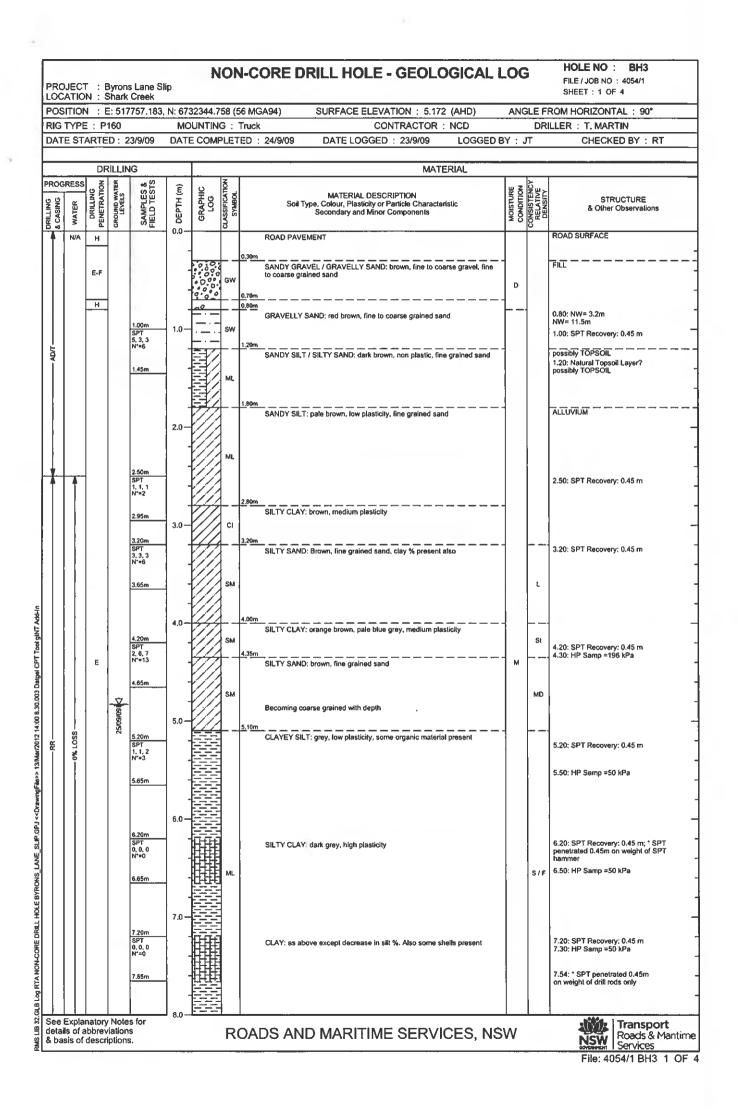
Stip Appears to be in the R. on Dark above water benel. It Appears then river bank has pished at due to lack of support. Apparent Mechanisms DErosion on River Bank - Tidal Action River ford 2) H-fh water - pokental in creased river heregits from feel RAIN 3) Abandned water MAIN - Unlikely bt worth Checking De Low sheright Malendo beler men buch. NGM Scarp to Edge Line 3 3 HAZARDS SANDY MATERIAL , erodes + Slumps when wet, Creating under parent which eventually collapses. Collapse of Scarp -D vain - protect Scarp from rain - surface runo/b des Not Appen to home seepage with Scarp > increases height headwall scalp + pokntul & Callapse CONTINUED SIIP (2) rain > protect from RAW + Suppose for formert wat 10 w shern the larger a cannot her in short ferm (3) Deep Slip no kives chunnel-we do Not know Rives chunnel shape of It a deep weak lager is carti. Sty

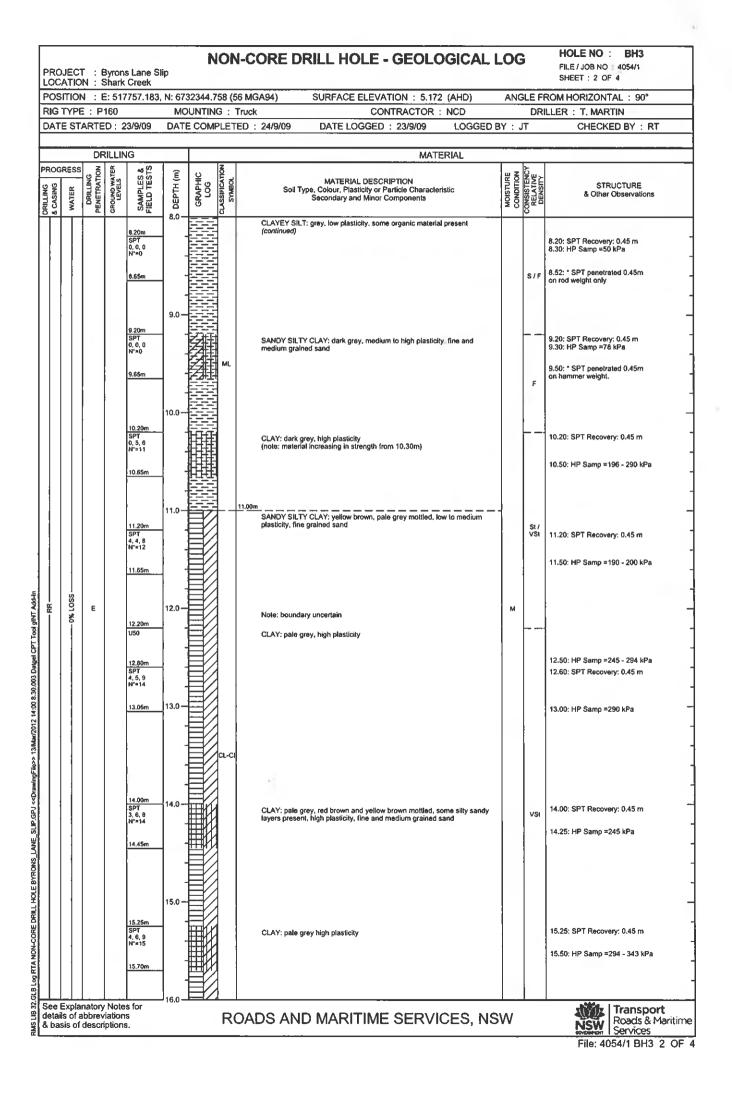

Slope Identification No.	Big Zi	VET WAY	- 13 4 10	nstan	SLip	Date	91/3/	2-1
Inspection Date	9/3/2		Completed	R-	-	Checked		
	1/3/-	ALT O CALCERT	By:			By:		
Slope Data	Slope Class	Slope below	Max Slope Height (m)	6	Av. Slope Angle (o)	30	Material	Soil
	Descr	ription:	PIVER B	ank Slip	North	a of By	rons Li	une
Location	1.1.212							
Roadloc Coordinates	Road No		Start Link No		Finish Link No		L or R?	
	C'way Code		Start Distance		Finish Distance		Length	-
GPS Coordinates (WGS84/GDA94)	St	art	Latitude		Longitude		Elevation	
		nish	Latitude		Longitude	1	Elevation	
MGA Coordinates		art	Zone Zone		Easting Easting		Northing Northing	
Rian Reference No	- 1		Lone		Plan Start			
Plan Reference No.					Chainage		L or R?	-
Locality Name	E	- yrons	Lane		Security Remise	A STATE	Aller Barry	- CARAL
Road Data		DT	400 v/d	Year of Count	2021		nit (km/hr)	100
	No of Lanes	Prescribed Direction	1	Counter Direction	1		istance te? (Y/N)	Y
Risk Analysis	Lalles	Direction	121 4 10	Direction		Aucqua		399.30
Hazard/Failure Mechanism	1	2	3	4	5	6	7	8
lazard Type	Slump	51.0	Deep Slip					
Failure Dynamics Ratings		ALL VER	and the start					
icale of Failure Rating - for Volume S1 - S5)	54	53	52					
Scale of Failure Rating - for Block Size (S1 - S5)	2	0	2					
Velocity of Failure Rating (R1 - R5)	RI	R3	RY					
Likelihood Rating (L1 - L6)	LI	L2/13	L4				A THE REPORT OF THE	
Consequence Class Ratings	See .			AND AND	-11-24	1		C. S. S. S. Las
Temporal Probability (T1 - T5)	TY	TY	T4		>TRA H,	e Volan	es for Bi	Rueju
Vulnerability (V1 - V5)	V3	V2	V2		betwee	n Tyna	ale + 1	Melear
Consequence Class for Loss of Life (C1 - C5)	CY	C3	03		deriver	fun	2021 0	pounts
Consequence Class for property damage etc (C1 - C5)	C3	C3	C3		UZB	Noise Mo	tell in	on
Risk Analysis Ratings	W	The second		1		The second		
Slope Attribute Score					Big R.	en wy	5 4	Tainda
Event Magnitude (M1 - M5)					and	M PACI	0	D
Hazard Classification (H1 - H5)					attyn	dale .	tic Hay	ung RA
Assessed Risk Level	ARLI	ARL2-3	AALI					
(ARL1 - ARL5)	· /////	1111 1 1 1 1	1111		NB+5	BK	N 200	V/L/d

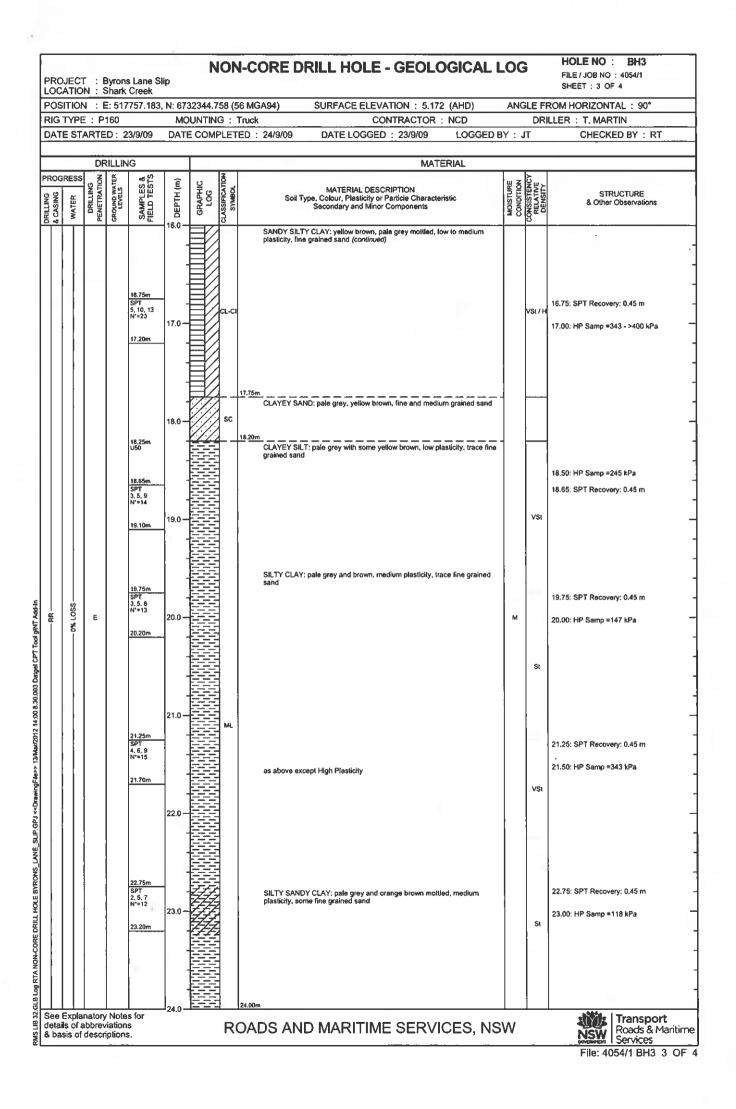

Version 4

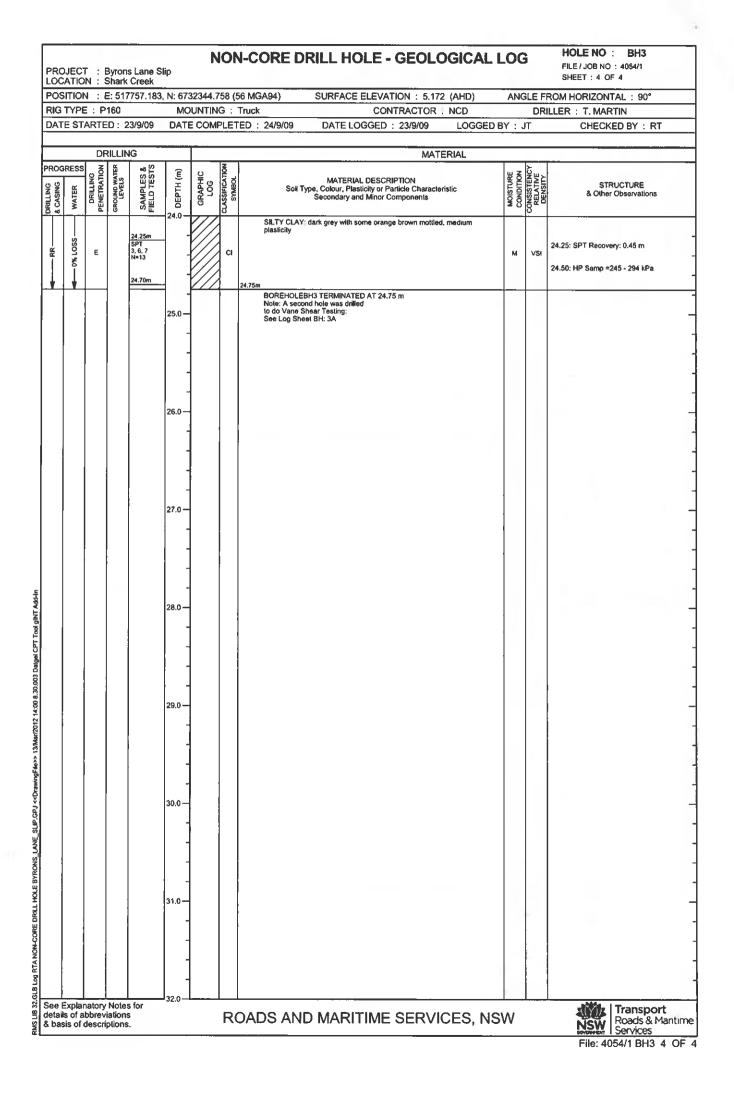
1.

File: 4054/1 BH1 1 OF 3

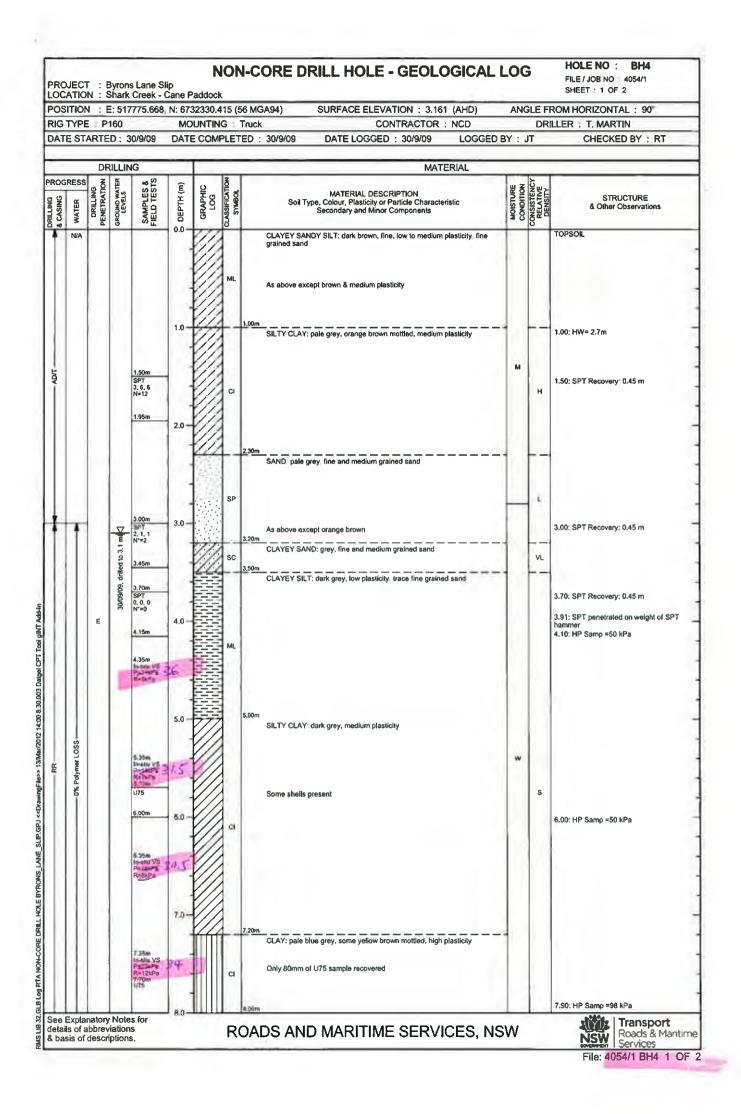

Ŷ

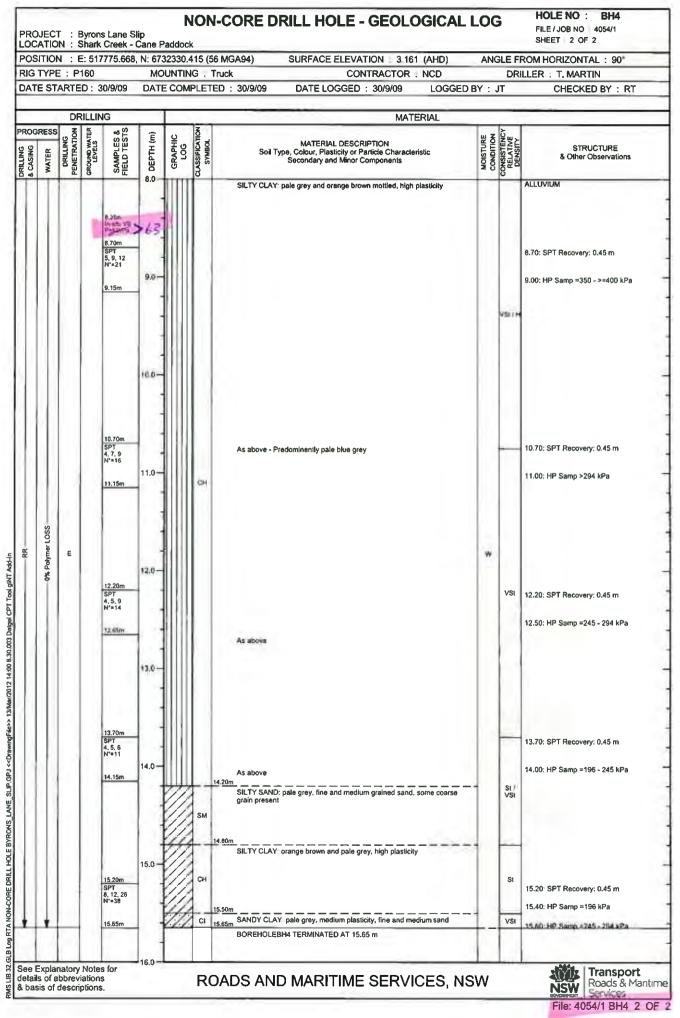

		:E :P1		732.245,			.802 (5 NG : T		ANG		ROM HORIZONTAL : 90° ILLER :
	_		_	7/9/09				D : 27/9/09 DATE LOGGED : 27/9/09 LOGGED	BY : F	रा	CHECKED BY : RT
_		DR	ILLIN	IG				MATERIAL			· · · · · · · · · · · · · · · · · · ·
DGR	WATER SS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				8.90m 9.00m SPT	8.0		СН	CLAY /SILTY CLAY: grey, high plasticity, with sill, with snail/shell and rootlets (continued) Om Clay with silt - S to A CLAY /SILTY CLAY: grey, high plasticity, with silt, with fine gravel, and sand. Trace of shell fragments. With roots to 2mm.	_	s	8.60: HP Samp = 1 kPa 9.00: Hammer
5uisen 1411				0, 0, 0 N=0 9.45m 10.00m			СН	sand. Trace of shell fragments. With roots to 2mm.	~		9.70: Increasing stiffness
				SPT 0, 3, 4 N*=7 10.45m	11.0-		СН	CLAY: pale grey, high plasticity			10.00: SPT Recovery: 0.15 m 10.10: HP Samp = 1 kPa 10.20: Casing driven to 10.20m to stop silty clay collasping
		E		11.50m U75 11.90m SPT 5, 5, 8 N*=13 12.35m				.50m CLAY: grey with orange brown, high plasticity, trace fine gravel, trace sand Silty clay: pale grey, high plasticity with lenses of fine gravel stained orange brown. Fine grained sand and lenses of stiff clay.	M - W		11.90: SPT Recovery: 0.45 m 12.00: HP Samp = 1 kPa
				13.00m SPT 5, 10, 13 N=23 13,45m	- 13.0			Clay: pale grey with orange brown staining, with some rootlets and some EW orange brown gravels to 4mm.		F•SI	13.10: HP Samp = 3 kPa
				14,50m	14.0-		сн		м	-	
				SPT 6, 8, 13 N*21 14.95m	15.0-			Clay: pale grey with some orange brown staining, high plasticity, with trace of EW gravel.	M - W	-	14,60: HP Samp = 1 kPa
e Ei					- 16.0 -			5.00m			


1


File: 4054/1 BH2 2

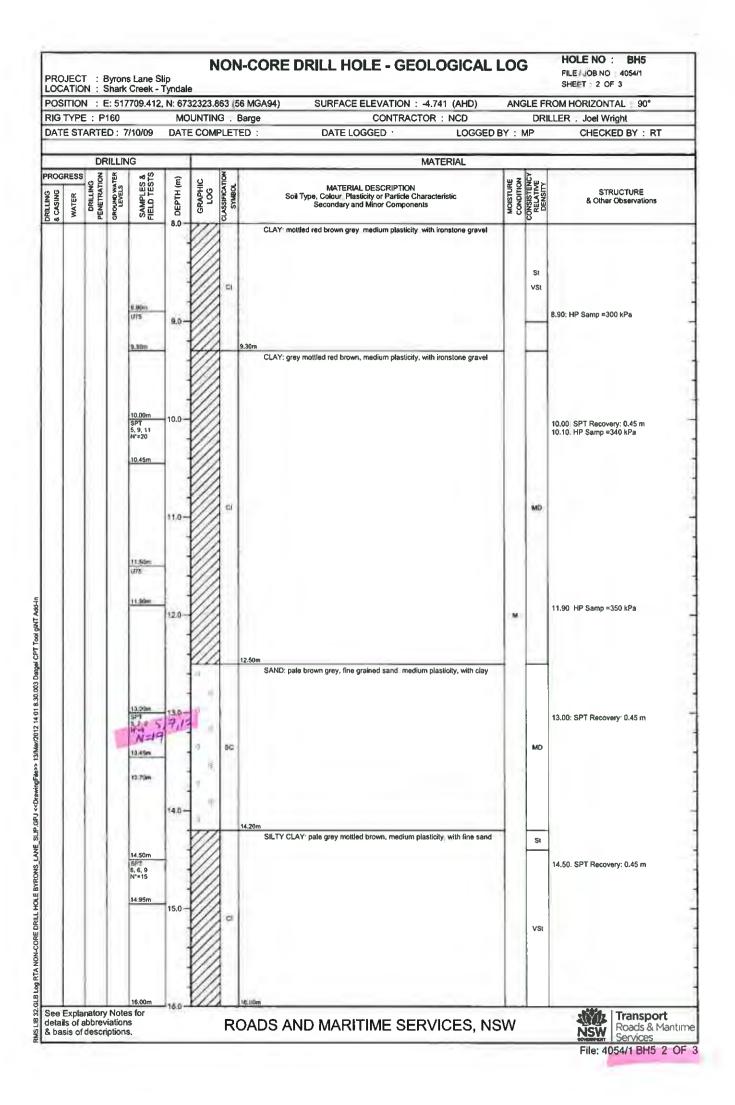
G TYP	Е.Р	160		MO	UNTIN	GIT			DR	ROM HORIZONTAL : 90
ATE ST	ARTE	D:2	7/9/09	DATE	COM	PLETE	D : 27/9/09 DATE LOGGED : 27/9/09 LOGGED	BY : F	۲۲	CHECKED BY : RT
						12 1	MATERIAL			r
& CASING WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			16.10m	- 16.0			16.00 - 16.30m Clay: pale grey high plasticity trace of silt and fine sand. Some lenses of fine sand. Trace of rootlet.	м		16.10: SPT Recovery 0 34 m
			4, 5, 9 N*=14 16.55m	-			16.30 - 16.35m Sandy clay pale grey, high plasticity 16.30 - 16.45m Sandy clay to sand. 16.33 - 16.40m Sand with clay/clayey sand, pale grey, medium plasticity. 16.40 - 16.45m Sand with silt. brown non-plastic		VSt S1	16.35 HP Samp 2 kPa
			17.50m \$PT 11 13 16 N*29 17.95m	17.0			SAND pale and dark grey bands, fine to medium grained sand, low plasticity, with sit, trace day increasing day content towards 17 950m. Tip: 30mm clayey sand.	w	MD	17.50 SPT Recovery: 0.45 m
			19.00m SPT 4,3,7 N*=10 19.45m	- - 19.0 - - - - - -		52	Clay and clayey silt interbedded: pale grey high plasticity. Clayey silt lenses - 50 -100mm thick.	M = W	FSI	19.00 [.] SPT Recovery 0.45 m, HP in clar 19.10 HP Samp = 2 kPa 19.20: HP Samp = 1 kPa
	E		20 50m SPT 5 9,9 N*=18 20 95m	21.0-			Clay with sill: pale grey orange brown stains, high platituity. With lenses of EW fine gravel heavily stained of orange red. With wity clay lenses.		VSt	20.50 SPT Recovery: 0.45 m 20.60 HP Semp = 3 kPa
			22.00m SPT 6, 9, 10 N**19 22.45m	- 22.0			CLAY pale grey, erange brown, high plasticity, with silt, with silty day lenses and lamination.	м		22.00: SPT Recovery: 0.45 m 22.10: HP Samp = 2 kPa
	-			- 23.0 -		đ			Br- VSI	
e Expla				24.0-			4,05m BOREHOLEBH2 TERMINATED AT 24.00 m			

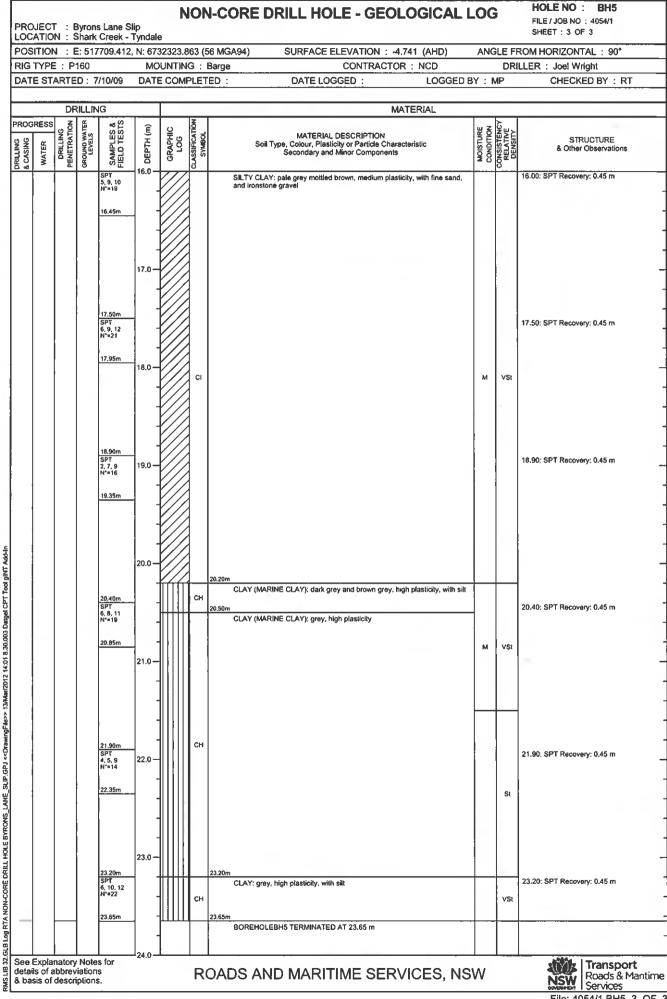


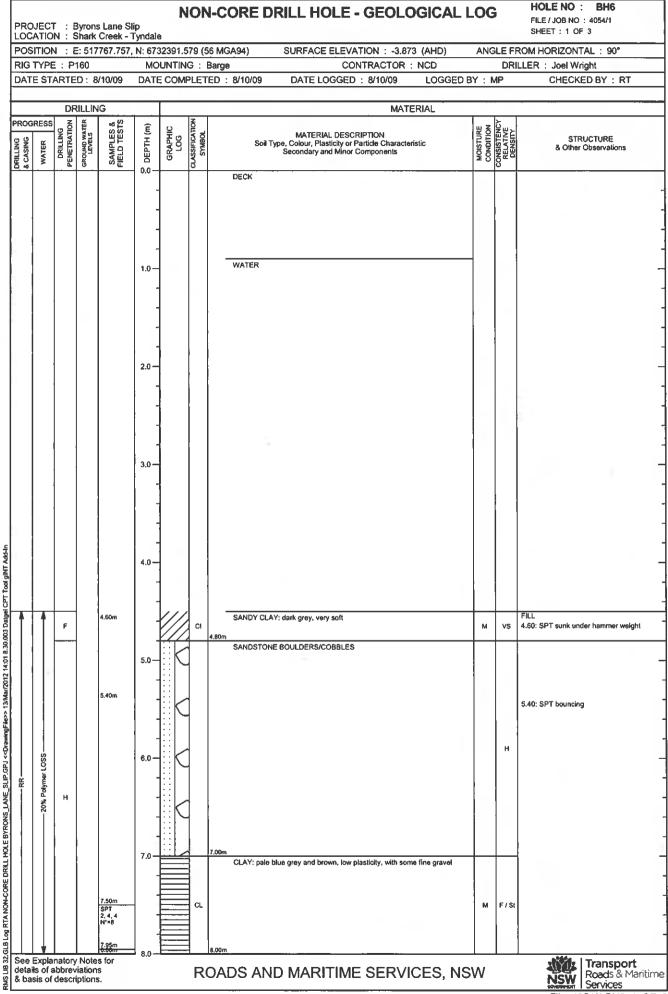


HOLE NO : **BH3A NON-CORE DRILL HOLE - GEOLOGICAL LOG** FILE / JOB NO : 4054/1 PROJECT : Byrons Lane Slip LOCATION : 1.3m Sth of BH:3 SHEET : 1 OF 2 SURFACE ELEVATION : 5.235 (AHD) POSITION : E: 517748.036, N: 6732333.908 (56 MGA94) ANGLE FROM HORIZONTAL : 90* RIG TYPE : P160 MOUNTING : Truck CONTRACTOR : NCD DRILLER : T. MARTIN DATE STARTED : 25/10/09 DATE COMPLETED : 25/10/09 DATE LOGGED : 25/10/09 LOGGED BY : JT CHECKED BY : RT DRILLING MATERIAL DRILLING PENETRATION SAMPLES & CLASSIFICATION: SYMBOL PROGRESS GROUND WATER LEVELS MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components STRUCTURE DRILLING & CASING WATER & Other Observations 0,0 1.0 Note: For material description see BH:3 2.0 3.0 Vane Shear Test (VST) Vane = 65/130mm 3WS LIB 32.GLB Log RTA NON-CORE DRILL HOLE BYRONS_LANE_SLIP.GFJ <<DrawingFile>> 13Mar/2012 14:00 8.30.003 Daige/ CPT Tool gINT Add-In 4.0 5.0 5.65m In-situ VS P>63kPa 6.0-6.00: H.P. = 68 KPa 6.55m In-silu VS P=43kPa R=6kPa 7,0s 7.35m In-situ VS P≍34kPa R≈6kPa s 8.0 NSW See Explanatory Notes for details of abbreviations & basis of descriptions. Transport Roads & Maritime Services ROADS AND MARITIME SERVICES, NSW

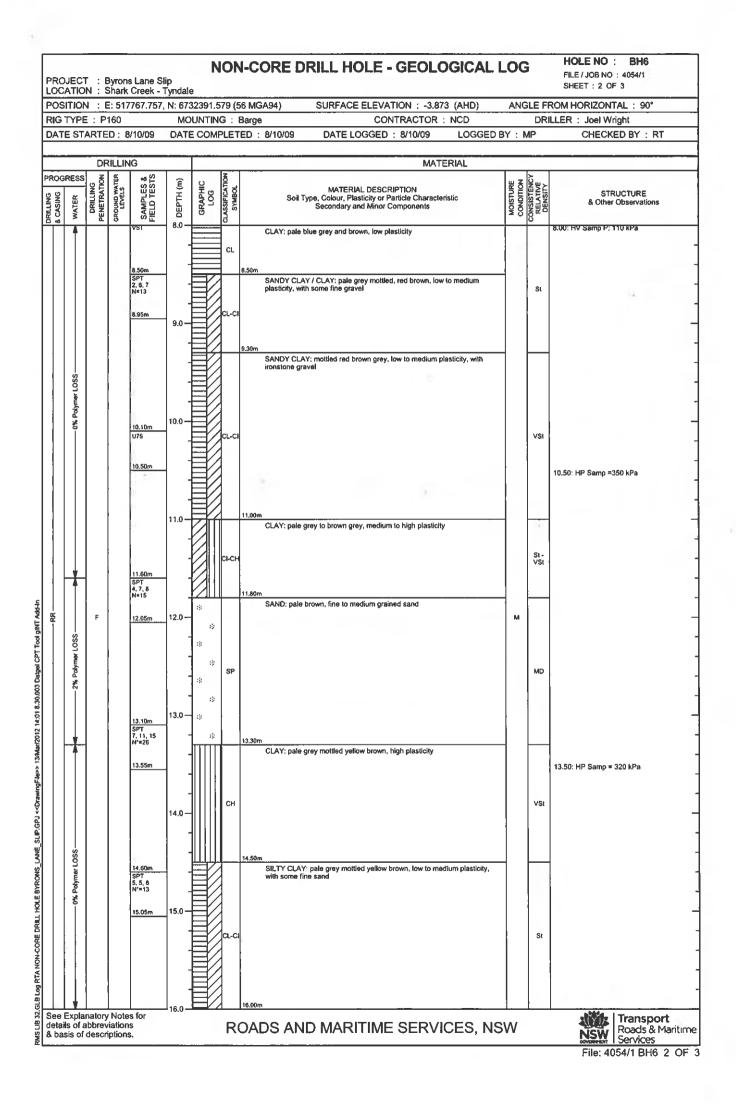
File: 4054/1 BH3A 1 OF 3

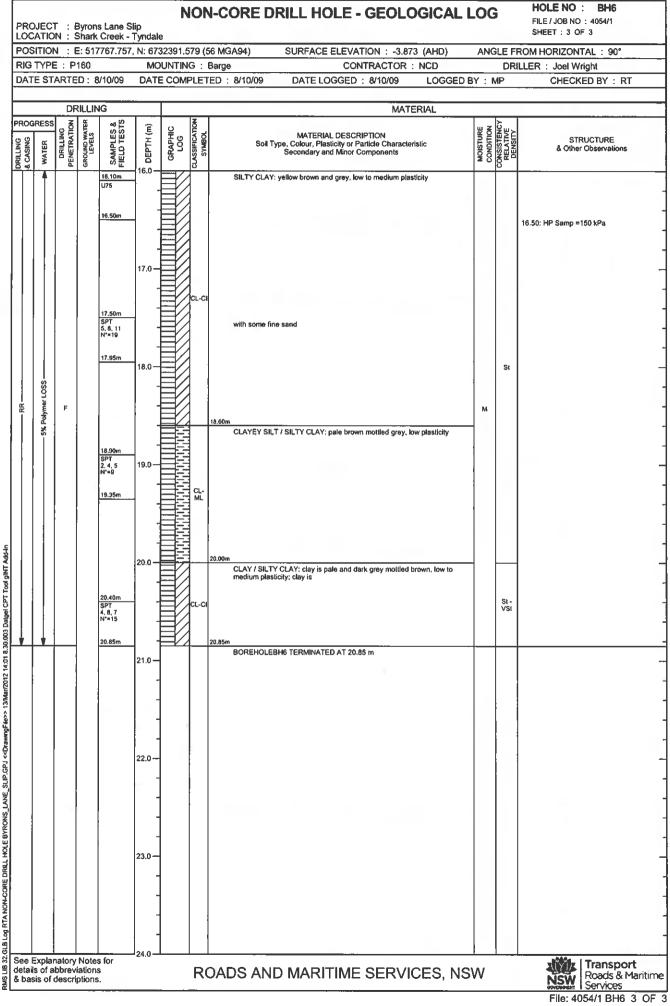

					s Lane S Sth of BH		N	ION	-CORE DRILL HOLE - GEOLOGICAL L	.00	•	FILE / JOB NO SHEET : 2 OF	: 4054/1
	POS	ITIO	1:1	E: 517			32333.9	08 (5	MGA94) SURFACE ELEVATION : 5.235 (AHD)	ANG	GLE F	ROM HORIZON	TAL : 90°
			E : P		E110/00		UNTIN			× .		ILLER : T. MAR	
	UAT	231		:0:2	5/10/09	DATE		FLEI	D : 25/10/09 DATE LOGGED : 25/10/09 LOGGED B			CHECK	ED BY : RT
			DF	RILLIN					MATERIAL				
	PROG & CASING & CASING	RESS	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	68 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STR & Other	UCTURE Observations
					8.10m In-situ VS P=33kPa						s	-	
					<u>Badw</u> P≜ U75	-							-
						-					s		-
					6.80m	-						8.70: H.P. = 69 KPa	· -
						9.0 —							-
					9.10m In-situ VS P=54kPa	-]	-
					R=9kPa	-							-
						-							-
						-							-
					10.00m	10.0 —							-
					In-situ VS P≈54kPa R≈21kPa	-							-
						-							-
						- 1							-
						-							-
					11.00m	11.0-							
					In-situ VS P>63kPa	-							-
						-							-
						-							-
5						-							-
T Add-						12.0 —		·					-
NI BIN						-							-
CPTT						-			Note: molecial equipade too stiff for				-
Datgel						-			Nole: material onwards too stiff for Vane Shear Testing		F		-
0.003						-							-
00 8.3						13.0 —							-
012 14						-							-
S/Mar/2						_							-
1e>> 1						-							
MingFi													
Ş						14.0 —							-
IP.GP.													
NESL										ľ			
NS													
BYRO													
HOLE						15.0 —							_
DRILL													
CORE			1								1		
NON								$\left \right $					
og RTA													
GLBL						_{16.0} _			BOREHOLEBH3A TERMINATED AT 16.00 m				
RMS LIB 32.GLB Log RTA NON-CORE DRILL HOLE BYRONS_LANE_SLIP.GPJ < <drawingfile>> 13Mair2012 14:00 8:30.003 Datget CPT Tool gINT Add-In</drawingfile>		s of a	bbrev	Note iation iptions	\$			R	ADS AND MARITIME SERVICES, NS	W		NSW	Transport Roads & Maritime Services



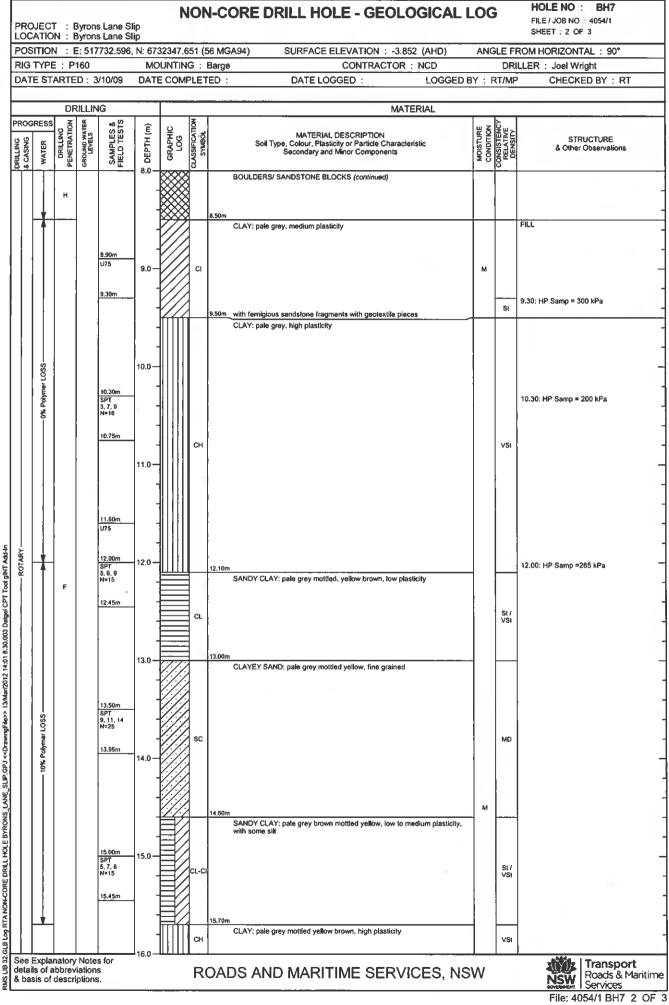

HOLE NO : BH5 NON-CORE DRILL HOLE - GEOLOGICAL LOG FILE / JOB NO : 4054/1 PROJECT : Byrons Lane Slip LOCATION : Shark Creek - Tyndale SHEET : 1 OF 3 SURFACE ELEVATION : -4.741 (AHD) POSITION : E: 517709.412, N: 6732323.863 (56 MGA94) ANGLE FROM HORIZONTAL : 90° MOUNTING : Barge DRILLER : Joel Wright RIG TYPE : P160 CONTRACTOR : NCD LOGGED BY : MP DATE STARTED : 7/10/09 DATE COMPLETED : CHECKED BY : RT DATE LOGGED DRILLING MATERIAL DRILLING SAMPLES & FIELD TESTS GROUND WATER LEVELS PROGRESS CLASSIFICATION SYMBOL MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components STRUCTURE & Other Observations DRILLING WATER 0.0 BARGE WATER 1.0 2.0 3.0 RMS LIB 32.GLB Log RTA NON-CORE DRRL HOLE BYRONS_LANE_SLIP.GPJ <<DrawingFile>> 13Mart2012 14:01 8.30.003 Datgei CPT Tool ginT Add-In 4.0 5.0 ROCK BOULDERS SILTY CLAY: pale brown, medium plasticity, slightly sandy 6.0 CI м 6.40m SPT 3, 4, 5 N**9 SILTY CLAY; yellow brown, medium plasticity, with sand 6.40: SPT Recovery: 0.45 m CI м 6.70m CLAY: pale blue grey, medium to high plasticity 6.85m \$t U75 7.0 7.2m: with ironestone bands, motiled grey brown 7.30m 7.30: HP Samp =180 kPa b.c м 8.0 See Explanatory Notes for details of abbreviations & basis of descriptions. NSW NSW Services ROADS AND MARITIME SERVICES, NSW

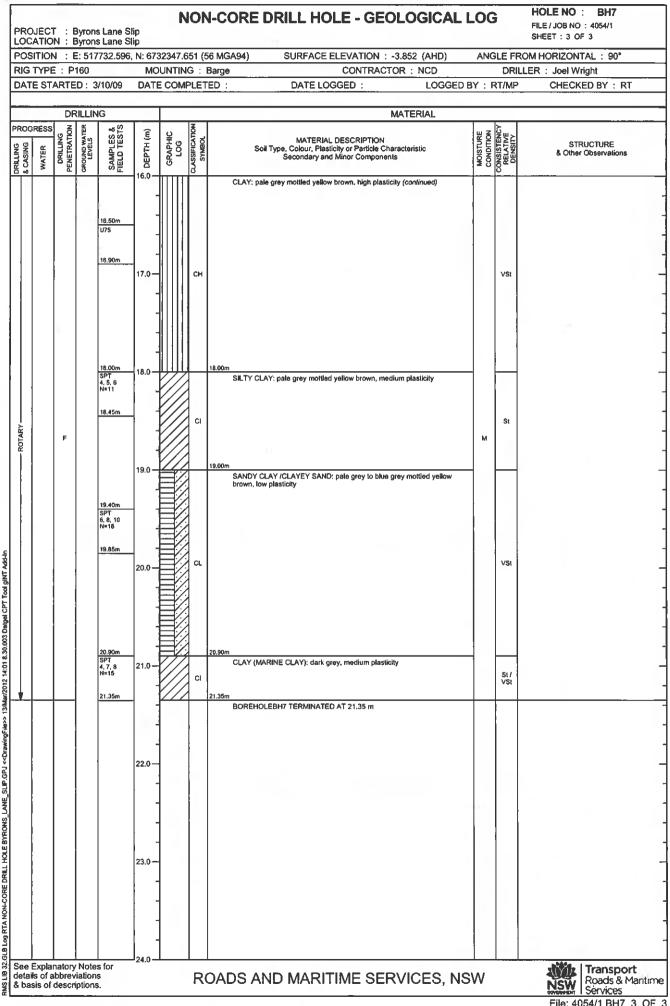
File: 4054/1 BH5 1 OF 3





File: 4054/1 BH5 3 OF 3


File: 4054/1 BH6 1 OF 3

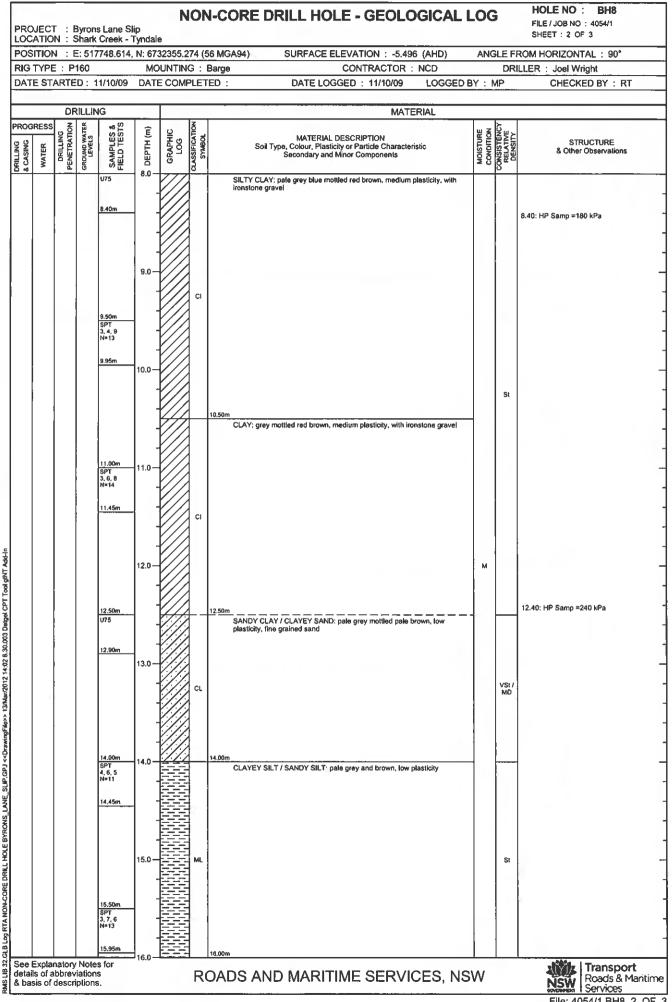


BH6

HOLE NO : BH7 NON-CORE DRILL HOLE - GEOLOGICAL LOG FILE / JOB NO : 4054/1 PROJECT : Byrons Lane Slip LOCATION : Byrons Lane Slip SHEET : 1 OF 3 POSITION : E: 517732.596, N: 6732347.651 (56 MGA94) SURFACE ELEVATION : -3.852 (AHD) ANGLE FROM HORIZONTAL : 90* RIG TYPE : P160 MOUNTING : Barge CONTRACTOR : NCD DRILLER : Joel Wright DATE STARTED : 3/10/09 DATE COMPLETED : CHECKED BY : RT DATE LOGGED : LOGGED BY : RT/MP DRILLING MATERIAL SAMPLES & FIELD TESTS DRILLING PROGRESS GROUND WATER LEVELS CLASSIFICATION SYMBOL MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components STRUCTURE & Other Observations DRALING & CASING WATER 0,0 DECK WATER 1.0 2.0 HW Casing 3.0 RMS LIB 32.GLB Log RTA NON-CORE DRILL HOLE BYRONS_LAME_SLIP.GPJ «CDrawingFila>> 13Mart2012 14:01 8:30.003 Dargiel CPT Tool gINT Add-In 4.0 5.0 BOULDERS/ SANDSTONE BLOCKS 6.0 LOSS 20-30% Polymer ROTARY н 7.0 6.0 See Explanatory Notes for details of abbreviations & basis of descriptions. NSW Transport Roads & Maritime Services ROADS AND MARITIME SERVICES, NSW

BH7

File: 4054/1 BH7 3 OF 3

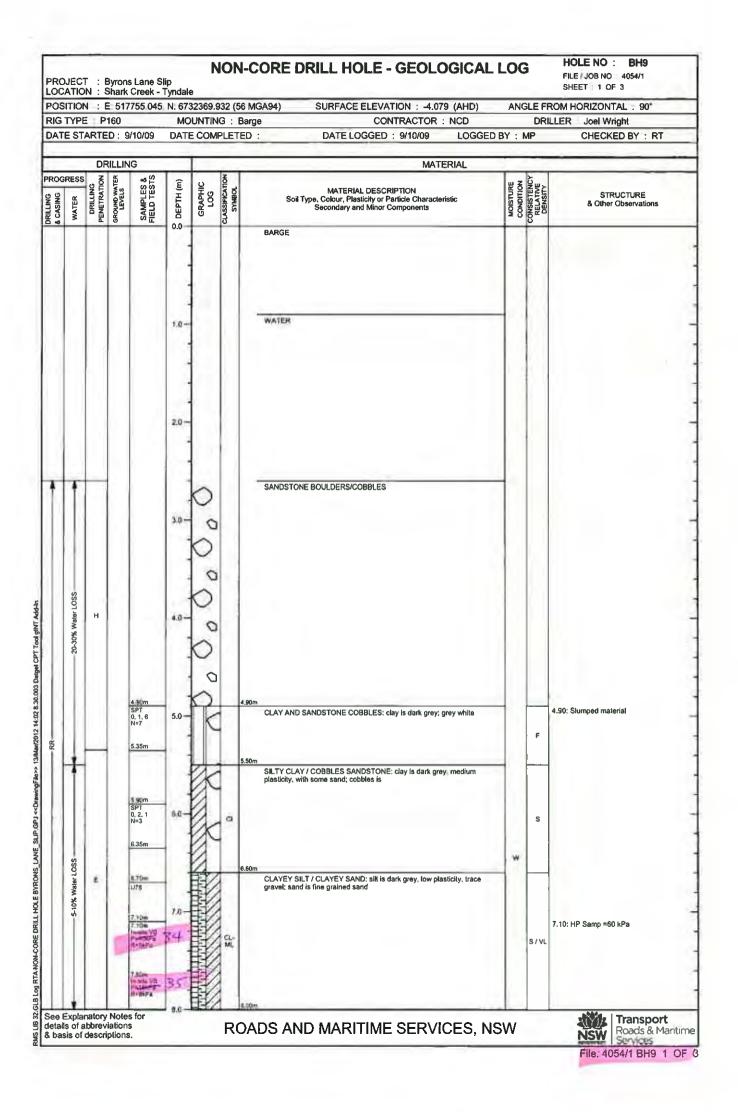

NON-CORE DRILL HOLE - GEOLOGICAL LOG

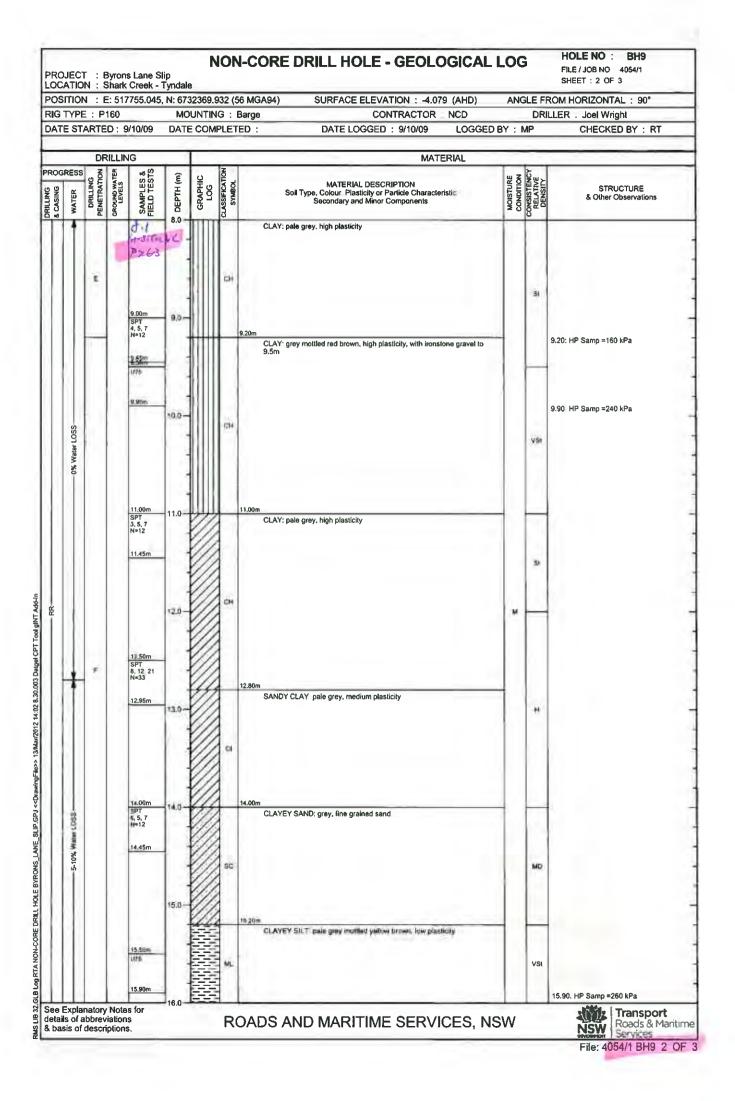
.

PROJECT : Byrons Lane Slip

HOLE NO : BH8 FILE / JOB NO : 4054/1 SHEET : 1 OF 3

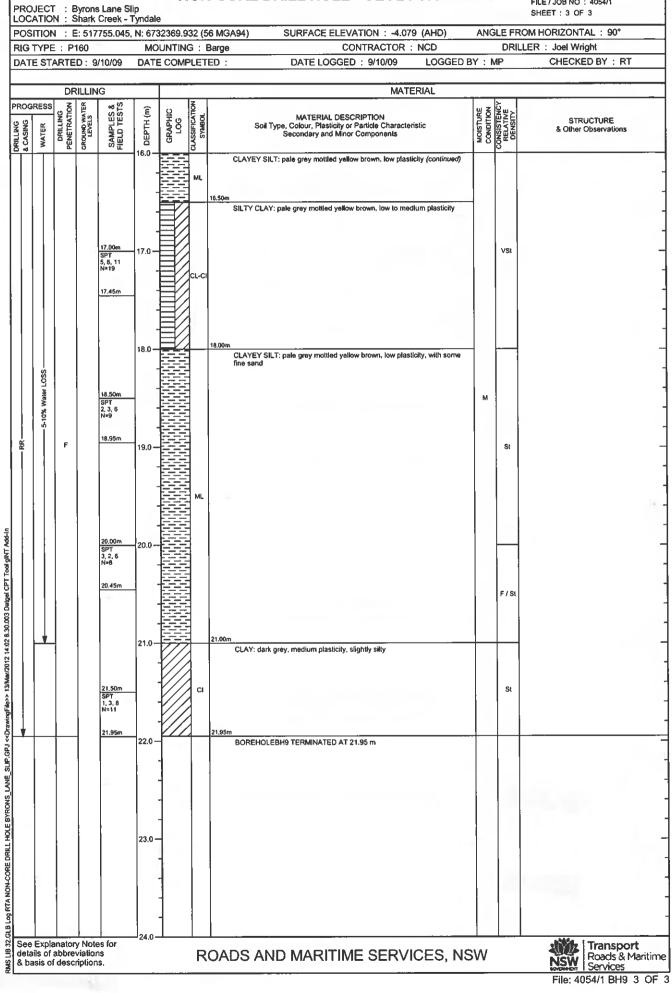
POSITION	: E: 5177	Creek - T 748.614,	N: 673			· · · · · · · · · · · · · · · ·	ANC		ROM HORIZONTAL : 90° ILLER : Joel Wright
DATE STAF	RTED: 11	/10/09	DATE	COM	PLET	D : DATE LOGGED : 11/10/09 LOGGED	BY :	MP	CHECKED BY : RT
	DRILLING					MATERIAL		_	
ROGRESS WATER W DRILING	PENETRATION GROUND WATER LEVELS	SAMPLES & FIELD TESTS	S DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	54	3.70m SPT 2.3.5 N≠8 4.15m	- - - - - - - - - - - - - - - - - - -			WATER			3.70: (słumped material)
	47 F2	5.50m SFT №9 5.95m	5.0 5.0 6.0 7.0		GC CL	0m SANDY CLAY: pale grey to blue grey mottled brown. low plasticity, with fine gravel, with sit	м	L St	
tails of abb	tory Notes previations		- - 8.0		R	MARITIME SERVICES, NS	SW		NSW Services

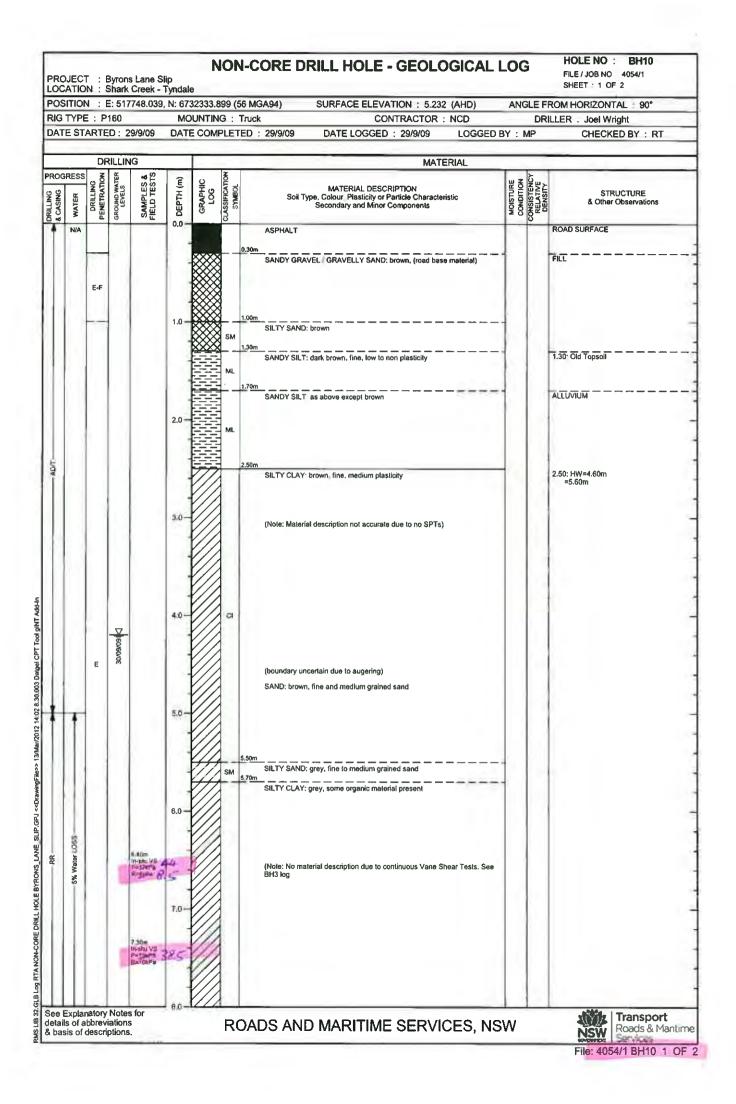

File: 4054/1 BH8 2 OF 3

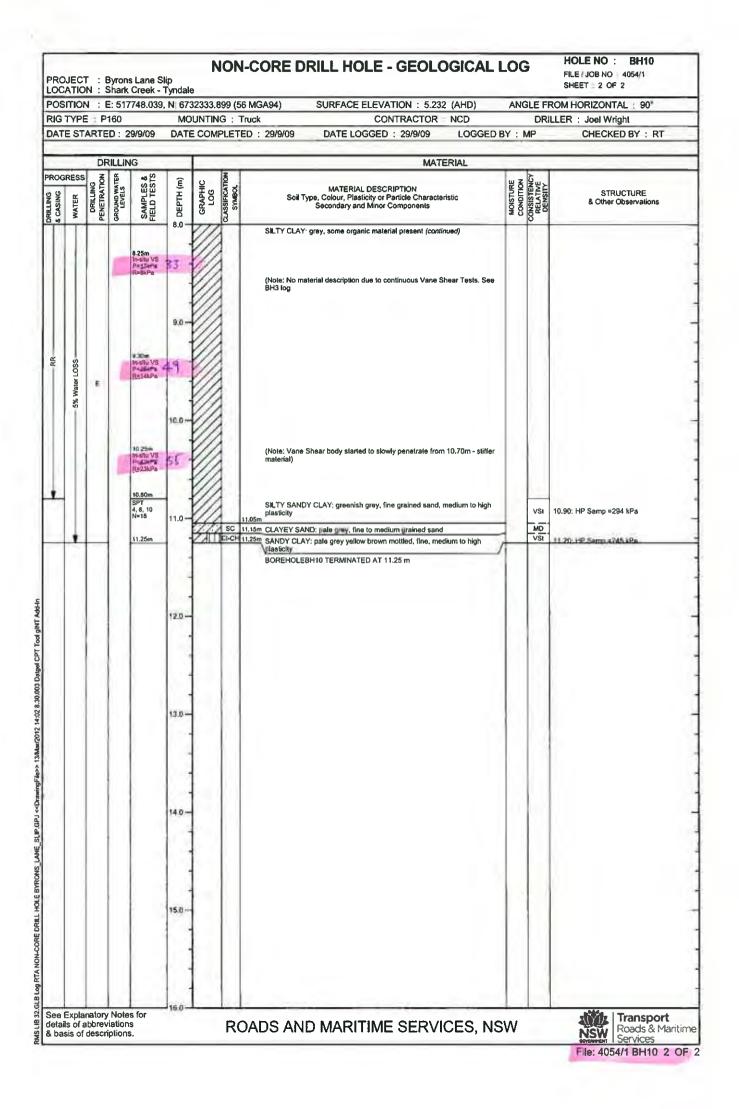

NON-CORE DRILL HOLE - GEOLOGICAL LOG

HOLE NO : BH8 FILE / JOB NO : 4054/1

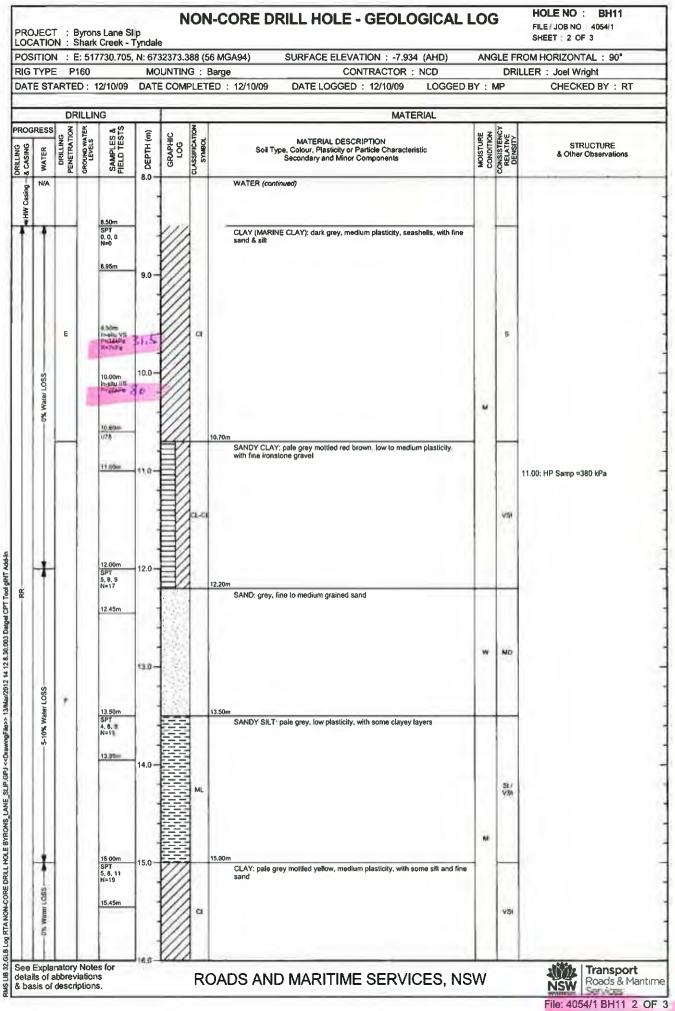
PR		T : E DN : 5	Byron Shark	s Lane S Creek - 1	lip Tvndal	e			200		FILE / JOB NO : 4054/1 SHEET : 3 OF 3
					-		74 (5	6 MGA94) SURFACE ELEVATION : -5.496 (AHD)	ANG	GLE FI	ROM HORIZONTAL : 90*
		E : P				UNTIN					LLER : Joel Wright
DA	TE ST	ARTE	D: 1	1/10/09	DATI	E COM	PLET	ED : DATE LOGGED : 11/10/09 LOGGED	BY : N		CHECKED BY : RT
		DF		IG				MATERIAL	_	-	
BRILLING BU	GRESS		GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				17.00m U75	- 16.0 - - - - - - - - - - - - - - - - - -		ML	CLAYEY SILT / SANDY SILT: pale grey and brown, low plasticity 17.00m SILTY CLAY pale grey brown, low to medium plasticity		SI	
		i		17.40m 18.50m	18.0 -		CL-CI	18.50m CLAYEY SILT: pale grey and brown, low plasticity, with some fine sand		VSt	17.40: HP Samp =260 kPa
				SPT 3, 5, 10 N=15 16.95m	- 19.0		ML	CEALET SILL, para grey and blown, kw plassicity, with surfice fille salk	м	St <i>i</i> VSI	
RMS LIB 32.5LB Log RTA NON-CORE DRBL. HOLE BYRONS, LANE, SLP. GPJ <				20.00m SPT 2, 5, 7 N=12 20.45m	-20.0			with some clay layers			
<pre><drawingfile>> 13/Mar/2012 14:0;</drawingfile></pre>				21.50m 21.95m	21.0 -		сі-сн	CLAY (MARINE CLAY): dark grey, medium to high plasticity, with some silt		St	
OLE BYRONS_LANE_SLIP.GPJ <		-		SPT 4,7,7 N≈14 22,40m	22.0			BOREHOLEBH8 TERMINATED AT 21.95 m			
GLB Log RTA NON-CORE DRILL H					23.0						
See deta & ba	ils of a	natory abbrev descri	iation	s	24.9		R	DADS AND MARITIME SERVICES, N	sw		NSW NSW Services

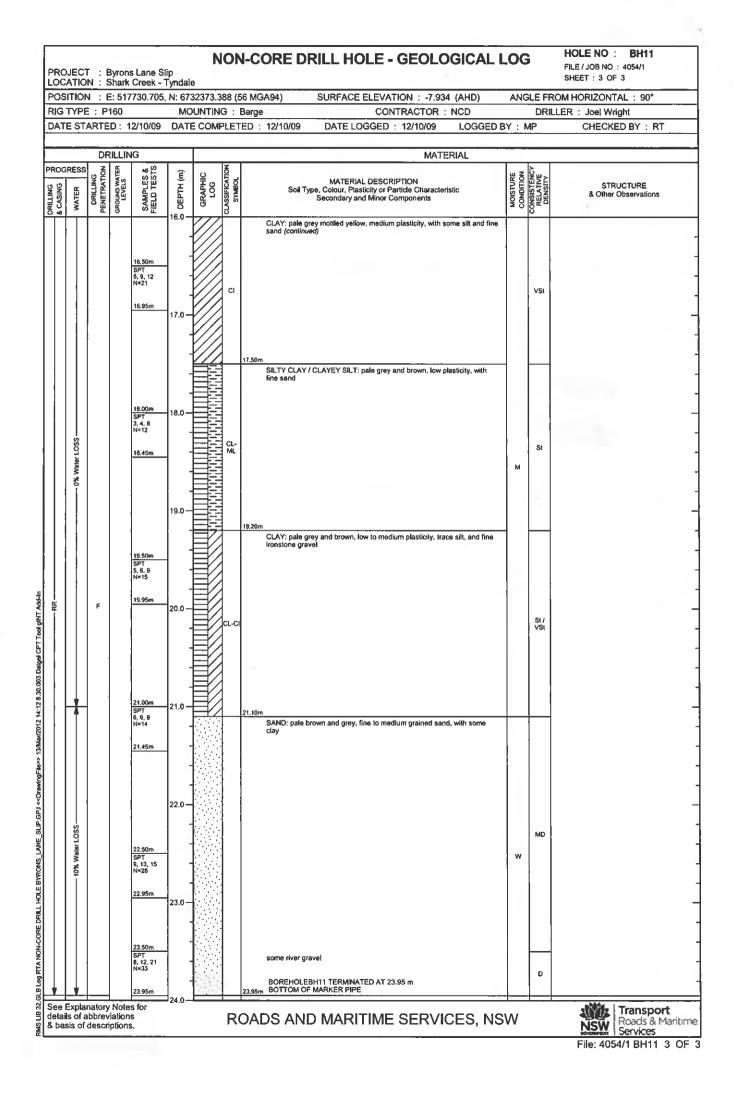

File: 4054/1 BH8 3 OF 3

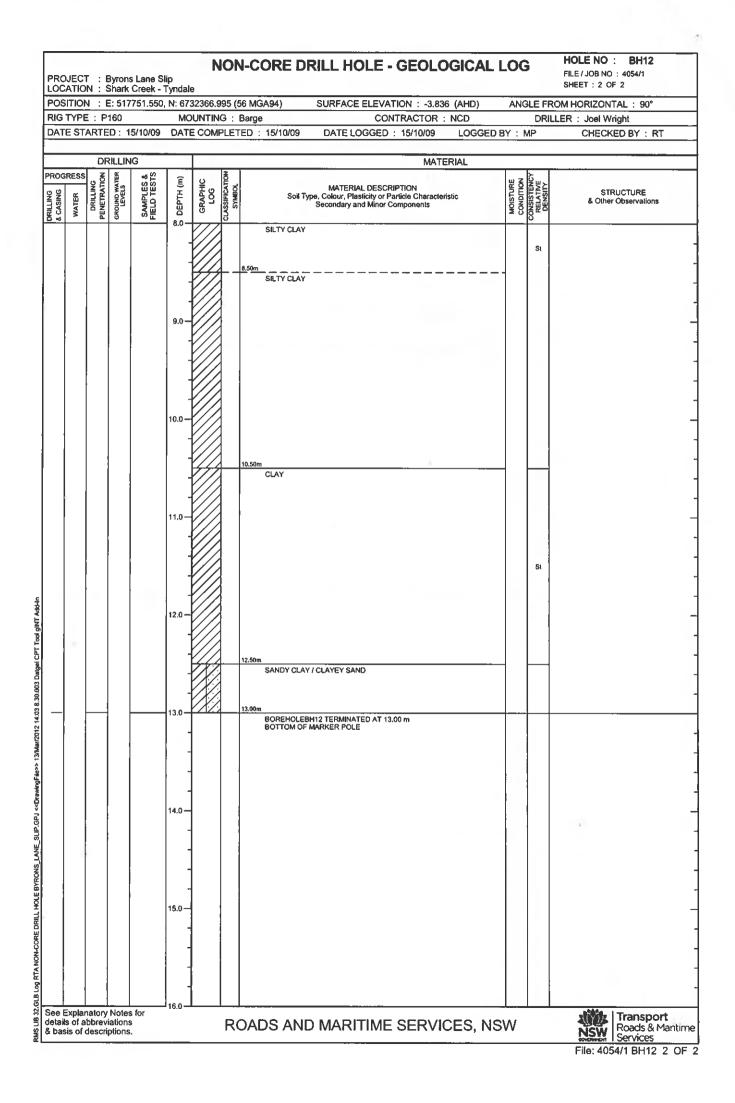




NON-CORE DRILL HOLE - GEOLOGICAL LOG


HOLE NO : BH9 FILE / JOB NO : 4054/1




	PRO		T:	Byron	s Lane SI Creek - 1	ip Fyndale			I-CORE D	RILL HC	OLE - G	EOLO	GICAL	LOG		HOLE NO FILE / JOB N SHEET : 1	O : 4054/1	
- P			_					388 (5	6 MGA94)	SURFACE	ELEVATIO	N : -7.934	(AHD)	ANG	SLE FF	ROM HORIZOI		
- H			E_: P				UNTIN				CONTR	ACTOR :	NCD		DRI	LLER : Joel V	Vright	
$\left \right $	DAT	E ST	ARTE	<u>:D:1</u>	2/10/09	DATE	COM	PLET	ED : 12/10/09	DATE LO	GGED : 1	2/10/09	LOGGED	BY : N	/IP	CHEC	KED BY : RT	
ŀ			DF	RILLIN								MATE	RIAL					
- 1-		RESS	S S NO	ATER	STS STS	Ê	Q	NOLL						₩S	×≊×			
	& CASING	WATER	DRILLIN PENETRA1	GROUND W	SAMPLE FIELD TE		GRAPH LOG	CLASSIFICA SYMBO	Soil T	MATERIA ype, Colour, Plas Secondary an	ticity or Partic	e Characteri	stic	MOISTUF	CONSISTE RELATIV DENSIT	S & Olh	IRUCTURE er Observations	
GLED RYL NON-CORE DRUL BYRONS_LARE SUP/GP1 <cd#wmpf#0> 13/Mar/2012 14:12 8:00:03 Daget CP7 Tool gNT Add-in</cd#wmpf#0>	- HW Casing - A Casing	WATER WATER		GROUND WATER	SAMPLES & FIELD TESTS		GRAPHIC	CLASSIFICATION	Soil T BARGE WATER	ype, Colour, Plas	L DESCRIPTI licity or Particl d Minor Comp	e Characteri	stic	MOISTUR		S & Oth		
ייש איא אטאייטאב טאנר זיטרב						7.0												-
						8.0												
8) a	letaik	s of a	hatory bbrevi descrij	iations	5			RC	DADS ANI		IME S	ERVIC	CES, NS	SW		NSW	Transport Roads & Ma Services	t aritime

	N	ON-CORE DRI	L HOLE - GEOLOGICAI	LOG	HOLE NO : BH12
PROJECT : Byrons Lane LOCATION : Shark Creek	Slip - Tyndale				FILE / JOB NO 4054/1 SHEET : 1 OF 2
POSITION : E: 517751.55		· · · ·	URFACE ELEVATION : -3.836 (AHD)		ROM HORIZONTAL : 90°
RIG TYPE : P160 DATE STARTED : 15/10/09	MOUNTIN	_	CONTRACTOR : NCD DATE LOGGED : 15/10/09 LOGGE	DBY:MP	ILLER : Joel Wright CHECKED BY : RT
DRILLING PROGRESS 중 또 속 안		Iz I	MATERIAL		Г.
A CASING & CASING & CASING WATER WATER BENETRATION GROUND WATER LEVELS SAMPLES & SAMPLES &	6 DEPTH (m) GRAPHIC LOG	5	MATERIAL DESCRIPTION Colour, Plasticity or Particle Characteristic condary and Minor Components	MOISTURE CONDITION CONSISTENCY CONSISTENCY DENSITY	STRUCTURE & Other Observations
		WATER LEVEL 1.25m 1.25m: BOTTOM (DF DECK		1.50: - 13.0m: Steel Pipe 3.70: - 13.0m: No sampling hole logged from cutting to the bottom of marker pole
See Explanatory Notes for details of abbreviations	8.0	8.00m			Transport NSW Roads & Maritim
& basis of descriptions.			MARITIME SERVICES, N	1011	NSW Roads & Maritin Services

File: 4054/1 BH12 1 OF 2

PROJECT : Byrons Lane S	lip		N-CORE DRILL HOLE - GEOLOGICAL LO	CG	HOLE NO : BH13 FILE / JOB NO : 4054/1 SHEET : 1 OF 2
LOCATION : Shark Creek - POSITION : E: 517745.042	Tyndale		56 MGA94) SURFACE ELEVATION : -2.137 (AHD)		ROM HORIZONTAL : 90°
RIG TYPE : P160		JNTING :			ILLER : Joel Wright
DATE STARTED: 14/10/09	DATE	COMPLE	TED: 14/10/09 DATE LOGGED: 14/10/09 LOGGED BY	: MP	CHECKED BY : RT
DRILLING			MATERIAL		
ORILLING & CASING WATER WATER DRILLING PENETRATION CROUNDWATER LEVELS SAMPLES & SAMPLES & SAMPLES	DEPTH (m)	GRAPHIC LOG CLASSIFICATION		CONDITION CONDITION CONSISTENCY RELATIVE	STRUCTURE & Other Observations
			SANDSTONE BOULDERS / COBBLES SANDSTONE BOULDERS / COBBLES SANDSTONE BOULDERS / COBBLES SANDSTONE BOULDERS / COBBLES CLAYEY SILT S.00m	5	1.80: - 9.0m: No sampling hole logged from cuttings to install marker pole
details of abbreviations & basis of descriptions.		F	ROADS AND MARITIME SERVICES, NSV	N	Roads & Maritime Services

PRC		Г: I N: S	Byron: Shark	s Lane S Creek -	lip Tvndale		ON-(CORE	DRI	LL H	OLE	- GEC	OLO	GICA	l lo	G	FI	OLE NO LE / JOB N HEET : 2	NO : 4054	H13 4/1	
				745.042			55 (56 N	(GA94)	S	URFAC	E ELEVA	ATION :	-2.137	(AHD)	A	IGLE I	FROM	HORIZO	NTAL :	90°	
	TYPE						G : Ban	-				NTRACT		NCD				Joel			
DAT	E ST/	ARTE	D: 1	4/10/09	DATE	E COM	PLETED	: 14/10/09	9	DATE L	OGGED	: 14/10	/09	LOGG	ED BY :	MP		CHEC	CKED B	Y : RT	
		DE		IG									MATER								_
PROG	RESS						z						MATER	(IAL		2	1				
& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	0.8 DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		il Type, (Se	Colour, Pl	IAL DESC asticity or I and Minor	RIPTION Particle Ch Componer	aracteris his	lic	MOISTURE	CONSISTENCY RELATIVE	DENSILY		STRUCTU her Obser		
					-			CLAY								sı					
					9.0-		9.00	m BOREHO BOTTOM	LEBH13 OF MAR		TED AT 9	.00 m									
		0			10.0 —																
					-	1															
		:			11.0 —																
					12.0	0															
					-																
					13.0																
					- 14.0 — -																
					- - 15.0 —																
					- -																
detail:	xplan s of at is of d	bbrevi	ations	;	16.0		ROA		ND	MARI	TIME	SEF	RVIC	ES, N	ISW]		NSW	Tran Road	i sport ds & Ma ices	

RO.		· : E N : S	Byrons	Lane SI Creek - 1	ip Fyndale		ION	-CORE DRILL HOLE - GEOLOGICAL	LOG	;	HOLE NO : BH14 FILE / JOB NO : 4054/1 SHEET : 1 OF 2
DSI	TIÓN	I : E	: 517		N: 673	32346.5	· ·	6 MGA94) SURFACE ELEVATION : -5.545 (AHD)	ANG		ROM HORIZONTAL : 90°
_		ARTE		3/10/09				Barge CONTRACTOR : NCD ED : 13/10/09 DATE LOGGED : 13/10/09 LOGGED	BY : N		LLER : Joel Wright CHECKED BY : RT
G	ESS		SILLIN				Ξ.	MATERIAL		2	
& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	o Depth (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					1.0-			WATER			
					-		\mid	1.25m ∽bottom of deck	7		4 201 D 2mi Steel Dine
Į					-			TOP OF MARKER POLE			1.30; - 9.2m; Steel Pipe
					2.0-						
					-						
					-						
					-						
					-						
					3.0 —						
					-						
					-						
					-						
					-						
					4.0-						
					-						
	ļ				5.0						
					-						
					-	///		CLAY: (slumped?)			5.40: - 9.2m; No sampling hole logge from cuttings to install marker pole
					-						from cuttings to install marker pole
					-		1				
	-				6.0						
					-						
							1	6.60m			
						Q,		BOULDERS / COBBLES			
					7.0-	К)					
					-	<u>Š</u>					
					-	K		7.50m			
					-			CLAY			
					-	X///	1			SI	

DSITI	ON	: E	: 5177	Creek - 735.446,	N: 673	32346.5		5 MGA94)	SURFACE	ELEVATION			ANC			ONTAL : 90°	,
GTY						UNTING				CONTRA					LLER Joe		
ATE S	SIA	RIE	J: 13	3/10/09	DATE	COMP	LET	ED : 13/10/09	DATELC	GGED : 13/	10/09	LOGGEE) BY : I	ИР	CHE	ECKED BY :	RT
			LLIN								MATER	RIAL.					
	SS USING	PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil T	ype, Colour, Plas	L DESCRIPTION licity or Particle d Minor Compor	Characterist	lıc	MOISTURE	CONSISTENCY RELATIVE DENSITY	8.0	STRUCTURE Other Observatio	ńs
a 3	-	-	5	ᅇᇤ	8.0 -	///	ರ	CLAY (contin	ued)					ă Г			
					-			i.30m									
					-			CLAY									
					-	\square								Şt			
					-												
					9.0 —												
-	┢	-	ŀ		-			BOREHOLE	BH14 TERMINAT	ED AT 9.20 m			_			_	
					-												
					-												
					-												
					10.0 —												
					-												
					-												
					-		- 1										
					11.0-												
					-												
					12.0 ~												
					13.0 —												
1					14.0		Ì										
]												
					15.0 -												
				1	10.0												
					1												
					1												
Exp ils o	lana	tory I	lotes	for	16.0									• •		Roads & Services	ort

Appendix M Comments Register

l

								REVI	EW REPO	ORT
NSW	Transpo		Slope No:		File No:		Objective ID:			
GOVERNMENT	for NSV		Project Name:	Byrons Lane S	lip No. 2	Big River Way		Preparer: SMEC		
Project Number		Document Title)					Issue Status	Issue No	Issue Date
	80% Geote			e and Design O	otions Re	port		80%	01	13/10/2021

I	tem	Date [DD-MMM- YY]	Reviewer	Page No / Section	Reviewer Comment (DD/MM/YY: Subsequent comments)	Consultant Response (DD/MM/YY: Response to Reviewer comments)	Closeout [DD-MMM-YY]
1		27/10/2021	S Yau		Technically it's a road embankment slip or riverbank slip, not a landslide	Agreed, SMEC to revert to slip terminology.	

·····	ect Number r! Referenc	e source not found	Document Title I. Error! Reference	source not found.			Issue Sta 80%	tus	Issue No 01	Issue Date 18.11.2020
Erro			I. Error! Reference	 source not found. 1) Refer to Table 5-3. For clarity please discuss how the design parameters compared with the design parameters adopted in Slip 1. 2) Residual strength of soft clay (unit 3a/4a/4b) appears high. Pl.ease clarify and justify 	design com Pa Et 30 (fr So ar re by Fi fri co in St The shear slope stabi 2) The resi angle = 17 same. Pea	npared to the avement – s mbankment 0 to 34 degr rom 15 to 7) oft Alluvium ngle increas educed by 1 y 1MPa. irm/stiff Alluv iction angle ohesion redu icreased by tiff/very stiff strength par ility back-an- idual effective degrees an ik and Resid from Vane S Depth m 6.1	80% esign param e parameter same param Fill – increa ees) and lov adopted. – similar pa ed by 1 deg to 2 kPa. Yo vium - simila increased b uced by 2 kF 2 MPa. Alluvium - s rameters we alysis. re shear stree d cohesion lual undraine Shear tests i Peak kPa 68	eters adopt rs adopted f eters adopt used friction ver young's rameters ad ree, effectiv pungs modu ar paramete y 1 degree, Pa. Youngs ame param ere adjusted ength param =0 degrees ed shear str n BH12 and Residual kPa 41	01 ed for concept for Slip 1: ed. angle (from modulus dopted; friction /e cohesion ulus increased rs adopted; effective modulus eters adopted. as part of heters (friction) are the rength values	
					BH12 -	6.7 7.4	68 32	27 13.5	in-situ VS sample VS	
						8.9	48	15	sample VS	
						10.4	177	45	sample VS	
					BH13	8.9	45	18	sample VS	
						11.9	113	45	sample VS	
					The residuation	al shear stre	ength values	are typical	ly higher than	
Resol by:	ved Action Action Action	'R' = Commer		ained in Response port or Document (e.g. Plan, Specification, Tech Memo, Audit) wing revision and re-issue	Closeout:	: Record date Responsible of revised de	designer to see		rover. all comments prio	r to submission

OTB-TP-304-F01 | Issue 3 | 30 July 2020

Printed copies of this document are uncontrolled

Page 2 | 7

Project Number Document Title Error! Reference source not found. Error! Reference				e source not found.		Issue Status 80%	Issue No 01	Issue Date 18.11.2020
ltem	Date [DD-MMM- YY]	Reviewer	Page No / Section		•	Insultant Response Close D/MM/YY: Response to Reviewer comments) [DD-		
				1		i investigations for the 12 kPa value has bee		
3.	27/10/2021	S Yau S	Section 6.1	contribute to current embankment slip	ncluded in the conce SMEC consider that nave contributed to t nave been included i nformation on the lo	termain was noted in the SRA report and cept design report for completeness. It the abandoned water main is unlikely to the slip. However, additional comments in the report seeking additional ocation and size of the abandoned build be important to know for piling.		

Resolved by:	Action ' I' Action ' R' Action ' D'	 Design Engineer's Information contained in Response Comments addressed in Design Report or Document (e.g. Plan, Specification, Tech Memo, Audit) Comment addressed by Design drawing revision and re-issue 	Closeout	t: Record date of closeout by Reviewer/Approver. Responsible designer to seek closeout of all comments prior to submission of revised design.
OTB-TP	-304-F01	Issue 3 30 July 2020		Page 3 7

Printed copies of this document are uncontrolled

roject N	lumber	Document Title			Issue Status	Issue No	Issue Date
rror! R	eference source not for	Ind. Error! Reference	source not found.		80%	01	18.11.2020
. 27/	10/2021 S Yau	Sections 8.2 and 8.3 Appendix A Option 1A and Option 1B	 pile deflections currently presented are much higher than allowable 1/200 of retaining height. Please clarify It is unclear how and what drainage measures can be placed behind sheet pile wall. Besides sheet pile wall may not be able to retain water due to gaps between steel sheets. Option 1A has a design retaining height of 3.5 m as compared to 4 m for Option 1B. Please clarify Why sheet piles of Option 1B are proposed further away from Option 1A sheet piles by about 3 m? Need to elaborate and devise on how to monitor steel corrosion Refer to Table 8-4, please clarify why relatively high pile deflections (> 1/200 H) were resulted even with use of a deadman anchor/tieback system Refer to SLOPE/W outputs. For clarify please remove fill colour of slip circles Please confirm if FEM will be used to aid pile wall detail design for added confidence 	 cantilever sheetp (17.5mm). 2) A drainage ag incorporating a p installed behind removable filter of the sheet pile way wall. Reliance or recommended at corrosion. 3) The retained H long-term scour sheetpiles position higher retained H 4) Option 1B see provide a smooth adjacent riverban 5) Sheet pile thio periodically, say rates against des be measured usi would likely be re- measurements to corrosion rate ar monitoring and m developed. Corro- upper 7 m section in the critical zon 6) The Table 8-4 any deflections p may occur during the H/200 criteria groundwater scee 7) Slope/W output 	eks to restore the slumpe her transition between the nks. ckness would need to be every 3 to 5 years to corr sign assumptions. Sheet ing ultrasonic gauges. Lo equired in front of the she o be undertaken within th re expected to be greates maintenance plan would r osion treatment could als on of sheet piles to protect nes. • deflections have been up prior to installing the tie ba g construction. The pile d a (20mm) for all but the h	d H/200 criteria. geotextile and ge pipe could be p holes with through the face of sures behind the heetpiles is not cked by debris and m the assumed otion 1B has the thich results in the d embankment and e retaining wall and monitored npare corrosion pile thickness can icalised excavation bet piles to enable to the tidal zone where t. A corrosion need to be o be applied to the t against corrosion pdated ignoring ack anchors which eflections satisfy ighest elevated rom the	
lesolved y:	Action ' R ' = Com	n Engineer's Information com nents addressed in Design Re nent addressed by Design dra	port or Document (e.g. Plan, Specification, Tech Memo, Audit)	Respo	rd date of closeout by Reviewe onsible designer to seek closec rised design.		r to submission
	P-304-F01 Issue 3	3 30 July 2020					Page 4 7

	Project NumberDocument TitleIssue StatusIssue NoError! Reference source not found.80%01						Issue Date 18.11.2020	
Item	Date [DD-MMM- YY]	Reviewer	Page No / Section	Reviewer Comment (DD/MM/YY: Subsequent comments)	Consultant Response (DD/MM/YY: Response to Reviewer comments)			Closeout [DD-MMM-YY]
					amended and includ 8) FEM will be used solution.	led in the report unde during detailed desig		
5.	27/10/2021		Section 8.4 Option 2	 Please clarify if a capping beam is required to tie all cast in place piles Pending detailed design analysis, 17 m long pile appears excessive for a design retaining height of 3.5 m. Please clarify if FEM will be used to aid pile wall detail design for added confidence 	to restrain individual 2) The piles need to commences at appro	be embedded within oximately 11 m depth rotecting against dee ed design would seek	the stiff clay which below top of pile. ber seated slip to refine pile	
6.	27/10/2021		Section 8.5 Option 3	 Refer to Table 8-6. Driven precast piles will also be subject to bending. Please include Predicted pile head deflections not presented Stability (sliding and overturning) of gabion wall needs to be checked 	bending moments an SMEC propose to un detailed design. 3) The preliminary st	EM modelling is requind displacements for indertake these analystability (sliding and ov comments and calcuing report.	the shear piles. ses as part of verturning) has	
7.—	27/10/2021		Section 8.6 Option 4	1)				
8.	27/10/2021	S Yau S	Section 8.7	 Refer to Table 8-9. The criteria score range of 1 to 10 is too broad. Consider to use 1 poor to 5 excellent Refer to Table 8-8, driveability of sheet piles/precast concrete piles (Options 3 & 4) needs to be considered carefully due to existing rockfill in river 	range and comment	en revised based on a s added. ents included in Table		

Resolved by:	Action ' I' Action ' R' Action ' D'	 Design Engineer's Information contained in Response Comments addressed in Design Report or Document (e.g. Plan, Specification, Tech Memo, Audit) Comment addressed by Design drawing revision and re-issue 	Closeout	: Record date of closeout by Reviewer/Approver. Responsible designer to seek closeout of all comments prior to submission of revised design.			
ОТВ-ТР	OTB-TP-304-F01 Issue 3 30 July 2020						
Printed copies of this document are uncontrolled							

	ct Number r! Referenc	e source not foun	Document Title				Issue No 01	Issue Date 18.11.2020
Item	Date	Reviewer	Page No / Section	Reviewer Comment (DD/MM/YY: Subsequent comments)	Consultant Response (DD/MM/YY: Response to Reviewer comments)			Closeout [DD-MMM-YY]
9.								
10.								
11.								
12.								
13.								
14.								
15.								
16.								
17.								
18.								
19.								
20.								
21.								
22.				End of Comments				

All comments closed out or transferred to a new form

Reviewer signature

Resolved by:	Action ' l' Action ' R' Action ' D'	 Design Engineer's Information contained in Response Comments addressed in Design Report or Document (e.g. Plan, Specification, Tech Memo, Audit) Comment addressed by Design drawing revision and re-issue 		Record date of closeout by Reviewer/Approver. Responsible designer to seek closeout of all comments prior to submission of revised design.			
OTB-TP	OTB-TP-304-F01 Issue 3 30 July 2020						
Printed copies of this document are uncontrolled							

Project Number	Document Title	Issue Status	Issue No	Issue Date
Error! Reference source not found.	Error! Reference source not found.	80%	01	18.11.2020

Date

Resolved by:	Action ' l' Action ' R' Action ' D'	 Design Engineer's Information contained in Response Comments addressed in Design Report or Document (e.g. Plan, Specification, Tech Memo, Audit) Comment addressed by Design drawing revision and re-issue 	Closeout:	Record date of closeout by Reviewer/Approver. Responsible designer to seek closeout of all comments prior to submission of revised design.			
OTB-TP	OTB-TP-304-F01 Issue 3 30 July 2020						
Printed copies of this document are uncontrolled							

Geotechnical Detailed Design Report Rev.02

Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design

Client Reference No. 21.0000129127.1219 Prepared for TfNSW 27 July 2022

Document Control

Document	Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design
File Location	X:\Projects\300131\30013154\110 Detailed Design
Project Name	Geotechnical Detailed Design Report Rev.02
Project Number	30013154
Revision Number	02

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
01	06/06/2022	Mark Maharaj/ Omid Ghaffaripour	David Malorey	Mark Maharaj
02	26/07/2022	Mark Maharaj/ Omid Ghaffaripour	David Malorey	Mark Maharaj

Issue Register

Distribution List	Date Issued	Number of Copies
TfNSW	27/07/2022	1

SMEC Company Details

Approved by	Mark Maharaj		
Address	52 Victoria Street, Grafton, NSW		
Telephone	02 6644 2607	Website	www.smec.com
Email	mark.maharaj@smec.com		

The information within this document is and shall remain the property of: TfNSW

Important Notice

This report is confidential and is provided solely for the purposes of Transport for New South Wales (TfNSW) use. This report is provided pursuant to a Contract Agreement between SMEC Australia Pty Limited ("SMEC") and TfNSW, under which SMEC undertook to perform a specific and limited task for TfNSW. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than TfNSW. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Geotechnical reports are prepared by qualified personnel on the information supplied or obtained and are based on current engineering standards of interpretation and analysis.

Information may be gained from limited subsurface testing, surface observations, previous work, and is supplemented by knowledge of the local geology and experience of the range of properties that may exhibited by the materials present. For this reason, geotechnical reports should be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely. Every care is taken with the report content, however, it is not always possible to anticipate or assume responsibility for the following conditions:

- Unexpected variations in ground conditions. The potential for this depends on the amount of investigative work undertaken.
- Changes in policy or interpretation by statutory authorities
- The actions of contractors responding to commercial pressures

If these occur, SMEC would be pleased to resolve the matter through further investigation, analysis or advice.

Logs of a borehole, recovered core, test pit, excavated face, or cone penetration test are an engineering and/or geological interpretation of the subsurface conditions. The reliability of the logged information depends on the drilling/testing method, sampling/observation spacing's and the ground conditions. It is not always possible or economic to obtain continuous high-quality data. It should also be recognised that the volume of material observed or tested is only a fraction of the total subsurface profile.

Interpretation of subsurface information and application to design and construction must take into consideration the spacing of the test locations, the frequency of observations and testing, and the possibility that geological boundaries may vary between observation points.

It should also be recognised that ground conditions can change over time (e.g. through drought, wet periods, snow/summer and disturbance after site investigation occurs). As such, ground information is only a representation of the site at a point in time and may change.

Should conditions encountered on site differ markedly from those anticipated from the information contained in the report, SMEC should be notified immediately. Early identification of site anomalies generally results in any problems being more readily resolved and allows re-interpretation and assessment of the implications for future work.

Table of Contents

1		Introduction					
2		Availab	ble Information	1			
3		Site Inf	ormation	2			
	3.1	Site D	escription and Locality	2			
	3.2	Site O	bservations				
	3.3	Geolog	gy				
	3.4	Acid S	Sulfate Soils				
4		Geotec	chnical Investigations	4			
		4.1.1	2009 Investigations	4			
		4.1.2	2021 Investigations	5			
	4.2	Labora	atory Testing	5			
		4.2.1	Aggressivity Testing	5			
		4.2.2	Acid Sulfate Soils	5			
	4.3	Interp	reted Subsurface Conditions	6			
		4.3.1	Subsurface Conditions	6			
		4.3.2	Detailed Design Parameters	6			
		4.3.3	Water Levels	6			
5		Detaile	d Design				
	5.1	Desigr	n Criteria	9			
		5.1.1	Design Life	9			
		5.1.2	Global Stability Factor of Safety	9			
		5.1.3	Design Loading	9			
	5.2	Desigr	n Methodology				
		5.2.1	Stability Analysis				
		5.2.2	Deformations and Soil-Structure Interaction				
		5.2.3	Durability				
		5.2.4	Constructability				
	5.3		ses and Results				
		5.3.1	Shear Pile Option Considered				
		5.3.2	Slope Stability Analyses				
		5.3.3	Finite Element Analyses				
	5.4		inary Driveability Assessment				
6	0.1		and Transition Zone Treatments				
•	6.1		Treatment				
	6.2		ern Transition Zone				
7		Durabil	lity	15			
	7.1	Expos	ure Classification and Corrosion Rates	15			
	7.2	Corros	sion Treatment				
8		Traffic	Barrier and Maintenance Access	16			
9		Constru	uctability	17			
	9.1	Anticip	pated Construction Sequence	17			
	9.2	Pile In:	stallation Considerations	17			

	9.3	Utilities	5	17
	9.4	Constr	uction Monitoring	18
		9.4.1	Geotechnical Observation	18
		9.4.2	Temporary Stability	18
		9.4.3	Environmental Risks	18
10		Future M	Naintenance and Monitoring Considerations	19
11		Safety i	n Design	19
12		Schedu	e of Quantities	19
13		Referen	ces	. 20

Appendices

Appendix A	Detailed Design Drawings
Appendix B	Site Observations
Appendix C	Interpreted Geotechnical Model Cross Sections and Long Section
Appendix D	Slope/W Output
Appendix E	Plaxis 2D Output
Appendix F	Results of Viggiani Assessment
Appendix G	Safety in Design Register
Appendix H	Schedule of Quantities
Appendix I	Product Specifications
Appendix J	Relevant Information

List of Figures

Figure 3-1 Site Locality Plan – Source: Six Maps, NSW (maps.six.nsw.gov.au)2Figure 3-2 ASS Probability Map – Source: NSW Government SEED Map (https://geo.seed.nsw.gov.au/)4

List of Tables

4
7
8
9
. 12
. 13
. 13
. 13
. 15
. 15
- -

1 Introduction

Transport for NSW (TfNSW) has engaged SMEC Australia Pty Ltd (SMEC) to design a slope remediation solution for an approximate 40 m long slip situated along Clarence River - South Arm, Big River Way, Tyndale, NSW.

The slip was identified by TfNSW representatives on 2 March 2021. The slip headscarp measured 2.5 m high and was setback approximately 5.5 m from the road edge line. Slope remediation treatment is required to be designed and constructed to prevent further regression of the slip.

In December 2021, SMEC submitted the 100% Concept Design Report (Rev.02, dated 07.12.2021), presenting four concept remediation options. Following review of the report and option, TfNSW advised SMEC to proceed with detailed design for Option 3 – Steel Shear Piles and Rock Fill.

This report presents the **Geotechnical Detailed Design Report** for the preferred slope remediation solution comprising steel shear piles and rock fill. It includes the following:

- Available Information
- Description of the Site
- Geotechnical Investigations
- Geological and geotechnical models
- Design criteria, load cases, design parameters, design assumptions and limitations
- Design methodologies
- Results of analyses
- Durability assessment
- Constructability, operation and maintenance considerations
- Safety in design register
- Schedule of quantities
- Detailed Design Drawings

This rev.02 design report includes the following additions:

- IFC drawing package incorporating TfNSW 100% detailed design review comments
- Additional Plaxis output presenting global factor of safety slip surface output included in Appendix E.
- Inclusion of a wedge of rock armour in front of the shear piles at the southern end of the site.

2 Available Information

- SMEC Geotechnical Detailed Design Report (Rev.06 HW10 Pacific Highway Byrons Lane Slip Stage 4, dated May 2014).
- SMEC Stage 4 IFC Drawings (Ref. 30011433-DGT-0001 to 0300)
- SMEC 100% Geotechnical Interpretive and Design Options Report, dated December 2021.
- TfNSW 04 Scope of Services document
- TfNSW Geotechnical Investigation Factual Report (N20211031 Big River Way Slip on the Clarence River)
- TfNSW Draft PS331 Big River Way at Byrons Lane_Rev.1
- TfNSW SRA 20210309
- TfNSW Survey, dated 20210507

• AECOM Byrons Slip Corrosion Protection Final Report Rev 0

3 Site Information

3.1 Site Description and Locality

The slip site is situated along the outer, east bank of the Clarence River - South Arm, along Big River Way, Tyndale, NSW. Big River Way (formerly the Pacific Highway) is now a low volume, dual lane carriageway between Tyndale and Maclean. The 2 m to 2.5 m high road embankment is situated over a broad, flat, alluvial flood plain that is farmed for crops and has historically been modified by excavation of drainage channels and formation of access tracks.

Byrons Lane is located approximately 650 m southwest of the site and the Pacific Highway is approximately 500 m to the east. Refer to the site location map presented in Figure 3-1.

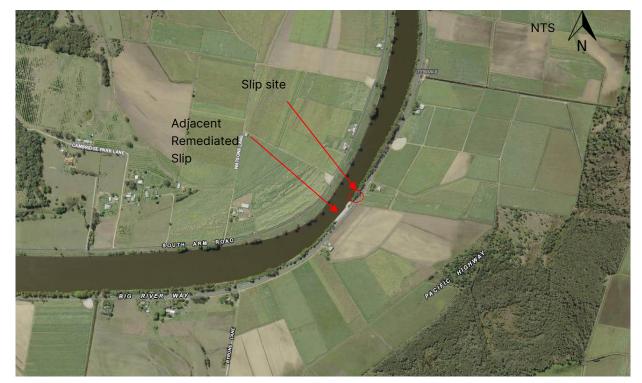


Figure 3-1 Site Locality Plan – Source: Six Maps, NSW (maps.six.nsw.gov.au)

The slip measures approximately 40 m in length and the headscarp is located within the shoulder, setback approximately 5.5 m from the edge line. Erosion and slumping of the headscarp comprising pavement and embankment fill materials has occurred. In some locations, the embankment fill materials have eroded back beneath the paving, creating cavities (refer Section 3.2 below).

The subject slip site adjoins a previously remediated slip that comprises rock fill, rock armouring, timber stabilisation piles and a buried sheet pile wall. Details of the previous slip are described in the Geotechnical Interpretive and Design Options report. Interfacing with the previously remediated slip site is discussed in later sections of this design report.

3.2 Site Observations

A geotechnical engineer from the SMEC Grafton office visited the slip site on 29 June 2021 and on 11 March 2022 to observe the extent of the slip.

Site observations in the form of annotated photographs are presented in Appendix B.

3.3 Geology

Reference to the NSW Department of Primary Industries, Grafton Area Coastal Quaternary Geology Map, 1:100,000 scale, describes the geology of the site as Holocene levee; fluvial sand, silt and clay.

From experience on the nearby Woolgoolga to Ballina Pacific Highway Upgrade, the Holocene sediments situated within the Clarence River floodplain are understood to comprise alluvial, estuarine and deltaic clays, silts and sand. The cohesive materials range from very soft to stiff consistency, are grey to dark grey in colour and typically overly stiffer Pleistocene deposits.

3.4 Acid Sulfate Soils

Acid Sulfate Soils (ASS) are soils containing significant concentrations of pyrite, which when exposed to oxygen in the presence of sufficient moisture, oxidises, resulting in the generation of sulfuric acid. Unoxidised pyritic soils are referred to as potential ASS (PASS). When the soils are exposed, the oxidation of pyrite occurs and sulfuric acids are generated, at which stage the soils are said to be actual ASS (AASS).

Disturbance or poorly managed development and use of ASS can generate significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels (generally pH < 4) and produce acid soils, resulting in high salinity.

Reference to the published acid sulfate soil risk map geodatabase rates the site as a H4 - high probability of occurrence for acid sulfate soils below 3 m depth.

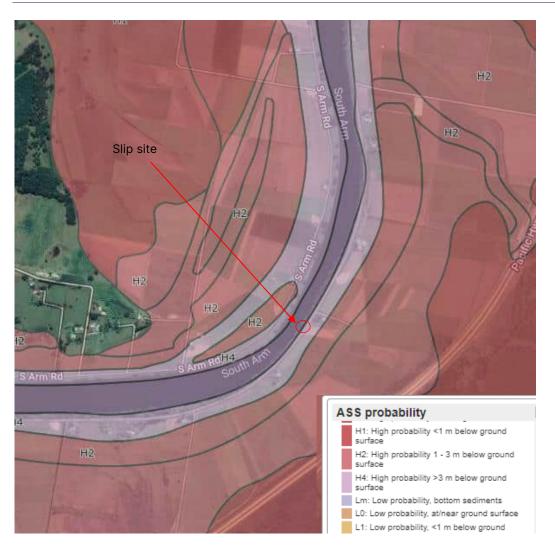


Figure 3-2 ASS Probability Map – Source: NSW Government SEED Map (https://geo.seed.nsw.gov.au/)

4 Geotechnical Investigations

4.1.1 2009 Investigations

Eleven boreholes were drilled in 2009 to investigate the adjacent slip site. Two holes (BH1 and BH2) drilled at either end of the failed section, three holes (BH3, BH4 and BH10) on the existing embankment and the remaining six holes drilled in the river.

Hole Number	Hole Surface RL* (m AHD)	Hole Depth^ (m)	Termination Strata	Water Table RL (m AHD)
BH1	5.143	24.00	very stiff Clay	2.04
BH2	5.239	24.00	very stiff Clay	0.54
BH3	5.172	24.75	stiff Clay	0.37

Table 4-1: Geotechnical Investigation Summary Data

SMEC Internal Ref. 30013154 27 July 2022

BH4	3.161	23.65	very stiff Clay	0.06
BH5	-4.741	18.05	very stiff Clay	-0.04
BH6	-3.873	16.35	stiff Clay	-0.27
BH7	-3.852	16.05	stiff Clay	0.55
BH8	-3.0	18.25	stiff Clay	-0.2
BH9	-1.8	19.35	stiff Clay	-0.1
BH10	5.232	11.25	very stiff Clay	1.03
BH11	-7.934	15.45	medium dense to dense Sand	-0.33

Note: * Hole Surface RL starts from any earth material including slumped rock fill which may differ from those on logs; ^ Hole Depth starts from Hole Surface RL.

Borehole logs are provided in Appendix J.

4.1.2 2021 Investigations

TfNSW conducted a geotechnical investigation comprising two boreholes (BH12 and BH13) at the subject slip site in April 2021. The results of the investigation are documented in the Geotechnical Factual Report Ref. N2021031, dated 07.06.2021, presented in Appendix J.

4.2 Laboratory Testing

4.2.1 Aggressivity Testing

One aggressivity test was carried out as part of the 2021 investigations on a soil sample (BH12: 7.0m – 7.45m depth, Silty Clay). Compared AS2159-2009, the results of the aggressivity test indicate a **non-aggressive** exposure classification for steel piles embedded in the soil.

4.2.2 Acid Sulfate Soils

One acid sulfate soil test was carried out on a soil sample (BH12: 5.5m - 5.95m depth, Sandy Clayey Silt). The laboratory test results were Net Acidity = 462 mol H⁺/t. This exceeds recommended guidelines, triggering the need for an acid sulfate management plan if soil disturbance is proposed.

Laboratory test results are presented in the TfNSW the Geotechnical Factual Report Ref. N2021031, dated 07.06.2021, presented in Appendix J.

4.3 Interpreted Subsurface Conditions

4.3.1 Subsurface Conditions

The interpreted subsurface conditions are presented in Table 4-2 on the following page. The interpreted subsurface conditions are also presented on annotated cross sections and a long section; presented in Appendix C.

4.3.2 Detailed Design Parameters

SMEC has developed geotechnical design parameters utilising the available geotechnical investigation data, the adjacent slip remediation design, experience from the Woolgoolga to Ballina Pacific Highway upgrade project and SMEC pile foundation design guidelines. Effective shear strength parameters were also adjusted based on slope stability back-analysis and parameters are presented in Table 4-3.

4.3.3 Water Levels

4.3.3.1 Tidal Levels

Published tidal information for the Clarence River at Tyndale has been obtained from the NSW Public Works Manly Hydraulics Laboratory.

This data indicates an annual average Mean High Water Spring = RL0.35 m and Mean Low Water Spring = RL-0.108 m.

4.3.3.2 Groundwater Levels

Groundwater levels were measured in the following boreholes during geotechnical investigations by others.

- BH3: RL0.37 m
- BH4: RL0.06 m
- BH10: RL1.03 m
- BH13: RL-0.08 m

No longer term groundwater monitoring has been undertaken at the site. Groundwater levels are expected to fluctuate with changing climate and river levels. Consideration has been given to elevated groundwater levels within the embankment as part of the design.

Table 4-2: Summary of Subsurface Conditions							
			Dept	:h (m)	RL (m	RL (m AHD)	
Unit No. Unit	Unit	General Material Description	BH12	BH13	BH12	BH13	
1	Pavement	200 mm thick Asphaltic Concrete over 300 mm to 400 mm Gravel layer.	0 to 0.5	0 to 0.6	4.93 to 4.43	4.92 to 4.32	
2	Fill	Silty SAND, fine grained, medium dense relative density.	0.5 to 2.0	0.6 to 2.2	4.43 to 2.93	4.32 to 2.72	
3a	Alluvium	Clayey SILT, low to medium plasticity; soft to firm consistency	2.0 to 3.4	2.2 to 3.5	2.93 to 1.53	2.72 to 1.42	
3b	Alluvium	Silty CLAY, medium plasticity, with trace sand; firm consistency	3.4 to 5.0	3.5 to 5.0	1.53 to - 0.07	1.42 to -0.08	
4a		Clayey SILT/CLAY, medium to high plasticity, some fine sand, trace shell fragments; soft consistency	5. 0 to 6.0	5. 0 to 8.0	-0.07 to -1.07	-0.08 to -3.08	
4b	Estuarine	Silty CLAY, high plasticity, trace shell fragments; soft to firm consistency	6.0 - 9.5	8.0 – 11.0	-1.07 to -4.57	-3.08 to -6.08	
4c		Silty CLAY, medium to high plasticity; stiff consistency	9.5 -16.2	11.0 – 17.0	-4.57 to -11.27	-6.08 to -12.08	
5a		SAND, fine to medium grained, loose to medium dense relative density.	16.2 - 17.8	17.0 – 18.5	-11.27 to -12.87	-12.08 to -13.58	
5b	Alluvium	CLAY, Sandy Clay, Silty Clay; medium to high plasticity, trace fine sand; stiff to very consistency	17.8 - 22.45 (EOH)	18.5 – 23.0	-12.87 to -17.52 (EOH)	-13.58 to -18.08	
55		Sandy SILT, stiff consistency	N.E.	23.0 – 23.95 (EOH)	N.E.	-18.08 to -19.03 (EOH)	

Notes: NE = Not encountered, EOH = End of borehole

Table 4-3: Summary of Design Parameters								
Unit /Material	Unit Weight γ' (kN/m³)	Cohesion c' (kPa)	Friction Angle φ' (°)	Undraine d Shear Strength C _u (kPa)	Youngs Modulus E'v (MPa)	Horizontal Modulus E'h (MPa)		
1. Pavement – Gravel; dense	20	0	40	-	40	30		
2. Fill – Silty Sand; medium dense	18	0	34	-	7	5		
3a. Clayey Silt, soft to firm consistency	17	4	26	30	6	4.5		
3b. Silty Clay; firm consistency	18	5	27	50	10	7.5		
4a. Clayey Silt/CLAY; soft consistency	17	2	26	25	5	3.75		
4b. Silty Clay; soft to firm consistency	17	4	26	30	6	4.5		
4c. Silty Clay; stiff consistency	19	8	27	75	15	11		
5a. Sand; loose to medium dense	18	0	33	-	8	6		
5b. Clay, Sandy Clay, Silty Clay; stiff/very stiff consistency	19	10	27	100	20	15		
Unit 3a/4a/4b - Soft Clay residual strength parameters along inferred failure surfaces	17	0	22	12	2.5	1.8		
New Rock Fill/Rock Armour	18	0	40	-	40	30		

5 Detailed Design

5.1 Design Criteria

5.1.1 Design Life

In accordance with the project brief, the remediation works are to achieve a minimum design life of 50 years.

5.1.2 Global Stability Factor of Safety

Reference to TfNSW technical Direction GTD 2018/001 | TfNSW 18.748 – "Geotechnical design for Remediation of Existing Slopes and Embankments" 22 February 2018, the recommended factors of safety (FOS) for different consequence classes are presented in Table 5-1.

Table 5-1 F	actor of Safety	(FOS) for different	consequence class scenarios
-------------	-----------------	---------------------	-----------------------------

Consequence Class	C1	C2	C3	C4	С5
Long Term FOS	1.5	1.4	1.3	1.25	1.25
Short Term FOS	1.25	1.25	1.2	1.2	1.2

In accordance with the contract, a long-term FOS of 1.3 and a short-term FOS of 1.2 has been targeted in design remediation for a Consequence Class C3 slope.

5.1.3 Design Loading

The following design loads have been considered for concept design:

- 1. 20 kPa vertical traffic live load applied to carriageway, breakdown lane and shoulder.
- 2. 10 kPa short term construction surcharge above slip
- 3. Variable short term, 30 + kPa vertical live loads to represent construction plant such as a piling rig or crane.
- 4. Groundwater is modelled at RL2m AHD inside the embankment and drops to RL0.3m (Mean High Water Spring) at river.

Under rapid drawdown conditions associated with a flood, water levels are modelled at RL4.0m AHD inside the embankment and RL-0.1m AHD (Mean Low Water Spring) on the river side;

- 5. Sensitivity analyses has been carried out using the healed material shear strength properties (c'=4 kPa, $\phi'=26^{\circ}$) and residual shear strength parameters (c'=0 kPa, $\phi'=22^{\circ}$) for the inferred shear zone.
- 6. Seismic coefficient of 0.025 (horizontal) has been adopted for embankment stability analyses based on AS1170.4 as the Hazard Factor Z is 0.05 for the project site;

5.2 Design Methodology

The design of the steel shear pile and rock fill solution has adopted the following design methodology:

- 1. Review the interpreted ground model developed as part of the concept design.
- 2. Estimate the required pile size. Assess the lateral shear capacity that can be developed from the piles using the method by Viggiani (1981).
- 3. Model the stability of the slope remediation using SLOPE/W 2D limit equilibrium analysis software. Incorporating the shear resistance from the piles and the final remediation profile including rock fill and rock armouring. Analyse several combinations covering short term and long scenarios, traffic and construction surcharges. Compare the calculated FOS to the design criteria.
- 4. Model the proposed slope remediation in PLAXIS 2D finite element analyses software to assess deformations and structural actions (i.e. bending moments and shear forces) induced in the piles. Include short term and long term scenarios and anticipated construction staging.
- 5. Undertake structural capacity assessment of the proposed piles. Where piles are undersized, select larger size and repeat steps 3 to 6.
- 6. Assess durability of the proposed piles and detail recommended corrosion treatments.
- 7. Consider constructability of slope remediation including pile installation options.
- 8. Detail the transition zone treatments.

5.2.1 Stability Analysis

Stability analyses were performed using Slope/W software. Slope/W is proprietary software that adopts limit equilibrium theory to compute the factor of safety (FOS) of slopes. The stability was assessed using the Morgenstern-Price method.

Total stress analysis with undrained shear strength for clay materials has been used for design cases of short duration for which excess pore water pressure generated has no time to fully dissipate. Effective stress analysis with effective strength parameters for soil materials has been used for the design case with drained conditions.

The design bending moment was used as an input to the design spreadsheet based on the method by Viggiani (1981) with corrections by Chmoulian (2004). Based on Viggiani (1981), the shear plane is chosen at the interface of unstable soil layer and stable soil layer. In the design, the soft clay layer is considered as unstable soil layer and the firm to stiff clay layer is considered as stable soil layer.

5.2.2 Deformations and Soil-Structure Interaction

The proposed remediation has been modelled using Finite Element Method (Plaxis 2D software) to evaluate the following items:

- The induced deformations at critical locations (i.e. top of piles, the ground surface behind the piles, the Big River Way pavement).
- Structural actions mobilised along the piles.
- Controlling the integrity of the proposed remediation additional to conventional Slope/W models.
- Additional check on slope stability factors of safety.

5.2.3 Durability

SMEC has relied upon the 2010 durability and corrosion assessment report prepared for the steel sheet piles installed at the adjacent slip site. The corrosion assessment assumed the water to be brackish and predicted corrosion rates for steel sheet piles as discussed in Section 7.

For steel piles, the corrosion rates for various exposure zones were assessed and durability requirements comprising sacrificial steel, coating treatments and cathodic protection systems considered.

Further discussion on durability for the proposed shear piles alternatives is presented in Section 7.

5.2.4 Constructability

SMEC has obtained preliminary constructability advice from a piling contractor to assist with evaluating the relative merits of the alternate shear pile options.

The constructability advice is discussed in Section 9.

A preliminary driveability assessment has also been undertaken using the interpreted ground model and GRLWEAP analysis software. The results of this assessment are presented in Section 5.4.

5.3 Analyses and Results

5.3.1 Shear Pile Option Considered

SMEC has considered the following shear pile option to stabilise the slip:

• 310UC158 steel piles

5.3.2 Slope Stability Analyses

Two sections were selected for stability analysis:

- Section through the slip site
- Section through transition zone immediately north of the slip site

The calculated slope stability factors of safety for the various stability cases are summarised in Table 5-2 and the results of the analyses are presented in Appendix D.

The stabilising piles were modelled as pile reinforcements in Slope/W. The ultimate shear force used in Slope/W for the piles was calculated using an in-house spreadsheet based on Viggiani (1981) method with the piles embedded a minimum of 5 metres in to stiff clay; below the inferred shear plane.

The Viggiani method is restricted to 2-layer cohesive soils, i.e. above and below the slip surface. Six possible failure modes are considered, three in which the pile remains rigid and three in which the pile yields. The equilibrium equations for these six modes have been programmed into the spreadsheet. The most critical failure mode for any problem depends on the relative strengths of pile and soils and the lengths of pile embedded in the unstable and stable soil masses. Limiting soil stresses are calculated using bearing capacity factors. Bearing capacity factors of k=4.0 and k=8.0 were used for the unstable soil layer and the stable layer, respectively as suggested by Viggiani (1981). The critical failure mode is determined from a flowchart built into the spreadsheet.

Based on the analysis, ultimate shear force mobilised due to the soil pressure was calculated to be 100 kN per steel pile. These values were used in the slope stability analyses. Results of mobilised shear force assessment based on Viggiani method are presented in Appendix F.

		Calcula	ated FOS		Design Criteria	
Pile Type	Stability Case	Slip zone (Section B-B)	Transition zone (Section C-C)	Target FOS	Satisfied	
	Long-term	1.37	1.50	1.3	Yes	
	Short-term stage 1 piles installed	1.51	1.52	1.2	Yes	
12m long Steel H Pile @ 900mm centres	Short-term stage 2 rockfill placement	1.29	1.48	1.2	Yes	
	Seismic loading	1.28	1.37	1.2	Yes	
	Flood with rapid draw- down	1.22	1.45	1.2	Yes	

Table 5-2: Summary of Slope Stability Analysis

Note: The calculated factors of safety at the northern transition zone is where additional shear piles P1 to P6 are proposed. Immediately north of this zone, no slope treatment is proposed to the existing vegetated slope and the slope stability factors of safety are accordingly expected to be lower.

Short term – stage 2 rock armour and rock fill placement works will require excavation of benches to key the fill in to the existing slopes. To manage local embankment stability, this work should be undertaken in a staged excavation and backfill approach with the excavated width of the slope exposed at any stage limited to not more than 10 m, subject to on site geotechnical assessment and monitoring during construction.

5.3.3 Finite Element Analyses

A section through the slip zone was considered for FEM analysis in Plaxis 2D. The following construction sequence was modelled in Plaxis:

- 1. Initial stage existing slope profile
- Pile installation no construction surcharges applied to slope assuming piles installed from barge. The design has assumed that no slope surcharge is applied without stabilisation piles first being installed. Any machinery required to remove rock obstructions from beneath the proposed pile footprint is also assumed to be operating from a temporary platform located behind previously installed piles.
- 3. Rock placement rock fill/rock armour modelled behind piles to finished surface profile and a 10 kPa construction surcharge applied.
- 4. Short term case undrained shear strength parameters and no scour to river bed in front of piles
- 5. Long term case effective shear strength parameters and allowance for some nominal scour in front of piles. 20 kPa traffic surcharge applied.
- 6. Long term case as per Stage 5, with corroded steel section properties. 20 kPa traffic surcharge applied.

A sensitivity assessment was carried out with fully healed shear strength parameters and residual shear strength parameters modelled. The main results from the PLAXIS 2D analysis are summarised in Table 5-3 and Plaxis 2D output is presented in Appendix E.

Pile Type	Sensitivity Case	Top of Pile Movement - Horizontal (mm)	Top of Pile Movement- Vertical (mm)	Pile Bending Moment (kN.m/pile)	Pile Shear Force (kN/pile)	Road Surface Movement - Horizontal (mm)	Road Surface Movement - Vertical (mm)
12m long Steel H	Fully healed parameters	113	<10	188	94	47	60
Pile @ 900mm centres	Residual strength parameters	125	<10	209	94	50	62

Table 5-3: Summary of FEM analyses

Factor of safety analysis was conducted in Plaxis 2D on the section at slip site using phi-c reduction approach to calculate FOS for short-term and long-term cases and to cross check with FOS obtained from the SLOPE/W limit equilibrium analyses. Summary of Plaxis FOS results and a comparison with Slope/W results is presented in Table 5-4.

It is noted that Plaxis and Slope/W follow completely different approaches to obtain FOS which accounts for the difference in FOS values reported in Table 5-4. FOS results from both approaches satisfy the design criteria.

Table 5-4 Summary of Plaxis 2D FOS analyses

Pile Type	Stability Case	Calculated FOS				
File Type	Stability Case	Plaxis 2D	Slope/W			
12m long Steel H Pile @ 900mm	Long-term	1.33	1.37			
centres	Short-term stage 2 rockfill placement	1.46	1.29			

5.4 Preliminary Driveability Assessment

SMEC has undertaken a preliminary driveability assessment. The results of the analysis using GRLWEAP software are summarised in the following table.

Pile Width (mm)	Maximum Compression Stress (MPa)	Maximum Tension Stress (MPa)	Maximum Driving Energy Input (KJ)	Final Set (mm/blow)	Stroke (m)
310	170	88	27	10	1.2

Table 5-5 Summary of GRLWEAP Drivability Assessment

The following assumptions were adopted for the driveability assessment:

- Unfactored soil strength parameters based on the available SPT numbers have been used drivability analyses. Any existing rock armour/rock fill has been ignored in the driveability assessment.
- Resistance during pile driving is derived primarily from shaft adhesion along the external perimeter of the pile plus a small end bearing on net area of the toe of the pile. Pile end bearing is considerably lower than the shaft adhesion.
- A Junttan 3T hydraulic hammer with 1.2m stroke has been adopted in the assessment.

- Manufacturer's default specifications contained in the GRLWEAP database have been used for both the hammer and the cushion.
- Hammer efficiency of 80% has been adopted.

The preliminary driveability assessment indicates the proposed steel piles can be installed to the target depths with a relatively small hydraulic hammer. The calculated maximum compression and tension stresses are less than 80% of the steel yield stress.

However, installation methodology, available hammers and the risk of encountering rock armour will need to be considered by prospective contractors and confirm that their methodology can install all the piles to the required depths and tolerances to achieve the requisite design criteria. Vibratory hammers have not been considered due to the risk of piles sinking under self-weight with vibratory installation techniques.

6 Scour and Transition Zone Treatments

6.1 Scour Treatment

From discussions with TfNSW representatives, SMEC understand that no specific scour assessment has been undertaken for this particular section of river. Therefore, rock fill and rock armour specifications generally consistent with the adjacent remediated site have been adopted.

Generally, no rock armour is proposed to be installed on the river side of the shear piles. This is consistent with TfNSW advice during concept design review whereby additional rock armour placement over existing steep river banks was not recommended without additional support. Instead, SMEC has made an allowance for up to approximately 2.2 m of scour in front of the piles (measured from top of piles) in the design. Notwithstanding this, scour depths in front of the piles will need to be monitored over the design life and there may be a need to install geotextile and rock armour treatment in front of the piles as part of longer term maintenance and monitoring.

Following detailed design review, TfNSW recommended a wedge of rock armour be placed at the southern end of the slip; in front of piles P37 to P47 to transition from the existing rock armour to no rock armour in front of the shear piles. The extent of the existing rock armour and the final location and extent of proposed new rock armour placement will need to be confirmed on site by survey.

To reinstate the slumped embankment, the larger size rock armour is proposed to be installed below RL2.0 m (within the tidal splash zone) and buttressing up against the shear piles. Smaller size rock fill is proposed to be installed above RL2.0 m where scour potential is expected to be relatively low.

6.2 Northern Transition Zone

The riverbank at the northern end of the slip is characterised by a narrowing terrace and a steeply inclined bank along the tidal splash zone. Within this location, additional shear piles (P1 to P6) are proposed to increase the slope stability factor of safety and to support additional rock armour and rock fill which are to be keyed in to the slope. The additional shear piles have been positioned to create a gentle taper to transition back towards the existing slopes. Beyond the shear piles, the stability of the existing riverbank slopes are expected to be marginal and there remains a risk that further slips could occur within these slopes. Geotechnical investigation and treatment to these adjacent existing vegetated slopes does not form part of the scope of this design report.

7 Durability

7.1 Exposure Classification and Corrosion Rates

Reference has been made to the 2010 durability and corrosion assessment report prepared for the steel sheet piles installed at the adjacent slip site. The corrosion assessment assumed the water to be brackish and predicted the following corrosion rates for steel sheet piles.

Exposure Zone	Exposure Classification	Corrosion Rate (mm/ year)	Comment
ln soil, above groundwater	Mild	0.01 - 0.02	AS2159 Exposure classification assessed from limited lab testing to be non-aggressive. However, given the different soil horizons and the possibility of sulfate reducing bacteria (SRB), this has conservatively been raised to "Mild" above groundwater.
In soil, in groundwater	Moderate	0.02 - 0.04	AS2159 Exposure classification assessed from limited lab testing to be mild. However, given the different soil horizons and the possibility of SRB, this has conservatively been raised to "Moderate" in groundwater.
In rock fill, atmospheric exposure	Medium	0.025 - 0.05	"Medium" (C3) as per AS 4312 (2008)
In rock fill, tidal Exposure	' Verv Severe		AS2159 Exposure classification "Very Severe" in seawater tidal/splash zone.
In rock fill, submerged	Severe	0.04	AS2159 Exposure classification "Severe" for piles submerged in seawater

Table 7-1: Corrosion Rates for Steel Sheet Piles

The following table summarises the estimated corrosion losses per exposed face for untreated steel for a 50 year design life.

Table 7-2: Estimated Corrosion Rates Per Exposed Face

Exposure Zone	bosure Zone Exposure Assumed Corros Classification Rates (mm / yea		Estimated 50 year Corrosion (mm)
In soil, above groundwater	Mild	0.02	1
In soil, in groundwater	Moderate	0.04	2
Atmospheric exposure	Medium	0.04	2
Tidal Exposure	Very Severe	0.1	5
Rock fill, submerged	Severe	0.04	2

The 50 year corrosion rates are for uniform corrosion only and don't cover pitting corrosion or corrosion induced by sulfate reducing bacteria.

7.2 Corrosion Treatment

To achieve a 50 year design life, a combination of sacrificial steel and corrosion protection treatment is recommended for the steel piles.

The highest corrosion rates are expected to occur within the tidal splash zone where a total of 10 mm of uniform steel section loss is calculated. To delay the onset of corrosion in this critical zone, SMEC recommend the upper 4 m of each steel pile are be coated in Dulux GFX PC 256 High Performance Surface Tolerant Glass Flake Epoxy or an approved equivalent:

- \circ $~~1^{st}$ coat Zincanode 402 ~- 75 micron dry film thickness
- \circ 2nd coat Duremax GFX 250 micron dry film thickness
- o 3rd coat Duremax GFX 250 micron dry film thickness

This high-performance coating has good abrasion resistance and provides excellent protection. Where damage to the coating occurs on the exposed surfaces of the piles above water levels, patch repairs of the coating can be undertaken. The risk of damage to the coating system from driving through the weak alluvial sediments is difficult to assess but generally considered to be low; given that the uncoated, lower portions of the pile will penetrate the ground first.

The lower 8 m of pile will be embedded in stiff clay where corrosion rates are lower and will rely on sacrificial steel thickness to achieve the design life. Adopting a 2 mm corrosion per face (4 mm total corrosion loss) the 310UC158 section properties reduce to a smaller 310UC96.8 section. The 310UC96.8 section properties were modelled in the long term analyses presented in Section 5.3.

To provide resistance against corrosion and/or achieve a greater design life, consideration should be given to provision for installation of cathodic protection systems – by making the piles electrically continuous by welding adjacent the piles together. This can be done by tack welding an additional member along the top of adjacent piles after driving and then applying corrosion treatment to the exposed members and welds.

8 Traffic Barrier and Maintenance Access

The design includes a 20 m long extension to the existing Type F concrete road barrier and a 6.7 m long TL3 rated Quadguard-M10 crash cushion to be connected to the Type F barrier. A stainless steel dowel connection detail has been developed to connect the existing barrier to the proposed new slip formed barrier. The detail is presented in the design drawings.

The barrier and crash cushion extension have been positioned to allow for a 3.5 m wide vehicle maintenance access to the remediated slip site and a minimum 1.5 m offset between the road edge line and the crash cushion. Refer to the General Arrangement Plan presented in Appendix A for details.

The 3.5 m access bay width was adopted with reference to AS2890.2: 2018 - Table 4.1 – Service Bay Dimensions.

Austroads Guide to Road Design: Part 3 and Part 6 were referenced to confirm that the minimum 1.5 m offset between the barrier and the road edge line is acceptable for Big River Way for a 100 km/hr speed limit and a low AADT of less than 1000 vehicles per day.

9 Constructability

9.1 Anticipated Construction Sequence

The following construction sequence is assumed for the slope remediation.

- 1. Install sediment and environmental controls.
- 2. Set out and install stabilisation piles, commencing at the northern end of the site where the risk of encountering existing rock fill/rock armour obstructions is low. As per direction from TfNSW, piles are assumed to be installed from a barge.
- 3. Clear vegetation from slope face.
- 4. Excavate benches within the slumped landslide debris and batter the headscarp. To manage temporary stability, limit the width of slope to be benched to not more than 10 m at a time, subject to on site geotechnical assessment and slope stability monitoring.
- 5. Lay geotextile and place rock armour and rock fill to benched slope.
- 6. Repeat steps 4 and 5 until full extent of slope has been treated.
- 7. Construct extension to existing Type F barrier and install crash cushion.
- 8. Construct maintenance gate.

9.2 Pile Installation Considerations

SMEC consulted with a piling contractor to obtain information on constructability of driven piles along the riverbank. The preliminary advice relevant to steel piles obtained from the contractor is presented below:

- Barges & marine side installation: Large barges for even relatively smaller 30-50 Tonne piling plant are
 rare at present and difficult to obtain for 60-80 Tonne Kellybar Piling Rigs. Due to the alignment along
 the embankment, large barges could 'run dry' attempting to get as close to the piles as desired.
- As the alignment of the piles is along the embankment at the high tide line cost of piling will be more economic from land. Even if some micropiles for working platform are required, or small segmented sheet pile temp sheets and 150mm rock working platform.
- The use of steel piles Is easily attained in a single 12 m spliced length (i.e. no expensive splicing/welding required) with conventional land based piling equipment. Will provide contractors with far more options of how to execute from land (e.g. excavator mount equipment, suspended hammers off cranes, etc).

Temporary working platforms will likely need to be designed with consideration given to bearing capacity and embankment stability to facilitate any land based piling operations at this site.

9.3 Utilities

A Dial Before You Dig enquiry was made for the site. The approximate location of the following services were identified:

- Power poles and overhead power located offset and parallel to the southbound lane.
- Buried telstra cable located offset and parallel to the southbound lane.
- Buried watermain located offset and parallel to the southbound lane.
- TfNSW has indicated the presence of an abandoned water main blanked off (disrupted by the previous failure) beneath the northbound carriageway.

The approximate indicative location of services are shown on the General Arrangement drawing.

The DBYD plans may not identify all underground services. On-site visual location of services by hand digging or pot holing is to be undertaken prior to beginning ground penetration works. Caution should be exercised when working in the vicinity of all utility services.

9.4 Construction Monitoring

9.4.1 Geotechnical Observation

The project presents geotechnical risks during construction that will require careful management by the contractor during the works. Geotechnical observation by a Site Geotechnical Representative (SGR) is recommended throughout the works to advise the contractor and to manage this geotechnical risk on behalf of the Principal.

Full time site geotechnical professional overview, preferably by the designer of the geotechnical aspects of the project, will reduce the risk of unexpected outcomes considerably. This is therefore recommended. Should the Principal not require this, then as a minimum we recommend specific geotechnical input be sought as follows:

- Review the contractor's construction methodology and quality control methodology prior to mobilising to site;
- Workshop the site risks with the contractor and Principal at the start of the project.
- Undertake review and release of hold points as per the construction staging in the specification.
- Conduct site visits to observe the site for signs of adverse movement such as cracking, subsidence, slumping; to assist in managing risk of further landslips.
- Observe, record and review earthworks and piling operations.
- On-call field advice as required to manage the potential cost of variations.

9.4.2 Temporary Stability

The site comprises a landslip with high risk of further instability encroaching back towards the Big River Way carriageway.

Slope stability analyses has been undertaken to assist with establishing vehicle exclusion zones during remediation works. The exclusion zones are depicted on the general arrangement drawing and described below.

- Zone 1 Construction vehicle limitation zone: This area is road shoulder located close to the landslip and assessed to be high risk of instability. Avoid trafficking this area during the initial stages of site remediation; prior to pile installation. Following pile installation, excavators and light vehicles up to 20 kPa surcharge are permitted in this zone. Heavier plant up to 30 kPa are to maintain a 4 m setback from the slip headscarp.
- Zone 2 Construct vehicle limitation zone: This area is road shoulder located further away from the landslip and above either previously remediated slopes or unfailed sections of slope. Light vehicles and excavators up to 20 kPa surcharge are permitted to access these areas.

Access in to exclusion zones may require temporary stability works to be designed and implemented, subject to prior consultation and review by the Designer and Principal.

9.4.3 Environmental Risks

The following environmental risks have been identified:

- Sediment runoff or loss of excavated material during construction into the Clarence River.
 - > A silt curtain is expected to be required to contain mobilised soil particles from propagating any significant distance into the waterway.

- Generation of acid sulfate soils from disturbed soils may require an acid sulfate management plan to be implemented and followed.
 - Disturbed soils for this project are limited to excavation of benches in slopes to facilitate rock armour and rock fill placement and are typically limited to less than 1 m depth below existing ground level. The risk of encountering acid sulfate soils within these shallow depths are considered to be low. Some additional acid sulfate soil testing is recommended either prior to or during construction to verify.
- Flooding and surface water infiltration into the site during adverse weather events.
- Remediation works triggering landslips or slumps within embankment situated immediately to the north of the subject site.

10 Future Maintenance and Monitoring Considerations

SMEC recommend annual visual and survey monitoring of the remediated site for the first five years including following rainfall or high river level (flood) events. The survey monitoring should be carried out by suitably qualified personnel which may include engineers and/or surveyors. The inspections should include a documented assessment of the following:

- Detailed baseline survey of the site and new works immediately after construction.
- Ongoing survey of pavement, traffic barrier and shear piles to calculate displacements and compare with design estimates.
- Monitor, repair and sealing of cracks that may form in the shoulder as a result of settlement.
- Monitoring riverbank profile in front of shear piles. If scour causes retained heights to exceed 1.5 m in front of shear piles or loss of material from in between the shear piles, geotextile and rock armour should be placed in front of the piles to retain soil and maintain passive support to the shear piles.

11 Safety in Design

The Principal held a Health Safety in Design (HSID) workshop with the Contractor and Designer (i.e. SMEC) on 12 May 2022 to use a systematic risk based approach that includes the identification of hazards.

The updated safety in design register is presented in Appendix G.

The Contractor should be aware of:

- The site is a slip and stability is marginal.
- Providing a safe work area for construction personnel;
- Traffic management to provide safe passage past the site for road users;
- General safety issues with working on slopes, and how they are to manage these risks.
- Working on or adjacent to water

12 Schedule of Quantities

A schedule of quantities has been prepared by engineers, not quantity surveyors and are estimates. A qualified and appropriately experienced quantity surveyor should be engaged to evaluate quantities and costs more accurately for budgeting purposes and appropriate contingency allowed.

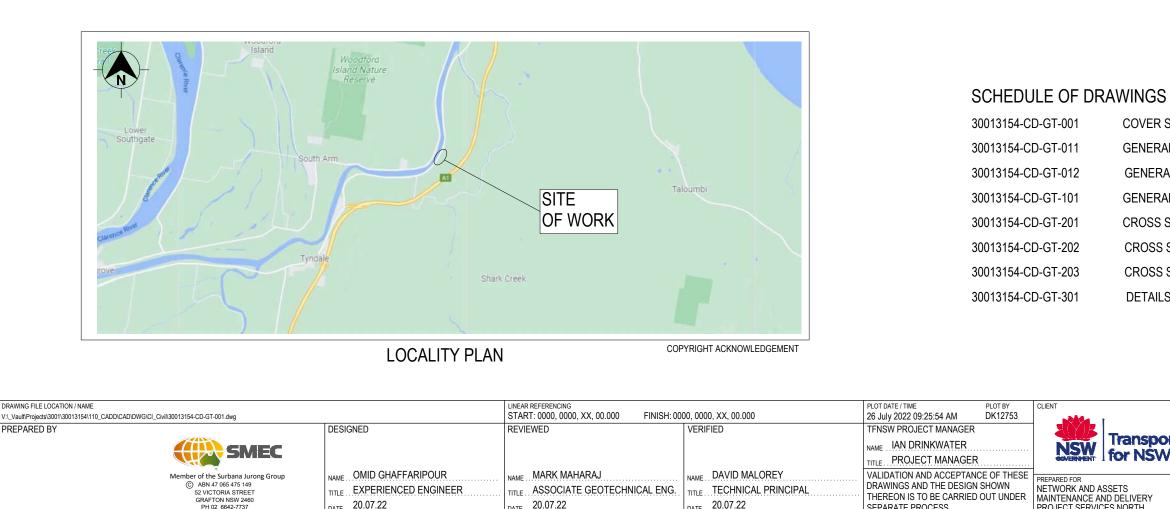
The schedules of quantities estimates are presented in Appendix H.

13 References

Alexander Y. C. 2004. "Briefing: Analysis of Piled Stabilisation of Landslides". Geotechnical Engineering Volume 157, Issue GE2, pp. 55-56.

Viggiani, C. 1981. "Ultimate Lateral Load on Piles Used to Stabilize Landslides". Proceeding. 10th I.C.S.M.F.E. 3, 555-560, Stockholm.

Appendix A Detailed Design Drawings



CLARENCE VALLEY COUNCIL HW10 PACIFIC HIGHWAY **BYRONS LANE SLIP REMEDIATION** AT 33.49km TO 33.55km NORTH OF GRAFTON **PROPOSED RIVER BANK PERMANENT STABILISATION**

ISSUED FOR CONSTRUCTION

20.07.22

DATE

20.07.22

20.07.22

NETWORK AND ASSETS

AINTENANCE AND DELIN

PROJECT SERVICES NORT

THEREON IS TO BE CARRIED OUT UNDER

SEPARATE PROCESS

COLOUR AND MAY BE INCOMPLETE IF COPIED 140 145 150mm ON a3 SIZE ORIGINAL z PREPARED H MAY DRAWING 5 110 1 SIH.

COVER SHEET **GENERAL NOTES - SHEET 1 GENERAL NOTES - SHEET 2** GENERAL ARRANGEMENT PLAN **CROSS SECTION - SHEET 1 CROSS SECTION - SHEET 2 CROSS SECTION - SHEET 3**

DETAILS

sport	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY BYRONS LANE SLIP REMEI	DIATION		A3
NSW	TfNSW PROJECT No. -	DESIGN PROJECT No. 30013154		
	TFINSW REGISTRATION NO DS2022 /	000311		PART 1
ERY H	ISSUE STATUS ISSUED FOR CONSTRUCTION	EDMS No. -	SHEET №. GT-001	A ISSUE
		(© Transport for	NSW

GENERAL NOTES:

- G1. THESE DRAWINGS SHALL BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWINGS AND WITH SUCH OTHER WRITTEN INSTRUCTIONS AS MAY BE ISSUED.
- G2. ANY DISCREPANCIES OR OMISSIONS SHALL BE REFERRED TO THE PRINCIPAL FOR A DECISION BEFORE PROCEEDING WITH THE WORK.
- G3. ALL WORKMANSHIP AND MATERIALS SHALL COMPLY WITH THE APPROPRIATE CURRENT AUSTRALIAN STANDARDS, EXCEPT WHERE OTHERWISE SHOWN ON THE DRAWINGS.
- G4. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
 G5. DIMENSIONS SHALL NOT BE OBTAINED BY SCALING THE DRAWINGS.
- G6. ALL SERVICES SHALL BE LOCATED AND DESIGN AMENDED, IF NECESSARY, PRIOR TO CONSTRUCTION
- G7. SETTING OUT DIMENSIONS SHALL BE VERIFIED ON SITE BY THE CONTRACTOR PRIOR TO CONSTRUCTION/FABRICATION, WHO SHALL BE RESPONSIBLE FOR THEIR CORRECTNESS.
- G8. WORKS SHALL BE CARRIED OUT IN ACCORDANCE WITH ALL WORKCOVER REQUIREMENTS AND THE WORK HEALTH AND SAFETY ACT AND THE WORK HEALTH AND SAFETY REGULATION.
- G9. ALL PROPRIETARY PRODUCTS ARE TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S WRITTEN RECOMMENDATIONS UNLESS NOTED OTHERWISE.
- G10. ALL DISTURBED AREAS NOT SUBJECTED TO NEW WORKS SHALL BE REINSTATED TO THEIR EXISTING CONDITION BY THE CONTRACTOR AT THE COMPLETION OF WORKS TO THE SATISFACTION OF THE RESPONSIBLE AUTHORITY.
 G11. THESE DRAWINGS DO NOT DETAIL TEMPORARY WORKS. CONSTRUCTION METHODS AND
- G11. THESE DRAWINGS DO NOT DETAIL TEMPORARY WORKS. CONSTRUCTION METHODS AND TEMPORARY WORKS ARE THE RESPONSIBILITY OF THE CONTRACTOR.
- G12. THE DESIGN CERTIFICATION AND PERFORMANCE OF FORMWORK AND FALSEWORK SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR, AND SHALL BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT CODES.
- G13. REDUCED LEVELS ARE TO AUSTRALIAN HEIGHT DATUM.
- G14. THE FOLLOWING DESIGN LOADS HAVE BEEN CONSIDERED FOR DESIGN: -20kPa VERTICAL TRAFFIC LIVE LOAD APPLIED TO CARRIAGEWAY, BREAKDOWN LANE AND SHOULDER,
 - -10kPa SHORT TERM CONSTRUCTION SURCHARGE ABOVE SLIP

-30KPa SHORT TERM CONSTRUCTION SURCHARGE SET BACK MINIMUM HORIZONTAL DISTANCE OF 4 M FROM SLIP HEADSCARP.

CONSTRUCTION SEQUENCE FOR SLOPE REMEDIATION:

THE FOLLOWING CONSTRUCTION SEQUENCE HAS BEEN ASSUMED FOR THE SLOPE REMEDIATION DESIGN. DEVIATION FROM THIS SEQUENCE MAY POTENTIALLY AFFECT THE LOADING ASSUMPTIONS AND SHALL BE SUBMITTED TO THE PRINCIPAL FOR REVIEW PRIOR TO COMMENCEMENT OF CONSTRUCTION. THIS CONSTITUTES A HOLD POINT.

- CS1. INSTALL SEDIMENT AND ENVIRONMENTAL CONTROLS. THIS CONSTITUTE A HOLD POINT.
- CS2. SETOUT AND INSTALL STABILISATION PILES, COMMENCING AT NORTHERN END OF SITE. THIS CONSTITUTES A **HOLD POINT**. ASSUMPTION IS THAT PILES ARE INSTALLED FROM BARGE TO AVOID SURCHARGING UNSTABLE SLOPE WITH HEAVY PLANT.
- CS3. CLEAR VEGETATION FROM SLOPE.
- CS4. EXCAVATE BENCHES WITHIN THE SLUMPED LANDSLIDE DEBRIS AND BATTER HEADSCARP. THIS CONSTITUTE A **HOLD POINT**.
- CS5. LAY GEOTEXTILE AND PLACE ROCK FILL AND ROCK ARMOUR TO SLOPE. THIS CONSTITUTES A **HOLD POINT.** ASSUMPTION IS THAT CS4. AND CS5. OCCUR SEQUENTIALLY WITH NOT MORE THAN 10 M WIDTH OF SLOPE EXCAVATED AT ANY STAGE AND SUBJECT TO ON-SITE GEOTECHNICAL ASSESSMENT BY THE SGR.
- CS6. CONSTRUCT EXTENSION TO EXISTING TYPE F BARRIER AND INSTALL CRASH CUSHION. CS7. CONSTRUCT MAINTENANCE GATE

ROCK FILL AND ROCK ARMOUR

- R1. ROCK FILL AND ROCK ARMOUR SHALL COMPRISE CLEAN, FRESH, ANGULAR ROCK WITH A MINIMUM POINT LOAD STRENGTH INDEX Is(50) = 1MPa, WET\DRY STRENGTH VARIATION NOT EXCEEDING 35%. ALL OTHER REQUIREMENT FOR ROCK FILL CONFORMING TO R44 SPECIFICATION WITH GRADING AS PER BELOW.
- R2. ROCK FILL MINIMUM PARTICLE SIZE 0-5% PASSING 100mm SIEVE, D₅₀ = 250mm, MAXIMUM PARTICLE SIZE 500mm.
- R3. ROCK ARMOUR MINIMUM PARTICLE SIZE 700mm, MAXIMUM PARTICLE SIZE 1000mm, MINIMUM THICKNESS 700mm.
- R4. SEPARATION GEOTEXTILE TO BE PLACED BETWEEN EXISTING SLOPE AND PROPOSED ROCK FILL AND ROCK ARMOUR. LAID LOOSE AND WITH MINIMUM 500mm LAP BETWEEN SHEETS REQUIRED TO ACCOMMODATE DEFORMATION. SEPARATION GEOTEXTILE TO BE CLASS E AND TO COMPLY WITH TRNSW R63 SPECIFICATION. MAXIMUM ROCK DROP HEIGHT MUST NOT EXCEED 1.0m TO AVOID DAMAGING GEOTEXTILE.

GEOTECHNICAL NOTES:

- GE1. SGR = SITE GEOTECHNICAL REPRESENTATIVE.
- GE2. GEOTECHNICAL DESIGN IS BASED ON AN INTERPRETED GROUND MODEL DEVELOPED FROM THE AVAILABLE GEOTECHNICAL INFORMATION AND SUMMARISED ON THE DRAWINGS. WHERE POSSIBLE, THESE ASSUMPTIONS SHALL BE VALIDATED ON SITE BY SGR.
- GE3. IF WEAKER GROUND CONDITIONS THAN THOSE SHOWN IN THE GEOTECHNICAL MODELS ARE ENCOUNTERED, DESIGNER AND PRINCIPAL ARE TO BE NOTIFIED.
- GE4. THE PROPOSED SLOPE REMEDIATION IS DESIGNED TO SUIT THE INTERPRETED GROUND CONDITIONS. THE REMEDIATION SYSTEM TO BE RE-ASSESSED WHERE THE ENCOUNTERED CONDITIONS VARY FROM THE ASSUMED DESIGN MODEL.
- GE5. PILING CONTRACTOR TO BE AWARE OF VARIABLE GROUND CONDITIONS LIKELY TO BE ENCOUNTERED DURING PILING.
- GE6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE DESIGN AND CONSTRUCTION OF ANY TEMPORARY WORKS DEEMED NECESSARY TO ACHIEVE THE FINAL CONFIGURATION.TEMPORARY WORK DESIGNS TO BE REVIEWED AND ACCEPTED BY THE PRINCIPAL PRIOR TO CONSTRUCTION. THIS CONSTITUTES A HOLD POINT.
- GE7. IF THE FOUNDING MATERIAL PROPERTIES ARE FOUND TO BE INFERIOR TO THE DESIGN ASSUMPTIONS, CONSTRUCTION MUST CEASE AND THE PRINCIPAL SHALL BE NOTIFIED IMMEDIATELY.

SURVEY NOTES

- S1. ALL SURVEY SETOUT SHALL BE UNDERTAKEN BY A REGISTERED SURVEYOR AS ENGAGED BY THE CONTRACTOR.
- S2. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND INFORMATION CONTAINED WITHIN THE SITE PRIOR TO COMMENCING WORKS.
- S3. THE CONTRACTOR SHALL PREPARE WORK AS EXECUTED DRAWINGS FOR THE WORKS. AS A MINIMUM, THE ISSUED FOR CONSTRUCTION DRAWINGS SHALL BE UPDATED AND A NEW REVISION ISSUED. A SURVEYOR SHALL CERTIFY THE UPDATED LEVELS ARE CORRECT.

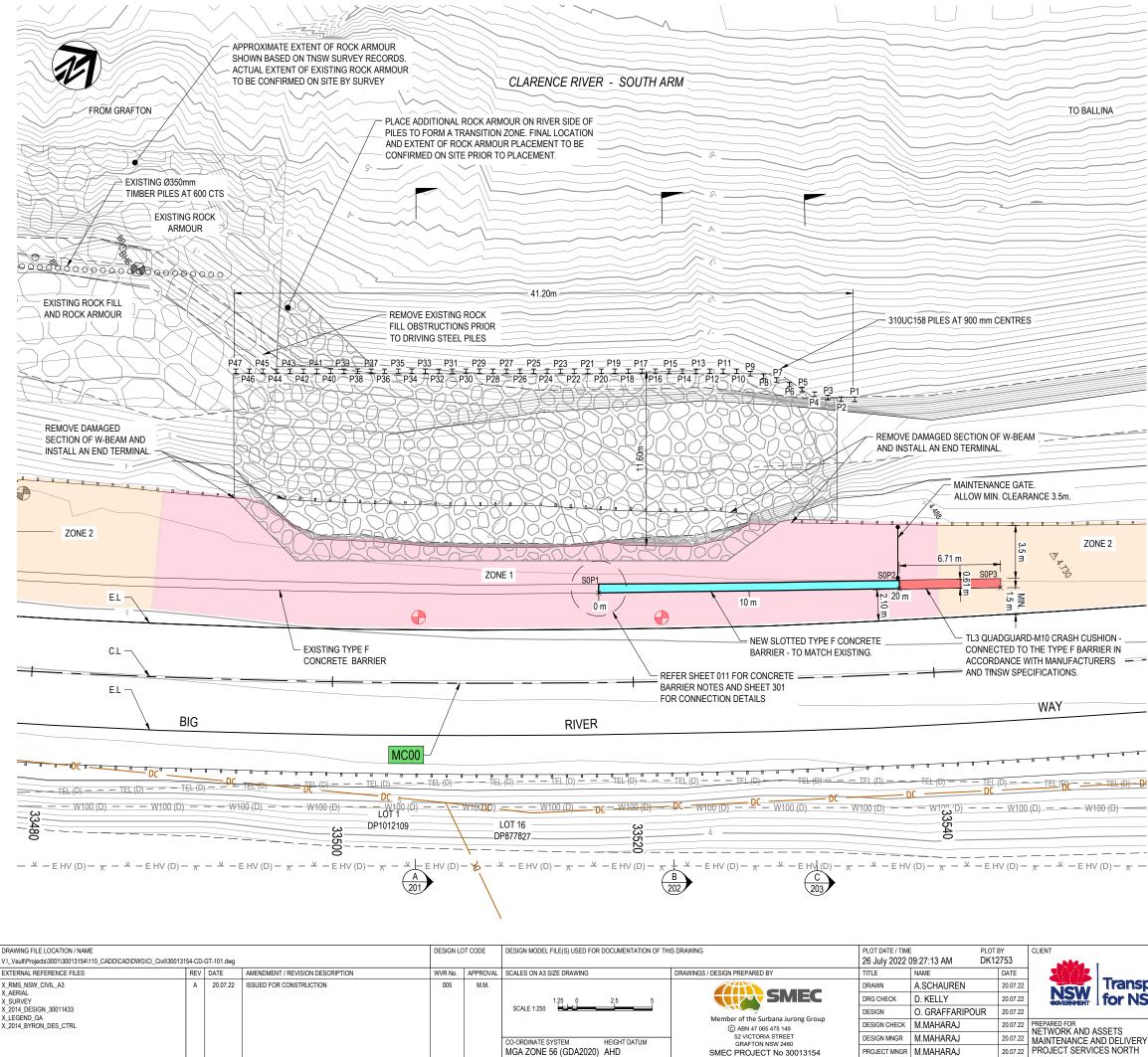
PILING NOTES

- P1. PILES SHALL BE DRIVEN TO THE REQUIRED DEPTHS AND TOLERANCES PRESENTED ON THE DESIGN DRAWINGS AND TINSW B53 SPECIFICATION.
- P2. REFER TO TABLE 2 DWG.GT-012 FOR PRELIMINARY PILE DRIVEABILITY ASSESSEMENT.
- P3. PILE DURABILITY COATING SYSTEM FOR TIDAL SPLASH ZONE. THE UPPER 4m OF EACH PILE TO BE COATED IN DULUX GFX PC 256 HIGH PERFORMANCE SURFACE TOLERANT GLASS FLAKE EPOXY OR AN APPROVED EQUIVALENT:
 - 1st COAT ZINCANODE 402 75 MICRON DRY FILM THICKNESS
 - 2nd COAT DUREMAX GFX 250 MICRON DRY FILM THICKNESS
 - 3^{td} COAT DUREMAX GFX 250 MICRON DRY FILM THICKNESS

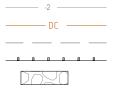
P4. ANY DAMAGE TO DURABILITY COATING SYSTEM DURING CONSTRUCTION TO BE REPAIRED. ROCK ARMOUR PLACEMENT MAY CAUSE DAMAGE TO DURABILITY COATING SYSTEM.

CONCRETE BARRIERS

- CR1. DRILL AND EPOXI DOWEL INTO EXISTING BARRIER WITH HILTI HIT-RE 500 OR APPROVED EQUIVALENT WITH 300mm EMBEDMENT.
- CR2. DEBONDED END OF DOWEL INSERTED IN TO NEW BARRIER.
- CR3. PLACING AND CURING OF CONCRETE SHALL BE IN ACCORDANCE WITH TfNSW QA SPECIFICATION B80.
- CR4. MINIMUM 28 DAYS COMPRESSIVE STRENGTH OF CAST IN PLACE CONCRETE SHALL BE 40MPa.


R												
	DRAWING FILE LOCATION / NAME Q V:_VaultiProjectsi3001130013154/110_CADDICADIDWG\CI_Civili30013154-CD-GT-011.dwg			DESIGN LOT CODE DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS DRAWING					DT BY 12753	CLIENT		
0	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	
	X_RMS_NSW_CIVIL_A3	Α	20.07.22	ISSUED FOR CONSTRUCTION	005	M.M.			DRAWN	A.SCHAUREN	20.07.22	
15	X_NOTES							SMEC	DRG CHECK	D. KELLY	20.07.22	NSW for NS
5								Mantha af Ala Cushana luman Casur	DESIGN	O. GRAFFARIPOUR	20.07.22	
_								Member of the Surbana Jurong Group (c) ABN 47 065 475 149	DESIGN CHECK	M.MAHARAJ	20.07.22	PREPARED FOR NETWORK AND ASSETS
2	-						CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET GRAFTON NSW 2460	DESIGN MNGR	M.MAHARAJ	20.07.22	MAINTENANCE AND DELIVERY
0							MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR		20.07.22	PROJECT SERVICES NORTH

	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY			A3				
sport	DIATION							
NSW	GENERAL NOTES - SHEET 1							
	RMS REGISTRATION No. DS2022 /	000311		PART 1				
ERY TH	ISSUE STATUS ISSUED FOR CONSTRUCTION	EDMS No. -	SHEET №. GT-011	A ISSUE				
			C Transport fo					


TABLE 1	1 - PILING SCH	HEDULE					TABLE	1 - PILING SC	HEDULE					TABLE 2 - DRIVING OF STEE	L PILES
PILE ID -	DESIGN SETOUT	T COORDINATES	STEEL PILES SECTION	PILE LENGTH	DESIGN TOP OF PILE		PILE ID	DESIGN SETOU	T COORDINATES	STEEL PILES SECTION	PILE LENGTH	DESIGN TOP OF PILE		MIN. PILE TOE LEVEL	-11.4 mAHD
	EASTING	NORTHING	PORPERTIES	(m)	LEVEL (mAHD)	LEVEL (mAHD)		EASTING	NORTHING	PORPERTIES	(m)	LEVEL (mAHD)	LEVEL (mAHD)	FINAL PERMANENT SET AND DRIVING	10mm / BLOW WITH JUNTTAN 3T HYDRAULIC HAMMER WIT
P1	517801.726	6732426.087	310UC158	12	0.6	-11.4	P25	517788.165	6732409.496	310UC158	12	0.6	-11.4	ENERGY	1.2m STROKE AT A NET DRIVING ENERGY OF 27 kJ
P2	517801.215	6732425.347	310UC158	12	0.6	-11.4	P26	517787.659	6732408.752	310UC158	12	0.6	-11.4	MAX COMPRESSION STRESS EXPECTED DURING DRIVING	170 MPa
P3	517800.621	6732424.672	310UC158	12	0.6	-11.4	P27	517787.152	6732408.008	310UC158	12	0.6	-11.4	MAX. TENSION STRESS EXPECTED DURING DRIVING	88 MPa
P4	517799.950	6732424.072	310UC158	12	0.6	-11.4	P28	517786.645	6732407.264	310UC158	12	0.6	-11.4	TABLE 2 NOTES:	I
P5	517799.213	6732423.556	310UC158	12	0.6	-11.4	P29	517786.138	6732406.521	310UC158	12	0.6	-11.4	ANALYSIS OF THE BEHAVIOUR OF	OF A PRELIMINARY, THEORETICAL PILE DRIVEABILITY THE PILING EQUIPMENT, PILE AND INFERRED GROUND
P6	517798.466	6732423.055	310UC158	12	0.6	-11.4	P30	517785.631	6732405.777	310UC158	12	0.6	-11.4		VALUES ARE TO BE USED AS GUIDE ONLY FOR DRIVING OF NDERTAKE INDEPENDENT DERIVABILITY ASSESSMENT.
P7	517797.736	6732422.528	310UC158	12	0.6	-11.4	P31	517785.124	6732405.033	310UC158	12	0.6	-11.4		
P8	517797.051	6732421.945	310UC158	12	0.6	-11.4	P32	517784.617	6732404.290	310UC158	12	0.6	-11.4		
P9	517796.415	6732421.309	310UC158	12	0.6	-11.4	P33	517784.111	6732403.546	310UC158	12	0.6	-11.4		
P10	517795.769	6732420.651	310UC158	12	0.6	-11.4	P34	517783.604	6732402.802	310UC158	12	0.6	-11.4		
P11	517795.262	6732419.907	310UC158	12	0.6	-11.4	P35	517783.097	6732402.059	310UC158	12	0.6	-11.4		
P12	517794.755	6732419.164	310UC158	12	0.6	-11.4	P36	517782.590	6732401.315	310UC158	12	0.6	-11.4		
P13	517794.248	6732418.420	310UC158	12	0.6	-11.4	P37	517782.083	6732400.571	310UC158	12	0.6	-11.4		
P14	517793.741	6732417.676	310UC158	12	0.6	-11.4	P38	517781.576	6732399.828	310UC158	12	0.6	-11.4		
P15	517793.234	6732416.932	310UC158	12	0.6	-11.4	P39	517781.069	6732399.084	310UC158	12	0.6	-11.4		
P16	517792.727	6732416.189	310UC158	12	0.6	-11.4	P40	517780.562	6732398.340	310UC158	12	0.6	-11.4		
P17	517792.220	6732415.445	310UC158	12	0.6	-11.4	P41	517780.056	6732397.596	310UC158	12	0.6	-11.4		
P18	517791.714	6732414.701	310UC158	12	0.6	-11.4	P42	517779.549	6732396.853	310UC158	12	0.6	-11.4		
P19	517791.207	6732413.958	310UC158	12	0.6	-11.4	P43	517779.042	6732396.109	310UC158	12	0.6	-11.4		
P20	517790.700	6732413.214	310UC158	12	0.6	-11.4	P44	517778.535	6732395.365	310UC158	12	0.6	-11.4		
P21	517790.193	6732412.470	310UC158	12	0.6	-11.4	P45	517778.028	6732394.622	310UC158	12	0.6	-11.4		
P22	517789.686	6732411.727	310UC158	12	0.6	-11.4	P46	517777.521	6732393.878	310UC158	12	0.6	-11.4		
P23	517789.179	6732410.983	310UC158	12	0.6	-11.4	P47	517777.014	6732393.134	310UC158	12	0.6	-11.4		
P24	517788.672	6732410.239	310UC158	12	0.6	-11.4			1	1		1	1		

	DRAWING FILE LOCATION / NAME				DESIGN LC	T CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	IS DRAWING	PLOT DATE / TIME		T BY	CLIENT	
ŝ	V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-	-GT-012.dwg						26 July 2022 (09:26:46 AM DK	12753	Nila	·
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE		
	X_RMS_NSW_CIVIL_A3	Α	20.07.22	ISSUED FOR CONSTRUCTION	005	M.M.			DRAWN	A.SCHAUREN	20.07.22	NICW	Transp
2	X_NOTES							SMEC	DRG CHECK	D. KELLY	20.07.22	NSW	for NS
2									DESIGN	O. GRAFFARIPOUR	20.07.22	1	
								Member of the Surbana Jurong Group (c) ABN 47 065 475 149	DESIGN CHECK	M.MAHARAJ	20.07.22	PREPARED FOR	00570
n							CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR	M.MAHARAJ	20.07.22		SSEIS ND DEI IVERY
>							MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR	M.MAHARAJ	20.07.22	PROJECT SERVIC	ES NORTH

sport	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY BYRONS LANE SLIP REMEI	DIATION		A3			
GENERAL NOTES - SHEET 2							
	RMS REGISTRATION NO. $DS2022$ /	000311		PART 1			
ERY H	ISSUE STATUS ISSUED FOR CONSTRUCTION	EDMS No. -	SHEET №. GT-012	ISSUE A			
		(© Transport for	NSW			

LEGEND - EXISTING

MAJOR CONTOURS APPROXIMATE PROPERTY BOUNDARY MINOR CONTOURS SAFETY BARRIER GUARD FENCE EXISTING ROCK FILL AND ARMOUR

LEGEND - EXISTING UTILITIES

——————————————————————————————————————	BURIED TELSTRA
— — — W100 (D) —	BURIED WATER MAIN
— <u> →</u> — E HV (D) — <u></u> →	OVERHEAD POWER

LEGEND

CONTROL LINE CENTRE LINE EDGE LINE SETOUT POINT TfNSW BORE HOLE (2021) TfNSW BORE HOLE (2009)

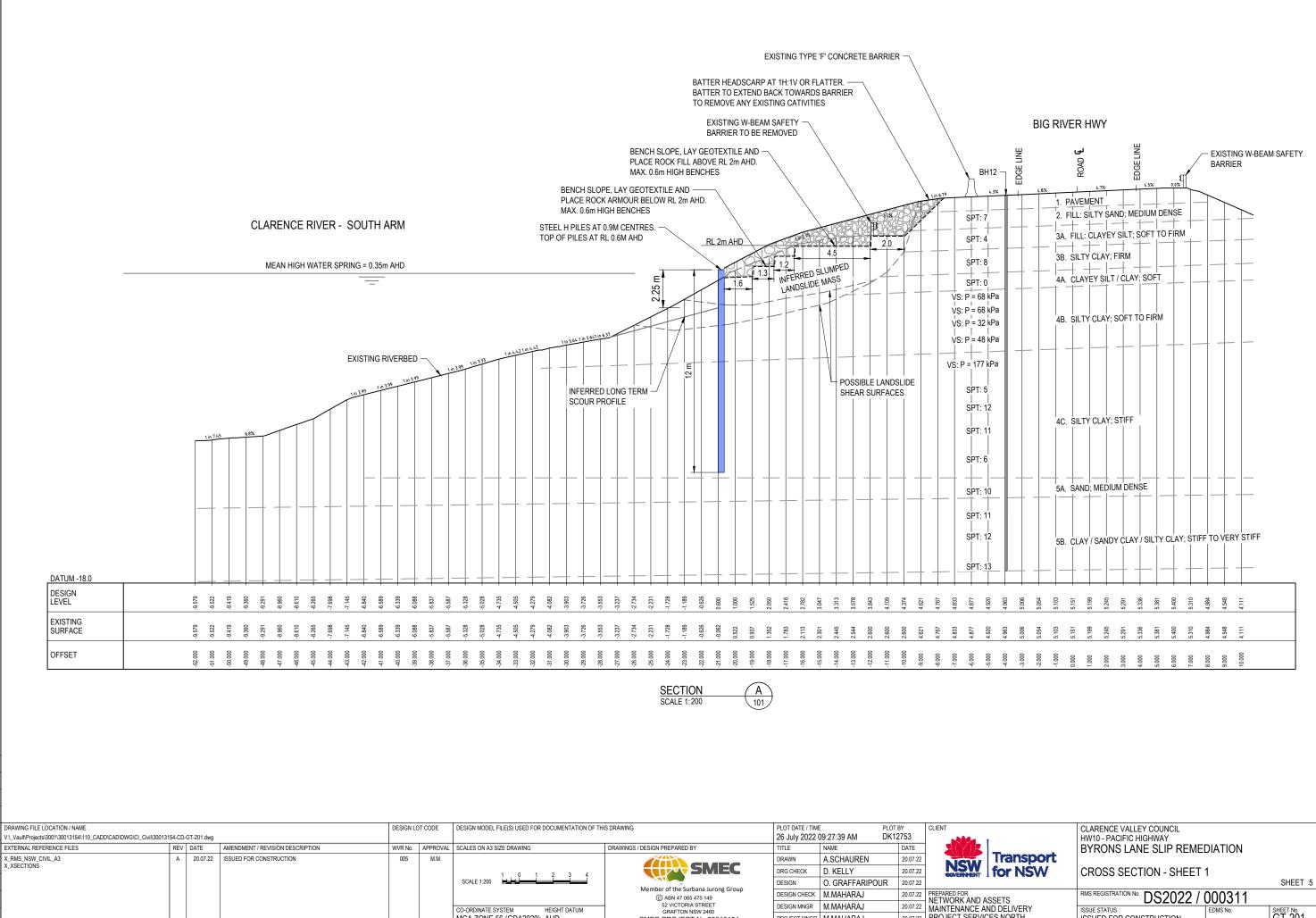
EXTENT OF NEW ROCK FILL AND ARMOUR

ZONE 1 - CONSTRUCTION VEHICLE LIMITATION ZONE - GT-011 CS1 AND CS2: NO VEHICLES PERMITTED IN ZONE 1.

GT-011 CS3, CS4 AND CS5: EXCAVATORS AND LIGHT VEHICLES UP TO 20kPa PERMITTED IN ZONE 1. HEAVIER PLANT UP TO 30kPa TO MAINTAIN 4m SETBACK FROM HEADSCARP.

ZONE 2 - CONSTRUCTION VEHICLE LIMITATION ZONE - EXCAVATORS AND LIGHT VEHICLES PERMITTED DURING ALL CONSTRUCTION STAGES.

BARRIER AND CRASH CUSHION SETOUT


POINT	EASTING	NORTHING
SOP1	517802.780	6732404.771
SOP2	517813.806	6732421.460
SOP3	517817.539	6732427.046

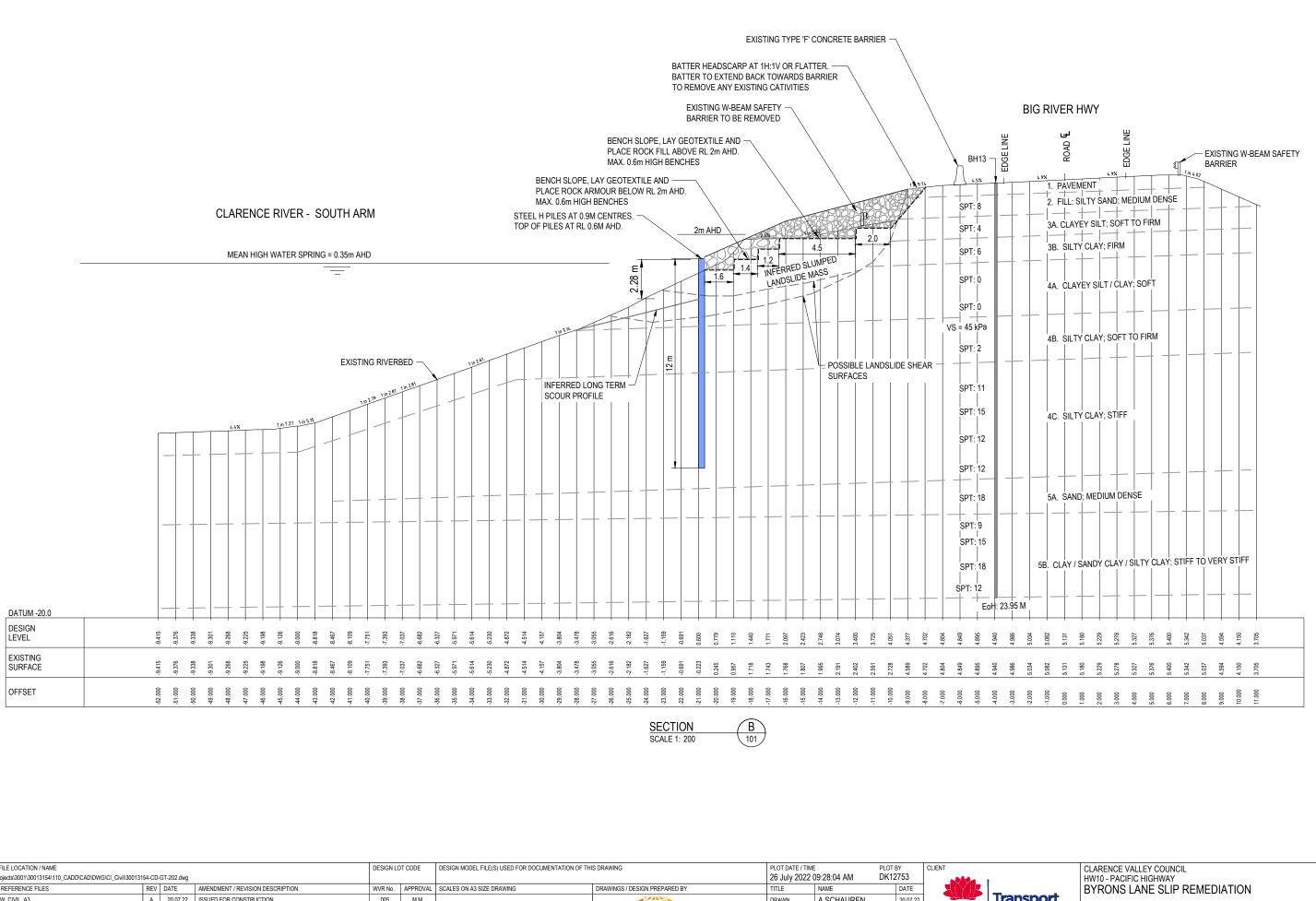
WARNING:

UTILITY INFORMATION SHOWN ON THE PLANS DOES NOT DEPICT ANYMORE THAN THE PRESENCE OF A SERVICE, BASED ON AVAILABLE DOCUMENTARY EVIDENCE. THE PRESENCE OF A UTILITY SERVICE, ITS SIZE AND LOCATION MUST BE CONFIRMED BY YOU IN ACCORDANCE WITH TINSW SPECIFICATION G7, PRIOR TO THE COMMENCEMENT OF ROAD WORKS AND THE RELEVANT UTILITY PLANS OBTAINED BY LODGING AN ENQUIRY THROUGH www.1100.com.au (DIAL BEFORE YOU DIG). CAUTION MUST BE EXERCISED WHEN WORKING IN THE VICINITY OF ALL UTILITY SERVICES.

sport	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY BYRONS LANE SLIP REM	EDIATION		A3
NSW	GENERAL ARRANGEMENT PLAN			
	RMS REGISTRATION NO. DS2022	/ 000311		PART 1
ERY H	ISSUE STATUS	EDMS No.	SHEET No.	ISSUE
П	ISSUED FOR CONSTRUCTION	-	GT-101	A
				r NIQ\A/

SMEC PROJECT No 30013154

CO-ORDINATE SYSTEM


MGA ZONE 56 (GDA2020) AHD

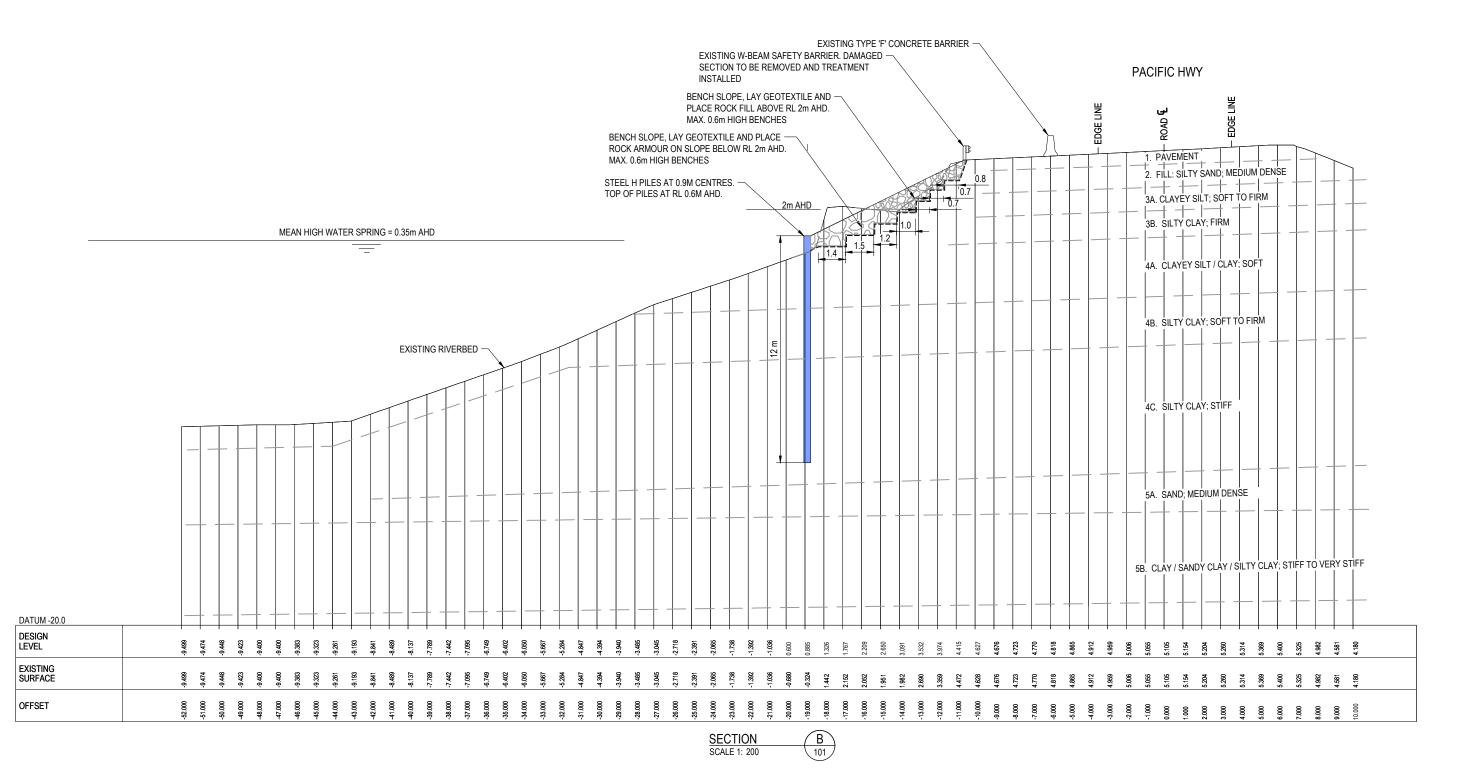
HEIGHT DATUM

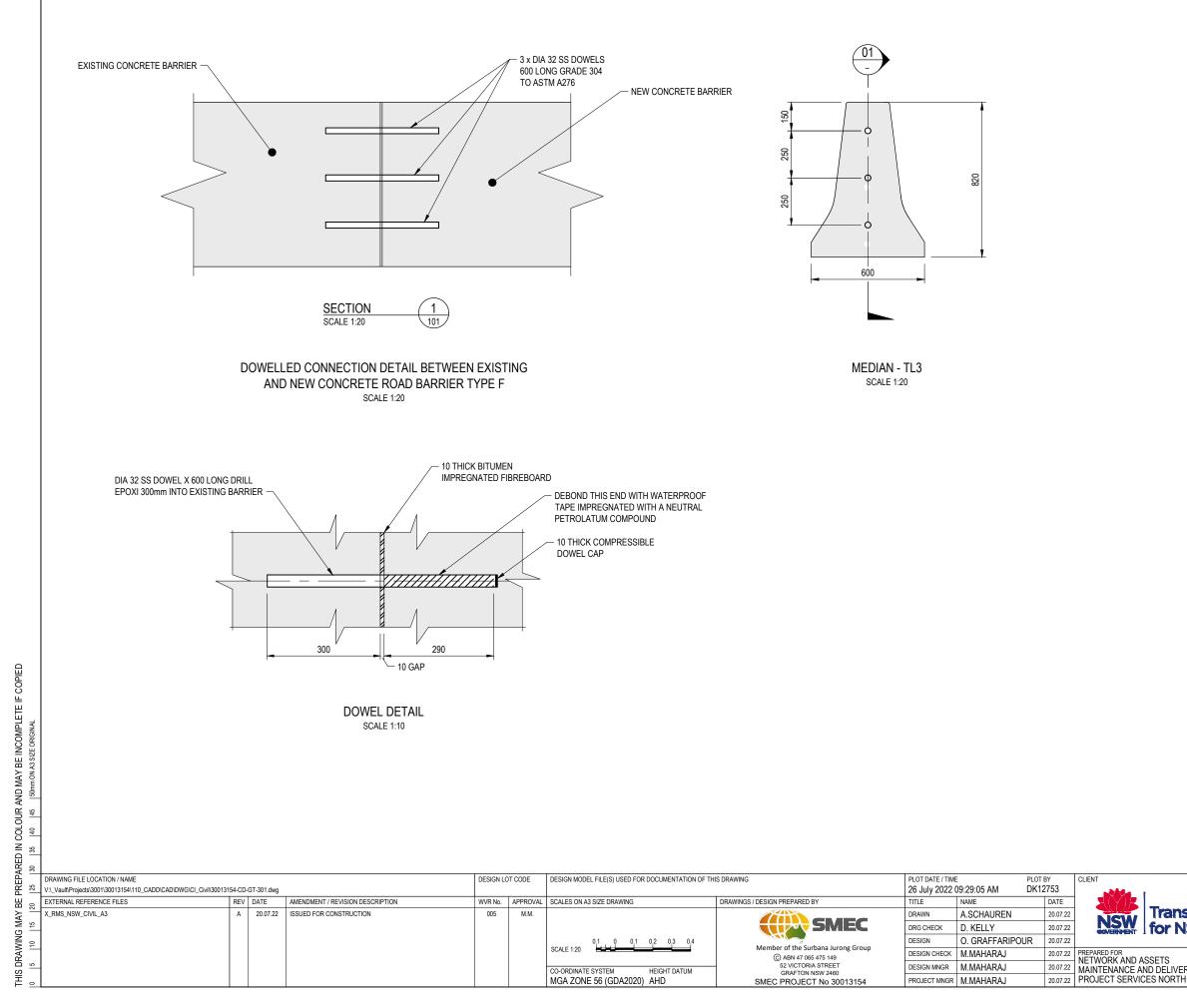
DESIGN MNGR M.MAHARAJ

PROJECT MNGR M.MAHARAJ

т вү 127		CLIENT	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY			A3
۵	DATE		BYRONS LANE SLIP REME	DIATION		
2	20.07.22	NSW for NSW				
2	20.07.22	for NSW	CROSS SECTION - SHEET 1			
2	20.07.22				SHEET 5 OF	8
2	20.07.22	PREPARED FOR NETWORK AND ASSETS	RMS REGISTRATION NO. DS2022 /	000311		PART 1
2	20.07.22	MAINTENANCE AND DELIVERY	ISSUE STATUS	EDMS No.	SHEET No.	ISSUE
2	20.07.22	PROJECT SERVICES NORTH	ISSUED FOR CONSTRUCTION	-	GT-201	A
					© Transport for	NSW

 THIS DRAWING MAY BE PREPARED IN COLOUR AND MAY BE INCOMPLETE IF COPIED


 0
 5
 10
 15
 20
 25
 30
 40
 45
 56mm ON A3 SIZE ORIGINAL


 X
 X
 X
 X
 X
 X
 X

AWING FILE LUCATION / NAME			DESIGNL	OT CODE	DESIGN MODEL FILE(5) USED FOR DOCUMENTATION OF IF	115 DRAWING	PLOT DATE / TIM			CLIENT	
Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-GT-202.	wg					26 July 2022	09:28:04 AM	DK12753		
TERNAL REFERENCE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	AVR _	
RMS_NSW_CIVIL_A3	A 20.0	22 ISSUED FOR CONSTRUCTION	005	M.M.			DRAWN	A.SCHAUREN	20.07.22	NGW	ran
KSECTIONS					1 0 1 2 3 4	SMEC	DRG CHECK	D. KELLY	20.07.22	SOVERNMENT I	or M
					SCALE 1:200	Marshar of the Suchara Lucara Crown	DESIGN	O. GRAFFARIPOU	२ 20.07.22		
						Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK	M.MAHARAJ	20.07.22	PREPARED FOR NETWORK AND ASSE	те
					CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET GRAFTON NSW 2460	DESIGN MNGR	M.MAHARAJ	20.07.22	MAINTENANCE AND E	JELIVE
					MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR	M.MAHARAJ		PROJECT SERVICES I	

	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY			A3		
nsport	BYRONS LANE SLIP REMEDIATION					
NSW	CROSS SECTION - SHEET	SHEET 6 C)F 8			
		000211	SHEET 0 C	PART		
	RMS REGISTRATION NO. DS2022 / 000311					
/ERY	ISSUE STATUS	EDMS No.	SHEET No.	ISSUE		
TH	ISSUED FOR CONSTRUCTION	-	GT-202	A		
			© Transport fo	r NSW		

DRAWING FILE LOCATION / NAME V:_VaultProjects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\?	30013154-CD-	GT-203.dwg		DESIGN L	OT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	IS DRAWING	PLOT DATE / TIME 26 July 2022 (PLOT BY DK12753	CLIENT	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY	A3
EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE		BYRONS LANE SLIP REMEDIATION	
X_RMS_NSW_CIVIL_A3 X_XSECTIONS	A	20.07.22	ISSUED FOR CONSTRUCTION	005	M.M.			DRAWN	A.SCHAUREN	20.07.22	Transport		
X_XSECTIONS						1 0 1 2 3 4	SMEC	DRG CHECK	D. KELLY	20.07.22	NSW for NSW	CROSS SECTION - SHEET 3	
						SCALE 1:200		DESIGN	O. GRAFFARIPO	UR 20.07.22			SHEET 7 OF 8
							Member of the Surbana Jurong Group © ABN 47 065 475 149	DESIGN CHECK	M.MAHARAJ	20.07.22	PREPARED FOR NETWORK AND ASSETS	RMS REGISTRATION NO. DS2022 / 000311	PART 1
-						CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET GRAFTON NSW 2460	DESIGN MNGR	M.MAHARAJ	20.07.22	MAINTENANCE AND DELIVERY	ISSUE STATUS EDMS No.	SHEET No. ISSUE
						MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR	M.MAHARAJ		PROJECT SERVICES NORTH	ISSUED FOR CONSTRUCTION -	GT-203
•						•	•	•		÷		•	© Transport for NSW

	CLARENCE VALLEY COUNCIL HW10 - PACIFIC HIGHWAY BYRONS LANE SLIP REMEI	DIATION		A3
sport ISW	DETAILS		SHEET 8 O	F 8
	RMS REGISTRATION NO. DS2022 /	000311		PART
RY I	ISSUE STATUS ISSUED FOR CONSTRUCTION	EDMS No. -	SHEET NO. GT-301	ISSUE A
		(© Transport for	NSW

Appendix B Site Observations

Slip headscarp with some slumping observed regressing back beneath pavement

Photograph 1: 29 June 2021 - Ch33490 m - view north showing slip headscarp profile.

Additional slumping to headscarp observed.

Photograph 2: 11 March 2021 - Ch33490 m - view north showing slip headscarp profile.

Photograph 3: 11 March 2021 - Headscarp exposing pavement layers and undercutting.

Photograph 4: 29 June 2021 - Ch33490 m - view south; wide sealed shoulder at southern end of slip.

Slumping of headscarp pavement and fill materials. Regression back beneath pavement.

Ponding water on subsided pavement

Photograph 5: 29 June 2021 - Ch33530 – slip headscarp and subsidence viewed from southern end of headscarp.

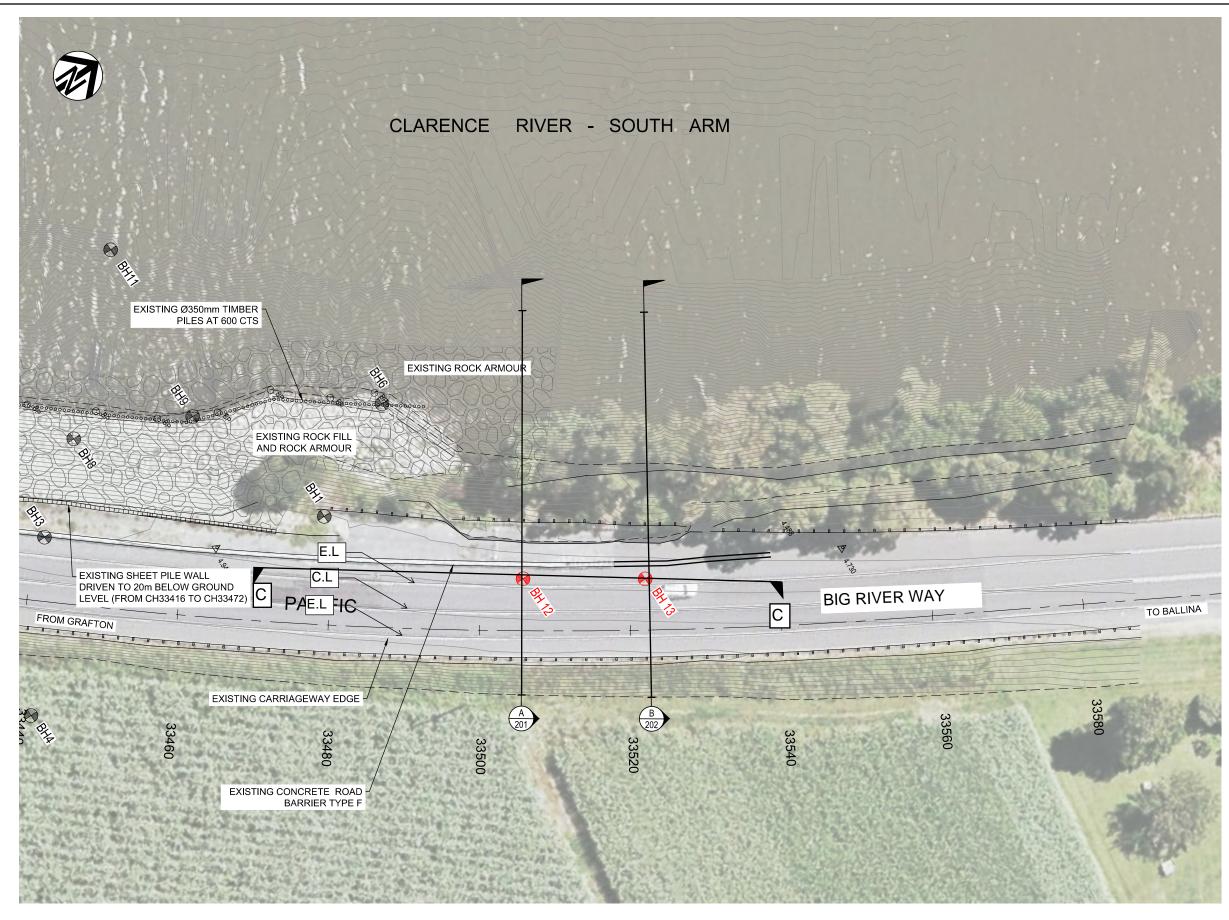
Additional slumping of pavement and fill materials. Regression back beneath pavement.

Photograph 6: 11 March 2021 – Additional slumping

No obvious tension cracks observed in pavement. Pavement cross fall is towards the riverbank.

Headscarp located approximately 5.5 m from edge line.

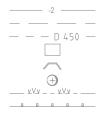
Photograph 7: 29 June 2021 - Ch33500 m – view north; slip headscarp and pavement profile viewed from southern end.



Photograph 8: 29 June 2021 - ~Ch33515 - view of slumped road embankment and riverbank below headscarp.

Photograph 9: 29 June 2021 - Ch33540 - Road formation and vegetated riverbank north of slip (view south).

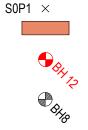
Appendix C Interpreted Geotechnical Model Cross Sections and Long Section


SITE INVESTIGATION PLAN

n i																
	DRAWING FILE LOCATION / NAME			DESIGN LO	T CODE DESI	SIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS	DRAWING	PLOT DATE / TIME		BY	CHECK PRINT	PRELIM. FINAL	CLARENCE VALLEY COUNCIL		-	Δ3
6 7	V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-GT-101.dwg						13 September	2021 03:15:40 PM TC1	3654		INITIAL DATE	HW10 - PACIFIC HIGHWAY			~5
2	EXTERNAL REFERENCE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL SCAL	CALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE		BYRONS LANE SLIP REME	EDIATION		
. N	X_RMS_NSW_CIVIL_A3 X_AERIAL X_SURVEY	0 0	CONCEPT DESIGN	0	0	2,5 0 2,5 5,0 7,5 10 12.5m		DRAWN	T.CORFIAS				-			
20	X_AERIAL X_SURVEY				SCALE		SMEC	DRG CHECK			DISCIPLINE		GENERAL ARRANGEMENT	T PLAN		
_	X_2014_BYRON_DES_CTRL							DESIGN	M.MAHARAJ		DISCIPLINE				SHEET 1 OI	OF 4
	X_2014_DESIGN_30011433 X_LEGEND_GA						Member of the Surbana Jurong Group © ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED		RMS REGISTRATION No.			PART
n						D-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BACKDRAFTED/CORRECTED		ISSUE STATUS	EDMS No.	SHEET No.	ICCLIE
_						GA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED		15502 514105	EDINIS NO.	1	ISSUE
-			1		1							1		1	© Transport for	or NSW

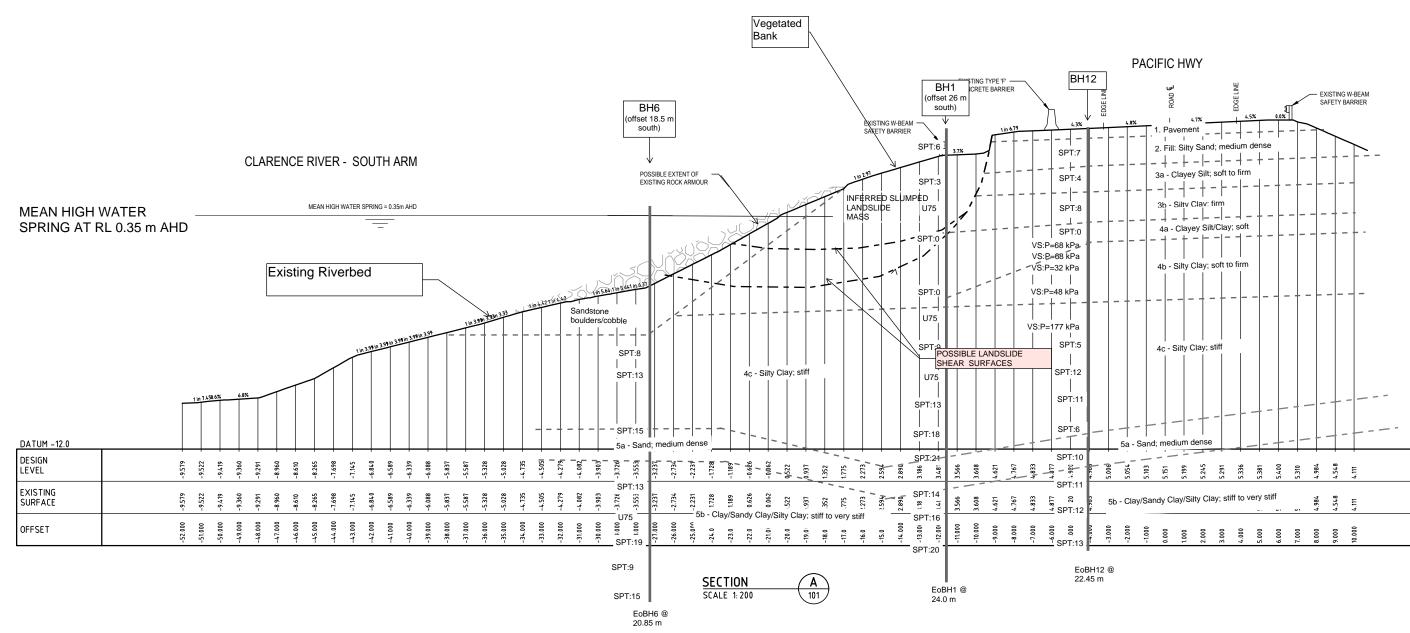
 CHIS DRAWING MAY BE PREPARED IN COLOUR AND MAY BE INCOMPLETE IF COPIED

 0
 15
 10
 15
 120
 135
 140
 145
 150mm on a3 SIZE ORIGINAL


LEGEND - EXISTING

MAJOR CONTOURS MINOR CONTOURS 450Ø PIPE STORMWATER PIT HEADWALL TREE VEGETATION SAFETY BARRIER GUARD FENCE

LEGEND

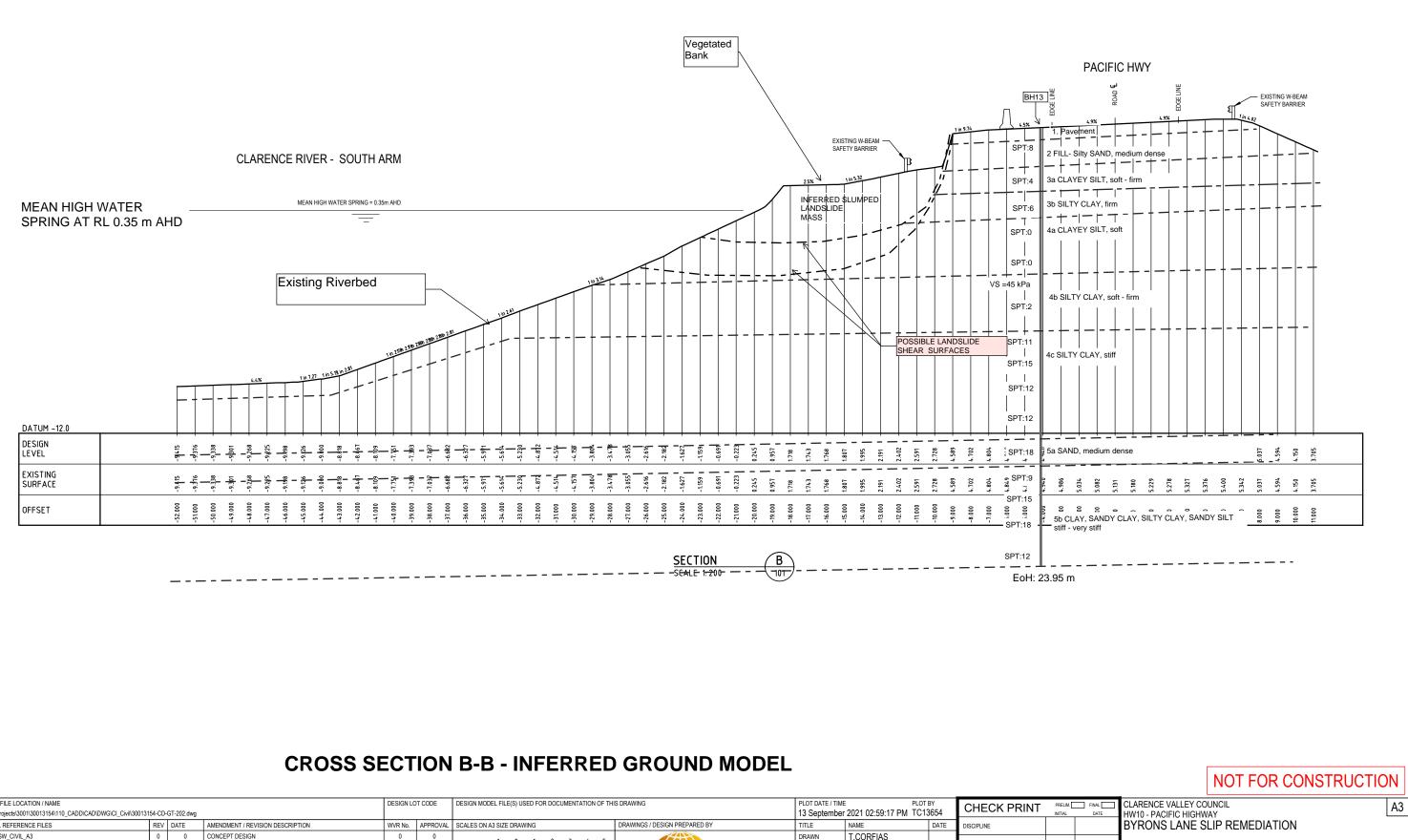

CONTROL LINE NEW SAFETY BARRIER GUARD FENCE

SETOUT POINT AREA OF SLIP TO BE REMEDIATED

TfNSW BORE HOLE (2021)

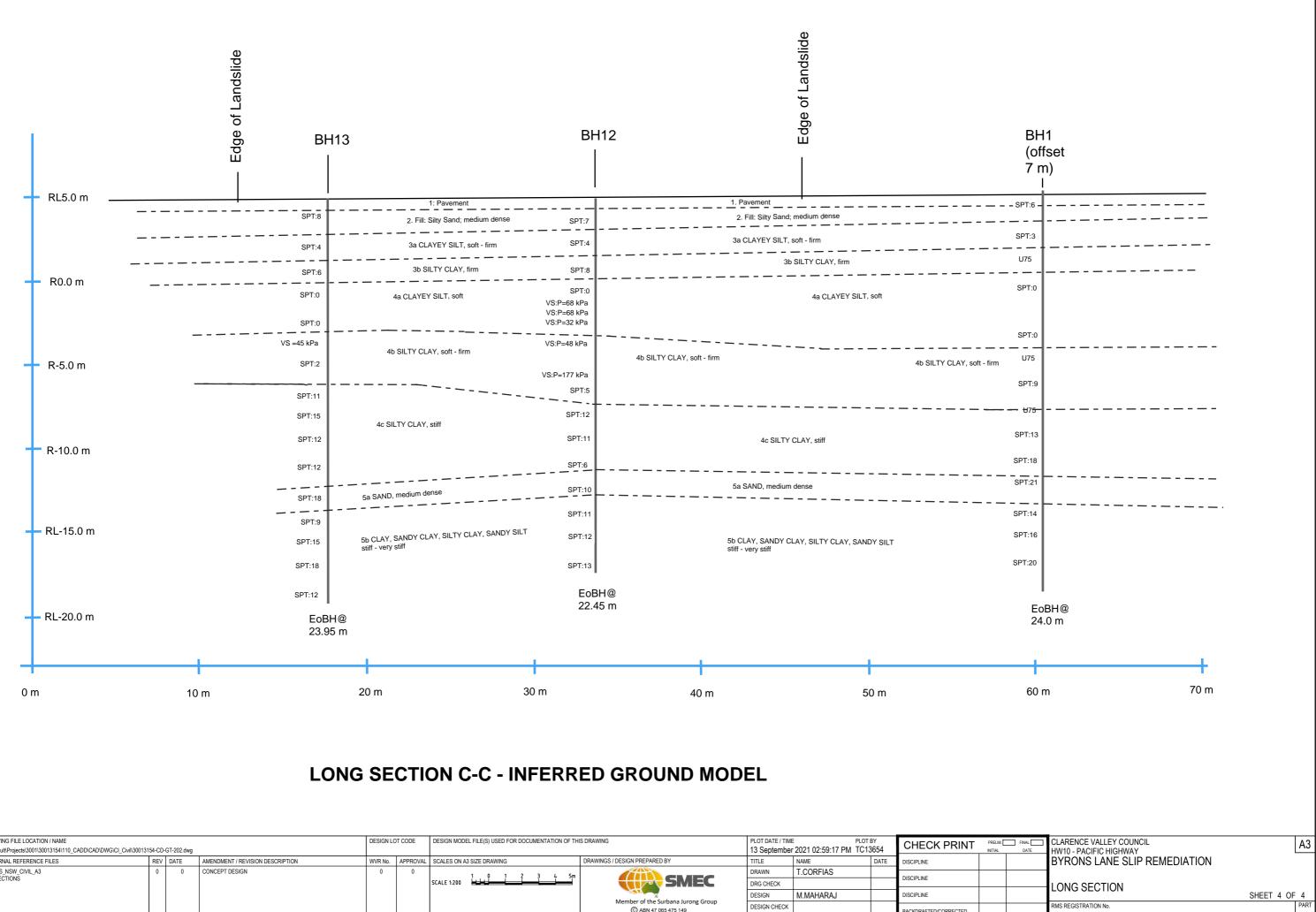
TfNSW BORE HOLE (2009)

NOT FOR CONSTRUCTION


CROSS SECTION A-A - INFERRED GROUND MODEL

5													
3	DRAWING FILE LOCATION / NAME V:_VaultProjectsi30011300131541110_CADDICADIDWG'ICI_Civil/30013154-CD-GT-201.dwg				DESIGN LOT CODE		DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS DRAWING			E PLOT 2021 02:53:37 PM TC1		CHECK PRINT	PREL
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
-	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS			
2	X_XSECTIONS							SMEC	DRG CHECK			DISCIPLINE	
2									DESIGN	M.MAHARAJ		DISCIPLINE	
								Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
<u> </u>							CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BRONDINA TEDIOONINEOTED	
							MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	
-													_

INFERRED ENGINEERING GEOLOGICAL BOUNDARY BETWEEN UNITS


NOT FOR CONSTRUCTION

ELIM.	FINAL	CLARENCE VALLEY COUNCIL				A3
TIAL	DATE	HW10 - PACIFIC HIGHWAY			I	/ 10
		BYRONS LANE SLIP REME	DIATION			
		CROSS SECTION - SHEET	1			
			•	SHEET 2	2 OF	4
		RMS REGISTRATION No.				PART
		ISSUE STATUS	EDMS No.	SHEET No.	2	ISSUE
			(© Transpor	t for	NSW

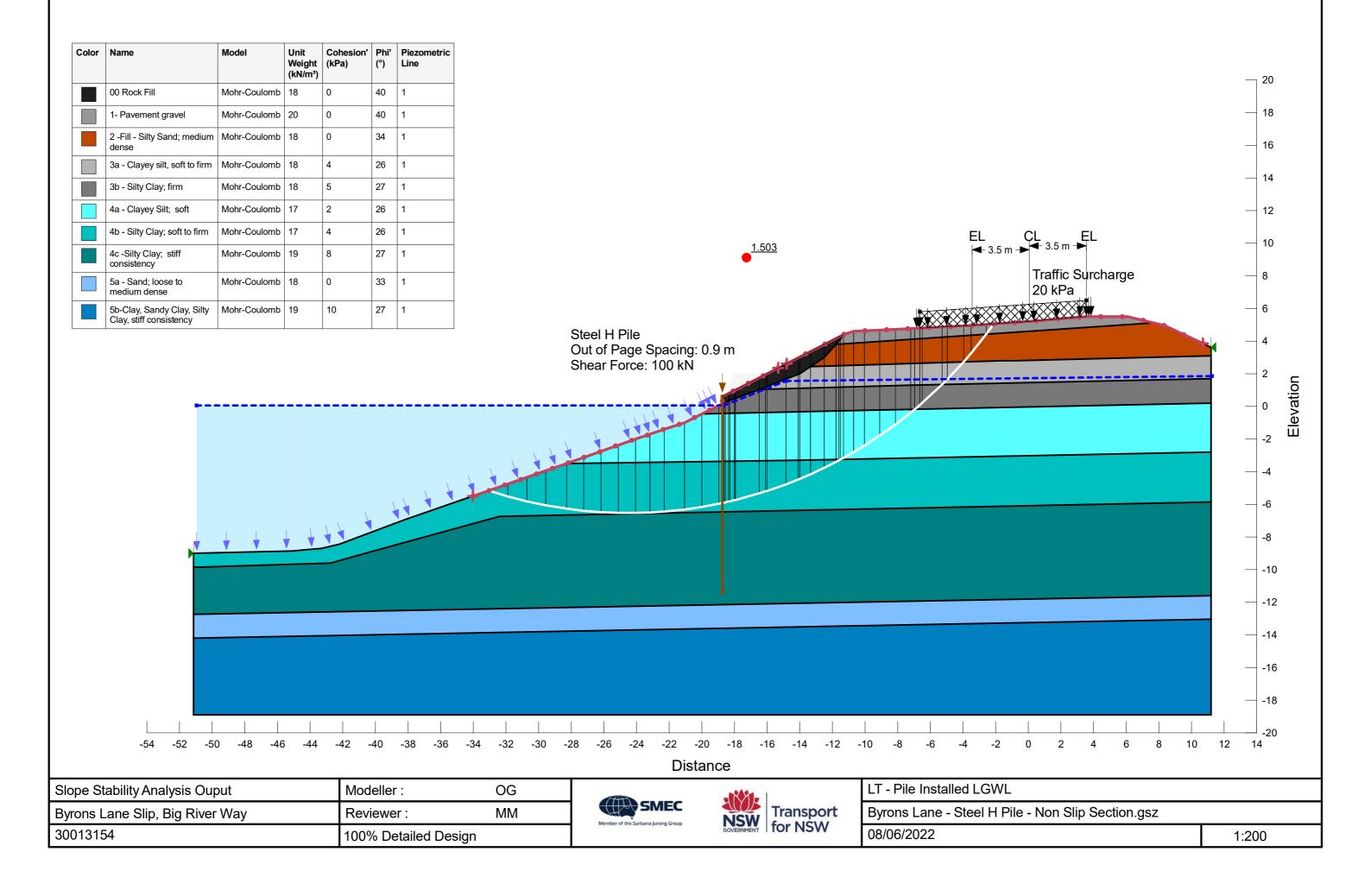
5													
	DRAWING FILE LOCATION / NAME V:_Vault\Projects\3001\30013154\110_CADD\CAD\DWG\CI_Civil\300131	54-CD-(GT-202.dwg		DESIGN LC	DT CODE	DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF TH	IS DRAWING	PLOT DATE / TIM 13 September	E PLOT 2021 02:59:17 PM TC1		CHECK PRINT	PREL
2	EXTERNAL REFERENCE FILES	REV	DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
•	X_RMS_NSW_CIVIL_A3	0	0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS			
2	X_XSECTIONS							SMEC	DRG CHECK			DISCIPLINE	
2									DESIGN	M.MAHARAJ		DISCIPLINE	
								Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
<u> </u>							CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET	DESIGN MNGR			BRONDING TED/OORTEOTED	
>							MGA ZONE 56 (GDA2020) AHD	GRAFTON NSW 2460 SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	

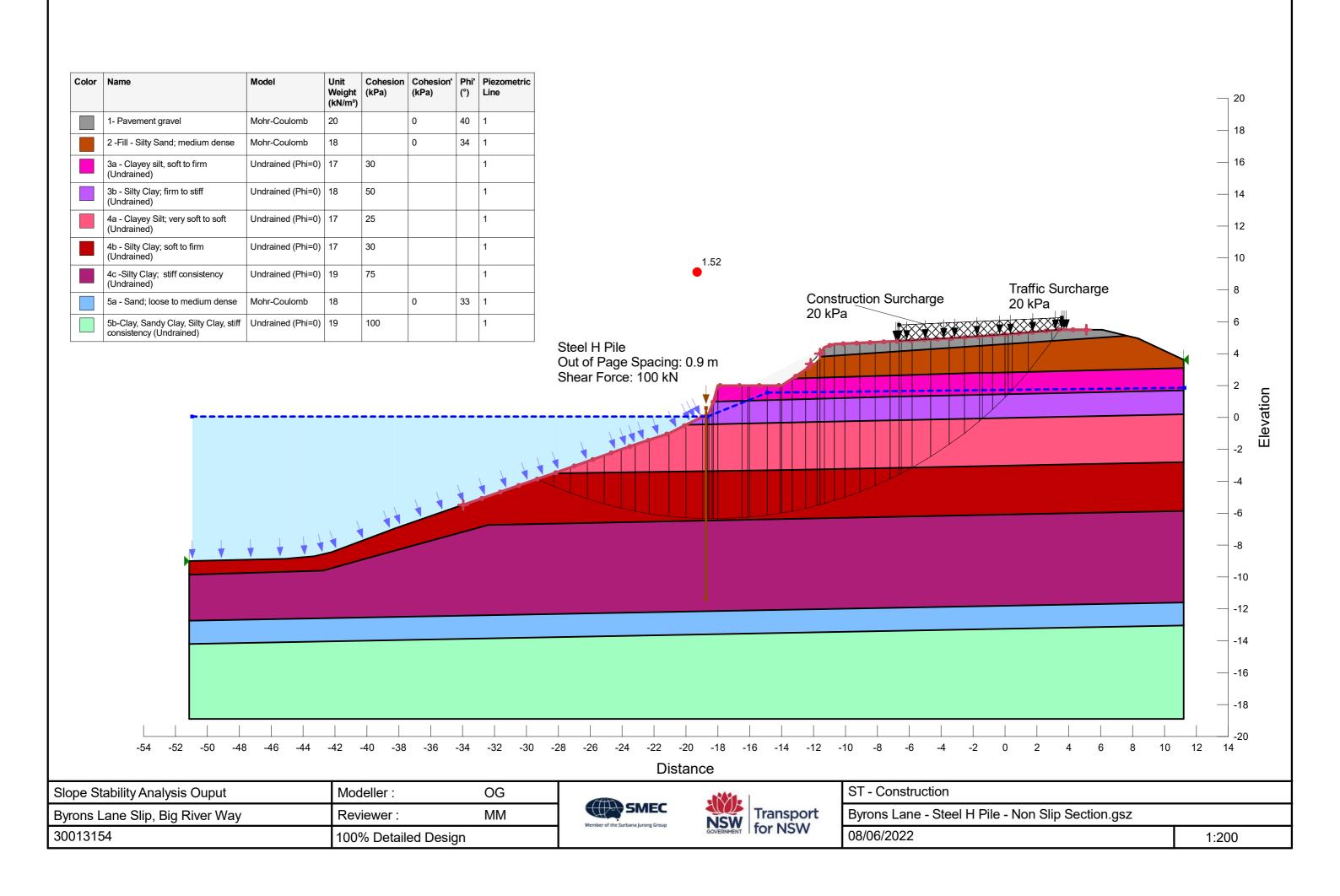
	CROSS SECTION - SHEET)				
	oncoo deomon oneen	-	SHEET	3	OF	4
	RMS REGISTRATION No.					PART
	ISSUE STATUS	EDMS No.	SHEET No.	3		ISSUE
		(C Transpo	rt fe	or l	NSW

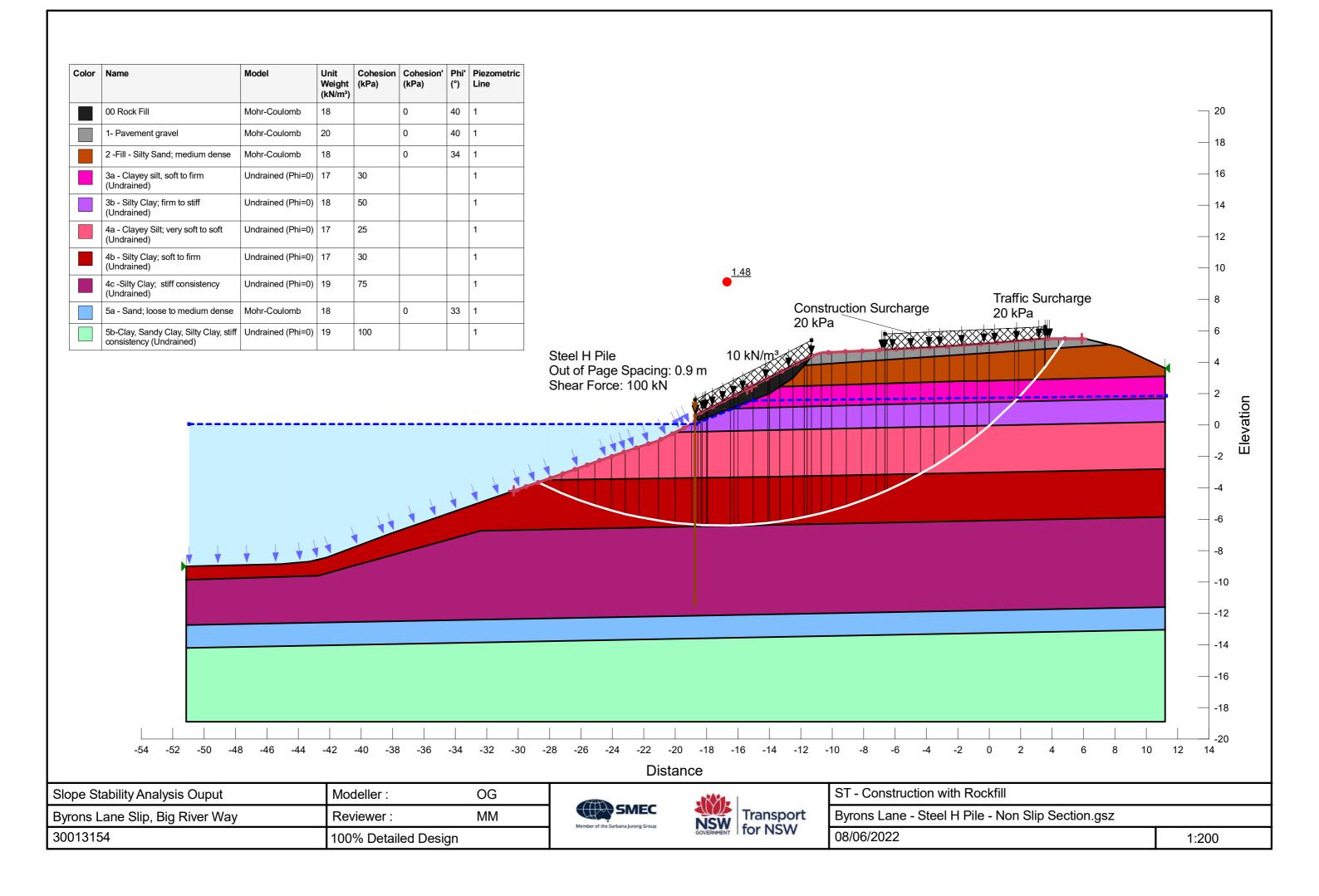
AR 8	3											
PREP,	DRAWING FILE LOCATION / NAME CV:_VaultProjects/3001/30013154/110_CADD/CADID/WG/CI_Civil/30013154-CD-GT-202.dwg					DESIGN MODEL FILE(S) USED FOR DOCUMENTATION OF THIS DRAWING			PLOT DATE / TIME PLOT E 13 September 2021 02:59:17 PM TC13		CHECK PRINT	PRELI
Ш Ш	EXTERNAL REFERENCE FILES	REV DATE	AMENDMENT / REVISION DESCRIPTION	WVR No.	APPROVAL	SCALES ON A3 SIZE DRAWING	DRAWINGS / DESIGN PREPARED BY	TITLE	NAME	DATE	DISCIPLINE	
_ ₹ _	X_RMS_NSW_CIVIL_A3	0 0	CONCEPT DESIGN	0	0	1 0 1 2 3 4 5m		DRAWN	T.CORFIAS		DISCIPLINE	
2 4						SCALE 1:200	SMEC	DRG CHECK			DIGGIFEINE	
AIN d	2						Marshare fithe Suchara Lucras Cours	DESIGN	M.MAHARAJ		DISCIPLINE	
AN -							Member of the Surbana Jurong Group (C) ABN 47 065 475 149	DESIGN CHECK			BACKDRAFTED/CORRECTED	
	<u>,</u>					CO-ORDINATE SYSTEM HEIGHT DATUM	52 VICTORIA STREET GRAFTON NSW 2460	DESIGN MNGR			Biolibre rebioonteores	
THIS	,					MGA ZONE 56 (GDA2020) AHD	SMEC PROJECT No 30013154	PROJECT MNGR			CONFIRMED	L

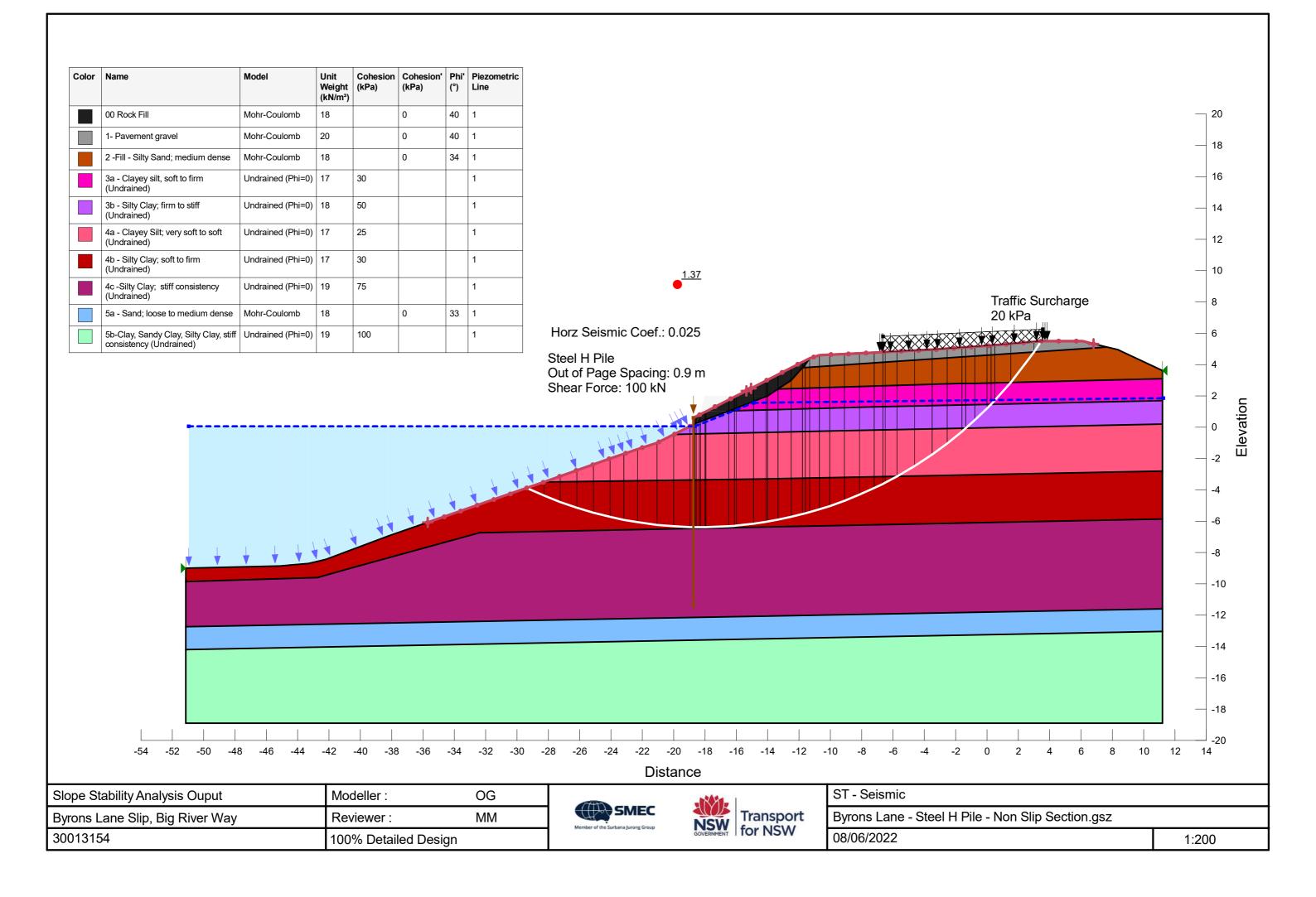
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 3 MAY I 15 |2 S DRAWING N

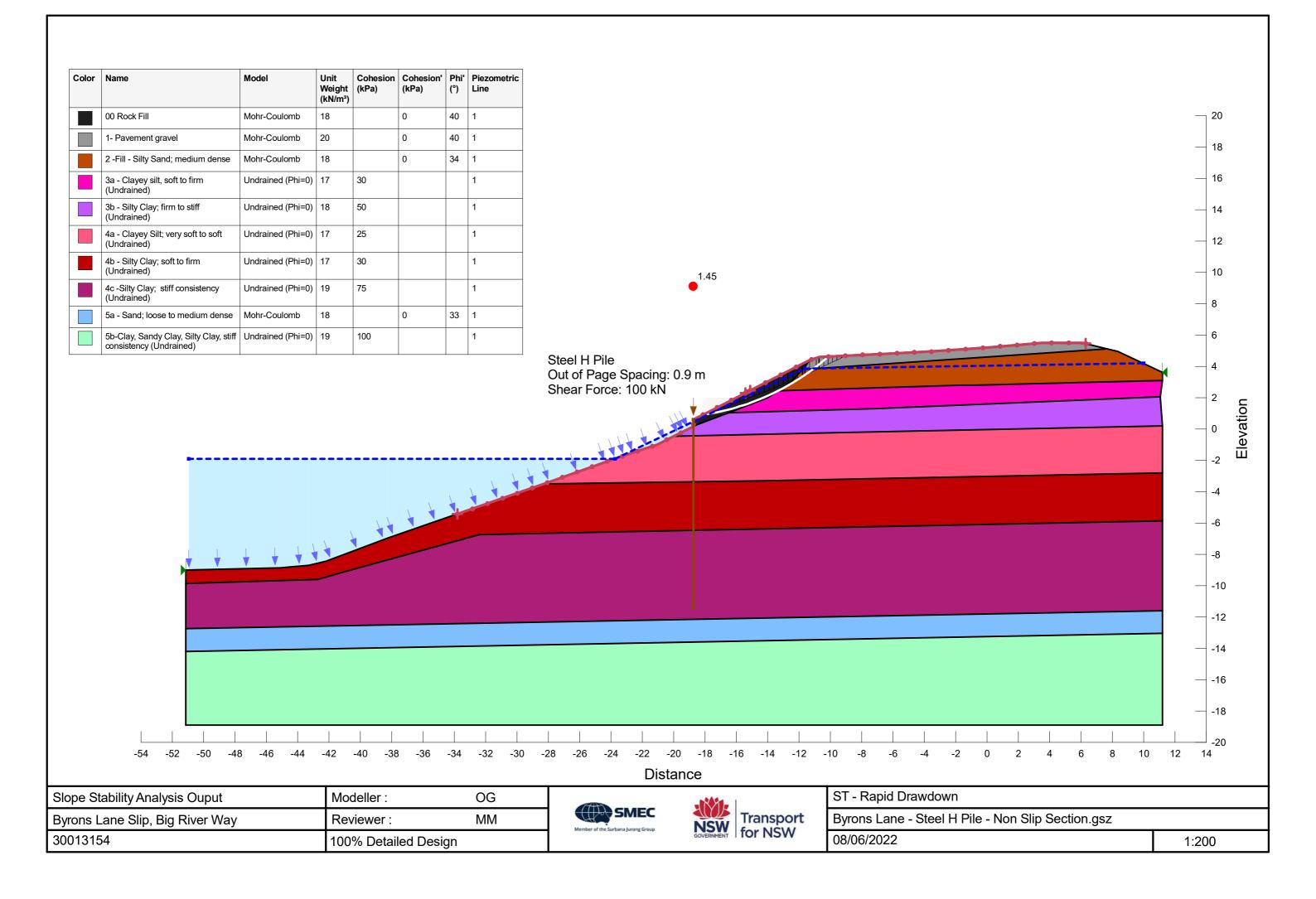
	3HEET NO. 4	1550E
(© Transport fo	r NSW

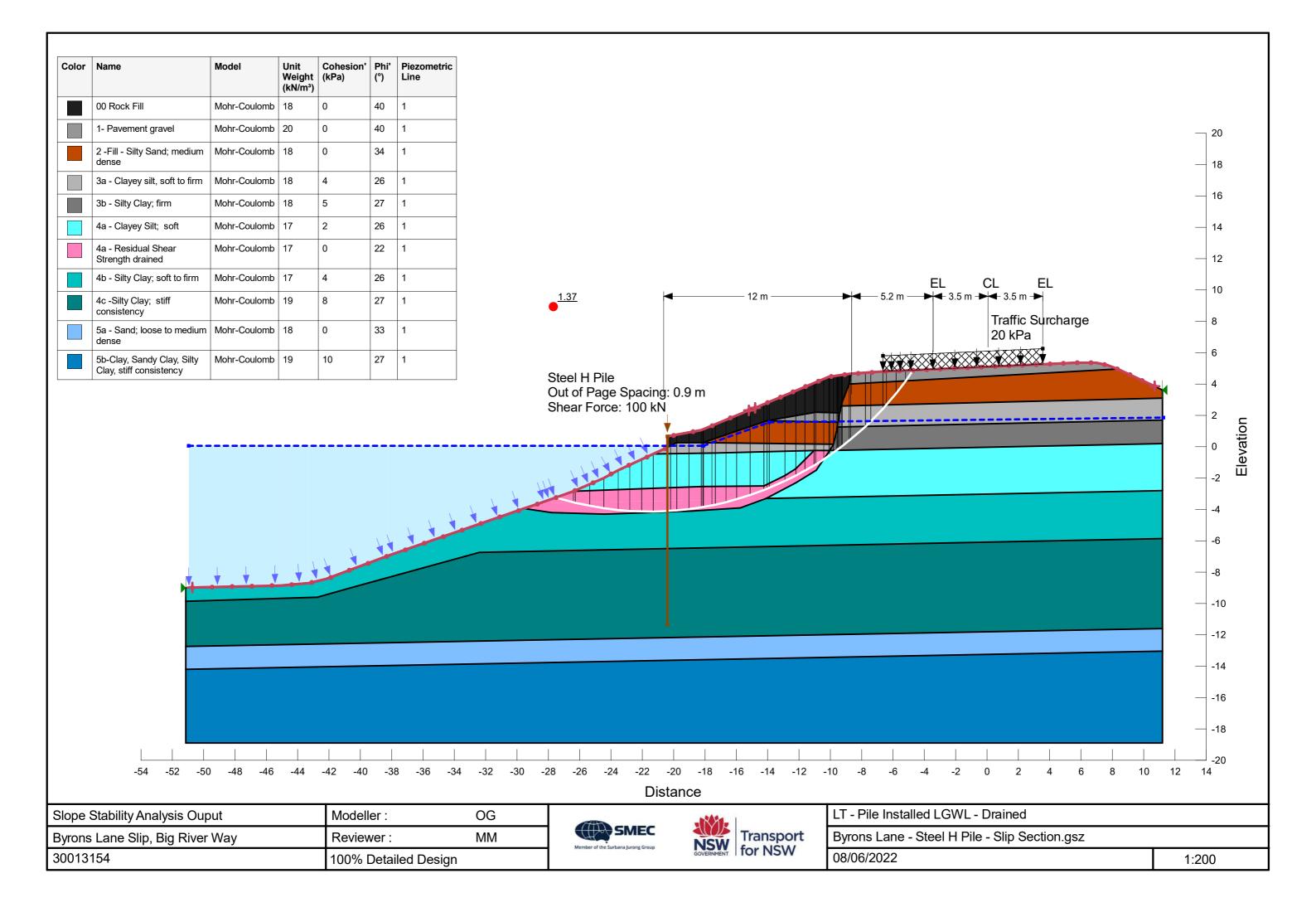

ISSU

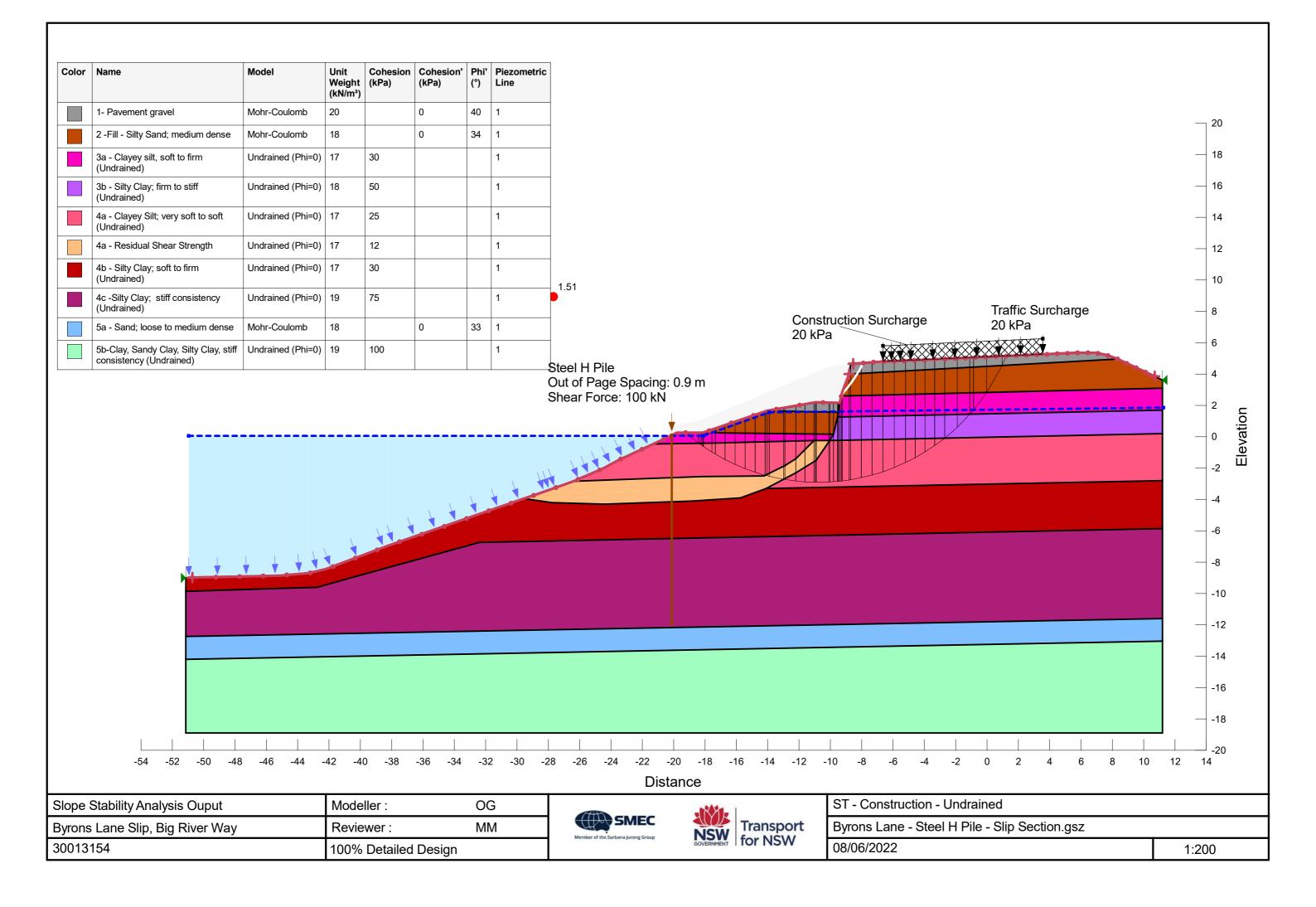

SHEET No.


EDMS No

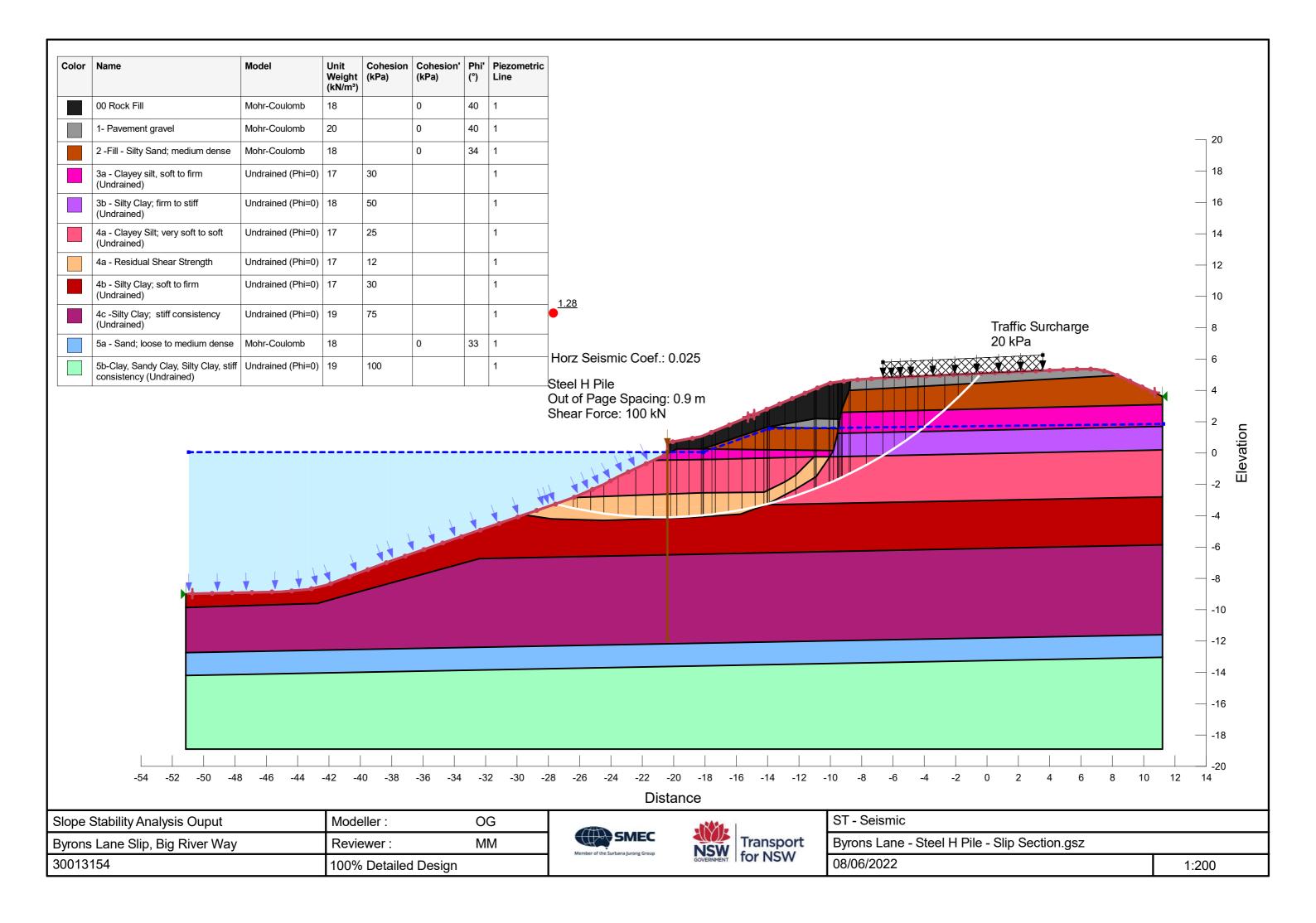

ISSUE STATUS

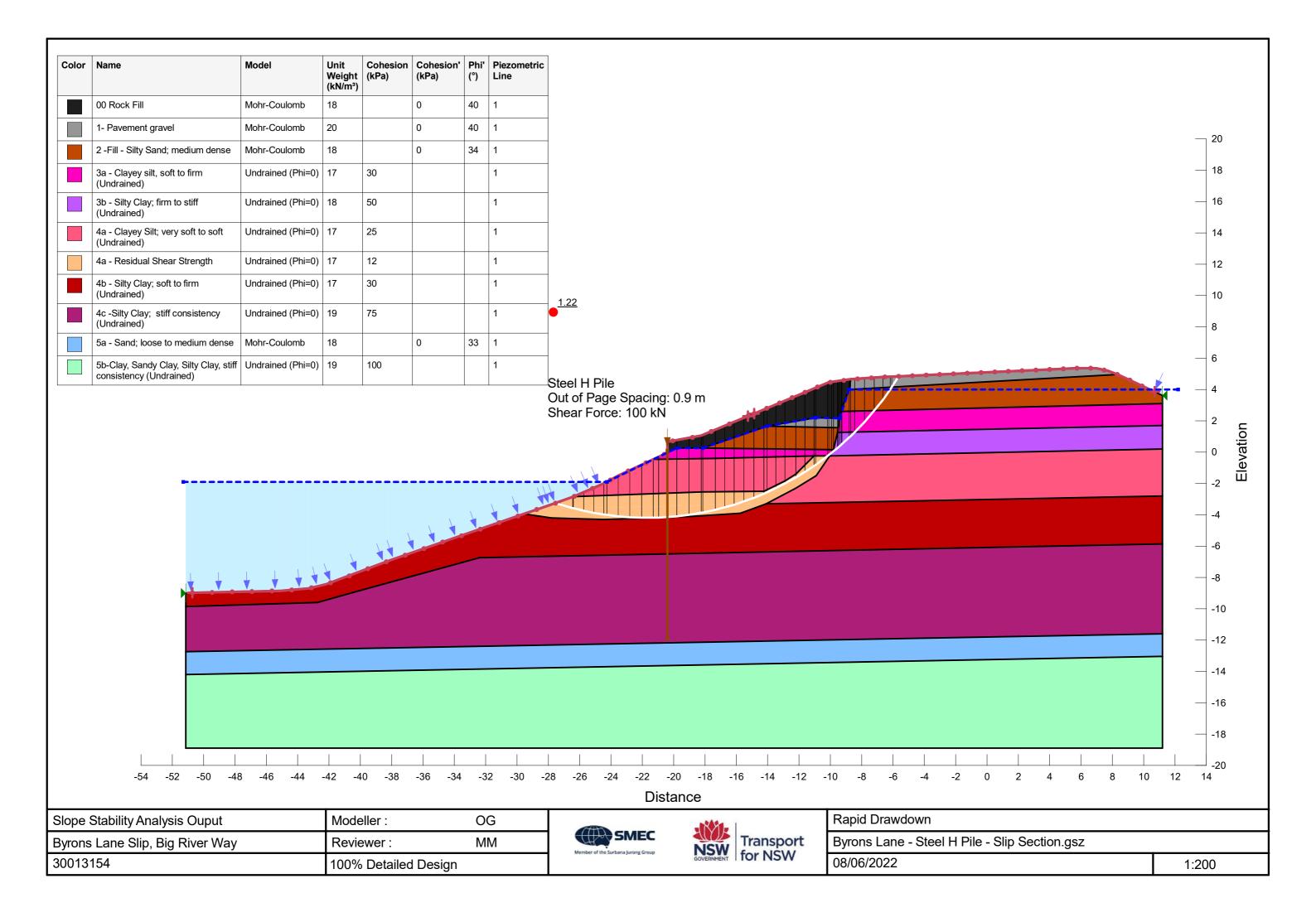

Appendix D Slope/W Output

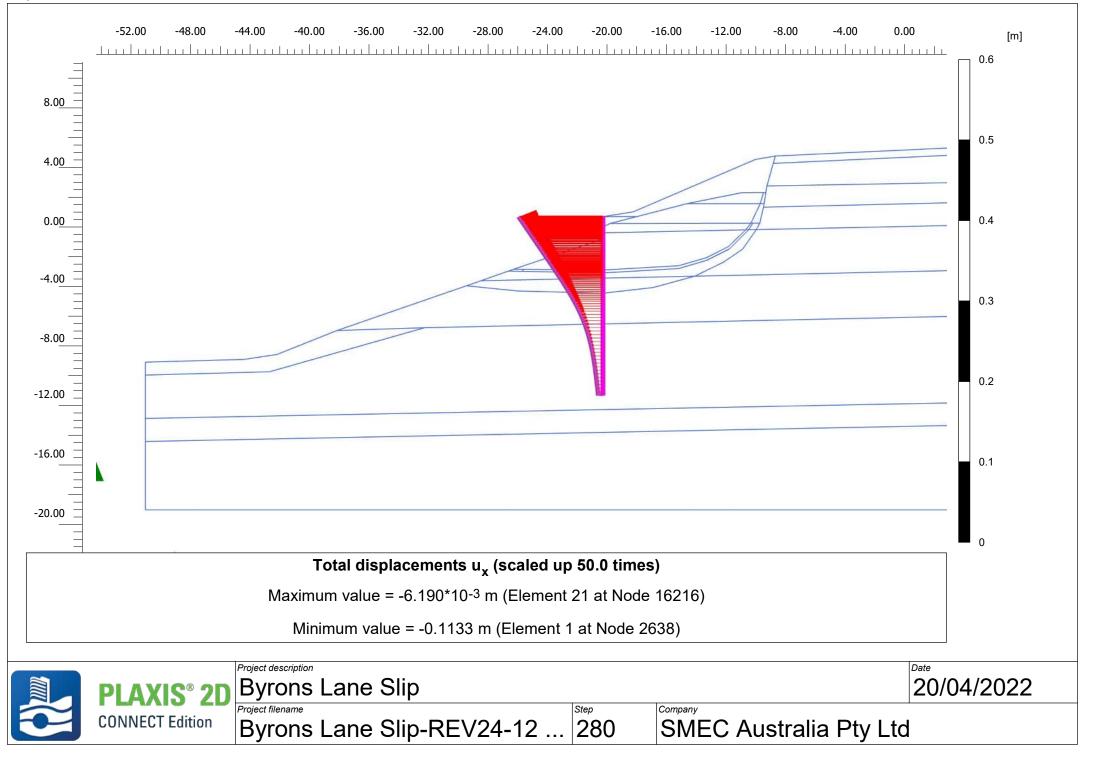


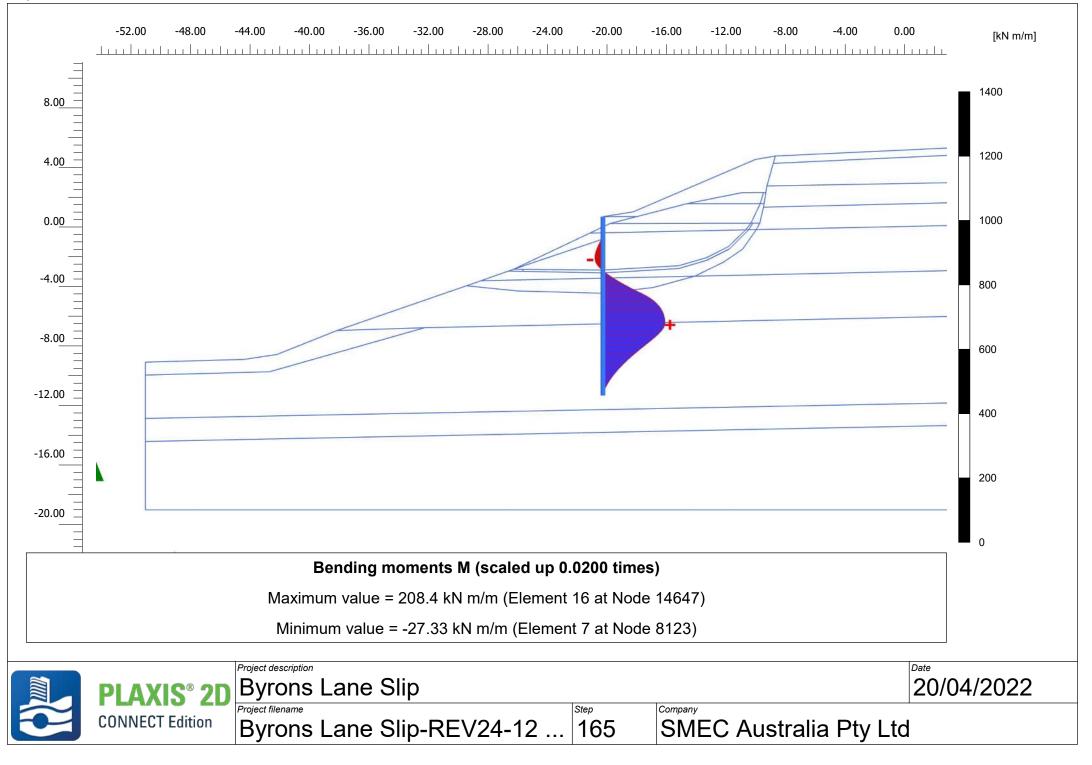


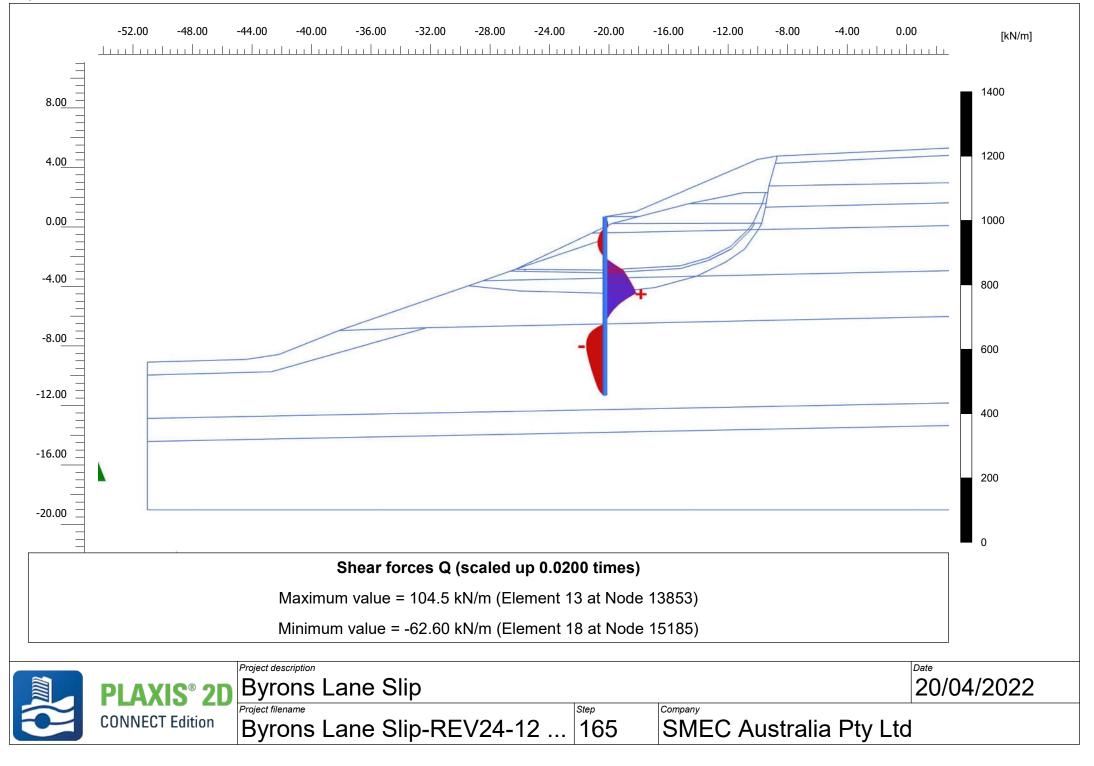


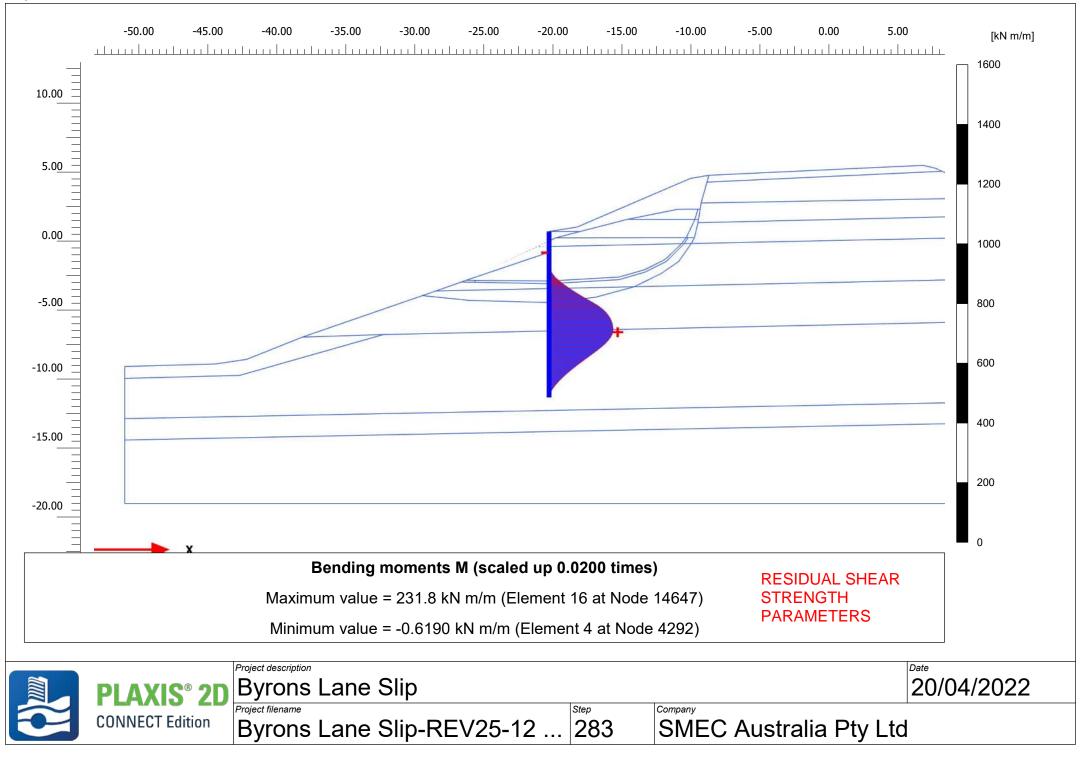


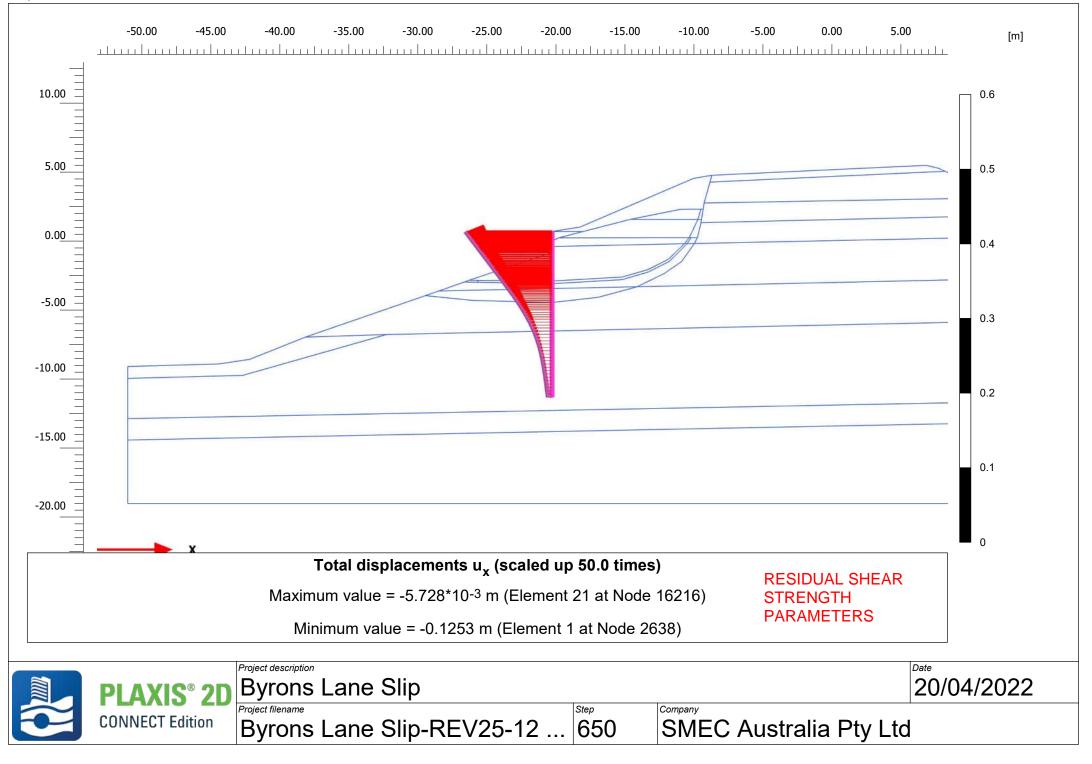


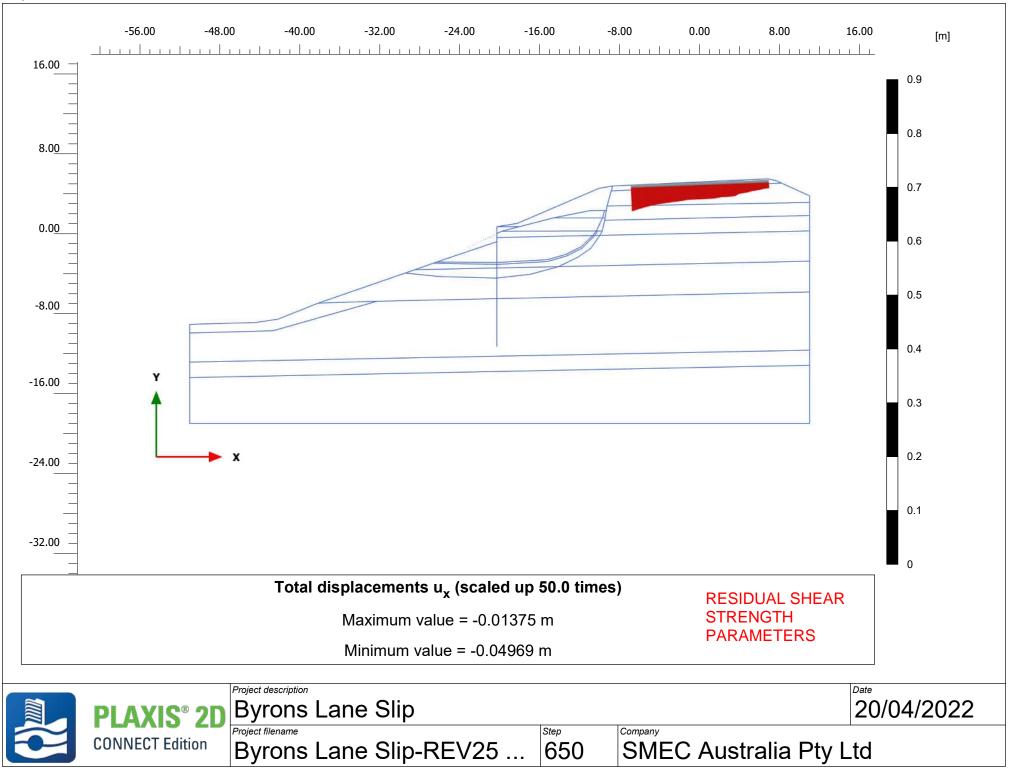




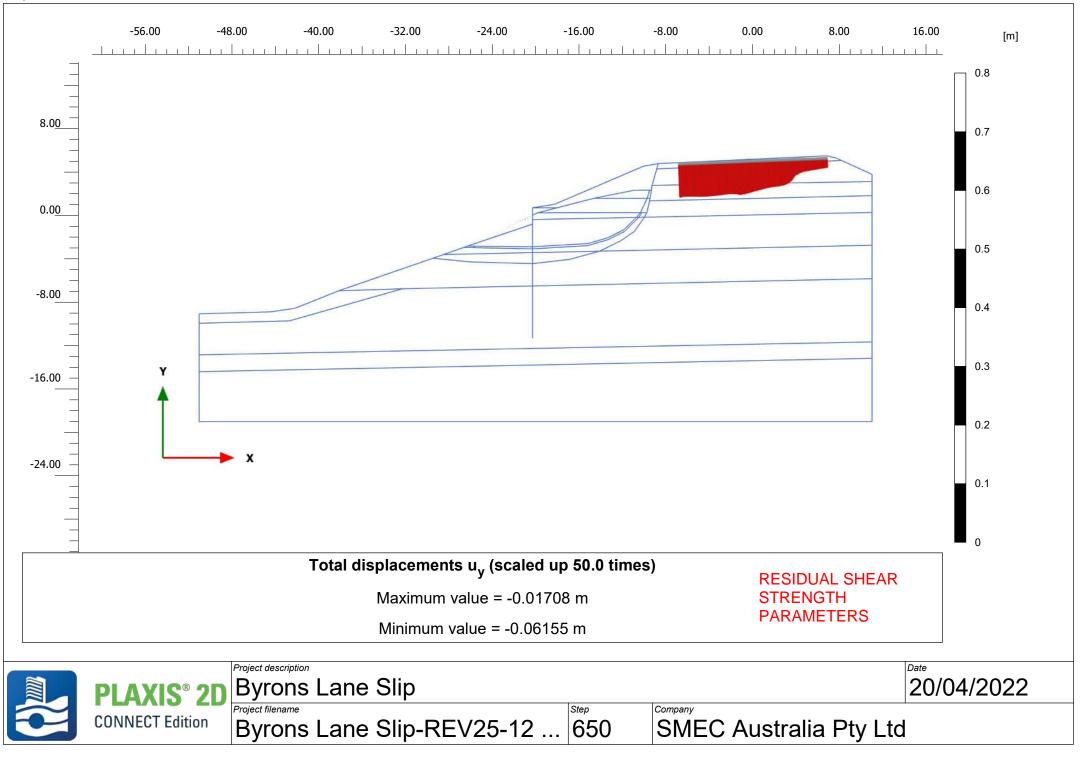


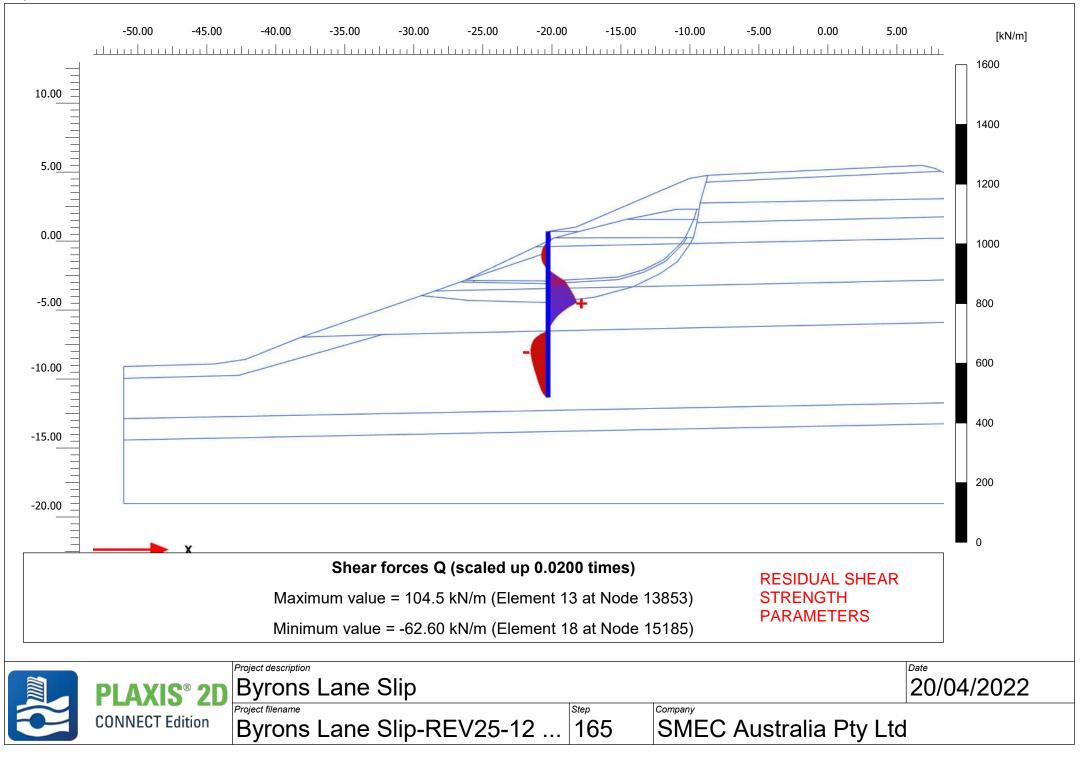

Appendix E Plaxis 2D Output

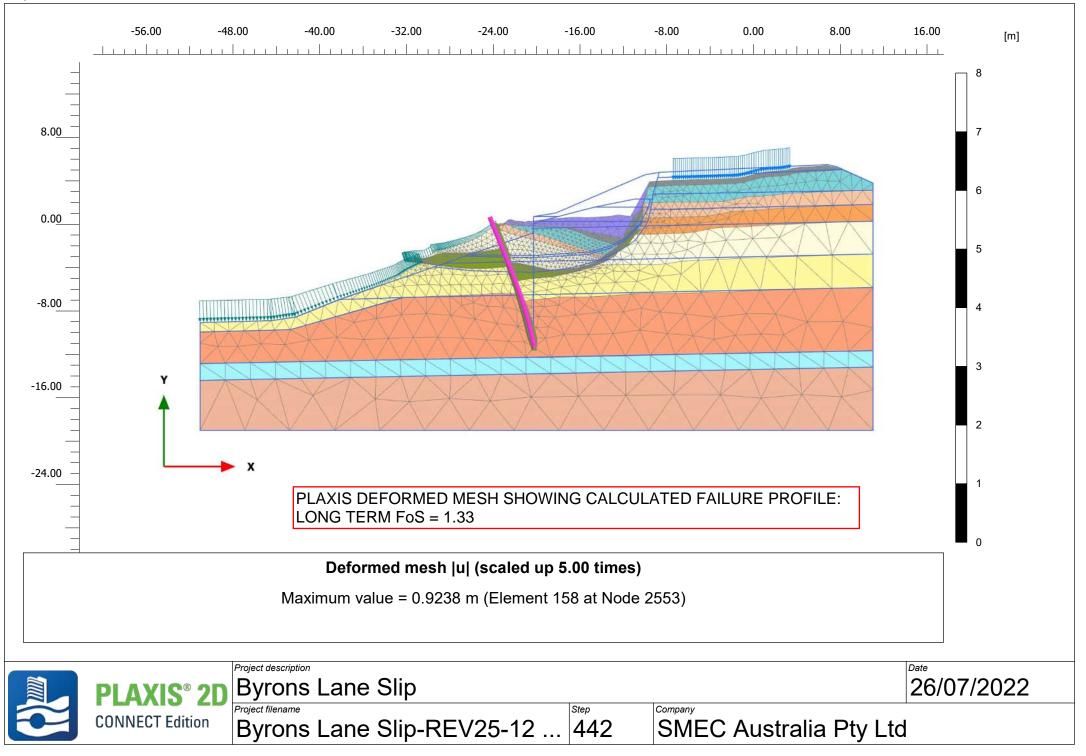


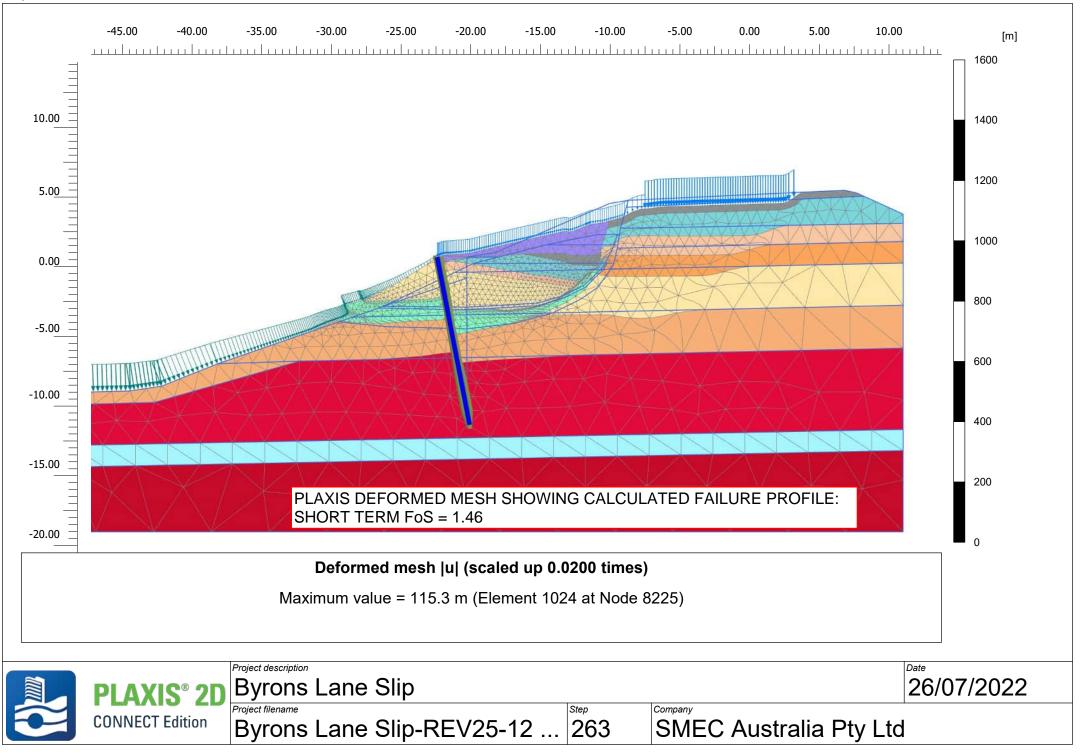


Output Version 21.1.0.479



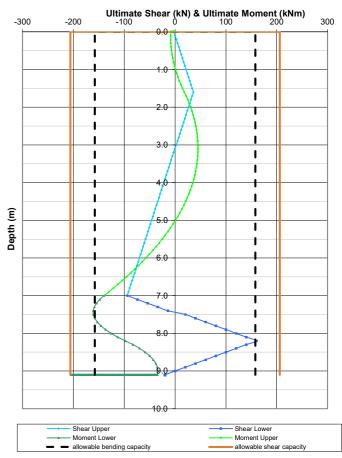

Output Version 21.1.0.479


Output Version 21.1.0.479


Output Version 21.1.0.479

Output Version 21.1.0.479

Output Version 21.1.0.479



Appendix F Results of Viggiani Assessment

Calculations

Job Title	-																			
500 1110	Byron							Date	Jo	b no.		3001	3154							
	Conci	ete P					20)/5/2022	Proje	ct no.										
Originator	Cheo	ked	I Revision	ıffix O	rig											Yes				
OG	ММ		I Rev	Date Ch	eck											No				
	St	abilising	g Piles in 2	layer Cohes	ive Soils (V	iggiani 1981))]												
Not	te: cell col	our codi	ing	User input		Interm	ediate data		Re	sults output										
	Pile proper	ties		Unstable	soil layer			Stable s	oil layer		Layer c	oefficients	- I		Use Nc fro	m Tomlinson	No			
		pile			bearing	limiting			bearing	limiting		limiting	g		0001100					
		ameter	pile length	cohesion	capacity factor	stress	pile length	cohesion	capacity factor	stress	length ratio	stress rat		Thickness, H	Shear Strength, t	H*t		н	gamma, g	H*;
	M _y (Nm)	d (m)	L ₁ (m)	c ₁ (kPa)	k ₁	p _{y1} (kPa)	L ₂ (m)	c ₂ (kPa)	k ₂	p _{y2} (kPa)	$\lambda = L_2/L_1$	χ = p _{y1} /p	p _{y2}					3.5		
	,	0.50	7.00	12.0	4.0	48.0	5.00	50.0	8.0	400.0	0.71	0.12				8 62 0 90		3.5		
													-	(8 4		0.0	17	
						1.1145-00-0-4-0	Upper	Lower									-			
					Failure	Ultimate	bonding	bonding												
					Failure mode	shear force	bonding	bending moment						A	verage Shear Strengt	th22		7		
					mode lower	shear force	bending moment M _U	moment M _L						A	verage Shear Streng	th <u>22</u>		7		
					mode	shear force	bending moment	moment						A	verage Shear Streng	th <u>22</u>		7		
					mode lower hinge	shear force T (kN)	bending moment M _U (kNm)	moment M _L (kNm)								th22				
Pilo	specing m		1		mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						k ₁ c ₁ d.L ₁	k ₁ c ₁ d.L ₁ ²	Xbar	λ'	λ"	λ _{bar}	7
Pile	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN)	bending moment M _U (kNm) 56.8	moment M _L (kNm)												
Pile :	spacing, m	ļ	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						k ₁ c ₁ d.L ₁	k ₁ c ₁ d.L ₁ ²	Xbar	λ'	λ"	λ _{bar}	7
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						k ₁ c ₁ d.L ₁ 168.0 <u>Mode A</u>	k ₁ c ₁ d.L ₁ ²	χ _{bar} -0.745	λ'	λ" 0.638 <u>Mode C</u>	λ _{bar}	
Pile	spacing, m	ļ	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						Mode A T _A (kN)	Eqn 2 M (kNm)	χ _{bar} -0.745 Applies	λ'	λ" 0.638 <u>Mode C</u> T _C (kN)	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm)	A
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						Mode A T _A (kN) 1000.0	Eqn 2 M (kNm) < My	χ _{bar} -0.745	λ'	λ" 0.638 <u>Mode C</u> T _c	λ _{bar} 0.057 Eqn 6, 7, 8 M	A
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						Mode A T _A (kN) 1000.0 Mode B T _B	Eqn 2 M (kNm) < My Eqn 3, 4, 5# M ₁	χ _{bar} -0.745 Applies	λ' 0.048 M ₂	λ" 0.638 <u>Mode C</u> T _C (kN)	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm)	A
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						Mode A T _A (kN) 1000.0 Mode B	Eqn 2 M (kNm) < My Eqn 3, 4, 5#	Xbar -0.745 Applies NO	λ' 0.048	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My	
Pile	spacing, m		1]Mobilised sł	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						Mode A T _A (kN) 1000.0 Mode B T _B (kN)	Eqn 2 M (kNm) < My Eqn 3, 4, 5# M ₁ (kNm)	Xbar -0.745 Applies NO M ₁ < M _y	λ' 0.048 M ₂ (kNm)	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies	A
Pile :	spacing, m		1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						<u>Моde А</u> Т _А (kN) 1000.0 <u>Моde В</u> Т _В (kN) 188.4	Eqn 2 M (kNm) < My Eqn 3, 4, 5# M ₁ (kNm) 4.3 Eqn 9#, 10, 11 T _{B1}	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ '	λ' 0.048 M ₂ (kNm) 823.5	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO	
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						<u>К1С1d.L1</u> 168.0 <u>Моdе А</u> Т _А (kN) 1000.0 <u>Моdе В</u> Т _В (kN) 188.4 <u>Моde В1</u>	Eqn 2 M (kNm) < My Eqn 3, 4, 5# M ₁ (kNm) 4.3 Eqn 9#, 10, 11	χ _{bar} -0.745 Applies NO M ₁ < M _y yes	λ' 0.048 M ₂ (kNm) 823.5	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y no	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO	A
Pile	spacing, m	I	1]Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						k₁c₁d.L₁ 168.0 Mode A T _A (kN) 1000.0 Mode B T _B (kN) 188.4 Mode B1 M₁ >= My N0 Mode B2	$\begin{array}{c c} & k_{1}c_{1}d.L_{1}^{2} \\ \hline & 1176.0 \\ \hline \\ \hline \\ Eqn 2 \\ M \\ (kNm) \\ < My \\ \hline \\ Eqn 3, 4, 5# \\ M_{1} \\ (kNm) \\ 4.3 \\ \hline \\ Eqn 9#, 10, 11 \\ T_{B1} \\ (kN) \\ \hline \\ 201.5 \\ \hline \\ Eqn 12 \\ \hline \end{array}$	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ ' (kNm) 797.1	λ' 0.048 M ₂ (kNm) 823.5 M ₂ ' < M _y no	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y no M ₂ ' >= M _y yes	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO Applies NO	
Pile :	spacing, m		1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						k1c1d.L1 168.0 Mode A TA (kN) 1000.0 Mode B TB (kN) 188.4 Mode B1 M1 >= My N0	$\begin{array}{c c} & k_{1}c_{1}d.L_{1}^{2} \\ \hline & 1176.0 \\ \hline \\ Eqn 2 \\ & M \\ (kNm) \\ < My \\ \hline \\ Eqn 3, 4, 5# \\ & M_{1} \\ (kNm) \\ & 4.3 \\ \hline \\ Eqn 9#, 10, 11 \\ & T_{B1} \\ (kN) \\ \hline \\ & 201.5 \\ \hline \end{array}$	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ ' (kNm)	λ' 0.048 M ₂ (kNm) 823.5 M ₂ ' < M _y no	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y no M ₂ ' >= M _y yes	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO Applies	
Pile :	spacing, m	I	1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						$\frac{k_{1}c_{1}d.L_{1}}{168.0}$ $\frac{Mode A}{T_{A}}$ (kN) 1000.0 $\frac{Mode B}{T_{B}}$ (kN) 188.4 $\frac{Mode B1}{M_{1} \ge M_{y}}$ NO $\frac{Mode B2}{M_{1} < M_{y}}$	$\begin{array}{c c} & k_{1}c_{1}d.L_{1}^{2} \\ \hline & 1176.0 \\ \hline \\ & \\ Eqn 2 \\ & \\ M \\ (kNm) \\ < My \\ \hline \\ Eqn 3, 4, 5# \\ & \\ M_{1} \\ (kNm) \\ 4.3 \\ \hline \\ Eqn 9#, 10, 11 \\ & \\ T_{B1} \\ (kN) \\ \hline \\ 201.5 \\ \hline \\ Eqn 12 \\ & \\ M_{2} \\ (kNm) \\ \end{array}$	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ ' (kNm) 797.1 M ₂ >= M _y	λ' 0.048 M ₂ (kNm) 823.5 M ₂ ' < M _y no T _{B2} (kN)	λ" 0.638 Mode C T _c (kN) 168.0 M ₂ < M _y no M ₂ ' >= M _y yes M ₁ " (kNm)	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO Applies NO M ₁ " < My	
Pile	spacing, m	I	1]Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						$\frac{k_{1}c_{1}d.L_{1}}{168.0}$ $\frac{Mode A}{T_{A}}$ (kN) 1000.0 $\frac{Mode B}{T_{B}}$ (kN) 188.4 $\frac{Mode B1}{M_{1} \ge M_{y}}$ NO $\frac{Mode B2}{M_{1} < M_{y}}$ yes	$\begin{array}{c c} & k_{1}c_{1}d.L_{1}^{2} \\ \hline & 1176.0 \\ \hline \\ & \\ Eqn \ 2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ ' (kNm) 797.1	λ' 0.048 M ₂ (kNm) 823.5 M ₂ ' < M _y no T _{B2}	λ" 0.638 <u>Mode C</u> T _C (kN) 168.0 M ₂ < M _y no M ₂ ' >= M _y yes M ₁ "	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO Applies NO	
Pile :	spacing, m		1	Mobilised sl	mode lower hinge B2	shear force T (kN) 94.1	bending moment M _U (kNm) 56.8	moment M _L (kNm)						$\frac{k_{1}c_{1}d.L_{1}}{168.0}$ $\frac{Mode A}{T_{A}}$ (kN) 1000.0 $\frac{Mode B}{T_{B}}$ (kN) 188.4 $\frac{Mode B1}{M_{1} \ge M_{y}}$ NO $\frac{Mode B2}{M_{1} < M_{y}}$	$\begin{array}{c c} & k_{1}c_{1}d.L_{1}^{2} \\ \hline & 1176.0 \\ \hline \\ & \\ Eqn 2 \\ & \\ M \\ (kNm) \\ < My \\ \hline \\ Eqn 3, 4, 5# \\ & \\ M_{1} \\ (kNm) \\ 4.3 \\ \hline \\ Eqn 9#, 10, 11 \\ & \\ T_{B1} \\ (kN) \\ \hline \\ 201.5 \\ \hline \\ Eqn 12 \\ & \\ M_{2} \\ (kNm) \\ \end{array}$	χ _{bar} -0.745 Applies NO M ₁ < M _y yes M ₂ ' (kNm) 797.1 M ₂ >= M _y	λ' 0.048 M ₂ (kNm) 823.5 M ₂ ' < M _y no T _{B2} (kN) 94.1	λ" 0.638 Mode C T _c (kN) 168.0 M ₂ < M _y no M ₂ ' >= M _y yes M ₁ " (kNm) 56.8	λ _{bar} 0.057 Eqn 6, 7, 8 M (kNm) < My Applies NO Applies NO M ₁ " < My	

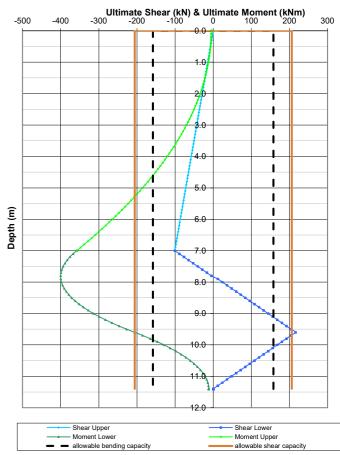
Moment Upper
 allowable shear capacity

$\lambda < \lambda'$	$\lambda > \lambda$ "	λ' <= λ <= λ"	$\lambda \leq \lambda_{bar}$	$\lambda > \lambda_{bar}$	χ <= χ _{bar}	χ > χ _{bar}			
no	yes	no	no	yes	no	yes			
	Determine Mode from specified checks								

Mode	Pile	Туре	Applies
А	rigid	short	NO
В	rigid	inter	NO
С	rigid	flow	NO
B1	yielding	hinge U	NO
B2	yielding	hinge L	YES
BY	yielding	2 hinges	NO

Moment	kNm
My	150.0
M ₁	4.3
M ₁ "	56.8
M ₂	823.5
M ₂ '	797.1

Calculations



Job Title	Byro	ons Lan	е						Date	Jo	b no.	30	013154						
	Stee	el Pile						20	0/5/2022	Proj	ect no.								
Originator	C	hecked	sion	Suffix	Or	rig											Yes		
OG	ММ		Revision	Date	Che	eck											No		
pile mo (kl	e: cell Pile prop yield ment M _y Nm) 22	colour cod		Use U th coh	er input [soil layer bearing capacity factor		pile length	Stable s		limiting stress P _{y2} (kPa) 400.0	x = μ	ents iting s ratio p_{y1}/p_{y2} 12	Thicknes	s, H' Shea 3.5 3 0.5	ar Strength, t 1 3	8 62		н
Piles	spacing,	m	0.9	Mobi		Failure mode Flow mode C	Ultimate shear force T (kN) 100.8	Upper bending moment M _U (kNm) < My	Lower bending moment M _L (kNm) < My					k ₁ c,d	.L ₁	Shear Strengt k ₁ c ₁ d.L ₁ ² 705.6	h 22 χ _{bar} 0.196	λ' 0.048	λ'
														<u>Mode A</u> T _A (kN 600 <u>Mode B</u> T _E (kN 113) 0 <mark>Eqn</mark>)	2 M (kNm) < My 3, 4, 5# M ₁ (kNm) 2.6	Applies NO M ₁ < M _y yes	M ₂ (kNm) 494.1	<u>Mode</u> T _c (kN 100 M ₂ <
														<u>Mode B'</u> M ₁ >=	My	9#, 10, 11 T _{B1} (kN) 147.7	M2' (kNm) 426.2	M ₂ ' < M _y no	M ₂ ' >=
														<u>Mode B2</u> M ₁ <	My	M ₂ (kNm)	M ₂ >= M _y	(kN)	M ₁ (kN
														ye: <u>Mode B'</u> M ₁ < ye:	<u>r</u> My	494.1 M ₂ (kNm) 494.1	yes M ₂ >= M _y yes	Т _{ВҮ} (kN) 147.3	0.2 M1 (kNi 0.2

gamma, g H*g 3.5 22 77 3.5 17 59.5 7 20

k ₁ c ₁ d.L ₁	$k_{1}c_{1}d.L_{1}^{2}$	χbar	λ'	λ"	λ_{bar}	$\lambda < \lambda'$	$\lambda > \lambda''$	λ' <= λ <= λ"	$\lambda \leq \lambda_{bar}$	$\lambda > \lambda_{bar}$	χ <= χ _{bar}	χ > χ _{bar}
100.8	705.6	0.196	0.048	0.638	0.124	no	yes	no	no	yes	yes	no
							De	etermine Mo	ode from sp	ecified cheo	cks	

Mode A	Eqn 2				Eqn 6, 7, 8		Mode	
T _A	M	Applies		T _C	Μ	Applies	А	I
(kN)	(kNm)			(kN)	(kNm)		В	
600.0	< My	NO		100.8	< My	YES	С	
							B1	yie
Mode B	Eqn 3, 4, 5#						B2	yie
T _B	M ₁	$M_1 < M_y$	M ₂	$M_2 < M_y$	Applies		BY	yie
(kN)	(kNm)		(kNm)		_			
113.0	2.6	yes	494.1	no	NO		Moment	k
							My	4
Mode B1	Eqn 9#, 10, 11						M ₁	
$M_1 \ge M_y$	T _{B1}	M ₂ '	$M_2' < M_y$	$M_{2}' >= M_{y}$	Applies		M ₁ "	
	(kN)	(kNm)					M ₂	4
no	147.7	426.2	no	yes	NO		M ₂ '	42
Mode B2	Eqn 12							
$M_1 < M_v$	M ₂	$M_2 >= M_y$	T _{B2}	M ₁ "	M ₁ " < My	Applies		
,y			- 02	1	,,	1.466.000		
	(kNm)		(kN)	(kNm)				
yes	494.1	yes	104.2	0.2	yes	NO		
Mode BY								
$M_1 < M_v$	M ₂	$M_2 >= M_v$	T _{BY}	M ₁ "	M ₁ " >= My	Annlies		
iiii iiiiy	(kNm)	1112 · 111y	(kN)	(kNm)	m ₁ · my	7 tppiles		
	494.1	ves	147.3	0.2	no	NO		

Mode	Pile	Туре	Applies
Α	rigid	short	NO
В	rigid	inter	NO
С	rigid	flow	YES
B1	yielding	hinge U	NO
B2	yielding	hinge L	NO
BY	yielding	2 hinges	NO

Moment	kNm
My	422.0
M ₁	2.6
M ₁ "	0.2
M ₂	494.1
M ₂ '	426.2

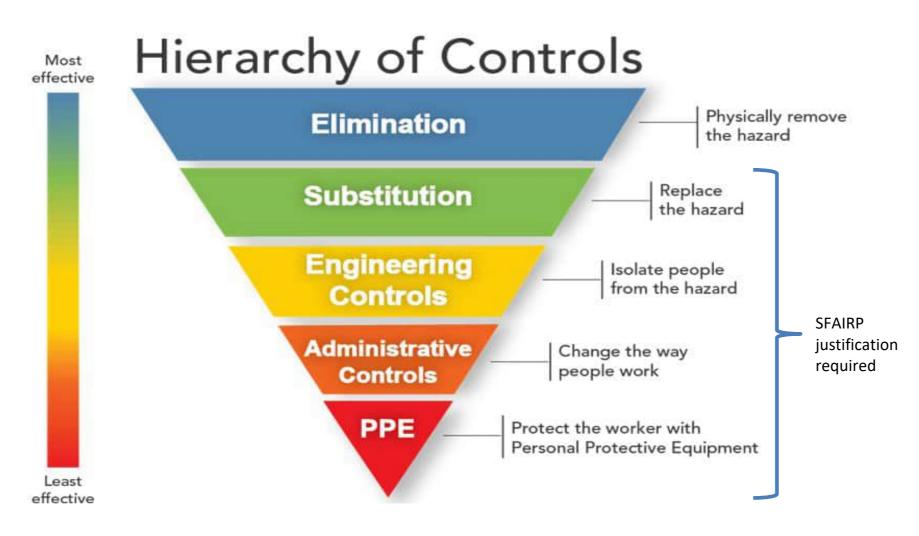
Appendix G Safety in Design Register

Т-РМ10701	STER		SME	c								
Project Name: Byrons Lane Slip	S.I.D. Register Rev: 00	1	Member of the	Surbana Jurong Gro	oup							
Remediation Design Package: 80% Detailed												
Design	Date: 12/05/2022	Risk Workshop				1	Reside	ual Risk Asses	sment	1		
			Initi	al Risk Assess	ment							
POTE	INTIAL RISK		Initial Risk Likelihood (0- 5)	Initial Risk Consequence (0-5)	Initial Risk Rating	POTENTIAL ELIMINATION MEASURE, DESIGN INITIATIVE or CONTROL	Residual Risk Likelihood (0- 5)	Residual Risk Consequence (0-5)	Residual Risk Rating	RESIDUAL RISK	Date SID Risk	SID Risk Closed
HAZARD Geotechnical	DESCRIPTION	POTENTIAL CONSEQUENCES				(Identify any Standard or Code of practice used)	-/	x/		OWNER	closed out	Out by:
Unexpected ground conditions	Ground conditions differ from assumed. Variable alluvium profiles, unexpected rock armour.	Design Changes - longer piles, delays during construction	3	4	12	Provide for some redundancy in design for variable ground conditions. Consider test piles or additional geotechnical investigation such as CPT to verify subsurface conditions along pile footprint.	2	4	8	TfNSW/ Contractor		
Further slips	Existing slip scarp and marginally stable embankment slopes. RT - Collapse and regression of headscarp towards the road	Slips and engulfment during construction. Loss of NB Carriageway, formation of voids beneath pavement with potential for sudden collapse.	4	5	20	Design for temporary stability and staging of works, identify exclusion zones for heavy plant. Review of contractors proposed methodologies. Avoid work during floods or prolonged wet periods. Construction monitoring and temporary works to support headscarp.	2	5	10	SMEC/ Contractor		
Further slips	RT - Extent of Piles	Further slumping of northern end of river bank	3	4	12	Survey set out of slip headscarp and potential for inclusion of additional shear piles at northern end of slope. Contingency for additional piles as part of design and construction	2	4	8	SMEC/ Contractor		
Further slips	RT - Extent of rock fill not as far as antiicpiated	Construction delays, access issues	4	5	20	Construction setout and investigation. Allowance for design and construction.	3	5	15	SMEC/ Contractor		
Survey						Recent flooding may have caused further site degradation and						
Insufficient or innacurate survey	Insufficient information to undertake design. Discrepancies between design and site.	Discrepancies between design and site conditions	3	3	9	slumping of headscarp. Undertake additional detailed site survey to verify profiles and feedback in to design. During construction, contractor to setout and verify design dimensions at critical stages, prior to proceeding.	1	3	3	Contractor		
Environment	Vegetation clearance, sediment runoff, piling and	Habitat destruction, removal of native				Undertake review of environmental factors. Develop and enforce						
Impact on Habitat	earthworks operations impacting on aquatic habitats	species, contamination of waterways, adverse impacts on aquatic habitats Disturbance of ASS can generate	4	4	16	environmental construction management plan.	2	4	8	TfNSW		
Acid Sulfate Soils (ASS)	Distubance of acid sulfate soils (ASS)	significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels and produce acid soils.	4	4	16	Prepare an acid sulfate management plan and undertake additional ASS testing and treatment during construction.	2	4	8	TfNSW/ Contractor		
KD - Contamination of river water	Excavation of material and seiment runoff	Adverse impacts on water quality.	4	4	16	Construction methodology and limiting ground disturbance, selection of materials and implementing appropriate erosion and sediment controls	2	4	8	TfNSW/ Contractor		
Gi - Impact on aboroignal cultural heritage items	Excavation, piling oeprations impacting or disturbig aboriginal/cultural heritage items	damaging aborigianl cultural items of significance to community				REF, CEMP,						
Design						Preliminary consultation with piling contractor held to evaluate						
Constructability	Design cannot be practically or safely constructed	Re-design and associated costs and delays	4	4	16	reteiminary constrained with plang contraction ned to evaluate some constructability issues between concrete and steel plas. Plan a constructability workshop to ensure design is safely construction. Review contractors construction methodolgies and seek clarification from designer/ constructors	2	4	8	TfNSW		
Excessive Deformations	Embankment and Pavement deformations	Personal injury, vehicle damage, excessive maintenance	3	3	9	Design for serviceability	2	3	6	TfNSW/ SMEC		
Durability	Remediation solutions not do not meet durability requirements	Remediation solution or components do not achieve intended design life	3	4	12	Design for durability. Highlight maintenance requirements which may include postconstruction monitoring and communicating requirements.	2	4	8	TfNSW		
Loads	Loadings greater than expected	Failure due to over stressing	3	4	12	Model construction staging and traffic loads, adopt safety factors, specify load limits and set backs	2	4	8	SMEC		
Scour	Lack of hydraulic/ scour assessment information for clarence river. Incorrect long term scour profiles and scour treatments	Failure due to excessive scour	4	4	16	Investigate and assess hdyraulics and scour within limits of site and donstream of site. Include provision for additional scour treatment as part of long term maintenance.	2	4	8	TfNSW		
Construction						Bravide for some redundancy in design for variable ground						
Unexpected ground conditions	Ground conditions differ from the design assumptions	Construction difficulties, variations, delays	3	4	12	Provide for some redundancy in design for variable ground conditions. Consider additional geotechnical investigation such as CPT to provide more understanding of subsurface conditions. Staged testing or trials at early stages of construction. Provision for a suitably qualified geotechnical engineer to supervise and document works during construction	2	4	8	Contractor		
Water levels	River and or groundwater levels will vary with climate, tide and seasons.	Flooding, impact on earthworks, piling, slope stability.	3	4	12	Monitor weather forecasts and water/tidal levels. Avoid working during flood or heavy/prolonged rainfall conditions.	1	4	4	Contractor		
Instability	Unstable slopes during construction	LTI / injury / death,	4	5	20	Visual monitoring of slopes for deformation during construction. Undertake works during dry weather. Limit construction plant bearing pressures within designated setbacks or exclusion zones. Limit plant vibrations. Design termporary works to support heavy plant for land based operations.	2	5	10	Contractor		
Instability	Plant roll over working on batter slopes undertaking earthworks and rock fill/rock armour placement	LTI / injury / death,	4	5	20	Utilise apprpropriate plant and equipment for earthworks and placement of rock fill behind shear piles. Design and construct appropriate temporary working platforms to support plant.	2	5	10	Contractor		
Excavations	Temporary and permanent excavations	Falling into excavations, wall collapse, striking services. LTI / injury / death,	4	5	20	Ensure that code of practice for excavations are complied with. Construct barriers where necessary. Provide shoring where necessary. Check for underground services.	2	5	10	Contractor		
Under / Above Ground Services	Striking Services during construction	Disruptions to live traffic, construction and increased risk to construction crews.	3	3	9	Investigate and identify buried services. Relocate/ protect services where necessary	2	3	6	Contractor		
Inadequate Concrete Strength	Durability and strength	Structural collapse, durability issues.	2	4	8	Concrete quality control practices in place. Ensure that design team has been notified as a Non Conformance.	1	4	4	Contractor		
Fall from heights	Working on and adjacent to steep slopes	LTI / injury / death,	4	5	20	Follow WHS practices for working at heights.	2	5	10	Contractor		
River	Fall in to river from slope or barge. Strong current, obstructions, entaglement.	LTI / injury / death - drowning	4	5	20	Follow WHS practices for working near and over water Ensure adequate TCPs and safe working conditions are	2	5	10	Contractor		
Working adjacent to live traffic	Potential for traffic accidents during construction	Increased potential for accidents - LTI / injury / death,	4	5	20	implemented, including reduction of speed limit and single lane closures. Ensure adequate TCPs and safe working conditions are	2	5	10	Contractor		
Working adjacent to live traffic on river	Potential for traffic accidents during construction - river traffic	Increased potential for accidents - LTI / injury / death,	4	5	20	implemented for barge work. Barge laoding unlaoding zones, transporiting barge to worksite, material storage site, at the slip work zone	2	5	10	Contractor		
Barge work and interactions between barge and other river users, barge and crane operations, barge loading/unloading operations	Potential for accidents associated with ooperating barges on river and undertaking piling operations.	Increased potential for accidents - LTI / injury / death,	4	4	16	Ensure adequate management plans and SWMS are developed.	2	5	10	Contractor		
Pavement Damage Noise	Damaged pavements creating unsafe pavement Excessive construction noise	Increased risk of accidents Disruption to neighbourhood	3	4	12 6	Provision to repair and reinstate pavements Rural setting. Evaluate high noise activities and consider restrict	2	4	8	TfNSW/Contractor Contractor		
Vibration	Excessive vibration	Generate slope instability	4	4	16	working hours for noisy work. Adopt construction methodologies and plant/equipment that do not generate excessive vibrations.	2	4	8	Contractor		
Maintenance Issues Access to structures	Lack of safe access for maintenance	Increased risk to maintenance crews	2	4	8	Provide safe working conditions for inspection and maintenance.	1	4	4	TfNSW		
							· ·					L

			5 1			

Notes for working with the Health and Safety in Design (HSiD) Risk Register

Step 1- (Pre-design). Confirm scope of the project and identify project constraints and assumptions.


Step 2a - (Prior to workshops). Identify potential risks through review of previous projects, sample risk registers, workshops and using guidewords. The Template HSiD Register contains sample risks that may occur on typical projects. These should be reviewed along with the guidewords with a view to identifying any significant risks that may be particular to the project under review. (Populate columns 1-8 plus 9-12 where possible).

Step 2b - (During workshops). Emphasis should be placed on identifying additional risks of a nature particular to the project under review (rather than generic risks). The priority should be to identify high consequence and high probability risks first and to apply the hierarchy of controls. (Identify controls applicable and populate columns 1-8 plus 12).

Step 3 - (Post workshops). Evaluate risks using Risk Assessment Criteria and determine the best safety management strategy utilising the hierarchy of control and SFAIRP principles. (Populate columns 9-14).

Step 4 - (During design development). Ongoing review of hazards and implementation of proposed controls. Identify and confirm where controls have been implemented, assess residual risks, and document SFAIRP justification where required. (Populate columns 13-19).

Step 5 - (At completion of design). Document risk actions and residual risks for each package in Design Reports and Drawings and transmit completed risk register to client. (Populate columns 20-21) Complete SiD Report where required.

Residual Risk Scores							
1 to 6 - Low	Risks and controls are managed inside the project/business unit through normal day-to- day management						
8 to 12 - Medium	Assign specific responsibility for control of risks (i.e. name responsible person)						
15 to 16- High	Report risk to General Counsel/Head of Compliance together with risk treatment plan						
20 to 25 - Extreme	Immediately report to General Counsel/Head of Compliance (GCHC) and devise risk treatment plan in conjuction with GCHC						

LIKELIHOOD

SIVIEC											
ber of the Surbana Jurong Group							CONSEQUENCE	-	→		
to 6 - Low project/busi day manage	ntrols are managed insi ness unit through norm ment fic responsibility for cor	al day-to-		Safety	 Allments not requiring treatment 	 Injury or illness but person is able to return to normal duties either immediately or by the beginning of their next shift 	Temporary impairment - person will fully recover but is unable to undertake normal duties at the beginning of their next shift Breach of Act/Regulation leading to an improvement notice being issued by a regulatory authority Practice deviates from a Code of Practice or Compliance Code	 Permanent impairment and/or disability as a result of injury or illness Breach of Act/Regulation leading to penalty notice issued by a regulatory authority Multiple cases of Moderate consequence 	 Fatality as a result of injury or illness Breach of Act/Regulation leading to SMEC or a SMEC employee being charged by a court or tribunal Multiple cases of Major consequence 		
to 12 - Medium (i.e. name responsible person) to 16- High Report risk to General Counsel/Head of Compliance together with risk treatment plan Immediately report to General Counsel/Head of			Reputation	Self-Improvement review required	Internal reviews required to reverse decline in reputation	Scrutiny required in the form of external reviews and/or investigations	Intense public, political and media scrutiny evidenced by front page headlines and/or television coverage.	Complete Loss of Integrity as a Valued Business Supplier og found guilty of major breaches of Trade Practices Act			
	(GCHC) and devise risk action with GCHC	treatment		Financial	< \$500,000	\$500k - \$2M	\$2M - \$5M	\$5M - \$10M	>\$10M		
piller in Congo				Legal Compliance	Breaches rectified without ongoing issues with authorities	Notifications by Authorities of Potential Breaches	Breach of Law or Statute with potential penalties under \$5M	Breach of Law or Statute with potential penalties in excess of \$5M	Breach of Laws with potential for a criminal prosecution		
				Organisational Objectives	Very little consequence to achievement of strategic plan	Would require some adjustment to achieve strategic plan	Would require significant adjustment to achieve strategic plan	Would threaten achievement of the strategic plan	Would stop achievement of the strategic plan		
					1	2	3	4	5		
Description	1	%			Insignificant	Minor	Moderate	Major	Catastrophic		
The event can be expected to occur in The event has occurred in the past (at i Circumstances are in train that will cau	least annually)	40- 99%	5	Almost Certain	5	10	15	20	25		
 The occurrence of the event would not The event has occurred in the past few Circumstances are in train that may can 	years	15- 39%	4	Above Average	4	8	12	16	20		
The occurrence of the event is unusual The event has occurred at least once in		5- 14%	3	Moderate	3	6	9	12	15		
The event has not occurred in SMEC hit The event has occurred, infrequently, t		1-5%	2	Rare	2	4	6	8	10		
 The event only occurs in exceptional ci The event has not occurred in SMEC hi The event is not known to have occurre organisations 	story	Less than 1%	1	Very Rare	1	2	3	4	5		

RISK ACCEPTANCE CRITERIA

G-CLR10402: SMEC's Risk Acceptance Critieria

This document is only controlled when accessed online via the BMS

1 of 1

Appendix H Schedule of Quantities

Byron	<u>ule of Quantities and Relative Cost Estimates</u> s Lane Landslide Remediation Piles and Rock Fill - Steel Piles	Job No Date	30013154 20/07/2022	Comments and Calcs
Item	Description	Units	Quantity	
1	Preliminaries and General Items			
	Establishment of plant to site	Item	1	Assumes barge, piling rig and excavator.
	Site Compound, Barriers, Security, Amenities	Item	1	
	Traffic Control	week	3	Assumes 3 weeks single lane closure
	Barge Hire	Day	5	Medium size barge envisaged to support large excavator mounted piling
2	Quality Control, Survey, As-Built Drawings, Geotechnical Advice			
	3D coordinated survey and set-out, as-builts	Item	1	
	Engineer Construction Supervision	week	3	Experienced engineer supervision
	Project Management	ltem	1	
3	Clearing and Environmental Control			
	Erosion and Sediment Control	Item	1	Sediment and erosion control measures
	Environmental REF and monitoring	ltem	1	
4	Construct Shear Piles			
	Excavate to remove rock armour from pile footprint	allow	1	Costing allowance for excavator working off barge.
	Supply and install 310UC158 steel piles with corrosion treatment			
	applied to upper 4 m of each pile	m	564	310UC158 piles at 0.9 m centres = 47 piles. Piles @ 12m long.
5	Earthworks and Rock Armouring and Rock Filling			
	Vegetation clearance	m ²	500	Clear riverbank for rock armouring. Allow 500 m2.
	Excavate to form benches	m ³	250	0.6 m max height benches. Allow 250 m3
	Geotextile Seperation Fabric Strength Class E	m ²	1100	Laid and pinned loose beneath rock armour and rock fill and allowing fo
	Rock armour slope	m ³	300	700 mm to 1000 mm size rock
	Rock fill slope	m ³	800	100 mm to 500 mm size rock
c	Other Items			
6		m²	200	50 m x 6 m width (including shoulder) = 300 m2
	Repair pavement wearing course + line marking		300	
	Construct new slotted Type F concrete barrier	m m³	20	Allow 20 m cast in situ Type F barrier with slotted base with dowelled c Excess material removed from site.
	Removal of Excavated Spoil - Off Site Disposal Supply and install TL3 Quadguard M10 barrier system		300 1	Excess material removed from site. As per drawings and specifications
	Subbis and moral instances dranging with particle system	ltem	Ţ	As per urawings and specifications
	Provisional - supply and install additional 12m long shear piles in			
	transition zone	ltem	1	
	Provisional - wedge of rock armour in front of shear piles	m³	25	700 mm to 1000 mm size rock
	Fueluded			

Excluded: Long term maintenance Temporary working platforms ling hammer.

g for 500 mm overla_l

d connection to exis

Appendix I Product Specifications

DUREMAX® GFX

High Performance Surface Tolerant Glass Flake Epoxy

PC 256

ingii i onon		Surface Toleran		ролу		10230	
	 SUPERIO HIGH PEF EXCELLE SELF PRI GOOD AE 	 HIGH GLASS FLAKE CONTENT SUPERIOR RESIN TECHNOLOGY FOR SURFACE WETTING AND CORROSION RESISTANCE HIGH PERFORMANCE MAINTENANCE COATING FOR NEW OR EXISTING STEEL EXCELLENT BARRIER FOR IMMERSION OR SPLASH ZONE SELF PRIMING FINISH – HIGH SOLIDS AND HIGH BUILD FORMULATION GOOD ABRASION AND CHEMICAL RESISTANCE 					
USES	resistance. I and off-shore	GFX is a high solids, high build deally suited to protecting new e structures, above and below	v steelwork from atmosphe the water-line.	ric and marin	e corrosion	including coastal	
	The adhesio hand, power of coating typ	n strength of DUREMAX [®] GFX tool or high-pressure water cl pes.	د allows it to be used as a hi eaned surface. DUREMAX المعالمة	gh performan [®] GFX can be	ce mainten topcoated	ance coating over with a wide range	
SPECIFICATIONS	AS 4352-200	994 "Paints for steel structure: 05 "Tests for Coating Resistan at 250 µm DFT per coat direct	ce to Cathodic Disbondmen	it". Group A c	lassificatior		
RESISTANCE	GUIDE						
WEATHERABILITY	exposure. N detracts from	with time and chalk on exterio leither yellowing nor chalking m the protective properties o Use a weatherable topcoat appearance.	g of	Resists splash and spillage of most hydrocarbon solvents, refined petroleum products and most common alcohols			
HEAT RESISTANCE	Up to 120°C	dry heat	WATER	Excellent resistance to immersion in fresh and salt water			
SALTS	Excellent res	sistance to neutral and alkaling	e ALKALIS	Good resistance to splash and spillage of strong alkalis			
ACIDS	Suitable for s	splash and spillage of mild acid	S ABRASION	N Good when fully cured			
TYPICAL PROP	PERTIES	AND APPLICATION [DATA (STANDARD	HARDEN	IER)		
CLASSIFICATION	Two Pack G	lass Flake Reinforced Epoxy	APPLICATION COND	ITIONS			
FINISH	Semi Gloss			Min	Max		
COLOUR	Mid Greyand	d Black	Air Temp.	10°C	45°C		
			Substrate Temp.	10°C	45°C		
			Relative Humidity		85%		
			Concrete Moisture		<10%		
COMPONENTS	Two						
VOLUME SOLIDS	84% (Black)		COATING THICKNES	S (MICRON	IS)		
VOC LEVEL	<210 g/L (Bla	ack)		Min	Max	Recommended	
FLASH POINT	>23°C		Wet film per coat (µm)	240	600	300	
POT LIFE	90 minutes (4 litrekit, 25°C)	Dry film per coat (µm)	200	500	250	
MIXING RATIO V/V	Part A:4	Part B : 1					
THINNER PRODUCT CODE		Dulux [®] Epoxy Thinner Mid Grey	SUITABLE SUBSTRATES		atings, prep	ared concrete	
	775-H0094 976-H0096 976-H0126	Black Standard Hardener Cold Cure Hardener	PRIMERS	Most Dulux [®]	⁹ two pack p	primers	
			APPLICATION METHODS		al, airless,	or air assisted	

DRYING CHA	RACTERISTI	CS AT 250 μn	n DRY FILM T	'HICKNESS* (S	TANDARD H	ARDENER
					OVER	COAT
Temperature	Humidity	Touch	Handle	Full Cure	Min	Max ¹
10° C	50%	14 Hours	36 Hours	7 Days	36 Hours	4 Weeks
15° C	50%	10 Hours	24 Hours	7 Days	24 Hours	4 Weeks
25° C	50%	6 Hours	14 Hours	7 Days	14 Hours	4 Weeks

*These figures are a guide only, as ventilation, film thickness, humidity, thinning and other factors will influence the rate of drying. ¹If the maximum overcoat interval is exceeded then the surface MUST be abraded to ensure maximum intercoat adhesion.

SPREADING RATE
with Standard Hardener
assuming no losses3.4 square metres per litre equals 250 µm dry film thickness
NOTE: Practical spreading rates will vary depending on such factors as application method, ambient
conditions, surface porosity and roughness.

DUREMAX[®] GFX COLD CURE HARDENER

COATING THICKNESS (MICRONS)

COATING THICKNESS (MICRONS)					
Min	Max	Recommended			
240	600	300			
200	500	250			
84% (Black)				
<190 g/L (B	lack)				
>23°C					
60 minutes	(4 litre kit,	25°C)			
	Min 240 200 84% (Black <190 g/L (B >23°C	Min Max 240 600 200 500 84% (Black) <190 g/L (Black)			

APPLICATION CONDITIONS

	Min	Max
Air Temperature	5°C	45°C
Substrate Surface Temperature	5°C	45°C
Relative Humidity		85%
Concrete Moisture Content		<10%

DRYING CHARACTERISTICS AT 250 µm DRY FILM THICKNESS* (COLD CURE HARDENER)

					OVERCOAT		
Temperature	Humidity	Touch	Handle	Full Cure	Min	Max ¹	
5° C	50%	14 Hours	28 Hours	7 Days	28 Hours	4 Weeks	
10° C	50%	13 Hours	24 Hours	7 Days	24 Hours	4 Weeks	
15° C	50%	12 Hours	18 Hours	7 Days	18 Hours	4 Weeks	
25° C	50%	6 Hours	9 Hours	7 Days	9 Hours	4 Weeks	

*These figures are a guide only, as ventilation, film thickness, humidity, thinning and other factors will influence the rate of drying

¹ If the maximum overcoat interval is exceeded then the surface MUST be abraded to ensure maximum intercoat adhesion Use of fast or low temperature hardeners may result in increased yellowing and a reduction of gloss level

NOTE: Figures shown are for non-immersion conditions. Refer to PRECAUTIONS section for overcoating intervals and requirements for immersion service

SPREADING RATE
with Cold Cure Hardener
assuming no losses3.4 square metres per litre equals 250 μm dry film thickness
NOTE: Practical spreading rates will vary depending on such factors as application method, ambient
conditions, surface porosity and roughness.

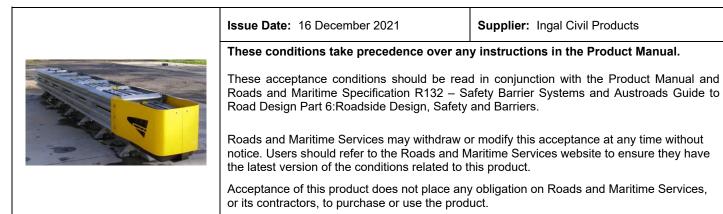
TYPICAL SYSTEMS

This is a guide only and not to be used as a specification. Your specific project needs must be discussed with a Dulux Protective Coatings Consultant.

SURFACE	ENVIRONMENT	PREPARATION GUIDE	SYSTEM		DFT (µm)
STEEL – NEW OR MAINTENANCE	Immersion AS2312.1 Table C1 System EVH3	Abrasive blast clean AS1627.4 Class 3.0	1 st Coat 2 nd Coat	Duremax [®] GFX Duremax [®] GFX	250 μm 250 μm
STEEL – NEW	Very high corrosivity (AS2312.1 Cat C5) Exceeds System EHB6	Abrasive blast clean AS1627.4 Class 2.5	1 st Coat 2 nd Coat 3 rd Coat	Zincanode [®] 402 Duremax [®] GFX Duremax [®] GFX	75 μm 250 μm 250 μm
STEEL – NEW	Very high corrosivity (AS2312.1 Cat C5) System EVH3	Abrasive blast clean AS1627.4 Class 2.5	1 st Coat 2 nd Coat 3 rd Coat	Durepon [®] P14 Duremax [®] GFX	75 μm 400 μm
STEEL – MAINTENANCE	Exterior	Power tool clean AS1627.2 St 3 or Abrasive blast AS1627.4 Class 2	1 st Coat 2 nd Coat	Duremax [®] GFX Duremax [®] GFX	250 μm 250 μm
CONCRETE	Exterior/Interior	Remove release agents and other surface contaminants	1 st Coat 2 nd Coat	Duremax [®] GFX (Thin 10-15%) Duremax [®] GFX	250 μm 250 μm
ALUMINIUM Exterior/Interior		Clean, degrease and abrade surface	1 st Coat	Duremax [®] GFX	250 µm

DUREMAX® GFX

DOILEN							
SURFACE PREPARATION	AS1627.1 Part 2.2 with Gaml instructions and all safety war Immersed steel: Abrasive blast Steel where abrasive blast of surfaces must be removed by the degree of surface prepara Steel Maintenance: Wash wi warnings. (Refer to AS1627.1 entire surface of tightly adheri all red rust by power tool clear steel. Concrete: Concrete must be	 Steel: Round off all rough welds, sharp edges and remove weld spatter. Remove contaminants in accordance with AS1627.1 Part 2.2 with Gamlen CA 1 (a free-rinsing, alkaline detergent) according to the manufacturer's written nstructions and all safety warnings. Abrasive blast clean to AS1627.4 Class 2.5 minimum. mmersed steel: Abrasive blast cleaned to AS1627.4 Class 3. Remove all dust by brushing or vacuum cleaning. Steel where abrasive blast cleaning is not viable: Rust, mill scale, oxide deposits and old paint films on metal surfaces must be removed by power tool cleaning according to AS1627.2. Coating performance is proportional to the degree of surface preparation. Steel Maintenance: Wash with Gamlen CA 1 according to the manufacturer's written instructions and all safety warnings. (Refer to AS1627.1 Part 2.2). Remove unsound coatings. Feather back edges to remove ridges. Abrade entire surface of tightly adhering remaining coating to provide a suitable key for the new coating system. Remove all rest rust by power tool cleaning in accordance with AS/NZ 1627:2 Class 2. Remove all residues. Spot prime bare steel. Concrete: Concrete must be at least 28 days old before coating. Remove all laitance, form release, curing compounds, oil, grease and other surface contaminants. Fill any large cracks or voids using Luxepoxy[®] Filler. 					
APPLICATION	0,			wer mixer is recommended. Mix the contents stand for 10 minutes. Remix thoroughly before			
BRUSH/ROLLER	Apply even coats of the mixed be required to attain the speci	d material to the pre fied thickness.	pared surface. W	nen brushing and rolling additional coats may			
CONVENTIONAL SPRAY	Thinning is not normally requi 08925) can be added.	red, however a smal	amount (5% or le	ess by volume) of Dulux [®] Epoxy Thinner (920-			
	Typical Set-up	Graco AirPro: Pressure at Triton 3 Pressure at Gun:		239542) Pa (10-15 p.s.i.) kPa (55-60 p.s.i.)			
AIRLESS SPRAY		delivering 550-690 kl	Pa (80 -100 psi) a	:1 with a fluid tip of 17–21 thou (0.43- 0.53mm) t the pump. Thinning is not normally required ded to ease application.			
PRECAUTIONS	This is an industrial product designed for use by experienced Protective Coating applicators. Where conditions may require variation from the recommendations on this Product Data Sheet contact your nearest Dulux [®] Consultant for advice prior to painting. Do not apply in conditions outside the parameters stated in this document without the express written consent of Dulux [®] Australia. Freshly mixed material must not be added to material that has been mixed for some time. Do not apply at temperatures below 10°C when using Standard hardener or below 5°C when using Cold Cure hardener. Do not apply at relative humidity above 85% or when the surface is less than 3°C above the dewpoint. When used with a white or pastel colour the Cold Cure hardener will impart a yellow tone that will darken with time. When used for immersion conditions the maximum overcoat interval is 3 days at 25°C. The coating MUST be completely solvent free prior to being placed under immersion conditions as a tank lining. For best results in water immersion conditions replace Dulux [®] Epoxy Thinner (920-08925) with Dulux [®] CR Reducer (965-63020). In tidal areas early immersion will result in loss of some of the coating but this will not affect performance. Do not use as a primer over galvanised steel when using Cold Cure hardener as delamination can occur. Use of fast or low temperature hardeners may result in increased yellowing and a reduction of gloss level.						
CLEAN UP	Clean all equipment with Dulu	x [®] Epoxy Thinner (92	20-08925) immed	iately after use.			
OVERCOATING	adhesion test. If the coating fa	ails, remove it. High- de surface to provide	pressure water w	ion of existing coating by standard cross hatch ash at 8.3 to 10.3 MPa (1,200-1,500 p.s.i.) to the new coating. Epoxies must be abraded if			
SAFETY PRECAUTIONS	Read Data Sheet, SAFETY I is available from Customer			on container labels. SAFETY DATA SHEET tectivecoatings.com.au			
STORAGE	Store as required for a flammab sources of heat or ignition. Keep			cover. Store in well-ventilated area away from			
HANDLING	occupational work practice. Eye	As with any chemical, ingestion, inhalation and prolonged or repeated skin contact should be avoided by good occupational work practice. Eye protection approved to AS1337 should be worn where there is a risk of splashes entering the eyes. Always wash hands before smoking, eating, drinking or using the toilet.					
USING				If risk of inhalation of spray mists exists, wear ust comply with their respective State Spray			
FLAMMABILITY	This product is flammable. All so Fight fire with foam, CO ₂ or dry			or near the working area. DO NOT SMOKE. xic fumes.			
	Avoid inhalation of fumes if weld	ling surfaces coated w	•	° °			
COMPANY INFORM	IATION		PACKAGING, T	RANSPORT AND STORAGE			
Dulux Protective Coatin	gs a division of			CKAGING Available in 15 litre packs			
DuluxGroup (Australia) 1956 Dandenong Road A.B.N. 67 000 049 427		/ Zealand) Pty Ltd ad, Lower Hutt, NZ 4 118	TRANSPORTATIO	NWEIGHT 1.61 kg/litre (Average of components) S GOODS Part A: Class 3 UN 1263 Part B: Class 8,3 UN 2734			


Dulux, Duremax, Durepon and Zincanode are registered trade marks of DuluxGroup (Australia) Pty Ltd.

Any advice, recommendation, information, assistance or service provided by Dulux Australia in relation to goods manufactured by it or their use and application is given in good faith and is believed by Dulux to be appropriate and reliable. However, any advice, recommendation, information, assistance or service provided by Dulux is provided without liability or responsibility PROVIDED THAT the foregoing shall not exclude, limit, restrict or modify the right entitlements and remedies conferred upon any person or the liabilities imposed upon Dulux by any condition or warranty implied by Commonwealth, State or Territory Act or ordinance void or prohibiting such exclusion limitation or modification. Products can be expected to perform as indicated in this sheet so long as applications and application procedures are as recommended. Specific advice should be sought from Dulux for application in highly corrosive areas and for large projects to ensure proper performance.

Safety Barrier System Acceptance

QUADGUARD-M10 Crash Cushion - Permanent

Status	Accepted – may be used on the classified road network
Product accepted	QUADGUARD-M10 Crash Cushion
	<u>Variants</u> Quadguard M Wide
	Variants that are NOT listed above are NOT recommended for acceptance.
Accepted speed	70 km/h (TL2) 100 km/h (TL3)

Tested Outcomes

Containment Level	Point of R Leading (m)	edirection Trailing (m)	Tested Article Length (m)	Anchor/Post Spacing (m)	Dynamic Deflection (m)	Working Width (m)	Notes
MASH TL2	Entirely r	edirective	4.0	Refer drawings	N/A	N/A	
MASH TL3	Entirely r	edirective	6.71	Refer drawings	N/A	N/A	

Approved Connections

Crash Cushions or Terminals must be fitted to both ends of a barrier					
Public Domain Products					
W-Beam guardrail	Permitted - reverse impacts into the transition section can produce a greater occupant severity value than preferred. Where reverse impacts are possible (e.g. bidirectional traffic) a risk				
Thrie-Beam guardrail	assessment must be completed and steps to mitigate the likelihood of reverse impact should be implemented.				
Concrete Type F	Permitted				
Proprietary Products					
	Refer to Safety Barrier acceptance conditions for approved proprietary connections				

Design Guidance

This product must be installed and maintained in accordance with the Product Manual and Roads and Maritime specifications		
System length (m)	4.0 (Quadguard M10) (TL2) 6.71 (Quadguard M10 and Quadguard M Wide) (TL3)	
System width (m)	0.610 (Quadguard M10) 1.755 (Quadguard M Wide)	
Minimum distance to excavation	N/A	
Slope limit	Side slope limit: (8%)	
Systems conditions	Installation on top of a kerb is not recommended, however if installed on top of a kerb all system components must be free to operate.	
Gore area use	Permitted	
Pedestrian area use	Permitted – consider potential for snagging and deflection	
Cycleway use	Permitted – consider potential for snagging and deflection	
Frequent impact likely	Permitted	
Remote location	Permitted	
Median use	Permitted	

Foundation Pavement Conditions					
Pavement Type	Use	Max Accepted Speed (km/h)	Post/Pin Spacing (m)	Post/Pin Type	Pavement Construction
Concrete				M20 x 180mm	Installation on concrete pavement or pad is
Deep lift asphaltic concrete	Permitted	100	Refer to Drawings	threaded rod with epoxy	permitted in accordance with the manufacturer's drawings (Quadguard M10 &
Asphaltic concrete over granular pavement	1 onnikou			(Quadguard M10 & Quadguard M Wide)	
Flush seal over granular pavement				, j	Quadguard M Wide)
Unsealed compacted formation	Not Permittee	k			

Note: Installation in pavement conditions not listed above have not been justified to the Roads and Maritime's satisfaction.

Appendix J Relevant Information

Big River Way Slip on Clarence River North of Byrons Lane

Geotechnical Investigation Factual Report

Report No: N2021031 Report Issued Date: 7/6/2021 Prepared by: Northern Pavements and Geotechnical

THIS PAGE LEFT INTENTIONALLY BLANK

Report	Registration
--------	--------------

Report Title:	Geotechnical Investigation Report			
Report Subtitle:	ig River Way – Slip on Clarence River North of Byrons lane			
Report Number:	2021031			
Project Reference Number:	2021031			
Responsible Capability:	Northern Pavements and Geotechnical			
Responsible Discipline:	Geotechnical Science			
Report Authorisation:	Manager Pavements and Geotechnical Northern			
Report Manager:	Geotechnical Scientist			
Issue Number:	01			
Version Date:	7/6/2021			
Contact for this Report:	Rob Ticknor			
Distribution List:	Shaun Gillespie			

Report Prepared By:		Report Reviewed By:		
Name:	Rob Ticknor	Name:	David Groth	
Title:	Geotechnical Scientist	Title:	Manager Pavements and Geotechnical	
Team:	Engineering Services Northern	Team:	Engineering Services Northern	
Unit:	Pavements and Geotechnical	Unit:	Pavements and Geotechnical	
Date:	7/6/2021	Date:	7/6/2021	

Note: The functions of the former State Government agency Roads and Maritime Services (RMS or Roads and Maritime) are now administered by Transport for NSW.

Important Disclaimer

While all care is taken in producing and publishing this work, no responsibility is taken or warranty made with respect to the accuracy of any information, data or representation. The authors (including copyright owners) and publishers expressly disclaim all liability in respect of anything done or omitted to be done and the consequences upon reliance of the contents of this publication.

Copyright

This work is copyright. © Transport for NSW.

Users are welcome to copy, reproduce and distribute the information contained in this report for noncommercial purposes only, provided acknowledgement is given to the Transport for NSW, Pavements and Geotechnical Unit as the source.

Printed and electronically stored copies of this document are uncontrolled.

Contents

1	Introduction	.1
2	Site description	.1
	Field Investigation	
4	Laboratory Testing	.2
	4.1 Acid sulfate soil testing	. 2
	4.2 Soil aggressivity testing	. 3
5	Discussion	.3
6	References	.3

Appendices

Appendix A	Site Location Plans
Appendix B	Borehole Logs and Explanatory Notes
Appendix C	Laboratory Reports

1 Introduction

This report presents the results of a geotechnical investigation undertaken to support design and construction for treatment of a slip on the Big River Way north of Byrons Lane along the Clarence River.

The work was requested by the TfNSW Project/Contract Manager Shaun Gillespie. The scope consisted of drilling two boreholes through the pavement with Standard Penetration Testing, in situ shear vane testing and sampling soils for Acid Sulfate Soils and for aggressivity testing.

This report provides the following information for each site:

- Details of material types and observations of groundwater inflows;
- Standard penetration tests to determine consistency and density of soils;
- Laboratory test results of samples for aggressivity and acid sulphate.

This report should be read in conjunction with the following investigation and design reports prepared for the adjacent slip on the same road (formerly the Pacific Highway).

- HW10 Pacific Highway Byrons Lane Slip Stage 4 Geotechnical Design, SMEC, Project Number 30011433, 5 May 2014.
- HW10 Pacific Highway Road Embankment Slip at Byrons Lane Tyndale, Stage 3 Remedial Work using Sheet Piles and H-Piles, Pavement and Geotechnical Engineering Section, Roads And Traffic Authority, Report No. G4054, 5/11/2010.

2 Site description

The site is located on the bank of the Clarence River on the Big River Way between Tyndale and Maclean. (See Figure 1). The site is north of Byrons Lane, immediately downstream of a larger river bank slip that was previously repaired.

Location Number	Borehole Position	Site Description
	MGA Zone 56	
BH12	517797.377E	In pavement adjacent to
	6732393.964N	slip scarp
	RL 4.928m AHD	
BH13	517806.491E	In pavement adjacent to
	6732407.305N	slip scarp
	RL 4.920m AHD	

Table 1: Location and site description.

Appendix A includes a site location plan (Figure 1) and geotechnical investigation plan (Figure 2).

3 Field Investigation

Fieldwork for the investigation comprised drilling of two boreholes using a geotechnical rotary drilling rig. The borehole was advanced using auger drilling using a TC followed by wash bore drilling using a roller bit. Rock requiring core drilling was not encountered.

Sampling was undertaken using standard penetration testing (SPT) at 1.5m intervals which also provided information on material consistency and density. Undisturbed samples were collected in U75 tubes in soft

materials. In situ vane shear testing was conducted in soft conditions. Hand Penetrometer testing was conducted on SPT and U75 samples. Hand vane shear testing was conducted on U75 samples. A scientific officer from TfNSW supervised the field work including sampling and logging. A detailed bore log and explanatory notes are provided in Appendix B. The SPT and undisturbed soil samples have been retained by TfNSW if additional testing is required. A selection of samples was sent to a NATA certified laboratory for aggressivity and acid sulfate testing. Laboratory test reports are included in Appendix C.

Survey of borehole levels and positions was provided by TfNSW Surveyors and is provided on the log sheets.

4 Laboratory Testing

4.1 Acid sulfate soil testing

Acid sulfate soils (ASS) are those which contain iron sulphides such as pyrite (FeS₂). Exposure of iron sulphides to water and oxygen leads to generation of sulphuric acid and subsequent mobilization of heavy metals such as aluminum and iron into water bodies. This affects water quality and can lead to death of aquatic organisms and deterioration of engineered structures.

Advice regarding implementation of an acid sulfate soils management plan is based on the national acid sulfate soils guidance manual produced by the Department of Agriculture and Water Resources (2018). For disturbed soil volumes of less than 1000t, an acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture (eg sand/gravel) \geq 0.03% S or 18 mol H⁺/t; medium texture (eg sandy clay) \geq 0.06% S or 36 mol H⁺/t; fine texture (eg clay) \geq 0.1% S or 62 mol H⁺/t.

One samples was selected from BH12 for acid sulfate soil analysis at the Environmental Analysis Laboratory in Lismore. Results are summarized in Table 2 and presented in Appendix C.

Site + Depth (m)	Soil Texture	рН _{ксі}	Potential Sulfidic Acidity mole H ⁺ /t	TAA mole H⁺/t	Net Acidity mole H⁺/t	Lime Calc. kg CaCO3/t DW
BH12 5.5-5.95	Medium	5.57	455	7	462	35

Table 2: Summary of Acid Sulfate Soil Analysis

Based on results of the testing, it is recommended that an acid sulfate management plan is prepared.

4.2 Soil aggressivity testing

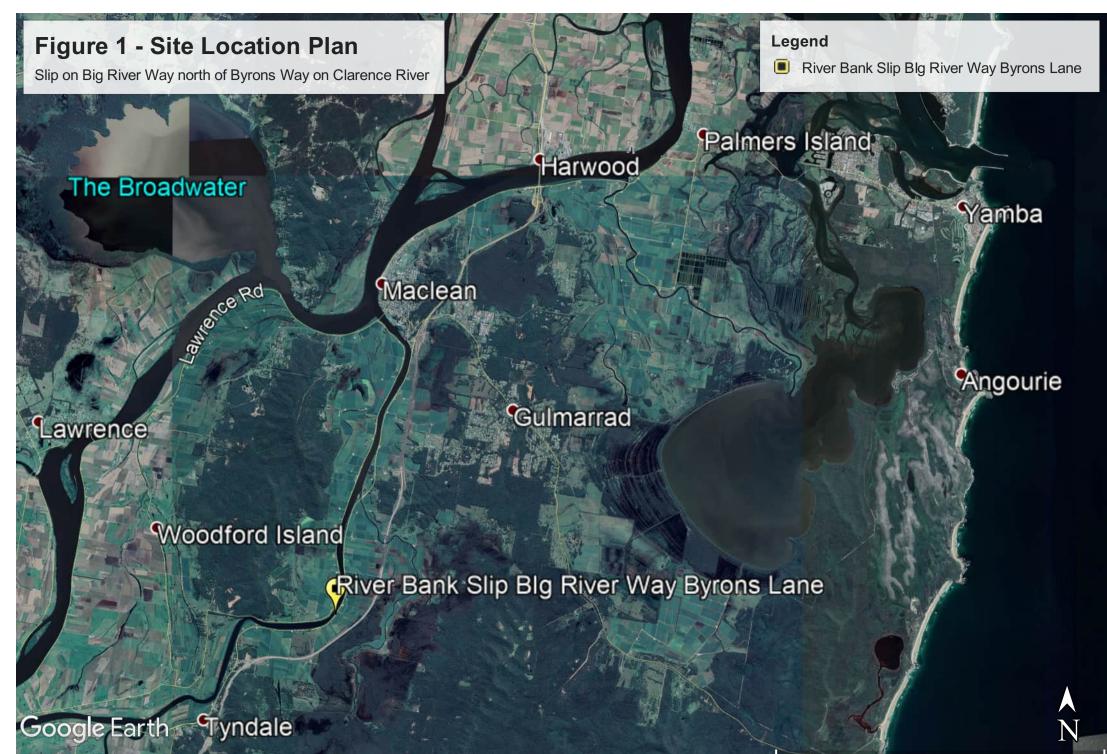
Soil aggressivity testing was undertaken on selected samples to inform design of the concrete/steel elements of the footings. Testing was carried out by the Environmental Analysis Laboratory in Lismore with results presented in Appendix C. A summary of the findings is shown in Table 3 below.

Site	BH12
Sample Depth (m)	7.0-7.45
Texture Class	Fine
pH (in water)	8.19
EC (dS/m)	0.294
Resistivity (ohm.mm)	33,972
Chloride (mgCl/kg)	119
Sulfate (mgSO4/kg)	251
Chloride/Sulfate Ratio	0.5

Table 3: Results of Soil Aggressivity Analysis.

5 Discussion

Two geotechnical boreholes were adjacent to a slip on the river bank of the Clarence River on the Big River Way north of Byrons Lane. Standard Penetration Testing and in situ vane shear testing was conducted in the boreholes. Samples were submitted for acid sulfate soil and aggressivity testing.


The results of these investigations should be read in conjunction with the results of investigations conducted for the previous adjacent slip.

6 References

Australian Standard: AS 1726-1993, Geotechnical Site Investigations.

Sullivan L, Ward N, Toppler N and Lancaster G 2018, National Acid Sulphate Soils Guidance, Department of Agriculture and Water Resources, Canberra, ACT.

Appendix A. Site Location Plans

				al ger		
Legend						
2009 Investigations	and the state of t	and the second second		1		A STATISTICS
Borehole	and the second second	- and the second second	and the second second		1	
2021 Investigations		the state			A Partie	
🗢 Borehole						
The second second			and the second se			
		All and a second se				
		a				
			BH11			
				BH6		は物語品で
		BH5	BH7 BH9		1. 20 4	
a le ha			BHB	1 10.	BH12	BH13
	a trans	all and a second	BH10BH10 BH3	Alan I alan		
		<u>.</u>			A MY AND	
			BH4	Calence States		
	A MARKAN					
			- Margaret			
Map data copyright (C) 2021 Roads a	nd Maritime Service	s, NSW. Some spatial d	ata courtesy of NSW Departmer	nt of Lands.		
0 5 10 20 30 40 50	REPORT No.	Date: 2/06/2021				
Metres	2021031	Date. 2/00/2021	1 SCALES		NSW	Transport for NSW
DESIGNED: RT REVIEWED: DG	CLIENT: Mainten	ance and Delivery north	1:1,000	@ A3	GOVERNMENT	Place - Northern Technical Services

Path: C:\Users\ticknorr\Ticknor\03_Slopes\HW10 Byrons Lane\GIS\Byrons Lane Slip.mxd

Geotechnical Investigation plan

FIGURE: 2

Appendix B. Borehole Logs and Explanatory Notes

EXPLANATORY NOTES - DRILL & EXCAVATION LOGS

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation -Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

AS	Auger Screwing		
AD/V	Auger Drilling with V-Bit		
AD/T	Auger Drilling with TC Bit		
WB	Wash-bore drilling		
RR	Rock Roller		
NMLC	NMLC core barrel		
NQ	NQ core barrel		
HMLC	HMLC core barrel		
HQ	HQ core barrel		

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
F	Firm
н	Hard
νн	Very Hard

Groundwater Levels

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately ∇ after drilling

Samples/Tests

D	Disturbed
U	Undisturbed
С	Core Sample
SPT	Standard Penetration Test
Ν	Result of SPT (* sample taken)
VS	Vane Shear Test
IMP	Borehole Impression Test
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer

Angle/Orientation: Angle from horizontal and orientation to magnetic north.

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D Dry, looks and feels dry					
M Moist, No free water on remoulding					
W Wet, free water on remoulding					

Consistency - In accordance with AS 1726-1993, Appendix A2.5

	Description	Su	HP	
VS	Very Soft	≤ 12kPa	< 25kPa	
S	Soft	12 - 25 kPa	25 - 50 kPa	
F	Firm	25 - 50 kPa	50 - 100 kPa	
St	Stiff	50 - 100 kPa	100 - 200 kPa	
VSt	Very Stiff	100 - 200 kPa	200 - 400 kPa	
н	Hard	≥ 200 kPa	≥ 400 kPa	

Strength figures quoted are the approximate range of Unconfined Compressive Strength for each class.

Density Index (%) is estimated or is based on SPT results. Approximate N Value correlation is shown in right column.

	Description	Density Index	SPT Value	
VL	Very Loose	< 15%	0 – 4	
L	Loose	15 – 35%	4 – 10	
MD	Medium Dense	35 – 65%	10 – 30	
D	Dense	65 – 85%	30 – 50	
VD	Very Dense	> 85%	> 50	

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

Description	Spacing (mm)
Thinly Laminated	< 6
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 -200
Medium Bedded	200 - 600
Thickly Bedded	600 - 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

F	Fresh	Rock substance unaffected by weathering			
sw	Slightly Weathered	Rock substance partly stained or discoloured. Colour and texture of fresh rock recognisable.			
MW	Moderately Weathered	Staining or discolouration extends throughout rock substance. Fresh rock colour not recognisable.			
нw	Highly Weathered	Stained or discoloured throughout. Signs of chemical or physical alteration. Rock texture retained.			
EW	Extremely Weathered	Rock texture evident but material has soil properties and can be remoulded.			

 $\ensuremath{\textit{Strength}}$ - The following terms are used to described rock strength:

	Rock Strength Class	Point Load Strength Index, Is(50) (MPa)			
EL	Extremely Low	< 0.03			
VL	Very Low	0.03 - 0.1			
L	Low	0.1 - 0.3			
м	Medium	0.3 - 1.0			
н	High	1.0 - 3.0			
VH	Very High	3.0 - 10.0			
EH	Extremely High	≥ 10.0			

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

- Diametral Point Load Test
- Axial Point Load Test

MATERIALS STRUCTURE/FRACTURES

ROCK

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	 Defects open in-situ or clay sealed
	 Defects closed in-situ
	 Breaks through rock substance

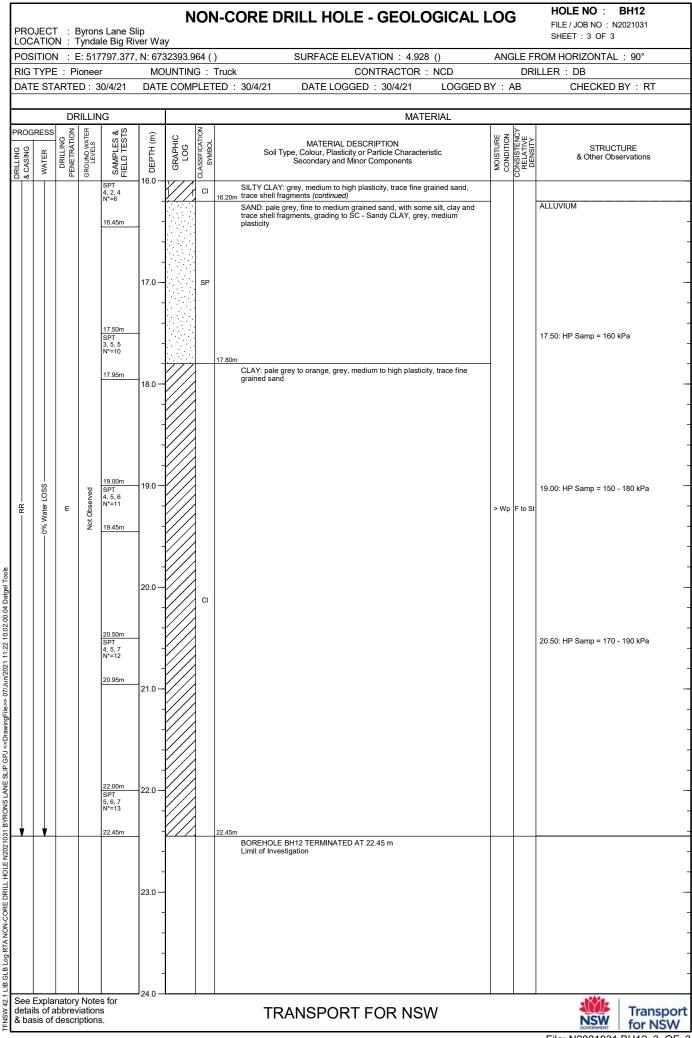
Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Туре	BP	Bedding Parting
	JT	Joint
	SM	Seam
	FZ	Fracture Zone
	SZ	Shear Zone
	VN	Vein
	FL	Foliation
	CL	Cleavage
	DL	Drill Lift
	HB	Handling Break
	DB	Drilling Break

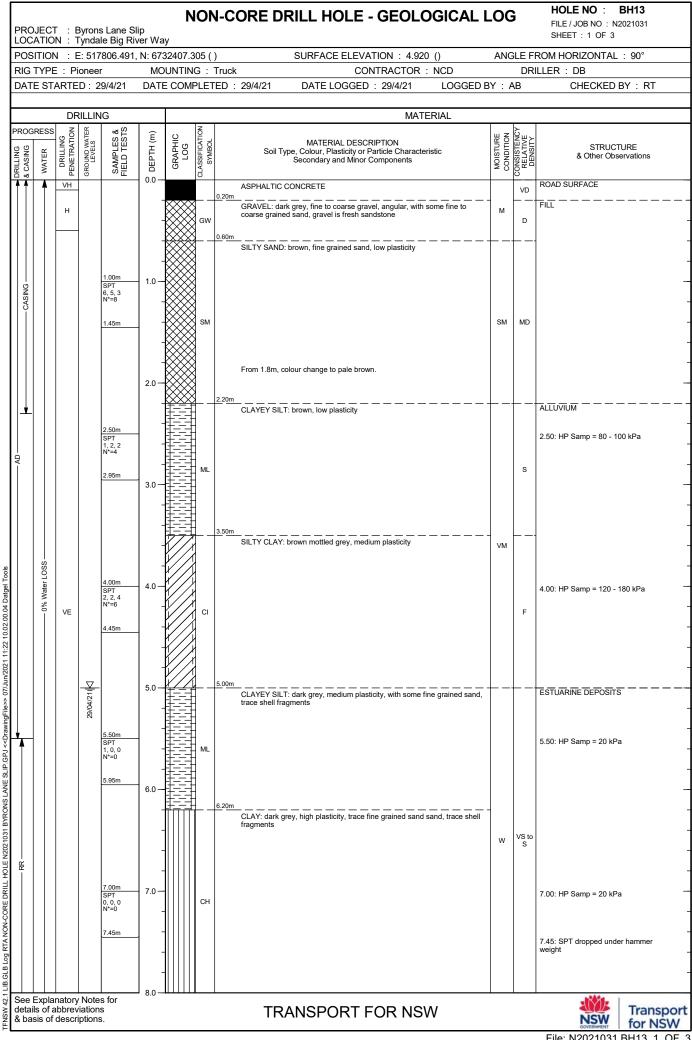
Orientation - angle relative to the plane normal to the core axis.

	J	to the plane herman to the core axie.		
Infilling	CN	Clean		
	Х	Carbonaceous		
	Clay	Clay		
	KT	Chlorite		
	CA	Calcite		
	Fe	Iron Oxide		
	Qz	Quartz		
	MS	Secondary Mineral		
	MU	Unidentified Mineral		
Shape	PR	Planar		
	CU	Curved		
	UN	Undulose		
	ST	Stepped		
	IR	Irregular		
	DIS	Discontinuous		
Roughness	POL	Polished		
	SL	Slickensided		
	S	Smooth		
	RF	Rough		
	VR	Very Rough		

<u>SOIL</u>


Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

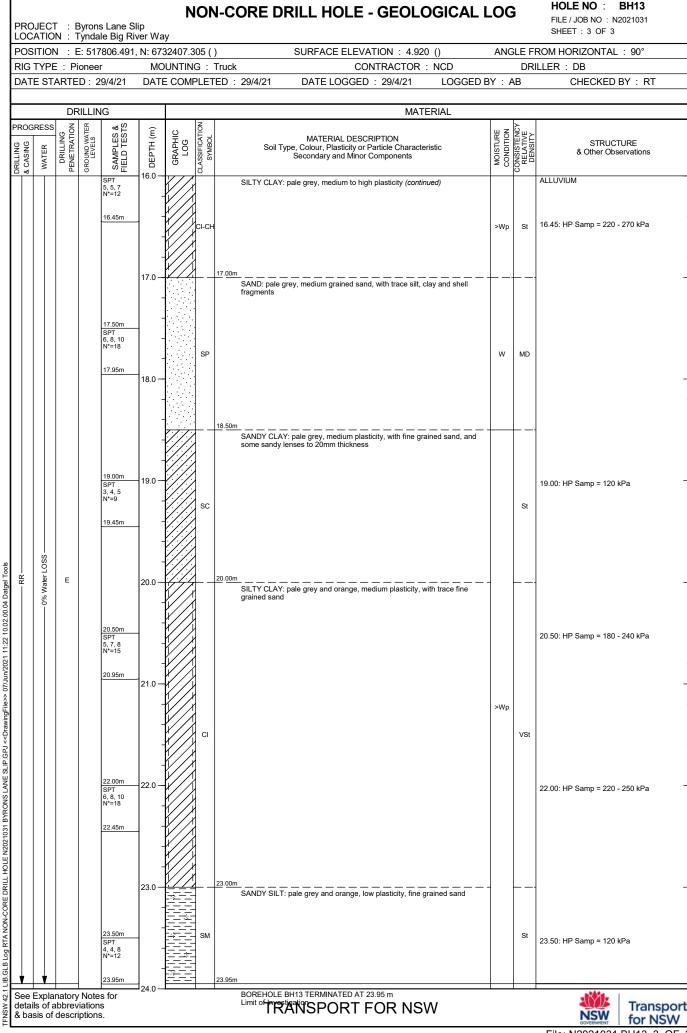
Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.


PRO	PROJECT : Byrons Lane Slip										
LOC	LOCATION : Tyndale Big River Way										
		N:E E:Pi				32393.9 UNTIN		SURFACE ELEVATION : 4.928 () ruck CONTRACTOR : NCD	ANG		ROM HORIZONTAL : 90° ILLER : DB
				30/4/21				ED : 30/4/21 DATE LOGGED : 30/4/21 LOGGED	BY : /		CHECKED BY : RT
						_					
							7	MATERIAL		2	
& CASING	MATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
ĀŤ	A	Н	-		0.0 —			ASPHALTIC CONCRETE		VD	ROAD SURFACE
		F			-		GW	_20mGRAVEL: dark grey to orange, fine to medium gravel, angular, with some fine to coarse grained sand .50m	-		FILL
AD				1.00m SPT 6,4,3 N*=7 1.45m	- 1.0		SM	SILTY SAND: brown, fine grained sand, with medium plasticity fines and some clay	м	MD	- - - - - - - - - - - - - - - - - - -
				2.50m SPT 2, 2, 2 N*=4 2.95m			ML	CLAYEY SILT: brown, low to medium plasticity		s	ALLUVIUM - - - - - -
	0% Water LOSS	VE	Not Observed	4.00m SPT 2, 3, 5 N*=8 4.45m	- 4.0		CI	SILTY CLAY: brown mottled grey, medium plasticity, trace fine grained sand	VM	F to St	- 4.00: HP Samp = 150 kPa - - -
RR				5.50m SPT	5.0			SANDY CLAYEY SILT: grey, low to medium plasticity, fine grained sand, trace shell fragments			ESTUARINE DEPOSITS
				1, 0, 0 N*=0 5.95m	-						-
				6.10m in-situ VS P=68kPa R=41kPA 6.70m in-situ VS P=68kPa R=27kPA 7.00m	6.0		СН	.00m SILTY CLAY: dark grey, high plasticity, with some fine grained sand, trace shell fragments	> WL	s	
				U75 7.40m Samp VS P=32kPa R=13.5kPA 7.50m	- 7.0	-	CH		> WL		– 7.40: HP Samp = 20 kPa - -
deta	See Explanatory Notes for details of abbreviations & basis of descriptions. TRANSPORT FOR NSW File: N2021021 PH12 1 OF 2										

File: N2021031 BH12 1 OF 3

PROJECT : Byrons Lane Slip LOCATION : Tyndale Big River Way HOLE NO : BH12 File / JOB NO : N2021031 SHEET : 2 OF 3												
				-			SURFACE ELEVATION : 4.928 ()	ANG	GLE FROM HORIZONTAL : 90°			
RIG TYPE DATE STA							ruck CONTRACTOR : NCD ED : 30/4/21 DATE LOGGED : 30/4/21 LOGGED	BY · 4		LLER : DB CHECKED BY : RT		
		D. 3	0/4/21	DAIL			D. 30/4/21 DATE LOGGED . 30/4/21 LOGGED	DT . 7		CHECKED BT . KI		
		ILLIN	_	1			MATERIAL					
ROGRESS & CASING & CASING & CASING & CASING	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations		
			8.50m U7575	- 8.0 - - - - -		СН	SILTY CLAY: dark grey, high plasticity, with some fine grained sand, trace shell fragments (continued)	> WL	s	8.50: HP Samp = 30 kPa		
			8.95m	9.0		From 9.0m, with some organics.			8.90: Samp VS P=48kPa R=15kPA			
	VE		10.00m U75 10.40m Samp VS P=177kPa R=45kPA	- - - - - -			trace shell fragments		St	10.40: HP Samp = 150 kPa		
	E		10.50m 11.50m SPT 2, 2, 3 N*=5	 11.0 — 			From 11.0m, colour change to pale grey mottled brown.			11.00: ALLUVIUM		
RR		Not Observed	11.95m	- 12.0 — - -						11.95: HP Samp = 150 kPa		
			13.00m SPT 4, 5, 7 N*=12 13.45m	- 13.0 - - -	G	13.0-13.5m, iron oxide zones up to 2mm.		F to St	13.00: HP Samp = 180 - 200 kPa t			
			14.50m SPT 3, 4, 7 N*=11	14.0				14.50: HP Samp = 150 kPa				
			N*=11 14.95m	- 15.0 — - -								
			16.00m	16.0								
See Expland details of ab & basis of d	brev	iation	s for s	- 16.0		<i>.</i> 1	TRANSPORT FOR NSW			NSW Transpo for NSW		

File: N2021031 BH12 3 OF 3



File: N2021031 BH13 1 OF 3

	PRO	NON-CORE DRILL HOLE - GEOLOGICAL LOG HOLE NO : BH13 SOJECT : Byrons Lane Slip CATION : Tyndale Big River Way																	
- H	POSITION : E: 517806.491, N: 6732407.305 ()										SURFACE ELEVATION : 4.920 () ANGLE F						ROM HORIZONTAL : 90°		
- H	RIG TYPE : Pioneer MOUNTING : True DATE STARTED : 29/4/21 DATE COMPLETED								ruck CONTRACTOR : NCD DRI						ILLER : DB				
									ED : 29/4	ED : 29/4/21 DATE LOGGED : 29/4/21 LOGGED BY : AB							CHECKED	BY : RI	
DRILLING									MATERIAL										
- F	& CASING	WATER B WATER B DRILLING PENETRATION GROUND WATER LEVELS SAMPLES & FIELD TESTS FIELD TESTS GRAPHIC LOG LOG CLASSIFICATION				CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components						MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUC & Other Obs				
					8.50m U75	- 8.0 - - -		СН	CLA\ fragn	Y: dark gronnents (cor	k grey, high plasticity, trace fine grained sand sand, trace shell (continued)		w		8.50: HP Samp = 40 kP	- - a -			
			VE		8.90m Samp VS P=45kPa R=18kPA 9.00m	9.0			9.50m			dium to high	plasticity			s		- - -	
TFNSW 42.1 LB.GLB Log RTA NON-CORE DRILL HOLE N2021031 BYRONS LANE SLIP.GPJ < <drawingfile>> 07/Jun/2021 11:22 10.02.00.04 Datgel Tools</drawingfile>					10.00m SPT 0, 0, 2 N*=2 10.45m	- - 10.0 - -								10.00: HP Samp = 50 k	- Pa -				
	- 88	- 0% Water LOSS			11.50m U75 11.90m 22,5,6 N*=11 12.45m 13.00m SPT 5,7,8 N*=15			Particular and the second seco			n, colour change to pale grey and orange, with some zones of veathered, angular siltstone (?) gravels (soil strength).		s of >Wp	St	11.50: HP Samp = 110 kPa 11.90: HP Samp = 110 kPa HV Samp P: 113 kPa R: 45 kPa 12.45: HP Samp = 110 - 180 kPa 13.00: HP Samp = 230 - 250 kPa				
			E		13.45m 14.50m SPT 4, 4, 8 N*=12 14.95m 16.00m	14.0 - - - - - - - - - - - - - - - - - -		******	clay.		ones of iron oxide coated 'joint' or 'fissure' structures in ome silty sand zones up to 50mm thick.				VSt to St	14.50: HP Samp = 250	- - - - - - - - - - - - - - - - - - -		
TFNSW 42.	deta	ils of	anatory abbrev f descr	/iation	S					TRA	ANSPC	DRT F	OR NS	SW				Transport for NSW	

File: N2021031 BH13 2 OF 3

File: N2021031 BH13 3 OF 3

Appendix C. Laboratory Reports

RESULTS OF ACID SULFATE SOIL ANALYSIS

1 sample supplied by Transport For NSW on 5/05/2021 . Lab Job No. K6526. Analysis requested by Adam Brown. Your Job: N2021031.

3/76 Victoria Street GRAFTON NSW 2460											Non-tre	ated soil	Non-tre	ated soil
Sample Identification	EAL Lab Code	Texture	Moisture	Content	Potential Sulf	fidic Acidity		Actual Acidity	Retained	d Acidity	Acid Neutrali	sing Capacity	Net Acidity	Lime Calculation
					(Chromium Red CRS			(Titratable Actual Acidity - TAA)			(AN	C _{BT})		
				(g moisture / g of oven dry soil)		(mol H ⁺ /t)	рН _{ксі}	(mol H [*] /t)	(%S _{NAS})	(mol H ⁺ /t)	(% CaCO ₃)	(mol H⁺/t)	(mol H*/t)	(kg CaCO ₃ /t DW)
Method Info.		**	*	*	(In-house me	ethod S20)	(In-hou:	se method 16b)	*	*	(In-house n	nethod S14)	**	**
BH12 5.5-5.95m	K6526/1	Medium	32.2	0.47	0.730	455	5.57	7	:				462	35

NOTES:

1. All analysis is reported on a dry weight (DW) basis, unless wet weight (WW) is specified.

2. Samples are dried and ground immediately upon arrival (unless supplied dried and ground).

3. Analytical procedures are sourced from Sullivan L, Ward N, Toppler N and Lancaster G. 2018. National acid sulfate soils guidance: national acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.

4. The Acid Base Accounting Equation, where Acid Neutralising Capacity has not been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (Eq. 3.2; Sullivan et al. 2018 - full reference above).

5. The Acid Base Accounting Equation for post-limed soil materials is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity - (post treatment Acid Neutralising Capacity - initial Acid Neutralising Capacity) (Eq. 3.3; Sullivan et al. 2018 - full reference above). While the Acid Neutralising Capacity of a soil material may not be included in the Net Acidity calculation (Note 4), it must be measured to give an Initial Acid Neutralising Capacity if verification testing is planned post-liming. The Initial Acid Neutralising Capacity must be provided by the client to enable EAL to produce Verification Net Acidity and Liming calculations for post-limed soil materials.

6. The Acid Base Accounting Equation, where Acid Neutralising Capacity has been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Actual Acidity - Acid Neutralising Capacity (Eq. 3.1; Sullivan et al. 2018 - full reference above).

7. The lime calculation includes a Safety Factor of 1.5 as a safety margin for acid neutralisation (Sullivan et al. 2018). This is only applied to positive values. An increased Safety Factor may be required in some cases.

8. Retained Acidity is required when the pH_{KCI} < 4.5 or where jarosite has been visually observed.

9. A negative Net Acidity result indicates an excess acid neutralising capacity

10. If insufficient mixing occurs during intial sampling, or during post-liming, or both: the Potential Sulfidic Acidity may be greater in the post-limed sample than in the intial sample; the post-liming Acid Neutralising Capacity may be lower in the post-limed sample than in the intial sample.

11. An acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture ≥ 0.03% S or 18 mol H*/t; medium texture ≥ 0.06% S or 36 mol H*/t; fine texture ≥ 0.1% S or 62 mol H*/t) (Table 1.1; Sullivan et al. 2018 - full reference above)

12. For projects that disturb > 1000 t of soil material, the coarse trigger of ≥ 0.03% S or ≥ 18 mol H⁺/t must be applied in accordance with Sullivan et al. (2018) (full reference above).

13. Acid sulfate soil texture triggers can be related to NCST (2009) textures: coarse and peats = sands to loamy sands; medium = clayey sand to light clays; fine = light medium to heavy clays (Sullivan et al. 2018 - full reference above).

14. Bulk density is required to convert liming rates to soil volume based results. Field bulk density rings can be submitted to EAL for bulk density determination.

15. A negative Net Acidity result indicates an excess acid neutralising capacity.

16. '..' is reported where a test is either not requested or not required. Where pH_{KCl} is < 4.5 or > 6.5, zero is reported for S_{NAS} and ANC in Net Acidity calculations, respectively.

17. Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.

18. ** NATA accreditation does not cover the performance of this service.

19. Analysis conducted between sample arrival date and reporting date.

20. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

21. Results relate to the samples tested.

22. This report was issued on 11/05/2021.

checked: Graham Lancaster Laboratory Manager

Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

RESULTS OF SOIL ANALYSIS

1 samples supplied by Transport For NSW on 5/05/2021. Lab Job No. K6527. Analysis requested by Adam Brown. Your Job: N2021031 3/76 Victoria St GRAFTON NSW 2460

3/70 VICTORIA ST GRAFT ON INSW 2460		Sample 3
	Method	BH12 7.0-7.45m
	EAL job No.	K6527/1
Moisture (%)	inhouse	35
Texture	See note 2 below.	Fine
рН	Rayment & Lyons 2011 - 4A1 (1:5 Water)	8.19
Conductivity (dS/m)	Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.294
Resistivity (ohm.mm)	** Calculation	33,972
Resistivity (ohm.cm)	** Calculation (ohm.mm / 10)	3,397
Chloride (mg/kg)	** Water Extract - ISE (1:5 Water)	119
Chloride (as %)	** Calculation	0.012
Sulfate (mg/kg)	** Water Extract-APHA 3120 ICPOES	251
Sulfate (as % SO₄)	** Calculation	0.025
Chloride / Sulfate Ratio	** Calculation	0.5

Notes:

1. ppm = mg/kg dried soil

2. For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and sitty clays

3. All results as dry weight DW - soils were dried at 60°C for 48hrs prior to crushing and analysis.

4. For conductivity 1 dS/m = 1 mS/cm = 1000 μ S/cm

5. Methods from Rayment and Lyons, 2011. Soil Chemical Methods - Australasia.CSIRO Publishing: Collingwood.

6. Based on Australian Standard AS: 2159-2009

7. Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.

8. Analysis conducted between sample arrival date and reporting date.

9. ** NATA accreditation does not cover the performance of this service.

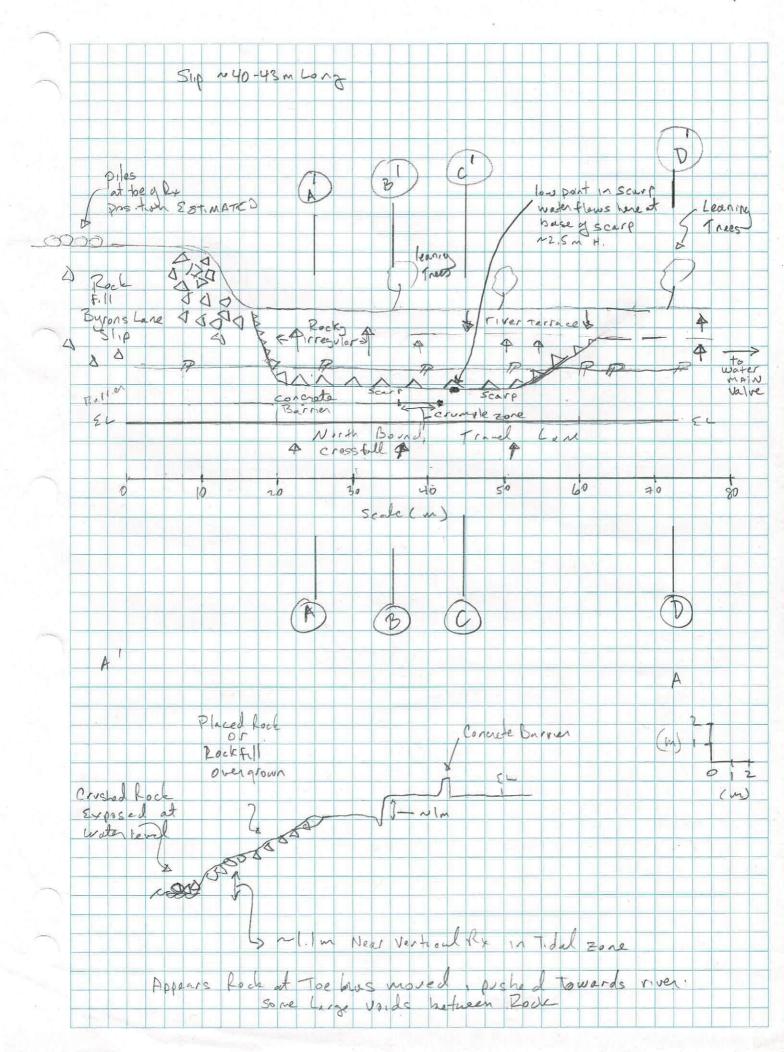
10... Denotes not requested.

11. This report is not to be reproduced except in full.

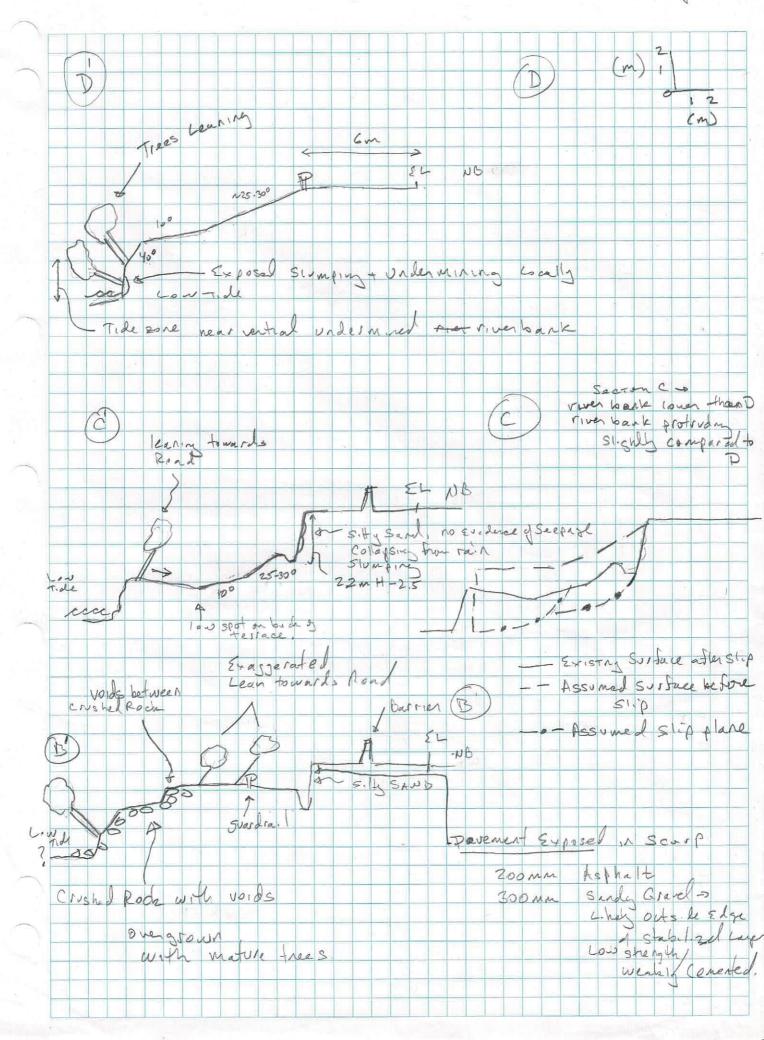
12. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).

13. Results relate only to the samples tested.

14. This report was issued on 18/05/2020.



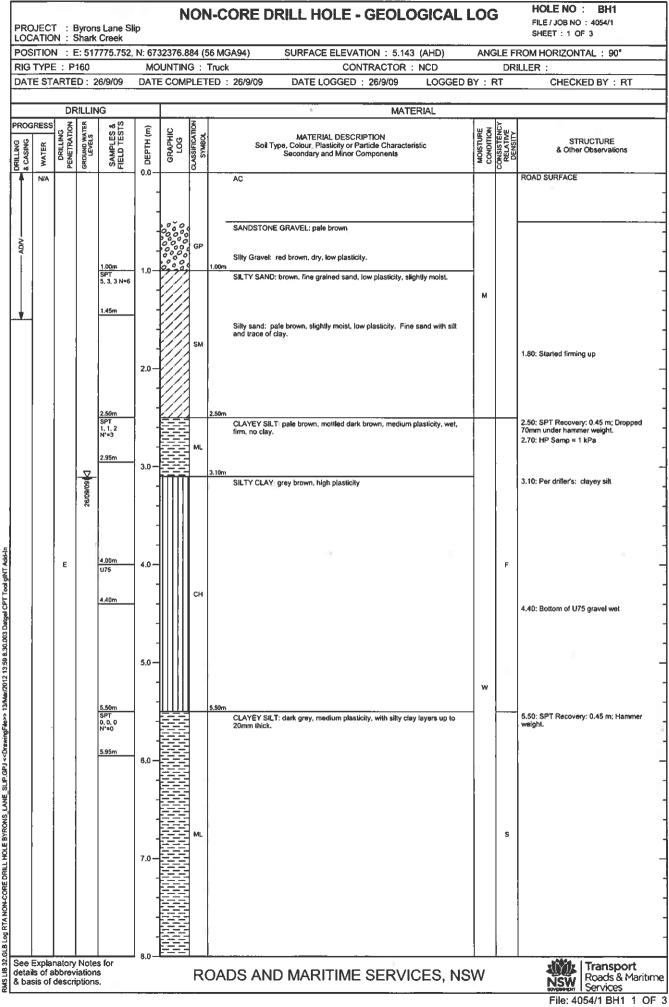
Å.


checked: Graham Lancaster Laboratory Manager

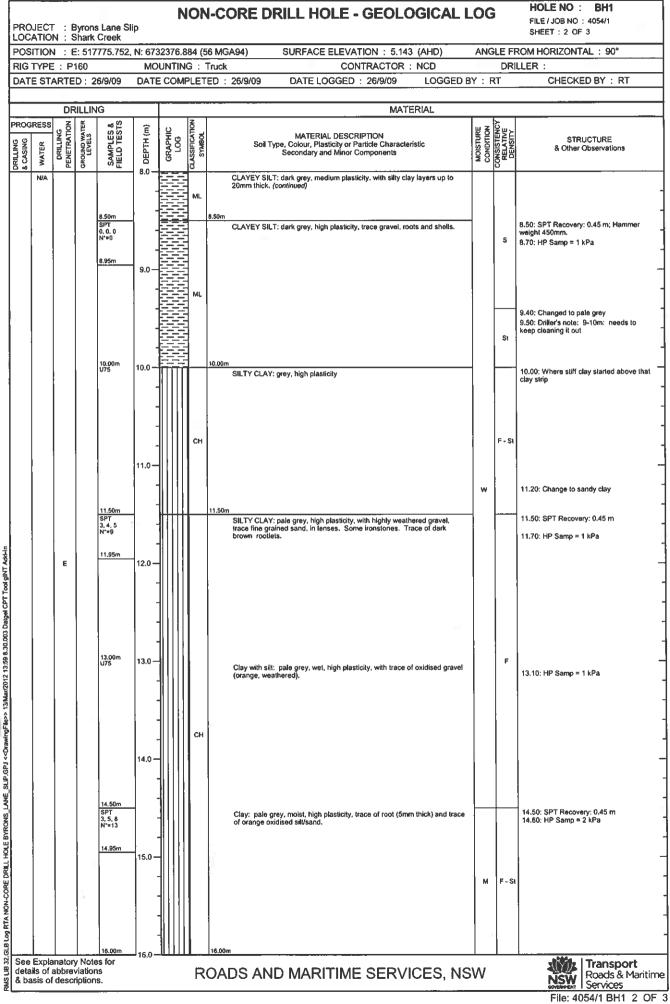
Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

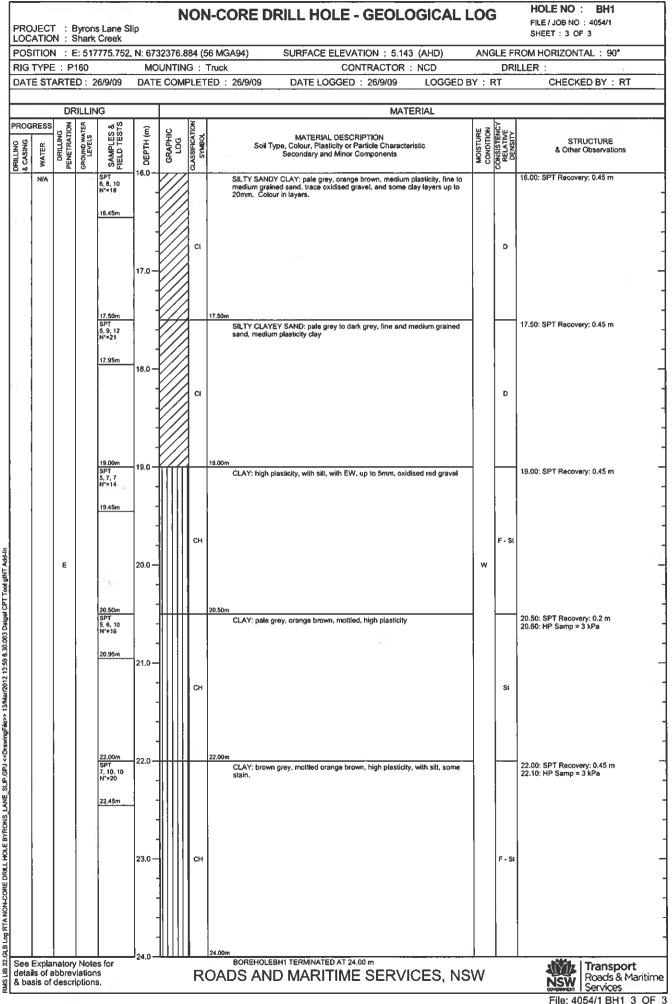
sketch 172

Sketch Z of Z

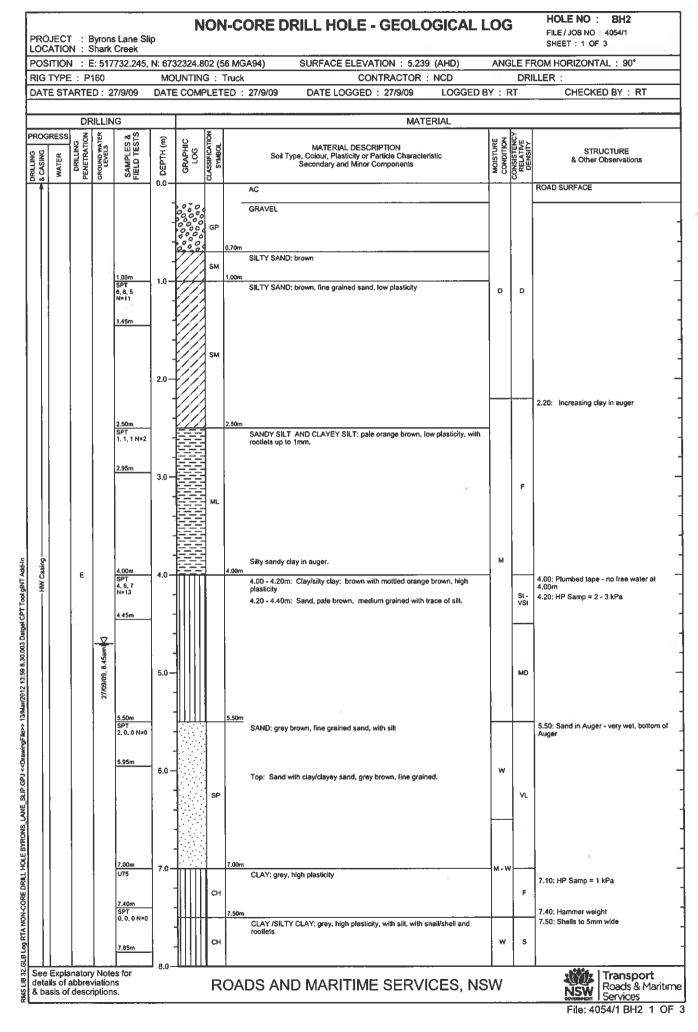


Stip Appears to be in the R. in Dark above water Level. It Appears then river bank has pished at due to lack of support. Apparent Mechanisms DErosun on Rover Bank- Tidal Action River ford 2) Hogh water - pokental 11 creased river heregits fun leeut RAIN 3) Abandned water MAIN - Unlikely bt worth Checking De Low sheright Maleulo beler 1. en buch. NGM Scarp to Edge Line 81 3 3 HAZARDS SANDY MATERIAL , erodes + Slumps when wet, Creating under parent which eventually collapses. Collapse of Scarp - (\square) vain - protect Scarp from rain + surface runoffe des Not Appen to home seepage with Scarp > increases he of a headwall scalp + pokntul & Callapse CONTINUED SIIP (2) rain > protect from RAW + Suppose for for formert wat 10 w shearth largen - cannot her in short ferm (3) Deep Slip into kines chunnel-we do Not know River chunnel shape of it a deep weak lager is cartisty

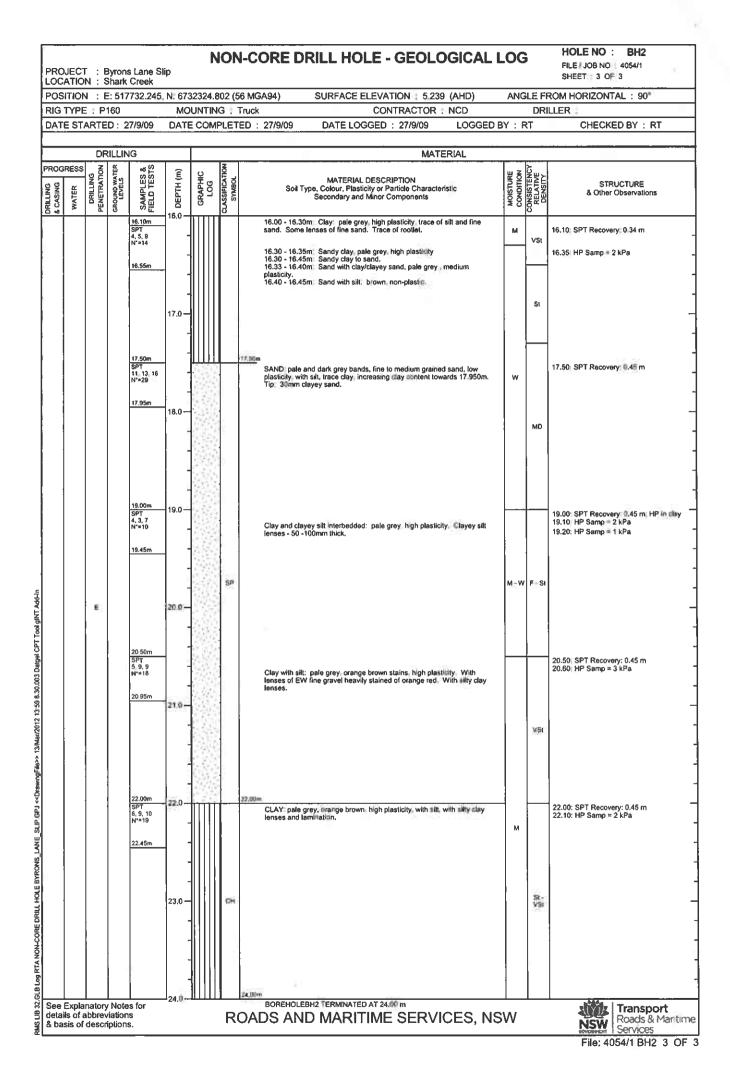


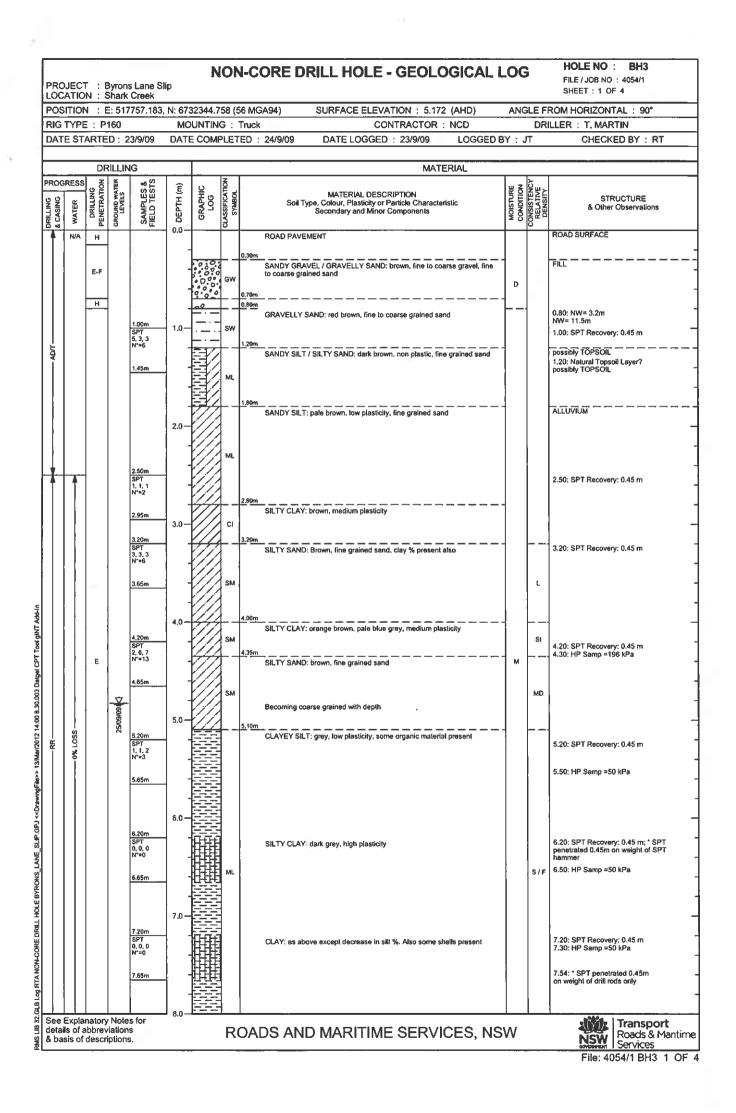

Slope Identification No.	Big Zi	VET WAY	- 13 v 10	nstan	SLip	Date	91/3/2	-1
Inspection Date	1	21	Completed By:		r i	Checked	1	(a.u.tant
	1 31		Бу.			By:	State of States	
Slope Data	Slope Class	Slope below	Max Slope Height (m)	6	Av. Slope Angle (o)	30°	Material	50.1
	Desc	ription:	Piver B	ank Sli	p North	a of By	rons Lu	ne
Location								
Roadloc Coordinates	Road No		Start Link No		Finish Link No		L or R?	
	C'way Code	History	Start Distance		Finish Distance		Length	
GPS Coordinates (WGS84/GDA94)	S	tart hish	Latitude Latitude		Longitude Longitude		Elevation Elevation	
MGA Coordinates	3.275	tart	Zone		Easting	_	Northing	
Plan Reference No.	FII	nish	Zone		Easting Plan Start Chainage		Northing L or R?	
Locality Name	P	Survey	Lane					
Road Data	AA		400 v/d	Year of Count	2021	Speed Lir	nit (km/hr)	100
	No of Lanes	Prescribed Direction		Counter	1		Distance te? (Y/N)	٢
Risk Analysis								1 Contraction
Hazard/Failure Mechanism	1	2	3	4	5	6	7	8
Hazard Type	Slump	51.p	Deep Slip					
Failure Dynamics Ratings			a that will be sub-barrant					
Scale of Failure Rating - for Volume (S1 - S5) Scale of Failure Rating - for Block Size	54	53	52	den akt			64666	1 ()
(S1 - S5)	é'-h	158.1	1	-table to '			· · · · · · ·	86 모호
Velocity of Failure Rating (R1 - R5)	RI	R3	RY			· · · · · · · · · · · · · · · · · · ·	en englis e fr	
Likelihood Rating (L1 - L6)	LI	L2/13	L4					na contra la contra
							A Succession	
Consequence Class Ratings Temporal Probability (T1 - T5)	TY	TY	T4		TRAH,	e John	es for Br.	Avert
Vulnerability (V1 - V5)	V3	V2	V2	有举行	betwee		lale + i	Melear
Consequence Class for Loss of Life (C1 - C5)	CY	C3	03	·	deriven	fun	2021 (ounts
Consequence Class for property damage etc (C1 - C5)	C3	C3	C3		UZB	Noise Mo	tell in	M
Risk Analysis Ratings								
Slope Attribute Score					Big A.	in wy	5 4	Tyndu
Event Magnitude (M1 - M5)					and	M PACI	t.c Hay	Lung Re
Hazard Classification (H1 - H5)					at tyn	dale.		
Assessed Risk Level (ARL1 - ARL5)	ARLI	AP12+3	ARLY		110	Bк	N 200	V/L/d

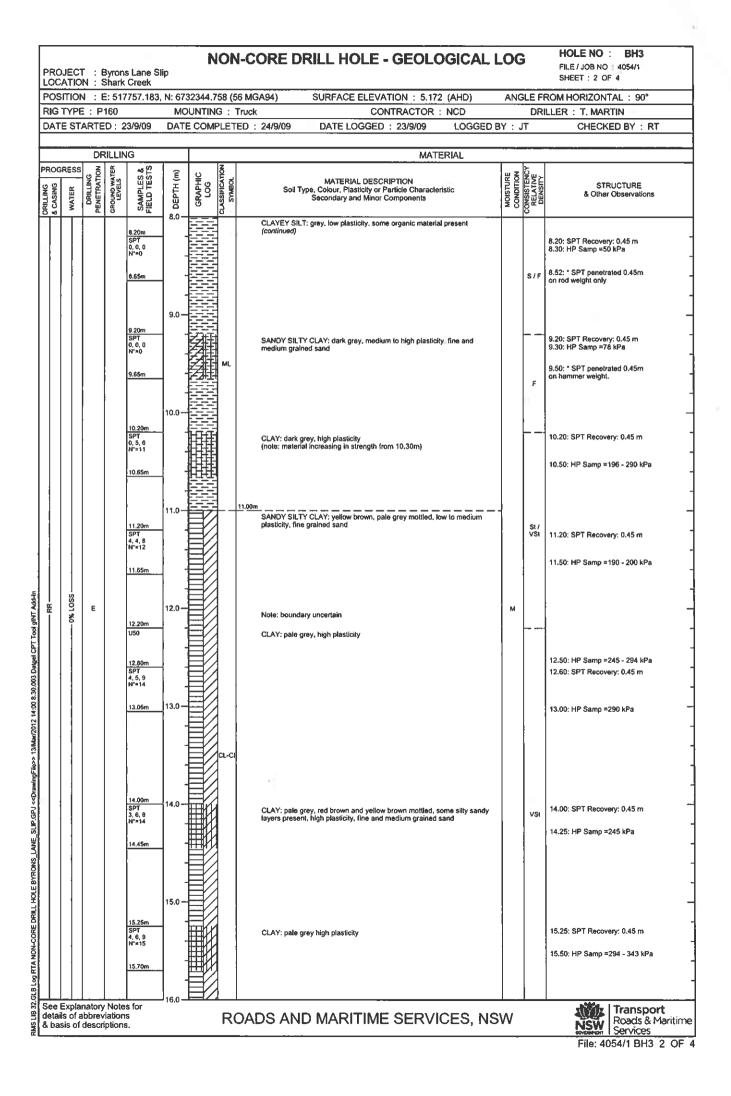
Version 4

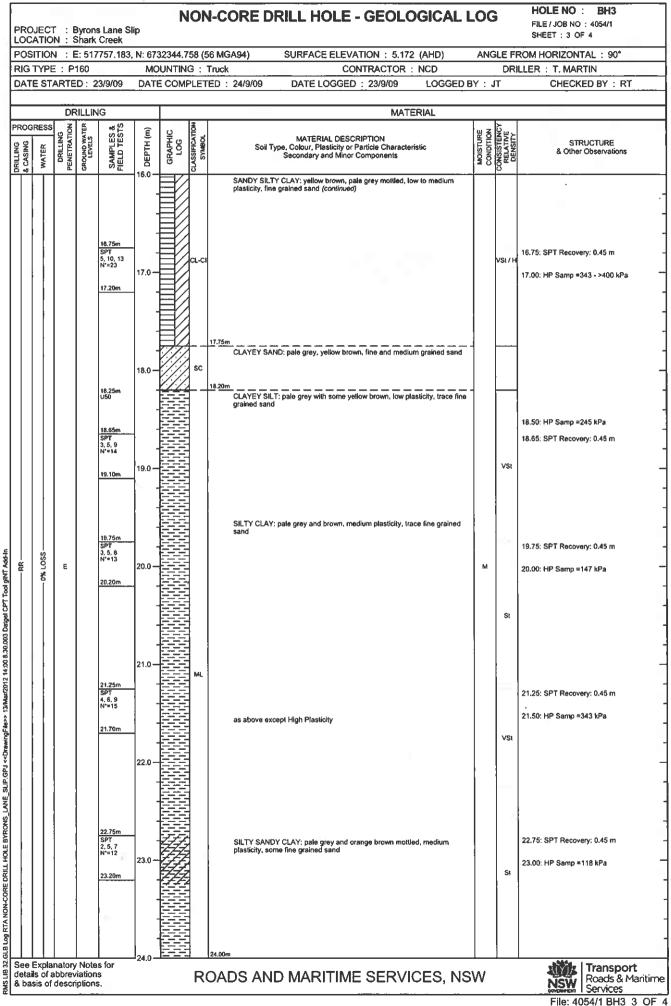


1.

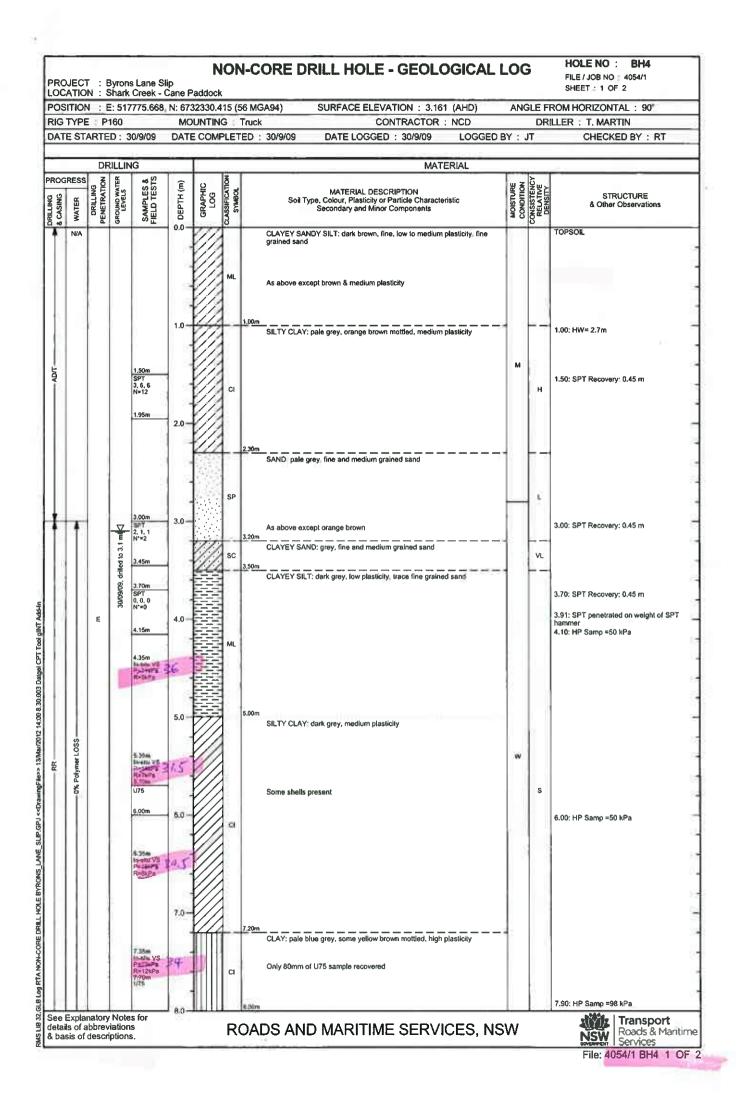


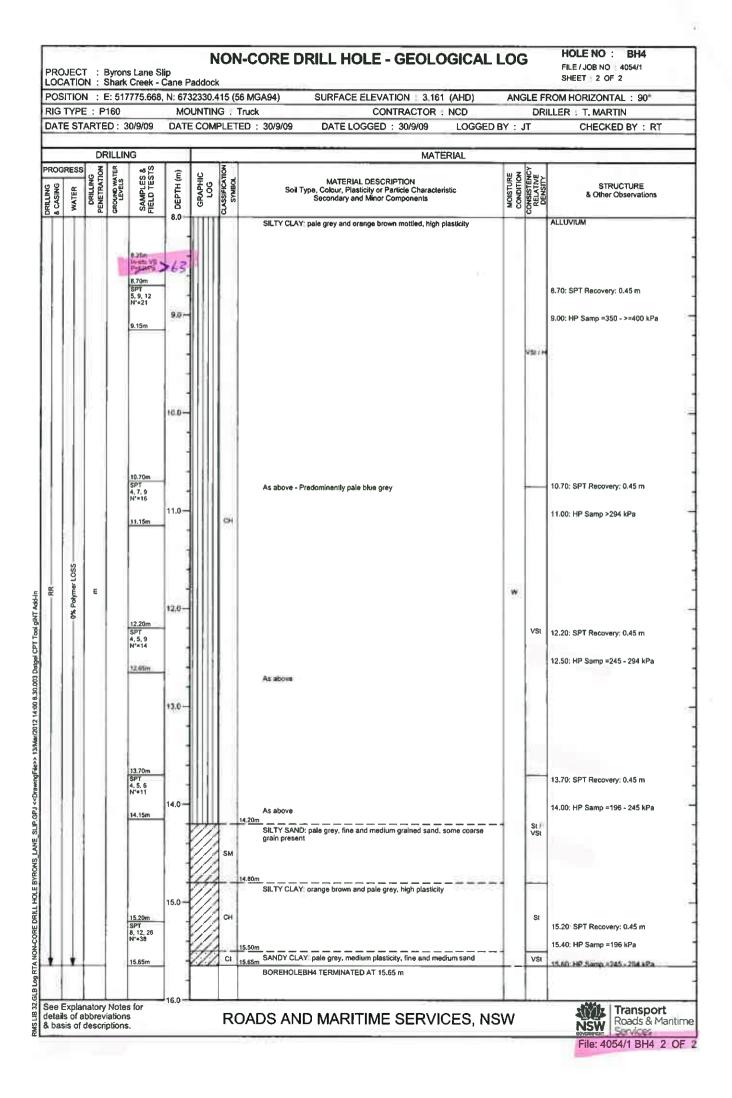

 $0 \leq_{i,j}$




		N:E		732.245,			.802 (NG:	56 MGA94) SURFACE ELEVATION : 5.239 (AHD) Truck CONTRACTOR : NCD	ANC		ROM HORIZONTAL : 90° ILLER :
			_	7/9/09				TED : 27/9/09 DATE LOGGED : 27/9/09 LOGGED	BY : I		CHECKED BY : RT
		DF		IG				MATERIAL			
ONISHON	WATER SS	DRILLING	GROUND WATER LEVELS	SAMPLES &	DEPTH (m)	GRAPHIC	CLASSIFICATION	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				8.05m U75	8.0 -			CLAY /SILTY CLAY: grey, high plasticity, with sill, with snail/shell and rootlets (continued)			
					-		СН			s	8.60: HP Samp = 1 kPa
fulsen Mu-				8.90m 9.00m SPT 0, 0, 0 N=0	9.0			8.90m Clay with silt - S to A CLAY (SILTY CLAY: grey, high plasticity, with silt, with fine gravel, and sand. Trace of shell fragments. With roots to 2mm.			9.00: Hammer
				9.45m	-		сн		w		9.70: Increasing stiffness
L				10.00m SPT 0, 3, 4 N*=7	10.0			10.00m CLAY: pale grey, high plasticity			10.00: SPT Recovery: 0.15 m 10.10: HP Samp = 1 kPa 10.20: Casing driven to 10.20m to stop silly clay collasping
				10.45m			сн			10	
				11.50m U75	-			11.50m CLAY: grey with orange brown, high plasticity, trace fina gravel, trace	_	-	
		E		11.90m SPT 5, 5, 8 N*=13	-			sand Silty clay: pale grey, high plasticity with lenses of fine gravel stained orange brown. Fine grained sand and lenses of stiff clay.		1	11.90: SPT Recovery: 0.45 m 12.00: HP Samp = 1 kPa
				12.35m					M - W		
				13.00m SPT 5, 10, 13	- 13.0 —			Clay: pale grey with orange brown staining, with some rootlets and some EW orange brown gravels to 4mm.	-	F+SI	13.10: HP Samp = 3 kPa
				N=23 , 13,45m					M		
					- 14.0 —		Сн			-	
				14.50m SPT 6, 8, 13 N=21				Clay: pale grey with some orange brown staining, high plasticity, with trace of EW gravel.			14.60: HP Samp = 1 kPa
				14.95m	- 15.0 -				M-W	/	
					-						
					16.0	1		16.00m			

^{. .}

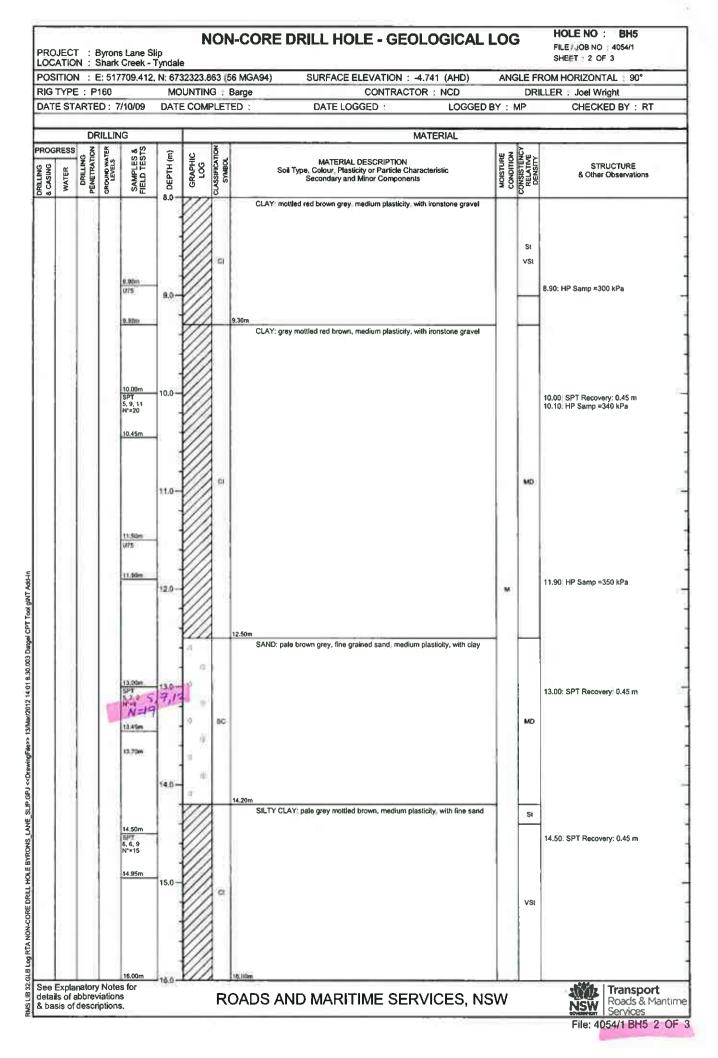

File: 4054/1 BH3 3 OF 4

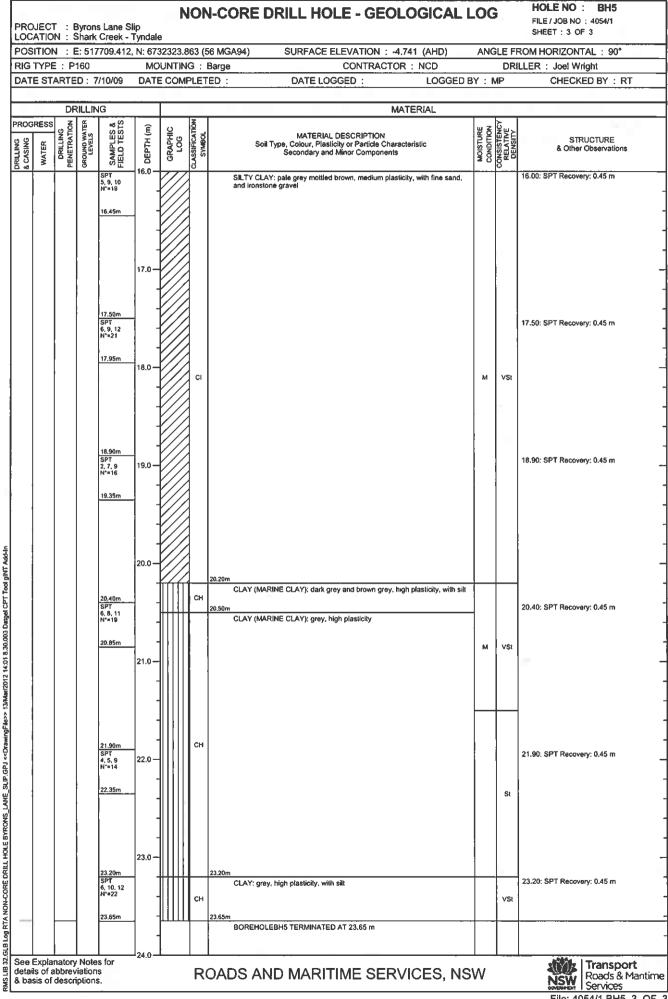

				s Lane S Creek	lip	N	ION	I-CORE DRILL HOLE - GEOLOGICAL	LOG	3	HOLE NO : BH3 FILE / JOB NO : 4054/1 SHEET : 4 OF 4
				7757.183			· ·	6 MGA94) SURFACE ELEVATION : 5.172 (AHD)	ANC		ROM HORIZONTAL : 90°
		E : P				UNTIN					ILLER : T. MARTIN
ATE	ST	ARTE	D: 2	23/9/09	DATI	E COMF	PLET	ED : 24/9/09 DATE LOGGED : 23/9/09 LOGGED) BY : 、	JT	CHECKED BY : RT
		DF	RILLI	NG				MATERIAL			
OGF	RESS	_			2	0	NOI		u z	<u>ک</u>	
& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES &	(m) HLded (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
2	0% LOSS	E		24.25m SPT 3, 6, 7 N=13	-		а	SILTY CLAY: dark grey with some orange brown mottled, medium plaslicity	м	VSI	24.25: SPT Recovery: 0.45 m
	1%0			N=13 24.70m			Ç,	24.75m		100	24.50: HP Samp =245 - 294 kPa
					- 25.0 — -			BOREHOLÉBH3 TERMINATED AT 24.75 m Note: A second hole was drilled to do Vane Shear Testing: See Log Sheet BH: 3A			
					-						
					26.0-						
					-						
					27.0						
					-						
					28.0						
					- 29.0						
					- 30.0 —						
					31.0-						
					-						
lails	ofa	hatory bbrev descri	iation	S	32.0-		R	DADS AND MARITIME SERVICES, N	sw		File: 4054/1 BH3 4 C

HOLE NO : BH3A FILE / JOB NO : 4054/1

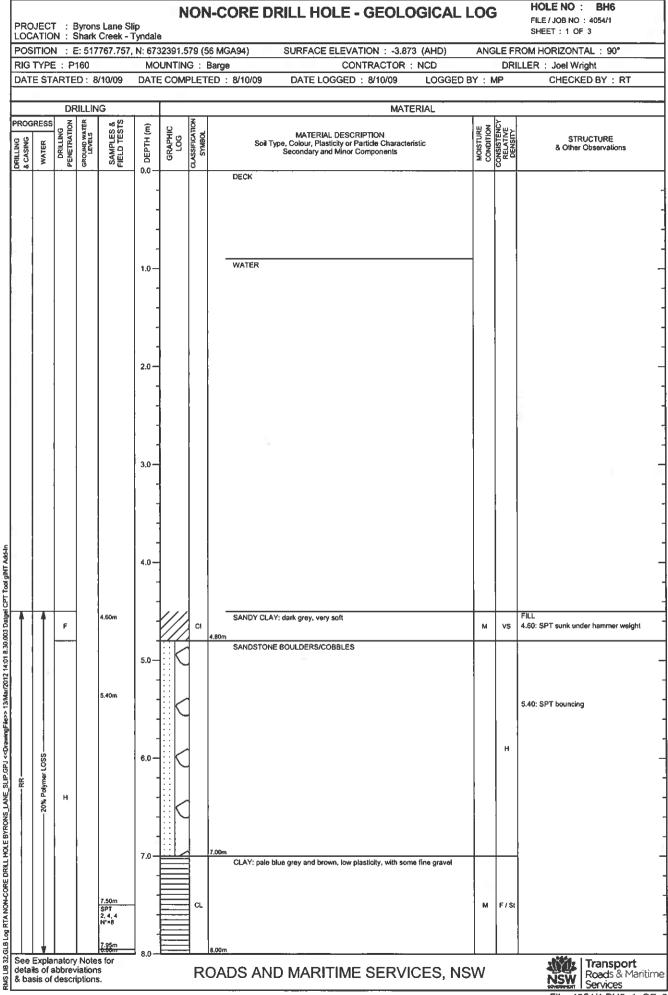
ROJECT	: Byro : 1.3m	ns Lane Si i Sth of BH	lip I:3						FILE / JOB NO : 4054/1 SHEET : 1 OF 2
OSITION		7748.036				· · ·	ANG		ROM HORIZONTAL : 90°
		05/40/00		UNTIN			D)/		LLER : T. MARTIN
ATE STAF	RIED:	25/10/09	DATE	: COM	LEI	ED : 25/10/09 DATE LOGGED : 25/10/09 LOGGED	BY : .		CHECKED BY : RT
	DRILL					MATERIAL			
ROGRESS UNIC VIEW ROGRESS VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIEW	PENETRATION GROUND WATER	SAMPLES &	S DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE CONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			1.0			Note: For material description see BH:3			
			3.0			Vane Shear Test (VST) Vane = 65/130mm			
			4.0						ž
		5.85m In-silu VS P>63kPa	- 6.0 -						6.00: H.P. = 68 KPa
		6.55m In-situ VS P=43kPa R=6kPa 7.35m	7,0-					ŝ	
		in-silu VS P¤34kPa R≈6kPa	8.0					s	
ee Explana etails of abl basis of de	breviatio	ns			R	DADS AND MARITIME SERVICES, N	SW		NSW Transport Roads & Maritin Services

HOLE NO : BH3A NON-CORE DRILL HOLE - GEOLOGICAL LOG FILE / JOB NO : 4054/1 PROJECT : Byrons Lane Slip LOCATION : 1.3m Sth of BH:3 SHEET: 2 OF 2 POSITION : E: 517748.036, N: 6732333.908 (56 MGA94) SURFACE ELEVATION : 5.235 (AHD) ANGLE FROM HORIZONTAL : 90* RIG TYPE : P160 MOUNTING : Truck CONTRACTOR : NCD DRILLER : T. MARTIN DATE STARTED: 25/10/09 DATE COMPLETED: 25/10/09 DATE LOGGED : 25/10/09 LOGGED BY : JT CHECKED BY : RT DRILLING MATERIAL PROGRESS DRILLING GROUND WATER LEVELS SAMPLES & FIELD TESTS CLASSIFICATION SYMBOL MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components **BRILLING** & CASING STRUCTURE & Other Observations WATER 8.0 Ş 8.10m In-situ VS P=33kPa B=7kPa U75 s 8.70: H.P. = 69 KPa 3.80n 9.0 9.10m In-silu VS P=54kPa R=9kPa 10.0 10.00m In-situ VS P=54kPa R=21kPa 11.0 11.00m In-situ VS P>63kPa RMS LIB 32.GLB Log RTA NON-CORE DRILL HOLE BYRONS_LANE_SLIP.GPJ <<DrawingFile>> 13.Mari2012 14:00 8: 30.003 Datget GPT Tool gINT Add-In 12.0 Note: material onwards too stiff for Vane Shear Testing 13.0 14.0 15.0 BOREHOLEBH3A TERMINATED AT 16.00 m 16.0 See Explanatory Notes for details of abbreviations NSW Roads & Maritime Services ROADS AND MARITIME SERVICES, NSW & basis of descriptions.

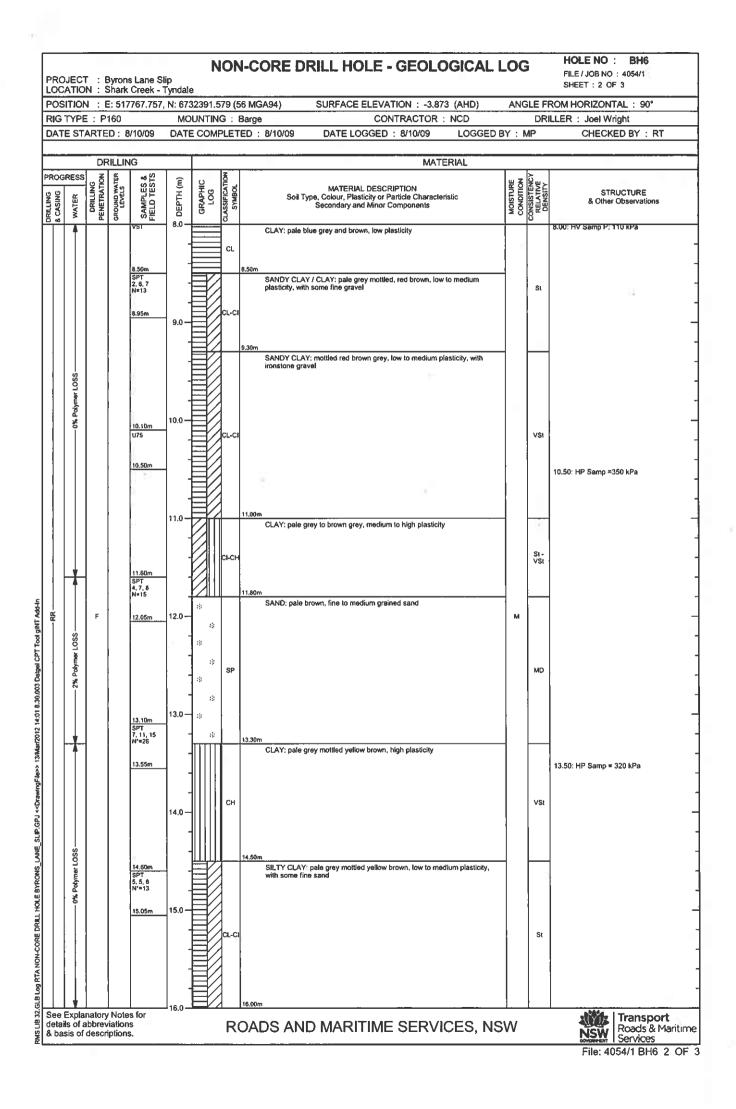


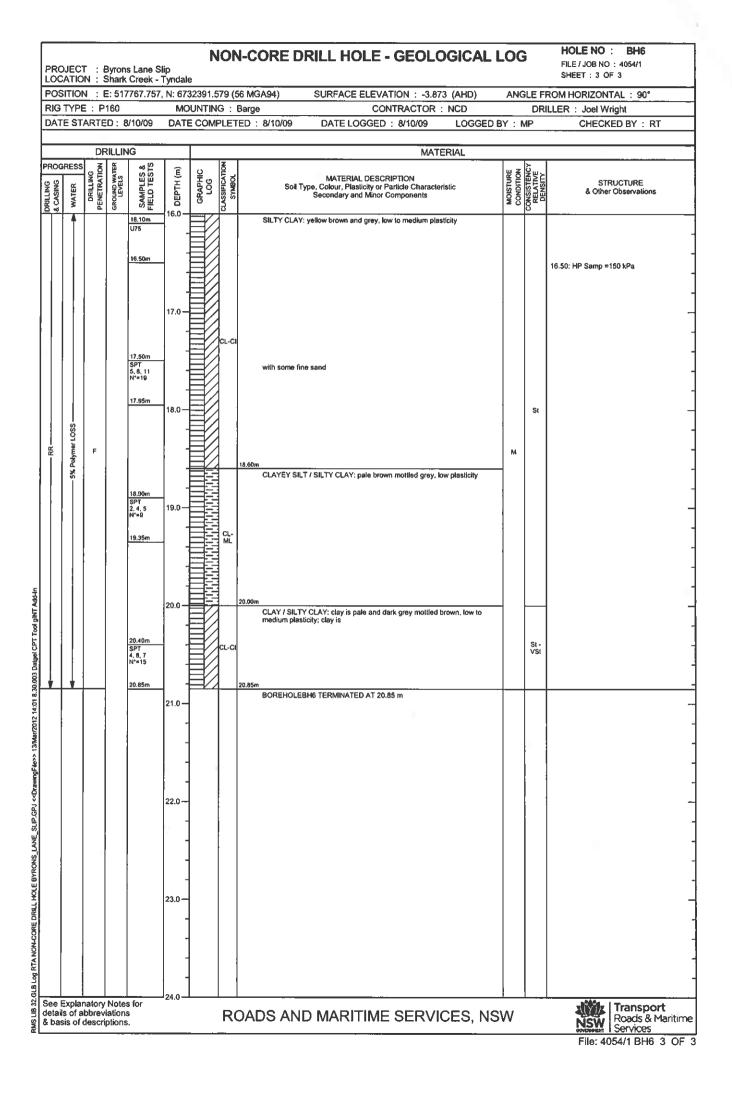

HOLE NO : BH5 NON-CORE DRILL HOLE - GEOLOGICAL LOG FILE / JOB NO : 4054/1 PROJECT : Byrons Lane Slip LOCATION : Shark Creek - Tyndale SHEET : 1 OF 3 SURFACE ELEVATION : -4.741 (AHD) POSITION : E: 517709.412, N: 6732323.863 (56 MGA94) ANGLE FROM HORIZONTAL : 90° MOUNTING : Barge DRILLER : Joel Wright RIG TYPE : P160 CONTRACTOR : NCD CHECKED BY : RT DATE STARTED : 7/10/09 DATE COMPLETED : LOGGED BY : MP DATE LOGGED DRILLING MATERIAL DRILLING SAMPLES & FIELD TESTS GROUND WATER LEVELS PROGRESS CLASSIFICATION SYMBOL MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components STRUCTURE & Other Observations DRILLING WATER 0.0 BARGE WATER 1.0 2.0 3.0 RMS.LB 32.GLB Log RTA NON-CORE DRILL HOLE BYRONS_LANE_SLIP.GPJ <</ > 4.0 5.0 ROCK BOULDERS SILTY CLAY: pale brown, medium plasticity, slightly sandy 6.0 CI м 6.40m SPT 3, 4, 5 N**9 SILTY CLAY; yellow brown, medium plasticity, with sand 6.40: SPT Recovery: 0.45 m CI м 6.70m CLAY: pale blue grey, medium to high plasticity 6.85m \$t U75 7.0 7.2m: with ironestone bands, motiled grey brown 7.30m 7.30: HP Samp =180 kPa b.c м 8.0

ROADS AND MARITIME SERVICES, NSW

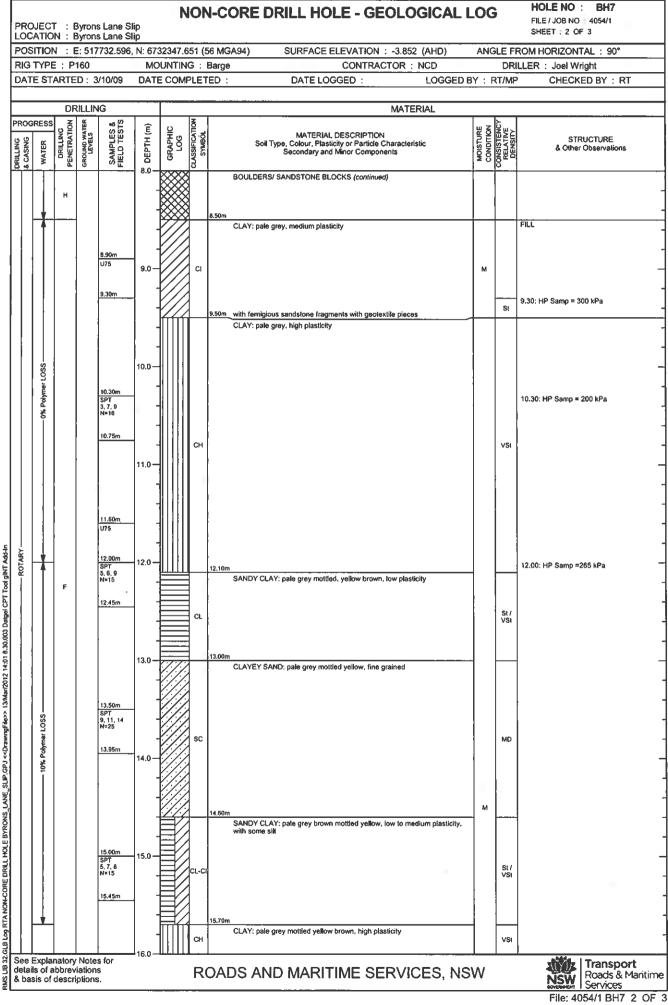

See Explanatory Notes for details of abbreviations & basis of descriptions.

NSW NSW Services



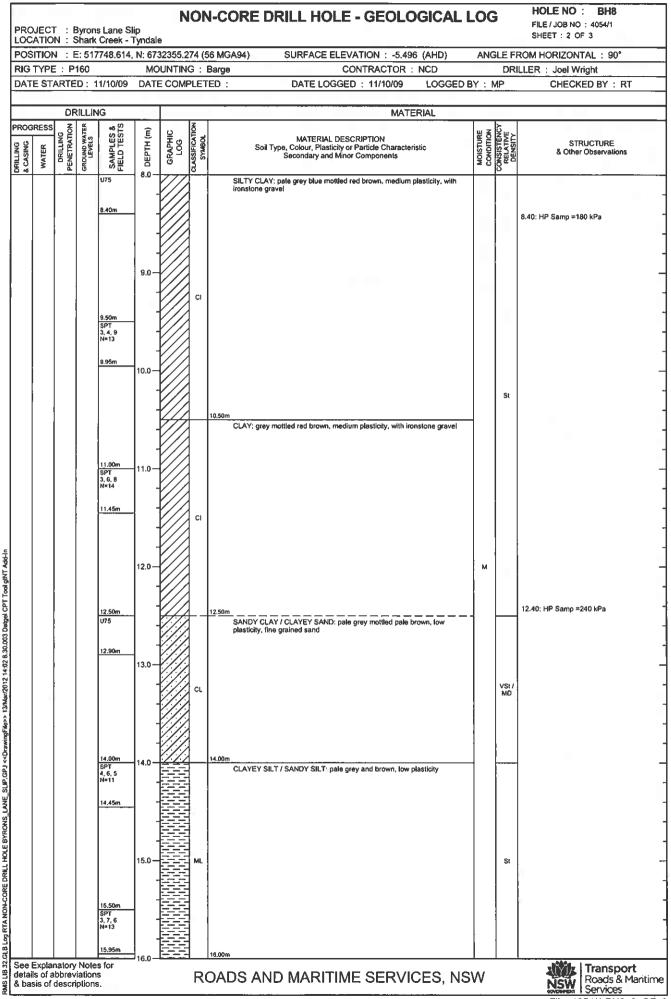


File: 4054/1 BH5 3 OF 3


File: 4054/1 BH6 1 OF 3

HOLE NO : BH7 FILE / JOB NO : 4054/1

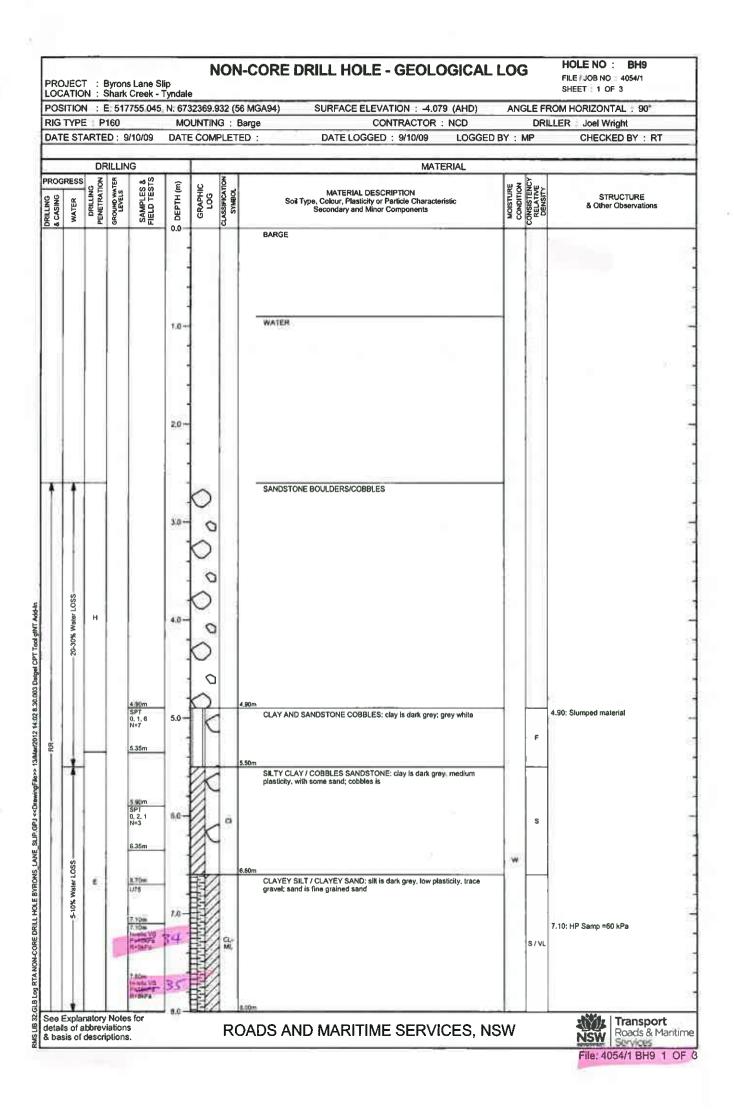
PF LC			F:1 N:1	Byron: Byron:	s Lane SI s Lane SI	ip ip						FILE / JOB NO : 4054/1 SHEET : 1 OF 3
					732.596,				6 MGA94) SURFACE ELEVATION : -3.852 (AHD)	ANG		ROM HORIZONTAL : 90°
			E : P		40.000		UNTIN					LLER : Joel Wright
		: 51/	ARTE	:U: 3	/10/09	DATE	COM	LEI	ED : DATE LOGGED : LOGGED E	9Y : P	KI/MP	CHECKED BY : RT
-			DF		IG				MATERIAL			
PRO	GR	ESS	"NO	TER	STS STS	Ê	U	NOL		w z	μ μ	
DRILLING	CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTUR	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			нatory	Note	s for	0.0			WATER			
Č.	asi	IS OF	descr	puons	».							File: 4054/1 BH7 1 OF 3

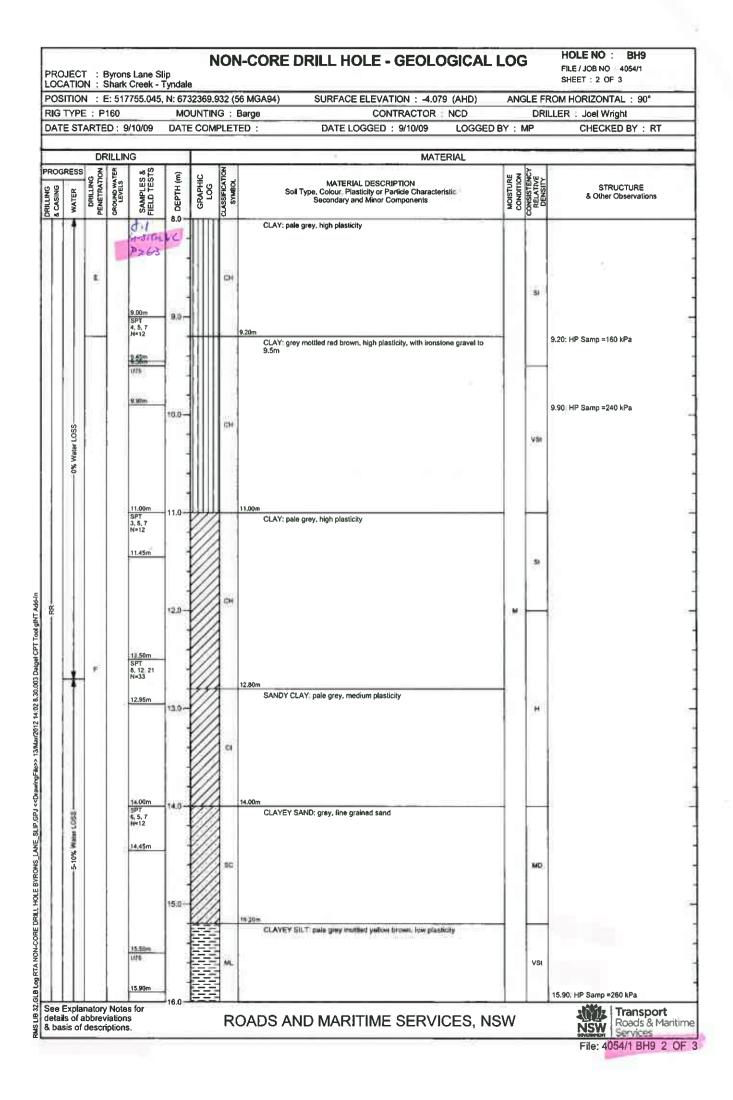

BH7

HOLE NO : BH7 FILE / JOB NO : 4054/1

PF	RO. DC/		Г:Е N:Е	Byron: Byron:	s Lane Si s Lane Si	lip lip						FILE / JOB NO : 4054/1 SHEET : 3 OF 3
	_					N: 673			6 MGA94) SURFACE ELEVATION : -3.852 (AHD)	ANC	GLE FR	ROM HORIZONTAL : 90*
			: P				UNTIN					LLER : Joel Wright
	ATE	ST/	ARTE	D: 3	/10/09	DATE	E COM	PLET	ED : DATE LOGGED : LOGGED	BY : F	RT/MP	CHECKED BY : RT
-			DF		IG			-	MATERIAL			
PR	OGF	RESS				2		N		1	۵	
DRILLING	& CASING	WATER	DRILLING	GROUND WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	, taile	xplan s of a	F	Note	18.50m 175 16.90m 18.00m SPT 4.7.5 8.8.10 N=18 19.85m 20.90m SPT 4.7.8 N=15 21.35m 21.35m			CH CI CI	CLAY: pale grey motiled yellow brown, high plasticity (continued) Isoom SETY CLAY: pale grey motiled yellow brown, medium plasticity SETY CLAY: pale grey motiled yellow brown, medium plasticity SANDY CLAY (CLAYEY SAND: pale grey to blue grey motiled yellow brown, low plasticity CLAY (MARINE CLAY): dark grey, medium plasticity 21.35m BOREHOLEBH7 TERMINATED AT 21.35 m DADS AND MARITIME SERVICES, NS		VSt St VSt	Transport Roads & Mantime
Å.	basi	IS Of (descr	iptions	5.							File: 4054/1 BH7 3 OF 3

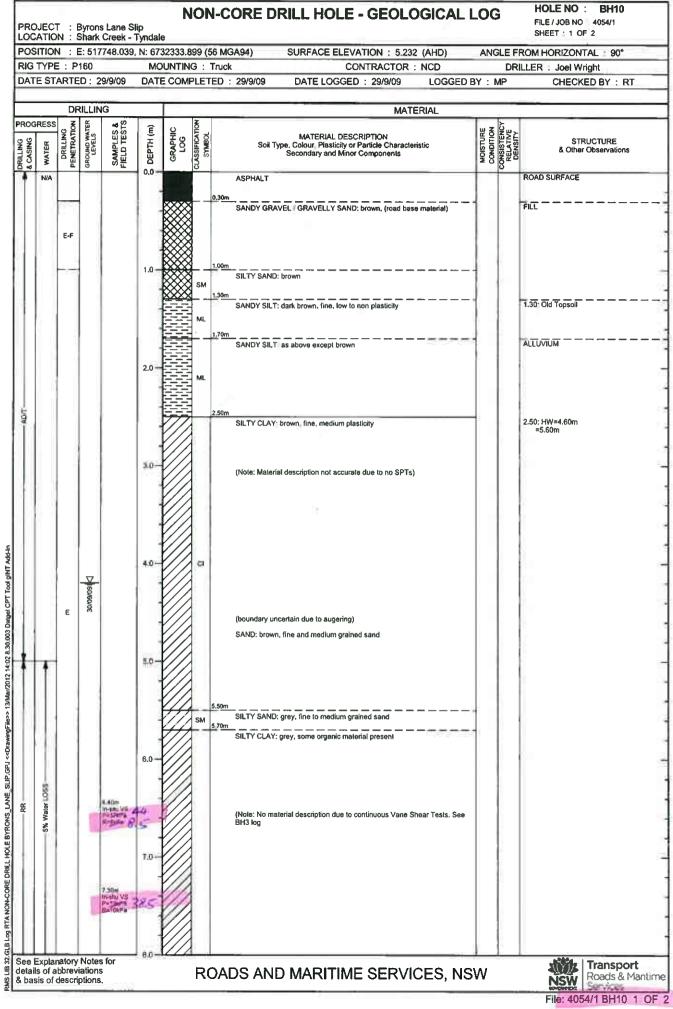
HOLE NO : BH8 FILE / JOB NO : 4054/1

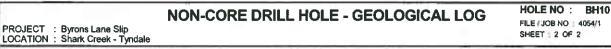

PROJECT : Byrons Lane Slip LOCATION : Shark Creek - Tyndak	9				E/JOBNO: 4054/1 EET: 1 OF 3
POSITION : E: 517748.614, N: 673	32355.274 (56 MGA9				IORIZONTAL : 90°
					: Joel Wright
DATE STARTED : 11/10/09 DATI	E COMPLETED :	DATE LOGGED : 11/10/09 LC	OGGED BY : N	IP	CHECKED BY : RT
DRILLING		MATERIAL	_		· · · · · · · · · · · · · · · · · · ·
DRILLING & CASING & CASING & CASING WATER WATER DRILLING FENETRATION GROUND WATER EVELS SAMPLES & FIELD TESTS CEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
8.00m 0.0 1.0 1.0 1.0 <td< td=""><td></td><td>ATER ATER AYEY GRAVEL: brown VDY CLAY: pale grey to blue grey mottled brown, low plastic gravel, with sit</td><td>city. with</td><td></td><td>stumped material)</td></td<>		ATER ATER AYEY GRAVEL: brown VDY CLAY: pale grey to blue grey mottled brown, low plastic gravel, with sit	city. with		stumped material)
& basis of descriptions.			0, 14077		NSW Roads & Maritime Services File: 4054/1 BH8 1 OF 3

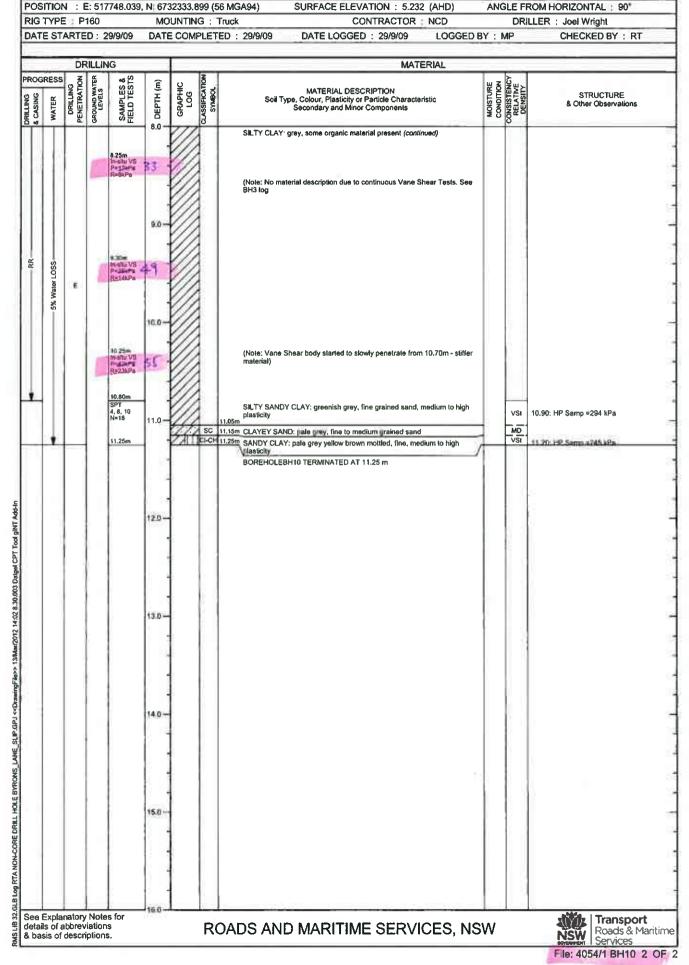


File: 4054/1 BH8 2 OF 3

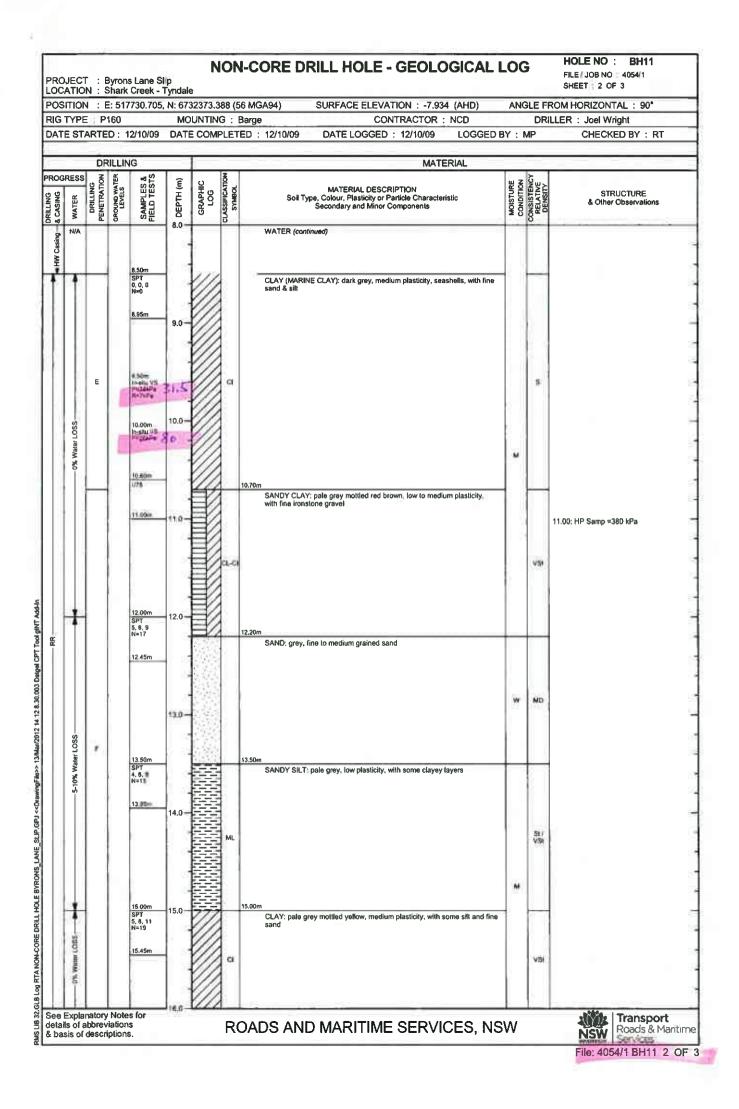
HOLE NO : BH8 FILE / JOB NO : 4054/1

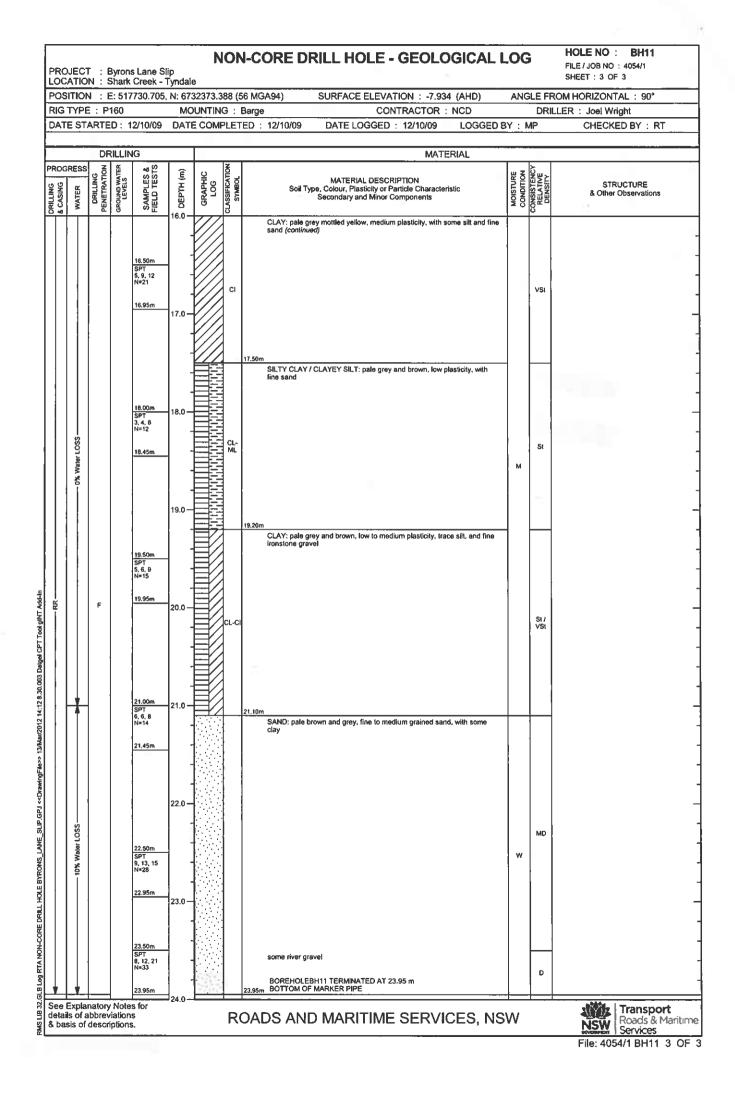

	PRO		T : E N : S	Byron: Shark	s Lane SI Creek - 1	ip Fyndale	8				-	FILE / JOB NO : 4054/1 SHEET : 3 OF 3
- F			_					74 (5	6 MGA94) SURFACE ELEVATION : -5.496 (AHD)	ANC	SLE FI	ROM HORIZONTAL : 90*
- F		-	E : P		4.14.4.15.5							LLER : Joel Wright
ł	UATI	EST	ARTE	ט: 1	1/10/09	UATI	ECOM	LET	ED : DATE LOGGED : 11/10/09 LOGGED E	5Y : 1	MP	CHECKED BY : RT
ł			DF		IG				MATERIAL			
- F	PROGI 8 CASING 8 CASING	RESS	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					17.00m	- 16.0 - - - - - - - -		ML	CLAYEY SILT / SANDY SILT: pale grey and brown, low plasticity 17.00m		SI	-
5					17.40m	18.0 -		CL-CI	SILTY CLAY pale grey brown, low to medium plasticity		VSt	- 17.40: HP Samp =260 kPa - - -
					3, 5, 10 N=15 16.95m	- 19.0 - - -		ML	CLAYEY SILT: pale grey and brown, low plasticity, with some fine sand	м	St/ VSI	-
FMS LIB 33.GLB Log RTA NON-CORE DRUL HOLE BYRONS_LANE_SLP.GPJ << DrawingFa>> 13Mar/2012 14:32 8:30.003 Dagad CPT Tool gINT Add-In					20.00m SPT 2, 5, 7 N=12 20.45m	20.0			21.00m CLAY (MARINE CLAY): dark grey, medium to high plasticity, with some sill	-	St	-
< <drawingfile>> 13/Mar/2012</drawingfile>					21.50m 21.95m SPT			сі-сн	21.95m BOREHOLEBHB TERMINATED AT 21.95 m			-
ILL HOLE BYRONS LANE SLIP.GPJ			:		SPT 4,7,7 N=14 22.40m					Ĩ		-
S LIB 32.GLB Log RTA NON-CORE DR	detail	s of a	natory bbrev descri	iation	5			R	DADS AND MARITIME SERVICES, NS	w		Transport Roads & Maritume
Ĩ۳		na VI	adacil	PROFIS	••				· · · ·			NSW Roads & Maritime Services

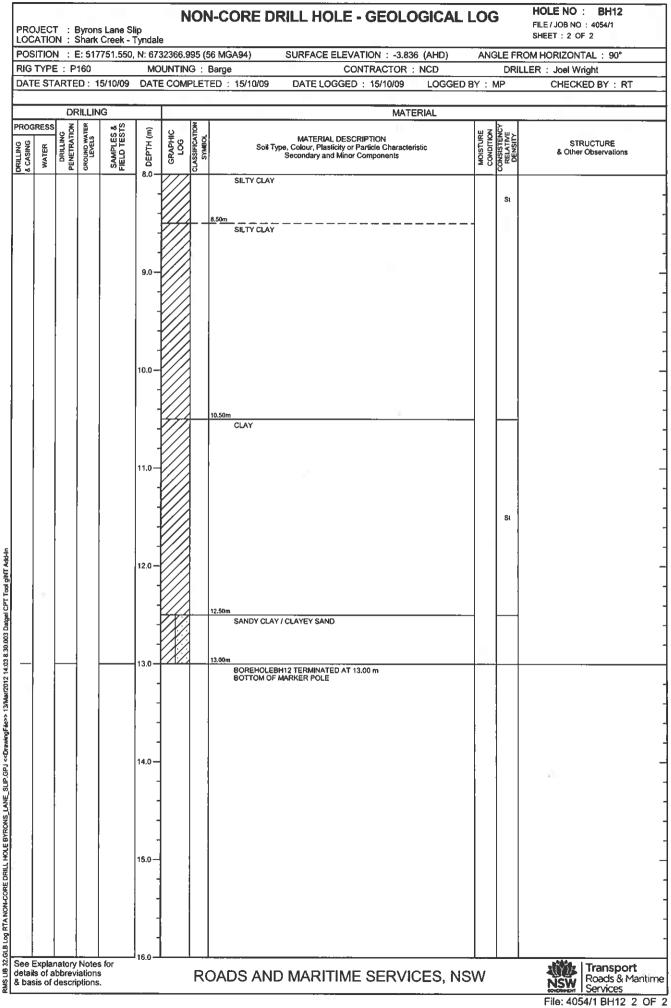




HOLE NO : BH9 FILE / JOB NO : 4054/1


		1 : E E : P		755.045,			32 (56 M 3 : Barg		SURF		ATION : -4			ANG		LER : Joel		· _
				/10/09			LETED		DAT) : 9/10/09		LOGGED	BY : N			KED BY	: RT
		DF		G			-				M	ATER	IAL					
DG	RESS				Ê	0	NOL .							₩ K	λ N N N N			
& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	(m) HLLAED 16.0	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil	I Type, Coloui	ERIAL DESC r, Plasticity or ary and Minor	RIPTION Particle Chara Components	acteristi	c	MOISTUR	CONSISTENCY RELATIVE DENSITY	\$ & Oli	TRUCTURE ler Observal	lions
					-		ML 16.50	m			w brown, low ; brown, low to							
				17.00m SPT 5, 8, 11 N×19 17.45m	- 17.0		CL-CI								VSI			
					- 18.0 -		18.00	CLAYEY S	SILT; pale grey	y mottled yelk	w brown, low p	plasticity	, with some					
	- 5-10% Water LOSS			18.50m SPT 2, 3, 5 N=9				fine sand						м				
		F		18.95m	- 19.0 - -		ML								St			
				20.00m SPT 3, 2, 6 N=8 20.45m	- 20.0										F / S1			
					21.0-		21.00		rk grey, mediu	im plasticity, s	lightly silty							
			-	21.50m SPT 1, 3, 8 N≈11 21.95m	22.0-		CI 21.95		LEBH9 TERM	INATED AT 2	1.95 m				St			
				-		-												
					23.0 -	-												
					24.0-													
ta	ils of	abbre	y Note viation	IS	47.0 -		ROA			RITIM	E SER		ES N	SW		- NSV	Doad	s port s & Mariti ces





PR		T:I	Byron Shark	s Lane Si Creek - 1	lip Tyndali		ION	I-CORE D	RILL HOL	.E - GEOL	OGICAL	. LOG	•	HOLE NO : BH11 FILE / JOB NO : 4054/1 SHEET : 1 OF 3
					N: 673	32373.3		6 MGA94)	SURFACE EL	EVATION : -7	.934 (AHD)	ANG		ROM HORIZONTAL : 90°
				2/10/09				Barge ED : 12/10/09	DATELOO	CONTRACTO				LLER : Joel Wright
	IE SI		. U. I	2/10/09	DAT		PLEI	ED : 12/10/09	DATELOG	GED : 12/10/09		DBY:N	л <u>Р</u>	CHECKED BY : RT
			RILLIN							M/	ATERIAL			
	GRESS	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil T	ype, Colour, Plastici	ESCRIPTION ty or Particle Chara finor Components	cleristic	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
	N/A	<u> </u>	0	<u> </u>	0.0-		ರ	BARGE					ŭ	
			040	FIE			CLAS					M		
					7.0		0							-
See detai	ils of a	natory	iations	•	8.0			DADS ANI			/ICES N	 SW		Transport Roarts & Maritime
o ba	515 01	descri	puons											Roads & Maritime Services File: 4054/1 BH11 1 OF 3

PRO		r · p	3vrons	s Lane SI	in	N	ION	-CORE DRILL HOLE - GEOLOGICAL I	.00	•	HOLE NO : BH12 FILE / JOB NO : 4054/1
LOC	ATIO	N : \$	Shark	Creek - 1	Fyndale						SHEET : 1 OF 2
	_	N : E E : P		751.550,		UNTIN		6 MGA94) SURFACE ELEVATION : -3.836 (AHD) Barge CONTRACTOR : NCD	ANG		ROM HORIZONTAL : 90° ILLER : Joel Wright
				5/10/09				ED : 15/10/09 DATE LOGGED : 15/10/09 LOGGED E	IY : 1		CHECKED BY : RT
		_									
PROG	PESS						Iz I	MATERIAL		F	
& CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES &	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
See	ls of a	natory	Note	s for				TOP OF DECK		L	1.50: - 13.0m: Steel Pipe
& ba	sis of	descr	iption	3.			R	JAUS AND WART IN SERVICES, NS	VV		NSW Roads & Maritime Services

.....

						N	ION	I-CORE DRILL HOLE - GEOLOGICAL LO	C	;	HOLE NO : BH13 FILE / JOB NO : 4054/1
LOC	ATIO	<u>N : S</u>	hark	s Lane Sl Creek - 1	Fyndale						SHEET : 1 OF 2
		N : E E : P		745.042,		32357.7 UNTIN			ANG		ROM HORIZONTAL : 90°
				4/10/09				ED : 14/10/09 DATE LOGGED : 14/10/09 LOGGED BY	: N		CHECKED BY : RT
PROG	RESS		ILLIN 6				X	MATERIAL	_	X	
DRILLING & CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		CONDITION	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
RAIS LE 32 GLB LOG RTA NON-CORE DRAL HOLE BYRONS, LANE, SLPLGPJ < CITAMING #8>> 13/Mar/2012 14:03 8: 30.000 Darget CP1 1000 grv1 A00+11 R 10 0 R 10 0								S50m SSUTY CLAY SUTY CLAY SUTY SILT		S	1.80: - 9.0m: No sampling hole logged from cuttings to install marker pole
See deta & ba	ails of a	anator abbre f desc	viation	15	0.0-		R	OADS AND MARITIME SERVICES, NSV	N		File: 4054/1 BH13 1 OF

PR	DJECT	T : E	Byron	s Lane S	lip		ON	I-CORE DRILL HOLE - GEOLOGICAL	LOC	6	HOLE NO : BH13 FILE / JOB NO : 4054/1 SHEET : 2 OF 2
-				Creek - 7745.042			55 (5	6 MGA94) SURFACE ELEVATION : -2.137 (AHD)	ANO	I E EE	ROM HORIZONTAL : 90°
	TYPE					UNTIN			7411		LLER Joel Wright
DAT	E ST	ARTE	D: 1	4/10/09	DATE	E COMP	PLET	ED : 14/10/09 DATE LOGGED : 14/10/09 LOGGED	BY : I	MP	CHECKED BY : RT
\vdash	-	DF		IG			-	MATERIAL			
PROC	GRESS				Ê	<u>ں</u>	۶.		шŢ	<u>ک</u>	
DRILLING & CASING	WATER	DRILLING	GROUND WATER	SAMPLES & FIELD TESTS	S DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURI	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
								CLAY			
										SI	-
_					9.0 -			9.00m BOREHOLEBH13 TERMINATED AT 9.00 m			
					-			BOTTOM OF MARKER POLE			
					10.0 —						-
											-
											-
					11.0 —						-
					-						
											-
											-
					12.0						-
					-						-
											-
					-						
					13.0						
					-						
andrana alaanaala ahaa ahaanaanaa ahaa dhuunaana ahaa ahaanaa dhaanaa dhaanaa ahaa ah											
					14.0						-
			ĺ		-						-
Y.					-						-
											-
					15.0 -						-
											-
					-						
detai	Explan s of al	bbrevi	ations	;	16.0		RC	DADS AND MARITIME SERVICES, NS	.L		Transport Roads & Maritime Services
											File: 4054/1 BH13 2 OF 2

			Creek - 1											SHEET : 1 OF 2
OSITION			735.446,		2346.5 UNTIN		6 MGA94) Barrae	SURFACE E	CONTRA			ANG		ROM HORIZONTAL: 90°
ATE STA			3/10/09				ED : 13/10/09	DATE LOC	GGED : 13/			DBY: N		CHECKED BY : RT
-				-		_								
OGRESS		illin ti		2		ð				MATE	RIAL		5	
& CASING WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	S DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Ty	pe, Colour, Plasti Secondary and	DESCRIPTION city or Particle (Minor Compor	Characteris	stic	MOISTURE CONDITION	CONSISTEN RELATIVE DENSITY	STRUCTURE & Other Observations
				1.0 - - - 2.0 - - - - - - - - - - - - - - - - - - -			WATER 1.25m Dottom of deck TOP OF MARI							1.30; - 9.2m: Steel Pipe
				4.0										
							<u>CLAY: (słump</u> 6.60m BOULDERS / 7.50m CLAY						SI	5.40: - 9.2m: No sampling hole logged from cuttings to install marker pole

PR	OJEC"	T : E	Byrons	s Lane SI	lip Turrd - 1		ON	I-CORE D	RILL HO)LE - (GEOLO	DGICAL	LOG	•	FILE / JOE SHEET :	NO : 4054/	114 1
				Creek - 735.446,			98 (5	6 MGA94)	SURFACE	ELEVATI	ON : -5.54	45 (AHD)	ANG	LE FF	ROM HORIZ		90°
						UNTIN					RACTOR				LLER Joe		
DA	TE ST.	ARTE	D: 1	3/10/09	DATE		LET	ED : 13/10/09	DATE LO	GGED :	13/10/09	LOGGE	BY: N	/IP	CHE	CKED BY	: RT
\vdash		DR		IG						-	МАТ	ERIAL					
PRO	GRESS				Ê	0	NO I						w z	<u>ک</u>		_	
DRILLING & CASING	WATER	DRILLING	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil T	MATERIA ype, Colour, Plas Secondary an	L DESCRIP licity or Part d Minor Cor	icle Characte	erislic	MOISTUR	CONSISTENCY RELATIVE DENSITY	8.0	STRUCTUR Mer Observi	
					8.0 -			CLAY (contin	wed)								
						H		8.30m CLAY									
					-			GUAT									
					-									St			
					-												
					9.0 —												
-	·				-	774		9.20m BOREHOLEI	BH14 TERMINAT	ED AT 9.20	m		_				
					-												
					-												
					10.0 —												
					-												
				1	-												
					-												
					11.0-												-
							ł										
					12.0 -												
																	-
]												
					1												
					1												
					13.0 —												-
					1												
					1												
					1												
					1												
					14.0 —												-
									1								
					1												
					-												
					15.0 —												-
					-												
					-										1.2		
					-												
See	Explar	ator	Notes	for	16.0										- 644		
deta	Explar ils of al sis of c	bbrevi	ations				RC	DADS ANI			SERVI	CES, N	SW		NS NS	Road:	sport s & Maritime ces 114 2 OF :

Appendix C

NSW DPI Fisheries consultation (and s199 referral comments)

23 November 2021

Ref: 4099-1012

NSW DPI Fisheries

Via email: ahp.central@dpi.nsw.gov.au

To whom it may concern

Consultation regarding remediation works for Byrons Lane Slip Stage V

Transport for NSW (TfNSW) proposes to carry out remediation works on the Clarence River embankment, adjacent to a section of Big River Way (Old Pacific Highway) in response to a significant rainfall event (declared natural disaster) in March 2021. The works are required to ensure that Big River Way remains a safe and trafficable transport route by remediation of the slope and riverbank profile to prevent further degradation of the road surface. The location of the works are shown in **Illustration 1.1** with works area for the proposal shown in **Illustration 1.2**.

The objectives of the proposed works are to:

- stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way;
- restore the riverbank profile;
- restore the pavement to the shoulder of Big River Way;
- undertake works to minimise traffic, environmental, social impacts; and
- ensure Big River Way remains a safe and trafficable transport route.

Key features of the proposal include:

- Project set up including establishment of a site compound and stockpile locations within close proximity to the site
- Establish traffic controls in vicinity of the site (to accommodate temporary restricted/closed lanes of Big River Way)
- Establish sedimentation and erosion controls on riverbank as required
- Cleaning of slip area including clearing of vegetation along slip restoration site
- Piling works (from road and/or river) to stabilise slope area
- Repair pavement shoulder of Big River Way

Construction is expected to commence in April 2022 and be completed by June 2023.

A site compound will be established within the road reserve on the eastern side of Big River Way approximately 500m north of the proposed works.

The works, including some construction works within a waterway, may require consideration of several matters listed in the *Fisheries Management Act 1994* relating to dredging and reclamation works (restoration of the riverbank profile and piling works within South Arm of the Clarence River) and temporarily obstructing minor fish passage (potential anchoring floating barge at work zone).

I am currently preparing a Review of Environmental Factors (REF) as per the requirements under Part 5 of the *Environmental Planning and Assessment Act 1979* for this project. It would be appreciated if you could provide any comments about this proposal.

TfNSW would be pleased to provide further information if required. In this regard, Shaun Gillespie may be contacted on 0413 368 288 or by email <u>Shaun.Gillespie@transport.nsw.gov.au</u>. Alternatively, you may contact me on 0407 237 985 or <u>dhavilah@geolink.net.au</u>.

Yours faithfully

God Hald

David Havilah Senior Ecologist GeoLINK on behalf of Transport for NSW

Edwina Flower

From: Sent:	Annette Comerford <annette.comerford@dpi.nsw.gov.au> Thursday, 9 December 2021 11:27 AM</annette.comerford@dpi.nsw.gov.au>
То:	David Havilah; 'Shaun.Gillespie@transport.nsw.gov.au'
Cc:	Robyn Leckenby
Subject:	HPE CM: RE: Consultation regarding remediation works for Byrons Lane Slip Stage V
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi David,

I have received the email below and I'm wanting to know whether you are requesting comments for the preparation of a REF or a s199 consultation? Usually for a s199 consultation we would require the REF and a design.

The table below outlines actions that trigger section of the *Fisheries Management Act 1994* (FM Act). As the works look to involve the placement of rocks and / or other material within key fish habitat (i.e. below highest astronomical tide), then the dredging and reclamation provision of the FM Act will be triggered. As TfNSW is considered a Public Authority (other than a local government authority), the dredging and reclamation consultation provisions of s199 of the FM Act are relevant. If the proposal will involve impacts to marine vegetation including mangroves and/or their pneumatophores, then the proponent will require a separate permit under s205 of the FM Act.

Sections	Description of action	Legislative trigger
198-202	Dredge (digging) and / or reclamation (filling) of land permanently or periodically inundated by water (including wetlands).	Digging and / or filling below the Highest Astronomical Tide (~1m AHD) in estuaries. Digging and / or filling within the high bed of 3 rd order and higher watercourses (based on 1:25,000 scale maps) and/or draining water from land for its reclamation. Digging and / or filling within Coastal Wetlands. Activities described in cl 226 Fisheries Management (General) Regulation 2019
205	Harming marine vegetation (seagrass, mangroves, and kelp)	Gather, cut, pull up, destroy, poison, dig up, remove, injure, or otherwise harm marine vegetation or any part of it. Activities described in cls 228-229 <i>Fisheries</i> <i>Management (General) Regulation</i> 2019
218-220	Obstructing free passage of fish, in waterways	Construction or alteration of a dam, floodgate, causeways, or weir or otherwise creation of an obstruction

The proposal should first aim to avoid impacts to fisheries resources, particularly key fish habitats. Where impacts to key fish habitats cannot be avoided, the preference is to impact less sensitive key fish habitats over more highly sensitive key fish habitats. Mangroves and other marine vegetation, as well as riparian vegetation should be avoided where possible. This is relevant both during construction and operation of the structure.

The design should incorporate 'soft' engineering options where possible, and where harder engineering options are required, an integrated approach using planting in combination with natural materials (logs, live stakes, live brush bundles etc.) is preferred. Where possible, rock voids above the tidal limit should be planted with Lomandras, and existing riparian vegetation at the top of the bank behind the proposed revetment should be augmented with additional plantings of native grasses, shrubs and trees. Components of the wall that provide minimal fish habitat, should be minimised.

DPI Fisheries' standard minimum information requirements for environmental assessment are clearly detailed in section 3.3 of the DPI Fisheries Policy and guidelines for fish habitat conservation and management (Update 2013). Please ensure that the REF addresses these requirements. This will facilitate effective assessment of the proposal and reduce delays.

Please contact me on the details below if you have any questions.

Regards,

Annette Comerford | Fisheries Manager - Coastal Systems (North Coast) Aboriginal Fishing and Marine and Coastal Environments NSW Department of Primary Industries | Fisheries 1243 Bruxner Hwy | Wollongbar | Bundjalung Nation | NSW 2477 T: 02 6626 1395 | M: 0418 211 843 | E: annette.comerford@dpi.nsw.gov.au

PERMIT APPLICATION FORMS & FISH HABITAT POLICIES: www.dpi.nsw.gov.au/fishing/habitat/protecting-habitats/toolkit Submit permit applications via email to ahp.central@dpi.nsw.gov.au

NB: From date of receipt of application, please allow:

- 21 days for s199 Consultations

- 28 days for Permits, Consultations and Land Owner's Consent responses

- 40 days for Integrated Development Applications

KNOWN & EXPECTED DISTRIBUTION OF THREATENED FISH SPECIES: www.dpi.nsw.gov.au/fishing/threatened-species/threatened-species-distributions-in-nsw

DPI Fisheries acknowledges that it stands on Country which always was and always will be Aboriginal land. We acknowledge the Traditional Custodians of the land and waters, and we show our respect for Elders past, present and emerging. We are committed to providing places in which Aboriginal people are included socially, culturally and economically through thoughtful and collaborative approaches to our work.

From: Robyn Leckenby <RLeckenby@geolink.net.au> Sent: Tuesday, 23 November 2021 4:47 PM To: DPI AHP Central Mailbox <ahp.central@dpi.nsw.gov.au> Subject: Consultation regarding remediation works for Byrons Lane Slip Stage V

Hi,

On behalf of David Havilah, please see attached letter for your review.

With reference: Remediation works for Byrons Lane slip Stage V.

Regards,

Robyn Leckenby Office Coordinator P 02 6651 7666 W www.geolink.net.au

This email and any attached files are intended for the addressee(s), are confidential and may contain legally privileged information. Any unauthorised use of this information is prohibited. If you have received this email in error, please let us know by telephone or return the email to the sender and destroy all copies. It is the recipient's responsibility to check this email and any attachments for viruses before opening or forwarding. This email is subject to copyright. Thank you.

Samuel Smith

From:	Annette Comerford <annette.comerford@dpi.nsw.gov.au></annette.comerford@dpi.nsw.gov.au>
Sent:	Tuesday, 21 June 2022 12:00 PM
То:	Edwina Flower
Subject:	C22/364 RE: s199 referral request - Byrons Lane Slip Stage V

Hi Edwina,

DPI Fisheries is responsible for ensuring that fish stocks are conserved and that there is "no net loss" of key fish habitats upon which they depend. To achieve this, the Coastal Systems Unit assesses activities under Parts 4 and 5 of the *Environmental Planning and Assessment Act 1979* in accordance with the objectives of the *Fisheries Management Act 1994* (FM Act), the aquatic habitat protection and threatened species conservation provisions in Parts 7 and 7A of the FM Act, and the *Policy and Guidelines for Fish Habitat Conservation and Management (2013 Update)* (DPI Fisheries P&G). In addition, DPI Fisheries is responsible for ensuring the sustainable management of commercial fishing and aquaculture, quality recreational fishing and the continuation of Aboriginal cultural fishing within NSW.

Key fish habitats are defined within the DPI Fisheries P&G and are graded by 'type' on the basis of their sensitivity, or their importance to the survival of fish (refer to section 3.2 of the DPI Fisheries P&G for further information). The DPI Fisheries impact mitigation hierarchy is to first avoid impacts to key fish habitats. Where avoidance is impossible or impractical, then proposals should minimise impacts to key fish habitats. All unavoidable impacts should be appropriately mitigated and offset. Where impacts cannot be avoided, justification is required to account for why options of lesser impact are not available or have been discounted.

As discussed now, DPI Fisheries is primarily interested in the works within Key Fish Habitat. Of course, we always encourage best practice erosion and sediment controls for the whole works, but in order to assess the potential impacts to key fish habitat within the section that takes place within key fish habitat, are you able to provide a sketch / plan for these works and provide the scope of works, dimensions, materials and methodology at this site.

Please call me if you have any questions.

Regards,

Annette Comerford | Fisheries Manager - Coastal Systems (North Coast) Aboriginal Fishing and Marine and Coastal Environments NSW Department of Primary Industries | Fisheries 1243 Bruxner Hwy | Wollongbar | Widjabal Wiabal Country (Bundjalung Nation) | NSW 2477 T: 02 6626 1395 | M: 0418 211 843 | E: annette.comerford@dpi.nsw.gov.au

PERMIT APPLICATION FORMS & FISH HABITAT POLICIES: www.dpi.nsw.gov.au/fishing/habitat/protecting-habitats/toolkit Submit permit applications via email to <u>ahp.central@dpi.nsw.gov.au</u> NB: From date of receipt of application, please allow:

- 21 days for s199 Consultations

- 28 days for Permits, Consultations and Land Owner's Consent responses

- 40 days for Integrated Development Applications

KNOWN & EXPECTED DISTRIBUTION OF THREATENED FISH SPECIES: www.dpi.nsw.gov.au/fishing/threatened-species/threatened-species-distributions-in-nsw

DPI Fisheries acknowledges that it stands on Country which always was and always will be Aboriginal land. We acknowledge the Traditional Custodians of the land and waters, and we show our respect for Elders past, present and emerging. We are committed to providing places in which Aboriginal people are included socially, culturally and economically through thoughtful and collaborative approaches to our work.

To: Edwina Flower <<u>EFlower@geolink.net.au</u>> Subject: RE: s199 referral request - Byrons Lane Slip Stage V

Hello Edwina,

I'll give you a call on Monday.

I just wanted to check that you hadn't forgotten to send the plans for these works?

Regards,

Annette Comerford | Fisheries Manager - Coastal Systems (North Coast) Aboriginal Fishing and Marine and Coastal Environments NSW Department of Primary Industries | Fisheries 1243 Bruxner Hwy | Wollongbar | Widjabal Wiabal Country (Bundjalung Nation) | NSW 2477 T: 02 6626 1395 | M: 0418 211 843 | E: annette.comerford@dpi.nsw.gov.au

PERMIT APPLICATION FORMS & FISH HABITAT POLICIES: www.dpi.nsw.gov.au/fishing/habitat/protecting-habitats/toolkit Submit permit applications via email to ahp.central@dpi.nsw.gov.au NB: From date of receipt of application, please allow:

- 21 days for s199 Consultations
- 28 days for Permits, Consultations and Land Owner's Consent responses
- 40 days for Integrated Development Applications

KNOWN & EXPECTED DISTRIBUTION OF THREATENED FISH SPECIES: www.dpi.nsw.gov.au/fishing/threatened-species/threatened-species-distributions-in-nsw

DPI Fisheries acknowledges that it stands on Country which always was and always will be Aboriginal land. We acknowledge the Traditional Custodians of the land and waters, and we show our respect for Elders past, present and emerging. We are committed to providing places in which Aboriginal people are included socially, culturally and economically through thoughtful and collaborative approaches to our work.

From: Edwina Flower <<u>EFlower@geolink.net.au</u>>
Sent: Thursday, 9 June 2022 12:35 PM
To: DPI AHP Central Mailbox <<u>ahp.central@dpi.nsw.gov.au</u>>
Cc: David Havilah <<u>DHavilah@geolink.net.au</u>>
Subject: s199 referral request - Byrons Lane Slip Stage V

To Whom It May Concern

On behalf of Transport for NSW please see attached documentation (letter and Review of Environmental Factors) in relation to the section 199 referral request for the Byrons Lane Slip Stage V project.

Please contact me if you require any further information.

Kind regards,

Edwina Flower Environmental Planner

GeoLINK Quality solutions. Sustainable future. P 02 6687 7666 W www.geolink.net.au

Please note my standard workdays are Tuesday, Wednesday & Thursday

This email and any attached files are intended for the addressee(s), are confidential and may contain legally privileged information. Any unauthorised use of this information is prohibited. If you have received this email in error, please let us know by telephone or return the email to the

sender and destroy all copies. It is the recipient's responsibility to check this email and any attachments for viruses before opening or forwarding. This email is subject to copyright. Thank you.

OUR REF: C22/364

20 July 2022

Ian Drinkwater Transport for NSW Level 3, 76 Victoria Street GRAFTON NSW 2460 Via email: <u>ian.drinkwater@transport.nsw.gov.au</u>, <u>eflower@geolink.net.au</u>

Dear Mr Drinkwater

Re: s199 Referral # C22/364 for dredging and reclamation work associated with bank stabilisation works within the South Arm of the Clarence River, adjacent to Lot 16 DP 877827, Big River Way, Tyndale, Clarence Valley LGA

Reference is made to Transport for NSW's proposal to undertake dredging and reclamation works associated with the above-mentioned project forwarded to DPI Fisheries on 9 June 2022 and additional information provided 23 June 2022.

DPI Fisheries, a division within the Department of Primary Industries, assesses applications for dredging and reclamation works, harm marine vegetation, and obstruction of fish passage in accordance with Part 7 of the *Fisheries Management Act 1994* (FM Act) and the *Policy and Guidelines for Fish Habitat Conservation and Management (2013 Update)* (DPI Fisheries P&G).

Section 199 of the FM Act (refer to Attachment 1) is applicable to this proposal because it pertains to dredging and reclamation works to be undertaken by a public authority. Section 199 requires the proposal to be referred to the Minister for Primary Industries and that the public authority considers any matters concerning the proposed works raised by the Minister.

DPI Fisheries has reviewed the subject project outlined in the application, in particular, the Transport for NSW document titled *Byrons Lane Slip Stage V, Review of Environmental Factors* dated June 2022, the Transport for NSW document titled *100% Geotechnical Detailed Design Report: Byrons Lane Slip, Big River Way, Tyndale Geotechnical Design* dated 6 June 2022, and the Transport for NSW working drawings titled *Byrons Lane Slip Remediation – General Arrangement Plan* dated 10 June 2022.

It is understood that the proposal will include remediation of a 40m long riverbank slip by installing a row of sheet piles at the toe of a new rock revetment wall to reinstate the slumped riverbank profile at this location within the South Arm of the Clarence River (refer to Attachment 3).

DPI Fisheries has no objection to the proposed works. In accordance with Section 199 (1)(b) of the FM Act, the matters raised within Attachment 2 of this notice must be considered. These matters are to ensure that impacts to key fish habitats will be avoided or minimised to a level consistent with the requirements of DPI Fisheries P&G and relate to the Department's responsibilities for ensuring fish stocks are conserved and that there is "no net loss" of key fish habitats upon which they depend. The protection of key fish habitats provides for viable commercial fishing and aquaculture, quality recreational fishing and the continuation of Aboriginal cultural fishing. Should Transport for NSW choose not to consider these matters, Transport for NSW should contact DPI Fisheries prior to undertaking the works.

If you have any queries, please contact Annette Comerford, Fisheries Manager, Coastal Systems (North Coast) on 02 6626 1395 or <u>annette.comerford@dpi.nsw.gov.au</u>.

Yours sincerely

Howford

Annette Comerford Fisheries Manager - Coastal Systems (North Coast) Aboriginal Fishing and Marine and Coastal Environments, Primary Industries NSW

Cc: **Peter Henwood,** A/Clarence District Fisheries Officer **Brad Harrison,** Fisheries Conservation Compliance Officer

Attachment 1

Fisheries Management Act 1994 No 38

Part 7 Division 3 Section 199

- 199 Circumstances in which a public authority (other than local authority) may carry out dredging or reclamation
 - (1) A public authority (other than a local government authority) must, before it carries out or authorises the carrying out of dredging or reclamation work:
 - (a) give the Minister written notice of the proposed work, and
 - (b) consider any matters concerning the proposed work that are raised by the Minister within 21 days after the giving of the notice (or such other period as is agreed between the Minister and the public authority).
 - (2) Any such public authority is to notify the Minister of any dredging or reclamation work that it proposes to carry out or authorise despite any matter raised by the Minister. The Minister may, within 14 days after being so notified, refer any dispute to the Minister responsible for the public authority. If the dispute cannot be resolved by those Ministers, it is to be referred to the Premier for resolution.
 - (3) In this section, public authority includes the Minister administering the *Crown Land Management Act 2016.*

Attachment 2

MATTERS FOR CONSIDERATION UNDER s199 of the Fisheries Management Act 1994

Administration

- 1. DPI Fisheries recommend that a copy of relevant approval documentation be carried by the proponent or their contractor operating on-site. Reason – A DPI Fisheries Compliance Officer may wish to check that the works are being undertaken in accordance with relevant approvals.
- 2. The subject works, including the final built design, should be consistent with the proposal outlined in the s199 referral to DPI Fisheries by Transport for NSW on 9 June 2022 and additional information provided 23 June 2022. Any proposed changes to the final design should be discussed with DPI Fisheries prior to implementation. Reason – This s199 consultation has been prepared following an assessment of the potential impacts of the described works upon the aquatic and neighbouring environments. Other works, which were not described in the referral have not been assessed and may have significant adverse impacts.

Erosion and sediment control

3. Sediment entering into waterways can directly impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures that:

- Erosion and sediment mitigation devices are erected and managed in accordance with all applicable requirements of the Blue Book (i.e. Landcom [2004], Managing Urban Stormwater: Soils and Construction [4th Edition]) (www.landcom.nsw.gov.au/news/publications-and-programs/the-blue-book.aspx);

- A floating boom and attached silt curtain are used and maintained to isolate the work site and minimise the impacts of turbidity and mobilised sediment during the construction; and

- Stockpiles are located away from adjacent on water land¹, and riparian and aquatic vegetation².

Reason – To ensure that sediment generated by the exposure of soil is not transported into the aquatic environment.

¹ "Water land" means land submerged by water:

a) whether permanently or intermittently, or

b) whether forming an artificial or natural body of water,

and includes wetlands and any other land prescribed by the regulations.

Wetlands include marshes, mangroves, swamps, or other areas that form a shallow body of water when inundated intermittently or permanently with fresh, brackish or salt water, and where the inundation determines the type and productivity of the soils and the plant and animal communities.

² "Aquatic vegetation" is a term used to describe native vegetation that inhabits freshwater but does not include noxious weeds within the meaning of the Noxious Weeds Act 1993.

Timing of works for low flows and low tides

4. Appropriately timing the works for periods of low flow can assist erosion and sediment control at the site. DPI Fisheries recommend that Transport for NSW ensures that works are undertaken during periods of low flows in the waterway and when Bureau of Metrological forecast for the Northern Rivers district forecast region (available at: www.bom.gov.au/nsw/forecasts/map.shtml) indicates several days of clear, dry weather.

Reason – Timing the works for appropriate conditions can reduce delays and minimise impacts on the aquatic environments.

Instream works

5. Instream works can impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures:

- The avoidance of machinery entering or working from the waterway unless in accordance best management practice;

- That machinery is appropriately cleaned, degreased and serviced prior to use at the site and entry into the waterway; and

- That Emergency Spill Kits appropriate for containing and cleaning up petroleum and solvent product spills within waterways be available on site at all times during works. *Reason – To reduce the threat of an unintended pollution incident impacting upon the aquatic environment.*

Armouring works

- 6. Poorly designed or constructed bank protection works can have an immediate and lasting impact on key fish habitats. DPI Fisheries recommend that Transport for NSW ensures that:
 - Only clean rock is used at the site;
 - Rock forming bank armouring is placed into position using a rock grab or excavator; and
 - The rock used for bank armouring be underlaid by geotextile fabric.

Reason – To avoid fines, clay and other sediment un-necessarily entering the waterway and ensure rock armouring is constructed using Best Management Practice techniques.

Post works rehabilitation of site

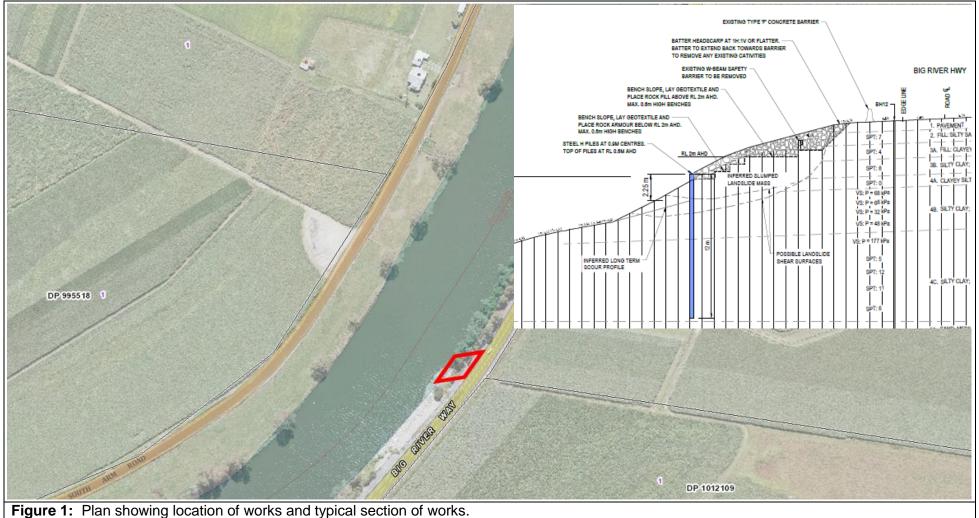
7. DPI Fisheries recommend that Transport for NSW ensures that the site is rehabilitated and stabilised at the completion of the works including:

- Removal of surplus construction materials and temporary structures from the site (other than silt fences and other erosion and sediment control devices);

- Undertaking plantings of *Lomandra hystrix* along the toe and top of the banks of the waterway for 5 metres upstream and downstream of the work footprint; and

- Appropriate maintenance of erosion and sediment control devices until the vegetation has successfully established and the site has stabilised.

Reason – To ensure that habitats are restored as quickly as possible, public safety is not compromised, aesthetic values are not degraded and sediment inputs into the waterway are reduced.


Fish kill contingency

8. DPI Fisheries maintains a fish kill database. To limit the potential of a fish kill incident, DPI Fisheries recommends that the proponent be advised to undertake a visual inspection of the waterway for dead or distressed fish (indicated by fish gasping at the water surface, fish crowding in pools or at the creek's banks) twice daily during the works. Observations of dead or distressed fish should be immediately reported to the Contact Officer by Transport for NSW. If a fish kill occurs, DPI Fisheries recommend works cease until the issue causing the kill is rectified.

Reason – Fish kills are also potentially contentious incidents from the public perspective. DPI Fisheries needs to be aware of fish kills so that it can assess the cause and recommend ways to mitigate further incidents in consultation with relevant authorities. Work practices may need to be modified to reduce the impacts upon the aquatic environment.

Attachment 3

Division of Primary Industries, DPI Fisheries 1243 Bruxner Hwy, WOLLONGBAR NSW 2477 Tel: 02 6626 1395 ABN 19 948 325 463 www.dpi.nsw.gov.au

Appendix D

Consideration of section 171 factors and matters of national environmental significance and Commonwealth land

Section 171 Checklist

In addition to the requirements of the Is an EIS required? guideline (DUAP 1995/1996) and the Roads and Related Facilities EIS Guideline (DUAP 1996) as detailed in the REF, the following factors, listed in section 171 of the Environmental Planning and Assessment Regulation 2021, have also been considered to assess the likely impacts of the proposal on the natural and built environment.

Fac	ctor	Impact
a	Any environmental impact on a community? The community would not be affected through declines in the local environment as a result of the proposal. Extensive mitigation measures have been designed to reduce environmental impacts on the community to negligible levels (refer to Section 6).	Negligible
b	 Any transformation of a locality? Temporary transformations of the locality will occur but are restricted to the site and comprise of: Construction and operation of site compound/stockpile. Aspects of the proposal including temporary road diversion and piling works. Presence and operation of heavy machinery. After completion of the work, permanent transformation would be associated with the new piling associated with restoration of the riverbank profile and restoration of Big River Way pavement shoulder. No significant transformation of the locality would occur as a result of the proposal. 	Negligible
С	Any environmental impact on the ecosystems of the locality? The ecosystems of the locality would not be affected through declines in local environmental values (e.g. Biodiversity, physical environment) as a result of the proposal. Extensive mitigation measures have been designed to reduce environmental impacts (refer to Section 6).	Negligible
d	Any reduction of the aesthetic, recreational, scientific or other environmental quality or value of a locality? The aesthetic, recreational, scientific or other environmental qualities or value of the locality are not expected to be impacted by the proposal. The character of the general area would largely remain the same post- construction and no significant visual impact or recreational impediment is expected. No reduction in the quality of environmental values associated with noise, water, soil and air quality or significant decreases in biodiversity are likely to occur due to the mitigation measures provided in Section 6 of this REF. No significant changes to the locality are expected to occur.	Negligible
e	Any effect on a locality, place or building having aesthetic, anthropological, archaeological, architectural, cultural, historical, scientific or social significance or other special value for present or future generations? The proposal would not have any effect on a locality, place or building having aesthetic, anthropological, archaeological, architectural, cultural, historical, scientific or social significance or other special value for present or future generations.	Negligible
f	Any impact on the habitat of protected fauna (within the meaning of the <i>National Parks and Wildlife Act 1974</i>)? With effective implementation of the safeguards provided in Section 6 of this REF, the proposal is not considered likely to significantly endanger any habitat of protected fauna.	Negligible
g	Any endangering of any species of animal, plant or other form of life, whether living on land, in water or in the air? With effective implementation of the safeguards provided in Section 6 of this REF, the proposal is not considered likely to significantly endanger any species of animal, plant, or other form of life.	Negligible
h	Any long-term effects on the environment?	Negligible

Fac	ctor	Impact
	No significant negative long-term impacts are considered likely with effective implementation of the proposed mitigation measures in Section 6 of this REF.	
i	Any degradation of the quality of the environment?	Negligible
	No significant degradation of the quality of the environment is expected with effective implementation of the safeguards in Section 6 of this REF.	
j	Any risk to the safety of the environment?	Negligible
	The proposal is unlikely to pose any significant risk to the safety of the environmental attributes outlined in Section 6 . Any possible impacts would be minimised with the implementation of the safeguards in Section 6 of this REF.	
k	Any reduction in the range of beneficial uses of the environment?	Negligible
	The proposal is not likely to result in any reduction in the range of beneficial uses of the environment.	
1	Any pollution of the environment?	Negligible
	Waste materials, fuel spills and sediment have the potential to cause pollution to the environment. However, given the proposed safeguards detailed in Section 6 of this REF, pollution to the environment is unlikely to occur.	
m	Any environmental problems associated with the disposal of waste?	Negligible
	All waste generated by the proposal would be disposed of in a manner which would not damage or disturb any native flora or fauna or the physical environment. The disposal of waste would be in accordance with Transport and EPA approved methods of waste disposal. Safeguards detailed in Section 6 of this REF would protect the environment from problems associated with all waste disposal.	
n	Any increased demands on resources (natural or otherwise) that are, or are likely to become, in short supply?	Negligible
	The proposal does not create any demand for resources that are in short supply nor is it likely to result in an increased demand on any natural resources that are likely to become in short supply. Transport would attempt to draw supplies and resources from established suppliers having appropriate environmental approvals and standards.	
0	Any cumulative environmental effect with other existing or likely future activities?	Negligible
	The proposal would have minor cumulative impacts (e.g., resource consumption) but is unlikely to significantly contribute to any cumulative impacts.	
р	Any impact on coastal processes and coastal hazards, including those under projected climate change conditions?	Negligible
	The proposal is not expected to have any impacts to coastal processes and coastal hazards, including those under projected climate change conditions.	
q	Applicable local strategic planning statements, regional strategic plans or district strategic plans made under the Act, Division 3.1,	North Coast Region Plan (NCRP) 2036
	The overarching strategic plan for this region is the North Coast Region Plan (NCRP) 2036.	
	The project aligns with goals and directions outlined in the plan which relate to; management of natural hazards and climate change, as well as providing a thriving, interconnected economy that is achieved through strengthened regionally significant rail corridors.	
r	Other relevant environmental factors.	In considering the potential impact of this proposal all relevant
	This REF has examined and taken into account to the fullest extent possible all matters affecting or likely to affect the environmental by reason of the proposed activity.	environmental factors have been considered, refer to Chapter 6 of this assessment.

Matters of National Environmental Significance and Commonwealth land

Under the environmental assessment provisions of the *EPBC Act*, the following matters of national environmental significance and impacts on Commonwealth land are required to be considered to assist in determining whether the proposal should be referred to the Australian Government Department of Agriculture, Water and the Environment.

A referral is not required for proposed actions that may affect nationally-listed threatened species, endangered ecological communities and migratory species. Impacts on these matters are still assessed as part of the REF in accordance with Australian Government significant impact criteria and taking into account relevant guidelines and policies.

Fac	tor	Impact
а	Any impact on a World Heritage property? The proposal is not in proximity (10 km search radius) to any World Heritage Properties and as such the proposal is not expected to impact on any World Heritage Properties.	Nil
b	Any impact on a National Heritage place? The proposal is not in proximity (10 km search radius) to any National Heritage places and as such the proposal is not expected to impact on any National Heritage places.	Nil
С	Any impact on a wetland of international importance? The proposal is not in proximity (10 km search radius) to any Wetlands of International Importance, and as such the proposal is not expected to impact on any Wetlands of International Importance.	Nil
d	Any impact on a listed threatened species or communities? Habitat for two threatened ecological communities (TECs), 72 threatened species, and 40 migratory species is identified within 10 km of the site. No nationally listed threatened flora species or TECs were recorded in the site survey. No nationally listed threatened fauna species were recorded in the site survey. Several nationally listed threatened fauna species are considered to have a moderate likelihood of occurrence at the site. With consideration of the above information, no nationally listed threatened biodiversity matters are likely to be significantly affected by the proposal.	Negligible
e	Any impacts on listed migratory species? No nationally listed migratory species were recorded in the site survey. It is likely that several listed species (e.g. Satin Flycatcher, Lathams Snipe) may utilise the site on an opportunistic or seasonal basis. However, the site does not provide any important foraging or breeding habitat for any migratory species. With consideration of the above information, no nationally listed migratory species are likely to be significantly affected by the proposal.	Nil
f	Any impact on a Commonwealth marine area? The proposal is not in proximity (10 km search radius) to any Commonwealth marine areas and as such the proposal is not expected to impact upon any Commonwealth marine areas.	Nil
g	Does the proposal involve a nuclear action (including uranium mining)? The proposal does not involve a nuclear action.	Nil
h	Additionally, any impact (direct or indirect) on the environment of Commonwealth land? Three Commonwealth lands being Australian Telecommunications Commission, Australian Telecommunications Corporation and Commonwealth Trading Bank are listed as occurring within 10 km of the subject site. The proposal however is not expected to impact upon these lands.	Nil

Appendix E

Transport Procedure for Aboriginal cultural heritage consultation and investigation (PACHCI) and Native Title consultation

15 June 2022

Our ref: NTS164

Ian Drinkwater Project/Contract Manager Transport for NSW Level 3, 76 Victoria Street Grafton NSW 2460

By email only: <u>ian.drinkwater@transport.nsw.gov.au</u>

Dear Mr Drinkwater,

Re: Big River Way, Tyndale – Remediation of Slip Site

- 1 I refer to your notification of 16 May 2022, issued under section 24KA of the *Native Title Act 1993* (Cth) (NTA) regarding the proposed remediation of a landslip site on the western side of the Big River Way at Tyndale, NSW.
- 2 NTSCORP Limited (**NTSCORP**) acted for the Yaegl People in their successful Native Title Determination Applications (Federal Court Proceedings NSD6052/1998 and NSD168/2011) which were determined by the Federal Court on 25 June 2015 and 31 August 2017. NTSCORP continues to act for the Yaegl Traditional Owners Aboriginal Corporation RNTBC (**YTOAC**) (the registered native title body corporate) that holds native title on trust for the Yaegl People.
- 3 The proposed works described above form part of Transport for New South Wales' (**Transport**) 'Byrons Lane Stage V – Slip Remediation Project'.
- 4 It is expected that the proposed works will take approximately five months to complete.
- 5 We understand that the proposed works will involve:
 - (a) the establishment of erosion and sediment control measures within the Clarence River for the duration of the works;
 - (b) the anchoring of a 5-10 metre barge on the bed and banks of the Clarence River;
 - (c) the anchoring of a 10-15 metre ferry on the bed or banks of the Clarence River;
 - (d) the installation of piles into the riverbed of a height equal to or less than the mean high tide water level; and
 - (e) the removal of scour protection rock placed from a previous slip remediation project to allow the driving of piles.
- 6 Once the proposed works are completed, the erosion and sediment control measures will be removed from the Clarence River.

Comments on the proposed works

7 Yaegl People's native title rights have been recognised over the waters, bed and banks of the Clarence River where the works are proposed to occur, pursuant to Yaegl People #2 (NSD168/2011).

Level 1, 44-70 Rosehill St Redfern NSW 2016 Australia t: + 61 2 9310 3188

8 The proposed works are also in close proximity to lands and waterways over which Yaegl People's native title rights and interests have been recognised.

Cultural Heritage

- 9 The lands and waterways within the Yaegl Native Title Determination Area are of immense cultural significance to Yaegl People.
- 10 The directors of YTOAC hold significant concerns about the location of the proposed works. In particular, the proposed works are within extremely close proximity to known cultural and spiritual sites.
- 11 For these reasons, we are instructed that a further site visit is required between YTOAC and Transport discuss the location and nature of the proposed works, before they occur.
- 12 In accordance with YTOAC's Schedule of Fees for services, and section 60AB of the NTA, it is appropriate for a fee for service to be paid for this site visit.
- 13 YTOAC reserves the right to make further comments in relation to the proposed act following this site visit.

Cultural Heritage Assessment and Monitoring

- 14 Should the proposed works proceed, it is essential for Transport to regularly consult with YTOAC to ensure the project does not interfere with culturally significant areas and Yaegl People's native title rights are taken into consideration.
- 15 Further, given the high cultural significance of the location of the proposed works, YTOAC requests that cultural heritage officers be engaged for the duration of the works.
- 16 Contact for the purpose of arranging cultural heritage officers can be made through YTOAC CEO, William Walker, at <u>ceo@yaegltoacrntbc.org.au</u>.
- 17 Should the proposed works uncover any Aboriginal objects, Transport and any contractors should cease all work at the site until YTOAC has been consulted and assessed the objects, in compliance with the State of New South Wales' cultural heritage requirements.

Non-extinguishment of native title

18 Pursuant to s 24KA(4) of the NTA, the non-extinguishment principles applies to the proposed works.

Compensation

- 19 Compensation for works conducted under Subdivision K of the NTA may be payable. Yaegl People reserve the right to bring future claims for compensation in respect of the proposed works. In this respect, we request documentation outlining the precise nature and location of the works following their completion for YTOAC's records.
- 20 We look forward to hearing from you in relation to these comments.

21 If you have any questions regarding the above, please do not hesitate to contact the undersigned.

Yours sincerely,

Helen Orr

Solicitor NTSCORP Limited

PO Box 2105 Strawberry Hills NSW 2012 Australia f: + 61 2 9310 4177 18 August 2022

Shaun Gillespie Project Manager Transport for NSW

Dear Shaun,

Preliminary assessment results for the Byron's Lane Slip Stage V based on Stage 1 of the *Procedure for Aboriginal cultural heritage consultation and investigation* (the procedure).

Transport for NSW

The project, as described in the Stage 1 assessment checklist, was assessed as being unlikely to have an impact on Aboriginal cultural heritage.

The assessment is based on the following due diligence considerations:

- The project works are within the existing road corridor and disturbed areas (disturbed zones).
- The project is unlikely to harm known Aboriginal objects or places (AHIMS sites).
- The AHIMS search indicated that there are no recorded Aboriginal sites within the study area.
- The study area does contain landscape features that indicate the presence of Aboriginal objects, based on the Office of Environment and Heritage's *Due diligence Code of Practice for the Protection of Aboriginal objects in NSW* and the Roads and Maritime Services' procedure, however, the cultural heritage potential of the study area appears to be reduced due to past disturbances in the form of the construction of the current road corridor and seasonal flood events.
- There is an absence of sandstone rock outcrops likely to contain Aboriginal art.
- No artefacts or other items of cultural significance were identified during the physical site inspection.

Your project may proceed in accordance with the environmental impact assessment process, as relevant, and all other relevant approvals.

If the scope of your project changes you must contact me and your regional environmental staff Kate Dallimore to reassess any potential impacts on Aboriginal cultural heritage.

If any potential Aboriginal objects (including skeletal remains) are discovered during the course of the project, all works in the vicinity of the find must cease. Follow the steps outlined in the Transport for NSW *Unexpected Heritage Items Procedure*.

Transport for NSW


For further assistance in this matter do not hesitate to contact me.

Yours sincerely

Lee Davison

Lee Davison Aboriginal Community and Heritage Partner

Project area location

Ms. Orr NTSCORP Limited Level 1, 44–70 Rosehill Street Redfern NSW 2016

29 July 2022

Dear Ms. Orr,

Re: Big River Way, Tyndale - Remediation of Slip Site

We refer to your letter dated 15 June 2022 in response to the notification issued under section 24KA of the *Native Title Act 1993* (Cth) (**NTA**) by Transport for NSW (**TfNSW**) on 16 May 2022.

Thank you for identifying that the proposed works are in close proximity to known cultural and spiritual sites of the Yaegl People and for confirming that the members of the Yaegl Traditional Owners Aboriginal Corporation RNTBC (**YTOAC**) are willing to meet with TfNSW to further discuss the location and nature of the works before they occur.

TfNSW is agreeable to meeting further with representatives from the YTOAC including an onsite visit. TfNSW's Garry Ferguson, Manager, Aboriginal Engagement and Ian Drinkwater, Project Manager, will be in contact with YTOAC CEO, William Walker, to arrange for this to occur.

Thank you for bringing to our attention that a fee for service is payable in respect of a further site visit. TfNSW generally applies the "*Roads and Maritime Services Procedure for Aboriginal Cultural Heritage Consultation and Investigation*", otherwise known as the PACHCI, to ensure compliance with the State of New South Wales' cultural heritage requirements and promote state-wide consistency. The PACHCI specifies the fees payable for engagement of Aboriginal knowledge holders and site officers in archaeological and cultural values assessments particularly where an Aboriginal Heritage Impact Permit is required.

TfNSW believes that there is benefit in state-wide consistency in the payment of fees when engaging Aboriginal people in the PACHCI process.

TfNSW recognises that native title rights and interests are often broader than the matters within the scope of the PACHCI on many projects. We also recognise there is benefit in taking the opportunity to keep Native Title Holders informed and inviting input to ensure that the effect of projects on the full range of native title rights and interests are understood and discussed.

It will be beneficial for our project team to connect with YTOAC on Country to gain an appreciation of their native title rights and interests relating to the project location and how they might be best considered during project development and delivery.

Transport is prepared to pay a fee for service to two representatives of the YTOAC in the amount of \$165 per hour per representative, for a minimum of four hours, to participate in the meeting and proposes that work methods including requirements for further consultation and site inspections are addressed during the meeting.

Should the State of New South Wales' cultural heritage requirements be triggered and engagement of Aboriginal knowledge holders and site officers in archaeological and cultural values assessments is required, TfNSW is prepared to pay the fees specified in the PACHCI.

TfNSW also notes that under the Schedule of Fees, an amount of \$450 is payable with respect to activities concerning the exercise of certain procedural rights pursuant of 24KA(7) of the NTA. Upon the YTOAC completing the enclosed tax invoice in the amount of \$450 and forwarding a copy via email to ian.drinkwater@transport.nsw.gov.au, TfNSW will effect payment within 28 days of receipt.

Yours sincerely,

San Drinkwater

Ian Drinkwater Project Manager Project Services, Northern 0418 207 457

TRANSPORT FOR NSW ABN: 18804239602 12/231 Elizabeth Street Sydney NSW 2000

Recipient Created Tax Invoice & Adjustment Note

Invoice No. Invoice Date: Address:

Supplier ABN :

Recipient

Contact #

If you have any queries, please phone 133 877 or email to tss.procurement@transport.nsw.gov.au

As agreed, we have settled the following goods and services as detailed below:

Invoice Date	Invoice No.	Order No./ Description	Amount
Total Net Value			
GST			
Total			

The GST is payable by the supplier.

This is not a remittance advice and payment will be made in accordance to the payment terms.

Account Name:

BSB:

Account Number:

Appendix F Statutory consultation checklists

Transport and Infrastructure SEPP 2021

Certain development types

Development type	Description	Yes / No	If 'yes' consult with	TISEPP clause
Car Park	Does the project include a car park intended for the use by commuters using regular bus services?	No	-	Section 2.110 (former ISEPP cl. 95A)
Bus Depots	Does the project propose a bus depot?	No	-	Section 2.110 (former ISEPP cl. 95A)
Permanent road maintenance depot and associated infrastructure	Does the project propose a permanent road maintenance depot or associated infrastructure such as garages, sheds, tool houses, storage yards, training facilities and workers' amenities?	No	-	Section 2.110 (former ISEPP cl. 95A)

Development within the Coastal Zone

Development type	Description	Yes / No	If 'yes' consult with	TISEPP clause
Development with impacts on certain land within the coastal zone	Is the proposal within a coastal vulnerability area and is inconsistent with a certified coastal management program applying to that land?	No	-	Section 2.14 (former ISEPP cl. 15A)

Council related infrastructure or services

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
Stormwater	Are the works likely to have a <i>substantial</i> impact on the stormwater management services which are provided by council?	No	-	Section 2.10(1)(a) (former ISEPP cl.13(1)(a))
Traffic	Are the works likely to generate traffic to an extent that will <i>strain</i> the capacity of the existing road system in a local government area?	No	-	Section 2.10(1)(b) (former ISEPP cl.13(1)(b))
Sewerage system	Will the works involve connection to a council owned sewerage system? If so, will this connection have a <i>substantial</i> impact on the capacity of any part of the system?	No	-	Section 2.10(1)(c) (former ISEPP cl.13(1)(c))
Water usage	Will the works involve connection to a council owned water supply system? If so, will this require the use of a <i>substantial</i> volume of water?	No	-	Section 2.10(1)(d) (former ISEPP cl.13(1)(d))
Temporary structures	Will the works involve the installation of a temporary structure on, or the enclosing of, a public place which is under local	Yes. Construction of a temporary road diversion.	Clarence Valley Council has been consulted.	Section 2.10(1)(e) (former ISEPP cl.13(1)(e))

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
	council management or control? If so, will this cause more than a <i>minor</i> or <i>inconsequential</i> disruption to pedestrian or vehicular flow?			
Road & footpath excavation	Will the works involve more than <i>minor</i> or inconsequential excavation of a road or adjacent footpath for which council is the roads authority and responsible for maintenance?	Yes. A section of Big River Way requires repair works to damaged areas of the pavement shoulder as a result of the slip.	Clarence Valley Council has been consulted.	Section 2.10(1)(f) (former ISEPP cl.13(1)(f))

Local heritage items

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
Local heritage	Is there is a local heritage item (that is not also a State heritage item) or a heritage conservation area in the study area for the works? If yes, does a heritage assessment indicate that the potential impacts to the heritage significance of the item/area are more than minor or inconsequential?	No	-	Section 2.11 (former ISEPP cl.14)

Flood liable land

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
Flood liable land	Are the works located on flood liable land? If so, will the works change flood patterns to more than a <i>minor</i> extent?	No	-	Section 2.12 (former ISEPP cl.15)
Flood liable land	Are the works located on flood liable land? (to any extent). If so, do the works comprise more than minor alterations or additions to, or the demolition of, a building, emergency works or routine maintenance?	Yes	State Emergency Services has been consulted.	Section 2.13 (former ISEPP cl.15AA)

Public authorities other than councils

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
National parks and reserves	Are the works adjacent to a national park or nature reserve, or other area reserved under the <u>National Parks</u> <u>and Wildlife Act 1974</u> , or on land acquired under that Act?	No	-	Section 2.15(2)(a) (former ISEPP cl.16(2)(a))
National parks and reserves	Are the works on land in Zone E1 National Parks and Nature Reserves or in a land use zone equivalent to that zone?	No	-	Section 2.15(2)(b) (former ISEPP cl. 16(2)(b))

Transport for NSW

Development type	Potential impact	Yes / No	If 'yes' consult with	TISEPP clause
Aquatic reserves	Are the works adjacent to an aquatic reserve or a marine park declared under the <u>Marine Estate Management</u> <u>Act 2014</u> ?	No	-	Former ISEPP cl.16(2)(c)
Sydney Harbour foreshore	Are the works in the Sydney Harbour Foreshore Area as defined by the <u>Sydney Harbour Foreshore Authority</u> <u>Act 1998</u> ?	No	-	Former ISEPP cl.16(2)(d))
Bush fire prone land	Are the works for the purpose of residential development, an educational establishment, a health services facility, a correctional centre or group home in bush fire prone land?	No	-	Former ISEPP cl.16(2)(f))
Artificial light	Would the works increase the amount of artificial light in the night sky and that is on land within the dark sky region as identified on the dark sky region map? (Note: the dark sky region is within 200 kilometres of the Siding Spring Observatory)	No	-	Section 2.15(2)(d) (former ISEPP cl.16(2)(g))
Defence communications buffer land	Are the works on buffer land around the defence communications facility near Morundah? (Note: refer to Defence Communications Facility Buffer Map referred to in clause 5.15 of Lockhardt LEP 2012, Narrandera LEP 2013 and Urana LEP 2011.	No	-	Section 2.15(2)(e) (former ISEPP cl. 16(2)(h))
Mine subsidence land	Are the works on land in a mine subsidence district within the meaning of the <u>Mine Subsidence</u> <u>Compensation Act 1961</u> ?	No	-	Section 2.15(2)(f) (former ISEPP cl. 16(2)(i))

Appendix G TISEPP 2021 (previously ISEPP 2007) Notification

23 November 2021

Ref: 4099-1011

The General Manager Clarence Valley Council Locked Bag 23 GRAFTON NSW 2460

To whom it may concern

Consultation regarding remediation works for Byrons Lane Slip Stage V

Transport for NSW (TfNSW) proposes to carry out remediation works on the Clarence River embankment, adjacent to a section of Big River Way (Old Pacific Highway) in response to a significant rainfall event (declared natural disaster) in March 2021. The works are required to ensure that Big River Way remains a safe and trafficable transport route by remediation of the slope and riverbank profile to prevent further degradation of the road surface. The location of the works are shown in **Illustration 1.1** with key aspects of the proposal shown in **Illustration 1.2**.

The objectives of the proposed works are to:

- stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way;
- restore the riverbank profile;
- restore the pavement to the shoulder of Big River Way;
- undertake works to minimise traffic, environmental, social impacts; and
- ensure Big River Way remains a safe and trafficable transport route.

Under the State Environmental Planning Policy (Infrastructure) 2007, Transport for NSW is required to consult with Clarence Valley Council under clause 13 and 15 due to the potential impacts to 'Council related infrastructure or services' and 'development with impacts on flood liable land'.

Key features of the proposal include:

- Project set up including establishment of a site compound and stockpile locations within close proximity to the site
- Establish traffic controls in vicinity of the site (to accommodate temporary restricted/closed lanes of Big River Way)
- Establish sedimentation and erosion controls on riverbank as required
- Cleaning of slip area including clearing of vegetation along slip restoration site
- Piling works (from road and/or river) to stabilise slope area
- Repair and restoration of pavement shoulder of Big River Way

Construction is expected to commence in April 2022 and be completed by June 2023.

I am currently preparing a Review of Environmental Factors (REF) as per the requirements under Part 5 of the *Environmental Planning and Assessment Act 1979* for this project. It would be appreciated if you could provide any comments about this proposal.

TfNSW would be pleased to provide further information if required. In this regard, Shaun Gillespie may be contacted on 0413 368 288 or by email <u>Shaun.Gillespie@transport.nsw.gov.au</u>. Alternatively, you may contact me on 0407 237 985 or <u>dhavilah@geolink.net.au</u>.

Yours faithfully

God Hald

David Havilah Senior Ecologist GeoLINK on behalf of Transport for NSW

23 November 2021

Ref: 4099-1013

NSW State Emergency Services

Via email: erm@ses.nsw.gov.au; mcl.ops@ses.nsw.gov.au; ulm.ops@ses.nsw.gov.au

To whom it may concern

Consultation regarding remediation works for Byrons Lane Slip Stage V

Transport for NSW (TfNSW) proposes to carry out remediation works on the Clarence River embankment, adjacent to a section of Big River Way (Old Pacific Highway) in response to a significant rainfall event (declared natural disaster) in March 2021. The works are required to ensure that Big River Way remains a safe and trafficable transport route by remediation of the slope and riverbank profile to prevent further degradation of the road surface. The location of the works are shown in **Illustration 1.1** with works area for the proposal shown in **Illustration 1.2**.

The objectives of the proposed works are to:

- stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way;
- restore the riverbank profile;
- restore the pavement to the shoulder of Big River Way;
- undertake works to minimise traffic, environmental, social impacts; and
- ensure Big River Way remains a safe and trafficable transport route.

State Environmental Planning Policy (Infrastructure) 2007 (ISEPP) enables the works to be undertaken as development without consent pursuant to Clause 111 and Clause 8 of ISEPP. Under Clause 15AA a public authority is required to consult with NSW State Emergency Services (SES) due to development on flood liable land.

Key features of the proposal include:

- Project set up including establishment of a site compound and stockpile locations within close proximity to the site
- Establish traffic controls in vicinity of the site (to accommodate temporary restricted/closed lanes of Big River Way)
- Establish sedimentation and erosion controls on riverbank as required
- Cleaning of slip area including clearing of vegetation along slip restoration site
- Piling works (from road and/or river) to stabilise slope area
- Repair pavement shoulder of Big River Way

Construction is expected to commence in April 2022 and be completed by June 2023.

I am currently preparing a Review of Environmental Factors (REF) as per the requirements under Part 5 of the *Environmental Planning and Assessment Act 1979* for this project. It would be appreciated if you could provide any comments about this proposal.

TfNSW would be pleased to provide further information if required. In this regard, Shaun Gillespie may be contacted on 0413 368 288 or by email <u>Shaun.Gillespie@transport.nsw.gov.au</u>. Alternatively, you may contact me on 0407 237 985 or <u>dhavilah@geolink.net.au</u>.

Yours faithfully

God Hald

David Havilah Senior Ecologist GeoLINK on behalf of Transport for NSW

23 November 2021

Ref: 4099-1001

Roads and Maritime Northern Region PO Box 576 GRAFTON NSW 2460

To whom it may concern

Consultation regarding remediation works for Byrons Lane Slip Stage V

Transport for NSW (TfNSW) proposes to carry out remediation works on the Clarence River embankment, adjacent to a section of Big River Way (Old Pacific Highway) in response to a significant rainfall event (declared natural disaster) in March 2021. The works are required to ensure that Big River Way remains a safe and trafficable transport route by remediation of the slope and riverbank profile to prevent further degradation of the road surface. The location of the works are shown in **Illustration 1.1** with works area for the proposal shown in **Illustration 1.2**.

The objectives of the proposed works are to:

- stabilise the bank of the South Arm River associated with the project to prevent further erosion along the edge of Big River Way;
- restore the riverbank profile;
- restore the pavement to the shoulder of Big River Way;
- undertake works to minimise traffic, environmental, social impacts; and
- ensure Big River Way remains a safe and trafficable transport route.

Under the State Environmental Planning Policy (Infrastructure) 2007, Transport for NSW is required to consult with NSW Maritime under clause 16 due to a *fixed or floating structure in or over navigable waters*. Of relevance to NSW Maritime, the proposed works may require floating a barge and anchoring at the proposed work zone to carry out piling works associated with restoration of the riverbank profile within the Clarence River (South Arm).

Key features of the proposal include:

- Project set up including establishment of a site compound and stockpile locations within close proximity to the site
- Establish traffic controls in vicinity of the site (to accommodate temporary restricted/closed lanes of Big River Way)
- · Establish sedimentation and erosion controls on riverbank as required
- Cleaning of slip area including clearing of vegetation along slip restoration site
- Piling works (from road and/or river) to stabilise slope area
- Repair and restoration of pavement shoulder of Big River Way

Construction is expected to commence in April 2022 and be completed by June 2023.

I am currently preparing a Review of Environmental Factors (REF) as per the requirements under Part 5 of the *Environmental Planning and Assessment Act 1979* for this project. It would be appreciated if you could provide any comments about this proposal.

TfNSW would be pleased to provide further information if required. In this regard, Shaun Gillespie may be contacted on 0413 368 288 or by email <u>Shaun.Gillespie@transport.nsw.gov.au</u>. Alternatively, you may contact me on 0407 237 985 or <u>dhavilah@geolink.net.au</u>.

Yours faithfully

1, Hahl for

David Havilah Senior Ecologist GeoLINK on behalf of Transport for NSW

14 December 2021

David Havilah Senior Ecologist GeoLINK

email: dhavilah@qeolink.net.au and Shaun.Gillespie@transport.nsw.gov.au

Dear Mr Havilah

Re: Remediation Works for Byrons Lane Slip Stage V

Thank you for your letter dated 23 November 2021 requesting Transport for NSW (TfNSW) Maritime comment on Transport for NSW (TfNSW) proposal to carry out remediation works on the Clarence River embankment adjacent to a section of Big River Way (Old Pacific Highway) in response to a significant rainfall event (declared natural disaster) in March 2021.

TfNSW - Maritime advises that the proposal as per the supplied documentation has been assessed as having minimal impact on the safety of navigation under the Marine Safety Act 1998 and have no objections to the above-mentioned proposal.

NSW Maritime requests the following conditions to be considered in preparation of the REF:

- 1. Any works impacting on navigation during the construction phase must seek TfNSW Maritime support.
- A full scope of works relating to on-water operations including dates is to be provided to <u>navigationadvicenorth@transport.nsw.gov.au</u> 21 days prior to works commencing so a Marine Notice can be prepared and published on the Maritime website.
- 3. Any work vessels associated with the project must comply with the relevant NSW marine legislation.
- 4. Any work vessels and crew associated with the project must comply with the Marine Safety (Domestic Commercial Vessels) National Law Act 2012.
- Any submerged hazards, cables, wires, silt curtains etc must be marked with yellow aqua buoys (sign written "Warning – Submerged Hazard"). These aqua buoys must be lit with a yellow flashing light if hazards are present before sunrise and after sunset.

Should you require any further assistance please direct all future correspondence to <u>navigationadvicenorth@transport.nsw.gov.au</u>

Yours sincerely

Lingburgan

Lynda Hourigan Project Governance Officer Maritime Greater Sydney

Appendix H

Transport Construction Noise Estimator

MEMO

To:	Shaun Gillespie		
CC:			
From:	Kate Dallimore	Date:	22 October 2021
Ref:	P.0068426	Pages:	10
Subject:	Construction Noise - Byron's Lane Slip Stage V	/ Project,	Big River Way, Tyndale, NSW.

Issue

Construction noise from the Byron's Lane Slip Stage V Project, Big River Way, Tyndale, NSW.

Background

TfNSW proposes to carry out remediation works on the Clarence River embankment in response to a significant rainfall (declared natural disaster) event in March 2021. The Clarence River is located adjacent to the Big River Way (Old Pacific Highway) and the eastern riverbank forms the western embankment for the Big River Way at the proposed remediation site.

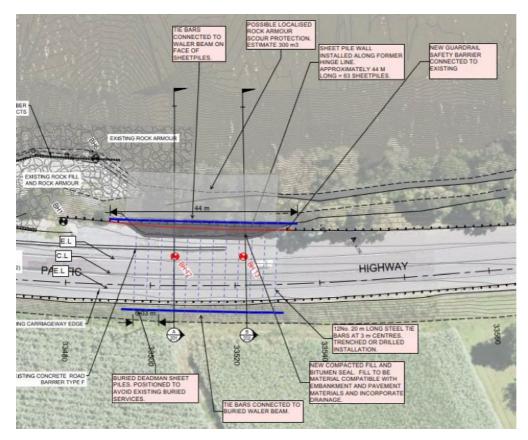
The slip is located approximately 33.44 km north of Grafton in the Clarence Valley Council (CVC) local government area and is located approximately 540m north-east of Byron's Lane.

The Clarence Riverbank was adjacent to the Big River Way was inspected on 9th March 2021 by TfNSW Geotechnical Officers after the slope subsidence was initially identified by Road Maintenance inspections. Observations identified embankment subsidence and increased cracking mechanisms within the road shoulder. This site is located within the area in which previous riverbank slope stability treatments have been required. The last repairs completed was carried out in 2017.

The proposal is funded by a state road and natural disaster program and is expected to cost \$4M for delivery.

The proposed project site is approximately 100m in length and extends from the Big River Way into the Clarence River – South Arm.

The primary objective of the proposal is to ensure that the Big River Way remains a safe and trafficable transport route by preventing further degradation of the road surface from subsidence risk associated with the ALR1 risk rating slope


Summary of Treatment Options

The 80% Geotechnical Interpretive and Design options report outlines 4 possible options & construction sequences. Below is a summary of each option.

Option 1A - Cantilever Sheet Piled Retaining Wall

Description

Concept Option 1A seeks to retain the road embankment by installing a row of cantilevered steel sheet piles along the alignment of the existing landslide headscarp. The approximate length of the wall is 42 m and comprises AZ46-700N sheet piles, at least 16 m in length, embedded within the stiff clays.

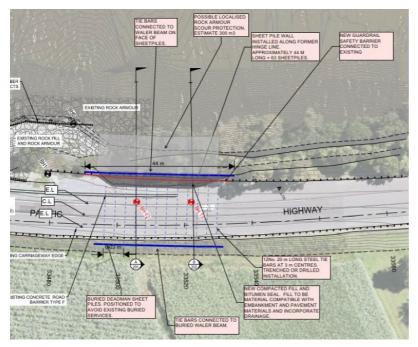
Construction Sequence

The following construction sequence is anticipated for the sheet piles:

- 1. Set up traffic control, close northbound lane.
- 2. Construct a temporary working platform for excavator mounted or crane mounted sheet piling rig.
- 3. Install sheet piles using hydraulic impact hammers or vibratory hammers. The stability of the site and

adjacent riverbanks may be sensitive to vibrations and consideration should be given to alternate installation methods such as jacking.

- 4. Fill voids and reinstate pavement and bitumen wearing course to prevent surface water ingress.
- 5. Extend concrete safety barrier.

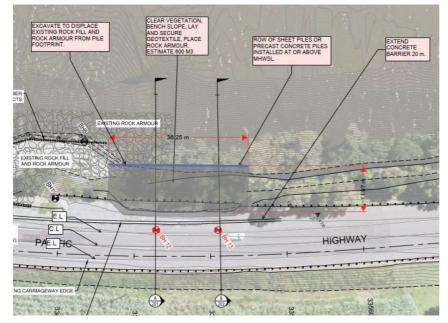

Requirements to install rock armour scour protection including any necessary clearing to the vegetated riverbank are to be discussed and confirmed with TfNSW."

Option 1B - Anchored Sheet Piled Retaining Wall

Description

Concept Option 1B seeks to retain and regain the failed embankment by installing a row of sheet piles on the riverside of the headscarp, through the landslide. In this location, the sheet piles are supporting weak, slumped landslide materials and are expected to require a row of anchors to control displacements.

The concept design is a 40 m long sheet piled retaining wall comprising approximately 12 m long sheet piles. A the second row of deadman sheet piles (5 m long) is proposed to be located on the opposite side of the road, positioned to avoid buried services (Telstra and water main). A row of steel tie bars anchors the retaining wall to the deadman via horizontal waler beams.

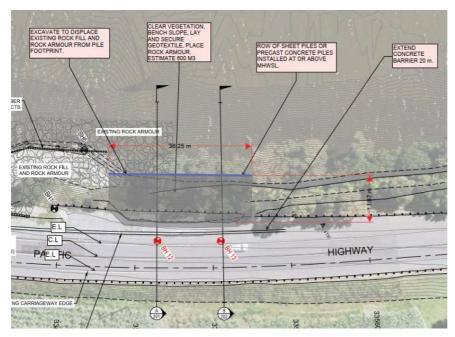

Figure 1:

Option 2 – Contiguous Pile Wall

Description

Concept Option 2 seeks to retain the road embankment by installing a row of contiguous piles. The piles are proposed to be installed using a continuous flight auger (CFA) drilling rig. The approximate length of the wall is 42 m and comprises 750 mm diameter piles at close (1200 mm to 1400 mm) centres. The piles are proposed to be positioned approximately 1.5 m back from the existing headscarp, primarily to allow the piles to be installed without further temporary stability or casing requirements. The headscarp is proposed to be battered and rock armoured.

Objective Ref: A40073886 SF2021/104579



Option 3 - Shear Piles and Rock Fill

Description

Concept Option 3 is similar to the adjacent, previous landslide remediation. It seeks to retain the road embankment and riverbank by installing a row of shear piles within the lower riverbank and backfilling behind the piles with rockfill and rock armour to reinstate the slumped riverbank profile and prevent further landslide regression towards the carriageway.

Figure 3:

Option 4 - Micro Pile and Gabion Wall

Description

Concept Option 4 seeks to retain the road embankment with a gabion basket retaining wall founded on a piled footing. Two rows of precast, driven, reinforced concrete piles are proposed to be installed and connected to a reinforced concrete pad footing. The gabion baskets are to be founded on a concrete footing. Temporary battered excavations are required to facilitate the construction of the reinforced concrete footing and gabion baskets.

Objective Ref: A40073886 SF2021/104579

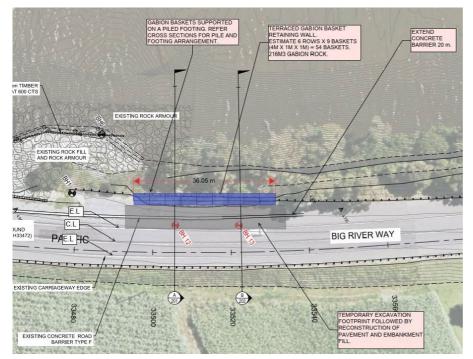


Figure 4:

Construction Methodology

An indicative methodology of the proposed works is:

Initial project set-up and cleaning of slip area.

- 1. Locate all services (including communication and potentially life-threatening services such as electrical, gas, fuel, etc.) and have a current dial before you always dig (DBYD) plans on-site.
- 2. Establish a site compound within the road reserve on the eastern side of the Pacific Highway approximately 500 m north of the proposed works.
- 3. Establish traffic control management following an approved traffic control guidance plan.
- 4. Establish sedimentation and erosion controls on river embankments as required.
- 5. Remove weeds and native regrowth along with the proposed slip restoration site.
- 6. Poison weeds at identified sites before removal and mulching to ensure mulch material reused at the site is inert.
- 7. Cut select trees to stump level as required for access for riverbank remediation using a cut and grab excavator located on the temporarily closed road travel lane. This is to reduce weight on the batter and gain access to the slope.
- 8. Vegetation will be placed in the tree mulcher located on the closed travel lane and either temporarily stockpiled for reuse onsite or taken to a co-generation plant for re-use or disposed of at a licensed waste facility. All mulch reused on-site would be to aid regeneration of the top of the bank; the mulch is to be spread at no more than 100mm thick across the top of the bank.
- 9. Loose material and slip debris to be removed from slip (no excavation below current surface level). This material is to be taken to a temporary stockpile area for treatment if required and then disposed of at a licensed waste facility.

Piling Works Situation 1 – Piling works with access from the road

- 1. Establish road travel lane restriction to Big River Way with an approved traffic control management plan
- 2. Construction a platform within the closed lanes of the Big River Way to support a piling rig.
- 3. Establish a piling rig on site.

4. Undertake piling works as specified by Geotechnical design requirements to stabilise slope area.

Piling Works Situation 2 - Piling works with access from River

- 1. Install access to the lower bank and river adjacent to the identified slip area.
- 2. Assemble and launch a barge at an external boat ramp site approved by the TfNSW Local Environmental Officer, float to slip area and anchor.
- 3. Float barge to work zone by towing behind a suitable boat and anchored in place.
- 4. Ensure navigation lights and waterway markers are in place and operational.
- 5. Establish floating sedimentation and control boom and attached silt curtain around the barge and proposed area of disturbance to isolate the works site. The silt curtain would be weighted to the bed and secured to accommodate the tidal flow.
- 6. Undertake piling works as specified by Geotechnical design requirements to stabilise slope area.

Restoration of Riverbank profile

- 1. Install access to the lower bank and river adjacent to the identified slip area.
- 2. Assemble and launch a barge at an external boat ramp site approved by the TfNSW Local Environmental Officer, float to slip area and anchor.
- 3. install floating boom(s) around slip within the river.
- 4. Place rock from onto Rock to be delivered directly to river embankment within the proposed work zone and then immediately placed onto the slope. This would be completed by excavator located on the temporarily closed road travel lane or using the barge-mounted excavator. There would be no stockpiling of incoming rock material.
- 5. Place and push rock armours (600 mm to 800 mm) into the underlying alluvium at the toe to achieve firm toe restraint.

Restoration of Big River Way Pavement

- 1. Patch out/repair areas of pavement shoulder that have suffered distress due to the loss of formation support.
- 2. Repair and/or reinstate existing safety barriers.

Plant and Equipment

Plant and equipment that would be used for the project include, but is not limited to, the following:

- Low loader.
- Excavators.
- Tipper trucks.
- Light vehicles for staff movement to and from the site.
- Traffic control devices.
- Small plant items (chain saw, mulch head, chipper, and generators)
- Concrete agitator trucks and pump
- Earthworks heavy plant items.
- Construction rollers
- Road broom
- Bitumen spray truck
- Punt/boat to ferry staff to riverbank/check environmental controls
- Tree mulcher

Additional items dependent on Geotechnical Engineering Design

- Piling rig (to be determined)
 - Continuous flight auger (CFA) drilling rig
 - Sheet pile
- Barges (to be determined)

Working Hours

The proposed works would be undertaken during the working hours as follows:

- Monday-Friday: 7:00am to 6.00pm
- Saturday: 7.00 am to 6.00 pm (note extended working hours)
- Sunday and Public Holidays: no work

However, work may be undertaken outside of the working hours on weekends or nights to minimise traffic impacts on the community. If it is determined that work outside the nominated hours is required, an assessment would be undertaken to determine the safeguards and mitigations required.

Noisy works will be undertaken following RMS "Construction Noise and Vibration Guideline" (August 2016).

Construction Noise Assessment

A distance-based noisiest plant noise assessment was undertaken for this construction site using a bored piling rig as a selected representative for the works.

Methodology

The detailed noise impact assessment is undertaken using *RMS Construction Noise Estimator. xlsm* as per section 6.2 Construction Noise and Vibration Guideline August 2016.

The representative noise environment was assessed as category R0 using the "Representative Noise Environ" tab for both sites. The background noise levels during the day, evening and night periods are then estimated to be 30, 30 and 30 dB(A) respectively.

The Environmental Protection Authority's construction noise management levels for the day, day(OOHW) evening and night are 40, 35, 35 and 35 dB(A) respectively (refer to the Construction Noise Guideline).

Note that extended working hours are required and that the night period will not be applicable as works are expected to only occur during daylight hours of the extended construction hours.

The "*RMS Construction Noise Estimator. Xlsm*" firstly identifies an affected distance for nearby residents for the relevant time period (i.e. standard hours, OOWH or night hours). The affected distance is defined as the distance up to which noise levels are expected to exceed the Noise Management Level (NML) as defined by the Environmental Protection Agency Interim Construction Noise Guidelines.

The number of residents that are located within the affected distance of the proposed works is then identified.

Then for all residents located within the affected distance, the "*RMS Construction Noise Estimator.xlsm*" identifies recommended additional mitigation measures corresponding to the degree of noise impact.

A distance-based noisiest plant assessment was undertaken for both situations as below:

Working during the day out of hours work (OOWH) periods - Rural Area - Line of sight

The affected distance is 760m for rural areas with isolated dwellings where this work is taking place. There are 8 residents located within 760m of the works which are affected receivers during day (OOHW) periods.

Objective Ref: A40073886 SF2021/104579

The "RMS Construction Noise Estimator.xlsm" identifies residents are impacted by construction noise to higher degrees at distances less than 525 metres from the works.

There are 5 affected receivers at distances less than 525 metres from the works and recommended mitigation measures are summarised in Table 1 below.

	LAeq(15minute) noise level above background noise(LA90)						
	Noticeable	Clearly Audible	Moderately intrusive	Highly intrusive			
	5 to 10 dB(A)	10 to 20 dB(A)	20 to 30 dB(A)	> 30 dB(A)			
Mitigation distance	760m to 525m	525m to 250m	250m to 120m	Less than 120m			
Number of	3	2	2	1			
residents less than							
the distance							
Notification		Notification	Notification	Notification			
requirements		Respite period (R1)	Respite period (R1)	Respite period (R1)			
		Duration respite	Duration respite	Duration respite			
				Phone calls			
				Specific Notification			

Table 1: Summary of resident notification requirements for (OOHW) day works

The predicted noise level at the nearest receiver can be up to 60 dB(A) when the proposed works are being undertaken, which is 25 dB(A) above the noise management level of 35 dB(A).

Working during standard working hours day periods - Rural Area - Line of sight

The affected distance during day periods is 525m for rural areas with isolated dwellings where this work is taking place. There are 5 residents located within 525m of the works which are affected receivers during day periods.

The "RMS Construction Noise Estimator.xlsm" identifies residents are impacted by construction noise to higher degrees at distances less than 250 metres from the works.

There are 3 affected receivers at distances less than 250metres from the works and recommended mitigation measures are summarised in Table 2 below.

	LAeq(15minute) noise level above background noise(LA90) exceedance					
	Noticeable	Clearly Audible	Moderately intrusive	Moderately intrusive		
	5 to 10 dB(A)	10 to 20 dB(A)	20 to 30 dB(A)	> 30 dB(A)		
Mitigation distance			250m to 120m	Less than 120m		
Number of			2	1		
residents less than						
the distance						
Notification			Notification	Notification		
requirements						

As a (1 Funiture to) as sing level of some here be also and a sing (1 AOO) as so a day of

Table 2: Summary of resident notification requirements for standard working hour day works

The predicted noise level at the nearest receiver can be up to 60 dB(A) when the proposed works are being undertaken, which is 20 dB(A) above the noise management level of 40 dB(A).

Recommendation

The additional mitigation measures below are recommended in addition to relevant standard mitigation measures found in Appendix B of the RMS Construction Noise and Vibration Guideline 2016 (see attachment).

The recommended additional mitigation measures for the works are:

If works are required to be completed during OOHW day periods for each section:

- Letterbox drops are to be completed to all residents located within the rural area less than 525 metres from the works.
- Contact sensitive receivers within 525 metres to inform occupants about the proposed works and offer respite as per Table 1.

If works are required to be completed during standard working hours for each section:

- Letterbox drops are to be completed to all residents located less than 250 metres from the works.
- Contact sensitive receivers within 120 metres to inform occupants about the proposed works as per Table 2.

Kate Dallimore Senior Environment & Sustainability Officer – Northern Environment and Sustainability **Transport for NSW**

Attachments

Noise assessment maps – Receiver locations

Distance-Based Assessment - Nosiest Plant - Bored Piling Rig & line of sight to the receiver

Distance-Based Assessment - Nosiest Plant - Bored Piling Rig & line of sight to the receiver

Standard Mitigation Measures – Appendix B of the RMS Construction Noise and Vibration Guideline 2016

Byron's Lane Slip Stage V - Construction Noise Assessment Maps

Distanced Based Assessment (Noisiest Plant)

Please pick from drop-down list in orange ce

Noise area	a category	RO
RBL or LA90	Day	30
Background level	Evening	30
(dB(A))	Night	30
	Day	40
LAeq(15minute) Noise Mangement	Day (OOHW)	35
Level (dB(A))	Evening	35
	Night	35
Noisies	st plant	Bored Piling Rig
Is there line of s	ight to receiver?	Yes

Steps for Screening Assessment: 1. Schedule noisy works to occur in standard hours where possible or before 11pm and implement Standard Measures. 2. Select the representative noise area category (cell C8). The worksheet titled 'Representative Noise Environ.' provides a number of examples

to help select the noise area category. 3. Select the noisiest plant (cell C15). If not found in drop-down list, refer to 'Source List' and select a representative plant with equivalent sound

to help select the noise area category.
3. Select the noises plant (cell C15). If not found in drop-down list, refer to 'Source List' and select a representative plant with equivalent sound power level.
4. Is there line of sight to receiver? Select the appropriate scenario from the drop down list (cell C17). Solid barrier can be in the form of road cutting, solid construction hoarding, acoustic curtain, timber lapped and capped fence, shipping container, site office, etc. Please note that vegetation and trees are not considered to be a form of solid barrier.
5. Determine if there are any receivers within the affected distance (undeveloped or developed areas) for each relevant time period (cells C24 to C33 for residential receiver or cells F40 to F89 for non-residential receivers)
(a) If there are <u>no affected receivers</u> within the affected distance and the project's impact duration is <u>less than 3 weeks</u>: document the background noise levels, noise management levels and the affected distance and the project's impact duration is <u>more than 3 weeks</u>; proceed to use the estimator to predict noise levels at the worst affected receiver in an internal memo or letter.
(b) If there are <u>a few affected receivers</u> and the project's impact duration is <u>greater than 1 weeks</u>; proceed to use the estimator to predict noise levels and the project's impact duration is <u>greater than three and less than six weeks</u>; proceed to use the estimator to predict noise levels and the project's impact duration is <u>greater than three and less than six weeks</u>; proceed to use the estimator and the torigation measures at all receivers to inform the consultation.
(d) proceed with the following steps to undertake a distance based assessment if there are <u>a few affected receivers</u> or many <u>affected receivers</u> or many <u>affected receivers</u> or there are <u>a few affected receivers</u> or many <u>affected receivers</u> or there are <u>a few affected receivers</u> and the project's impact duration is <u>g</u>

Steps for Distance Based Assessment: 6. Identify the affected distance corresponding to the NML (see step #5). to the NML (see step #5). 7. Identify and implement standard mitigation measures where feasible and reasonable. Include any shielding implemented as part of the standard mitigation measures by changing the selection in the 'ls there line of sight to receiver drop-down list. 8. Identify if there are any receivers that are within the additional mitigation measures distances and identify feasible and reasonable measures at each receiver (rows 24 to 33 & columns D to columns R for residential receiver or rows 40 to 69 & columns G to R for non residential receiver). residential receiver). 9. Where night works are involved, identify sleep disturbance affected distance (cells S27

and S32). 10. Document the outcomes of these steps.

Abbreviation Measure Notification (letterbox drop or equivalent Specific notifications Ν SN PC Phone calls IB Individual briefings RO Respite offer R1 Respite period 1 R2 Respite period 2 DR Duration respite AA Alternative accommodation V Verification

Note that spot check verification of noise levels and individual briefings are not required for projects with less than 3 weeks impact duration

Note: If the subject plant cannot be found on the drop down list of losiest plan (cell C16), then choose one with equivalent sound power level and make a note in the assessment memo / report. See 'Sources' worksheet for all plant contained in the database.

								LAeq(15minute) noise level above bac	kground (LA90)								
	_			5 to 10 dE	8(A)		10 to 20 dB(A	A)	20 t	o 30 dB(A)		>	30 dB(A)		LAeq(15minute) 75 dB(A	A) or greater (Highly	affected)	°
				Noticeat	ole		Clearly audib	le	Modera	ately intrusive		Hig	hly intrusive					
		Affected distance (m)	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation leve (dB(A))	^{:I} Af
the density and	Day	525							N	250	50	N	120	60	N, PC, RO	25	75	
Undeveloped	Day (OOHW)	760				N, R1, DR	525	40	N, R1, DR	250	50	N, R1, DR, PC, SN	120	60	N, PC, RO	25	75	
green fields, rural areas with	Evening	760				N, R1, DR	525	40	N, R1, DR	250	50	N, R1, DR, PC, SN	120	60	N, PC, RO	25	75	
isolated dwellings	Night	760	N	760	35	N, R2, DR	525	40	N, PC, SN, R2, DR	250	50	AA, N, PC, SN, R2, DR	120	60	N, PC, RO	25	75	
loolatou allollingo	Highly Affected	25													N, PC, RO	25	75	
Developed	Day	690							N	305	50	N	135	60	N, PC, RO	30	75	
settlements	Day (OOHW)	1010				N, R1, DR	690	40	N, R1, DR	305	50	N, R1, DR, PC, SN	135	60	N, PC, RO	30	75	
(urban and	Evening	1010				N, R1, DR	690	40	N, R1, DR	305	50	N, R1, DR, PC, SN	135	60	N, PC, RO	30	75	
suburban) or over	Night	1010	N	1010	35	N, R2, DR	690	40	N, PC, SN, R2, DR	305	50	AA, N, PC, SN, R2, DR	135	60	N, PC, RO	30	75	
water	Highly Affected	30													N, PC, RO	30	75	

Non-residential receiver											
Undeveloped green fields, rural areas with isolated dwellings					LAeq(15min	ute) noise level above NML			LAeq(15minute) 75 dB	(A) or greater (High	aly affected)
		Standard h	ours		<10 dB(A)	10	to 20 dB(A)		Excq(Tommuc) To up	(A) of greater (riigi	iny ancolou)
	Period	NML	Affected distance (m)	Measure	Within distance Mitigation level (m) (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))
Classroom at schools and other educational institutions	Day	55	175			N	75	65	N, PC, RO	25	75
Hospital wards and operating theatres	Day	65	75						N, PC, RO	25	75
Place of worship	Day	55	175			N	75	65	N, PC, RO	25	75
Active recreation	Day	65	75						N, PC, RO	25	75
Passive recreation	Day	60	120			N	45	70	N, PC, RO	25	75
Industrial premise	Day	75	25						N, PC, RO	25	75
Offices, retail outlets	Day	70	45						N, PC, RO	25	75

							Laeq(15minute) noise level above NML											
		OOHV	V		< 5 dB(A)			to 15 dB(A)			to 25 dB(A)			25 dB(A)				
	Period	NML	Affected distance (m)	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))			
	Evening	65	75		1 (11)		N, R1, DR	45	70	N, R1, DR	14	80	N, R1, DR, PC, SN	4	90			
Hospital wards and operating theatres	Night	65	75	N	75	65	N, R2, NR	45	70	N, PC, SN, R2, DR	14	80	AA, N, PC, SN, R2, DR	4	90			
Place of worship	Evening	55	175				N, R1, DR	120	60	N, R1, DR	45	70	N, R1, DR, PC, SN	14	80			
Place of worship	Night	55	175	N	175	55	N, R2, NR	120	60	N, PC, SN, R2, DR	45	70	AA, N, PC, SN, R2, DR	14	80			
Active recreation	Evening	65	75		-		N, R1, DR	45	70	N, R1, DR	14	80	N, R1, DR, PC, SN	4	90			
Passive recreation	Evening	60	120	1			N, R1, DR	75	65	N, R1, DR	25	75	N, R1, DR, PC, SN	8	85			
Industrial premise	Evening	75	25				N, R1, DR	14	80	N, R1, DR	4	90	N, R1, DR, PC, SN	1	100			
industrial premise	Night	75	25	N	25	75	N, R2, NR	14	80	N, PC, SN, R2, DR	4	90	AA, N, PC, SN, R2, DR	1	100			
Offices, retail outlets	Evening	70	45				N, R1, DR	25	75	N, R1, DR	8	85	N, R1, DR, PC, SN	3	95			
	Night	70	45	N	45	70	N, R2, NR	25	75	N, PC, SN, R2, DR	8	85	AA, N, PC, SN, R2, DR	3	95			

Non-residential receiver												
Developed settlements (urban and suburban) or over water						LAeq(15min	ute) noise level above NML			LAeq(15minute) 75 dB	(A) or greater (High	aly offected)
		Standard h	ours		<10 dB(A)		10 to	o 20 dB(A)		LAeq(ISIIIIIute) 75 dB	(A) of greater (High	ily allecteu)
	Period	NML	Affected distance (m)	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))
Classroom at schools and other educational institutions	Day	55	200				N	85	65	N, PC, RO	30	75
Hospital wards and operating theatres	Day	65	85							N, PC, RO	30	75
Place of worship	Day	55	200				Ν	85	65	N, PC, RO	30	75
Active recreation	Day	65	85							N, PC, RO	30	75
Passive recreation	Day	60	135				N	50	70	N, PC, RO	30	75
Industrial premise	Day	75	30							N, PC, RO	30	75
Offices, retail outlets	Day	70	50							N, PC, RO	30	75

					Laeq(15minute) noise level above NML												
		OOHM	I		< 5 dB(A)		5 to	o 15 dB(A)		15	to 25 dB(A)		>	• 25 dB(A)			
	Period	NML	Affected distance (m)	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))		
Hospital wards and operating theatres	Evening	65	85				N, R1, DR	50	70	N, R1, DR	17	80	N, R1, DR, PC, SN	5	90		
Hospital wards and operating theatres	Night	65	85	N	85	65	N, R2, NR	50	70	N, PC, SN, R2, DR	17	80	AA, N, PC, SN, R2, DR	5	90		
Place of worship	Evening	55	200				N, R1, DR	135	60	N, R1, DR	50	70	N, R1, DR, PC, SN	17	80		
Place of worship	Night	55	200	N	200	55	N, R2, NR	135	60	N, PC, SN, R2, DR	50	70	AA, N, PC, SN, R2, DR	17	80		
Active recreation	Evening	65	85				N, R1, DR	50	70	N, R1, DR	17	80	N, R1, DR, PC, SN	5	90		
Passive recreation	Evening	60	135				N, R1, DR	85	65	N, R1, DR	30	75	N, R1, DR, PC, SN	9	85		
Industrial premise	Evening	75	30				N, R1, DR	17	80	N, R1, DR	5	90	N, R1, DR, PC, SN	2	100		
industrial premise	Night	75	30	N	30	75	N, R2, NR	17	80	N, PC, SN, R2, DR	5	90	AA, N, PC, SN, R2, DR	2	100		
Offices, retail outlets	Evening	70	50				N, R1, DR	30	75	N, R1, DR	9	85	N, R1, DR, PC, SN	3	95		
Offices, retail outlets	Night	70	50	N	50	70	N, R2, NR	30	75	N, PC, SN, R2, DR	9	85	AA, N, PC, SN, R2, DR	3	95		

Sleep disutrbance LAmax 65 dB(A)
Affected distance (m)
175
200

Distanced Based Assessment (Noisiest Plant)

Please pick from drop-down list in orange

Noise are	a category	RO
RBL or LA90	Day	30
Background level	Evening	30
(dB(A))	Night	30
	Day	40
LAeq(15minute) Noise Mangement	Day (OOHW)	35
Level (dB(A))	Evening	35
	Night	35
Noisie	st plant	Chainsaw
Is there line of s	ight to receiver?	Yes

	Steps for Screening Assessment:
	1. Schedule noisy works to occur in standard hours where possible or before 11pm and implement Standard Measures.
J	2. Select the representative noise area category (cell C8). The worksheet titled 'Representative Noise Environ.' provides a number of examples

to help select the noise area category. 3. Select the noisiest plant (cell C15). If not found in drop-down list, refer to 'Source List' and select a representative plant with equivalent sound

to help select the noise area category.
3. Select the noises plant (cell C15). If not found in drop-down list, refer to 'Source List' and select a representative plant with equivalent sound power level.
4. Is there line of sight to receiver? Select the appropriate scenario from the drop down list (cell C17). Solid barrier can be in the form of road cutting, solid construction hoarding, acoustic curtain, timber lapped and capped fence, shipping container, site office, etc. Please note that vegetation and trees are not considered to be a form of solid barrier.
5. Determine if there are any receivers within the affected distance (undeveloped or developed areas) for each relevant time period (cells C24 to C33 for residential receiver or calls F40 to F88 for non-residential receivers)
(a) If there are no affected receivers within the affected distance and the project's impact duration is <u>less than 3 weeks</u>: document the background noise levels, noise management levels and the affected distance and the project's impact duration is <u>more flands weeks</u>; proceed to use the estimator to predict noise levels the worst affected receiver, then document background noise levels, noise management levels in a the worst affected receiver in an internal memo or letter.
(b) if there are <u>a flex affected receivers</u> within the affected istance and the project's impact duration is <u>more than 3 weeks</u>; proceed to use the estimator to predict noise levels and the project's impact duration is <u>greater than 3 weeks</u>; proceed to use the estimator to predict noise levels and mitigation measures at all receivers to inform the consultation.
(c) if there are <u>a tew affected receivers</u> and the project's impact duration is <u>greater than three and less than six weeks</u>; proceed to use the estimator to predict insead duration is <u>less than 3 weeks</u>.
(c) inderake a distance a sessessment if there are a <u>flex affected receivers</u> and the project's impact duration.
(d) p

Steps for Distance Based Assessment: 6. Identify the affected distance corresponding to the NML (see step #5). 7. Identify and implement standard mitigation measures where feasible and reasonable. Include any shielding implemented as part of the standard mitigation measures by changing the selection in the 'ls there line of sight to receiver drop-down list. 8. Identify if there are any receivers that are within the additional mitigation measures distances and identify feasible and reasonable measures at each receiver (rows 24 to 33 & columns D to columns R for residential receiver or rows 40 to 89 & columns G to R for non residential receiver). to the NML (see step #5). residential receiver). 9. Where night works are involved, identify sleep disturbance affected distance (cells S27

and S32). 10. Document the outcomes of these steps.

Abbreviation Measure Notification (letterbox drop or equivalent Specific notifications Ν SN PC Phone calls IB Individual briefings RO Respite offer R1 Respite period 1 R2 Respite period 2 DR Duration respite AA Alternative accommodation V Verification

Note that spot check verification of noise levels and individual briefings are not required for projects with less than 3 weeks impact duration

Note: If the subject plant cannot be found on the drop down list of losisest plant (cell C16), then choose one with equivalent sound power level and make a note in the assessment memo / report. See 'Sources' worksheet for all plant contained in the database.

								LAeq(15minute) noise level above bac	kground (LA90)								
				5 to 10 di	B(A)		10 to 20 dB(A	<i>l</i>)	20 t	o 30 dB(A)		;	> 30 dB(A)		LAeq(15minute) 75 dB(A) or greater (Highly	/ affected)	
				Noticeal	ble		Clearly audibl	le	Modera	ately intrusive		Hig	hly intrusive					
		Affected distance (m)	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation level (dB(A))	Measures	Within distance (m)	Mitigation leve (dB(A))	A
the development	Day	525							N	250	50	N	120	60	N, PC, RO	25	75	
Undeveloped green fields, rural	Day (OOHW)	760				N, R1, DR	525	40	N, R1, DR	250	50	N, R1, DR, PC, SN	120	60	N, PC, RO	25	75	1
areas with	Evening	760				N, R1, DR	525	40	N, R1, DR	250	50	N, R1, DR, PC, SN	120	60	N, PC, RO	25	75	
isolated dwellings	Night	760	N	760	35	N, R2, DR	525	40	N, PC, SN, R2, DR	250	50	AA, N, PC, SN, R2, DR	120	60	N, PC, RO	25	75	T
loolatou anoningo	Highly Affected	25													N, PC, RO	25	75	T
Developed	Day	690							N	305	50	N	135	60	N, PC, RO	30	75	
settlements	Day (OOHW)	1010				N, R1, DR	690	40	N, R1, DR	305	50	N, R1, DR, PC, SN	135	60	N, PC, RO	30	75	1
(urban and	Evening	1010				N, R1, DR	690	40	N, R1, DR	305	50	N, R1, DR, PC, SN	135	60	N, PC, RO	30	75	
suburban) or over	Night	1010	N	1010	35	N, R2, DR	690	40	N, PC, SN, R2, DR	305	50	AA, N, PC, SN, R2, DR	135	60	N, PC, RO	30	75	
water	Highly Affected	30													N, PC, RO	30	75	T
-																		_

Non-residential receiver												
Undeveloped green fields, rural areas with isolated dwellings						LAeq(15min	ute) noise level above NML			LAeq(15minute) 75 dE	B(A) or greater (High	hly affected)
		Standard h	ours		<10 dB(A)		10 t	o 20 dB(A)		Excq(formute) to de	S(A) of greater (riigi	iny uncolou)
	Period	NML	Affected distance (m)	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))
Classroom at schools and other educational institutions	Day	55	175				N	75	65	N, PC, RO	25	75
Hospital wards and operating theatres	Day	65	75			-				N, PC, RO	25	75
Place of worship	Day	55	175				Ν	75	65	N, PC, RO	25	75
Active recreation	Day	65	75			-				N, PC, RO	25	75
Passive recreation	Day	60	120				N	45	70	N, PC, RO	25	75
Industrial premise	Day	75	25			_				N, PC, RO	25	75
Offices, retail outlets	Day	70	45							N, PC, RO	25	75

							Laeq(15minute) noise level above NML											
		OOHV	V		< 5 dB(A)			to 15 dB(A)			to 25 dB(A)			25 dB(A)				
	Period	NML	Affected distance (m)	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))	Measure	Within distance	Mitigation level (dB(A))			
	Evening	65	75		1 (11)		N, R1, DR	45	70	N, R1, DR	14	80	N, R1, DR, PC, SN	4	90			
Hospital wards and operating theatres	Night	65	75	N	75	65	N, R2, NR	45	70	N, PC, SN, R2, DR	14	80	AA, N, PC, SN, R2, DR	4	90			
Place of worship	Evening	55	175				N, R1, DR	120	60	N, R1, DR	45	70	N, R1, DR, PC, SN	14	80			
Place of worship	Night	55	175	N	175	55	N, R2, NR	120	60	N, PC, SN, R2, DR	45	70	AA, N, PC, SN, R2, DR	14	80			
Active recreation	Evening	65	75		-		N, R1, DR	45	70	N, R1, DR	14	80	N, R1, DR, PC, SN	4	90			
Passive recreation	Evening	60	120	1			N, R1, DR	75	65	N, R1, DR	25	75	N, R1, DR, PC, SN	8	85			
Industrial premise	Evening	75	25				N, R1, DR	14	80	N, R1, DR	4	90	N, R1, DR, PC, SN	1	100			
industrial premise	Night	75	25	N	25	75	N, R2, NR	14	80	N, PC, SN, R2, DR	4	90	AA, N, PC, SN, R2, DR	1	100			
Offices, retail outlets	Evening	70	45				N, R1, DR	25	75	N, R1, DR	8	85	N, R1, DR, PC, SN	3	95			
	Night	70	45	N	45	70	N, R2, NR	25	75	N, PC, SN, R2, DR	8	85	AA, N, PC, SN, R2, DR	3	95			

Non-residential receiver												
Developed settlements (urban and suburban) or over water						LAeq(15min	ute) noise level above NML			Aca(1Eminuto) 7E dB	(A) or greater (High	aly offeeted)
		Standard h	ours		<10 dB(A)		10 to	o 20 dB(A)		LAeq(15minute) 75 dB(A) or greater (Highly affected)		
	Period	NML	Affected distance (m)	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))
Classroom at schools and other educational institutions	Day	55	200				N	85	65	N, PC, RO	30	75
Hospital wards and operating theatres	Day	65	85							N, PC, RO	30	75
Place of worship	Day	55	200				Ν	85	65	N, PC, RO	30	75
Active recreation	Day	65	85							N, PC, RO	30	75
Passive recreation	Day	60	135				N	50	70	N, PC, RO	30	75
Industrial premise	Day	75	30			-				N, PC, RO	30	75
Offices, retail outlets	Day	70	50							N, PC, RO	30	75

				Laeq(15minute) noise level above NML											
		OOHM	1		< 5 dB(A)		5 to 15 dB(A)			15 to 25 dB(A)			> 25 dB(A)		
	Period	NML	Affected distance (m)	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))	Measure	Within distance (m)	Mitigation level (dB(A))
Hospital wards and operating theatres	Evening	65	85				N, R1, DR	50	70	N, R1, DR	17	80	N, R1, DR, PC, SN	5	90
Hospital wards and operating theatres	Night	65	85	N	85	65	N, R2, NR	50	70	N, PC, SN, R2, DR	17	80	AA, N, PC, SN, R2, DR	5	90
Place of worship	Evening	55	200				N, R1, DR	135	60	N, R1, DR	50	70	N, R1, DR, PC, SN	17	80
Place of worship	Night	55	200	N	200	55	N, R2, NR	135	60	N, PC, SN, R2, DR	50	70	AA, N, PC, SN, R2, DR	17	80
Active recreation	Evening	65	85				N, R1, DR	50	70	N, R1, DR	17	80	N, R1, DR, PC, SN	5	90
Passive recreation	Evening	60	135				N, R1, DR	85	65	N, R1, DR	30	75	N, R1, DR, PC, SN	9	85
Industrial premise	Evening	75	30				N, R1, DR	17	80	N, R1, DR	5	90	N, R1, DR, PC, SN	2	100
industrial premise	Night	75	30	N	30	75	N, R2, NR	17	80	N, PC, SN, R2, DR	5	90	AA, N, PC, SN, R2, DR	2	100
Offices, retail outlets	Evening	70	50				N, R1, DR	30	75	N, R1, DR	9	85	N, R1, DR, PC, SN	3	95
Offices, retail outlets	Night	70	50	N	50	70	N, R2, NR	30	75	N, PC, SN, R2, DR	9	85	AA, N, PC, SN, R2, DR	3	95

Sleep disutrbance LAmax 65 dB(A)
Affected distance (m)
120
135

© Transport for New South Wales

Copyright: The concepts and information contained in this document are the property of

Transport for NSW. Use or copying of this document in whole or in part without the written permission of Transport for NSW constitutes an infringement of copyright.

